
Altair PBS Professional 2020.1.1

Big Book

You are reading the Altair PBS Professional 2020.1.1

Big Book (IG, AG, HG, RG, UG, PG, CG, BG, SG)

Updated 9/30/20

Copyright © 2003-2020 Altair Engineering, Inc. All rights reserved.

ALTAIR ENGINEERING INC. Proprietary and Confidential. Contains Trade Secret Information. Not for use or disclo-
sure outside of Licensee’s organization. The software and information contained herein may only be used internally and
are provided on a non-exclusive, non-transferable basis. Licensee may not sublicense, sell, lend, assign, rent, distribute,
publicly display or publicly perform the software or other information provided herein, nor is Licensee permitted to
decompile, reverse engineer, or disassemble the software. Usage of the software and other information provided by Altair
(or its resellers) is only as explicitly stated in the applicable end user license agreement between Altair and Licensee. In
the absence of such agreement, the Altair standard end user license agreement terms shall govern.

Use of Altair’s trademarks, including but not limited to “PBS™”, “PBS Professional®”, and “PBS Pro™”, “PBS
Works™”, “PBS Control™”, “PBS Access™”, “PBS Analytics™”, “PBScloud.io™”, and Altair’s logos is subject to
Altair's trademark licensing policies. For additional information, please contact Legal@altair.com and use the wording
“PBS Trademarks” in the subject line.

For a copy of the end user license agreement(s), log in to https://secure.altair.com/UserArea/agreement.html or contact
the Altair Legal Department. For information on the terms and conditions governing third party codes included in the
Altair Software, please see the Release Notes.

This document is proprietary information of Altair Engineering, Inc.

Contact Us

For the most recent information, go to the PBS Works website, www.pbsworks.com, select "My PBS", and log in with
your site ID and password.

Altair

Altair Engineering, Inc., 1820 E. Big Beaver Road, Troy, MI 48083-2031 USA www.pbsworks.com

Sales

pbssales@altair.com 248.614.2400

Please send any questions or suggestions for improvements to agu@altair.com.

https://secure.altair.com/UserArea/agreement.html
http://www.pbsworks.com
http://www.pbsworks.com

Technical Support

Need technical support? We are available from 8am to 5pm local times:

Location Telephone e-mail

Australia +1 800 174 396 anz-pbssupport@india.altair.com

China +86 (0)21 6117 1666 pbs@altair.com.cn

France +33 (0)1 4133 0992 pbssupport@europe.altair.com

Germany +49 (0)7031 6208 22 pbssupport@europe.altair.com

India +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

Italy +39 800 905595 pbssupport@europe.altair.com

Japan +81 3 6225 5821 pbs@altairjp.co.jp

Korea +82 70 4050 9200 support@altair.co.kr

Malaysia +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

North America +1 248 614 2425 pbssupport@altair.com

Russia +49 7031 6208 22 pbssupport@europe.altair.com

Scandinavia +46 (0)46 460 2828 pbssupport@europe.altair.com

Singapore +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

South Africa +27 21 831 1500 pbssupport@europe.altair.com

South America +55 11 3884 0414 br_support@altair.com

UK +44 (0)1926 468 600 pbssupport@europe.altair.com

Main Table of Contents

About PBS Documentation Main-xi

Installation & Upgrade Guide (IG)

Contents IG-v

1 PBS Architecture IG-1

2 Pre-Installation Steps IG-7

3 Installation IG-19

4 Communication IG-45

5 Initial Configuration IG-63

6 Upgrading IG-65

7 Installing and Upgrading on Cray IG-139

8 Starting & Stopping PBS on Linux IG-159

9 Starting & Stopping MoM on Windows IG-171

Index IG-177

Administrator’s Guide (AG)

Contents AG-v

1 New Features AG-1

2 Configuring the Server and Queues AG-17

3 Configuring MoMs and Vnodes AG-33

4 Scheduling AG-53

5 Using PBS Resources AG-229
PBS Professional 2020.1.1 Big Book Main-v

6 Managing Power Usage AG-315

7 Provisioning AG-327

8 Security AG-359

9 Making Your Site More Robust AG-393

10 Using MPI with PBS AG-445

11 Configuring PBS for Cray AG-465

12 Support for HPE AG-493

13 Managing Jobs AG-495

14 Administration AG-529

15 Configuring and Using PBS with Cgroups AG-561

16 Using PBS with Containers AG-599

17 Accounting AG-607

18 Mixed Linux-Windows Operation AG-639

19 Problem Solving AG-643

Index AG-657

Hooks Guide (HG)

Contents HG-v

1 New Hook Features HG-1

2 Introduction to Hooks HG-5

3 Quick Start with Hooks HG-11

4 Hook Basics HG-15

5 Creating and Configuring Hooks HG-29

6 Hook Objects and Methods HG-75
Main-vi PBS Professional 2020.1.1 Big Book

7 Built-in Hooks HG-155

8 Debugging Hooks HG-159

9 Hook Examples HG-231

Index HG-289

Reference Guide (RG)

Contents RG-v

1 Glossary of Terms RG-1

2 PBS Commands RG-21

3 MoM Parameters RG-239

4 Scheduler Parameters RG-249

5 List of Built-in Resources RG-259

6 Attributes RG-277

7 Formats RG-353

8 States RG-361

9 The PBS Configuration File RG-369

10 Log Levels RG-375

11 Job Exit Status RG-377

12 Example Configurations RG-379

13 Run Limit Error Messages RG-387

14 Error Codes RG-389

15 Request Codes RG-395

16 PBS Environment Variables RG-399

17 File Listing RG-403
PBS Professional 2020.1.1 Big Book Main-vii

18 Introduction to PBS RG-411

Index RG-413

User’s Guide (UG)

Contents UG-v

1 Getting Started with PBS UG-1

2 Submitting a PBS Job UG-11

3 Job Input & Output Files UG-31

4 Allocating Resources & Placing Jobs UG-49

5 Multiprocessor Jobs UG-77

6 Controlling How Your Job Runs UG-107

7 Reserving Resources UG-135

8 Job Arrays UG-149

9 Working with PBS Jobs UG-163

10 Checking Job & System Status UG-171

11 Submitting Cray Jobs UG-191

12 Using Provisioning UG-201

13 Using Accounting UG-207

Index UG-209

Programmer’s Guide (PG)

Contents PG-v

List of APIs PG-vii

2 PBS Architecture PG-1

3 Server Functions PG-5
Main-viii PBS Professional 2020.1.1 Big Book

4 Developer Headers and Libraries PG-19

5 Batch Interface Library (IFL) PG-21

6 TM Library PG-93

7 RM Library PG-99

8 TCL/tk Interface PG-103

9 Hooks PG-109

10 Custom Authentication and Encryption Library APIs PG-121

Index PG-133

Cloud Guide (CG)

Contents CG-v

1 Installing Cloud Bursting Module CG-1

2 Configuring Cloud Bursting CG-15

3 Using Cloud Provider Services CG-59

4 Running Cloud Jobs CG-139

Index CG-141

Budget Guide (BG)

Contents BG-v

1 Introduction to Budget BG-1

2 Installing Budget BG-7

3 Configuring Budget BG-13

4 Authentication for Budget BG-21

5 Budget Commands BG-25

6 Tutorial on Using Budget BG-63
PBS Professional 2020.1.1 Big Book Main-ix

Index BG-67

Simulate Guide (SG)

Contents SG-v

1 Installing Simulate SG-1

2 Using Simulate SG-3

Index SG-9

Main Index Main-1
Main-x PBS Professional 2020.1.1 Big Book

About PBS Documentation

The PBS Professional guides and release notes apply to the commercial releases of PBS Professional.

Document Conventions

Abbreviation

The shortest acceptable abbreviation of a command or subcommand is underlined

Attribute

Attributes, parameters, objects, variable names, resources, types

Command

Commands such as qmgr and scp

Definition

Terms being defined

File name

File and path names

Input

Command-line instructions

Method

Method or member of a class

Output

Output, example code, or file contents

Syntax

Syntax, template, synopsis

Utility

Name of utility, such as a program

Value

Keywords, instances, states, values, labels

Notation

Optional arguments are enclosed in square brackets. For example:

qstat [-E]

Variables are enclosed in angle brackets. A variable is something the user must fill in with the correct value. In the fol-
lowing example, the user replaces vnode name with the name of the vnode:

pbsnodes -v <vnode name>
PBS Professional 2020.1.1 Big Book Main-xi

About PBS Documentation
Optional variables are enclosed in angle brackets inside square brackets. For example:

qstat [<job ID>]

Literal terms appear exactly as they should be used. For example, to get the version of the qstat command, type the
following exactly:

qstat --version

Multiple alternative choices are enclosed in curly braces. For example, if you can use either “-n” or “--name”:

{-n | --name}

List of PBS Professional Documentation

The PBS Professional guides and release notes apply to the commercial releases of PBS Professional.

PBS Professional Release Notes

Supported platforms, what’s new and/or unexpected in this release, deprecations and interface changes, open and
closed bugs, late-breaking information. For administrators and job submitters.

PBS Professional Big Book

All your favorite PBS guides in one place: Installation & Upgrade, Administrator’s, Hooks, Reference, User’s, and
Programmer’s guides in a single book.

PBS Professional Installation & Upgrade Guide

How to install and upgrade PBS Professional. For the administrator.

PBS Professional Administrator’s Guide

How to configure and manage PBS Professional. For the PBS administrator.

PBS Professional Hooks Guide

How to write and use hooks for PBS Professional. For the PBS administrator.

PBS Professional Reference Guide

Covers PBS reference material.

PBS Professional User’s Guide

How to submit, monitor, track, delete, and manipulate jobs. For the job submitter.

PBS Professional Programmer’s Guide

Discusses the PBS application programming interface (API). For integrators.

PBS Professional Manual Pages

PBS commands, resources, attributes, APIs.

PBS Professional Licensing Guide

How to configure licensing for PBS Professional. For the PBS administrator.

PBS Professional Cloud Guide

How to configure and use the PBS Professional Cloud feature.

PBS Professional Budget Guide

How to configure and use the PBS Professional Budget feature.

PBS Professional Simulate Guide

How to configure and use the PBS Professional Simulate feature.
Main-xii PBS Professional 2020.1.1 Big Book

About PBS Documentation
Where to Keep the Documentation

To make cross-references work, put all of the PBS guides in the same directory.

Ordering Software and Licenses

To purchase software packages or additional software licenses, contact your Altair sales representative at
pbssales@altair.com.
PBS Professional 2020.1.1 Big Book Main-xiii

About PBS Documentation
Main-xiv PBS Professional 2020.1.1 Big Book

Altair®

PBS Professional®

2020.1.1

Installation & Upgrade

Guide

You are reading the Altair PBS Professional 2020.1.1

Installation & Upgrade Guide (IG)

Updated 9/30/20

Copyright © 2003-2020 Altair Engineering, Inc. All rights reserved.

ALTAIR ENGINEERING INC. Proprietary and Confidential. Contains Trade Secret Information. Not for use or disclo-
sure outside of Licensee’s organization. The software and information contained herein may only be used internally and
are provided on a non-exclusive, non-transferable basis. Licensee may not sublicense, sell, lend, assign, rent, distribute,
publicly display or publicly perform the software or other information provided herein, nor is Licensee permitted to
decompile, reverse engineer, or disassemble the software. Usage of the software and other information provided by Altair
(or its resellers) is only as explicitly stated in the applicable end user license agreement between Altair and Licensee. In
the absence of such agreement, the Altair standard end user license agreement terms shall govern.

Use of Altair’s trademarks, including but not limited to “PBS™”, “PBS Professional®”, and “PBS Pro™”, “PBS
Works™”, “PBS Control™”, “PBS Access™”, “PBS Analytics™”, “PBScloud.io™”, and Altair’s logos is subject to
Altair's trademark licensing policies. For additional information, please contact Legal@altair.com and use the wording
“PBS Trademarks” in the subject line.

For a copy of the end user license agreement(s), log in to https://secure.altair.com/UserArea/agreement.html or contact
the Altair Legal Department. For information on the terms and conditions governing third party codes included in the
Altair Software, please see the Release Notes.

This document is proprietary information of Altair Engineering, Inc.

Contact Us

For the most recent information, go to the PBS Works website, www.pbsworks.com, select "My PBS", and log in with
your site ID and password.

Altair

Altair Engineering, Inc., 1820 E. Big Beaver Road, Troy, MI 48083-2031 USA www.pbsworks.com

Sales

pbssales@altair.com 248.614.2400

Please send any questions or suggestions for improvements to agu@altair.com.

https://secure.altair.com/UserArea/agreement.html
http://www.pbsworks.com
http://www.pbsworks.com

Technical Support

Need technical support? We are available from 8am to 5pm local times:

Location Telephone e-mail

Australia +1 800 174 396 anz-pbssupport@india.altair.com

China +86 (0)21 6117 1666 pbs@altair.com.cn

France +33 (0)1 4133 0992 pbssupport@europe.altair.com

Germany +49 (0)7031 6208 22 pbssupport@europe.altair.com

India +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

Italy +39 800 905595 pbssupport@europe.altair.com

Japan +81 3 6225 5821 pbs@altairjp.co.jp

Korea +82 70 4050 9200 support@altair.co.kr

Malaysia +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

North America +1 248 614 2425 pbssupport@altair.com

Russia +49 7031 6208 22 pbssupport@europe.altair.com

Scandinavia +46 (0)46 460 2828 pbssupport@europe.altair.com

Singapore +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

South Africa +27 21 831 1500 pbssupport@europe.altair.com

South America +55 11 3884 0414 br_support@altair.com

UK +44 (0)1926 468 600 pbssupport@europe.altair.com

Contents

1 PBS Architecture 1
1.1 What is PBS? . 1

1.2 PBS Daemons. 1

1.3 PBS Commands . 4

1.4 Scheduling Jobs . 5

2 Pre-Installation Steps 7
2.1 Prerequisites for Running PBS . 7

2.2 Important Considerations . 12

2.3 PBS Configurations for Windows . 13

3 Installation 19
3.1 Overview of Installation . 19

3.2 Licenses . 19

3.3 Major Steps for Installing PBS Professional . 20

3.4 All Installations . 20

3.5 Installing via RPM on Linux Systems . 23

3.6 Installing via dpkg on Ubuntu . 37

3.7 Installing PBS on Windows Hosts . 37

4 Communication 47
4.1 Communication Within a PBS Complex . 47

4.2 Terminology. 47

4.3 Prerequisites . 47

4.4 Communication Parameters . 47

4.5 Inter-daemon Communication Using TPP. 51

4.6 Ports Used by PBS . 60

4.7 PBS with Multihomed Systems . 62

5 Initial Configuration 65
5.1 Validate the Installation . 65

5.2 Support PBS Features . 65

6 Upgrading 67
6.1 Types of Upgrades . 67

6.2 Differences from Previous Versions . 68

6.3 Caveats and Advice . 69

6.4 Introduction to Upgrading Under Linux . 72

6.5 Overlay Upgrade Under Linux. 72

6.6 Overlay Upgrade on One or More Machines Running Cpuset MoM. 84

6.7 Migration Upgrade Under Linux . 95

6.8 Upgrading a Windows/Linux Complex . 111

6.9 Upgrading from an All-Windows Complex. 127

6.10 After Upgrading . 139
PBS Professional 2020.1 Installation & Upgrade Guide IG-v

Contents
7 Installing and Upgrading on Cray 141
7.1 Installing PBS with Shasta . 141

7.2 Prerequisites for Using Power Profiles with Cray XC . 141

7.3 Support for IMPS and CLE 6 and 7. 141

7.4 Caveats and Advice for Installing and Upgrading on the Cray XC . 142

7.5 Installing PBS on the Cray XC . 144

7.6 After Installing on the Cray XC . 154

7.7 Upgrading on the Cray XC . 155

7.8 After Upgrading on Cray XC . 159

7.9 Cray XC References . 160

8 Starting & Stopping PBS on Linux 161
8.1 Automatic Start on Bootup . 161

8.2 When to Restart PBS Daemons . 161

8.3 Methods for Starting, Stopping, or Restarting PBS. 162

8.4 Starting, Stopping, and Restarting PBS Daemons . 165

8.5 Impact of Stop-Restart on Running Linux Jobs. 171

9 Starting & Stopping MoM on Windows 173
9.1 Automatic Start on Bootup . 173

9.2 When to Restart PBS MoMs . 173

9.3 Starting, Stopping, and Restarting PBS . 173

9.4 Stopping PBS Using the qterm Command . 176

9.5 Impact of Stop-Restart on Running Windows Jobs. 176

Index 179
IG-vi PBS Professional 2020.1 Installation & Upgrade Guide

1

PBS Architecture

1.1 What is PBS?

PBS Professional is a distributed workload management system for managing and monitoring your computational work-
load. PBS consists of daemons and commands that you use to manage jobs on one or more machines. You can use PBS
to do tasks such as submitting, querying, altering, monitoring, moving, and deleting jobs.

1.2 PBS Daemons

You use one PBS server to manage a group of machines. The server coordinates with one or more schedulers to schedule
where and when jobs run. Each machine where jobs run is managed by a MoM. Communication between server, sched-
ulers, and MoMs is handled by one or more communication daemons. We call each instance of server, schedulers,
MoMs, and communication daemons a PBS complex.

PBS daemons live in PBS_EXEC/sbin.

1.2.1 Server

The PBS server receives incoming job submissions, holds jobs that are waiting for execution, sends jobs for execution
when it’s their turn, and ensures that work is completed by monitoring the complex for failures and rerunning jobs when
necessary. Commands communicate with the server, even if they affect other daemons. The server executable is named
pbs_server; it is located in $PBS_EXEC/sbin/pbs_server.

The server contains a licensing client which communicates with the licensing server for licensing PBS jobs.

For more about the server, see "Configuring the Server and Queues" on page 17 in the PBS Professional Administrator’s
Guide.

1.2.2 Schedulers

PBS has a default scheduler; if you want to schedule individual partitions separately, you can add any number of addi-
tional schedulers, called multischeds. Each PBS scheduler follows its own scheduling policy.

Each scheduler daemon implements a policy that you define that controls when each job is run and on which resources. A
scheduler communicates with the various MoMs to query the state of system resources, and with the server to learn about
the availability of jobs to execute. See "About Schedulers" on page 89 in the PBS Professional Administrator’s Guide.

1.2.3 MoM

The MoM daemon places each job into execution when it receives a copy of the job from the server. MoM creates a new
session that is as identical to a user login session as is possible. For example, if the user’s login shell is csh, then MoM
creates a session in which .login is run as well as .cshrc. MoM also returns the job’s output to the user. One MoM runs
on each computer executing PBS jobs. These computers are called execution hosts.

For a complete description of configuring MoM, see "Configuring MoMs and Vnodes" on page 33 in the PBS Profes-
sional Administrator’s Guide.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-1

Chapter 1 PBS Architecture
1.2.4 Communication Daemon

The communication daemon, pbs_comm, handles communication between the other PBS daemons. For a complete
description, see section 4.5, “Inter-daemon Communication Using TPP”, on page 49.

1.2.5 Typical Daemon Placements

1.2.5.1 Linux Layouts

The PBS server, scheduler, and communication daemons run on a Linux host. One or more communication daemons run
on other Linux hosts, if there are enough MoMs in the complex to require additional comm daemons. Typical layouts:

• A cluster of MPI-connected execution hosts where each host runs a MoM

• One or more Cray computers

• One or more HPE execution hosts, where each host is managed by a MoM and is made up of multiple blades

• Individual execution hosts on a network

• Any or all of the above

1.2.5.2 Windows Layouts

1.2.5.2.i Linux-Windows Complex

A Linux-Windows complex has a Linux server/scheduler/communication host and Windows execution and client hosts.

1.2.5.2.ii Mixed-mode Complex

A mixed-mode complex has a Linux server/scheduler/communication host, Linux execution and client hosts, and Win-
dows execution and client hosts.
IG-2 PBS Professional 2020.1.1 Installation & Upgrade Guide

PBS Architecture Chapter 1
1.2.6 Single Execution System

You can install and run all PBS components on a single machine. The following illustration shows how communication
works when PBS is on a single host:

Figure 1-1:PBS daemons on a single execution host

1.2.7 Single Execution System with Front End

The PBS server and scheduler (pbs_server and pbs_sched) can run on one system and jobs can execute on
another. The following illustration shows how communication works when the PBS server and scheduler are on a front-
end system and MoM is on a separate host:

Figure 1-2:PBS daemons on single execution system with front end

 All PBS components on a single host

Scheduler

MoM

ServerJobs

Commands
Kernel

Communication

Job
processes

Scheduler

MoM
Server

Jobs

Kernel

Single execution host

Commands

Front-end system

Communication

Job processes
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-3

Chapter 1 PBS Architecture
1.2.8 Multiple Execution Systems

When you run PBS on several systems, normally the server (pbs_server), the scheduler (pbs_sched), and the com-
munication daemon (pbs_comm) are installed on a “front end” system, and a MoM (pbs_mom) is installed and run on
each execution host. The following diagram illustrates this:

Figure 1-3:Typical PBS daemon locations for multiple execution hosts

1.3 PBS Commands

PBS supplies command-line client commands that are used to submit, monitor, modify, and delete jobs. These client
commands can be installed on any system type supported by PBS and do not require the local presence of any of the other
components of PBS.

The privilege required to run each command varies with that command; see each command’s description. PBS com-
mands are described in “PBS Commands” on page 21 of the PBS Professional Reference Guide.

Scheduler

MoM

Server
Jobs

 PBS
Commands

Execution Host

MoM

 Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

Communication
IG-4 PBS Professional 2020.1.1 Installation & Upgrade Guide

PBS Architecture Chapter 1
1.4 Scheduling Jobs

PBS runs jobs only on the execution hosts in the complex (hosts running a MoM). Each job is placed on a host or hosts
according to the job’s request. The scheduler matches jobs with available resources such as CPUs, memory, required
software, licenses, etc. The scheduler follows rules for selecting hosts and parts of hosts that match each job’s request.
Once the scheduler finds the resources that match a job’s request, it allocates hosts or parts of hosts to the job, according
to how the host is configured and what the job requested.

Each task from a job can be placed on a different host, or a different part of a host. Alternatively, all tasks can be run on
a single host. The job can request exclusive use of each host or part of a host, or shared use with other jobs. For details,
see "Specifying Job Placement", on page 64 of the PBS Professional User’s Guide.

Each scheduler can be configured so that it follows its own scheduling policy. Scheduling policy dictates which jobs are
allowed to run where, who can use how much of what, etc. See "Scheduling" on page 53 in the PBS Professional Admin-
istrator’s Guide.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-5

Chapter 1 PBS Architecture
IG-6 PBS Professional 2020.1.1 Installation & Upgrade Guide

2

Pre-Installation Steps

This chapter describes the steps to take before installing PBS. Make sure that your setup meets the requirements
described here, and that you take the required steps to prepare for installing PBS.

2.1 Prerequisites for Running PBS

2.1.1 Run Same Version Within Complex

Do not mix different versions of PBS within a PBS complex or across complexes. This includes both major and minor
versions. All daemons and commands must be the same version of PBS Professional.

2.1.2 Resources Required by PBS

The amount of memory required by the PBS server and scheduler depends on the number of hosts and the number of jobs
to be queued or running. You will need less than 512 bytes per host. The number of jobs is the important factor, since
each job needs about 10 KB at server startup and 5 KB when the server is running. The number of processors in the com-
plex is not a factor.

2.1.2.1 Memory Required By Server Running Hooks

A PBS server executing hook scripts can consume a larger amount of memory than one not executing hook scripts. For
example, a system consisting of a server and a MoM on a Linux machine handling 10,000 short-running jobs being sub-
mitted, modified, and moved causing execution of qsub, qalter, and movejob hooks will use around 40 MB of memory in
a span of 24 hours.

2.1.2.2 Memory Required for Job History

Enabling job history requires additional memory for the server. When the server is keeping job history, it needs 8k-12k
of memory per job, instead of the 5k it needs without job history. Make sure you have enough memory: multiply the
number of jobs being tracked by this much memory. For example, if you are starting 100 jobs per day, and tracking his-
tory for two weeks, you’re tracking 1400 jobs at a time. On average, this will require 14.3M of memory.

If the server is shut down abruptly, there is no loss of job information. However, the server will require longer to start up
when keeping job history, because it must read in more information.

2.1.2.3 Amount of Memory in Complex

If the sum of all memory on all vnodes in a PBS complex is greater than 2 terabytes, then the server (pbs_server) and
scheduler (pbs_sched) must be run on a 64-bit architecture host, using a 64-bit binary.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-7

Chapter 2 Pre-Installation Steps
2.1.2.4 Adequate Space for Logfiles

PBS logging can fill up a filesystem. For customers running a large number of array jobs, we recommend that the file-
system where $PBS_HOME is located has at least 2 GB of free space for log files. It may also be necessary to rotate and
archive log files frequently to ensure that adequate space remains available. (A typical PBS Professional complex will
generate about 2 GB of log files for every 1,000,000 subjobs and/or jobs.)

2.1.2.5 Installation Disk Space

Make sure you have adequate disk space to install PBS. It is recommended to have at least 350 MB available, for instal-
lation alone.

2.1.2.6 Disk and Memory for Communication Daemon

By default, the communication daemon is installed on the server host.

Disk space used by the communication daemon is only for logfiles; make sure that your logging does not fill up the disk.

On any host running a communication daemon handling up to 5000 MoMs, make sure you have 500MB to 1GB of mem-
ory for the daemon.

2.1.2.7 Memory for Data Store

The data store itself requires around 100MB, but its size depends on the amount of memory required to store each job
script. The total memory required is the size of all job scripts plus 100MB.

2.1.3 Name Resolution and Network Configuration

Do NOT skip this section. PBS cannot function if your hostname resolution or network is configured incorrectly.

2.1.3.1 Firewalls

PBS needs to be able to use any port for outgoing connections, but only specific ports for incoming connections. If you
have firewalls running on the server or execution hosts, be sure to allow incoming connections on the appropriate ports
for each host. By default, the PBS server and MoM daemons use ports 15001 through 15004 for incoming connections,
the PBS communication daemon listens on port 17001, and daemons use any port below 1024 for outgoing connections.
See section 4.6, “Ports Used by PBS”, on page 58 for a list of ports.

Firewall-based issues are often associated with server-MoM communication failures and messages such as 'premature
end of message' in the log files.

To allow interactive jobs, make sure that the ephemeral port range in your firewall is open (make sure that MoMs can
connect to an ephemeral port on submission hosts). Check your OS documentation for the correct range.

2.1.3.2 Network Tuning

Depending on your network, you may need to tune kernel settings or other configuration parameters. Make sure that
your kernel settings support PBS. For example, check your IP tuning parameters, including UDP and TCP, and check
your ARP, routing, and name resolution settings.
IG-8 PBS Professional 2020.1.1 Installation & Upgrade Guide

Pre-Installation Steps Chapter 2
2.1.3.3 Planning for Number of Machines Connected to Complex

Configure your server host with sufficient ARP cache entries in order to allow at least one connection per ethernet
address that will connect to the server or to which the server will connect. This includes execution hosts, client hosts,
peered servers, storage machines, or machines where the scheduler may execute scripts. Check your ARP table tuning
settings.

2.1.3.4 Required Name Resolution

Make sure that the following are true:

• Use only one canonical name per host. The canonical name must be unambiguous.

• On the server/scheduler/communication host, the short name must resolve to the correct IP address.

• On the server/scheduler/communication host, the IP address must reverse resolve to the canonical name.

• Make sure that different resolvers cannot disagree when resolving the server host, whether you are using /etc/
hosts, DNS, LDAP, NIS, or something else.

• Every MoM must resolve each MoM to the same IP address that the server recognizes for that MoM. So if the
server recognizes MoM A at IP address w.x.y.z, all other MoMs must resolve MoM A to w.x.y.z.

• Make sure that the IP address of each machine in the complex resolves to the fully qualified domain name for that
machine, and vice versa. Forward and reverse hostname resolution must work consistently between all machines.

• The server must be able to look up the IP addresses for any execution host, any client host, and itself.

• Make sure that forward and reverse name lookup operate according to the IETF standard. The network on which
you will be deploying PBS must be configured according to IETF standards.

2.1.3.5 Required Network Configuration

• PBS can use a static address mapping only.

• Communications between daemons must be robust and must have sufficient capacity. Make sure that your network
does not present any limitations to PBS. For example, the ARP table size limit must not interfere when you have a
large number of MoMs. Configure your server with sufficient ARP cache entries to allow at least one connection per
ethernet address that will connect to the server or to which the server will connect. This includes execution hosts,
client hosts, peered servers, storage machines, or machines where the scheduler may execute scripts. See section
2.1.3.1, “Firewalls”, on page 8.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-9

Chapter 2 Pre-Installation Steps
2.1.3.6 Recommendations for Name Resolution and Network

Configuration

• Test name resolution using the ping command.

• Test the connections between server and MoM daemons on every physical network. You should test TCP and UDP,
and make sure that the connection can handle large packets. You can use a tool such as ttcp, with packets of
size16k, for testing.

• For multihomed MoMs, keep all PBS traffic on the same control network or subnet.

• Keep different types of traffic on separate interfaces to reduce jitter.

• When configuring /etc/hosts, do the following:

• Use the server’s FQDN as the first item on the first line on the PBS-to-PBS interface

• Use different FQDNs as the first item on other lines

• Use a name on only one line

• If you want redundancy in your network interface, consider using bonding. Aside from presenting a transparent
interface, this can allow you to load-balance network traffic across different networks.

• If name resolution is a problem in a network that should be working, tell nscd not to cache the host name of the
machine with the problem.

• If you are using nscd and you change an IP address or hostname, restart nscd on all hosts.

2.1.3.6.i Recommendations for Name Resolution and Network Configuration
on Windows

• On Windows, make sure the first nameserver resolves all the needed hostnames, including the server hostname and
the domain controller host for active directory queries.

• On Windows, put explicit IP-to-hostname addresses in the C:\windows\system32\drivers\etc\hosts
file. Otherwise your site will experience extreme slowdowns. If you make these changes to a running PBS com-
plex, you must then restart all the PBS daemons (services).

2.1.3.7 Order of Operations for Name Resolution and Network

Configuration

You can take care of some of the name resolution testing before you install PBS. However, you must do some testing
using the pbs_hostn command, after you install PBS. The "Initial Configuration" chapter follows the "Installation"
chapter, and includes steps to test name resolution. We include an overview of the whole process here for clarity:

1. Set up firewall

2. Set up name resolution

3. Test name resolution by using ping command; if necessary, fix & re-test

4. Install PBS

5. Test name resolution by using pbs_hostn command.

6. If name resolution does not work correctly:

a. Uninstall PBS

b. Fix name resolution

c. Install PBS

d. Test using pbs_hostn
IG-10 PBS Professional 2020.1.1 Installation & Upgrade Guide

Pre-Installation Steps Chapter 2
2.1.3.8 Server Hostname

The PBS_SERVER entry in pbs.conf cannot be longer than 255 characters. If the short name of the server host
resolves to the correct IP address, you can use the short name for the value of the PBS_SERVER entry in pbs.conf. If
only the FQDN of the server host resolves to the correct IP address, you must use the FQDN for the value of
PBS_SERVER.

2.1.3.9 Sockets

Some PBS processes cause network sockets to be opened between submission and execution hosts. For more informa-
tion about these processes, see "Sockets and Checkpointing" on page 425 in the PBS Professional Administrator’s Guide.
Make sure your network and firewalls are set up to handle sockets correctly.

2.1.3.10 Mounting NFS File Systems

Asynchronous writes to an NFS server can cause reliability problems. If using an NFS file system, mount the NFS file
system synchronously (without caching.)

2.1.3.11 Making Ports Available

The ports used by the PBS daemons must be available during the installation. See section 4.6, “Ports Used by PBS”, on
page 58.

2.1.4 HPE Prerequisites

2.1.4.1 HPE MPI Recommendation

For HPE MC990X, HPE Superdome Flex, and HPE 8600 machines, we recommend using HPE MPI.

As of PBS version 2020.1, pbs_mom.cpuset is no longer available. Instead, use standard MoM, and use the cgroups
hook to manage cgroups.

2.1.4.2 Power File Requirement

When using PBS Power Provisioning on HPE, ensure that the following file exists:

/opt/clmgr/power-service

2.1.5 License Server Requirement

Make sure that the ALM license server is at version 14.5 before installing PBS.

2.1.6 System Clocks in Sync

We recommend that clocks on all participating systems be in sync.

2.1.7 User Requirements on Linux

2.1.7.1 User Accounts

Users who will submit jobs must have accounts at the server and at each execution host.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-11

Chapter 2 Pre-Installation Steps
2.1.7.2 Linux User Authorization

When the user submits a job from a system other than the one on which the PBS server is running, system-level user
authorization is required. This authorization is needed for submitting the job and for PBS to return output files (see also
"Managing Output and Error Files", on page 39 of the PBS Professional User’s Guide and "Input/Output File Staging",
on page 31 of the PBS Professional User’s Guide).

The username under which the job is to be executed is selected according to the rules listed under the “-u” option to
qsub. The user submitting the job must be authorized to run the job under the execution user name (whether explicitly
specified or not).

Such authorization is provided by any of the following methods:

1. The host on which qsub is run (i.e. the submission host) is trusted by the server. This permission may be granted at
the system level by having the submission host as one of the entries in the server’s hosts.equiv file naming the sub-
mission host. For file delivery and file staging, the host representing the source of the file must be in the receiving
host’s hosts.equiv file. Such entries require system administrator access.

2. The host on which qsub is run (i.e. the submission host) is explicitly trusted by the server via the user’s .rhosts
file in his/her home directory. The .rhosts must contain an entry for the system from which the job is submitted,
with the user name portion set to the name under which the job will run. For file delivery and file staging, the host
representing the source of the file must be in the user’s .rhosts file on the receiving host. It is recommended to
have two lines per host, one with just the “base” host name and one with the full hostname, e.g.: host.domain.name.

3. PBS may be configured to use the Secure Copy (scp) for file transfers. The administrator sets up SSH keys as
described in "Enabling Passwordless Authentication" on page 555 in the PBS Professional Administrator’s Guide.
See also "Setting File Transfer Mechanism" on page 549 in the PBS Professional Administrator’s Guide.

4. User authentication may also be enabled by setting the server’s flatuid attribute to True. See the
pbs_server_attributes(7B) man page and "Flatuid and Access" on page 376 in the PBS Professional
Administrator’s Guide. Note that flatuid may open a security hole in the case where a vnode has been logged into by
someone impersonating a genuine user.

2.2 Important Considerations

2.2.1 Avoiding Datastore Corruption from Job Spool Files

Job spool files can fill up the PBS_HOME filesystem. This can corrupt the datastore and cause a failure that requires recov-
ering from backups. Consider moving the spool directory to a dedicated file system, or using quotas. Note that if you
use quotas on Cray ext3fs filesystems, the kernel enforces quotas correctly even though commands that display quotas
may show stale data (when files are not closed.)

Job spool files are saved on the server on job rerun, and on the MoM for running jobs.

2.2.2 Using noexec on /tmp

If you need to have noexec on your /tmp, do one of the following:

• Set the TMPDIR environment variable; the shared library that is extracted to /tmp/xf-dll follows TMPDIR if it is
set

• Install a soft link from /tmp/xf-dll pointing to a location on a filesystem that does not have the "noexec" mount
flag
IG-12 PBS Professional 2020.1.1 Installation & Upgrade Guide

Pre-Installation Steps Chapter 2
Why? The ALSDK liblmx-altair.so self-extracts a DSO into /tmp/xf-dll, and then tries to map it. If it fails to do so
because noexec is set, the ALSDK routines simply perform an exit(1),which terminates the server, without any log
message in the server log.

2.3 PBS Configurations for Windows

2.3.1 Definitions

Active Directory

Active Directory is an implementation of LDAP directory services by Microsoft to use in Windows environ-
ments. It is a directory service used to store information about the network resources (e.g. user accounts and
groups) across a domain. Active Directory is fully integrated with DNS and TCP/IP; DNS is required. To be
fully functional, the DNS server must support SRV resource records or service records.

Admin (Windows)

As referred to in various parts of this document, this is a user logged in from an account who is a member of any
group that has full control over the local computer, domain controller, or is allowed to make domain and schema
changes to the Active directory.

Administrators

A group that has built-in capabilities that give its members full control over the local system, or the domain con-
troller host itself.

Delegation

A capability provided by Active Directory that allows granular assignment of privileges to a domain account or
group. So for instance, instead of adding an account to the “Account Operators” group which might give too
much access, then delegation allows giving the account read access only to all domain users and groups infor-
mation. This is done via the Delegation wizard.

Domain Admin Account

This is a domain account on Windows that is a member of the “Domain Admins” group.

Domain Admins

A global group whose members are authorized to administer the domain. By default, the Domain Admins group
is a member of the Administrators group on all computers that have joined a domain, including the domain con-
trollers.

Domain User Account

It is a domain account on Windows that is a member of the “Domain Users” group.

Domain Users

A global group that, by default, includes all user accounts in a domain. When you create a user account in a
domain, it is added to this group automatically.

Enterprise Admins

A group that exists only in the root domain of an Active Directory forest of domains. The group is authorized to
make forest-wide changes in Active Directory, such as adding child domains.

Install Account, Installation Account

The account used by the person who installs PBS.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-13

Chapter 2 Pre-Installation Steps
Schema Admins

A group that exists only in the root domain of an Active Directory forest of domains. The group is authorized to
make schema changes in Active Directory.

PBS service account

The account that is used to execute pbs_mom via the Service Control Manager on Windows. This account can
have any name. The default name is pbsadmin.

2.3.2 Domained Environment Required

All Windows hosts and users must be in a domained environment.

2.3.3 Permission Requirement

On Windows 7 and later with UAC enabled, if you will use the cmd prompt to operate on hooks, or for any privileged
command such as qmgr, you must run the cmd prompt with option Run as Administrator.

2.3.4 Daemon Layout for Windows

As of PBS 19.4.1, all PBS complexes run the PBS server, scheduler, and comm daemons on Linux hosts. You can run all
MoMs and client commands on Windows hosts, or some on Windows and some on Linux.

2.3.5 Windows Configuration in a Domained Environment

2.3.5.1 Machines

• Any Windows client commands and MoMs must run on a set of Windows machines networked in a single domain.

• The machines must be members of this one domain, and they must be dependent on a centralized database located
on the primary/secondary domain controllers.

• The domain controllers must be running on a Server type of Windows host, using Active Directory configured in
"native" mode.

• The choice of DNS must be compatible with Active Directory.

• The PBS server and scheduler run on a Linux host.

• PBS must not be installed or run on a Windows machine that is serving as the domain controller (running Active
Directory) to the PBS hosts.

2.3.5.2 User Accounts

• Windows job submitters must have an account at all PBS hosts involved in a job: the server, the execution hosts, and
the client host.

• All user accounts must be in the same domain as the Windows client and execution hosts.

• Each user must explicitly be assigned a HomeDirectory sitting on some network path. PBS does not support a
HomeDirectory that is not network-mounted. PBS currently supports network-mounted directories that are using
the Windows network share facility.

• If a user was not assigned a HomeDirectory, then PBS uses PROFILE_PATH\My Documents\PBS Pro, where
PROFILE_PATH could be, for example, “\Documents and Settings\username”.
IG-14 PBS Professional 2020.1.1 Installation & Upgrade Guide

Pre-Installation Steps Chapter 2
2.3.5.3 User Jobs

• All users must submit and run PBS jobs using only their domain accounts (no local accounts), and domain groups. If
a user has both a domain account and local account, then PBS will ensure that the job runs under the domain
account.

• Each user must always supply an initial password in order to submit jobs. This is done by running the pbs_login
command at least once to supply the password that PBS will use to run the user’s jobs.

• Access by jobs to network resources, such as a network drive, requires a password.

• All job scripts, as well as input, output, error, and intermediate files of a PBS job must reside in an NTFS directory.

2.3.6 User Authorization Under Windows

Windows job submitters must cache a password for authorization. To do this, each job submitter must run pbs_login at
each client host initially and for each password change.

The user name under which the job is to be executed is selected according to the rules listed under the “-u” option to
qsub. See “qsub” on page 213 of the PBS Professional Reference Guide. The user submitting the job must be autho-
rized to run the job under the execution user name (whether explicitly specified or not). Authorization is provided by
either of the following methods:

2.3.6.1 Requirements for Non-admin Users

Under Windows, if a user has a non-admin account, the server hosts.equiv file is used to determine whether that user
can run a job at a given server.

The Windows hosts.equiv file determines the list of non-Administrator accounts that are allowed access to the local
host, that is, the host containing this file. This file also determines whether a remote user is allowed to submit jobs to the
local PBS server, with the user on the local host being a non-Administrator account.

This file is usually: %WINDIR%\system32\drivers\etc\hosts.equiv.

The format of the hosts.equiv file is as follows:

[+|-] hostname username

'+' means enable access, whereas '-' means to disable access. If '+' or '-' is not specified, then this implies enabling of
access. If only hostname is given, then users logged into that host are allowed access to like-named accounts on the local
host. If only username is given, then that user has access to all accounts (except Administrator-type users) on the local
host. Finally, if both hostname and username are given, then user at that host has access to like-named account on local
host.

The hosts.equiv file must be owned by an admin-type user or group, with write access granted to an admin-type user
or group.

Table 2-1: Requirements for Non-admin User to Submit Job

File Submission Host Username vs. Server Host Username

UserS Same as UserS UserS Different from UserA

hosts.equiv on ServerA <HostS> <HostS> UserS
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-15

Chapter 2 Pre-Installation Steps
2.3.6.2 Requirements for Admin Users

For an admin account, [PROFILE_PATH].\rhosts is used, and the server’s acl_roots attribute must be set to allow
job submissions.

2.3.7 Windows User HOMEDIR

Each Windows user must have a home directory (HOMEDIR) where their PBS job will initially be started. For jobs that do
not have their staging and execution directories created by PBS, the home directory is also the starting location of file
transfers when users specify relative path arguments to qsub/qalter -W stagein/stageout options.

PBS supports network mounted home directories.

2.3.7.1 Configuring User HOMEDIR

The home directory can be configured by an Administrator by setting the user's HomeDirectory field in the user database,
via the User Management Tool. It is important to include the drive letter when specifying the home directory path. The
directory specified for the home folder must be accessible to the user. If the directory has incorrect permissions, PBS will
be unable to run jobs for the user.

2.3.7.2 Directory Must Exist Already

You must specify an already existing directory for home folder. If you don't, the system will create it for you, but set the
permissions to that which will make it inaccessible to the user.

2.3.7.3 Default Directory

If a user has not been explicitly assigned a home directory, then PBS will use this Windows-assigned default, local home
directory as base location for its default home directory. More specifically, the actual home path will be:

[PROFILE_PATH]\My Documents\PBS Pro

For instance, if a userA has not been assigned a home directory, it will default to a local home directory of:

\Documents and Settings\userA\My Documents\PBS Pro

UserA’s job will use the above path as working directory, and for jobs that do not have their staging and execution direc-
tories created by PBS, any relative pathnames in stagein, stageout, output, error file delivery will resolve to the above
path.

Table 2-2: Requirements for Admin User to Submit Job

Location/Action
Submission Host Username vs. Server Host

Username

UserS Same as UserS
UserS Different from

UserA

[PROFILE_PATH]\.rhosts contains For UserS on ServerA, add
<HostS> UserS

For UserA on ServerA, add
<HostS> UserS

set ServerA’s acl_roots attribute qmgr> set server
acl_roots=UserS

qmgr> set server
acl_roots=UserA
IG-16 PBS Professional 2020.1.1 Installation & Upgrade Guide

Pre-Installation Steps Chapter 2
Note that Windows can return as PROFILE_PATH one of the following forms:

\Documents and Settings\username

\Documents and Settings\username.local-hostname

\Documents and Settings\username.local-hostname.00N where N is a number

\Documents and Settings\username.domain-name

2.3.8 Windows Caveats

2.3.8.1 Installation of Microsoft Redistributable Pack

The PBS installer installs the Microsoft redistributable pack of vc++ redistributable binaries into the system root
(C:\Windows) directory.

2.3.8.2 Make Sure ComSpec Environment Variable Is Set

Check that in the pbs_environment file, the environment variable ComSpec is set to C:\WIN-

DOWS\system32\cmd.exe. If it is not, set it to that value:

1. Change directory:
cmd.admin> cd \Program Files\PBS\home

2. Edit the pbs_environment file:

cmd.admin> edit pbs_environment

3. Add the following entry to the pbs_environment file:

ComSpec=C:\WINDOWS\system32\cmd.exe

4. Restart the MoM:

net stop pbs_mom

net start pbs_mom

Simply setting this variable inside a job script doesn't work. The ComSpec variable must be set before PBS executes
cmd. cmd invokes the user's submission script.

2.3.8.3 Unsupported Windows Configurations

The following Windows configurations are currently unsupported:

• Using NIS/NIS+ for authentication on non-domain accounts.

• Using RSA SecurID module with Windows logons as a means of authenticating non-domain accounts.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-17

Chapter 2 Pre-Installation Steps
IG-18 PBS Professional 2020.1.1 Installation & Upgrade Guide

3

Installation

3.1 Overview of Installation

3.1.1 Prerequisite Reading

This chapter shows how to install PBS Professional. You should read the Release Notes and Chapter 2, "Pre-Installation
Steps", on page 7 before installing the software.

3.1.2 Replacing an Older Version of PBS

If you are installing on a system where PBS is already running, follow the instructions for an upgrade. Go to Chapter 6,
"Upgrading", on page 65.

3.1.3 Package Naming

Download the package for your platform from our website, and uncompress it. Packages are named like this:

PBSPro_<version>-<platform>_<hardware>.tar.gz.

For example, the PBS 19.2.2 package for CentOS 7 is named PBSPro_19.2.2-CentoOS7.tar.gz. When you uncompress
it, you’ll find the following sub-package RPMs:

• Server/scheduler/MoM/communication/commands:
pbspro-server-<version>-0.<platform-specific-dist-tag>.<hardware>.rpm

• MoM/commands:
pbspro-execution-<version>-0.<platform-specific-dist-tag>.<hardware>.rpm

• Commands:
pbspro-client-<version>-0.<platform-specific-dist-tag>.<hardware>.rpm

For example, for CentOS 7, the sub-packages are:

pbspro-server-19.2.2-<date etc.>-0.el7.x86_64.rpm

pbspro-execution-19.2.2-<date etc.>-0.el7.x86_64.rpm

pbspro-client-19.2.2-<date etc.>-0.el7.x86_64.rpm

3.2 Licenses

In order for a job to run, it must be running on a licensed host. Make sure that you have access to an Altair License Man-
ager (ALM) license server that is hosting the licenses you need. Your license server can host either of these:

• Node licenses, which license a certain amount of hardware. Node licenses are obtained from Altair.

• Socket licenses, which are tied to hosts.

Each PBS complex can be licensed using PBSProNodes licenses or PBSProSockets licenses, but not both, so the ALM
license server will provide one or the other. See the PBS Works Licensing Guide.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-19

Chapter 3 Installation
3.2.1 Licensing Caveats

If you do not tell PBS where to find the license server, the pbs_license_info attribute is left as is, which could be set to
some previous value or unset. It is usually set to some previous value when doing an overlay or migration upgrade.

If the license server location is incorrectly initialized (e.g. the hostname or port number is incorrect), PBS may not be
able to pinpoint the misconfiguration as the cause of the failure to reach a license server. The PBS server's first attempt to
contact the license server results in the following message on the server’s log file:

“unable to connect to license server at ...”

3.3 Major Steps for Installing PBS Professional

1. Set up your ALM license server with enough licenses for your site. See the PBS Works Licensing Guide.

2. Create accounts used by PBS. See section 3.5.1.3, “Create PBS Data Service Management Account”, on page 23
and section 3.7.8, “Create Installation and Service Accounts”, on page 39.

3. Download the correct PBS Professional package for each host. The PBS Professional package is available on the
PBS download page at https://secure.altair.com/UserArea/.

4. Please read section 3.4, “All Installations”, on page 20. Then install PBS Professional on the server host and all exe-
cution hosts, without starting any daemons. For instructions, see section 3.5, “Installing via RPM on Linux Sys-
tems”, on page 23 or section 3.7, “Installing PBS on Windows Hosts”, on page 37.

5. Optionally, install additional communication daemons.

6. If you have additional communication daemons, start them using systemd or the PBS start/stop script. See section
8.3, “Methods for Starting, Stopping, or Restarting PBS”, on page 160.

7. Install PBS commands on any client hosts.

8. Start PBS on each execution host using systemd or the PBS start/stop script. See section 8.3, “Methods for Start-
ing, Stopping, or Restarting PBS”, on page 160.

9. Start PBS on the server host using systemd or the PBS start/stop script. See section 8.3, “Methods for Starting,
Stopping, or Restarting PBS”, on page 160.

10. Set the server’s pbs_license_info attribute to point to the license server:

qmgr -c 'set server pbs_license_info=<port>@<license server hostname>'

11. Using the qmgr command, define the vnodes that the server will manage. See "Creating Vnodes" on page 38 in the
PBS Professional Administrator’s Guide.

12. Perform post-installation tasks such as validation. See Chapter 5, "Initial Configuration", on page 63.

3.4 All Installations

3.4.1 Automatic Installation of Database

Installing PBS automatically installs (and upgrades) the database used by PBS for its data store.
IG-20 PBS Professional 2020.1.1 Installation & Upgrade Guide

Installation Chapter 3
3.4.2 Choosing Installation Sub-package

On each PBS host, install the sub-package corresponding to the task(s) that host will perform. The task you give a host
determines what we call the host. For example, a host that runs job tasks is called an "execution host”. Sometimes there
is more than one title that means the same thing; for example, some people call the server host the “headnode”. Select
the sub-package (or, for Windows, the installation option) that matches the desired task:

3.4.2.1 Pathname Conventions

The term PBS_HOME refers to the location where the daemon/service configuration files, accounting logs, etc. are
installed.

The term PBS_EXEC refers to the location where the executable programs are installed.

3.4.3 Installing Additional Communication Daemons

By default, one communication daemon is installed on each server host. If you are configuring failover, your site will
automatically have two communication daemons and all PBS daemons will automatically connect to them.

You may want to install additional communication daemons. For some rough guidelines on when you might want addi-
tional communication daemons, see section 4.5.4, “Recommendations for Maximizing Communication Performance”,
on page 51.

Table 3-1: Choosing Installation Type

Option Host Role Task Package Contents
Parameters in

pbs.conf For Default
Start

1 Server host,
headnode,
front end
machine

Runs server, scheduler, and
communication daemons.
Optionally runs MoM dae-
mon. Client commands are
included.

If using failover, install on both
server hosts.

Server/scheduler/communi-
cation/MoM/client com-
mands

PBS_START_SERVER=1

PBS_START_SCHED=1

PBS_START_COMM=1

To run MoM, add:

PBS_START_MOM =1

2 Execution
host, MoM
host

Runs MoM. Executes job
tasks. Client commands are
included.

Install on each execution host.

Execution/client commands PBS_START_MOM =1

3 Client host,
submit host,
submission
host

Users can run PBS commands
and view man pages.

Install on each client host.

Client commands None
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-21

Chapter 3 Installation
To install just the communication daemon:

1. Download the appropriate PBS package

2. Uncompress the package

3. Make sure that parameters for PBS_HOME, PBS_EXEC, PBS_LICENSE_INFO, PBS_SERVER and
PBS_DATA_SERVICE_USER are set correctly; see section 3.5.2.2, “Setting Installation Parameters”, on page 25

4. Install the server sub-package:

rpm -i <path/to/sub-package>pbspro-server-<version>-0.<platform-specific-dist-
tag>.<hardware>.rpm

5. Edit pbs.conf to run only the communication daemon:

PBS_START_COMM=1

PBS_START_MOM=0

PBS_START_SCHED=0

PBS_START_SERVER=0

6. Start PBS:

systemctl start pbs

or

<path to script>/pbs start

7. Check to see that the communication daemon is running:

ps -ef | grep pbs

You should see that the pbs_comm daemon is running.

3.4.4 Deciding to Run a MoM After Installation

When you initially start PBS on a host that is configured not to run a MoM, PBS does not create MoM’s home directory.
If you later decide to run a MoM on this host:

1. Edit pbs.conf on that host and set PBS_START_MOM=1

2. You may find it helpful to source your /etc/pbs.conf file.

3. Run the pbs_habitat script:

$PBS_EXEC/libexec/pbs_habitat

4. Start PBS on the host:

systemctl start pbs

or

<path to start/stop script>/pbs start
IG-22 PBS Professional 2020.1.1 Installation & Upgrade Guide

Installation Chapter 3
3.4.5 Installation Method and Instructions by Platform

The procedure for installing PBS is the same on most platforms. Some platforms have a few minor differences, and
some require special instructions. The following table lists instructions by platform:

3.5 Installing via RPM on Linux Systems

3.5.1 Prerequisites for Installing on Linux Systems

3.5.1.1 Prerequisite Reading

Please do not jump straight to this section in your reading. Before downloading and installing PBS, please make sure
that you have read the following and taken any required steps:

• Prerequisites: All of Section 2.1, "Prerequisites for Running PBS", and Section 2.1.7, "User Requirements on Linux"
and their subsections.

• Please read Section 3.1, "Overview of Installation".

• Make sure that you know how you will proceed by reading Section 3.3, "Major Steps for Installing PBS Profes-
sional".

• Please check all of Section 3.4, "All Installations" and its subsections to make sure you have prepared properly.

3.5.1.2 Permissions

The location for the installation of the PBS Professional software binaries (PBS_EXEC) and private directo-
ries(PBS_HOME) must be owned and writable by root, and must not be writable by other users.

3.5.1.3 Create PBS Data Service Management Account

Before you install PBS, you must create the PBS data service management account.

Table 3-2: Installation Method and Instructions by Platform

Platform Installation Method Installation Instructions

RHEL package manager, e.g. RPM section 3.5, “Installing via RPM on Linux Systems”, on page 23

CentOS package manager, e.g. RPM section 3.5, “Installing via RPM on Linux Systems”, on page 23

HPE MC990X,
Superdome Flex

package manager, e.g. RPM section 3.5.3, “Installing on MC990X or Superdome Flex”, on page 28

HPE 8600 package manager, e.g. RPM section 3.5.4, “Installing PBS on the HPE 8600”, on page 30

SuSE package manager, e.g. RPM section 3.5, “Installing via RPM on Linux Systems”, on page 23

CLE RPM “Installing and Upgrading on Cray” on page 139

Ubuntu deb section 3.6, “Installing via dpkg on Ubuntu”, on page 37

Windows PBS installation program
provided by Altair

section 3.7, “Installing PBS on Windows Hosts”, on page 37
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-23

Chapter 3 Installation
Note that there are two accounts related to the data service. Both have the same account name, but one is a Linux
account and one is internal to the data service:

PBS data service management account

Created by administrator. Linux account with a Linux system password.

Data service account

Created by PBS on installation. Account that is internal to the data service, with its own data service password.
Used by PBS to log into and do operations on the data service. PBS maps this account to the PBS data service man-
agement account. Must have same name as PBS data service management account.

Create the PBS data service management account with the following characteristics:

• Non-root account

• Account must be for a system user; the UID must be less than 1000. Otherwise, the data service may be killed at
inopportune times.

• Account is enabled

• If you are using failover, the UID of this account must be the same on both primary and secondary server hosts

• We recommend that the account is called pbsdata.

• The installer looks for an account called pbsdata. If this account exists, the installer does not need to prompt
for a username, and can install silently.

• If you choose to use an account named something other than pbsdata, make sure you export an environment
variable named PBS_DATA_SERVICE_USER with the value set to the desired existing PBS data service
management account name.

• Root must be able to su to the PBS data service management account and run commands as that user. Do not add
lines such as ‘exec bash’ to the .profile of the PBS data service management account. If you want to use
bash or similar, set this in the /etc/passwd file, via the OS tools for user management.

• The PBS data service management account must have a home directory.

• Do not put a CPU time limit on the data service Linux account. If you do, the datastore will die and kill the server.

3.5.1.4 Unset PBS_EXEC Environment Variable

Unset the PBS_EXEC environment variable.

3.5.2 Generic Installation on Linux

For all platforms except those listed here, follow the generic instructions. The following platforms require their own
steps:

• HPE MC990X and Superdome Flex: Go to section 3.5.3, “Installing on MC990X or Superdome Flex”, on page 28

• HPE 8600: Go to section 3.5.4, “Installing PBS on the HPE 8600”, on page 30

3.5.2.1 Downloading PBS

1. Download the PBS tar.gz package

2. Extract the tar file. For example:

tar zxvf PBSPro_<version>-linux26_i686.tar.gz
IG-24 PBS Professional 2020.1.1 Installation & Upgrade Guide

Installation Chapter 3
3.5.2.2 Setting Installation Parameters

Make sure that the PBS_EXEC, PBS_HOME, PBS_LICENSE_INFO, PBS_SERVER and
PBS_DATA_SERVICE_USER parameters are specified at install time. PBS has default locations for PBS_EXEC
and PBS_HOME, and a default value for PBS_DATA_SERVICE_USER, but you must specify the others.

You can override defaults at install time, in this order of precedence:

1. Via arguments to the package manager

2. Via environment variables

3. By specifying the desired parameters in /etc/pbs.conf. For details see "The PBS Configuration File" on page 529
in the PBS Professional Administrator’s Guide

This table lists each parameter, its default value, and how it can be set at install time:

3.5.2.2.i Caveats for Installation Parameters

Any PBS_START_* parameters set in the environment are not picked up and set in pbs.conf. You must specify these
in pbs.conf; do not export them.

Table 3-3: Setting Installation Parameters

Parameter Default Value
Specify via
pbs.conf

Specify via
Environment

Variable

Specify via
rpm

Command

PBS_DATA_SERVICE

_USER

pbsdata No - ignored Yes - environment
variable only

No

PBS_EXEC /opt/pbs No - value in
pbs.conf is over-
ridden at install
time. Note that
changing this in
pbs.conf breaks
rpm

No - ignored --prefix
<location>

PBS_HOME /var/spool/pbs Yes Yes No

PBS_LICENSE_INFO None No - ignored Yes - environment
variable only. Can
set
pbs_license_info
server attribute via
qmgr

No

PBS_SERVER For server installation: output of
hostname command up to first
period.

For all other installations:
“CHANGE_THIS_TO_PBS_P

RO_SERVER_HOSTNAME”

Yes Yes No
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-25

Chapter 3 Installation
3.5.2.3 Installing on a Standalone Linux Machine

Make sure that you have covered the prerequisites in section 3.5.1, “Prerequisites for Installing on Linux Systems”, on
page 23. The following example shows an installation on a single host on which all PBS components will run, and from
which users will also submit jobs. The process may vary depending on the native package installer on your system.

1. Log in as root

2. Download the appropriate PBS package

3. Uncompress the package

4. Make sure that parameters for PBS_HOME, PBS_EXEC, PBS_LICENSE_INFO, PBS_SERVER and
PBS_DATA_SERVICE_USER are set correctly; see section 3.5.2.2, “Setting Installation Parameters”, on page 25

5. Install the server sub-package:

rpm -i <path/to/sub-package>pbspro-server-<version>-0.<platform-specific-dist-
tag>.<hardware>.rpm

6. Edit pbs.conf to set PBS_START_MOM=1

7. Start PBS:

systemctl start pbs

or

<path to script>/pbs start

8. Check to see that the server, scheduler, MoM, and communication daemons are running:

ps -ef | grep pbs

You should see that the following daemons are running: pbs_mom, pbs_server, pbs_sched, pbs_comm

9. Make sure that user paths work, and submit sleep jobs. See section 3.5.5, “Making User Paths Work”, on page 36.

10. Verify that the jobs are running:

/opt/pbs/bin/qstat -a

11. Verify that you are running the correct version:

/opt/pbs/bin/qstat --version

12. Set the pbs_license_info server attribute to the location of the license server:

qmgr -c 'set server pbs_license_info=<port>@<license server hostname>'

3.5.2.4 Installing on a Linux Cluster

Make sure that you have covered the prerequisites in section 3.5.1, “Prerequisites for Installing on Linux Systems”, on
page 23.

You may or may not want to run batch jobs on the server/scheduler/communication host. First, install and start PBS on
each execution host. Then install PBS on the server host. Follow these steps:
IG-26 PBS Professional 2020.1.1 Installation & Upgrade Guide

Installation Chapter 3
3.5.2.4.i Install PBS on Execution Hosts

1. Log in as root

2. Download the appropriate PBS package

3. Uncompress the package

4. Make sure that parameters for PBS_HOME, PBS_EXEC, and PBS_SERVER are set correctly; see section
3.5.2.2, “Setting Installation Parameters”, on page 25

5. Install the PBS execution sub-package on each execution host:

rpm -i <path/to/sub-package>pbspro-execution-<version>-0.<platform-specific-dist-
tag>.<hardware>.rpm

6. Start PBS:

systemctl start pbs

or

<path to script>/pbs start

Instead of running the installer by hand on each machine, you can use a command such as pdsh. The one-line format for
a non-default install is:

PBS_SERVER=<server name> PBS_HOME=<new home location> rpm -i --prefix <new exec location> pbspro-
<sub-package>-<version>-0.<platform-specific-dist-tag>.<hardware>.rpm

3.5.2.4.ii Install PBS on Server Host

1. Log in as root

2. Download the appropriate PBS package

3. Uncompress the package

4. Make sure that parameters for PBS_HOME, PBS_EXEC, PBS_LICENSE_INFO, PBS_SERVER and
PBS_DATA_SERVICE_USER are set correctly; see section 3.5.2.2, “Setting Installation Parameters”, on page 25

5. If you want to run batch jobs on the front-end host, create or edit the pbs.conf file on the front-end machine so that
a MoM runs there:

PBS_START_MOM=1

6. Install the server sub-package:

rpm -i <path/to/sub-package>pbspro-server-<version>-0.<platform-specific-dist-
tag>.<hardware>.rpm

3.5.2.4.iii Start PBS on Server Host

Start PBS on the server machine by running systemd or the PBS start/stop script. If /etc/init.d exists, the script is
in /etc/init.d/pbs, otherwise /etc/rc.d/init.d/pbs:

systemctl start pbs

or

<path to script>/pbs start

3.5.2.4.iv Configure Licensing

Set the pbs_license_info server attribute to the location of the license server:

qmgr -c 'set server pbs_license_info=<port>@<license server hostname>'
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-27

Chapter 3 Installation
3.5.2.4.v Install PBS on Client Hosts

Install PBS on each client host.

1. Log in as root

2. Download the appropriate PBS package

3. Uncompress the package

4. Make sure that parameters for PBS_HOME, PBS_EXEC, and PBS_SERVER are set correctly; see section
3.5.2.2, “Setting Installation Parameters”, on page 25

5. Install the PBS client sub-package on each execution host:

rpm -i <path/to/sub-package>pbspro-client-<version>-0.<platform-specific-dist-
tag>.<hardware>.rpm

3.5.2.4.vi Define Vnodes

Using the qmgr command, define the vnodes that the server will manage. See "Creating Vnodes" on page 38 in the PBS
Professional Administrator’s Guide.

3.5.2.4.vii Check User Paths

Make sure that user paths work. See section 3.5.5, “Making User Paths Work”, on page 36.

3.5.3 Installing on MC990X or Superdome Flex

3.5.3.1 Prerequisites for Installing on a MC990X or Superdome Flex

Make sure that you have covered the prerequisites in section 3.5.1, “Prerequisites for Installing on Linux Systems”, on
page 23. On these machines, you install the PBS server package and use cgroups to manage cpusets.

3.5.3.2 Download and Install the New PBS

1. Log in as root

2. Download the appropriate PBS package

3. Uncompress the package

4. Make sure that parameters for PBS_HOME, PBS_EXEC, PBS_LICENSE_INFO, PBS_SERVER and
PBS_DATA_SERVICE_USER are set correctly; see section 3.5.2.2, “Setting Installation Parameters”, on page 25

5. Install the server sub-package:

rpm -i <path/to/sub-package>pbspro-server-<version>-0.<platform-specific-dist-
tag>.<hardware>.rpm

3.5.3.3 Start PBS

1. Edit pbs.conf to set PBS_START_MOM=1

2. Start the PBS daemons by running systemd or the PBS start/stop script. The location of the script varies depend-
ing on system configuration.

systemctl start pbs

or

<path to script>/pbs start
IG-28 PBS Professional 2020.1.1 Installation & Upgrade Guide

Installation Chapter 3
3.5.3.4 Configure Licensing

Set the pbs_license_info server attribute to the location of the license server(s):

qmgr -c 'set server pbs_license_info=<port>@<license server hostname>'

3.5.3.5 Test the New PBS

1. Check to see that the PBS daemons are running. You should see that there are four daemons running: pbs_mom,
pbs_server, pbs_sched, pbs_comm:
ps -ef | grep pbs

2. Submit jobs as a normal user.

Submit a job to the default queue:

echo "sleep 60" | /opt/pbs/bin/qsub

3. Verify that the jobs are running:

/opt/pbs/bin/qstat -an

3.5.3.6 Configure Cgroups to Manage Cpusets

1. Make sure that your cgroups hook is enabled and that you can use cgroups. See "Configuring and Using PBS with
Cgroups" on page 561 in the PBS Professional Administrator’s Guide.

1. Export the cgroups hook configuration file to pbs_cgroups.json:
qmgr -c 'export hook pbs_cgroups application/x-config default' > pbs_cgroups.json

2. You can make the cgroups hook mimic the behavior of the cpuset MoM in previous versions:

a. Create one vnode for each NUMA node. Edit pbs_cgroups.json as follows (important):

“vnode_per_numa_node” : true,

b. Edit pbs_cgroups.json as follows (recommended):

“use_hyperthreads” : true,

3. If the cgroups memory subsystem is not mounted on the system, disable 'memory' in the cgroups hook configura-
tion file:

a. Check to see whether it is mounted:

mount | grep cgroup | grep memory

If the memory subsystem is mounted, the command returns something like "cgroup on /sys/fs/cgroup/mem-
ory type cgroup (rw,nosuid,nodev,noexec,relatime,memory".

b. If this returns empty, edit the pbs_cgroups.json file so that 'enabled' parameter for 'memory' under cgroup is
false:

"cgroup": {

 ...

"memory": {

"enabled": false,

4. Import the modified configuration (make sure you use “x-config”):

qmgr -c 'import hook pbs_cgroups application/x-config default pbs_cgroups.json'
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-29

Chapter 3 Installation
3.5.3.7 Restart MoMs

On each execution host, restart MoM :

ps -eaf | grep pbs_mom

kill <MoM PID>

/opt/pbs/sbin/pbs_mom

3.5.4 Installing PBS on the HPE 8600

3.5.4.1 HPE 8600 Components

An 8600 system consists of one Admin node, one or more Service (login) nodes, and a set of one or more compute racks.
Each compute rack consists of one or more IRU nodes and one or more compute nodes per IRU. The racks are diskless.
The root file system of the IRU and compute nodes are mounted read-only from a NAS managed by the Admin node.
There is a single image of the root file system for all of the compute nodes and a separate image for all of the IRU nodes.
HPE Performance Cluster Manager node management commands are used to publish the image to the various nodes in a
process that involves powering down the nodes, pushing a new image, and re-powering the nodes.

In a typical configuration, user home file systems are mounted from NAS, and each node has a separately mounted file
system for /var/spool.

HPE follows a naming convention when preparing a system for shipment. Service nodes are named “service0”,
“service1”, … Compute nodes are named “rRiLnN” where 'R' is the rack number starting with 1; 'L' is the IRU node
number within a rack starting with 0 in each rack; N is the node number, starting with 0, under the specific Rack Leader.
For example, two racks with 2 IRUs per rack and 4 nodes per IRU are named:

Table 3-4: Node Names

IRU Rack 1 Rack 2

IRU 0 r1i0n0 r2i0n0

r1i0n1 r2i0n1

r1i0n2 r2i0n2

r1i0n3 r2i0n3

IRU 1 r1i1n0 r2i1n0

r1i1n1 r2i1n1

r1i1n2 r2i1n2

r1i1n3 r2i1n3
IG-30 PBS Professional 2020.1.1 Installation & Upgrade Guide

Installation Chapter 3
3.5.4.2 Requirements for the HPE 8600 with HPE MPI

• Make sure that you have covered the prerequisites in section 3.5.1, “Prerequisites for Installing on Linux Systems”,
on page 23.

• In order to run PBS on the HPE 8600 with HPE MPI, HPE Performance Cluster Manager node management tools
must already be installed. You will be using the following HPE Performance Cluster Manager commands:

• You must use the correct names for the Admin and Service nodes in any commands.

3.5.4.3 Choosing Whether PBS Will Manage Cpusets with HPE 8600

Running HPE MPI

You can use cpusets on an HPE 8600 running PBS, whether or not PBS manages the cpusets. If PBS manages the
cpusets for you, that means that PBS dynamically creates a cpuset for each job and confines job processes to that cpuset.
If PBS does not manage the cpusets for you, then jobs are not confined to cpusets. You can use the PBS cgroups hook to
manage the cpusets on the 8600; see section 3.5.4.10, “Configure Cgroups to Manage Cpusets”, on page 35.

3.5.4.4 Installation of the PBS Server, Scheduler, and

Communication Daemons

Install the PBS server, scheduler, communication daemon, and commands on a single service node; here we assume this
node is “service0”:

1. Log on to service0 as root.

2. Unzip and untar the appropriate package.

3. Make sure that parameters for PBS_HOME, PBS_EXEC, PBS_LICENSE_INFO, PBS_SERVER and
PBS_DATA_SERVICE_USER are set correctly; see section 3.5.2.2, “Setting Installation Parameters”, on page 25

4. Install the server sub-package:

rpm -i <path/to/sub-package>pbspro-server-<version>-0.<platform-specific-dist-
tag>.<hardware>.rpm

5. Do not start PBS

Table 3-5: Performance Cluster Manager Commands

Performance Cluster Manager
Command

Description

cnodes --ice-compute List the compute node names; useful in scripting operations

cpower node off <node name> Powers down

cpower node on <node name> Powers up the named nodes

cimage --… Manages the file system image for the various nodes
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-31

Chapter 3 Installation
3.5.4.5 Installation of the PBS MoM

You install and configure MoM once on the root file system, then you push the image to all of the compute nodes by
propagating it to the rack leaders. Then you reboot each node with the new image.

1. Log on to the Admin node as root.

2. Determine which image file is being used on the compute nodes. To list the nodes on rack 1:

cimage --list-nodes r1

It will show output in the form “node: image_name kernel” similar to

r1i0n0: compute-sles15sp1 2.6.26.46-0.12-smp

Thus node r1i0n0 is running the image “compute-sles15sp1” and the kernel version “2.6.26.46-0.12-smp”.
For the remaining steps, it is assumed that those are the images and kernel available.

3. List the available images:

cimage --list-images

which will list the images available for the compute nodes. Each image may have multiple kernels.

4. Unless you are experienced in managing the image files, we suggest that you create a copy of the image in use and
install PBS in that copy. To copy an image:

cinstallman --create-image --clone --source compute-sles15sp1 --image compute-sles15sp1pbs

5. The image file lives in the directory /opt/clmgr/image/images, so change into the tmp directory found in the
new image just cloned:

cd /opt/clmgr/image/images/compute-sles15sp1pbs/tmp

6. Chroot to the new image file:

chroot /opt/clmgr/image/images/compute-sles15sp1pbs /bin/sh

The new root is in effect.

7. Download, unzip and untar the PBS package

8. Make sure that parameters for PBS_HOME, PBS_EXEC and PBS_SERVER are set correctly; see section
3.5.2.2, “Setting Installation Parameters”, on page 25

9. Install the PBS execution sub-package in the normal execution directory, /opt/pbs, in this system image:

rpm -i <path/to/sub-package>pbspro-execution-<version>-0.<platform-specific-dist-tag>.<hard-
ware>.rpm

10. Do not start PBS

11. Exit from the chroot shell and return to root's normal home directory.

12. Power down each rack of compute nodes:

for n in `cnodes --ice-compute` ; do

cpower node off $n

done

13. Publish the new system image to the compute nodes:

cimage --push-rack compute-sles15sp1pbs r*
IG-32 PBS Professional 2020.1.1 Installation & Upgrade Guide

Installation Chapter 3
This instruction will take several minutes to finish.

14. Set the new image and kernel to be booted. This need not be done if: (1) rather than cloning a new image, you have
installed PBS into the image already running on the compute nodes; or (2) you are using an image that was already
pushed to the nodes.

cimage --set compute-sles15sp1pbs 2.6.26.46-0.12-smp r*i*n*

15. Power up the compute nodes:

for n in `cnodes --ice-compute` ; do

cpower node on $n

done

It will take several minutes for the compute nodes to reboot.

3.5.4.6 Start PBS Server

1. Log on to the Service node as root

2. On the Service node, start the PBS server, scheduler, and communication daemons:

systemctl start pbs

or

<path to script>/pbs start

3.5.4.7 Configure Licensing

Set the pbs_license_info server attribute to the location of the license server:

qmgr -c 'set server pbs_license_info=<port>@<license server hostname>'

3.5.4.8 Add Compute Nodes

Using qmgr, add the compute nodes to the PBS configuration:

for N in `cnodes --ice-compute`

do

qmgr -c "create node $N"

done

If you use the IP address for the name of the vnode:

1. Add PBS_MOM_NODE_NAME=<IP address> to pbs.conf on the execution host

2. Restart MoM

3.5.4.9 Configuring Placement Sets on the HPE 8600

Placement sets improve job placement on execution nodes. If you want to use cgroups, you can generate placement set
information. See "Placement Sets" on page 168 in the PBS Professional Administrator’s Guide.

Placement sets can be defined only after you have defined the compute nodes as in the previous section. Put placement
set resource information in a Version 2 configuration file for each host. Make sure that the vnode names you use in your
Version 2 configuration file are exactly the same as the names generated by the cgroups hook.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-33

Chapter 3 Installation
Steps to generate placement sets:

1. Shut down the server.

2. Add a resource named “router” (the script uses this exact name):

Qmgr: create resource router type=string_array, flag=h

3. Restart the server

4. Generate your placement sets and set their resource values at vnodes; you can use the sgiICEplacement.sh script,
which is in the unsupported directory, as an example

5. Verify the result:

a. Run the pbsnodes -a command

b. Look for the line “resources_available.router” at each vnode. The value assigned to the “router”
resource should be in the form “r#,r#i#”, where r identifies the rack number and i identifies the IRU number.
IG-34 PBS Professional 2020.1.1 Installation & Upgrade Guide

Installation Chapter 3
3.5.4.10 Configure Cgroups to Manage Cpusets

Do the following steps as root on the server node (service0).

1. Make sure that cgroups subsystems including cpuset are mounted on the compute nodes. See "Configuring and
Using PBS with Cgroups" on page 561 in the PBS Professional Administrator’s Guide.

2. Modify the cgroups hook configuration file:

a. Export the cgroups hook configuration file:

qmgr -c "export hook pbs_cgroups application/x-config default" > pbs_cgroups.json

b. Edit the cgroups configuration file. To get default cpuset behavior, set these:

"vnode_per_numa_node" : true,

"use_hyperthreads" : true,

"ncpus_are_cores" : false,

We describe how to manage hyperthreading behavior in "Configuring Hyperthreading Support" on page 572 in
the PBS Professional Administrator’s Guide.

c. If the cgroups memory subsystem is not mounted on the system, disable 'memory' in the cgroups hook config-
uration file. Check to see whether it is mounted:

mount | grep cgroup | grep memory

If the memory subsystem is mounted, the command returns something like "cgroup on /sys/fs/cgroup/mem-
ory type cgroup (rw,nosuid,nodev,noexec,relatime,memory".

d. If this returns empty, edit the pbs_cgroups.json file so that 'enabled' parameter for 'memory' under cgroup is
false:

"cgroup": {

 ...

"memory": {

"enabled": false,

e. Read in the updated cgroups hook configuration:

qmgr -c "import hook pbs_cgroups application/x-config default pbs_cgroups.json"

3. Enable the cgroups hook:

qmgr -c "set hook pbs_cgroups enabled=true"

4. Restart the MoMs, using either systemctl or the start/stop script:

for n in `cnodes --ice-compute`; do

ssh $n "systemctl restart pbs"

done

or

for n in `cnodes --ice-compute`; do

ssh $n "<path to script>/pbs restart"

done

5. Check that you have created one vnode for each NUMA node, and that the vnode state is free:

pbsnodes -av
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-35

Chapter 3 Installation
3.5.5 Making User Paths Work

If you’re installing PBS for the first time, make sure that user PATHs include the location of the PBS commands. If users
already have paths to PBS commands, you can either make symbolic links so that users don’t have to change their
PATHs, or users can set their PATHs to the locations of the commands.

3.5.5.1 Setting User Paths to Location of Commands

Users should set their path to include PBS_EXEC/bin and PBS_EXEC/sbin. For example, if PBS_EXEC is /opt/pbs, by
including /opt/pbs/bin, users will have PBS executables in their path.

3.5.5.2 Making Existing User Paths Work with New Location

You may need to make users’ PATH variable point to the new PBS_EXEC directory, especially if PBS_EXEC is in a non-
default location, or if you’re using a new location. You can use symbolic links to enable users to access PBS commands
via their current PATH:

<user PATH>/bin -> <PBS_EXEC>/bin

<user PATH>/sbin -> <PBS_EXEC>/sbin

For example if the old location was /usr/pbs_bin, create the link /usr/pbs_bin/bin -> /opt/pbs/bin.

3.5.5.3 Testing User Paths

• Test that a normal user can submit a job. As a normal user, type:
echo "sleep 60" | /opt/pbs/bin/qsub

This submits a job to the queue named ‘workq’ (the queue that is automatically defined as the default queue)

• If you’ve changed the location of PBS commands and used symbolic links to allow users to keep their old PATHs,
verify that the old paths work:
echo "sleep 60" | <old user path>/bin/qsub

3.5.6 Caveats for Uninstalling on Linux

Using rpm -e, even on an older package than the one you are currently using, will cause any currently running PBS
daemons to shut down, and will also remove the system V init and/or systemd service startup files. This will prevent
PBS daemons from starting automatically at system boot time. If you wish to remove an older RPM without these
effects, use rpm -e --noscripts.
IG-36 PBS Professional 2020.1.1 Installation & Upgrade Guide

Installation Chapter 3
3.6 Installing via dpkg on Ubuntu

To install PBS Professional on Ubuntu, use the following steps:

1. Choose the .deb package to install. Make sure it is appropriate for the host’s function, which could be server, execu-
tion, or client host.

2. Use dpkg -i to install the .deb package:

dpkg -i <.deb package>

3. Update /etc/pbs.conf: set the PBS_START_* parameters to the appropriate values. Here is an example where
one host will run all daemons:

PBS_EXEC=/opt/pbs

PBS_SERVER=<hostname>

PBS_START_SERVER=1

PBS_START_SCHED=1

PBS_START_COMM=1

PBS_START_MOM=1

PBS_HOME=/var/spool/pbs

PBS_CORE_LIMIT=unlimited

PBS_SCP=/usr/bin/scp

4. Each hostname must resolve to at least one non-loopback IP address. Typically, the default /etc/hosts file does
not conform to this prerequisite, so you probably need to do additional network configuration to make PBS work on
Ubuntu. You can do this by using DNS or by adding a new entry into /etc/hosts that associates the hostname with
a non-loopback IP address. To update /etc/hosts:

Update the IP address for the server host:

127.0.0.1 localhost

192.168.238.135 <server hostname>

The following lines are desirable for IPv6-capable hosts:

::1 ip6-localhost ip6-loopback

fe00::0 ip6-localnet

ff00::0 ip6-mcastprefix

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

5. If the PBS Data service management account, usually called pbsdata, does not already exist, create it. See section
3.5.1.3, “Create PBS Data Service Management Account”, on page 23.

6. Start PBS:

/etc/init/pbs start

3.7 Installing PBS on Windows Hosts

3.7.1 Daemon Layout

MoMs and client commands can run on Windows machines, but all other PBS components are installed on Linux hosts.
Install the Windows MoM and client packages, and install your chosen Linux server/scheduler/comm package.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-37

Chapter 3 Installation
3.7.2 Prerequisites

Please do not jump straight to this section in your reading. Before downloading and installing PBS, please make sure
that you have read the following and taken any required steps:

• Prerequisites: All of Section 2.1, "Prerequisites for Running PBS", Section 2.3, "PBS Configurations for Windows",
Section 2.3.6, "User Authorization Under Windows", and Section 2.3.8, "Windows Caveats" and their subsections.

• Please read Section 3.1, "Overview of Installation".

• Please start your installation by following the steps in Section 3.3, "Major Steps for Installing PBS Professional".

• Please check all of Section 3.4, "All Installations" and its subsections to make sure you have prepared properly.

3.7.3 Default Installation Locations

On Windows systems, PBS is installed in \Program Files (x86)\PBS\.

Default installation directories:

PBS_HOME: C:\Program Files (x86)\PBS\home

PBS_EXEC: C:\Program Files (x86)\PBS\exec

3.7.4 Where to Run Daemons (Services)

When PBS is installed on a complex, the MoM must be run on each execution host. The server, scheduler, and communi-
cation daemons are installed on a Linux front-end system. The PBS Windows package contains the following:

• PBS Professional software

• Supporting text files (README etc.)

3.7.5 PBS Requirements on Windows

All Windows hosts in a PBS complex must be in the same domain.

PBS Professional is supported if the domain controller server is configured “native”. Running PBS in an environment
where the domain controllers are configured in “mixed-mode” is not supported.

You must install PBS Professional from an Administrator account.

Before you install PBS on Windows, make sure you are using the correct type of account. See section 2.3.5, “Windows
Configuration in a Domained Environment”, on page 14.

PBS Professional requires that the drive that PBS was installed under (e.g. \Program Files\PBS or \Program
Files (x86)\PBS) be configured as an NTFS filesystem.

Before installing PBS Professional, be sure to uninstall any old PBS Professional files. For details see "Uninstalling PBS
Professional on Windows” on page 44.

You can specify the destination folder for PBS using the “Ask Destination Path” dialog during setup.

3.7.6 Make Sure Hostnames Resolve Correctly

Make sure that all of your hosts consistently resolve to the correct IP addresses. Wrong IP address to hostname transla-
tion will cause errors for PBS.

Configure your system to talk to a properly configured and functioning DNS server.
IG-38 PBS Professional 2020.1.1 Installation & Upgrade Guide

Installation Chapter 3
On each host, add the correct host entries to the following files:

c:\windows\system32\drivers\etc\hosts

hosts.equiv

Make each etc\hosts file identical on each host, and make each hosts.equiv file identical on each host.

Example 3-1: Your server is serverA, your execution host is exec01, and your client hosts are client001 and client002.
Hostnames and IP addresses look like this:

Here’s what etc\hosts should look like at each host:

192.168.0.101 server

192.168.0.102 mom

192.168.0.103 client001

192.168.0.104 client002

Here’s what hosts.equiv should look like at each host:

server

mom

client001

client002

3.7.7 Create Job Submission Accounts

Set up any user accounts that will be used to run PBS jobs. All job submission accounts must be part of the same domain
as any Windows hosts. The accounts should not be Administrator-type accounts, that is, not a member of the “Domain
Administrators” or local “Administrators” group, so that basic authentication using hosts.equiv can be used.

Once the accounts have been set up, list all PBS hosts (server, execution, client, file storage) in the hosts.equiv or job
submitters’ .rhosts files. Do this on all the hosts, to allow accounts on these hosts to access PBS services such as job
submission and remote file copying.

The hosts.equiv file can usually be found in the following location:

C:\windows\system32\drivers\etc\hosts.equiv

3.7.8 Create Installation and Service Accounts

Before you install PBS, you must create the accounts that PBS requires.

On Windows, the PBS data service management account is the same as the PBS Windows service account. You do not
need to create a separate data service account.

You need to create the installation and service accounts. We give instructions below.

Table 3-6: Example Host Names and Addresses

Hostname Host IP Address

serverA 192.168.0.101

exec01 192.168.0.102

client001 192.168.0.103

client002 192.168.0.104
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-39

Chapter 3 Installation
You do not need to create the following accounts:

PBS data service management account

On Windows, the PBS data service management account is the same as the PBS Windows service account. You do
not need to create a separate PBS data service management account.

Data service account

Account that is internal to the data service, and has its own data service password. On installation, PBS creates the
internal data service account, and maps it to the PBS service account. The data service account name must be the
same as the PBS service account.

You do need to create the installation and service accounts, and we give instructions below.

3.7.8.1 Creating Installation Account in Domained Environment

The installation account is the account from which PBS is installed. The installation account must be the only account
that will be used for all steps of PBS installation including modifying configuration files, setting up failover, and so on.
If any of the PBS configuration files are modified by an account that is not the installation account, permissions/owner-
ships of the files could be reset, rendering them inaccessible to PBS. For domained environments, the installation
account must be a local account that is a member of the local Administrators group on the local computer.

3.7.8.2 Creating PBS Service Account in Domained Environment

The PBS service account is the account under which the PBS service (pbs_mom) will run.

• This account can have any name.

• The name of the account defaults to pbsadmin.

• This account must exist while any PBS services are running.

• The password for this account should not be changed while PBS is running.

• Create the PBS service account before installing PBS.

• For domained environments, the PBS service account must:

a. be a domain account

b. be a member of the "Domain Users" group, and only this group

c. have "domain read" privilege to all users and groups.

• For a domained environment, delegate “read access to all users and groups information” to the PBS service account.
See section 3.7.8.2.i, “Delegating Read Access to PBS Service Account in Domained Environment”, on page 41.

• If the PBS service account is set up with no explicit domain read privilege, MoM may hang. The hang happens
when users submit jobs from a network mapped drive without the -o/-e option for redirecting files. When this
happens, bring up Task manager, look for a "cmd" process by the user who owned the job, and kill it. After the first
cmd process is killed, you may have to look for a second one (the first one copies the output file, the second one
does the error file). This should un-hang the MoM.

• The PBS service account must be a member of the local Administrators group. Add the PBS service account to the
local Administrators group:
net localgroup Administrators <domain name>\<service account name> /add

• Do not put a CPU time limit on the service account . If you do, the datastore will die and kill the server.
IG-40 PBS Professional 2020.1.1 Installation & Upgrade Guide

Installation Chapter 3
3.7.8.2.i Delegating Read Access to PBS Service Account in Domained
Environment

• To delegate “read access to users and groups information” to the PBS service account:

a. On the domain controller host, bring up Active Directory Users and Computers.

b. Select <domain name>, right mouse click, and choose "Delegate Control". This will bring up the "Delegation of
Control Wizard".

c. When it asks for a user or group to which to delegate control, select the name of the PBS service account.

d. When it asks for a task to delegate, specify "Create a custom task to delegate".

e. For active directory object type, select the "this folder, existing objects in this folder, and creation of objects in
this folder" button.

f. For permissions, select “Read” and “Read All Properties”.

g. Exit out of Active Directory.

3.7.8.2.ii Service Account Caveats

If you change the name of the PBS service account:

• You must restart the daemons on that host

• On Windows, you must re-register the MoM service

3.7.9 Installation Notes for Domained Environment

3.7.9.1 Installation Path

• The destination/installation path of PBS must be NTFS. All PBS configuration files must reside on an NTFS filesys-
tem.

3.7.9.2 Notes on Installation

• The installation account must be used in all future invocations of the install program when setting up a complex of
PBS hosts.

• The install program requires the installer to supply the password for the PBS service account. This same password
must be supplied to future invocations of the install program on other hosts.

• The install program will enable the following rights to the PBS service account: "Create Token Object", "Replace
Process Level Token", "Log On As a Service", and "Act As Part of the Operating System".

• The install program will enable Full Control permission to local "Administrators" group on the install host for all
PBS-related files.

• The install program will give you a specific error if the PBS service account is not a member of the local Administra-
tors group on the local computer. It will quit at this point, and you must go back:

a. Make the PBS service account be a member of the local Administrators group on the local computer:

net localgroup Administrators <name of PBS service account> /add

b. Re-run the install program.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-41

Chapter 3 Installation
3.7.10 Steps to Install PBS on Windows

1. On each execution and client host, do the following:

a. Log in with the installation account.

b. Install the KB2999226 update for Windows on all Windows Server 2012 execution and client machines.

c. Download the MSI installer (the .msi file).

d. Double-click the MSI installer; the splash screen is displayed.

e. Click the Next button to move to the license page. Accept the license.

f. Click the Next button and choose the path where you will install the PBS executable. By default this path
points to "C:\Program Files (x86)\PBS\".

g. Using “Run As Administrator”, open a Command prompt.

2. Install the server/scheduler package on a Linux host. See section 3.5.2.4.ii, “Install PBS on Server Host”, on page
27.

3.7.11 Post-installation Steps

3.7.11.1 Configuring MoMs

On each execution host, manually execute the win_postinstall.py script as shown below. When you specify the PBS
service account, whether or not you are on a domain machine, include only the username, not the domain. For example,
if the full username on a domain machine is <domain>\<username>, pass only username as an argument:

<PBS_EXEC>\python\python.exe <PBS_EXEC>\etc\win_postinstall.py -u <PBS service account> -p <PBS
service account password> -s <server name> -t execution -c <path to scp.exe>

3.7.11.2 Configuring Client Hosts

On each client host, manually execute the win_postinstall.py script as shown below. When you specify the PBS ser-
vice account, whether or not you are on a domain machine, include only the username, not the domain. For example, if
the full username on a domain machine is <domain>\<username>, pass only username as an argument:

<PBS_EXEC>\python\python.exe <PBS_EXEC>\etc\win_postinstall.py -u <PBS service account> -p <PBS
service account password> -s <server name> -t client -c <path to scp.exe>

3.7.11.3 Defining Vnodes

Using the qmgr command, define the vnodes that the server will manage. See "Creating Vnodes" on page 38 in the PBS
Professional Administrator’s Guide.

3.7.11.4 Configuring Remote File Copy

If you will use scp for your remote file copy mechanism, configure passwordless ssh. If you will use $usecp to spec-
ify your remote file copy mechanism, you do not need to configure passwordless ssh. See "Configuring MoM for
Remote Copy" on page 552 in the PBS Professional Administrator’s Guide.
IG-42 PBS Professional 2020.1.1 Installation & Upgrade Guide

Installation Chapter 3
3.7.12 Post-installation Considerations on Windows

3.7.12.1 File Creation

The installation process automatically creates the following file:

[PBS Destination folder]\pbs.conf

containing at least the following entries:

PBS_EXEC=[PBS Destination Folder]\exec

PBS_HOME=[PBS Destination Folder]\home

PBS_SERVER=<server name>

PBS_START_SERVER=<value>

PBS_START_SCHED=<value>

PBS_START_MOM=<value>

PBS_START_COMM=<value>

PBS_AUTH_METHOD=pwd

where PBS_EXEC will contain subdirectories where the executable and scripts reside, PBS_HOME will house the log
files, job files, and other processing files, and server-name will reference the system running the PBS server. The
pbs.conf file can be edited by calling the PBS program “pbs-config-add”. For example:

\Program Files (x86)\PBS\exec\bin\pbs-config-add "PBS_SCP=C:\Windows\System32\OpenSSH\scp.exe"

Don't edit pbs.conf directly as the permission on the file could get reset causing other users to have a problem running
PBS.

3.7.12.2 File Access on Windows

Upon installation, some PBS directories have restricted access. The following directories have files that are readable by
the \\Everyone group but writable only by Administrators-type accounts:

PBS_HOME/mom_logs/

PBS_HOME/spool/

The following directories have files that are only accessible to Administrators-type accounts:

PBS_HOME/mom_priv/

3.7.13 Startup on Windows

• The auto-startup of the MoM service is controlled by the PBS pbs.conf file as well as the Services dialog. You
invoke this via Settings->Control Panel->Administrative Tools->Services. If the service fails to start up with
the message, “incorrect environment”, it means that the PBS_START_MOM pbs.conf variable is set to 0
(False).

• On Windows, sometimes PBS may fail to start automatically after the boot. We recommend that you change the
startup mode from " [Startup type: Automatic]" to "[Startup type: Automatic (Delayed Start)]", which means
"shortly after boot".

Open regedit to change the registry keys. These are, in some versions of Windows: HKLM\SYSTEM\Current-

ControlSet\services\<PBS Professional>\DelayedAutostart.

When startup is delayed, this has the value 1. When not delayed, its value is 0.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-43

Chapter 3 Installation
3.7.13.1 Setting Up User Accounts and Directories

You should review the recommended steps for setting up user accounts and home directories, as documented in section
2.3.6, “User Authorization Under Windows”, on page 15.

3.7.14 Uninstalling PBS Professional on Windows

For uninstalling versions 5.4.2 through 8.0, use a domain admin account. For later versions, use an Administrator
account. Note that as of 19.4.1, the only PBS service on Windows is PBS_MOM.

1. Use the Task Manager to stop/kill the services: PBS_SERVER, PBS_SCHED, PBS_COMM, PBS_MOM, and
PBS_RSHD.

2. Manually de-register the PBS services:

pbs_account --unreg pbs_server

pbs_account --unreg pbs_sched

pbs_account --unreg pbs_comm

pbs_account --unreg pbs_mom

pbs_account --unreg pbs_rshd

3. Use the MSI installer to uninstall the PBS package. At the second double click, you get the "Remove" option.

4. Manually delete the PBS directory at "C:\\program Files (x86)\PBS"
IG-44 PBS Professional 2020.1.1 Installation & Upgrade Guide

4

Communication

4.1 Communication Within a PBS Complex

There are two primary communication methods in PBS: TCP, where a client sends a request to a server using a non-per-
manent TCP connection, and TPP, in which daemons establish permanent TCP connections to one or more pbs_comm
daemons and use these permanent connections to reach other daemons. TPP stands for “TCP-based Packet Protocol”.

A PBS complex using TPP can handle much greater throughput than in previous versions of PBS, and the scheduler can
start jobs much faster. A PBS complex using TPP does not need as many reserved ports as previous versions.

4.2 Terminology

Endpoint

A PBS server, scheduler, or MoM daemon.

Communication daemon, comm

The daemon which handles communication between the server, scheduler, and MoMs. Executable is
pbs_comm.

Leaf

An endpoint (a server, scheduler, or MoM daemon.)

TPP

TCP-based Packet Protocol. Protocol used by pbs_comm.

4.3 Prerequisites

Each hostname must resolve to at least one non-loopback IP address.

4.4 Communication Parameters

4.4.1 Location of Communication Daemon for Endpoint

You can tell each endpoint which communication daemon it should talk to. Specifying the port is optional.

PBS_LEAF_ROUTERS

Parameter in /etc/pbs.conf. Tells an endpoint where to find its communication daemon.

Format: PBS_LEAF_ROUTERS=<host>[:<port>][,<host>[:>port>]]
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-45

Chapter 4 Communication
4.4.2 Location of Other Communication Daemons

When you add a communication daemon, you must tell it about the other pbs_comms in the complex. When you inform
communication daemons about each other, you only tell one of each pair about the other. Do not tell both about each
other. We recommend that an easy way to do this is to tell each new pbs_comm about each existing pbs_comm, and
leave it at that.

PBS_COMM_ROUTERS

Parameter in /etc/pbs.conf. Tells a pbs_comm where to find its fellow communication daemons.

Format: PBS_COMM_ROUTERS=<host>[:<port>][,<host>[:<port>]]

4.4.3 Number of Threads for Communication Daemon

By default, each pbs_comm process starts four threads. You can configure the number of threads that each pbs_comm
uses. Usually, you want no more threads than the number of processors on the host.

PBS_COMM_THREADS

Parameter in /etc/pbs.conf. Tells pbs_comm how many threads to start.

Maximum allowed value: 100

Format: Integer

Example:

PBS_COMM_THREADS=8

4.4.4 Daemon Log Mask

By default, pbs_comm produces few log messages. You can choose more logging, usually for troubleshooting. See sec-
tion 4.5.10, “Logging and Errors with TPP”, on page 54 for logging details. The daemon rereads this parameter when
HUPed.

PBS_COMM_LOG_EVENTS

Parameter in /etc/pbs.conf. Tells pbs_comm which log mask to use.

Format: Integer

Default: 511

Example:

PBS_COMM_LOG_EVENTS=<log level>

4.4.5 Name of Endpoint Host

By default, the name of the endpoint’s host is the hostname of the machine. You can set the name that the endpoint uses
for its host. This is useful when you have multiple networks configured, and you want PBS to use a particular network.
TPP internally resolves the name to a set of IP addresses, so you do not affect how pbs_comm works.
IG-46 PBS Professional 2020.1.1 Installation & Upgrade Guide

Communication Chapter 4
PBS_LEAF_NAME

Parameter in /etc/pbs.conf. Tells endpoint what name to use for network. The value does not include a
port, since that is usually set by the daemon.

Canonicalized value of this becomes the value of resources_available.host.

By default, the name of the endpoint’s host is the hostname of the machine. You can set the name where an end-
point runs. This is useful when you have multiple networks configured, and you want PBS to use a particular
network.

The server only queries for the canonicalized address of the MoM host, unless you let it know via the Mom
attribute; if you have set PBS_LEAF_NAME in /etc/pbs.conf to something else, make sure you set the Mom
attribute at vnode creation.

TPP internally resolves the name to a set of IP addresses, so you do not affect how pbs_comm works.

Format: String

Example:

PBS_LEAF_NAME=host1

4.4.6 Whether Host Runs Communication Daemon

Just as with the other PBS daemons, you can specify whether each host should start pbs_comm.

PBS_START_COMM

Parameter in /etc/pbs.conf. Tells PBS init script whether to start a pbs_comm on this host if one is
installed. When set to 1, pbs_comm is started.

Format: Boolean

Default: 0

Example:

PBS_START_COMM=1

4.4.7 Scheduler Throughput Mode

You can tell the scheduler to run asynchronously, so it doesn’t wait for each job to be accepted by MoM, which means it
also doesn’t wait for an execjob_begin hook to finish. Especially for short jobs, this can give you better scheduling per-
formance. You can run the scheduler asynchronously only when the complex is using TPP mode.

throughput_mode

Scheduler attribute. When set to True, the scheduler runs asynchronously and can start jobs faster. Only avail-
able when complex is in TPP mode.

Format: Boolean

Default: True

Example:

qmgr -c "set sched throughput_mode=<Boolean value>"

Trying to set the value to a non-Boolean value generates the following error message:

qmgr obj= svr=default: Illegal attribute or resource value

qmgr: Error (15014) returned from server
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-47

Chapter 4 Communication
4.4.8 Managing Communication Behavior

rpp_highwater

Server attribute.

This is the maximum number of messages per stream (meaning the maximum number of messages between
each pair of endpoints).

Format: Integer

Valid values: Greater than or equal to one

Default: 1024

Python type: int

rpp_max_pkt_check

Server attribute.

Maximum number of TPP messages processed by the main server thread per iteration.

Format: Integer

Default: 64

Python type: int

rpp_retry

Server attribute.

In a fault-tolerant setup (multiple pbs_comms), when the first pbs_comm fails partway through a message,
this is number of times TPP tries to use any other remaining pbs_comms to send the message.

Format: Integer

Valid values: Greater than or equal to zero

Default: 10

Python type: int
IG-48 PBS Professional 2020.1.1 Installation & Upgrade Guide

Communication Chapter 4
4.5 Inter-daemon Communication Using TPP

The PBS server, scheduler, and MoM daemons communicate with each other using TPP through the communication dae-
mon pbs_comm, except for scheduler-server and server-server communication, which uses TCP. The server, scheduler,
and MoMs are communication endpoints, connected by one or more pbs_comm daemons. The following figure illus-
trates communication within a PBS complex using TPP.

Figure 4-1:Communication Within PBS Complex Using TPP

Communication daemons are connected to each other. If there are multiple pbs_comms, and two endpoints on different
pbs_comms transmit data, communication between endpoints goes from the first endpoint, to the endpoint’s configured
pbs_comm daemon, to the pbs_comm configured for the receiving endpoint, to the receiving endpoint.

4.5.1 Inter-daemon Connection Behavior Using TPP

When each endpoint starts up, it automatically attempts to connect to the configured or default pbs_comm daemon. If
the pbs_comm daemon is available, the connection attempt succeeds; if not, the endpoint continues to attempt to con-
nect to the pbs_comm daemon using a background thread. The order in which endpoints and pbs_comms are started is
not important. Connections are completed when the pbs_comm daemon becomes available. If you have configured
multiple pbs_comms, each endpoint continues to periodically attempt to connect to each one until all connections suc-
ceed.

If the connection from an endpoint to a pbs_comm daemon fails, the endpoint attempts to find another already-con-
nected pbs_comm daemon to send data via that connection. When the original failed connection is reestablished (via
automatic periodic background attempts to connect to the failed daemon) data exchange switches over to the original
connection.

When a pbs_comm daemon is configured to talk to other pbs_comms, it behaves exactly the same way as an endpoint.

Just after you start a MoM, it may not appear to be up, because there is a delay between endpoint connection attempts.
The MoM may need up to 30 seconds to show up.

Peer

pbs_comm

Commands

MoM

MoM

MoM

Job Task

Job Task

Job Task

TPP

TPP

TPP
TPP

MPI

MPI

TCP

Server

Server

TCP

TCP

TCP

Scheduler

MoM dynamic
resource query

TPP
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-49

Chapter 4 Communication
If you have only one communication daemon installed (failover is not configured), and that communication daemon is
killed, vnodes become unreachable.

4.5.1.1 Sending and Receiving

Endpoints have a built-in retry mechanism to re-send information that has not been acknowledged by the receiver. The
receiving endpoint can determine whether it has received duplicate data packets.

4.5.1.2 Data Compression

Some jobs cause the server and MoMs to exchange a very large amount of data. The communication daemon automati-
cally compresses the data before communication. In communications, there is usually benefit from compression,
because communication is usually CPU-bound, not I/O-bound.

4.5.2 Communication Daemon Syntax

4.5.2.1 Usage on Linux

On Linux, the pbs_comm executable takes the following options:

pbs_comm [-N] [-r <other routers>] [-t <number of threads>]

-r

Used to specify the list of other pbs_comm daemons to which this pbs_comm must connect. This is equivalent
to the pbs.conf variable PBS_COMM_ROUTERS. The command line overrides the variable. Format:

<host>[:<port>][,<host>[:<port>]]

-t

Used to specify the number of threads the pbs_comm daemon uses. This is equivalent to the pbs.conf vari-
able PBS_COMM_THREADS. The command line overrides the variable. Format:

Integer

-N

The communication daemon runs in standalone mode.

4.5.3 Adding Communication Daemons

4.5.3.1 Installation Location of Communication Daemons

The pbs_comm daemon can be installed on any host that is connected to the PBS complex. By default, a pbs_comm is
installed on the server host(s), and all endpoints will connect to it (them) by default.

4.5.3.2 Configuring Communication Daemons

Make sure that when you configure additional communication daemons, you only point one of each pair of pbs_comms
to the other; do not point both at each other. We recommend that an easy way to do this is to tell each new pbs_comm
about each existing pbs_comm, and leave it at that.
IG-50 PBS Professional 2020.1.1 Installation & Upgrade Guide

Communication Chapter 4
Steps to configure additional pbs_comms:

1. Tell each endpoint that goes with the new pbs_comm where to find the new pbs_comm. Edit the pbs.conf file
on the endpoint’s host, and add:
PBS_LEAF_ROUTERS=<host>[:<port>][,<host>[:>port>]]

2. For each new pbs_comm, tell each new pbs_comm about previous pbs_comms. Do not tell existing pbs_comms
about new pbs_comms. So if you have an existing pbs_comm C1 and add a new pbs_comm C2, only point C2 to
C1. In pbs.conf on C2’s host, add:

PBS_COMM_ROUTERS=<C1 host>[:<C1 port>]

If you add C3, point C3 to both C1 and C2. On C3’s host, add:

PBS_COMM_ROUTERS=<C1 host>[:<C1 port>],<C2 host>[:<C2 port>]

3. Optionally, set the number of threads the new pbs_comm will use. The default is 4. We recommend not specifying
more threads than processors on the host. In pbs.conf, add:

PBS_COMM_THREADS=<number of threads>

4. Optionally, set the desired log level for the new pbs_comm. In pbs.conf, add:

PBS_COMM_LOG_EVENTS=<log level>

5. On the new pbs_comm host, tell the init script to start pbs_comm. In pbs.conf, add:

PBS_START_COMM=1

1. If you are running a PBS complex that contains both Linux and Windows execution hosts, on any hosts running
comms, configure sssd so that the users of the Windows domain can log in to the Linux host on which
pbs_server and sssd run. See "Mixed Linux-Windows Operation" on page 639 in the PBS Professional
Administrator’s Guide.

For an example, see section 8.4.5, “Configuring SSSD”, on page 380. For information on configuring sssd, see
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/windows_integration_guide/
index#sssd-ad-proc and https://access.redhat.com/articles/3023951.

If you want the Linux host to automatically create a home directory for an Active Directory user if that home direc-
tory does not exist at login, you may have to set SELinux to permissive mode. This is optional.

4.5.3.2.i Caveats for Configuring Communication Daemons

When you HUP the communication daemon, it reads only PBS_COMM_LOG_EVENTS from pbs.conf. If you
change any of its other parameters, you must restart the communication daemon:

<path to start/stop script>/pbs restart

4.5.4 Recommendations for Maximizing Communication
Performance

You can partition your endpoints so that each group of endpoints has its own pbs_comm(s). Keeping the workload for
each pbs_comm below the level that degrades performance will speed up your complex. Your site’s characteristics
determine how many pbs_comms you need. Here are some rules of thumb for adding pbs_comms:

• One pbs_comm per 2000 MoMs, where communication is light

• One pbs_comm per rack of ~150 - 200 MoMs, where communication is heavier

• If server start time doubles, add a pbs_comm

• If the CPU usage for a pbs_comm is above 10 or 15 percent, add a pbs_comm

• If performance drops, consider adding a pbs_comm
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-51

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/windows_integration_guide/index#sssd-ad-proc
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/windows_integration_guide/index#sssd-ad-proc
https://access.redhat.com/articles/3023951

Chapter 4 Communication
4.5.5 Robust Communication with TPP

4.5.5.1 Failover and Communication Daemons

When failover is configured, endpoints automatically connect to the pbs_comm daemons running on either the primary
or secondary PBS server hosts, allowing for communication failover. If both pbs_comms are available, communication
goes through the pbs_comm on the primary server host. If the primary server host fails, communication automatically
goes through the pbs_comm on the secondary server host. When the primary server host comes back up, communica-
tion is automatically resumed by the pbs_comm on the primary server host. If failover is configured and the only
pbs_comms are on the primary and secondary server hosts, and both of those hosts fail, communication between end-
points is unavailable.

4.5.5.2 Fault Tolerance

By default, endpoints automatically connect to the pbs_comm daemon running at the server host.

You can configure each endpoint to connect to multiple communication daemons. If one of the communication daemons
fails, the endpoint can still communicate with the rest of the complex using the alternate communication daemons. When
a failed pbs_comm comes back online, it automatically resumes handling communications.

If you have configured failover, you have communication fault tolerance to the extent of one of the pbs_comms on the
primary or secondary server host failing. If you want fault tolerance beyond or instead of failover, you must explicitly
install and configure additional pbs_comm daemons.

4.5.6 Extending Your Complex

To add a new rack to a PBS complex using TCP, take the following steps:

1. Install MoMs as usual on the new execution hosts.

2. Optionally, edit the configuration file on the new MoM hosts to include failover settings.

3. You can configure new MoMs to communicate via existing pbs_comms. However, if you are adding many MoMs,
we recommend deploying additional pbs_comms. Follow the steps in "Adding Communication Daemons” on
page 50.

4. Start the daemons in the new rack, and tell the server about the new vnodes:

qmgr -c "create node <vnode name>"

If you use the IP address for the name of the vnode:

a. Add PBS_MOM_NODE_NAME=<IP address> to pbs.conf on the execution host

b. Restart MoM

4.5.7 Changing IP Address of pbs_comm Host

To change the IP address of a pbs_comm host:

1. Change the IP address of the host

2. Update the DNS

3. Restart pbs_comm on that host
IG-52 PBS Professional 2020.1.1 Installation & Upgrade Guide

Communication Chapter 4
Each endpoint or pbs_comm periodically retries the connection to each pbs_comm that it knows about. When a
pbs_comm becomes unavailable, all connections to it are automatically retried until they succeed. Endpoint and
pbs_comm IP addresses to target pbs_comms are internally cached for a short time, so if you change the IP address of
a target, they will not be able to connect for this time. When this time runs out, endpoints and pbs_comms refresh their
IP addresses, and connections are reestablished.

4.5.8 Configuring Communication for Internal and External
Networks

PBS complexes often use an internal network and an external network. PBS clients such as qsub and qstat communi-
cate to the server over the external network. The daemons communicate with each other over the internal network. In
this case, the server host is configured with multiple network interfaces, one for each of the different networks.

The default value of the endpoint’s name is the hostname. The TPP network resolves the endpoint’s name to the IP
address of the machine, and could end up using the external IP address of the host. When this endpoint, for example the
server, sends a message to another endpoint, say the MoM, it would embed this external IP address in the message. The
MoM detects that this message has arrived from an external IP address and could reject the message, since the MoM is
typically configured to use only the internal network and is unaware of the external IP address.

Instead of letting the endpoint use the machine hostname as the endpoint’s name (which is the default), set the endpoint’s
name to a variable that resolves to only the internal network address(es) of the server host. To do that, set the
PBS_LEAF_NAME pbs.conf variable to the internal network name of the host.

The server only queries for the canonicalized address of the MoM host, unless you let it know via the Mom attribute; if
you have set PBS_LEAF_NAME in /etc/pbs.conf to something else, make sure you set the Mom attribute at vnode
creation.

4.5.9 Troubleshooting Communication with TPP

New connections are being dropped at a pbs_comm

Check whether the pbs_comm log has messages saying that the process has exceeded the configured nfiles (the open
file limit). If so, increase the allowed max open files limit, and restart the pbs_comm daemon.

Message saying NOROUTE to destination xxx:nnn

The "noroute" message shows the destination address and the pbs_comm daemon or endpoint which generated the error.
Example:

Received noroute to dest ::1:15003, msg:pbs_comm:::1:17001: Dest not found

The above message means that the pbs_comm running at address ::1:17001 has responded that the destination address
(MoM, in this case) ::1:15003 is not known to it. This means the MoM at localhost:15003 was not started (it is down)
and/or did not register its address with this pbs_comm. Check the MoM logs for that MoM, and see whether it was
started, and if so, what addresses it registered and to which pbs_comm daemon. These log lines from the pbs_mom logs
may be useful:

Registering address ::1:15003 to pbs_comm

Registering address 192.168.184.156:15003 to pbs_comm

…

….

Connecting to pbs_comm hostname:port

The above messages list the actual pbs_comm daemon that the MoM or any endpoint is connected to, and when it con-
nected. After connection, it registered the endpoint with the addresses as listed in the “Registering address” messages,
before the connect message.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-53

Chapter 4 Communication
Corresponding to the above messages in the endpoint log, (in this case, MoM), there should be messages in the associ-
ated pbs_comm daemon’s logs, as follows:

tfd=14: Leaf registered address ::1:15003

tfd=14: Leaf registered address 192.168.184.156:15003

The above messages mean that a connection from socket file descriptor 14 at the pbs_comm daemon received data to
register the endpoint with addresses ::1:15003 and 192.168.184.156:15003.

The above messages from the endpoint and the associated pbs_comm daemon tell us whether there are address mis-
matches, or the endpoints never connected, or connected to the wrong MoMs, or the endpoints are not configured to use
TCP.

MoM down/stale on pbsnodes -av output

• Check whether the respective MoM is actually up.

• Check that the MoM that is showing as down is actually pointing to the correct pbs_comm daemon, by checking
whether it is the default or PBS_LEAF_ROUTERS is set.

• Check that the pbs_comms that are handling the pbs_server and the MoM in question are running, and that
none of them have a system error in their logs such as no files etc.

• Check the connection settings between this pair of pbs_comms is as intended. Check each of the pbs_comm's
PBS_COMM_ROUTERS settings.

• Follow a "noroute" message to trace where the "noroute" is originating, and troubleshoot why the route is not being
found .

4.5.10 Logging and Errors with TPP

4.5.10.1 Communication Daemon Logfiles

The pbs_comm daemon creates its log files under $PBS_HOME/comm_logs. This directory is automatically created
by the PBS installer.

In a failover configuration, this directory is shared as part of the shared PBS_HOME by the pbs_comm daemons running
on both the primary and secondary servers. This directory must never be shared across multiple pbs_comm daemons in
any other case.

The log filename format is yyyymmdd (the same as for other PBS daemons).

Whenever a new log file is opened, the communication daemon logs PBS_LEAF_NAME,
PBS_MOM_NODE_NAME, and the hostname. The daemon also logs all network interfaces, listing each interface and
all of the hostnames associated with that interface. In addition, it logs the PBS version and the build information.

The log record format is the same as used by other PBS daemons, with the addition of the thread number and the daemon
name in the log record. The log record format is as follows:

date-time;event_code;daemon_name(thread number);object_type;object_name;message

An example is as follows:

03/25/2014 15:13:39;0d86;host1.example.com;TPP;host1.example.com(Thread 2);Connection from leaf
192.168.184.156:19331, tfd=81 down
IG-54 PBS Professional 2020.1.1 Installation & Upgrade Guide

Communication Chapter 4
4.5.10.2 Messages from Endpoints

Connected to pbs_comm %s

Endpoint was able to connect to the named pbs_comm daemon.

Log level: PBSEVENT_DEBUG | PBSEVENT_DEBUG2

Connection to pbs_comm %s down

The endpoint’s connection to the specified pbs_comm daemon is down.

Log level: PBSEVENT_DEBUG | PBSEVENT_DEBUG2

Connection to pbs_comm %s failed

The endpoint failed to connect to the specified pbs_comm daemon. A system/socket error message may
accompany this message.

Log level: PBSEVENT_ERROR

Registering address %s to pbs_comm

The endpoint logs the list of IP addresses it is registering with the pbs_comm daemon.

Log level: PBSEVENT_DEBUG | PBSEVENT_DEBUG2

sd %d, Received noroute to dest %s, msg:%s

Specified stream sd (stream descriptor) has received a “noroute” message from the pbs_comm daemon indicat-
ing that the destination is not known to the pbs_comm daemon. An additional message from pbs_comm is
also printed.

Log level: PBSEVENT_ERROR

Single pbs_comm configured, TPP Fault tolerant mode disabled

Only one pbs_comm daemon was configured, so fault tolerant mode is disabled.

Log level: PBSEVENT_SYSTEM | PBSEVENT_ADMIN
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-55

Chapter 4 Communication
4.5.10.3 Messages from Communication Daemons

tfd=%d: endpoint registered address %s

Endpoint registered this address.

Log level: PBSEVENT_DEBUG | PBSEVENT_DEBUG2

Connection from leaf %s, tfd=%d down

The connection from an endpoint just went down.

Log level: PBSEVENT_DEBUG | PBSEVENT_DEBUG2

pbs_comm %s connected

Another pbs_comm daemon connected to this pbs_comm daemon.

Log level: PBSEVENT_DEBUG | PBSEVENT_DEBUG2

pbs_comm %s accepted connection

Specified pbs_comm daemon accepted connection from this pbs_comm.

Log level: PBSEVENT_DEBUG | PBSEVENT_DEBUG2

pbs_comms should have at least 2 threads

Number of threads configured for the daemon is too few. There should be a minimum of two threads. The dae-
mon will abort.

Log level: PBSEVENT_SYSTEM | PBSEVENT_ADMIN | PBSEVENT_FORCE

Received TPP_CTL_NOROUTE for message, %s(sd=%d) -> %s: %s

The pbs_comm daemon received a "noroute" message from a destination endpoint. This means that the desti-
nation stream was not found in that endpoint.

Log level: PBSEVENT_ERROR

Connection from non-reserved port, rejected

The pbs_comm received a connection request from an endpoint or another pbs_comm or an endpoint, but
since the connection originated from a non-reserved port, it was not accepted.

Log level: PBSEVENT_ERROR

Failed initiating connection to pbs_comm %s

This pbs_comm daemon failed to initiate a connection to another pbs_comm.

Log level: PBSEVENT_ERROR
IG-56 PBS Professional 2020.1.1 Installation & Upgrade Guide

Communication Chapter 4
4.5.10.4 Important Messages from Communication or Other Daemons

Compression failed

Compression routine failed. Usually due to memory constraints.

Log level: PBSEVENT_SYSTEM | PBSEVENT_ADMIN | PBSEVENT_FORCE

Decompression failed

Decompression routine failed due to bad input data. Usually a transmission/network error.

Log level: PBSEVENT_SYSTEM | PBSEVENT_ADMIN | PBSEVENT_FORCE

Error %d resolving %s

There was an error in name resolution of a hostname.

Log level: PBSEVENT_SYSTEM | PBSEVENT_ADMIN | PBSEVENT_FORCE

Error %d while binding to port %d

There was an error in binding to the specified port. Usually this means the address is already in use.

Log level: PBSEVENT_SYSTEM | PBSEVENT_ADMIN | PBSEVENT_FORCE

No reserved ports available

No more reserved ports are available. Cannot initiate connection to a pbs_comm daemon. Not applicable on
Windows.

Log level: PBSEVENT_ERROR

Out of memory <in an operation>

An out-of-memory condition occurred.

Log level: PBSEVENT_SYSTEM | PBSEVENT_ADMIN | PBSEVENT_FORCE
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-57

Chapter 4 Communication
4.5.10.5 Informational Messages from Communication or Other

Daemons

Initializing TPP transport Layer

Starting the initialization of the TPP layer: starting threads etc.; creating internal data structures.

Log level: PBSEVENT_DEBUG | PBSEVENT_DEBUG2

TPP initialization done

Initialization completed successfully; system ready to transmit data.

Log level: PBSEVENT_DEBUG | PBSEVENT_DEBUG2

Shutting down TPP transport Layer

TPP was asked to shut down.

Log level: PBSEVENT_DEBUG | PBSEVENT_DEBUG2

Max files allowed = %ld

Logs the nfiles currently configured.

Log level: PBSEVENT_DEBUG | PBSEVENT_DEBUG2

Max files too low - you may want to increase it

If nfiles is <1024, the pbs_comm daemon emits the message. If nfiles configured is <100, the startup aborts.
Usually nfiles must be configured to allow the number of connections (usually the number of MoMs) the
pbs_comm process is going to handle.

Log level: PBSEVENT_SYSTEM | PBSEVENT_ADMIN

Thread exiting, had %d connections

Each thread in the TPP layer logs the number of connections it was handling. For pbs_comm, this is usually
the number of MoMs that were handled by each thread. This gives you information useful for deciding when to
increase the threads in order to distribute the load.

Log level: PBSEVENT_DEBUG | PBSEVENT_DEBUG2

4.6 Ports Used by PBS

PBS daemons listen for inbound connections at specific network ports. These ports have defaults, but can be configured
if necessary. PBS daemons use any ports numbered less than 1024 for outbound communication. For PBS daemon-to-
daemon communication over TCP, the originating daemon will request a privileged port for its end of the communica-
tion.

PBS makes use of fully-qualified host names for identifying jobs and their locations. A PBS installation is known by the
host name on which the server is running. The canonical host name is used to authenticate messages, and is taken from
the primary name field, h_name, in the structure returned by the library call gethostbyaddr(). According to the
IETF RFCs, this name must be fully qualified and consistent for any IP address assigned to that host.

Port numbers can be set via /etc/services, the command line, or in pbs.conf. If not set by any of these means,
they will be set to the default values. The PBS components and the commands will attempt to use the system services
file to identify the standard port numbers to use for communication. If the port number for a PBS daemon can’t be found
in the system file, a default value for that daemon will be used. The server, scheduler, and MoM daemons have startup
options for setting port numbers. In the PBS Professional Reference Guide, see "pbs_mom” on page 71, "pbs_sched” on
page 105, and "pbs_server” on page 108.

For port settings in pbs.conf, see “Contents of Configuration File” on page 369 in the PBS Professional Installation &
Upgrade Guide.
IG-58 PBS Professional 2020.1.1 Installation & Upgrade Guide

Communication Chapter 4
The scheduler uses any privileged port (less than 1024) as the outgoing port to talk to the server.

Under Linux, the services file is named /etc/services.

Under Windows, it is named %WINDIR%\system32\drivers\etc\services.

The port numbers listed are the default numbers used by PBS. If you change them, be careful to use the same numbers on
all systems. The port number for pbs_resmon must be one higher than for pbs_mom.

4.6.1 Ports Used by PBS in TPP Mode

The table below lists the default port numbers for PBS daemons in TPP mode:

4.6.2 Port Settings in pbs.conf

You can set the following in pbs.conf:

Table 4-1: Ports Used by PBS Daemons in TPP Mode

Daemon Listening at
Port

Port
Number

Protocol Type of Communication

pbs_server 15001 TPP (TCP) All communication to server

pbs_mom 15002 TPP (TCP) All communication to MoM

pbs_resmon 15003 TPP (TCP) Scheduler-MoM resource requests

(pbs_resmon listens on this port)

pbs_sched 15004 TPP (TCP) All communication to scheduler

pbs_datastore 15007 proprietary PBS information storage and retrieval

License server 6200 proprietary All communication to license server

pbs_comm 17001 TPP (TCP) All communication to pbs_comm

Table 4-2: Port Parameters in pbs.conf

Parameter Description

PBS_BATCH_SERVICE_PORT Port server listens on

PBS_BATCH_SERVICE_PORT_DIS DIS port server listens on

PBS_DATA_SERVICE_PORT Used to specify non-default port for connecting to data ser-
vice. Default is 15007.

PBS_MANAGER_SERVICE_PORT Port MoM listens on

PBS_MOM_SERVICE_PORT Port MoM listens on

PBS_SCHEDULER_SERVICE_PORT Port scheduler listens on
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-59

Chapter 4 Communication
4.7 PBS with Multihomed Systems

PBS expects the network to function according to IETF standards. Please make sure that your addresses resolve cor-
rectly. You can set host name parameters in pbs.conf to disambiguate addresses for contacting the server, sending mail,
delivering output and error files, and establishing outgoing connections.

When setting these parameters, use fully qualified host names where you could have host name collisions, for example
master.foo.example.com and master.bar.example.com. See the following sections for details.

Before tackling this section, make sure that you have taken care of everything listed in section 2.1.3, “Name Resolution
and Network Configuration”, on page 8.

PBS uses only IPv4, so all names must resolve to IPv4 addresses.

4.7.1 Contacting the Server

Use the PBS_SERVER_HOST_NAME parameter in pbs.conf on each host in the complex to specify the FQDN of
the server, under these circumstances:

• The host on which the PBS server runs has multiple interfaces and some of these interfaces are limited to a private
network that might not be addressable outside of the immediate complex

• The server name to be used in Job IDs needs to be different from the PBS_SERVER parameter. It might become
impossible for a client to contact the server where this option is not used or is misconfigured. Take extreme care
when using PBS_SERVER_HOST_NAME for this reason.

You can specify the server name with the following order of precedence, highest first:

• Specifying server name at the client

• Specifying server name at the command line, e.g. pbsnodes -s <server name>

• Setting the PBS_PRIMARY and PBS_SECONDARY environment variables

• Setting the PBS_SERVER_HOST_NAME environment variable

• Setting the PBS_SERVER environment variable

• Setting PBS_PRIMARY and PBS_SECONDARY in pbs.conf

• Setting PBS_SERVER_HOST_NAME in pbs.conf

• Setting PBS_SERVER in pbs.conf

4.7.2 Delivering Output and Error Files

You can specify the host name portions of paths for standard output and standard error for jobs. To specify the host
where the job's standard output and error files are delivered, use the PBS_OUTPUT_HOST_NAME parameter in
pbs.conf on the server host. It is useful when submission and execution hosts are not visible to each other.

• If the job submitter specifies an output or error path with both file path and host name, PBS uses that path.

• If the job submitter specifies an output or error path containing only a file path:

• If PBS_OUTPUT_HOST_NAME is set, PBS uses that as the host name portion of the path

• If PBS_OUTPUT_HOST_NAME is not set, PBS follows the rules in "Default Behavior For Output and Error
Files", on page 39 of the PBS Professional User’s Guide.

• If the job submitter does not specify an output or error path, PBS uses the current working directory of qsub, fol-
lowing the naming rules in "Default Paths for Output and Error Files", on page 42 of the PBS Professional User’s
Guide, and appends an at sign (“@”) and the value of PBS_OUTPUT_HOST_NAME.
IG-60 PBS Professional 2020.1.1 Installation & Upgrade Guide

Communication Chapter 4
4.7.3 When Installing and Upgrading

During installation or upgrade:

1. When asked whether you want to start the new version of PBS, reply “no”

2. Edit pbs.conf to set the desired network address parameters

3. Start the new version of PBS:

systemctl start pbs

or

<path to script>/pbs start

You may see differences in new job IDs. For example, if the prior value of PBS_SERVER was set to the fully qualified
host name, the existing jobs will have IDs containing the full hostname, for example 123.server.example.com. If the
current value of PBS_SERVER is a short name, then new jobs will have IDs with the short form of the host name, in
this case, 123.server.

With version 13.0, PBS supports host names up to 255 characters. The format of the job files written by pbs_mom has
changed due to this. If there are existing job files during an overlay upgrade, PBS prints a summary message showing
the number of job files successfully upgraded and the total number of job files. For each job file that was not success-
fully upgraded, PBS prints a message that the job file was not successfully upgraded and gives the full path to that job
file.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-61

Chapter 4 Communication
4.7.4 Hostname Parameters in pbs.conf

The following table describes the hostname parameters in the pbs.conf configuration file:

Table 4-3: Hostname Parameters in pbs.conf

Parameter Description

PBS_LEAF_NAME Tells endpoint what hostname to use for network.

The value does not include a port, since that is usually set by the daemon.

By default, the name of the endpoint’s host is the hostname of the machine. You
can set the name where an endpoint runs. This is useful when you have multiple
networks configured, and you want PBS to use a particular network.

The server only queries for the canonicalized address of the MoM host, unless you
let it know via the Mom attribute; if you have set PBS_LEAF_NAME in /etc/
pbs.conf to something else, make sure you set the Mom attribute at vnode cre-
ation.

TPP internally resolves the name to a set of IP addresses, so you do not affect how
pbs_comm works.

PBS_MAIL_HOST_NAME Optional. Used in addressing mail regarding jobs and reservations that is sent to
users specified in a job or reservation’s Mail_Users attribute. See "Specifying
Mail Delivery Domain" on page 20 in the PBS Professional Administrator’s Guide.

Should be a fully qualified domain name. Cannot contain a colon (“:”).

PBS_MOM_NODE_NAME Name that MoM should use for parent vnode, and if they exist, child vnodes. If
this is not set, MoM defaults to using the non-canonicalized hostname returned by
gethostname().

If you use the IP address for a vnode name, set PBS_MOM_NODE_NAME=<IP address>
in pbs.conf on the execution host.

This parameter cannot contain dots unless it is for an IP address.

PBS_OUTPUT_HOST_NAME Optional. Host to which all job standard output and standard error are delivered.
See section 4.7.2, “Delivering Output and Error Files”, on page 60.

Should be a fully qualified domain name. Cannot contain a colon (“:”).

PBS_PRIMARY Hostname of primary server. Overrides PBS_SERVER_HOST_NAME.

PBS_SECONDARY Hostname of secondary server. Overrides PBS_SERVER_HOST_NAME.

PBS_SERVER Hostname of host running the server. Cannot be longer than 255 characters. If the
short name of the server host resolves to the correct IP address, you can use the
short name for the value of the PBS_SERVER entry in pbs.conf. If only the
FQDN of the server host resolves to the correct IP address, you must use the
FQDN for the value of PBS_SERVER.

Overridden by PBS_SERVER_HOST_NAME and PBS_PRIMARY.

PBS_SERVER_HOST_NAME Optional. The FQDN of the server host. Used by clients to contact server. See
section 4.7.1, “Contacting the Server”, on page 60.

Should be a fully qualified domain name. Cannot contain a colon (“:”).
IG-62 PBS Professional 2020.1.1 Installation & Upgrade Guide

5

Initial Configuration

After you have installed PBS Professional, perform the following steps:

5.1 Validate the Installation

• Check files and directories: To validate the installation of PBS Professional, at any time, run the pbs_probe com-
mand. It will review the installation (installed files, directory and file permissions, etc) and report any problems
found. For details, see “pbs_probe” on page 81 of the PBS Professional Reference Guide.

The pbs_probe command is not available under Windows.

• Check PBS version. Use the qstat command to find out what version of PBS Professional you have:
qstat -fB

• Check hostname resolution:

• At the server, use the pbs_hostn command with the name of each host in the complex. This should complain
if hostname resolution is not working correctly. See “pbs_hostn” on page 63 of the PBS Professional Reference
Guide.

• Make sure that rcp and/or scp work correctly. They must work outside of PBS before PBS can use them Run
rcp and/or scp between machines in the complex to make sure they work. If there are problems, see section
2.1.3, “Name Resolution and Network Configuration”, on page 8.

• Windows: turn firewall off for execution hosts: see "Windows Firewall" on page 389 in the PBS Professional
Administrator’s Guide

5.2 Support PBS Features

• Configure PBS inter-daemon communication. See Chapter 4, "Communication", on page 45.

• Define PATHs for users: set paths for all users to include PBS commands and man pages. For paths, see section
3.5.2.2, “Setting Installation Parameters”, on page 25. Administrator commands are in PBS_EXEC/sbin, and user
commands are in PBS_EXEC/bin. Man pages are PBS_HOME/man.

• Support X forwarding:

• Edit each MoM’s PATH variable to include the directory containing the xauth utility.

• Add the path to the xauth binary to each MoM's pbs_environment file. For example, if you start with this
path:

/bin:/user/bin

and the xauth utility is here:

/usr/bin/X11/xauth

The entry in the pbs_environment file would be the following:

PATH=/bin:/usr/bin:/usr/bin/X11

• In the ssh_config file for each machine that will use X forwarding, put this line:

ForwardX11Trusted yes
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-63

Chapter 5 Initial Configuration
X forwarding is not available under Windows.

• Allow interactive jobs. For interactive jobs, MoMs establish a connection back to the submission host:

• Make sure that the ephemeral port range in your firewall is open (make sure that MoMs can connect to an
ephemeral port on submission hosts). Check your OS documentation for the correct range.

• Allow interactive jobs under Windows: see "Allowing Interactive Jobs on Windows" on page 523 in the PBS
Professional Administrator’s Guide

• Create and configure vnodes: see "About Vnodes: Virtual Nodes" on page 37 in the PBS Professional Administra-
tor’s Guide

• Create and configure queues: see "Queues" on page 21 in the PBS Professional Administrator’s Guide

• Manage cgroups and cpusets: see "Configuring and Using PBS with Cgroups" on page 561 in the PBS Professional
Administrator’s Guide

• Configure resources: see "Using PBS Resources" on page 229 in the PBS Professional Administrator’s Guide

• Set up resource limits: see "Managing Resource Usage" on page 287 in the PBS Professional Administrator’s Guide

• Define scheduling policy: see "Scheduling" on page 53 in the PBS Professional Administrator’s Guide

• Create hooks: see the PBS Professional Hooks Guide.

• Integrate with an MPI: see "Using MPI with PBS" on page 445 in the PBS Professional Administrator’s Guide

• Use containers: see "Using PBS with Containers" on page 599 in the PBS Professional Administrator’s Guide

• Use provisioning: see "Provisioning" on page 327 in the PBS Professional Administrator’s Guide

• Set up failover: see "Failover" on page 393 in the PBS Professional Administrator’s Guide

• Set up checkpointing: see "Checkpoint and Restart" on page 412 in the PBS Professional Administrator’s Guide

• Minimize communication problems: see "Preventing Communication and Timing Problems" on page 435 in the PBS
Professional Administrator’s Guide

• Manage security features, including authentication and encryption: see "Security" on page 359 in the PBS Profes-
sional Administrator’s Guide

• Required on Windows: set up encryption via TLS. See "Encrypting PBS Communication" on page 381 in the
PBS Professional Administrator’s Guide.

• Set up desired file transfer mechanism: see "Setting File Transfer Mechanism" on page 549 in the PBS Professional
Administrator’s Guide

• Configure where PBS components will put temporary files: see "Temporary File Location for PBS Components" on
page 557 in the PBS Professional Administrator’s Guide
IG-64 PBS Professional 2020.1.1 Installation & Upgrade Guide

6

Upgrading

This chapter shows how to upgrade from a previous version of PBS Professional. If PBS Professional is not installed on
your system, go instead to Chapter 3, "Installation", on page 19.

6.1 Types of Upgrades

There are two types of upgrades available for PBS Professional:

overlay upgrade

Installs the new PBS_HOME and PBS_EXEC on top of the old ones. Jobs cannot be running during an overlay
upgrade.

migration upgrade

You install the new PBS_HOME and PBS_EXEC in a separate location from the old PBS_HOME and PBS_EXEC.
The new PBS_HOME can be in the standard location if the old version has been moved. Jobs are moved from
the old server to the new one, and cannot be running during the move.

6.1.1 Choosing Upgrade Type on Linux

Usually, you can do an overlay upgrade on Linux systems. However, the following require migration upgrades:

• When moving between hosts

• When upgrading from an open-source version of PBS Professional

• When certain European or Japanese characters are stored in the data store

For specific upgrade recommendations and updates, see the Release Notes.

6.1.2 Upgrading Existing All-Windows Complex

If your existing complex runs a PBS server on a Windows host, “upgrading” means doing a fresh install for the server/
schedulers/comms, and upgrading your Windows MoMs. You cannot preserve any jobs in any state during the upgrade.
See Chapter 6, "Upgrading from an All-Windows Complex", on page 125.

6.1.3 Upgrading from Windows/Linux Combination to
Windows/Linux Combination

Upgrading on Windows/Linux requires a migration upgrade; see section 6.8, “Upgrading a Windows/Linux Complex”,
on page 109.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-65

Chapter 6 Upgrading
6.2 Differences from Previous Versions

6.2.1 New Way to Manage Vnode Attributes

As of version 2020.1, PBS can use the cgroups hook to manage cpusets and create child vnodes on multi-vnode
machines.

If you use the cgroups hook on a host where you want to set the sharing attribute or define the placement sets, you can
use an exechost_startup hook or a Version 2 configuration file for this, but make sure that you refer precisely to the
vnodes that were created by the cgroups hook. Do not accidentally create new vnodes by defining them (that is, using a
vnode name unknown to the cgroups hook).

6.2.2 New Scheduler Attributes

The preempt_order, preempt_prio, preempt_queue_prio, and preempt_sort preemption settings were scheduler
parameters in $PBS_HOME/sched_priv/sched_config in older versions of PBS. They are now scheduler attributes with
the same names and formats. Schedulers now have a log_events attribute that replaces the log_filter scheduler parame-
ter. You use qmgr to set these attributes.

6.2.3 Using RPM Instead of INSTALL (14.2)

You use RPM or another native package manager such as yum or zypper to install PBS, instead of the INSTALL script.

6.2.4 Using systemd Instead of Start/stop Script (14.2)

PBS uses systemd instead of the PBS start/stop script on Linux platforms that support systemd. On Linux platforms
that do not support systemd, PBS still uses the start/stop script. You will see a choice of instructions for starting or
stopping PBS.

6.2.5 Automatic Upgrade of Database (13.0)

The PBS installer automatically upgrades the database used by PBS for its data store.

6.2.6 Installing Communication Daemon (13.0)

As of 13.0, PBS uses a new daemon, pbs_comm, for communication. One communication daemon is automatically
installed on each server host, and all daemons automatically connect to it. If you require additional communication dae-
mons, you must install and configure them. See section 4.5.3, “Adding Communication Daemons”, on page 50.

6.2.7 Default Location of PBS_EXEC and PBS_HOME

PBS_EXEC is the directory that contains the PBS binaries. The default location for PBS_EXEC is /opt/pbs. PBS_HOME
is the directory where PBS information is stored. The default location for PBS_HOME is /var/spool/pbs.
IG-66 PBS Professional 2020.1.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.2.8 Use PBS Start Script or systemd During Overlay
Upgrade

During an overlay upgrade, you must start the PBS server using systemd on platforms that support it, or the start/stop
script where systemd is not supported, so that the server is initialized correctly. The instructions in this manual for
overlay upgrading specify using systemd or the start script.

6.3 Caveats and Advice

6.3.1 Licensing

PBS starts faster if you install, configure, and start the Altair license server before starting PBS. We recommend that you
follow the steps for installing and starting the license server before upgrading. See the Altair License Management Sys-
tem Installation and Operations Guide, available at www.altair.com. Do not attempt to use any license server other than
the Altair license server.

6.3.2 Making Time to Upgrade

If you want to avoid having to work around running jobs when you perform an upgrade, you can set PBS up so that there
are no running jobs when you want to do the upgrade. Follow these steps:

1. Figure out how much walltime the longest-running jobs are likely to need, e.g. two weeks

2. Pick a time further into the future than that, e.g. 3 weeks

3. On all PBS hosts, create dedicated time or a reservation for the amount of time you think the upgrade will require,
e.g. a day

• You can use a dedicated time slot, making it so that no jobs will be scheduled for that dedicated time. The sys-
tem can be shut down all at once at the start of the dedicated time. See "Dedicated Time" on page 125 in the
PBS Professional Administrator’s Guide.

• You can create a reservation that reserves an entire host by using -l place=exclhost. The following reser-
vation creates a reservation for the host mars, from 10am to 10pm:

pbs_rsub -R 1000 -D 12:00:00 -l select = host=mars -l place=exclhost

For more on creating reservations, see “pbs_rsub” on page 96 of the PBS Professional Reference Guide.

6.3.3 Upgrading Database

PBS automatically upgrades the database used for its data store. If the process of upgrading the database fails, you must
restore the database to its pre-upgrade state in order to upgrade PBS.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-67

Chapter 6 Upgrading
6.3.4 Data Service Account Must Be Same as When Installed

The data service account you use when upgrading PBS must be the same as when you installed the old version of PBS,
otherwise the upgrade will fail. The workaround is to change the data service user ID to the ID used for installation of
the old PBS data service, perform the upgrade, then change the ID back.

1. Identify the user who originally created the data store:

a. Log in to the data store:

su - <data service account> -s /bin/sh -c "LD_LIBRARY_PATH=$PBS_EXEC/pgsql/lib $PBS_EXEC/
pgsql/bin/psql -U <data service account> -p <data service port> -d pbs_datastore"

The default data service port is 15007

The default data service account is pbsdata

b. Run a query to get the list of users in the database:

pbs_datastore=# select pg_authid.oid, rolname from pg_authid;

oid | rolname

------+--------

10 | pbsdata

16541 | <username>

(2 rows)

c. Find the original user who created the database:

pbs_datastore=# select pg_authid.oid, rolname from pg_authid where pg_authid.oid=10;

oid | rolname

----+--------

10 | pbsdata

(1 row)

2. Exit the database

3. Create the original data service account in system if it is not available.

4. Update the current database user to the original data service account.

pbs_ds_password -C <original username>

5. Perform the overlay upgrade

6. Reset the current database user to desired username:

pbs_ds_password -C <later username>

See "Setting Data Service Account Name and Password" on page 548 in the PBS Professional Administrator’s Guide.

6.3.5 Updating Hooks for New Python Version

As of version 19.4.1, PBS uses Python 3.6, so you need to make sure that your hooks and their configuration files are
compatible with Python 3.6. To do this, you export each hook and configuration file in ASCII format, make sure it is
compliant with Python 3.6, then import the 3.6-ready hook and configuration file in ASCII format. We include a link to
a site with instructions for making your Python code compatible with version 3.6. We include all of these steps in the
instructions.
IG-68 PBS Professional 2020.1.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.3.6 New Server Requires New MoMs

As of version 12.0, you must not attempt to run a newer server with older MoMs. You must start the new server only
when all MoMs have been upgraded. Follow the steps in this chapter.

6.3.7 Do Not Unset default_chunk.ncpus

Do not unset the value for the default_chunk.ncpus server attribute. It is set by the server to 1. You can set it to
another non-zero value, but a value of 0 will produce undefined behavior. When the PBS server initializes and the
default_chunk server attribute has not been specified during a prior run, the server will internally set the following:

default_chunk.ncpus=1

This ensures that each "chunk" of a job's select specification requests at least one CPU.

If you explicitly set the default_chunk server attribute, that setting will be retained across server restarts.

6.3.8 Unset PBS_EXEC Environment Variable

Make sure that the PBS_EXEC environment variable is unset.

6.3.9 Saving and Re-creating Vnode Configuration

For an overlay upgrade, you do not need to save and re-create vnodes. For a migration upgrade, you can save your vnode
configuration and re-create it using this sequence:

qmgr -c 'print node @default' > nodes.new

<clean up nodes.new>

qmgr < nodes.new

Why clean up nodes.new before reading it back in?

• PBS (the cgroups hook or MoM) should create all child vnodes (vnodes that are not parent vnodes). If you create
these child vnodes using qmgr, you can end up with duplicate vnode objects.

• The state attribute and the arch, and host, and vnode resources are set automatically while creating vnodes. Do
not set them explicitly. Doing so can get you into trouble especially if you are changing how hostname resolution
works.

• The qmgr command overrides resource settings in Version 2 configuration files. If you use qmgr to set vnode
resources, you can’t set them later in Version 2 configuration files.

• MoM reports mem, vmem and ncpus. You can use qmgr to set these if they need to be explicitly set; otherwise,
don’t include these lines in nodes.new.

• Leave only the creation lines for parent vnodes and any resources you want managed on the server side through
qmgr.

We include this step in the upgrading instructions; we explain why here.

6.3.10 Upgrading with Failover

If you are upgrading and using failover, do not start the new secondary server until the new primary has finished starting.

If your secondary server has a STONITH script, before you perform an upgrade, prevent the STONITH script from run-
ning by setting its permissions to 0644. After the upgrade, you can set the permissions back to 0755. We include these
steps in the upgrade instructions.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-69

Chapter 6 Upgrading
6.4 Introduction to Upgrading Under Linux

When you get your new version of PBS, unpack it (unzip, untar) as a non-privileged user. When you follow the upgrad-
ing instructions below, all of the steps should be performed as root.

6.4.1 Directories

The location of PBS_HOME is specified in the file /etc/pbs.conf, but defaults to /var/spool/pbs if not specified.
The default for PBS_EXEC is /opt/pbs. You can specify a non-default location for PBS_EXEC via the --prefix option to
rpm when installing the new PBS.

6.4.2 Upgrading on Multiple Machines

Instead of running the installer by hand on each machine, you can use a command such as pdsh. The one-line format for
a non-default install is:

PBS_SERVER=<server name> PBS_HOME=<new/home/location/pbs> rpm -i --prefix <new/exec/location/pbs>
pbspro-<daemon>-<version>-0.<platform-specific-dist-tag>.<hardware>.rpm

6.4.3 Upgrading on a Machine Running the Cpuset MoM

Machines running the cpuset MoM typically include HPE MC990X, HPE Superdome Flex, or HPE 8600.

When upgrading on a machine running the cpuset MoM, follow the instructions in section 6.6, “Overlay Upgrade on One
or More Machines Running Cpuset MoM”, on page 82.

6.5 Overlay Upgrade Under Linux

The steps in this section are for machines that are not running a cpuset MoM. Machines running the cpuset MoM typi-
cally include HPE MC990X, HPE Superdome Flex, or HPE 8600. When upgrading on a machine running the cpuset
MoM, follow the instructions in section 6.6, “Overlay Upgrade on One or More Machines Running Cpuset MoM”, on
page 82.

The following commands must be run as root.

6.5.1 Prevent Jobs From Being Started

Prevent the scheduler(s) from starting jobs. Set scheduling to false for the default scheduler and each multisched:

qmgr -c "set sched <scheduler name> scheduling = false"

6.5.2 Allow Running Jobs to Finish, or Requeue Them

You cannot perform an upgrade while jobs are running. Either let running jobs finish, or requeue them. (You can also
delete them.)
IG-70 PBS Professional 2020.1.1 Installation & Upgrade Guide

Upgrading Chapter 6
To requeue any running jobs:

1. List the jobs. This will list some jobs more than once. You only need to requeue each job once:
pbsnodes <hostname> | grep jobs

2. Requeue the jobs:

qrerun <job ID> <job ID> ...

To kill the jobs:

1. List the jobs. This will list some jobs more than once. You only need to kill each job once:
pbsnodes <hostname> | grep jobs

2. Use the qdel command to kill each job by job ID:

qdel <job ID> <job ID> ...

To drain the host, wait until any running jobs have finished.

Make sure that there are no old job files on any execution hosts. Remove any of the following:

$PBS_HOME/mom_priv/jobs/*.JB

6.5.3 Disable Cloud Bursting

If you are using Altair Control for cloud bursting with PBS, disable cloud bursting. See the Altair Control Administra-
tor’s Guide, at www.pbsworks.com.

6.5.4 Disable STONITH Script

If your secondary server has a STONITH script, prevent the STONITH script from running by setting its permissions to
0644.

6.5.5 Unwrap Any Wrapped MPIs

If you used the pbsrun_wrap mechanism with your old version of PBS, you must first unwrap any MPIs that you
wrapped. This includes MPICH-GM, MPICH-MX, MPICH2, etc. You can re-wrap your MPIs after upgrading PBS.

For example, you can unwrap an MPICH2 MPI:

pbsrun_unwrap pbsrun.mpich2_64

See “pbsrun_unwrap” on page 50 of the PBS Professional Reference Guide.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-71

https://www.pbsworks.com

Chapter 6 Upgrading
6.5.6 Save Execution Host Configuration Information

On each PBS execution host, copy the Version 1 and Version 2 configuration files:

1. Make a backup directory:
mkdir /tmp/pbs_mom_backup

2. Make a copy of the Version 1 configuration file:

cp $PBS_HOME/mom_priv/config /tmp/pbs_mom_backup/config.backup

3. Make a copy of the Version 2 configuration files:

mkdir /tmp/pbs_mom_backup/mom_configs

pbs_mom -s list | egrep -v '^PBS' | while read file

do

 pbs_mom -s show file > /tmp/pbs_mom_backup/mom_configs/$file

done

6.5.7 Save Hooks and Hook Configuration Files

Save your hooks and hook configuration files in ASCII format so you can check them and import them later. The new
version of PBS includes a new pbs_cgroups hook with a new configuration file. If you use the cgroups hook, you must
use the new hook and configuration file, but you may want to modify the configuration file, so if you have made any
changes to your existing pbs_cgroups hook configuration file, you need to save it before you upgrade. Later, you can use
the saved information to modify the new configuration file.

For each hook:

1. Save the hook. Export the hook:
qmgr -c 'export hook <hook name> application/x-python default /tmp/<hook name>.old2.7'

2. Save your hook configuration file. Export the configuration file:

qmgr -c 'export hook <hook name> application/x-config default /tmp/<hook name>.configcheck'

6.5.8 Update Hooks and Hook Configuration Files for New
Python

PBS 19.4.1 and later uses Python 3.6, so if you have not already, update all of your site-defined hooks (not the built-in
hooks) to Python 3.6. For each hook except for the pbs_cgroups hook:

1. Update your hook to Python 3.6. See https://docs.python.org/3.6/howto/pyporting.html. Name your updated hook
file differently; use something like “/tmp/<hook name>.new3.6”

2. Check that the contents of the configuration file are correct for Python 3.6

6.5.9 Shut Down Your Existing PBS

1. Shut down the server(s), default scheduler, and MoMs:
qterm -t immediate -m -s -f
IG-72 PBS Professional 2020.1.1 Installation & Upgrade Guide

https://docs.python.org/3.6/howto/pyporting.html

Upgrading Chapter 6
If your server is not running in a failover environment, the “-f” option is not required.

2. Shut down any multischeds. On each multisched host:

a. Find the PID you want:

ps –ef | grep pbs_sched

For the default scheduler, you’ll see “pbs_sched”, but for multischeds, you’ll see “pbs_sched -I <multisched
name>”.

b. Stop the scheduler or multisched:

kill <multisched PID>

3. On the server host and any other comm hosts, shut down the communication daemon:

systemctl stop pbs

or

<path to script>/pbs stop

4. Verify that PBS daemons are not running in the background:

ps -ef | grep pbs

If you see the pbs_server, pbs_sched, pbs_mom, or pbs_comm process running, manually terminate that
process. If using failover, check both primary and secondary server hosts:

kill -9 <daemon PID>

6.5.10 Back Up Existing PBS Files

On each PBS host, make a tar file of the PBS_HOME and PBS_EXEC directories.

1. Make a backup directory:
mkdir /tmp/pbs_backup

2. Make a tar file of PBS_HOME:

cd $PBS_HOME/..

tar -cvf /tmp/pbs_backup/PBS_HOME_tarbackup.tar $PBS_HOME

3. Make a tar file of PBS_EXEC:

cd $PBS_EXEC/..

tar -cvf /tmp/pbs_backup/PBS_EXEC_tarbackup.tar $PBS_EXEC

4. Make a copy of your configuration file:

cp /etc/pbs.conf /tmp/pbs_backup/pbs.conf.backup

5. If this is a scheduler or multisched host, make a copy of the scheduler’s directory to modify:

cp -r $PBS_HOME/sched_priv /tmp/pbs_backup/sched_priv.work

or

cp -r $PBS_HOME/sched_priv_<multisched name> /tmp/pbs_backup/sched_priv_<multisched name>.work

6.5.11 Install the New Version of PBS

For an overlay upgrade, you install the new PBS in the same location as the existing PBS. The default location for
PBS_HOME is /var/spool/pbs, and the default for PBS_EXEC is /opt/pbs.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-73

Chapter 6 Upgrading
6.5.11.1 Install New PBS Server(s)

Install the new version of PBS without uninstalling the previous version. If you are using failover, do not upgrade the
primary and secondary servers simultaneously. Upgrade the primary first, then once that is complete, upgrade the sec-
ondary.

1. Download the appropriate PBS package

2. Uncompress the package as an unprivileged user

3. Make sure that parameters for PBS_HOME, PBS_EXEC, PBS_LICENSE_INFO, PBS_SERVER and
PBS_DATA_SERVICE_USER are set correctly; see section 3.5.2.2, “Setting Installation Parameters”, on page 25.

If you are using failover, pay special attention to your configuration parameters, including PBS_HOME and
PBS_MOM_HOME, when installing the server sub-package on the secondary server host. See "Configuring the
pbs.conf File for Failover" on page 403 in the PBS Professional Administrator’s Guide.

4. Install the server sub-package. The method you use depends on the version you are upgrading from.

• When upgrading from 13.2 or an earlier version:
rpm -i <path/to/server sub-package>pbspro-<daemon>-<version>-0.<platform-specific-dist-

tag>.<hardware>.rpm

• When upgrading from 14.2 or a later version:
rpm -U <path/to/server sub-package>pbspro-<daemon>-<version>-0.<platform-specific-dist-

tag>.<hardware>.rpm

Do not start PBS now.

6.5.11.2 Install New PBS MoMs

Install the new version of PBS on all execution hosts without uninstalling the previous version:

1. Download the appropriate PBS package

2. Uncompress the package as an unprivileged user

3. Make sure that parameters for PBS_HOME, PBS_EXEC, and PBS_SERVER are set correctly; see section
3.5.2.2, “Setting Installation Parameters”, on page 25

4. Install the execution sub-package. The method you use depends on the version you are upgrading from.

• When upgrading from 13.2 or an earlier version:
rpm -i <path/to/execution sub-package>pbspro-<daemon>-<version>-0.<platform-specific-dist-

tag>.<hardware>.rpm

• When upgrading from 14.2 or a later version:
rpm -U <path/to/execution sub-package>pbspro-<daemon>-<version>-0.<platform-specific-dist-

tag>.<hardware>.rpm

Do not start PBS now.
IG-74 PBS Professional 2020.1.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.5.11.3 Install New PBS Client Commands

Install the new version of PBS on all hosts without uninstalling the previous version:

1. Download the appropriate PBS package

2. Uncompress the package as an unprivileged user

3. Make sure that parameters for PBS_HOME, PBS_EXEC, and PBS_SERVER are set correctly; see section
3.5.2.2, “Setting Installation Parameters”, on page 25.

4. Install the client command sub-package. The method you use depends on the version you are upgrading from.

• When upgrading from 13.2 or an earlier version:
rpm -i <path/to/client command sub-package>pbspro-<daemon>-<version>-0.<platform-specific-

dist-tag>.<hardware>.rpm

• When upgrading from 14.2 or a later version:
rpm -U <path/to/client command sub-package>pbspro-<daemon>-<version>-0.<platform-specific-

dist-tag>.<hardware>.rpm

6.5.11.4 Install New PBS Communication Daemons

If you are installing a communication daemon on a communication-only host, install the server-scheduler-communica-
tion-MoM sub-package, and disable the server, scheduler, and MoM on that host. (MoM is disabled by default.) Install
the new version of PBS without uninstalling the previous version.

1. Download the appropriate PBS package

2. Uncompress the package as an unprivileged user

3. Make sure that parameters for PBS_HOME, PBS_EXEC, and PBS_SERVER are set correctly; see section
3.5.2.2, “Setting Installation Parameters”, on page 25

4. Disable the server, scheduler, and MoM. In pbs.conf:

PBS_START_SERVER=0

PBS_START_SCHED=0

PBS_START_MOM=0

5. Install the server sub-package. The method you use depends on the version you are upgrading from.

• When upgrading from 13.2 or an earlier version:
rpm -i <path/to/server sub-package>pbspro-<daemon>-<version>-0.<platform-specific-dist-

tag>.<hardware>.rpm

• When upgrading from 14.2 or a later version:
rpm -U <path/to/server sub-package>pbspro-<daemon>-<version>-0.<platform-specific-dist-

tag>.<hardware>.rpm

Do not start PBS now.

6.5.12 Prepare Configuration File for New Scheduler(s)

If you were running one or more multischeds with your old version of PBS, make sure you update their configuration
files along with that of the default scheduler. Note that the preempt_order, preempt_prio, preempt_queue_prio,
preempt_sort, and log_events scheduler attributes are new; some were parameters in sched_config with the same
names. In a later step (after the server is running), you will use qmgr to set the attributes. We explicitly list the step;
don’t worry.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-75

Chapter 6 Upgrading
For each scheduler:

1. Make a copy of the new sched_config, which is in PBS_EXEC/etc/pbs_sched_config.
cp $PBS_EXEC/etc/pbs_sched_config $PBS_EXEC/etc/pbs_sched_config.new

2. Update PBS_EXEC/etc/pbs_sched_config.new with any modifications that were made to the old
%PBS_HOME/sched_priv/sched_config or %PBS_HOME/sched_priv_<multisched name>/
sched_config. This is saved in the backup directory /tmp/pbs_backup/sched_priv.work.

3. If you were using vmem at the queue or server level before the upgrade, then after upgrading you must add vmem
to the resource_unset_infinite sched_config option. Otherwise jobs requesting vmem will not run.

4. Move PBS_EXEC/etc/pbs_sched_config.new to the correct name and location, i.e. $PBS_HOME/
sched_priv/sched_config or $PBS_HOME/sched_priv_<multisched name>/sched_config:

mv $PBS_EXEC/etc/pbs_sched_config.new $PBS_HOME/sched_priv/sched_config

or

mv $PBS_EXEC/etc/pbs_sched_config.new $PBS_HOME/sched_priv_<multisched name>/sched_config

6.5.13 Update Holidays File

Make sure your new holidays file is up to date.

6.5.14 Modify the New PBS Configuration File

Your new pbs.conf needs to reflect any changes that you made to the old file.

If you will use failover:

• Edit pbs.conf on the primary server host to include failover settings. See "Configuring Failover For the Primary
Server on Linux" on page 405 in the PBS Professional Administrator’s Guide. Make any other changes to this file
that you made to the old pbs.conf.

• Edit pbs.conf on the secondary server host to include failover settings. See "Configuring Failover For the Second-
ary Server on Linux" on page 407 in the PBS Professional Administrator’s Guide. Make any other changes to this
file that you made to the old pbs.conf. You can use the following steps:

• Copy pbs.conf from primary to secondary

• Modify pbs.conf on secondary for failover (PBS_START_SCHED = 0)

• Edit pbs.conf on all execution and client hosts to include failover settings. See "Configuring Failover For Execu-
tion and Client Hosts on Linux" on page 408 in the PBS Professional Administrator’s Guide. Make any other
changes to this file that you made to the old pbs.conf.

If you will not use failover, edit pbs.conf on each host to include changes that you made to the old pbs.conf.

6.5.15 Configure Communication Daemons

If you are using additional communication daemons (more than those automatically installed on server hosts), configure
them. See section 4.5.3.2, “Configuring Communication Daemons”, on page 50.
IG-76 PBS Professional 2020.1.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.5.16 Start Then Stop New PBS Servers (If Using Failover)

6.5.16.1 Start New Servers

If you are not using failover, skip this step. If you are using failover, this pair of start and stop steps really is necessary.
Bear with us.

1. If you will run a MoM on each server host, disable MoM start in pbs.conf, so that it contains this:
PBS_START_MOM=0

2. Start PBS on the primary server host:

systemctl start pbs

or

<path to init.d>/init.d/pbs start

3. Once the primary is finished starting, start PBS on the secondary server host:

systemctl start pbs

or

<path to init.d>/init.d/pbs start

6.5.16.2 Stop the Servers

If you are not using failover, skip this step.

1. On the primary server host:

a. Stop PBS:

systemctl stop pbs

or

<path to init.d>/init.d/pbs stop

b. If a MoM is installed, enable it by setting PBS_START_MOM=1 in pbs.conf

2. On the secondary server host:

a. Stop PBS:

systemctl stop pbs

or

<path to init.d>/init.d/pbs stop

b. If a MoM is installed, enable it by setting PBS_START_MOM=1 in pbs.conf
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-77

Chapter 6 Upgrading
6.5.17 Start New PBS MoMs, Schedulers, Servers, and
Comms

6.5.17.1 Start PBS on Execution Hosts

On each execution host, first update PBS_HOME by running the start/stop script or systemctl start, then start the
MoMs:

1. Prevent the script from starting MoMs by setting PBS_START_MOM=0 in pbs.conf

2. Start PBS:

systemctl start pbs

or

<path to init.d>/init.d/pbs start

3. Stop PBS:

systemctl stop pbs

or

<path to init.d>/init.d/pbs stop

4. Enable starting MoMs by setting PBS_START_MOM=1 in pbs.conf

5. Start MoM:

$PBS_EXEC/sbin/pbs_mom

6.5.17.2 Start PBS on Server Hosts

If failover is configured, start PBS on the primary server host before the secondary.

1. Prevent the script from starting MoMs by setting PBS_START_MOM=0 in pbs.conf

2. Start PBS on the primary server host:

systemctl start pbs

or

<path to init.d>/init.d/pbs start

3. Once the primary is finished starting, start PBS on the secondary server host:

systemctl start pbs

or

<path to init.d>/init.d/pbs start

4. If a MoM will run on the server host(s):

a. Enable starting MoMs by setting PBS_START_MOM=1 in pbs.conf

b. Start MoM:

$PBS_EXEC/sbin/pbs_mom

6.5.17.3 Restart Multischeds

To start a multisched, call pbs_sched and specify the name and port you already gave it. For each multisched:

pbs_sched -I <name of multisched> -S <same value as sched_port for this multisched>
IG-78 PBS Professional 2020.1.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.5.17.4 Start PBS on Communication-only Hosts

Start PBS on any communication-only hosts. On each communication-only host, type:

systemctl start pbs

or

<path to init.d>/init.d/pbs start

6.5.18 Import and Configure Hooks

Make sure you do not overwrite the new pbs_cgroups hook or its configuration file by importing the old ones. Instead,
use the saved information from your old hook to modify the new hook and configuration file.

6.5.18.1 Import Old Hooks Except for Cgroups Hook

1. Do not import your old pbs_cgroups hook. Import your other hooks and their configuration files. For each hook
except for pbs_cgroups:
qmgr -c 'import hook <hook name> application/x-python default /tmp/<hook name>.new3.6'

qmgr -c 'import hook <hook name> application/x-config default /tmp/<hook name>.configcheck'

6.5.18.2 Modify Cgroups Hook Configuration File

If you will use the cgroups hook:

1. Export the cgroups hook configuration file to pbs_cgroups.json:
qmgr -c 'export hook pbs_cgroups application/x-config default' > pbs_cgroups.json

2. If the cgroups memory subsystem is not mounted on the system, disable 'memory' in the cgroups hook configura-
tion file:

a. Check to see whether it is mounted:

mount | grep cgroup | grep memory

If the memory subsystem is mounted, the command returns something like "cgroup on /sys/fs/cgroup/mem-
ory type cgroup (rw,nosuid,nodev,noexec,relatime,memory".

b. If this returns empty, edit the pbs_cgroups.json file so that 'enabled' parameter for 'memory' under cgroup is
false:

"cgroup": {

 ...

"memory": {

"enabled": false,

3. If you made changes to the old cgroups configuration file, you may want to make those changes in the new configu-
ration file. Use the information saved in /etc/pbs_cgroups.old2.7

4. Import the modified configuration (make sure you use “x-config”):

qmgr -c 'import hook pbs_cgroups application/x-config default pbs_cgroups.json'

6.5.18.3 Enable Cgroups Hook

If you will use the cgroups hook, enable the pbs_cgroups hook:

qmgr -c "set hook pbs_cgroups enabled=true"
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-79

Chapter 6 Upgrading
6.5.18.4 Write and Deploy New Hooks

If you have written new hooks for the new version of PBS, deploy them now. See the PBS Professional Hooks Guide.

6.5.18.5 Restart MoMs

On each execution host, restart MoM :

ps -eaf | grep pbs_mom

kill <MoM PID>

/opt/pbs/sbin/pbs_mom

6.5.19 Set License Location Server Attribute

Set the pbs_license_info server attribute to the location of the license server:

qmgr -c 'set server pbs_license_info=<port>@<license server hostname>'

6.5.20 Configure Sharing and Placement Sets

6.5.20.1 Configuration with Cgroups Hook

As of version 2020.1, the cgroups hook creates the child vnodes on a multi-vnode machine if you set
vnode_per_numa_node to true; in this case, it is important that any Version 2 configuration files refer only to these
vnodes. Use Version 2 configuration files only to set the sharing attribute and optionally to set resources that will be
used for placement sets. The default value for the sharing attribute of the vnodes is "sharing=default_shared". You can
change this, for example to "sharing=default_excl".

Do not set resources_available.mem, resources_available.ncpus, or resources_available.vmem in the Version 2
configuration file.

On each execution host:

1. Create a file named “vnodedefs” that has MoM’s list of vnodes; see "Version 2 Vnode Configuration Files" on page
42 in the PBS Professional Administrator’s Guide
pbsnodes -av | awk -F'=' '{printf "%s:\tsharing = default_excl\n", $2}' > vnodedefs

2. Edit the file to reflect what you want for the sharing attribute and placement sets. Use the information saved in /
tmp/pbs_mom_backup/mom_configs/ in step "Save Execution Host Configuration Information” on page 72

3. Create your new Version 2 configuration file and name it for example “vnodedefs”:

pbs_mom -s insert vnodedefs vnodedefs

4. Restart pbs_mom:

pbs -eaf | grep pbs_mom

kill <MoM PID>

/opt/pbs/sbin/pbs_mom

6.5.20.2 Configuration without Cgroups Hook

Do not set resources_available.mem, resources_available.ncpus, or resources_available.vmem in the Version 2
configuration file.
IG-80 PBS Professional 2020.1.1 Installation & Upgrade Guide

Upgrading Chapter 6
On each execution host:

1. Create a file named “vnodedefs”; see "Version 2 Vnode Configuration Files" on page 42 in the PBS Professional
Administrator’s Guide

2. Create your new Version 2 configuration file and name it for example “vnodedefs”:

pbs_mom -s insert vnodedefs vnodedefs

3. Restart pbs_mom:

pbs -eaf | grep pbs_mom

kill <MoM PID>

/opt/pbs/sbin/pbs_mom

6.5.21 Set New Scheduler Attributes

For the default scheduler and all multischeds:

• The preempt_order, preempt_prio, preempt_queue_prio, and preempt_sort preemption settings were sched-
uler parameters in $PBS_HOME/sched_priv/sched_config in older versions of PBS. They are now scheduler
attributes with the same names and formats. Make sure that you use qmgr to set the attributes as desired. See
“Scheduler Attributes” on page 298 of the PBS Professional Reference Guide.

• The scheduler’s log_filter configuration parameter is obsolete. The scheduler’s log filter now uses the same bitmask
system as the other daemons. The new default value is 767. Use qmgr to set the scheduler’s log_events attribute
to the value you want. See "Specifying Scheduler Log Events" on page 538 in the PBS Professional Administrator’s
Guide.

6.5.22 Re-wrap Any MPIs

If you want any wrapped MPIs, wrap them. See "Integration by Wrapping" on page 449 in the PBS Professional Admin-
istrator’s Guide.

6.5.23 Enable STONITH Script

If your secondary server has a STONITH script, allow the STONITH script to run by setting its permissions to 0755.

6.5.24 Enable Cloud Bursting

If you are using Altair Control for cloud bursting with PBS, enable cloud bursting. See the Altair Control Administra-
tor’s Guide, at www.pbsworks.com.

6.5.25 Enable Scheduling

If you disabled scheduling earlier, enable it for the default scheduler and any multischeds:

qmgr -c 'set sched <scheduler name> scheduling = true'
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-81

https://www.pbsworks.com

Chapter 6 Upgrading
6.5.26 Shut Down and Restart Servers

1. Shut down both servers:
qterm -f

2. Restart PBS on the server hosts. On each server host, primary first:

systemctl start pbs

or

<path to init.d>/init.d/pbs start

6.5.27 Removing Old PBS

If you decide to remove the old version of PBS after upgrading, be sure to use the --noscripts option when using
rpm -e. Using rpm -e without this option, even on an older package than the one you are currently using, will cause
any currently running PBS daemons to shut down, and will also remove the system V init and/or systemd service startup
files. This will prevent PBS daemons from starting automatically at system boot time. If you wish to remove an older
RPM without these effects, use rpm -e --noscripts.

6.6 Overlay Upgrade on One or More Machines

Running Cpuset MoM

Machines running the cpuset MoM typically included HPE MC990X, HPE Superdome Flex, or HPE 8600, for versions
of PBS before 2020.1.

As of 2020.1, we no longer provide pbs_mom.cpuset; instead, we use standard pbs_mom, and the cgroups hook
manages the cpusets for jobs. We include the instructions on making the change from the cpuset MoM to the cgroups
hook below.

You must run the following commands as root.

6.6.1 Prevent Jobs From Being Started

Prevent the scheduler(s) from starting jobs. Set scheduling to false for the default scheduler and each multisched:

qmgr -c 'set sched <scheduler name> scheduling = false'

6.6.2 Allow Running Jobs to Finish, or Requeue Them

You cannot perform an upgrade while jobs are running. Either let running jobs finish, or requeue them. (You can also
delete them.)

To requeue any running jobs:

1. List the jobs. This will list some jobs more than once. You only need to requeue each job once:
pbsnodes <hostname> | grep jobs

2. Requeue the jobs:

qrerun <job ID> <job ID> ...
IG-82 PBS Professional 2020.1.1 Installation & Upgrade Guide

Upgrading Chapter 6
To kill the jobs:

1. List the jobs. This will list some jobs more than once. You only need to kill each job once:
pbsnodes <hostname> | grep jobs

2. Use the qdel command to kill each job by job ID:

qdel <job ID> <job ID> ...

To drain the host, wait until any running jobs have finished.

Make sure that there are no old job files on any execution hosts. Remove any of the following:

$PBS_HOME/mom_priv/jobs/*.JB

6.6.3 Disable Cloud Bursting

If you are using Altair Control for cloud bursting with PBS, disable cloud bursting. See the Altair Control Administra-
tor’s Guide.

6.6.4 Disable STONITH Script

If your secondary server has a STONITH script, prevent the STONITH script from running by setting its permissions to
0644.

6.6.5 Unwrap Any Wrapped MPIs

If you used the pbsrun_wrap mechanism with your old version of PBS, you must first unwrap any MPIs that you
wrapped. This includes MPICH-GM, MPICH-MX, MPICH2, etc. You can re-wrap your MPIs after upgrading PBS.

For example, you can unwrap an MPICH2 MPI:

pbsrun_unwrap pbsrun.mpich2_64

See “pbsrun_unwrap” on page 50 of the PBS Professional Reference Guide.

6.6.6 Save Execution Host Configuration Information

On each PBS execution host, copy the Version 1 and Version 2 configuration files:

1. Make a backup directory:
mkdir /tmp/pbs_mom_backup

2. Make a copy of the Version 1 configuration file:

cp $PBS_HOME/mom_priv/config /tmp/pbs_mom_backup/config.backup

3. Make a copy of the Version 2 configuration files:

mkdir /tmp/pbs_mom_backup/mom_configs

pbs_mom -s list | egrep -v '^PBS' | while read file

do

pbs_mom -s show file > /tmp/pbs_mom_backup/mom_configs/$file

done
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-83

Chapter 6 Upgrading
6.6.7 Save Hooks and Hook Configuration Files

Save your hooks and hook configuration files in ASCII format so you can check them and import them later. The new
version of PBS includes a new pbs_cgroups hook with a new configuration file. You must use the new hook and config-
uration file, but you may want to modify the configuration file, so if you have made any changes to your existing
pbs_cgroups hook configuration file, you need to save it before you upgrade. Later, you can use the saved information to
modify the new configuration file.

For each hook:

1. Save the hook. Export the hook:
qmgr -c 'export hook <hook name> application/x-python default /tmp/<hook name>.old2.7'

2. Save your hook configuration file. Export the configuration file:

qmgr -c 'export hook <hook name> application/x-config default /tmp/<hook name>.configcheck'

6.6.8 Update Hooks and Hook Configuration Files for New
Python

PBS 19.4.1 and later uses Python 3.6, so if you have not already, update all of your site-defined hooks (not the built-in
hooks) to Python 3.6. For each hook except for the pbs_cgroups hook:

1. Update your hook to Python 3.6. See https://docs.python.org/3.6/howto/pyporting.html. Name your updated hook
file differently; use something like “/tmp/<hook name>.new3.6”

2. Check that the contents of the configuration file are correct for Python 3.6

6.6.9 Remove Old PBS Configuration and Resource
Conflicts

1. Ensure that each cpuset MoM host has its values for resources_available.(mem|vmem|ncpus) unset:
Qmgr: unset node <hostname> resources_available.mem
Qmgr: unset node <hostname> resources_available.ncpus
Qmgr: unset node <hostname> resources_available.vmem

2. Remove the old PBS reserved files. On each execution host:

rm /var/spool/pbs/mom_priv/config.d/PBSvnodedefs

3. Delete the old default vnodes. On the server host:

qmgr -c "delete node @default"

6.6.10 Shut Down Your Existing PBS

1. Shut down the server(s), default scheduler, and MoMs:
qterm -t immediate -m -s -f
IG-84 PBS Professional 2020.1.1 Installation & Upgrade Guide

https://docs.python.org/3.6/howto/pyporting.html

Upgrading Chapter 6
If your server is not running in a failover environment, the “-f” option is not required.

2. Shut down any multischeds. On each multisched host:

a. Find the PID you want:

ps –ef | grep pbs_sched

For the default scheduler, you’ll see “pbs_sched”, but for multischeds, you’ll see “pbs_sched -I <multisched
name>”.

b. Stop the scheduler or multisched:

kill <multisched PID>

3. On the server host and any other comm hosts, shut down the communication daemon:

systemctl stop pbs

or

<path to script>/pbs stop

4. Verify that PBS daemons are not running in the background:

ps -ef | grep pbs

If you see the pbs_server, pbs_sched, pbs_mom, or pbs_comm process running, manually terminate that
process. If using failover, check both primary and secondary server hosts:

kill -9 <daemon PID>

6.6.11 Back Up Existing PBS Files

On each PBS host, make a tar file of the PBS_HOME and PBS_EXEC directories. On the MC990X, make sure you copy
your backups to the server host, because otherwise they will be lost during the upgrade.

1. Make a backup directory:
mkdir /tmp/pbs_backup

2. Make a tar file of PBS_HOME:

cd $PBS_HOME/..

tar -cvf /tmp/pbs_backup/PBS_HOME_tarbackup.tar $PBS_HOME

3. Make a tar file of PBS_EXEC:

cd $PBS_EXEC/..

tar -cvf /tmp/pbs_backup/PBS_EXEC_tarbackup.tar $PBS_EXEC

4. Make a copy of your configuration file:

cp /etc/pbs.conf /tmp/pbs_backup/pbs.conf.backup

5. If this is a scheduler host, make a copy of the scheduler’s directory to modify:

cp -r $PBS_HOME/sched_priv /tmp/pbs_backup/sched_priv.work

or

cp -r $PBS_HOME/sched_priv_<multisched name> /tmp/pbs_backup/sched_priv_<multisched name>.work
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-85

Chapter 6 Upgrading
6.6.12 Install the New Version of PBS

1. Download the appropriate PBS package

2. Uncompress the package as an unprivileged user

3. Make sure that parameters for PBS_HOME, PBS_EXEC, PBS_LICENSE_INFO, PBS_SERVER and
PBS_DATA_SERVICE_USER are set correctly; see section 3.5.2.2, “Setting Installation Parameters”, on page 25.

If you are using failover, pay special attention to your configuration parameters, including PBS_HOME and
PBS_MOM_HOME, when installing the server sub-package on the secondary server host. See "Configuring the
pbs.conf File for Failover" on page 403 in the PBS Professional Administrator’s Guide.

4. Install the server sub-package:

• When upgrading from 13.2 or an earlier version:
rpm -i <path/to/server sub-package>pbspro-<daemon>-<version>-0.<platform-specific-dist-

tag>.<hardware>.rpm

• When upgrading from 14.2 or a later version:
rpm -Uhv <path/to/server sub-package>pbspro-<daemon>-<version>-0.<platform-specific-dist-

tag>.<hardware>.rpm

6.6.12.1 Installing MoM on non-HPE 8600

On execution-only hosts, install the MoM sub-package:

• When upgrading from 13.2 or an earlier version:
rpm -i <path/to/MoM sub-package>pbspro-execution-<version>-0.<platform-specific-dist-tag>.<hard-

ware>.rpm

• When upgrading from 14.2 or a later version:
rpm -Uhv <path/to/MoM sub-package>pbspro-execution-<version>-0.<platform-specific-dist-

tag>.<hardware>.rpm

6.6.12.2 Installing MoM on HPE 8600

You install and configure MoM once on the root file system, then you push the image to all of the compute nodes by
propagating it to the rack leaders. Then you reboot each node with the new image.

1. Log on to the Admin node as root.

2. Determine which image file is being used on the compute nodes. To list the nodes on rack 1:

cimage --list-nodes r1

It will show output in the form “node: image_name kernel” similar to

r1i0n0: compute-sles15sp1 2.6.26.46-0.12-smp

Thus node r1i0n0 is running the image “compute-sles15sp1” and the kernel version “2.6.26.46-0.12-smp”.
For the remaining steps, it is assumed that those are the images and kernel available.

3. List the available images:

cimage --list-images
IG-86 PBS Professional 2020.1.1 Installation & Upgrade Guide

Upgrading Chapter 6
which will list the images available for the compute nodes. Each image may have multiple kernels.

4. Unless you are experienced in managing the image files, we suggest that you create a copy of the image in use and
install PBS in that copy. To copy an image:

cinstallman --create-image --clone --source compute-sles15sp1 --image compute-sles15sp1pbs

5. The image file lives in the directory /opt/clmgr/image/images, so change into the tmp directory found in the
new image just cloned:

cd /opt/clmgr/image/images/compute-sles15sp1pbs/tmp

6. Chroot to the new image file:

chroot /opt/clmgr/image/images/compute-sles15sp1pbs /bin/sh

The new root is in effect.

7. Download, unzip and untar the PBS package

8. Make sure that parameters for PBS_HOME, PBS_EXEC and PBS_SERVER are set correctly; see section
3.5.2.2, “Setting Installation Parameters”, on page 25

9. Install the PBS execution sub-package in the normal execution directory, /opt/pbs, in this system image:

rpm -U <path/to/sub-package>pbspro-execution-<version>-0.<platform-specific-dist-tag>.<hard-
ware>.rpm

10. Do not start PBS

11. Exit from the chroot shell and return to root's normal home directory.

12. Power down each rack of compute nodes:

for n in `cnodes --ice-compute` ; do

cpower node off $n

done

13. Publish the new system image to the compute nodes:

cimage --push-rack compute-sles15sp1pbs r*

This instruction will take several minutes to finish.

14. Set the new image and kernel to be booted. This need not be done if: (1) rather than cloning a new image, you have
installed PBS into the image already running on the compute nodes; or (2) you are using an image that was already
pushed to the nodes.

cimage --set compute-sles15sp1pbs 2.6.26.46-0.12-smp r*i*n*

15. Power up the compute nodes:

for n in `cnodes --ice-compute` ; do

cpower node on $n

done

It will take several minutes for the compute nodes to reboot.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-87

Chapter 6 Upgrading
6.6.13 Prepare Configuration File for New Scheduler(s)

If you were running one or more multischeds with your old version of PBS, make sure you update their configuration
files along with that of the default scheduler. Note that the preempt_order, preempt_prio, preempt_queue_prio,
preempt_sort, and log_events scheduler attributes are new; some were parameters in sched_config with the same
names. In a later step (after the server is running), you will use qmgr to set the attributes. We explicitly list the step;
don’t worry.

For each scheduler:

1. Make a copy of the new sched_config, which is in PBS_EXEC/etc/pbs_sched_config.
cp $PBS_EXEC/etc/pbs_sched_config $PBS_EXEC/etc/pbs_sched_config.new

2. Update PBS_EXEC/etc/pbs_sched_config.new with any modifications that were made to the old
%PBS_HOME/sched_priv/sched_config or %PBS_HOME/sched_priv_<multisched name>/
sched_config. This is saved in the backup directory /tmp/pbs_backup/sched_priv.work.

3. If you were using vmem at the queue or server level before the upgrade, then after upgrading you must add vmem
to the resource_unset_infinite sched_config option. Otherwise jobs requesting vmem will not run.

4. Move PBS_EXEC/etc/pbs_sched_config.new to the correct name and location, i.e. $PBS_HOME/
sched_priv/sched_config or $PBS_HOME/sched_priv_<multisched name>/sched_config:

mv $PBS_EXEC/etc/pbs_sched_config.new $PBS_HOME/sched_priv/sched_config

or

mv $PBS_EXEC/etc/pbs_sched_config.new $PBS_HOME/sched_priv_<multisched name>/sched_config

6.6.14 Update Holidays File

Make sure your new holidays file is up to date.

6.6.15 Modify the New PBS Configuration File

Your new pbs.conf needs to reflect any changes that you made to the old file.

If you will use failover:

• Edit pbs.conf on the primary server host to include failover settings. See "Configuring Failover For the Primary
Server on Linux" on page 405 in the PBS Professional Administrator’s Guide. Make any other changes to this file
that you made to the old pbs.conf.

• Edit pbs.conf on the secondary server host to include failover settings. See "Configuring Failover For the Second-
ary Server on Linux" on page 407 in the PBS Professional Administrator’s Guide. Make any other changes to this
file that you made to the old pbs.conf. You can use the following steps:

• Copy pbs.conf from primary to secondary

• Modify pbs.conf on secondary for failover (PBS_START_SCHED = 0)

• Edit pbs.conf on all execution and client hosts to include failover settings. See "Configuring Failover For Execu-
tion and Client Hosts on Linux" on page 408 in the PBS Professional Administrator’s Guide. Make any other
changes to this file that you made to the old pbs.conf.

If you will not use failover, edit pbs.conf on each host to include changes that you made to the old pbs.conf.
IG-88 PBS Professional 2020.1.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.6.16 Configure Communication Daemons

If you are using additional communication daemons (more than those automatically installed on server hosts), configure
them. See section 4.5.3.2, “Configuring Communication Daemons”, on page 50.

6.6.17 Start Then Stop New PBS Servers (If Using Failover)

6.6.17.1 Start New Servers

If you are not using failover, skip this step. If you are using failover, this pair of start and stop steps really is necessary.
Bear with us.

Start PBS on the server host. The start/stop script is located here:

If /etc/init.d exists

/etc/init.d/pbs

Else

/etc/rc.d/init.d/pbs

1. If you will run a MoM on each server host, disable MoM start in pbs.conf, so that it contains this:
PBS_START_MOM=0

2. Start PBS on the primary server host and then the secondary server host:

systemctl start pbs

or

<path to init.d>/init.d/pbs start

6.6.17.2 Stop the Servers

If you are not using failover, skip this step.

1. On the primary server host:

a. Stop PBS:

systemctl stop pbs

or

<path to init.d>/init.d/pbs stop

b. If a MoM is to run, enable it by setting PBS_START_MOM=1 in pbs.conf

2. On the secondary server host:

a. Stop PBS:

systemctl stop pbs

or

<path to init.d>/init.d/pbs stop

b. If a MoM is to run, enable it by setting PBS_START_MOM=1 in pbs.conf
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-89

Chapter 6 Upgrading
6.6.18 Start New PBS MoMs, Schedulers, Servers, and
Comms

6.6.18.1 Start PBS on Execution Hosts

On each execution host, start MoM :

systemctl start pbs

or

<path to init.d>/init.d/pbs start

6.6.18.2 Start PBS on Server Hosts

If failover is configured, start the primary server host, wait until the primary is finished starting, then start the secondary:

systemctl start pbs

or

<path to init.d>/init.d/pbs start

6.6.18.3 Restart Multischeds

To start a multisched, call pbs_sched and specify the name and port you already gave it. For each multisched:

pbs_sched -I <name of multisched> -S <same value as sched_port for this multisched>

6.6.18.4 Start PBS on Communication-only Hosts

Start PBS on any communication-only hosts. On each communication-only host, type:

systemctl start pbs

or

<path to init.d>/init.d/pbs start

6.6.19 Import and Configure Hooks

Make sure you do not overwrite the new pbs_cgroups hook or its configuration file by importing the old ones. Instead,
use the saved information from your old hook to modify the new hook and configuration file.

6.6.19.1 Import Old Hooks Except for Cgroups Hook

1. Do not import your old pbs_cgroups hook. Import your other hooks and their configuration files. For each hook
except for pbs_cgroups:
qmgr -c 'import hook <hook name> application/x-python default /tmp/<hook name>.new3.6'

qmgr -c 'import hook <hook name> application/x-config default /tmp/<hook name>.configcheck'
IG-90 PBS Professional 2020.1.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.6.19.2 Modify Cgroups Hook Configuration File

1. Export the cgroups hook configuration file to pbs_cgroups.json:
qmgr -c 'export hook pbs_cgroups application/x-config default' > pbs_cgroups.json

2. You can make the cgroups hook mimic the behavior of the cpuset MoM in previous versions:

a. Create one vnode for each NUMA node. Edit pbs_cgroups.json as follows (important):

“vnode_per_numa_node” : true,

b. Edit pbs_cgroups.json as follows (recommended):

“use_hyperthreads” : true,

c. Set the value of the ncpus_are_cores parameter; see "Configuring Hyperthreading Support" on page 572 in
the PBS Professional Administrator’s Guide

3. If the cgroups memory subsystem is not mounted on the system, disable 'memory' in the cgroups hook configura-
tion file:

a. Check to see whether it is mounted:

mount | grep cgroup | grep memory

If the memory subsystem is mounted, the command returns something like "cgroup on /sys/fs/cgroup/mem-
ory type cgroup (rw,nosuid,nodev,noexec,relatime,memory".

b. If this returns empty, edit the pbs_cgroups.json file so that 'enabled' parameter for 'memory' under cgroup is
false:

"cgroup": {

 ...

"memory": {

"enabled": false,

4. If you made changes to the old cgroups configuration file, you may want to make those changes in the new configu-
ration file. Use the information saved in /etc/pbs_cgroups.old2.7

5. Import the modified configuration (make sure you use “x-config”):

qmgr -c 'import hook pbs_cgroups application/x-config default pbs_cgroups.json'

6.6.19.3 Enable Cgroups Hook

6. Enable the pbs_cgroups hook:

qmgr -c "set hook pbs_cgroups enabled=true"

6.6.19.4 Write and Deploy New Hooks

If you have written new hooks for the new version of PBS, deploy them now. See the PBS Professional Hooks Guide.

6.6.19.5 Restart MoMs

On each execution host, restart MoM :

ps -eaf | grep pbs_mom

kill <MoM PID>

/opt/pbs/sbin/pbs_mom
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-91

Chapter 6 Upgrading
6.6.20 Set License Location Server Attribute

Set the pbs_license_info server attribute to the location of the license server:

qmgr -c 'set server pbs_license_info=<port>@<license server hostname>'

6.6.21 Configure Sharing and Placement Sets

As of version 2020.1, the cgroups hook creates the child vnodes on a multi-vnode machine; it is important that any Ver-
sion 2 configuration files refer only to these vnodes. Use Version 2 configuration files only to set the sharing attribute
and optionally to set resources that will be used for placement sets. The default value for the sharing attribute of the
vnodes is "sharing=default_shared". You can change this, for example to "sharing=default_excl".

Make sure that a Version 2 configuration file matches your available vnodes every time MoM is started. If your machine
reboots with a hardware change, your earlier placement set information will not make sense because child vnode names
will not match the available hardware. You can use a script to regenerate this file each time the machine starts, and run
the script before MoM is restarted.

Do not set resources_available.mem, resources_available.ncpus, or resources_available.vmem in the Version 2
configuration file.

On each execution host:

1. Create a file named “vnodedefs” that has MoM’s list of vnodes; see "Version 2 Vnode Configuration Files" on page
42 in the PBS Professional Administrator’s Guide:
pbsnodes -av | awk -F'=' '{printf "%s:\tsharing = default_excl\n", $2}' > vnodedefs

2. Edit the file to reflect what you want for the sharing attribute and placement sets. Use the information saved in /
tmp/pbs_mom_backup/mom_configs/ in step "Save Execution Host Configuration Information” on page 83

3. Create your new Version 2 configuration file and name it for example “vnodedefs”:

pbs_mom -s insert vnodedefs vnodedefs

4. Restart pbs_mom:

pbs -eaf | grep pbs_mom

kill <MoM PID>

/opt/pbs/sbin/pbs_mom

6.6.22 Re-Wrap Any MPIs

If you want any wrapped MPIs, wrap them. See "Integration by Wrapping" on page 449 in the PBS Professional Admin-
istrator’s Guide.

6.6.23 Shut Down and Restart Servers

1. Shut down both servers:
qterm -f

2. Restart PBS on the server hosts. On each server host, primary first:

systemctl start pbs

or

<path to init.d>/init.d/pbs start
IG-92 PBS Professional 2020.1.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.6.24 Set New Scheduler Attributes

The preempt_order, preempt_prio, preempt_queue_prio, and preempt_sort preemption settings were scheduler
parameters in $PBS_HOME/sched_priv/sched_config in older versions of PBS. They are now scheduler attributes with
the same names and formats. Make sure that you use qmgr to set the attributes as desired. See “Scheduler Attributes”
on page 298 of the PBS Professional Reference Guide.

The scheduler’s log_filter configuration parameter is obsolete. The scheduler’s log filter now uses the same bitmask sys-
tem as the other daemons. The new default value is 767. Use qmgr to set the scheduler’s log_events attribute to the
value you want. See "Specifying Scheduler Log Events" on page 538 in the PBS Professional Administrator’s Guide.

6.6.25 Enable STONITH Script

If your secondary server has a STONITH script, allow the STONITH script to run by setting its permissions to 0755.

6.6.26 Enable Cloud Bursting

If you are using Altair Control for cloud bursting with PBS, enable cloud bursting. See the Altair Control Administra-
tor’s Guide, at www.pbsworks.com.

6.6.27 Enable Scheduling

If you disabled scheduling earlier, enable it for the default scheduler and any multischeds:

qmgr -c 'set sched <scheduler name> scheduling = true'

6.6.28 Removing Old PBS

If you decide to remove the old version of PBS after upgrading, be sure to use the --noscripts option when using
rpm -e. Using rpm -e without this option, even on an older package than the one you are currently using, will cause
any currently running PBS daemons to shut down, and will also remove the system V init and/or systemd service startup
files. This will prevent PBS daemons from starting automatically at system boot time. If you wish to remove an older
RPM without these effects, use rpm -e --noscripts.

6.7 Migration Upgrade Under Linux

Use these instructions:

• When moving between hosts

• When upgrading from an open-source version of PBS Professional

• When certain European or Japanese characters are stored in the data store

For specific upgrade recommendations and updates, see the Release Notes.

For a migration upgrade, you kill or requeue all jobs, install the new PBS with PBS_EXEC and PBS_HOME in different loca-
tions from those of the old version of PBS, run both the old and new instances of PBS at the same time, and qmove the
jobs from the old server to the new one.

During a migration upgrade, jobs cannot be running. You can let any jobs finish before the upgrade. You can check-
point, terminate and requeue all possible jobs and requeue non-checkpointable but rerunnable jobs. Your options with
non-rerunnable jobs are to either let them finish or kill them.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-93

https://www.pbsworks.com

Chapter 6 Upgrading
In the instructions below, file and directory pathnames are the PBS defaults. If you installed PBS in different locations,
use your locations instead. PBS_EXEC_OLD refers to your existing, pre-upgrade location for PBS_EXEC.

The following commands must be run as root.

6.7.1 Set Paths for Old PBS

To use the following commands without having to substitute actual paths, on the server host, source your /etc/pbs.conf
file.

We recommend using /opt as the location where you’ll run your old PBS during the job transfer phase, rather than /tmp.

• Choose where you want to copy your old PBS_EXEC; set PBS_EXEC_OLD to this location, and export it

• Choose where you want to copy your old PBS_HOME; set PBS_HOME_OLD to this location, and export it

6.7.2 Prevent Jobs From Being Enqueued or Started

You must deactivate the scheduler(s) and queues. When the scheduling attribute is false, jobs are not started by the
scheduler. When the queues’ enabled attribute is false, jobs cannot be enqueued.

1. Prevent the scheduler(s) from starting jobs. Set scheduling to false for the default scheduler and each multisched:
qmgr -c "set sched <scheduler name> scheduling = false"

2. Print a list of all queues managed by the server. Save the list of queue names for the next step:

qstat -q

3. Disable queues to stop jobs from being enqueued. Do this for each queue in your list from the previous step:

qdisable <queue name>

6.7.3 Allow Running Jobs to Finish, or Requeue Them

You cannot perform a migration upgrade while jobs are running. Either let running jobs finish, or requeue them. (You
can also delete them.)

To requeue any running jobs:

1. List the jobs. This will list some jobs more than once. You only need to requeue each job once:
pbsnodes <hostname> | grep jobs

2. Requeue the jobs:

qrerun <job ID> <job ID> ...

To kill the jobs:

1. List the jobs. This will list some jobs more than once. You only need to kill each job once:
pbsnodes <hostname> | grep jobs

2. Use the qdel command to kill each job by job ID:

qdel <job ID> <job ID> ...

To drain the host, wait until any running jobs have finished.

Make sure that there are no old job files on any execution hosts. Remove any of the following:

$PBS_HOME/mom_priv/jobs/*.JB
IG-94 PBS Professional 2020.1.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.7.4 Disable Cloud Bursting

If you are using Altair Control for cloud bursting with PBS, disable cloud bursting. See the Altair Control Administra-
tor’s Guide, at www.pbsworks.com.

6.7.5 Disable STONITH Script

If your secondary server has a STONITH script, prevent the STONITH script from running by setting its permissions to
0644.

6.7.6 Unwrap Any Wrapped MPIs

If you used the pbsrun_wrap mechanism with your old version of PBS, you must first unwrap any MPIs that you
wrapped. This includes MPICH-GM, MPICH-MX, MPICH2, etc. You can re-wrap your MPIs after upgrading PBS.

For example, you can unwrap an MPICH2 MPI:

pbsrun_unwrap pbsrun.mpich2_64

See “pbsrun_unwrap” on page 50 of the PBS Professional Reference Guide.

6.7.7 Save Server Host Information To Be Used for New PBS

At the server:

1. Create a backup directory called /tmp/pbs_backup
mkdir /tmp/pbs_backup

2. Make a copy of the server’s configuration for the new PBS:

qmgr -c "print server" > /tmp/pbs_backup/server.new

3. Make a copy of the vnode attributes for the new PBS:

qmgr -c "print node @default" > /tmp/pbs_backup/nodes.new

4. Make a copy of all scheduler attributes for the new PBS (this prints all settable attributes for the default and multi-
scheds):

qmgr -c "print sched" > /tmp/pbs_backup/sched_attrs.new

5. Print reservation information to a file:

pbs_rstat -f > /tmp/pbs_backup/reservations

6. Make a copy of pbs.conf for the new PBS. This command is all one line:

cp /etc/pbs.conf /tmp/pbs_backup/pbs.conf.backup

7. Make a copy of each scheduler’s directory for the new PBS. For the default scheduler and each multisched:

cp -rp $PBS_HOME/sched_priv /tmp/pbs_backup/sched_priv.new

or

cp -rp $PBS_HOME/sched_priv_<multisched name> /tmp/pbs_backup/sched_priv_<multisched name>.new
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-95

https://www.pbsworks.com

Chapter 6 Upgrading
6.7.8 Save Execution Host Configuration Files

On each PBS execution host, copy the Version 1 and Version 2 configuration files:

1. Make a backup directory:
mkdir /tmp/pbs_mom_backup

2. Make a copy of the Version 1 configuration file:

cp $PBS_HOME/mom_priv/config /tmp/pbs_mom_backup/config.backup

3. Make a copy of the Version 2 configuration files:

mkdir /tmp/pbs_mom_backup/mom_configs

$PBS_EXEC_OLD/sbin/pbs_mom -s list | egrep -v '^PBS' | while read file

do

 $PBS_EXEC_OLD/sbin/pbs_mom -s show file > /tmp/pbs_mom_backup/mom_configs/$file

done

6.7.9 Save Hooks and Hook Configuration Files

Save your hooks and hook configuration files in ASCII format so you can check them and import them later. The new
version of PBS includes a new pbs_cgroups hook with a new configuration file. If you use the cgroups hook, you must
use the new hook and configuration file, but you may want to modify the configuration file, so if you have made any
changes to your existing pbs_cgroups hook configuration file, you need to save it before you upgrade. Later, you can use
the saved information to modify the new configuration file.

For each hook:

1. Save the hook. Export the hook:
qmgr -c 'export hook <hook name> application/x-python default /tmp/<hook name>.old2.7'

2. Save your hook configuration file. Export the configuration file:

qmgr -c 'export hook <hook name> application/x-config default /tmp/<hook name>.configcheck'

6.7.10 Update Hooks and Hook Configuration Files for New
Python

PBS 19.4.1 and later uses Python 3.6, so if you have not already, update all of your site-defined hooks (not the built-in
hooks) to Python 3.6. For each hook except for the pbs_cgroups hook:

1. Update your hook to Python 3.6. See https://docs.python.org/3.6/howto/pyporting.html. Name your updated hook
file differently; use something like “/tmp/<hook name>.new3.6”

2. Check that the contents of the configuration file are correct for Python 3.6

6.7.11 Shut Down Your Existing PBS

Use the -t immediate option to qterm so that all possible running jobs will be requeued. If you are using failover,
this will stop the secondary server as well:

1. Shut down the server, scheduler, and MoMs:
qterm -t immediate -m -s -f
IG-96 PBS Professional 2020.1.1 Installation & Upgrade Guide

https://docs.python.org/3.6/howto/pyporting.html

Upgrading Chapter 6
If your server is not running in a failover environment, the “-f” option is not required.

2. Shut down any multischeds. On each multisched host:

a. Find the PID you want:

ps –ef | grep pbs_sched

For the default scheduler, you’ll see “pbs_sched”, but for multischeds, you’ll see “pbs_sched -I <multisched
name>”.

b. Stop the scheduler or multisched:

kill <multisched PID>

3. On the server host and any other comm hosts, shut down the communication daemon:

systemctl stop pbs

or

<path to script>/pbs stop

4. Verify that PBS daemons are not running in the background:

ps -ef | grep pbs

If you see the pbs_server, pbs_sched, pbs_mom, or pbs_comm process running, manually terminate that
process. If using failover, check both primary and secondary server hosts:

kill -9 <daemon PID>

6.7.12 Back Everything Up to Transfer Location

Later, you will run the old PBS server from the backup location while you are moving jobs to the new server. You must
do a copy, not a move, because the installation software depends on the old version of PBS being available for it to
remove. You’ll be running commands from the backup directory, so we recommend a directory under /opt.

6.7.12.1 Back Up Server/scheduler/communication Host

On the server host, copy the existing PBS_HOME and PBS_EXEC hierarchies to the backup location.

1. Copy PBS_HOME to the backup directory:
cp -rp $PBS_HOME $PBS_HOME_OLD

2. Copy PBS_EXEC to the backup directory:

cp -rp $PBS_EXEC $PBS_EXEC_OLD

6.7.12.2 Back Up Execution Host Information

On each execution host, copy the existing PBS_HOME and PBS_EXEC hierarchies to the backup location. This is just for
safekeeping.

1. Copy PBS_HOME to the backup directory:
cp -rp $PBS_HOME /tmp/pbs_mom_backup/pbs_mom_home_backup

2. Copy PBS_EXEC to the backup directory:

cp -rp PBS_EXEC /tmp/pbs_mom_backup/pbs_mom_exec_backup
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-97

Chapter 6 Upgrading
6.7.13 Install the New Version of PBS

For a migration upgrade, use rpm -i so that the old version of PBS can still be used to move the jobs. You might think
that you’d use rpm -U, but that removes the old PBS, and you still need it until the jobs are moved.

6.7.13.1 Install New PBS Server

On the server host, install the new version of PBS without uninstalling the previous version.

1. Download the appropriate PBS package

2. Uncompress the package as an unprivileged user

3. Make sure that parameters for PBS_HOME, PBS_EXEC, PBS_LICENSE_INFO, PBS_SERVER and
PBS_DATA_SERVICE_USER are set correctly; see section 3.5.2.2, “Setting Installation Parameters”, on page 25.
Make sure that PBS_HOME and PBS_EXEC are in locations that are different from your existing PBS.

If you are using failover, pay special attention to your configuration parameters, including PBS_HOME and
PBS_MOM_HOME, when installing the server sub-package on the secondary server host. See section 3.5.2.2, “Set-
ting Installation Parameters”, on page 25 and "Configuring the pbs.conf File for Failover" on page 403 in the PBS
Professional Administrator’s Guide.

4. Install the server sub-package:

rpm -i --prefix=<new PBS_EXEC location> <path/to/server sub-package>/pbspro-server-<version>-
0.<platform-specific-dist-tag>.<hardware>.rpm

Do not start PBS now.

6.7.13.2 Install New PBS MoMs

On each execution host, install the new version of PBS without uninstalling the previous version. You can install new
MoMs in the same locations as the old MoMs.

1. Download the appropriate PBS package

2. Uncompress the package as an unprivileged user

3. Make sure that parameters for PBS_HOME, PBS_EXEC, and PBS_SERVER are set correctly; see section
3.5.2.2, “Setting Installation Parameters”, on page 25.

4. Install the execution sub-package. The method you use depends on the version you are upgrading from.

• When upgrading from 13.2 or an earlier version:
rpm -i <path/to/execution sub-package>/pbspro-execution-<version>-0.<platform-specific-dist-

tag>.<hardware>.rpm

• When upgrading from 14.2 or a later version:
rpm -U <path/to/execution sub-package>/pbspro-execution-<version>-0.<platform-specific-dist-

tag>.<hardware>.rpm

Do not start PBS now.
IG-98 PBS Professional 2020.1.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.7.13.3 Install New PBS Client Commands

On each client command host, install the new version of PBS without uninstalling the previous version:

1. Download the appropriate PBS package

2. Uncompress the package as an unprivileged user

3. Make sure that parameters for PBS_HOME, PBS_EXEC, and PBS_SERVER are set correctly; see section
3.5.2.2, “Setting Installation Parameters”, on page 25. Make sure that PBS_HOME and PBS_EXEC point to the
locations you’re using for the new PBS.

4. Install the client command sub-package. The method you use depends on the version you are upgrading from.

• When upgrading from 13.2 or an earlier version:
rpm -i <path/to/client command sub-package>/pbspro-client-<version>-0.<platform-specific-

dist-tag>.<hardware>.rpm

• When upgrading from 14.2 or a later version:
rpm -U <path/to/client command sub-package>/pbspro-client-<version>-0.<platform-specific-

dist-tag>.<hardware>.rpm

6.7.13.4 Install New PBS Communication Daemons

If you are installing a communication daemon on a communication-only host, install the server-scheduler-communica-
tion-MoM sub-package, and disable the server, scheduler, and MoM on that host. (MoM is disabled by default.) Install
the new version of PBS without uninstalling the previous version.

1. Download the appropriate PBS package

2. Uncompress the package

3. Make sure that parameters for PBS_HOME, PBS_EXEC, and PBS_SERVER are set correctly; see section
3.5.2.2, “Setting Installation Parameters”, on page 25. Make sure that PBS_HOME and PBS_EXEC point to the
locations you are using for the new PBS.

4. Disable the server, scheduler, and MoM. In pbs.conf:

PBS_START_SERVER=0

PBS_START_SCHED=0

PBS_START_MOM=0

5. Install the server sub-package. The method you use depends on the version you are upgrading from.

• When upgrading from 13.2 or an earlier version:
rpm -i <path/to/server sub-package>/pbspro-server-<version>-0.<platform-specific-dist-

tag>.<hardware>.rpm

• When upgrading from 14.2 or a later version:
rpm -U <path/to/server sub-package>/pbspro-server-<version>-0.<platform-specific-dist-

tag>.<hardware>.rpm

Do not start PBS now.

6.7.14 Switch To New PBS_EXEC Path

Source your new /etc/pbs.conf file.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-99

Chapter 6 Upgrading
6.7.15 Create PBS_HOME

Create the subdirectories under PBS_HOME by running pbs_habitat. On the new PBS server host and on each execu-
tion host:

$PBS_EXEC/libexec/pbs_habitat

6.7.16 Start and Stop the New Server (If Using Failover)

If you are not using failover, skip this step. If you are using failover, this pair of start and stop steps really is necessary.
Bear with us.

When the new server starts up it will have default queue “workq” and the server host already defined. You want to start
the new server with empty configurations so that you can import your old settings.

1. Start the new server with empty queue and vnode configurations:
$PBS_EXEC/sbin/pbs_server -t create

A message will appear saying “Create mode and server database exists, do you wish to continue?”

Type “y” to continue.

Because of the new licensing scheme an additional message may appear:

"One or more PBS license keys are invalid, jobs may not run"

This message is expected. Continue to the next step in these instructions.

2. Shut down PBS:

qterm -t immediate -m -s -f

3. Verify that PBS daemons are not running in the background:

ps -ef | grep pbs

If you see the pbs_server, pbs_sched, pbs_comm, or pbs_mom process running, manually terminate that
process. If using failover, check both primary and secondary server hosts:

kill -9 <daemon PID>

6.7.17 Start the New Server Without Defined Queues or
Vnodes

When the new server starts up it will have default queue “workq” and the server host already defined. You want to start
the new server with empty configurations so that you can import your old settings.

Start the new server with empty queue and vnode configurations:

$PBS_EXEC/sbin/pbs_server -t create

A message will appear saying “Create mode and server database exists, do you wish to continue?”

Type “y” to continue.

Because of the new licensing scheme an additional message may appear:

"One or more PBS license keys are invalid, jobs may not run"

This message is expected. Continue to the next step in these instructions.
IG-100 PBS Professional 2020.1.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.7.18 Re-wrap Any MPIs

If you want any wrapped MPIs, wrap them. See "Integration by Wrapping" on page 449 in the PBS Professional Admin-
istrator’s Guide.

6.7.19 Set License Location Server Attribute

Set the pbs_license_info server attribute to the location of the license server:

qmgr -c 'set server pbs_license_info=<port>@<license server hostname>'

6.7.20 Clean Up Configuration Information

6.7.20.1 Clean Up Scheduler Configuration Files

If you were running one or more multischeds with your old version of PBS, make sure you update their configuration
files along with that of the default scheduler. Note that the preempt_order, preempt_prio, preempt_queue_prio,
preempt_sort, and log_events scheduler attributes are new; some were parameters in sched_config with the same
names. In a later step (after the server is running), you will use qmgr to set the attributes. For each scheduler:

1. Make a copy of the new sched_config, which is in PBS_EXEC/etc/pbs_sched_config.
cp $PBS_EXEC/etc/pbs_sched_config $PBS_EXEC/etc/pbs_sched_config.new

2. Update PBS_EXEC/etc/pbs_sched_config.new with any modifications that were made to your old sched-
uler configuration file, saved in %PBS_HOME/sched_priv/sched_config or %PBS_HOME/
sched_priv_<multisched name>/sched_config.

3. If you were using vmem at the queue or server level before the upgrade, then after upgrading you must add vmem
to the resource_unset_infinite sched_config option. Otherwise jobs requesting vmem will not run.

4. Move PBS_EXEC/etc/pbs_sched_config.new to the correct name and location, i.e. $PBS_HOME/
sched_priv/sched_config or $PBS_HOME/sched_priv_<multisched name>/sched_config:

mv $PBS_EXEC/etc/pbs_sched_config.new $PBS_HOME/sched_priv/sched_config

or

mv $PBS_EXEC/etc/pbs_sched_config.new $PBS_HOME/sched_priv_<multisched name>/sched_config

6.7.20.2 Clean Up Scheduler Attributes

For each scheduler, clean up the attributes saved in /tmp/pbs_backup/<scheduler name>/sched_attrs.new. When you
read in multisched attributes, you’ll re-create the multischeds, so make sure your new multischeds are what you want:

• Remove read-only attributes

• Remove lines containing the following:
pbs_version
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-101

Chapter 6 Upgrading
For the new default scheduler and all new multischeds:

• The preempt_order, preempt_prio, preempt_queue_prio, and preempt_sort preemption settings were sched-
uler parameters in $PBS_HOME/sched_priv/sched_config in older versions of PBS. They are now scheduler
attributes with the same names and formats. Make sure that you use qmgr to set the attributes as desired. See
“Scheduler Attributes” on page 298 of the PBS Professional Reference Guide.

• The scheduler’s log_filter configuration parameter is obsolete. The scheduler’s log filter now uses the same bitmask
system as the other daemons. The new default value is 767. Use qmgr to set the scheduler’s log_events attribute
to the value you want. See "Specifying Scheduler Log Events" on page 538 in the PBS Professional Administrator’s
Guide.

6.7.20.3 Clean Up Server Configuration

Remove read-only attributes from the server’s configuration information in server.new. For example, remove lines con-
taining the following:

license_count

pbs_version

Remove creation commands for any reservation queues. You will create reservations and their queues separately.

6.7.20.4 Copy User Credentials to New Server

PBS caches user credentials in $PBS_HOME/server_priv/users. PBS stores the credential for each user in a file named
<username>.CR. Normally this directory is created by PBS when users log in. If you installed the new version of PBS
in the same location as the old one, you do not need to copy user credentials.

However, if the new version of PBS is in a different location, you need to create the directory and copy the credential
files, keeping the permissions the same:

1. Create the user credential directory:
mkdir -p $PBS_HOME/server_priv/users/

2. Copy the user credential files to the new directory:

cp -rpu $PBS_HOME_OLD/server_priv/users/* $PBS_HOME/server_priv/users/

6.7.20.5 Clean up Vnode Configuration

Here you prepare the vnode attribute input to the new qmgr.

If your system has multi-vnode hosts:

1. Copy your saved node configuration file /tmp/pbs_backup/nodes.new. into two files:

• qmgr_parent_vnode.out, which contains all the configuration information for parent vnodes

• qmgr_child_vnode.out, which contains all the configuration information for vnodes that aren’t parent vnodes

2. Continue by preparing configuration information for parent vnodes. You will prepare the configuration information
for the other vnodes after they have been created, because the vnode names in your file must be precisely the same as
the ones created by PBS.

If your system has only single-vnode hosts, follow the steps below for preparing configuration information for parent
vnodes only.

6.7.20.5.i Prepare Configuration Information for Parent Vnodes

Edit qmgr_parent_vnode.out:
IG-102 PBS Professional 2020.1.1 Installation & Upgrade Guide

Upgrading Chapter 6
Leave only the the following creation lines:

• Those for parent vnodes

• Any resources you want managed on the server side through qmgr

• Custom resources on the parent vnodes

Delete any lines for resources managed through Version 2 configuration files or that MoM reports from what the vnode's
host OS is reporting. For example, delete:

• Child vnodes, that should be created by MoM (vnodes that are NOT parent vnodes)

• Lines that set the sharing attribute

• The ncpus, mem, and vmem resources, unless they should explicitly be set via qmgr

6.7.21 Create and Configure New Multischeds

Create the directories required for each new multisched, and configure each multisched. See "Creating and Configuring
a Multisched" on page 55 in the PBS Professional Administrator’s Guide.

6.7.22 Start New Server and New Schedulers

1. Start the new server and new default scheduler. On the server host:
systemctl restart pbs

or

<path to init.d>/init.d/pbs restart

2. Start multischeds. To start a multisched, call pbs_sched and specify the name and port you already gave it. For
each multisched:

pbs_sched -I <name of multisched> -S <same value as sched_port for this multisched>

6.7.23 Replicate Queue, Server, Scheduler, and Vnode
Configurations

6.7.23.1 Replicate Server and Queue Attributes

1. Give the new server the old server’s configuration, but modified for the new PBS:
$PBS_EXEC/bin/qmgr < /tmp/pbs_backup/server.new

2. Verify the configuration was read in properly:

$PBS_EXEC/bin/qmgr -c "print server"

6.7.23.2 Replicate Scheduler Attributes

1. Give the new default scheduler the old default scheduler’s attributes, and re-create your multischeds:
$PBS_EXEC/bin/qmgr < /tmp/pbs_backup/<scheduler name>/sched_attrs.new

2. Verify the configurations were read in properly.

You can see all schedulers at once:

$PBS_EXEC/bin/qmgr -c "print sched"
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-103

Chapter 6 Upgrading
Or for each scheduler:

$PBS_EXEC/bin/qmgr -c "print sched default"

or

$PBS_EXEC/bin/qmgr -c "print sched <multisched name>"

6.7.23.3 Replicate Vnode Attributes

Replicate vnode configuration, also modified for the new PBS:

1. Read in the parent vnode configuration file:
$PBS_EXEC/bin/qmgr < qmgr_parent_vnode.out

2. Wait until MoM or the cgroups hook creates any vnodes that are not parent vnodes. Check:

pbsnodes -av

3. Prepare configuration information for child vnodes:

Edit qmgr_child_vnode.out. Make sure that the vnode names in this file are exactly what MoM or the cgroups
hook created. It’s easiest to put all resource information into a Version 2 configuration file, rather than using qmgr.

Leave only the the following creation lines:

• Any resources you want managed on the server side through qmgr

• Custom resources on the other vnodes (but this may be easier in a Version 2 configuration file)

Delete any lines for resources managed through Version 2 configuration files or that MoM reports from what the
vnode's host OS is reporting. For example, delete:

• Vnodes that should be created by the cgroups hook or MoM (vnodes that are NOT parent vnodes)

• Lines that set the sharing attribute

• The ncpus, mem, and vmem resources, unless they should explicitly be set via qmgr

4. Read in the configuration file for child vnodes (not parent vnodes):

$PBS_EXEC/bin/qmgr < qmgr_child_vnode.out

5. Verify the configurations were read in properly:

$PBS_EXEC/bin/pbsnodes -a

6.7.24 Import and Configure Hooks

Make sure you do not overwrite the new pbs_cgroups hook or its configuration file by importing the old ones. Instead,
use the saved information from your old hook to modify the new hook and configuration file.

6.7.24.1 Import Old Hooks Except for Cgroups Hook

1. Do not import your old pbs_cgroups hook. Import your other hooks and their configuration files. For each hook
except for pbs_cgroups:
qmgr -c 'import hook <hook name> application/x-python default /tmp/<hook name>.new3.6'

qmgr -c 'import hook <hook name> application/x-config default /tmp/<hook name>.configcheck'
IG-104 PBS Professional 2020.1.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.7.24.2 Modify Cgroups Hook Configuration File

If you will use the cgroups hook:

1. Export the cgroups hook configuration file to pbs_cgroups.json:
qmgr -c 'export hook pbs_cgroups application/x-config default' > pbs_cgroups.json

2. If the cgroups memory subsystem is not mounted on the system, disable 'memory' in the cgroups hook configura-
tion file:

a. Check to see whether it is mounted:

mount | grep cgroup | grep memory

If the memory subsystem is mounted, the command returns something like "cgroup on /sys/fs/cgroup/mem-
ory type cgroup (rw,nosuid,nodev,noexec,relatime,memory".

b. If this returns empty, edit the pbs_cgroups.json file so that 'enabled' parameter for 'memory' under cgroup is
false:

"cgroup": {

 ...

"memory": {

"enabled": false,

3. If you made changes to the old cgroups configuration file, you may want to make those changes in the new configu-
ration file. Use the information saved in /etc/pbs_cgroups.old2.7

4. Import the modified configuration (make sure you use “x-config”):

qmgr -c 'import hook pbs_cgroups application/x-config default pbs_cgroups.json'

6.7.24.3 Enable Cgroups Hook

If you will use the cgroups hook, enable the pbs_cgroups hook:

qmgr -c "set hook pbs_cgroups enabled=true"

6.7.24.4 Write and Deploy New Hooks

If you have written new hooks for the new version of PBS, deploy them now. See the PBS Professional Hooks Guide.

6.7.25 Start New MoMs

You can start the MoMs in any order.

• On each execution host:
systemctl start pbs

or

<path to init.d>/init.d/pbs start

• Optionally start a MoM on the new server host. If your old configuration had a MoM running on the server host, and
you wish to replicate the configuration, you can start a MoM on that machine:
$PBS_EXEC/sbin/pbs_mom
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-105

Chapter 6 Upgrading
6.7.26 Configure Sharing and Placement Sets

6.7.26.1 Configuration with Cgroups Hook

As of version 2020.1, the cgroups hook creates the child vnodes on a multi-vnode machine; if you will use the cgroups
hook, it is important that any Version 2 configuration files refer only to these vnodes. Use Version 2 configuration files
only to set the sharing attribute and optionally to set resources that will be used for placement sets. The default value for
the sharing attribute of the vnodes is "sharing=default_shared". You can change this, for example to "shar-
ing=default_excl".

Do not set resources_available.mem, resources_available.ncpus, or resources_available.vmem in the Version 2
configuration file.

On each execution host:

1. Create a file named “vnodedefs” that has MoM’s list of vnodes; see "Version 2 Vnode Configuration Files" on page
42 in the PBS Professional Administrator’s Guide
pbsnodes -av | awk -F'=' '{printf "%s:\tsharing = default_excl\n", $2}' > vnodedefs

2. Edit the file to reflect what you want for the sharing attribute and placement sets. Use the information saved in /
tmp/pbs_mom_backup/mom_configs/ in step "Save Execution Host Configuration Files” on page 96

3. Create your new Version 2 configuration file and name it for example “vnodedefs”:

pbs_mom -s insert vnodedefs vnodedefs

4. Restart pbs_mom:

pbs -eaf | grep pbs_mom

kill <MoM PID>

/opt/pbs/sbin/pbs_mom

6.7.26.2 Configuration without Cgroups Hook

Do not set resources_available.mem, resources_available.ncpus, or resources_available.vmem in the Version 2
configuration file.

On each execution host:

1. Create a file named “vnodedefs”; see "Version 2 Vnode Configuration Files" on page 42 in the PBS Professional
Administrator’s Guide

2. Create your new Version 2 configuration file and name it for example “vnodedefs”:

pbs_mom -s insert vnodedefs vnodedefs

3. Restart pbs_mom:

pbs -eaf | grep pbs_mom

kill <MoM PID>

/opt/pbs/sbin/pbs_mom

6.7.27 Start New Communication Daemons

Start PBS on any communication-only hosts. On each communication-only host, type:

systemctl start pbs

or

<path to init.d>/init.d/pbs start
IG-106 PBS Professional 2020.1.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.7.28 Verify Communication Between Server and MoMs

All new MoMs on all execution hosts should be running and communicating with the new server. Run pbsnodes -a
on the new server host to see if it can communicate with the execution hosts in your complex. If a host is down, go to the
problem host and restart the MoM:

pbs -eaf | grep pbs_mom

kill <MoM PID>

/opt/pbs/sbin/pbs_mom

6.7.29 Re-create Reservations

You must re-create each reservation that was on the old server, using the pbs_rsub command. Each reservation is cre-
ated as a new reservation. You can use all of the information about the old reservation except for its start time. Be sure
to give each reservation a start time in the future. Use the information stored in /tmp/pbs_backup/reserva-
tions.

6.7.30 Change Ports and PBS_EXEC Path in pbs.conf for Old
PBS

You must edit the pbs.conf file of the old PBS so that all old services use ports that won’t clash with those of the new
PBS. Edit /tmp/pbs_backup/pbs.conf.backup.

You must change the port numbers for these PBS daemons: server and data service. You do not need to change the port
number for the comm, MoM, or scheduler.

You must also make sure that the PBS_EXEC entry in the old pbs.conf points to the path for the old PBS_EXEC.

Edit /tmp/pbs_backup/pbs.conf.backup so that the entries look like those in the following table:

6.7.31 Start the Old Server

You must start the old server in order to move jobs to the new server. The old server must be started on alternate ports.
These are specified in /tmp/pbs_backup/pbs.conf.backup.

Table 6-1: Entries in Old PBS Configuration File

New Entry in pbs.conf Description

PBS_EXEC=<path to PBS_EXEC_OLD> Location where PBS_EXEC for your old PBS was copied

PBS_HOME=<path to PBS_HOME_OLD> Location where PBS_HOME for your old PBS was copied

PBS_START_SERVER=1 Unchanged

PBS_START_MOM=1 Unchanged

PBS_START_SCHED=1 Unchanged

PBS_SERVER=<hostname> Unchanged

PBS_BATCH_SERVICE_PORT=13001 This is the changed port number for the old server

PBS_DATA_SERVICE_PORT=13007 This is the changed port number for the old data service
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-107

Chapter 6 Upgrading
Start the old server daemon and point it to the old configuration file:

PBS_CONF_FILE=/tmp/pbs_backup/pbs.conf.backup $PBS_EXEC_OLD/sbin/pbs_server

6.7.32 Verify Old Server is Running on Alternate Ports

Verify that the old pbs_server is running on the alternate ports by running the following:

PBS_CONF_FILE=/tmp/pbs_backup/pbs.conf.backup $PBS_EXEC_OLD/bin/qstat @<old server host>:13001

6.7.33 Move Existing Jobs to the New Server

You must move existing jobs from the old server to the new server. To do this, you run the qmove commands from the
old server, and give the new server’s port number, 15001, in the destination. See “qmove” on page 172 of the PBS Pro-
fessional Reference Guide or the qmove(1B) man page. When moving jobs from reservation queues, be sure to move
them into the equivalent new reservation queues.

If your jobs have dependencies, move them according to the order in which they appear in the dependency chain. If job
A depends on the outcome of job B, move job B first.

If your old server host also ran a MoM, you will need to delete that vnode from the old server.

Delete the vnode on the old server host:

PBS_CONF_FILE=/tmp/pbs_backup/pbs.conf.backup $PBS_EXEC_OLD/bin/qmgr -c "d n <old server host>"
<old server host>:13001

Move jobs from the old server to the new one:

1. Print the list of jobs on the old server:
PBS_CONF_FILE=/tmp/pbs_backup/pbs.conf.backup $PBS_EXEC_OLD/bin/qstat @<old server host>:13001

2. Move each job from each queue. Make sure that you move jobs in old reservation queues to their counterparts on
the new server:

PBS_CONF_FILE=/tmp/pbs_backup/pbs.conf.backup $PBS_EXEC_OLD/bin/qmove <new queue name>@<new
server host>:15001 <job id>@<old server host>:13001

You can use qselect to select all the jobs in a queue instead of moving each job individually.

3. Move all jobs in a queue:

PBS_CONF_FILE=/tmp/pbs_backup/pbs.conf.backup

for jobname in $($PBS_EXEC_OLD/bin/qselect -q <queue name>@<old server host>:13001);

do

$PBS_EXEC_OLD/bin/qmove <queue name>@<new server host>:15001 ${jobname}@<old server
host>:13001;

done

If you see the error message “Too many arguments...”, there are too many jobs to fit in the shell’s command line
buffer. You can continue moving jobs one at a time until there are few enough.

6.7.34 Shut Down Old Server

Shut down the old server daemon:

PBS_CONF_FILE=/tmp/pbs_backup/pbs.conf.backup $PBS_EXEC_OLD/bin/qterm -t quick <old server
host>:13001
IG-108 PBS Professional 2020.1.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.7.35 Enable STONITH Script

If your secondary server has a STONITH script, allow the STONITH script to run by setting its permissions to 0755.

6.7.36 Enable Cloud Bursting

If you are using Altair Control for cloud bursting with PBS, enable cloud bursting. See the Altair Control Administra-
tor’s Guide, at www.pbsworks.com.

6.7.37 Enable Scheduling

If you disabled scheduling earlier, enable it for the default scheduler and any multischeds:

qmgr -c 'set sched <scheduler name> scheduling = true'

6.7.38 Removing Old PBS

If you decide to remove the old version of PBS after upgrading, be sure to use the --noscripts option when using
rpm -e. Using rpm -e without this option, even on an older package than the one you are currently using, will cause
any currently running PBS daemons to shut down, and will also remove the system V init and/or systemd service startup
files. This will prevent PBS daemons from starting automatically at system boot time. If you wish to remove an older
RPM without these effects, use rpm -e --noscripts.

6.8 Upgrading a Windows/Linux Complex

As of version 19.4.1, Windows MoMs and client commands run with a Linux server, scheduler(s), and comm(s). PBS
servers, schedulers, and comms run on Linux only. These instructions are for upgrading from a Windows execution
host/Linux server complex to a Windows execution host/Linux server complex. If your existing complex is all Windows,
see section 6.9, “Upgrading from an All-Windows Complex”, on page 125.

You must use a migration upgrade with a Windows/Linux complex. During the migration upgrade, you can install the
new version of PBS in the same place or in a new location, which can be the default location or a non-default location.

You will probably want to move jobs from the old system to the new. During a migration upgrade, jobs cannot be run-
ning. You can requeue rerunnable jobs. Your can let non-rerunnable jobs finish, or you can kill them.

On the Windows hosts, the account from which you install PBS (the installation account) must be a local account that is
a member of the local Administrators group on the local computer.

In the instructions below, file and directory pathnames are the PBS defaults. If you installed PBS in different locations,
use your locations instead. Where you see %WINDIR%, it will be automatically replaced by the correct directory.

The name of the default server host is specified in /etc/pbs.conf.

The default installation location on Windows systems is \Program Files (x86)\PBS\.

You perform a migration upgrade by copying your old PBS to a temporary location and running it from that temporary
location so that you can migrate jobs to the new PBS.

6.8.1 Set Paths for Old PBS

To use the following commands without having to substitute actual paths, on the server host, source your /etc/pbs.conf
file.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-109

https://www.pbsworks.com

Chapter 6 Upgrading
We recommend using /opt as the location where you’ll run your old PBS during the job transfer phase, rather than /tmp.

• Choose where you want to copy your old PBS_EXEC; set PBS_EXEC_OLD to this location, and export it

• Choose where you want to copy your old PBS_HOME; set PBS_HOME_OLD to this location, and export it

6.8.2 Prevent Jobs From Being Enqueued or Started

You must deactivate the scheduler(s) and queues. When the scheduling attribute is false, jobs are not started by the
scheduler. When the queues’ enabled attribute is false, jobs cannot be enqueued.

1. Prevent the scheduler(s) from starting jobs. Set scheduling to false for the default scheduler and each multisched:
qmgr -c "set sched <scheduler name> scheduling = false"

2. Print a list of all queues managed by the server. Save the list of queue names. You will need it in the next step and
when moving jobs:

qstat -q

3. Disable queues to stop jobs from being enqueued. Do this for each queue in your list from the previous step:

qdisable <queue name>

6.8.3 Allow Running Jobs to Finish, or Requeue Them

You cannot perform a migration upgrade while jobs are running. Either let running jobs finish, or requeue them. (You can
also delete them.)

To requeue any running jobs:

1. List the jobs. This will list some jobs more than once. You only need to requeue each job once:
pbsnodes <hostname> | findstr jobs

2. Requeue the jobs:

qrerun <job ID> <job ID> ...

To kill the jobs:

1. List the jobs. This will list some jobs more than once. You only need to kill each job once:
pbsnodes <hostname> | grep jobs

2. Use the qdel command to kill each job by job ID:

qdel <job ID> <job ID> ...

To drain the host, wait until any running jobs have finished.

Make sure that there are no old job files on any execution hosts. Remove any of the following:

C:\Program Files (x86)\PBS\home\mom_priv\jobs*.JB

6.8.4 Disable Cloud Bursting

If you are using Altair Control for cloud bursting with PBS, disable cloud bursting. See the Altair Control Administra-
tor’s Guide, at www.pbsworks.com.
IG-110 PBS Professional 2020.1.1 Installation & Upgrade Guide

https://www.pbsworks.com

Upgrading Chapter 6
6.8.5 Disable STONITH Script

If your secondary server has a STONITH script, prevent the STONITH script from running by setting its permissions to
0644.

6.8.6 Save Server Host Information To Be Used for New PBS

At the server:

1. Create a backup directory called /tmp/pbs_backup
mkdir /tmp/pbs_backup

2. Make a copy of the server’s configuration for the new PBS:

qmgr -c "print server" > /tmp/pbs_backup/server.new

3. Make a copy of the vnode attributes for the new PBS:

qmgr -c "print node @default" > /tmp/pbs_backup/nodes.new

4. Make a copy of all scheduler attributes for the new PBS (this prints all settable attributes for the default and multi-
scheds):

qmgr -c "print sched" > /tmp/pbs_backup/sched_attrs.new

5. Print reservation information to a file:

pbs_rstat -f > /tmp/pbs_backup/reservations

6. Make a copy of pbs.conf for the new PBS. This command is all one line:

cp /etc/pbs.conf /tmp/pbs_backup/pbs.conf.backup

7. Make a copy of each scheduler’s directory for the new PBS. For the default scheduler and each multisched:

cp -rp $PBS_HOME/sched_priv /tmp/pbs_backup/sched_priv.new

or

cp -rp $PBS_HOME/sched_priv_<multisched name> /tmp/pbs_backup/sched_priv_<multisched name>.new

6.8.7 Save Execution Host Configuration Files

On each PBS execution host, copy the Version 1 and Version 2 configuration files:

1. Make a backup directory:
mkdir "%WINDIR%\TEMP\PBS_MoM_Backup"

2. Make a copy of the Version 1 configuration file:

copy "C:\Program Files (x86)\PBS\home\mom_priv\config" "%WINDIR%\TEMP\PBS_MoM_Backup\con-
fig.backup"

3. Make a copy of the Version 2 configuration files:

mkdir "%WINDIR%\TEMP\PBS_MoM_Backup\mom_config"

for /f %a in (' "C:\Program Files (x86)\PBS\exec\sbin\pbs_mom.exe" -N -s list') do

"C:\Program Files (x86)\PBS\exec\sbin\pbs_mom.exe" -N -s show %a >
"%WINDIR%\TEMP\PBS_MoM_Backup\mom_config\%a"
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-111

Chapter 6 Upgrading
6.8.8 Save Hooks and Hook Configuration Files

Save your hooks and hook configuration files in ASCII format so you can check them and import them later. The new
version of PBS includes a new pbs_cgroups hook with a new configuration file. If you use the cgroups hook, you must
use the new hook and configuration file, but you may want to modify the configuration file, so if you have made any
changes to your existing pbs_cgroups hook configuration file, you need to save it before you upgrade. Later, you can use
the saved information to modify the new configuration file.

For each hook:

1. Save the hook. Export the hook:
qmgr -c 'export hook <hook name> application/x-python default /tmp/<hook name>.old2.7'

2. Save your hook configuration file. Export the configuration file:

qmgr -c 'export hook <hook name> application/x-config default /tmp/<hook name>.configcheck'

6.8.9 Update Hooks and Hook Configuration Files for New
Python

PBS 19.4.1 and later uses Python 3.6, so if you have not already, update all of your site-defined hooks (not the built-in
hooks) to Python 3.6. For each hook except for the pbs_cgroups hook:

1. Update your hook to Python 3.6. See https://docs.python.org/3.6/howto/pyporting.html. Name your updated hook
file differently; use something like “/tmp/<hook name>.new3.6”

2. Check that the contents of the configuration file are correct for Python 3.6

6.8.10 Shut Down Your Existing PBS

Use the -t immediate option to qterm so that all possible running jobs will be requeued. If you are using failover,
this will stop the secondary server as well:

1. Shut down the server, scheduler, and MoMs:
qterm -t immediate -m -s -f

If your server is not running in a failover environment, the “-f” option is not required.

2. Shut down any multischeds. On each multisched host:

a. Find the PID you want:

ps –ef | grep pbs_sched

For the default scheduler, you’ll see “pbs_sched”, but for multischeds, you’ll see “pbs_sched -I <multisched
name>”.

b. Stop the scheduler or multisched:

kill <multisched PID>

3. On the server host and any other comm hosts, shut down the communication daemon:

systemctl stop pbs

or

<path to script>/pbs stop

4. Verify that PBS daemons are not running in the background:

ps -ef | grep pbs
IG-112 PBS Professional 2020.1.1 Installation & Upgrade Guide

https://docs.python.org/3.6/howto/pyporting.html

Upgrading Chapter 6
If you see the pbs_server, pbs_sched, pbs_mom, or pbs_comm process running, manually terminate that
process. If using failover, check both primary and secondary server hosts:

kill -9 <daemon PID>

or

net stop pbs_mom

6.8.11 Back Everything Up to Transfer Location

Later, you will run the old PBS server from the backup location while you are moving jobs to the new server. You must
do a copy, not a move, because the installation software depends on the old version of PBS being available for it to
remove. You’ll be running commands from the backup directory, so we recommend a directory under /opt.

6.8.11.1 Back Up Server/scheduler/communication Host

On the server host, copy the existing PBS_HOME and PBS_EXEC hierarchies to the backup location.

1. Copy PBS_HOME to the backup directory:
cp -rp $PBS_HOME $PBS_HOME_OLD

2. Copy PBS_EXEC to the backup directory:

cp -rp $PBS_EXEC $PBS_EXEC_OLD

6.8.11.2 Back Up Execution Host Information

On each execution host, copy the existing PBS_HOME and PBS_EXEC hierarchies to the backup location. This is just for
safekeeping.

1. Copy PBS_HOME to the backup directory:
xcopy /o /E /C "C:\Program Files (x86)\PBS\home" %WINDIR%\TEMP\PBS_MoM_Backup

2. Copy PBS_EXEC to the backup directory:

xcopy /o /E /C "C:\Program Files (x86)\PBS\exec" %WINDIR%\TEMP\PBS_MoM_Backup

6.8.12 Install the New Version of PBS

For a migration upgrade, use rpm -i so that the old version of PBS can still be used to move the jobs. You might think
that you’d use rpm -U, but that removes the old PBS, and you still need it until the jobs are moved.

6.8.12.1 Install New PBS Server

On the server host, install the new version of PBS without uninstalling the previous version.

1. Log in as root

2. Download the appropriate PBS package

3. Uncompress the package as an unprivileged user

4. Make sure that parameters for PBS_HOME, PBS_EXEC, PBS_LICENSE_INFO, PBS_SERVER and
PBS_DATA_SERVICE_USER are set correctly; see section 3.5.2.2, “Setting Installation Parameters”, on page 25.
Make sure that PBS_HOME and PBS_EXEC are in locations that are different from your existing PBS.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-113

Chapter 6 Upgrading
If you are using failover, pay special attention to your configuration parameters, including PBS_HOME and
PBS_MOM_HOME, when installing the server sub-package on the secondary server host. See section 3.5.2.2, “Set-
ting Installation Parameters”, on page 25 and "Configuring the pbs.conf File for Failover" on page 403 in the PBS
Professional Administrator’s Guide.

5. Install the server sub-package:

rpm -i --force --prefix=<new PBS_EXEC location> <path/to/server sub-package>/pbspro-server-<ver-
sion>-0.<platform-specific-dist-tag>.<hardware>.rpm

Do not start PBS now.

6.8.12.2 Install New PBS Communication Daemons

If you are installing a communication daemon on a communication-only host, install the server-scheduler-communica-
tion-MoM sub-package, and disable the server, scheduler, and MoM on that host. (MoM is disabled by default.) Install
the new version of PBS without uninstalling the previous version.

1. Log in as root

2. Download the appropriate PBS package

3. Uncompress the package

4. Make sure that parameters for PBS_HOME, PBS_EXEC, and PBS_SERVER are set correctly; see section
3.5.2.2, “Setting Installation Parameters”, on page 25. Make sure that PBS_HOME and PBS_EXEC point to the
locations you are using for the new PBS.

5. Disable the server, scheduler, and MoM. In pbs.conf:

PBS_START_SERVER=0

PBS_START_SCHED=0

PBS_START_MOM=0

6. Install the server sub-package. The method you use depends on the version you are upgrading from.

• When upgrading from 13.2 or an earlier version:
rpm -i <path/to/server sub-package>/pbspro-server-<version>-0.<platform-specific-dist-

tag>.<hardware>.rpm

• When upgrading from 14.2 or a later version:
rpm -U <path/to/server sub-package>/pbspro-server-<version>-0.<platform-specific-dist-

tag>.<hardware>.rpm

Do not start PBS now.

6.8.12.3 Switch To New PBS_EXEC Path

On the server host, source your new /etc/pbs.conf file.

6.8.12.4 Create PBS_HOME

Create the subdirectories under PBS_HOME by running pbs_habitat. On the new PBS server host:

$PBS_EXEC/libexec/pbs_habitat
IG-114 PBS Professional 2020.1.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.8.12.5 Install New PBS MoMs and Client Commands

On each execution and client host, do the following:

1. Log in with the installation account.

2. Install the KB2999226 update for Windows on all Windows Server 2012 execution and client machines.

3. Download the MSI installer (the .msi file).

4. Double-click the MSI installer; the splash screen is displayed.

5. Click the Next button to move to the license page. Accept the license.

6. Click the Next button and choose the path where you will install the PBS executable. By default this path points to
"C:\Program Files (x86)\PBS\".

7. Using “Run As Administrator”, open a Command prompt.

6.8.12.6 Configure New PBS MoMs and Client Hosts

On each execution and client host, manually execute the win_postinstall.py script as shown below. When you specify
the PBS service account, whether or not you are on a domain machine, include only the username, not the domain. For
example, if the full username on a domain machine is <domain>\<username>, pass only username as an argument.

On each execution host:

• Delete the “home” folder inside “C:\Program Files (x86)\PBS\” if it exists

• Run win_postinstall:
<PBS_EXEC>\python\python.exe <PBS_EXEC>\etc\win_postinstall.py -u <PBS service account> -p

<PBS service account password> -s <server name> -t execution -c <path to scp.exe>

On each client host:

<PBS_EXEC>\python\python.exe <PBS_EXEC>\etc\win_postinstall.py -u <PBS service account> -p <PBS
service account password> -s <server name> -t client -c <path to scp.exe>

6.8.13 Start and Stop the New Server (If Using Failover)

If you are not using failover, skip this step. If you are using failover, this pair of start and stop steps really is necessary.
Bear with us.

When the new server starts up it will have default queue “workq” and the server host already defined. You want to start
the new server with empty configurations so that you can import your old settings.

1. Start the new server with empty queue and vnode configurations:
$PBS_EXEC/sbin/pbs_server -t create

A message will appear saying “Create mode and server database exists, do you wish to continue?”

Type “y” to continue.

Because of the new licensing scheme an additional message may appear:

"One or more PBS license keys are invalid, jobs may not run"
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-115

Chapter 6 Upgrading
This message is expected. Continue to the next step in these instructions.

2. Shut down PBS:

qterm -t immediate -m -s -f

3. Verify that PBS daemons are not running in the background:

ps -ef | grep pbs

If you see the pbs_server, pbs_sched, pbs_comm, or pbs_mom process running, manually terminate that
process. If using failover, check both primary and secondary server hosts:

kill -9 <daemon PID>

6.8.14 Start the New Server Without Defined Queues or
Vnodes

When the new server starts up it will have default queue “workq” and the server host already defined. You want to start
the new server with empty configurations so that you can import your old settings.

Start the new server with empty queue and vnode configurations:

$PBS_EXEC/sbin/pbs_server -t create

A message will appear saying “Create mode and server database exists, do you wish to continue?”

Type “y” to continue.

Because of the new licensing scheme an additional message may appear:

"One or more PBS license keys are invalid, jobs may not run"

This message is expected. Continue to the next step in these instructions.

6.8.15 Set License Location Server Attribute

Set the pbs_license_info server attribute to the location of the license server:

qmgr -c 'set server pbs_license_info=<port>@<license server hostname>'
IG-116 PBS Professional 2020.1.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.8.16 Clean Up Configuration Information

6.8.16.1 Clean Up Scheduler Configuration Files

If you were running one or more multischeds with your old version of PBS, make sure you update their configuration
files along with that of the default scheduler. Note that the preempt_order, preempt_prio, preempt_queue_prio,
preempt_sort, and log_events scheduler attributes are new; some were parameters in sched_config with the same
names. In a later step (after the server is running), you will use qmgr to set the attributes. For each scheduler:

1. Make a copy of the new sched_config, which is in PBS_EXEC/etc/pbs_sched_config.
cp $PBS_EXEC/etc/pbs_sched_config $PBS_EXEC/etc/pbs_sched_config.new

2. Update PBS_EXEC/etc/pbs_sched_config.new with any modifications that were made to your old sched-
uler configuration file, saved in (Windows) "%WINDIR%\TEMP\PBS_Backup\sched_priv.sched_config" or
"%WINDIR%\TEMP\PBS_Backup\sched_priv_<multisched name>.sched_config", or in (Linux) %PBS_HOME/
sched_priv/sched_config or %PBS_HOME/sched_priv_<multisched name>/sched_config.

3. If you were using vmem at the queue or server level before the upgrade, then after upgrading you must add vmem
to the resource_unset_infinite sched_config option. Otherwise jobs requesting vmem will not run.

4. Move PBS_EXEC/etc/pbs_sched_config.new to the correct name and location, i.e. $PBS_HOME/
sched_priv/sched_config or $PBS_HOME/sched_priv_<multisched name>/sched_config:

mv $PBS_EXEC/etc/pbs_sched_config.new $PBS_HOME/sched_priv/sched_config

or

mv $PBS_EXEC/etc/pbs_sched_config.new $PBS_HOME/sched_priv_<multisched name>/sched_config

6.8.16.2 Clean Up Scheduler Attributes

For each scheduler, clean up the attributes saved in /tmp/pbs_backup/<scheduler name>/sched_attrs.new. When you
read in multisched attributes, you’ll re-create the multischeds, so make sure your new multischeds are what you want:

• Remove read-only attributes

• Remove lines containing the following:
pbs_version

For the new default scheduler and all new multischeds:

• The preempt_order, preempt_prio, preempt_queue_prio, and preempt_sort preemption settings were sched-
uler parameters in $PBS_HOME/sched_priv/sched_config in older versions of PBS. They are now scheduler
attributes with the same names and formats. Make sure that you use qmgr to set the attributes as desired. See
“Scheduler Attributes” on page 298 of the PBS Professional Reference Guide.

• The scheduler’s log_filter configuration parameter is obsolete. The scheduler’s log filter now uses the same bitmask
system as the other daemons. The new default value is 767. Use qmgr to set the scheduler’s log_events attribute
to the value you want. See "Specifying Scheduler Log Events" on page 538 in the PBS Professional Administrator’s
Guide.

6.8.16.3 Clean Up Server Configuration

Remove read-only attributes from the server’s configuration information in server.new. For example, remove lines con-
taining the following:

license_count

pbs_version

Remove creation commands for any reservation queues. You will create reservations and their queues separately.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-117

Chapter 6 Upgrading
6.8.16.4 Copy User Credentials to New Server

PBS caches user credentials in $PBS_HOME/server_priv/users. PBS stores the credential for each user in a file named
<username>.CR. Normally this directory is created by PBS when users log in. If you installed the new version of PBS
in the same location as the old one, you do not need to copy user credentials.

However, if the new version of PBS is in a different location, you need to create the directory and copy the credential
files, keeping the permissions the same:

1. Create the user credential directory:
mkdir -p $PBS_HOME/server_priv/users/

2. Copy the user credential files to the new directory:

cp -rpu $PBS_HOME_OLD/server_priv/users/* $PBS_HOME/server_priv/users/

6.8.16.5 Clean up Vnode Configuration

Here you prepare the vnode attribute input to the new qmgr.

If your system has multi-vnode hosts:

• Copy your saved node configuration file "%WINDIR%\TEMP\PBS_Backup\nodes.new" into two files:

• qmgr_parent_vnode.out, which contains all the configuration information for parent vnodes

• qmgr_child_vnode.out, which contains all the configuration information for vnodes that aren’t parent vnodes

• Continue by preparing configuration information for parent vnodes. You will prepare the configuration information
for the child vnodes after they have been created, because the vnode names in your file must be precisely the same as
the ones created by PBS.

If your system has only single-vnode hosts, follow the steps below for preparing configuration information for parent
vnodes only.

6.8.16.5.i Prepare Configuration Information for Parent Vnodes

Edit qmgr_parent_vnode.out:

Leave only the the following creation lines:

• Those for parent vnodes

• Any resources you want managed on the server side through qmgr

• Custom resources on the parent vnodes

Delete any lines for resources managed through Version 2 configuration files or that MoM reports from what the vnode's
host OS is reporting. For example, delete:

• Child vnodes, that should be created by MoM (vnodes that are NOT parent vnodes)

• Lines that set the sharing attribute

• The ncpus, mem, and vmem resources, unless they should explicitly be set via qmgr

6.8.17 Create and Configure New Multischeds

Create the directories required for each new multisched, and configure each multisched. See "Creating and Configuring
a Multisched" on page 55 in the PBS Professional Administrator’s Guide.
IG-118 PBS Professional 2020.1.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.8.18 Start New Server and New Schedulers

1. Start the new server and new default scheduler. On the server host:
systemctl restart pbs

or

<path to init.d>/init.d/pbs restart

2. Start multischeds. To start a multisched, call pbs_sched and specify the name and port you already gave it. For
each multisched:

pbs_sched -I <name of multisched> -S <same value as sched_port for this multisched>

6.8.19 Replicate Queue, Server, Scheduler, and Vnode
Configurations

6.8.19.1 Replicate Server and Queue Attributes

1. Give the new server the old server’s configuration, but modified for the new PBS:
$PBS_EXEC/bin/qmgr < /tmp/pbs_backup/server.new

2. Verify the configuration was read in properly:

$PBS_EXEC/bin/qmgr -c "print server"

6.8.19.2 Replicate Scheduler Attributes

1. Give the new default scheduler the old default scheduler’s attributes, and re-create your multischeds:
$PBS_EXEC/bin/qmgr < /tmp/pbs_backup/<scheduler name>/sched_attrs.new

2. Verify the configurations were read in properly.

You can see all schedulers at once:

$PBS_EXEC/bin/qmgr -c "print sched"

Or for each scheduler:

$PBS_EXEC/bin/qmgr -c "print sched default"

or

$PBS_EXEC/bin/qmgr -c "print sched <multisched name>"

6.8.19.3 Replicate Vnode Attributes

Replicate vnode configuration, also modified for the new PBS:

1. Read in the parent vnode configuration file:
$PBS_EXEC/bin/qmgr < qmgr_natural_vnode.out

2. Wait until MoM or the cgroups hook creates any child vnodes. Check:

pbsnodes -av

3. Prepare configuration information for child vnodes:

Edit qmgr_child_vnode.out. Make sure that the vnode names in this file are exactly what MoM or the cgroups
hook created. It’s easiest to put all resource information into a Version 2 configuration file, rather than using qmgr.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-119

Chapter 6 Upgrading
Leave only the the following creation lines:

• Any resources you want managed on the server side through qmgr

• Custom resources on the child vnodes (but this may be easier in a Version 2 configuration file)

Delete any lines for resources managed through Version 2 configuration files or that MoM reports from what the
vnode's host OS is reporting. For example, delete:

• Child vnodes, that should be created by the cgroups hook or MoM (vnodes that are NOT parent vnodes)

• Lines that set the sharing attribute

• The ncpus, mem, and vmem resources, unless they should explicitly be set via qmgr

4. Read in the configuration file for child vnodes (not parent vnodes):

$PBS_EXEC/bin/qmgr < qmgr_not_natural_vnode.out

5. Verify the configurations were read in properly:

$PBS_EXEC/bin/pbsnodes -a

6.8.20 Import and Configure Hooks

Make sure you do not overwrite the new pbs_cgroups hook or its configuration file by importing the old ones. Instead,
use the saved information from your old hook to modify the new hook and configuration file.

6.8.20.1 Import Old Hooks Except for Cgroups Hook

1. Do not import your old pbs_cgroups hook. Import your other hooks and their configuration files. For each hook
except for pbs_cgroups:
qmgr -c 'import hook <hook name> application/x-python default /tmp/<hook name>.new3.6'

qmgr -c 'import hook <hook name> application/x-config default /tmp/<hook name>.configcheck'
IG-120 PBS Professional 2020.1.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.8.20.2 Modify Cgroups Hook Configuration File

If you will use the cgroups hook:

1. Export the new cgroups hook configuration file to pbs_cgroups.json:
qmgr -c 'export hook pbs_cgroups application/x-config default' > pbs_cgroups.json

2. If the cgroups memory subsystem is not mounted on the system, disable 'memory' in the cgroups hook configura-
tion file:

a. Check to see whether it is mounted:

mount | grep cgroup | grep memory

If the memory subsystem is mounted, the command returns something like "cgroup on /sys/fs/cgroup/mem-
ory type cgroup (rw,nosuid,nodev,noexec,relatime,memory".

b. If this returns empty, edit the pbs_cgroups.json file so that 'enabled' parameter for 'memory' under cgroup is
false:

"cgroup": {

 ...

"memory": {

"enabled": false,

3. If you made changes to the old cgroups configuration file, you may want to make those changes in the new configu-
ration file. Use the information saved in /etc/pbs_cgroups.old2.7

4. Import the modified configuration (make sure you use “x-config”):

qmgr -c 'import hook pbs_cgroups application/x-config default pbs_cgroups.json'

6.8.20.3 Enable Cgroups Hook

If you will use the cgroups hook, enable the pbs_cgroups hook:

qmgr -c "set hook pbs_cgroups enabled=true"

6.8.20.4 Write and Deploy New Hooks

If you have written new hooks for the new version of PBS, deploy them now. See the PBS Professional Hooks Guide.

6.8.20.5 Start MoMs

On each execution host, start MoM :

net start pbs_mom

6.8.21 Configure Sharing and Placement Sets

6.8.21.1 Configuration with Cgroups Hook

As of version 2020.1, the cgroups hook creates the child vnodes on a multi-vnode machine; if you will use the cgroups
hook, it is important that any Version 2 configuration files refer only to these vnodes. Use Version 2 configuration files
only to set the sharing attribute and optionally to set resources that will be used for placement sets. The default value for
the sharing attribute of the vnodes is "sharing=default_shared". You can change this, for example to "shar-
ing=default_excl".
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-121

Chapter 6 Upgrading
Do not set resources_available.mem, resources_available.ncpus, or resources_available.vmem in the Version 2
configuration file.

On each execution host:

1. Create a file named “vnodedefs” that has MoM’s list of vnodes; see "Version 2 Vnode Configuration Files" on page
42 in the PBS Professional Administrator’s Guide
pbsnodes -av | awk -F'=' '{printf "%s:\tsharing = default_excl\n", $2}' > vnodedefs

2. Edit the file to reflect what you want for the sharing attribute and placement sets. Use the information saved in
"%WINDIR%\TEMP\PBS_MoM_Backup\mom_config" in step "Save Execution Host Configuration Files” on page 111

3. Create your new Version 2 configuration file and name it for example “vnodedefs”:

pbs_mom -s insert vnodedefs vnodedefs

4. Restart pbs_mom:

net stop pbs_mom

net start pbs_mom

6.8.21.2 Configuration without Cgroups Hook

Do not set resources_available.mem, resources_available.ncpus, or resources_available.vmem in the Version 2
configuration file.

On each execution host:

1. Create a file named “vnodedefs”; see "Version 2 Vnode Configuration Files" on page 42 in the PBS Professional
Administrator’s Guide

2. Create your new Version 2 configuration file and name it for example “vnodedefs”:

pbs_mom -s insert vnodedefs vnodedefs

3. Restart pbs_mom:

net stop pbs_mom

net start pbs_mom

6.8.22 Start New Communication Daemons

Start PBS on any communication-only hosts. On each communication-only host, type:

systemctl start pbs

or

<path to init.d>/init.d/pbs start

6.8.23 Verify Communication Between Server and MoMs

All new MoMs on all execution hosts should be running and communicating with the new server. Run pbsnodes -a
on the new server host to see if it can communicate with the execution hosts in your complex. If a host is down, go to the
problem host and restart the MoM:

net stop pbs_mom

net start pbs_mom
IG-122 PBS Professional 2020.1.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.8.24 Re-create Reservations

You must re-create each reservation that was on the old server, using the pbs_rsub command. Each reservation is cre-
ated as a new reservation. You can use all of the information about the old reservation except for its start time. Be sure
to give each reservation a start time in the future. Use the information stored in /tmp/pbs_backup/reserva-
tions.

6.8.25 Change Ports and PBS_EXEC Path in pbs.conf for Old
PBS

You must edit the pbs.conf file of the old PBS so that all old services use ports that won’t clash with those of the new
PBS. Edit /tmp/pbs_backup/pbs.conf.backup.

You must change the port numbers for the PBS server and data service. You do not need to change the port numbers for
the comm, MoM, or scheduler.

You must also make sure that the PBS_EXEC entry in the old pbs.conf points to the path for the old PBS_EXEC.

Edit /tmp/pbs_backup/pbs.conf.backup so that the entries look like those in the following table:

6.8.26 Start the Old Server

You must start the old server in order to move jobs to the new server. The old server must be started on alternate ports.
These are specified in /tmp/pbs_backup/pbs.conf.backup.

Start the old server daemon and point it to the old configuration file:

PBS_CONF_FILE=/tmp/pbs_backup/pbs.conf.backup $PBS_EXEC_OLD/sbin/pbs_server

6.8.27 Verify Old Server is Running on Alternate Ports

Verify that the old pbs_server is running on the alternate ports by running the following:

PBS_CONF_FILE=/tmp/pbs_backup/pbs.conf.backup $PBS_EXEC_OLD/bin/qstat @<old server host>:13001

Table 6-2: Entries in Old PBS Configuration File

New Entry in pbs.conf Description

PBS_EXEC=<path to PBS_EXEC_OLD> Location where PBS_EXEC for your old PBS was copied

PBS_HOME=<path to PBS_HOME_OLD> Location where PBS_HOME for your old PBS was copied

PBS_START_SERVER=1 Unchanged

PBS_START_MOM=1 Unchanged

PBS_START_SCHED=1 Unchanged

PBS_SERVER=<hostname> Unchanged

PBS_BATCH_SERVICE_PORT=13001 This is the changed port number for the old server

PBS_DATA_SERVICE_PORT=13007 This is the changed port number for the old data service
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-123

Chapter 6 Upgrading
6.8.28 Move Existing Jobs to the New Server

You must move existing jobs from the old server to the new server. To do this, you run the qmove commands from the
old server, and give the new server’s port number, 15001, in the destination. See “qmove” on page 172 of the PBS Pro-
fessional Reference Guide or the qmove(1B) man page. When moving jobs from reservation queues, be sure to move
them into the equivalent new reservation queues.

If your jobs have dependencies, move them according to the order in which they appear in the dependency chain. If job
A depends on the outcome of job B, move job B first.

If your old server host also ran a MoM, you will need to delete that vnode from the old server.

Delete the vnode on the old server host:

PBS_CONF_FILE=/tmp/pbs_backup/pbs.conf.backup $PBS_EXEC_OLD/bin/qmgr -c "d n <old server host>"
<old server host>:13001

Move jobs from the old server to the new one:

1. Print the list of jobs on the old server:
PBS_CONF_FILE=/tmp/pbs_backup/pbs.conf.backup $PBS_EXEC_OLD/bin/qstat @<old server host>:13001

2. Move each job from each queue. Make sure that you move jobs in old reservation queues to their counterparts on
the new server:

PBS_CONF_FILE=/tmp/pbs_backup/pbs.conf.backup $PBS_EXEC_OLD/bin/qmove <new queue name>@<new
server host>:15001 <job id>@<old server host>:13001

You can use qselect to select all the jobs in a queue instead of moving each job individually.

3. Move all jobs in a queue:

export PBS_CONF_FILE=/tmp/pbs_backup/pbs.conf.backup

for jobname in $($PBS_EXEC_OLD/bin/qselect -q <queue name>@<old server host>:13001);

do

$PBS_EXEC_OLD/bin/qmove <queue name>@<new server host>:15001 ${jobname}@<old server
host>:13001;

done

If you see the error message “Too many arguments...”, there are too many jobs to fit in the shell’s command line
buffer. You can continue moving jobs one at a time until there are few enough.

6.8.29 Shut Down Old Server

Shut down the old server daemon:

PBS_CONF_FILE=/tmp/pbs_backup/pbs.conf.backup $PBS_EXEC_OLD/bin/qterm -t quick <old server
host>:13001

6.8.30 Enable STONITH Script

If your secondary server has a STONITH script, allow the STONITH script to run by setting its permissions to 0755.

6.8.31 Enable Cloud Bursting

If you are using Altair Control for cloud bursting with PBS, enable cloud bursting. See the Altair Control Administra-
tor’s Guide, at www.pbsworks.com.
IG-124 PBS Professional 2020.1.1 Installation & Upgrade Guide

https://www.pbsworks.com

Upgrading Chapter 6
6.8.32 Enable Scheduling

If you disabled scheduling earlier, enable it for the default scheduler and any multischeds:

qmgr -c 'set sched <scheduler name> scheduling = true'

6.8.33 Removing Old PBS

If you decide to remove the old version of PBS after upgrading, be sure to use the --noscripts option when using
rpm -e. Using rpm -e without this option, even on an older package than the one you are currently using, will cause
any currently running PBS daemons to shut down, and will also remove the system V init and/or systemd service startup
files. This will prevent PBS daemons from starting automatically at system boot time. If you wish to remove an older
RPM without these effects, use rpm -e --noscripts.

6.9 Upgrading from an All-Windows Complex

As of version 19.4.1, Windows MoMs and client commands run with a Linux server, scheduler(s), and comm(s). PBS
servers, schedulers, and comms run on Linux only. If you are already using a Linux server with Windows MoMs, see
.section 6.8, “Upgrading a Windows/Linux Complex”, on page 109.

These instructions are for upgrading from a Windows/Windows complex to a Windows/Linux complex.

If your existing complex runs a PBS server on a Windows host, “upgrading” means doing a fresh install for the server/
schedulers/comms, and upgrading your Windows MoMs. You cannot preserve any jobs in any state during the upgrade.
Your can let jobs finish, or you can kill them.

On the Windows hosts, the account from which you install PBS (the installation account) must be a local account that is
a member of the local Administrators group on the local computer.

In the instructions below, file and directory pathnames are the PBS defaults. If you installed PBS in different locations,
use your locations instead. Where you see %WINDIR%, it will be automatically replaced by the correct directory.

The name of the old default server host is specified in \Program Files (x86)\PBS\pbs.conf.

On Windows systems, PBS is install ed in \Program Files (x86)\PBS\.

6.9.1 Prevent Jobs From Being Enqueued or Started

You must deactivate the scheduler(s) and queues. When the scheduling attribute is false, jobs are not started by the
scheduler. When the queues’ enabled attribute is false, jobs cannot be enqueued.

1. Prevent the scheduler(s) from starting jobs. Set scheduling to false for the default scheduler and each multisched:
qmgr -c "set sched <scheduler name> scheduling = false"

2. Print a list of all queues managed by the server. Save the list of queue names. You will need it in the next step and
when moving jobs:

qstat -q

3. Disable queues to stop jobs from being enqueued. Do this for each queue in your list from the previous step:

qdisable <queue name>

6.9.2 Allow Running Jobs to Finish, or Kill Them

You cannot perform this upgrade while jobs are running or queued. Either let running jobs finish, or kill them.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-125

Chapter 6 Upgrading
To drain the host, wait until any running jobs have finished. To kill the jobs:

1. List the jobs. This will list some jobs more than once. You only need to kill each job once:
pbsnodes <hostname> | findstr jobs

2. Use the qdel command to kill each job by job ID:

qdel <job ID> <job ID> ...

Make sure that there are no old job files on any execution hosts. Remove any of the following:

C:\Program Files (x86)\PBS\home\mom_priv\jobs*.JB

6.9.3 Disable Cloud Bursting

If you are using Altair Control for cloud bursting with PBS, disable cloud bursting. See the Altair Control Administra-
tor’s Guide, at www.pbsworks.com.

6.9.4 Disable STONITH Script

If your secondary server has a STONITH script, prevent the STONITH script from running.

6.9.5 Save Server Host Information To Be Used for New PBS

At the server:

1. Make a backup directory:
mkdir "%WINDIR%\TEMP\PBS_Backup"

2. Make a copy of the server’s configuration for the new PBS:

qmgr -c "print server" > "%WINDIR%\TEMP\PBS_Backup\server.new"

3. Make a copy of the vnode attributes for the new PBS:

qmgr -c "print node @default" > "%WINDIR%\TEMP\PBS_Backup\nodes.new"

4. Make a copy of all scheduler configurations for the new PBS (this prints settable attributes for default and multi-
scheds):

qmgr -c "print sched" > "%WINDIR%\TEMP\PBS_Backup\sched_attrs.new"

5. Print reservation information to a file:

pbs_rstat -f > "%WINDIR%\TEMP\PBS_Backup\reservations"

6. Make a copy of pbs.conf for the new PBS. This command is all one line:

copy "\Program Files (x86)\PBS\pbs.conf" "%WINDIR%\TEMP\PBS_Backup\pbs.conf.new"

7. Make a copy of each scheduler’s directory for the new PBS. For the default scheduler and each multisched:

xcopy /o /E /C "C:\Program Files (x86)\PBS\home\sched_priv"
"%WINDIR%\TEMP\PBS_Backup\sched_priv.work"

or

xcopy /o /E /C "C:\Program Files (x86)\PBS\home\sched_priv_<multisched name>"
"%WINDIR%\TEMP\PBS_Backup\sched_priv_<multisched name>.work"
IG-126 PBS Professional 2020.1.1 Installation & Upgrade Guide

https://www.pbsworks.com

Upgrading Chapter 6
When you see this message:

Does C:\Windows\TEMP\PBS_Backup\sched_priv.work specify a file name or directory name on the
target (F = file, D = directory)?

Type this:

D

6.9.6 Save Execution Host Configuration Files

On each PBS execution host, copy the Version 1 and Version 2 configuration files:

1. Make a backup directory:
mkdir "%WINDIR%\TEMP\PBS_MoM_Backup"

2. Make a copy of the Version 1 configuration file:

copy "C:\Program Files (x86)\PBS\home\mom_priv\config" "%WINDIR%\TEMP\PBS_MoM_Backup\con-
fig.backup"

3. Make a copy of the Version 2 configuration files:

mkdir "%WINDIR%\TEMP\PBS_MoM_Backup\mom_config"

for /f %a in (' "C:\Program Files (x86)\PBS\exec\sbin\pbs_mom.exe" -N -s list') do

"C:\Program Files (x86)\PBS\exec\sbin\pbs_mom.exe" -N -s show %a >
"%WINDIR%\TEMP\PBS_MoM_Backup\mom_config\%a"

6.9.7 Save Hooks and Hook Configuration Files

Save your hooks and hook configuration files in ASCII format so you can check them and import them later. The new
version of PBS includes a new pbs_cgroups hook with a new configuration file. If you use the cgroups hook, you must
use the new hook and configuration file, but you may want to modify the configuration file, so if you have made any
changes to your existing pbs_cgroups hook configuration file, you need to save it before you upgrade. Later, you can use
the saved information to modify the new configuration file.

For each hook:

1. Save the hook. Export the hook:
qmgr -c 'export hook <hook name> application/x-python default %WINDIR%\TEMP\PBS_Backup\<hook

name>.old2.7'

2. Save your hook configuration file. Export the configuration file:

qmgr -c 'export hook <hook name> application/x-config default %WINDIR%\TEMP\PBS_Backup\<hook
name>.configcheck'

3. Run dos2unix to convert the hooks and hook configuration files from DOS to UNIX format:

dos2unix /tmp/pbs_backup/<saved file>
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-127

Chapter 6 Upgrading
6.9.8 Update Hooks and Hook Configuration Files for New
Python

PBS 19.4.1 and later uses Python 3.6, so if you have not already, update all of your site-defined hooks (not the built-in
hooks) to Python 3.6. For each hook except for the pbs_cgroups hook:

1. Update your hook to Python 3.6. See https://docs.python.org/3.6/howto/pyporting.html. Name your updated hook
file differently; use something like “WINDIR%\TEMP\PBS_Backup\<hook name>.new3.6”

2. Check that the contents of the configuration file are correct for Python 3.6

6.9.9 Shut Down Your Existing PBS

Use the -t immediate option to qterm so that all possible running jobs will be requeued. If you are using failover,
this will stop the secondary server as well:

1. Shut down the server, scheduler, and MoMs:
qterm -t immediate -m -s -f

If your server is not running in a failover environment, the “-f” option is not required.

2. Shut down any multischeds. On each multisched host:

net stop pbs_sched

3. On the server host and any other comm hosts, shut down the communication daemon:

net stop pbs_comm

6.9.10 Install the New Version of PBS

6.9.10.1 Install New PBS Server

On the server host, install the new version of PBS without uninstalling the previous version.

1. Log in as root

2. Download the appropriate PBS package

3. Uncompress the package as an unprivileged user

4. Make sure that parameters for PBS_HOME, PBS_EXEC, PBS_LICENSE_INFO, PBS_SERVER and
PBS_DATA_SERVICE_USER are set correctly; see section 3.5.2.2, “Setting Installation Parameters”, on page 25.
Make sure that PBS_HOME and PBS_EXEC are in locations that are different from your existing PBS.

If you are using failover, pay special attention to your configuration parameters, including PBS_HOME and
PBS_MOM_HOME, when installing the server sub-package on the secondary server host. See section 3.5.2.2, “Set-
ting Installation Parameters”, on page 25 and "Configuring the pbs.conf File for Failover" on page 403 in the PBS
Professional Administrator’s Guide.

5. Install the server sub-package:

rpm -i --prefix=<new PBS_EXEC location> <path/to/server sub-package>/pbspro-server-<version>-
0.<platform-specific-dist-tag>.<hardware>.rpm

Do not start PBS now.
IG-128 PBS Professional 2020.1.1 Installation & Upgrade Guide

https://docs.python.org/3.6/howto/pyporting.html

Upgrading Chapter 6
6.9.10.2 Install New PBS Communication Daemons

If you are installing a communication daemon on a communication-only host, install the server-scheduler-communica-
tion-MoM sub-package, and disable the server, scheduler, and MoM on that host. (MoM is disabled by default.) Install
the new version of PBS without uninstalling the previous version.

1. Log in as root

2. Download the appropriate PBS package

3. Uncompress the package

4. Make sure that parameters for PBS_HOME, PBS_EXEC, and PBS_SERVER are set correctly; see section
3.5.2.2, “Setting Installation Parameters”, on page 25. Make sure that PBS_HOME and PBS_EXEC point to the
locations you are using for the new PBS.

5. Disable the server, scheduler, and MoM. In pbs.conf:

PBS_START_SERVER=0

PBS_START_SCHED=0

PBS_START_MOM=0

6. Install the server sub-package. The method you use depends on the version you are upgrading from.

• When upgrading from 13.2 or an earlier version:
rpm -i <path/to/server sub-package>/pbspro-server-<version>-0.<platform-specific-dist-

tag>.<hardware>.rpm

• When upgrading from 14.2 or a later version:
rpm -U <path/to/server sub-package>/pbspro-server-<version>-0.<platform-specific-dist-

tag>.<hardware>.rpm

Do not start PBS now.

6.9.10.3 Create PBS_HOME

Create the subdirectories under PBS_HOME by running pbs_habitat. On the new PBS server host:

$PBS_EXEC/libexec/pbs_habitat

6.9.10.4 Install New PBS MoMs and Client Commands

On each execution and client host, do the following:

1. Log in with the installation account.

2. Install the KB2999226 update for Windows on all Windows Server 2012 execution and client machines.

3. Download the MSI installer (the .msi file).

4. Double-click the MSI installer; the splash screen is displayed.

5. Click the Next button to move to the license page. Accept the license.

6. Click the Next button and choose the path where you will install the PBS executable. By default this path points to
"C:\Program Files (x86)\PBS\".

7. Using “Run As Administrator”, open a Command prompt.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-129

Chapter 6 Upgrading
6.9.10.5 Configure New PBS MoMs and Client Hosts

On each execution and client host, manually execute the win_postinstall.py script as shown below. When you specify
the PBS service account, whether or not you are on a domain machine, include only the username, not the domain. For
example, if the full username on a domain machine is <domain>\<username>, pass only username as an argument.

On each execution host:

• Delete the “home” folder inside “C:\Program Files (x86)\PBS\” if it exists

• Run win_postinstall:
<PBS_EXEC>\python\python.exe <PBS_EXEC>\etc\win_postinstall.py -u <PBS service account> -p

<PBS service account password> -s <server name> -t execution -c <path to scp.exe>

On each client host:

<PBS_EXEC>\python\python.exe <PBS_EXEC>\etc\win_postinstall.py -u <PBS service account> -p <PBS
service account password> -s <server name> -t client -c <path to scp.exe>

6.9.11 Start the New Server Without Defined Queues or
Vnodes

When the new server starts up it will have default queue “workq” and the server host already defined. You want to start
the new server with empty configurations so that you can import your old settings.

Start the new server with empty queue and vnode configurations:

$PBS_EXEC/sbin/pbs_server -t create

A message will appear saying “Create mode and server database exists, do you wish to continue?”

Type “y” to continue.

Because of the new licensing scheme an additional message may appear:

"One or more PBS license keys are invalid, jobs may not run"

This message is expected. Continue to the next step in these instructions.

6.9.12 Set License Location Server Attribute

Set the pbs_license_info server attribute to the location of the license server:

qmgr -c 'set server pbs_license_info=<port>@<license server hostname>'
IG-130 PBS Professional 2020.1.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.9.13 Clean Up Configuration Information

6.9.13.1 Clean Up Scheduler Configuration Files

If you were running one or more multischeds with your old version of PBS, make sure you update their configuration
files along with that of the default scheduler. Note that the preempt_order, preempt_prio, preempt_queue_prio,
preempt_sort, and log_events scheduler attributes are new; some were parameters in sched_config with the same
names. In a later step (after the server is running), you will use qmgr to set the attributes. For each scheduler:

1. Make a copy of the new sched_config, which is in PBS_EXEC/etc/pbs_sched_config.
cp $PBS_EXEC/etc/pbs_sched_config $PBS_EXEC/etc/pbs_sched_config.new

2. Update PBS_EXEC/etc/pbs_sched_config.new with any modifications that were made to your old sched-
uler configuration file, saved in (Windows) "%WINDIR%\TEMP\PBS_Backup\sched_priv.sched_config" or
"%WINDIR%\TEMP\PBS_Backup\sched_priv_<multisched name>.sched_config", or in (Linux) %PBS_HOME/
sched_priv/sched_config or %PBS_HOME/sched_priv_<multisched name>/sched_config.

3. If you were using vmem at the queue or server level before the upgrade, then after upgrading you must add vmem
to the resource_unset_infinite sched_config option. Otherwise jobs requesting vmem will not run.

4. Move PBS_EXEC/etc/pbs_sched_config.new to the correct name and location, i.e. $PBS_HOME/
sched_priv/sched_config or $PBS_HOME/sched_priv_<multisched name>/sched_config:

mv $PBS_EXEC/etc/pbs_sched_config.new $PBS_HOME/sched_priv/sched_config

or

mv $PBS_EXEC/etc/pbs_sched_config.new $PBS_HOME/sched_priv_<multisched name>/sched_config

6.9.13.2 Clean Up Scheduler Attributes

For each scheduler, clean up the attributes saved in "%WINDIR%\TEMP\PBS_Backup\sched_attrs.new". When you read
in multisched attributes, you’ll re-create the multischeds, so make sure your new multischeds are what you want:

• Remove read-only attributes

• Remove lines containing the following:
pbs_version

For the new default scheduler and all new multischeds:

• The preempt_order, preempt_prio, preempt_queue_prio, and preempt_sort preemption settings were sched-
uler parameters in $PBS_HOME/sched_priv/sched_config in older versions of PBS. They are now scheduler
attributes with the same names and formats. Make sure that you use qmgr to set the attributes as desired. See
“Scheduler Attributes” on page 298 of the PBS Professional Reference Guide.

• The scheduler’s log_filter configuration parameter is obsolete. The scheduler’s log filter now uses the same bitmask
system as the other daemons. The new default value is 767. Use qmgr to set the scheduler’s log_events attribute
to the value you want. See "Specifying Scheduler Log Events" on page 538 in the PBS Professional Administrator’s
Guide.

6.9.13.3 Clean Up Server Configuration

Remove read-only attributes from the server’s configuration information in server.new. For example, remove lines con-
taining the following:

license_count

pbs_version

Remove creation commands for any reservation queues. You will create reservations and their queues separately.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-131

Chapter 6 Upgrading
6.9.13.4 Clean up Vnode Configuration

Here you prepare the vnode attribute input to the new qmgr.

If your system has multi-vnode hosts:

• Copy your saved node configuration file "%WINDIR%\TEMP\PBS_Backup\nodes.new" into two files:

• qmgr_parent_vnode.out, which contains all the configuration information for parent vnodes

• qmgr_child_vnode.out, which contains all the configuration information for vnodes that aren’t parent vnodes

• Continue by preparing configuration information for parent vnodes. You will prepare the configuration information
for the child vnodes after they have been created, because the vnode names in your file must be precisely the same as
the ones created by PBS.

If your system has only single-vnode hosts, follow the steps below for preparing configuration information for parent
vnodes only.

6.9.13.4.i Prepare Configuration Information for Parent Vnodes

Edit qmgr_natural_vnode.out:

Leave only the the following creation lines:

• Those for parent vnodes

• Any resources you want managed on the server side through qmgr

• Custom resources on the parent vnodes

Delete any lines for resources managed through Version 2 configuration files or that MoM reports from what the vnode's
host OS is reporting. For example, delete:

• Child vnodes, that should be created by MoM (vnodes that are NOT parent vnodes)

• Lines that set the sharing attribute

• The ncpus, mem, and vmem resources, unless they should explicitly be set via qmgr

6.9.14 Create and Configure New Multischeds

Create the directories required for each new multisched, and configure each multisched. See "Creating and Configuring
a Multisched" on page 55 in the PBS Professional Administrator’s Guide.

6.9.15 Start New Server and New Schedulers

1. Start the new server and new default scheduler. On the server host:
systemctl restart pbs

or

<path to init.d>/init.d/pbs restart

2. Start multischeds. To start a multisched, call pbs_sched and specify the name and port you already gave it. For
each multisched:

pbs_sched -I <name of multisched> -S <same value as sched_port for this multisched>
IG-132 PBS Professional 2020.1.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.9.16 Replicate Queue, Server, Scheduler, and Vnode
Configurations

6.9.16.1 Replicate Server and Queue Attributes

1. Give the new server the old server’s configuration, but modified for the new PBS:
$PBS_EXEC/bin/qmgr < /tmp/pbs_backup/server.new

2. Verify the configuration was read in properly:

$PBS_EXEC/bin/qmgr -c "print server"

6.9.16.2 Replicate Scheduler Attributes

1. Give the new default scheduler the old default scheduler’s attributes, and re-create your multischeds:
$PBS_EXEC/bin/qmgr < /tmp/pbs_backup/<scheduler name>/sched_attrs.new

2. Verify the configurations were read in properly.

You can see all schedulers at once:

$PBS_EXEC/bin/qmgr -c "print sched"

Or for each scheduler:

$PBS_EXEC/bin/qmgr -c "print sched default"

or

$PBS_EXEC/bin/qmgr -c "print sched <multisched name>"

6.9.16.3 Replicate Vnode Attributes

Replicate vnode configuration, also modified for the new PBS:

1. Read in the parent vnode configuration file:
$PBS_EXEC/bin/qmgr < qmgr_natural_vnode.out

2. Wait until MoM or the cgroups hook creates any child vnodes. Check:

pbsnodes -av

3. Prepare configuration information for child vnodes:

Edit qmgr_not_natural_vnode.out. Make sure that the vnode names in this file are exactly what MoM or the
cgroups hook created. It’s easiest to put all resource information into a Version 2 configuration file, rather than using
qmgr.

Leave only the the following creation lines:

• Any resources you want managed on the server side through qmgr

• Custom resources on the child vnodes (but this may be easier in a Version 2 configuration file)
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-133

Chapter 6 Upgrading
Delete any lines for resources managed through Version 2 configuration files or that MoM reports from what the
vnode's host OS is reporting. For example, delete:

• Child vnodes, that should be created by the cgroups hook or MoM (vnodes that are NOT parent vnodes)

• Lines that set the sharing attribute

• The ncpus, mem, and vmem resources, unless they should explicitly be set via qmgr

4. Read in the configuration file for child vnodes (not parent vnodes):

$PBS_EXEC/bin/qmgr < qmgr_not_natural_vnode.out

5. Verify the configurations were read in properly:

$PBS_EXEC/bin/pbsnodes -a

6.9.17 Import and Configure Hooks

Make sure you do not overwrite the new pbs_cgroups hook or its configuration file by importing the old ones. Instead,
use the saved information from your old hook to modify the new hook and configuration file.

6.9.17.1 Import Old Hooks Except for Cgroups Hook

1. Do not import your old pbs_cgroups hook. Import your other hooks and their configuration files. For each hook
except for pbs_cgroups:
qmgr -c 'import hook <hook name> application/x-python default /tmp/<hook name>.new3.6'

qmgr -c 'import hook <hook name> application/x-config default /tmp/<hook name>.configcheck'

6.9.17.2 Modify Cgroups Hook Configuration File

If you will use the cgroups hook:

1. Export the new cgroups hook configuration file to pbs_cgroups.json:
qmgr -c 'export hook pbs_cgroups application/x-config default' > pbs_cgroups.json

2. If the cgroups memory subsystem is not mounted on the system, disable 'memory' in the cgroups hook configura-
tion file:

a. Check to see whether it is mounted:

mount | grep cgroup | grep memory

If the memory subsystem is mounted, the command returns something like "cgroup on /sys/fs/cgroup/mem-
ory type cgroup (rw,nosuid,nodev,noexec,relatime,memory".

b. If this returns empty, edit the pbs_cgroups.json file so that 'enabled' parameter for 'memory' under cgroup is
false:

"cgroup": {

 ...

"memory": {

"enabled": false,

3. If you made changes to the old cgroups configuration file, you may want to make those changes in the new configu-
ration file. Use the information saved in /etc/pbs_cgroups.old2.7

4. Import the modified configuration (make sure you use “x-config”):

qmgr -c 'import hook pbs_cgroups application/x-config default pbs_cgroups.json'
IG-134 PBS Professional 2020.1.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.9.17.3 Enable Cgroups Hook

If you will use the cgroups hook, enable the pbs_cgroups hook:

qmgr -c "set hook pbs_cgroups enabled=true"

6.9.17.4 Write and Deploy New Hooks

If you have written new hooks for the new version of PBS, deploy them now. See the PBS Professional Hooks Guide.

6.9.17.5 Start MoMs

On each execution host, start MoM :

net start pbs_mom

6.9.18 Configure Sharing and Placement Sets

6.9.18.1 Configuration with Cgroups Hook

As of version 2020.1, the cgroups hook creates the child vnodes on a multi-vnode machine; if you will use the cgroups
hook, it is important that any Version 2 configuration files refer only to these vnodes. Use Version 2 configuration files
only to set the sharing attribute and optionally to set resources that will be used for placement sets. The default value for
the sharing attribute of the vnodes is "sharing=default_shared". You can change this, for example to "shar-
ing=default_excl".

Do not set resources_available.mem, resources_available.ncpus, or resources_available.vmem in the Version 2
configuration file.

On each execution host:

1. Create a file named “vnodedefs” that has MoM’s list of vnodes; see "Version 2 Vnode Configuration Files" on page
42 in the PBS Professional Administrator’s Guide

2. Edit the file to reflect what you want for the sharing attribute and placement sets. Use the information saved in
"%WINDIR%\TEMP\PBS_MoM_Backup\mom_config" in step "Save Execution Host Configuration Files” on page 127

3. Create your new Version 2 configuration file and name it for example “vnodedefs”:

pbs_mom -s insert vnodedefs vnodedefs

4. Restart pbs_mom:

net stop pbs_mom

net start pbs_mom

6.9.18.2 Configuration without Cgroups Hook

Do not set resources_available.mem, resources_available.ncpus, or resources_available.vmem in the Version 2
configuration file.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-135

Chapter 6 Upgrading
On each execution host:

1. Create a file named “vnodedefs”; see "Version 2 Vnode Configuration Files" on page 42 in the PBS Professional
Administrator’s Guide

2. Insert your new Version 2 configuration file and name it for example “vnodedefs”:

pbs_mom -s insert vnodedefs vnodedefs

3. Restart pbs_mom:

net stop pbs_mom

net start pbs_mom

6.9.19 Start New Communication Daemons

Start PBS on any communication-only hosts. On each communication-only host, type:

systemctl start pbs

or

<path to init.d>/init.d/pbs start

6.9.20 Verify Communication Between Server and MoMs

All new MoMs on all execution hosts should be running and communicating with the new server. Run pbsnodes -a
on the new server host to see if it can communicate with the execution hosts in your complex. If a host is down, go to the
problem host and restart the MoM:

net stop pbs_mom

net start pbs_mom

6.9.21 Re-create Reservations

You must re-create each reservation that was on the old server, using the pbs_rsub command. Each reservation is cre-
ated as a new reservation. You can use all of the information about the old reservation except for its start time. Be sure
to give each reservation a start time in the future. Use the information stored in /tmp/pbs_backup/reserva-
tions.

6.9.22 Enable STONITH Script

If your secondary server has a STONITH script, allow the STONITH script to run by setting its permissions to 0755.

6.9.23 Enable Cloud Bursting

If you are using Altair Control for cloud bursting with PBS, enable cloud bursting. See the Altair Control Administra-
tor’s Guide, at www.pbsworks.com.

6.9.24 Enable Scheduling

If you disabled scheduling earlier, enable it for the default scheduler and any multischeds:

qmgr -c 'set sched <scheduler name> scheduling = true'
IG-136 PBS Professional 2020.1.1 Installation & Upgrade Guide

https://www.pbsworks.com

Upgrading Chapter 6
6.10 After Upgrading

6.10.1 Making Upgrade Transparent for Users

You may wish to make the upgrade transparent for users, if the installation program hasn’t done that already. See section
3.5.5, “Making User Paths Work”, on page 36.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-137

Chapter 6 Upgrading
IG-138 PBS Professional 2020.1.1 Installation & Upgrade Guide

7

Installing and Upgrading on

Cray

7.1 Installing PBS with Shasta

To install the PBS server and client packages on Shasta, follow the instructions supplied by Cray.

To install the PBS MoM and comm packages on Shasta, follow the standard Linux instructions. You can install comms
on compute nodes. See Chapter 3, "Installation", on page 19.

7.1.1 Prerequisites for PBS on Shasta

If you want to be able to use pbs_snapshot, install the file command.

7.2 Prerequisites for Using Power Profiles with Cray XC

• The Cray XC capmc package must be running on XC30 or XC40 hardware with SMW software release 7.2.UP02
or later.

• Make sure that the capmc utility is available and working correctly in your PBS complex.

7.3 Support for IMPS and CLE 6 and 7

With CLE 6 and 7, Cray XC introduces a new mechanism to manage system images, because Cray XC is no longer using
xtopview on a shared root. The IMPS (Image Management and Provisioning System) interface includes new com-
mands to install and boot on a Cray XC. PBS Professional uses this new Cray XC installation mechanism to include PBS
in the images.

This version of PBS allows a PBS SLES12 package to be added to a Cray XC image recipe, as well as building and
installing an image using Cray XC's new IMPS command-line interfaces.

7.3.1 Prerequisites for IMPS

This version of PBS relies on the following Cray XC interfaces:

recipe

image

cfgset

image customization via postbuild_copy and postbuild_chroot

cnode

xtbootsys
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-139

Chapter 7 Installing and Upgrading on Cray
7.3.2 Where to Run PBS Daemons for IMPS

MoMs may be run on any nodes where ALPS is configured, and the PBS server may be run on any nodes that have
access to the license server.

7.4 Caveats and Advice for Installing and Upgrading on
the Cray XC

• If you install the server/scheduler on a non-CLE machine, any automatic installation behavior on that machine is not
Cray XC-specific. Therefore you need to make sure that all of your settings on that host are appropriate. See sec-
tion 7.5.2.1, “Installing PBS on a Cray XC esLogin Node or Repurposed Compute Node”, on page 142.

• When upgrading PBS on a Cray XC, you can use an overlay upgrade.

• All MoMs on X* series Cray machines must be the same version.

• For a list of supported operating systems, see the release notes.

• On CLE 5.2UP03, if you are using preemption via suspend/resume, you may see that after a SWITCH request,
ALPS continues to start new applications, so that the system is never ready for PBS to suspend job processes. The
system can go from RUNNING to EMPTY to RUNNING.

• If you start PBS with PBS_START_MOM = 0 for the first time, PBS does not create MoM directories on that host.
If you want to use the machine as an execution host (running a MoM on it), set PBS_START_MOM = 1, run
pbs_habitat, then start MoM.

• Beware of overflow: PBS stores fairshare allocations in a signed integer (32-bit on Linux x86_64 platforms), and
fairshare usage in a long (64-bit on Linux x86_64 platforms).

• If you are upgrading and using failover, do not upgrade the primary and secondary servers simultaneously. Upgrade
the primary first, then once that is complete, upgrade the secondary.

7.4.1 Where to Run PBS Server, Scheduler, Comm Daemons

The PBS Professional server, scheduler, and communication daemons can be run on an external host; they do not have to
run on your Cray system. One instance of the pbs_mom daemon is run on each login node of the Cray XC system,
allowing PBS Professional to select the login node to which a job is assigned.

The PBS Professional scheduler, server, and communication daemons can be run on any UNIX/Linux machine or node
that fits the requirements. We include instructions for all options.

• Make sure you choose the correct PBS package for the server/scheduler/communication host or node. If you are
installing PBS components on a Cray XC service node, install from the Cray XC package. If you are installing on a
non-Cray XC host, choose the package for that host’s OS.

• Make sure that the server/scheduler/communication host or node can reach the license server host.

• Make sure that the server/scheduler/communication host or node can communicate with the login nodes where PBS
MoMs are running.

• Make sure that the server/scheduler/communication host meets the minimum requirements to run PBS. See section
2.1.2, “Resources Required by PBS”, on page 7.
IG-140 PBS Professional 2020.1.1 Installation & Upgrade Guide

Installing and Upgrading on Cray Chapter 7
7.4.2 Licensing PBS

If you intend to use socket licenses for your Cray XC, you must have enough socket licenses for all of the sockets on the
entire machine. Each PBS complex is licensed using either PBSProNodes or PBSProSockets licenses, but not a mix.

Install and configure the Altair license server before you install PBS. See the Altair License Management System Instal-
lation and Operations Guide, available at www.altair.com for information on installing and configuring the Altair license
server(s).

To license a PBS complex, set the server pbs_license_info attribute to the location of the license server:

qmgr -c 'set server pbs_license_info=<port>@<license server hostname>'

7.4.3 Hardware and Software Requirements

Confirm the following before beginning installation:

• You must have root permission.

• Make sure that all configuration files have been updated appropriately for your site.

• On the login nodes and on the host or node on which the PBS server and Scheduler will run, make sure that the /
var directory is owned by root.

• Make sure your ALM license server is up and running and has enough licenses for your site.

• Compute nodes must be in the “batch mode” before they can be used by jobs under the control of PBS Professional.
To set all of the compute nodes in the batch mode:

On the boot node execute:

xtprocadmin -k m batch

7.4.4 Caveats When Upgrading to PBS 2020.1.1

• If you have an existing queue that has a dot (“.”) in its name, PBS 2020.1.1 will not accept the queue name. The
queue name specification in previous versions of PBS did not include a dot, but this was not enforced, and names
with a dot could slide by. However, PBS 2020.1.1 enforces the specification and does not accept dots in queue
names. The format for the name of a queue is a “PBS NAME”; for a description of PBS NAME, see the “Formats”
chapter in the PBS Professional Reference Guide.

• PBS vnodes representing some types of Xeon Phi nodes do not have values for the PBScrayorder and PBScrayla-

bel resources. Vnodes representing other kinds of nodes do have values for those resources.

• Unlike prior Cray CLE versions (Pearl and earlier), with CLE 6 and 7 /var/spool is not persistent by default. When
you reboot a node, any PBS_HOME/*_priv configuration changes you may have made will be gone unless you use
Cray's cfgset command to make particular directories (such as PBS_HOME) persistent. Please refer to Cray's cfg-
set man page for more information.

• This version of PBS supports IMPS but only so far as is necessary to support CLE 6 and 7.

• The provisioning hook called PBS_xeon_phi_provision that is shipped with this version of PBS is disabled by
default. You must enable it according to the instructions in the PBS Professional Administrator’s Guide:
Qmgr: set pbshook PBS_xeon_phi_provision enabled=true

• If you installed PBS on a Cray XC or a non-Cray headnode, make sure that the inventory hook,
PBS_alps_inventory_check, is enabled. List it:
qmgr -c "list pbshook PBS_alps_inventory_check"

If the hook is not enabled:

qmgr -c "set pbshook PBS_alps_inventory_check enabled=true"
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-141

Chapter 7 Installing and Upgrading on Cray
7.5 Installing PBS on the Cray XC

7.5.1 Changes for Cray XC Installation

• The default installation directory is now /opt/pbs. When PBS is installed on systems using the modules package
(e.g. module load pbs), PATH is updated to include /opt/pbs/bin and MANPATH is updated to include /opt/
pbs/man. The PBS module file is in PBS_EXEC/etc/modulefile.

• The order in which spec file scripts are run during an upgrade is described in https://www.ibm.com/developerworks/
library/l-rpm2/. Because the spec file scripts were removing the PBS init script during an upgrade, the spec file
scripts have been updated to avoid deleting this file and disabling PBS via chkconfig during an upgrade. When
uninstalling (e.g. rpm -e), these instructions are called and PBS is disabled.

• On CLE 5.2, all PBS services are disabled by default in /etc/pbs.conf. On non-Cray XC systems, PBS services
are enabled based on the type of installation. On Cray CLE 5.2 systems, additional configuration steps are required
to specialize /etc/pbs.conf on various nodes where the services will run. As a result, PBS_START_SERVER,
PBS_START_SCHED, PBS_START_COMM, and PBS_START_MOM are all set to zero by default on Cray
CLE 5.2 systems only.

• The $alps_client entry in the MoM config file is automatically added for Cray X* series systems. The lines
"$vnodedef_additive 0" and "$alps_client /opt/cray/alps/default/bin/apbasil" are added automatically
on Cray XC systems only.

7.5.2 Installation Notes

7.5.2.1 Installing PBS on a Cray XC esLogin Node or Repurposed

Compute Node

To install the MoM on a Cray XC esLogin node or a repurposed compute node, you should follow the appropriate install
procedure for that operating system. You may use either:

• The “PBS for Cray XC” binaries package

• You should not set $alps_client (because there is no ALPS client to connect to)

• Because this binary expects to be able to talk to ALPS, you will see warnings and/or errors in the MoM logs
because PBS complains in the logs when it can't talk to ALPS

• The appropriate Linux package

If the scheduler is installed on an esLogin node or repurposed compute node:

• Modify the $<sched_priv directory>/sched_config file resources: line to add “vntype”

• Set restrict_res_to_release_on_suspend to “ncpus”

7.5.3 Installing PBS on CLE 6 and 7

7.5.3.1 Caveats for Installing PBS on CLE 6 and 7

When you install PBS on CLE 6 and 7, some directories and files are not created or configured until PBS is started for
the first time. These include PBS_HOME and /etc/pbs.conf.

PBS will report only the compute nodes that are up and in batch mode.
IG-142 PBS Professional 2020.1.1 Installation & Upgrade Guide

https://www.ibm.com/developerworks/library/l-rpm2/
https://www.ibm.com/developerworks/library/l-rpm2/

Installing and Upgrading on Cray Chapter 7
7.5.3.2 Installation Notes for CLE 6 and 7

These instructions rely on Cray's Image Management and Provisioning System (IMPS) features, and are based on the
information in the section titled "Install Third-Party Software with a Custom Image" of the Cray document S-2559. See
section “Miscellaneous Installation and Configuration Procedures”, sub-section “Install Third-Party Software with a
Custom Image Recipe”. We list this and other useful Cray documents in section 7.9, “Cray XC References”, on page
158. Please use the newest versions of the Cray documents.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-143

Chapter 7 Installing and Upgrading on Cray
7.5.3.3 Installation Steps for CLE 6 and 7

1. Create a repository. Follow Cray’s instructions in the section titled "Install Third-Party Software with a Custom
Image" in the Software Installation and Configuration Guide in Cray document S-2559.

2. Create a package collection. Follow Cray’s instructions in Cray document S-2559. Use the RPM named
“pbspro_server-*”.

3. Create a new recipe and update it with the PBS Professional RPM. Follow Cray’s instructions in Cray document S-
2559.

Each recipe must be based on the type of node where the image will run. For example, a service node is in the ser-
vice image as a base sub-recipe named “service_cle_6.0up01_sles_12_x86-64_ari”.

If you will run the PBS Professional server/scheduler/comm on the sdb node and the MoM on the login nodes, you
will need at least two different recipes, one for the server/scheduler/comm and one for the MoMs.

a. Add the other RPMs required by PBS Professional to the recipe. Syntax:

1. Provide /bin/sh. Add the repo named “sle-server_<version>_x86-64”

smw# recipe update -r sle-server_<version>_x86-64 <recipe name>
For example:

smw# recipe update -r sle-server_12sp3_x86-64 <recipe name>

2. Cray XC requires adding the base and base_updates repository pairs; add “sle-server_<version>_x86-
64_updates”. Syntax:

smw# recipe update -r sle-server_<server>_x86-64_updates <recipe name>
For example:

smw# recipe update -r sle-server_12sp3_x86-64_updates <recipe name>

b. Validate the image recipe. Follow Cray's instructions in Cray document S-2559.

c. Repeat step 3 including parts a and b for each different type of node.

4. Build and push/package the image; follow Cray’s instructions in Cray document S-2559.

5. If you are upgrading PBS, make sure that PBS_EXEC = /opt/pbs, and that PBS_HOME is set to the same path as before
the upgrade.

6. Make /etc/pbs.conf persistent by creating any desired configuration sets. See Cray’s documentation on configu-
ration sets and the configurator.

On each host where a PBS daemon or command will run, edit the Cray XC Ansible play named “simple sync” to
include the information for each /etc/pbs.conf.

a. It may be necessary to create different persistent /etc/pbs.conf files depending on how the system will be con-
figured. When making the /etc/pbs.conf file persistent, include the following (at a minimum):

PBS_EXEC=/opt/pbs

PBS_SERVER=<hostname of the machine hosting the server>

PBS_START_SERVER=<set this to 1 if server is to run on this host, 0 otherwise>

PBS_START_SCHED=<set this to 1 if scheduler is to run on this host, 0 otherwise>

PBS_START_COMM=<set this to 1 if a communication daemon is to run on this host, 0 otherwise>

PBS_START_MOM=<set this to 1 if MoM is to run on this host, 0 otherwise>

PBS_HOME=/var/spool/pbs

PBS_CORE_LIMIT=unlimited

PBS_SCP=/usr/bin/scp

b. Add any other configuration changes to /etc/pbs.conf that need to persist across reboots.

7. Assign the new boot image to the nodes where PBS Professional is to be installed. This includes all nodes running
IG-144 PBS Professional 2020.1.1 Installation & Upgrade Guide

Installing and Upgrading on Cray Chapter 7
PBS Professional daemons (e.g. pbs_server, pbs_mom, etc.) and those requiring access to PBS commands (e.g.
qsub, qstat, etc.). Include the configuration set from step 6 that contains the information that needs to be persis-
tent. Follow Cray’s instructions in Cray document S-2559. General syntax:

cnode update -i /var/opt/cray/imps/boot_images/<image name>.cpio -c <configuration set name> <cname-of-
node-to-update or group-to-update>

8. Reboot the system. Follow Cray's instructions in Cray document S-2559.

9. If you are upgrading PBS and PBS_HOME is already persistent, you can skip this step. Log on to each node that hosts
a PBS Professional daemon:

a. Start PBS Professional on that node. For example, on the server node:

PBS_DATA_SERVICE_USER=<non-root user for the database> /etc/init.d/pbs start

b. Stop PBS Professional (in order to make the PBS_HOME directory persistent in the next step)

10. Make PBS_HOME (e.g. /var/spool/pbs) persistent:

See Cray’s documentation on configuration sets and the configurator. Edit the Cray XC Ansible play named "Persis-
tent Dirs". Modify the same configuration set that you created earlier in step 6.

Unlike CLE 5.2 and earlier, with CLE 6 and 7 /var/spool is not persistent by default. Any configuration changes
are lost when nodes are rebooted, unless you use Cray’s cfgset command to make particular directories persistent.
You may want to make /var/spool/pbs, /etc/pbs.conf, and others persistent.

11. Start PBS Professional. At this point PBS Professional will be up and running, connected to ALPS, and ready to be
configured. You can add MoMs to the server, etc. See "Configuring PBS for Cray" on page 465 in the PBS Profes-
sional Administrator’s Guide.

12. Optional step: PBS is shipped with a module file in PBS_EXEC/etc/modulefile. If your system uses modules, you
can copy this module file to the appropriate location for your system configuration.

7.5.4 Installing PBS on CLE 5.2 and Older

7.5.4.1 Installation and Configuration Overview for CLE 5.2

1. If you will run the server, scheduler, and communication daemons on a non-Cray XC host, install the server there.
Follow the steps in section 7.5.4.3, “Installing PBS Server, Scheduler, and Communication Daemons on Non-Cray
XC Host”, on page 148

The new version of the PBS Professional software is now installed, and you are ready to proceed with configuration.

2. If you will run the server, scheduler, and communication daemons on a service node, configure the service node to
run the server, scheduler, and communication daemons. Follow the steps in section 7.5.4.4, “Configuring Service
Node to Run Server, Scheduler, and Communication”, on page 149

3. Configure the PBS server, scheduler, and communication daemons. Follow the steps in section 7.5.4.5, “Configur-
ing PBS Server, Scheduler, and Communication Daemons”, on page 150

4. Configure the PBS MoMs. Follow the steps in section 7.5.4.6, “Configuring MoMs on the Cray XC”, on page 151

5. This step is optional. Configure startup for PBS Professional only if you need to change your startup configuration.
Follow the steps in section 7.5.4.7, “Configuring PBS Professional Startup and Shutdown”, on page 152
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-145

Chapter 7 Installing and Upgrading on Cray
7.5.4.2 Installation Steps on CLE 5.2

1. Log in to the boot node.

2. If the /rr/current/software/pbspro directory is not present, create it.

3. Copy the PBS server RPM to the /rr/current/software/pbspro directory on the boot node. Make sure it is the
only RPM file present in the directory.

4. Set the compute nodes to batch:

boot# xtprocadmin -k m batch

5. Install the PBS RPM by running the following command on the boot node. Adjust the value of PBS_SERVER to
the name of the node where the scheduler/server/comm services will run. For a fresh install run the following:

boot# xtopview -d /rr/current/software/pbspro -m "Installing PBS Pro" -e "PBS_SERVER=sdb rpm -i /
mnt/pbspro-server-*.rpm"

6. Check to make sure PBS_SERVER is set correctly in /etc/pbs.conf and edit if necessary. All PBS services
should be disabled:

boot# xtopview -e "cat /etc/pbs.conf"

PBS_EXEC=/opt/pbs

PBS_SERVER=sdb

PBS_START_SERVER=0

PBS_START_SCHED=0

PBS_START_COMM=0

PBS_START_MOM=0

PBS_HOME=/var/spool/pbs

PBS_CORE_LIMIT=unlimited

PBS_SCP=/usr/bin/scp

7. Update /etc/pbs.conf for the login nodes: set the value of PBS_START_MOM to 1:

boot# xtopview -c login -e "xtspec /etc/pbs.conf"

boot# xtopview -c login -e "vi /etc/pbs.conf"

***File /etc/pbs.conf was MODIFIED

boot# xtopview -c login -e "cat /etc/pbs.conf"

PBS_EXEC=/opt/pbs

PBS_SERVER=sdb

PBS_START_SERVER=0

PBS_START_SCHED=0

PBS_START_COMM=0

PBS_START_MOM=1

PBS_HOME=/var/spool/pbs

PBS_CORE_LIMIT=unlimited

PBS_SCP=/usr/bin/scp

8. Determine the NID of the node that will run the PBS server and scheduler. In this example, the SDB node will be
used:

boot# ssh sdb cat /proc/cray_xt/nid

5

9. Use the value returned (in this example, the value is 5) as the argument to the -n parameter and update the /etc/
IG-146 PBS Professional 2020.1.1 Installation & Upgrade Guide

Installing and Upgrading on Cray Chapter 7
pbs.conf settings for the PBS server. The values of PBS_START_SERVER, PBS_START_SCHED, and
PBS_START_COMM should all be set to 1:

boot# xtopview -n 5 -e "xtspec /etc/pbs.conf"

boot# xtopview -n 5 -e "vi /etc/pbs.conf"

***File /etc/pbs.conf was MODIFIED

boot# xtopview -n 5 -e "cat /etc/pbs.conf"

PBS_EXEC=/opt/pbs

PBS_SERVER=sdb

PBS_START_SERVER=1

PBS_START_SCHED=1

PBS_START_COMM=1

PBS_START_MOM=0

PBS_HOME=/var/spool/pbs

PBS_CORE_LIMIT=unlimited

PBS_SCP=/usr/bin/scp

10. The PBS data service runs on the PBS server node. The processes must be owned by an account other than root (e.g.
pbsdata, postgres, etc.). If you are performing these steps while upgrading a version of PBS prior to 17, PBS_HOME
already exists on the PBS server node and the file PBS_HOME/server_priv/db_user is already populated with the
name of the account. If this is a clean install, there are two options.

• Create a Linux user account named pbsdata on the PBS server host. That is the default account name used by
the PBS data service:
boot# xtopview -n 5 -e "useradd -c 'PBS Pro Dataservice' -d /home/users/pbsdata -m pbsdata"

boot# ssh sdb

=== Welcome to sdb ===

sdb# /etc/init.d/pbs start

OR

• Specify the data service account name when starting PBS for the first time. In this example, the SDB node will
be running the PBS data service as the user postgres. The postgres account must already exist prior to starting
PBS for the first time:
boot# ssh sdb

=== Welcome to sdb ===

sdb# PBS_DATA_SERVICE_USER=postgres /etc/init.d/pbs start

11. Start the PBS service on each execution host:

sdb# ssh nid00030 /etc/init.d/pbs start

12. Enable flatuid on the server:

sdb# qmgr -c "set server flatuid = true"

13. Tell the PBS server where to find the license server. Set the pbs_license_info server attribute via qmgr. For exam-
ple:

sdb# qmgr -c "set server pbs_license_info = 6200@licenseserver"

14. With licensing now configured, restart PBS on the SDB node:

sdb# /etc/init.d/pbs restart

15. Working on the server node, configure the execution hosts. Create a node in PBS for each login/service node that
will be running pbs_mom:
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-147

Chapter 7 Installing and Upgrading on Cray
sdb# qmgr -c "create node nid00030"

The installation of PBS should now be complete. The PBS services should be up and running, and the system should be
ready for jobs to be submitted.

7.5.4.3 Installing PBS Server, Scheduler, and Communication Daemons

on Non-Cray XC Host

If you will run the PBS server, scheduler, and communication daemons on the Cray XC, skip this section. If you will run
the PBS server, scheduler, and communication daemons on a non-Cray XC host, do the following:

1. Log on to the server host as root.

2. Unzip and untar the install package.

3. Change to the directory created when the package was untarred.

4. Run the INSTALL script: accept the default locations, and select the number 1 (server, scheduler, communication,
execution and commands) option.

5. When asked if you wish to start PBS, answer “no”.

6. Make sure that MoM does not run on the server/scheduler/communication host. Modify /etc/pbs.conf by
changing the line “PBS_START_MOM=1” to “PBS_START_MOM=0”.

7. Ensure that the PBS_SERVER entry in pbs.conf names the machine on which you plan to run the server, sched-
uler, and communication daemons and that PBS_EXEC is set to /opt/pbs.

8. Log in as root to the host on which the PBS server pbs_server will be running.

ssh root@<server host>

9. At this point, you must start the PBS server with the init.d/pbs script. Do not start the server by any other
means.

<host name> # /etc/init.d/pbs start

This will create or update the PBS working directories, PBS_HOME, in /var/spool.
IG-148 PBS Professional 2020.1.1 Installation & Upgrade Guide

Installing and Upgrading on Cray Chapter 7
7.5.4.4 Configuring Service Node to Run Server, Scheduler, and

Communication

If you will run the PBS server, scheduler, and communication daemons on a non-Cray XC host, skip this section. If you
will run the PBS server, scheduler, and communication daemons on a service node, configure the service node to run the
PBS server, scheduler, and communication daemons:

1. Log into the boot node.

2. Determine the node ID, or NID, of the node on which you plan to run the PBS server, scheduler, and communication
daemons.

3. Tailor the install to run the PBS server, scheduler, and communication daemons on the service node:

Use the xtopview command:

xtopview -m “pbs.conf for Server” -n <NID>

Run the xtspec command to specialize the change to /etc/pbs.conf for the service node:

<nodeID>: # xtspec /etc/pbs.conf

4. Enable the server, scheduler, and communication daemons on the service node. Edit the /etc/pbs.conf file or
verify that it contains the following lines:

PBS_START_SERVER=1

PBS_START_SCHED=1

PBS_START_COMM=1

5. Verify that the MoM start line in /etc/pbs.conf is:

PBS_START_MOM=0

6. Ensure that the PBS_SERVER entry in pbs.conf names the node on which you plan to run the server, scheduler,
and communication daemons and that PBS_EXEC is set to /opt/pbs.

7. Exit from xtopview.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-149

Chapter 7 Installing and Upgrading on Cray
7.5.4.5 Configuring PBS Server, Scheduler, and Communication

Daemons

1. If you are on a Cray XC node, load the pbs module:
<service node>: # module load pbs

2. Using the qmgr command, create the PBS execution node or nodes, which are the login nodes.

When creating a vnode to represent a login node, use the short name returned by the hostname command on the
login node. For example, if hostname returns HostA, do the following:

Qmgr: create node HostA

If you create a vnode with a different name from the short name returned by hostname, the following happens:

• MoM creates a vnode whose name is the short name returned by hostname

• The vnode you created is not recognized by MoM, and is marked stale

3. The execution queue workq is automatically created during the normal PBS post-install procedure.

4. Make sure that flatuid is set to True in the PBS server configuration:

<server host>: # qmgr -c “list server”

If flatuid is not set to true, set it to true:

<server host>: # qmgr -c “set server flatuid=true”

5. To ensure that scheduling of jobs is initiated when PBS is restarted, set the server’s scheduling attribute to true:

<server host>: # qmgr -c “set server scheduling=true”

6. Shut down the PBS daemons using the following command:

/etc/init.d/pbs stop
IG-150 PBS Professional 2020.1.1 Installation & Upgrade Guide

Installing and Upgrading on Cray Chapter 7
7.5.4.6 Configuring MoMs on the Cray XC

Configure each login node to run a PBS MoM:

1. As root, log in to the boot node:
ssh root@boot

2. Tailor the install to run MoMs on the login nodes:

Use the xtopview command:

xtopview -m “pbs.conf for login” -c login

Run the xtspec command to specialize the change to /etc/pbs.conf for the login nodes:

class/login/: # xtspec /etc/pbs.conf

3. Enable MoM. Edit /etc/pbs.conf ensuring the following lines are present:

PBS_START_MOM=1

4. Make sure that the server, scheduler, and communication daemons do not start:

PBS_START_SERVER=0

PBS_START_SCHED=0

PBS_START_COMM=0

5. If you want each login node to run a pbs_comm, configure the pbs_comms and MoMs.

a. Enable the communication daemon. Edit pbs.conf to set this variable:

PBS_START_COMM=1

b. Tell each MoM about its pbs_comm by adding this line to its pbs.conf:

PBS_LEAF_ROUTERS=<host>[:<port>][,<host>[:>port>]]

c. Tell each pbs_comm where to find any already-configured pbs_comm, by adding this to its pbs.conf:

PBS_COMM_ROUTERS=<host>[,<host>]

For details, see section 4.5.3, “Adding Communication Daemons”, on page 50.

6. Ensure that the PBS_SERVER entry names the host or node on which you plan to run the server, scheduler, and
communication daemons.

7. Ensure that PBS_EXEC is set to /opt/pbs.

8. Ensure that /opt/pbs is a symbolic link to the location you specified for the binaries.

9. Exit from xtopview.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-151

Chapter 7 Installing and Upgrading on Cray
On each login node, log in and perform the following steps:

1. Start the PBS MoM daemon with the init.d/pbs script. Do not use any other means to start pbs_mom. This
will create or update the PBS working directories, PBS_HOME, in /var/spool.
Login:~ # /etc/init.d/pbs start

2. Stop the MoM daemon by running the init.d/pbs script:

Login:~ # /etc/init.d/pbs stop

3. Add the following directives in the pbs_mom configuration file, PBS_HOME/mom_priv/config:

For CLE:

$clienthost <server host or node>

$alps_client /usr/bin/apbasil (CLE 4.1 and earlier)
$alps_client /opt/cray/alps/default/bin/apbasil (CLE 5.0 and later)

The sample configuration is now complete.

4. HUP the MoM.

7.5.4.7 Configuring PBS Professional Startup and Shutdown

The PBS start/stop script is located in /etc/init.d/pbs. To use the init.d script and the chkconfig command
to start up PBS Professional, execute the following steps:

1. If you will run the PBS server, scheduler, and communication daemons on a Cray XC service node, find the node ID
(NID) of the node on which the PBS server, scheduler, and communication daemons will run. For example, on the
sdb node:
grep sdb /etc/hosts

2. If you will run the PBS server, scheduler, and communication daemons on a Cray XC service node, enable PBS star-
tup for the server, scheduler, and communication daemons on the service node. This example uses an NID of 3.

boot001: # xtopview -n 3

node/3:/ # chkconfig pbs on

node/3:/ # exit

3. Enable PBS startup for the MoM on each login node:

xtopview -c login

class/login/: # chkconfig pbs on

class/login/: # exit

7.6 After Installing on the Cray XC

• We recommend that you set node_fail_requeue to 0 (zero) on any complex that manages Cray X* series machines.
See "Prevent Jobs from Being Requeued on Cray XC" on page 475 in the PBS Professional Administrator’s Guide.

• If you installed PBS on a Cray XC or a non-Cray XC headnode, make sure that the inventory hook,
PBS_alps_inventory_check, is enabled. List it:
qmgr -c "list pbshook PBS_alps_inventory_check"

If the hook is not enabled:

qmgr -c "set pbshook PBS_alps_inventory_check enabled=true"
IG-152 PBS Professional 2020.1.1 Installation & Upgrade Guide

Installing and Upgrading on Cray Chapter 7
7.7 Upgrading on the Cray XC

7.7.1 Upgrading on CLE 6 and 7

7.7.1.1 Overlay when Existing PBS Version is 13.0.40x or Lower

Prior to version 18, PBS used a script named INSTALL to install and configure the RPMs. The INSTALL script provided
support for installing multiple versions simultaneously, using a symbolic link (/opt/pbs/default) to select the "active"
version on the system. As of version 18, the INSTALL script is no longer supported. The new package allows you to install
and upgrade PBS as you would any other RPM-based package.

1. Make sure that PBS_HOME is persistent.

2. Drain the system of running jobs. Retain queued jobs.

3. Remove existing vnodes. Prior to 18.x, PBS created one vnode per NUMA node, but from 18.x forward, PBS cre-
ates one vnode per compute node. We remove all older vnodes because they will be marked as stale and may be dif-
ficult to remove later.

qmgr -c “delete node @default”

4. Shut down PBS on all the nodes where a PBS daemon is running:

/etc/init.d/pbs stop

5. Install PBS: use the same configuration set that was used for the previous installation of PBS. Use the installation
steps in section 7.5.3.3, “Installation Steps for CLE 6 and 7”, on page 144.

6. The preempt_order, preempt_prio, preempt_queue_prio, and preempt_sort preemption settings were sched-
uler parameters in $PBS_HOME/sched_priv/sched_config in older versions of PBS. They are now scheduler
attributes with the same names and formats. Make sure that you use qmgr to set the attributes as desired. See
“Scheduler Attributes” on page 298 of the PBS Professional Reference Guide.

7. PBS 19.4.1 and later uses Python 3.6. Update all of your site-defined hooks (not the built-in hooks) to Python 3.6.

a. Export your hooks in ASCII format. For each hook:

qmgr -c 'export hook <hook name> application/x-python default <hook name>.old2.7'

b. Update your hooks to Python 3.6. See https://docs.python.org/3.6/howto/pyporting.html. Name your new hook
file differently; use something like “<hook name>.new3.6”.

c. Import your hooks. For each hook:

qmgr -c 'import hook <hook name> application/x-python default <hook name>.new3.6'
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-153

https://docs.python.org/3.6/howto/pyporting.html

Chapter 7 Installing and Upgrading on Cray
7.7.1.2 Overlay When Existing PBS Version is 18.2 or Higher

For the steps below, we will use the original repository, package collection, and recipes that were used for the existing
version of PBS (the one that we are about to replace.)

1. Make sure that PBS_HOME is already persistent.

2. Drain the system of running jobs. Retain queued jobs.

3. Shut down PBS on all the nodes where a PBS daemon is running:

/etc/init.d/pbs stop

4. Update the original repository. Follow Cray's instructions for updating a repository; refer to the section titled "Install
Third-Party Software with a Custom Image" in the Software Installation and Configuration Guide in Cray document
S-2559. Use the same repository that was used for the existing installed image. General syntax:

repo update -a “<path to new PBS server package> <repository name>

For example, if the original repository was called my_repo, the command might look something like this:

smw# repo update -a "./pbspro-server-18.2.0.20171109010636-0.x86_64.rpm" my_repo

5. Update the original package collection. Follow Cray's instructions in Cray document S-2559.

a. Use the pkgcoll update command. General syntax:

pkgcoll update -p <new PBS server package> <package collection name>
For example, if the original package collection was called my_collection, the command might look something
like this:

smw# pkgcoll update -p pbspro-server-18.2.0.20171109010636-0.x86_64 my_collection

b. See what’s in the package collection. Use the pkgcoll command. General syntax:

pkgcoll show <package collection name>
Following our example:

smw# pkgcoll show my_collection

my_collection:

name: my_collection

packages:

pbspro-server-18.2.0.20171018010818-0.x86_64

pbspro-server-18.2.0.20171109010636-0.x86_64

c. Remove the older version of PBS. Use the package collection update option. General syntax:

pkgcoll update -P <PBS package> <package collection name>
Following our example:

smw# pkgcoll update -P pbspro-server-18.2.0.20171018010818-0.x86_64 my_collection

d. Check to see that there is only one PBS RPM version. Use the package collection show command. General
syntax:

pkgcoll show <package collection name>
This command should now show only one PBS RPM version.

6. Validate the recipe; follow Cray's instructions in Cray document S-2559. Even though changes have been made to
the repository and the package collection, the original recipe should still validate at this point.

7. Build and push/package each type of image that you need such as server, login, etc.

Build and push/package the image using the original recipe; follow Cray's instructions in Cray document S-2559.
Use a new image name in order to keep the original image untouched. General syntax:
IG-154 PBS Professional 2020.1.1 Installation & Upgrade Guide

Installing and Upgrading on Cray Chapter 7
image create -r <original recipe> <new image name>
image export <new image name>

For example, if the original recipe name was my_recipe and the original image created was my_recipe_image,
then the new image could be my_new_image and the command might look something like this:

smw# image create -r my_recipe my_new_image

smw# image export my_new_image

8. Assign the new boot image to each node where PBS Professional should be installed; follow Cray's instructions in
Cray document S-2559. This includes all nodes running PBS Professional services such as pbs_server,
pbs_mom, etc., and those requiring access to PBS commands, e.g. qsub, qstat, etc. Include the original config-
uration set that contains the persistent information. General syntax:

smw# cnode update -i /var/opt/cray/imps/boot_images/<image name>.cpio -c <configuration set name> <cname-
of-node-to-update or group-to-update>

9. Reboot the system.

10. Log on to each node hosting a PBS Professional daemon, and start PBS.

/etc/init.d/pbs start

11. At this point PBS Professional should be up and running, and connected to ALPS. Prior queued jobs should still be
queued.

12. Turn on scheduling so PBS can resume normal operation.

13. The preempt_order, preempt_prio, preempt_queue_prio, and preempt_sort preemption settings were sched-
uler parameters in $PBS_HOME/sched_priv/sched_config in older versions of PBS. They are now scheduler
attributes with the same names and formats. Make sure that you use qmgr to set the attributes as desired. See
“Scheduler Attributes” on page 298 of the PBS Professional Reference Guide.

14. PBS 19.4.1 and later uses Python 3.6. Update all of your site-defined hooks (not the built-in hooks) to Python 3.6.

a. Export your hooks in ASCII format. For each hook:

qmgr -c 'export hook <hook name> application/x-python default <hook name>.old2.7'

b. Update your hooks to Python 3.6. See https://docs.python.org/3.6/howto/pyporting.html. Name your new hook
file differently; use something like “<hook name>.new3.6”.

c. Import your hooks. For each hook:

qmgr -c 'import hook <hook name> application/x-python default <hook name>.new3.6'
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-155

https://docs.python.org/3.6/howto/pyporting.html

Chapter 7 Installing and Upgrading on Cray
7.7.2 Upgrading on CLE 5.2

7.7.2.1 Overlay when Existing PBS Version is 13.0.40x or Lower

Prior to version 18, PBS used a script named INSTALL to install and configure the RPMs. The INSTALL script provided
support for installing multiple versions simultaneously, using a symbolic link (/opt/pbs/default) to select the "active"
version on the system. As of version 18, the INSTALL script is no longer supported. The new package allows you to
install and upgrade PBS as you would any other RPM based package.

Due to the significant packaging changes, we recommend that you uninstall the old version of PBS prior to installing the
new version. Uninstalling the old version after installing the new version will prevent PBS from starting automatically at
boot. The /etc/pbs.conf file and contents of the PBS_HOME directories will not be affected when PBS is uninstalled.

The following instructions assume that the PBS server is running on the SDB node and that the PBS MoMs are running
on the login nodes. Please adjust the commands according to your local configuration.

1. Drain the system of running jobs. Retain queued jobs.

2. Remove all existing vnodes:

sdb# qmgr -c "delete node @default"

3. Shut down PBS on all login nodes:

login# /etc/init.d/pbs stop

4. Shut down PBS on the server:

/etc/init.d/pbs stop

5. Remove specialization of the existing /etc/pbs.conf file:

boot# xtopview -e "xtunspec -N /etc/pbs.conf"

boot# xtopview -e "xtunspec -C /etc/pbs.conf"

6. There may be more than one version of PBS installed. Get the list of all currently installed PBS RPMs:

boot# xtopview -e "rpm -qa" | grep pbs

7. Remove each installed version of PBS:

boot# xtopview -e "rpm -e pbspro-<version>"

8. Remove the /opt/pbs directory:

xtopview -e "rm -rf /opt/pbs"

9. PBS is now completely uninstalled, but the /etc/pbs.conf and PBS_HOME directories remain. Leave these files in
place and follow the steps to perform a fresh install of PBS in section 7.5.4, “Installing PBS on CLE 5.2 and Older”,
on page 145.

10. The preempt_order, preempt_prio, preempt_queue_prio, and preempt_sort preemption settings were sched-
uler parameters in $PBS_HOME/sched_priv/sched_config in older versions of PBS. They are now scheduler
attributes with the same names and formats. Make sure that you use qmgr to set the attributes as desired. See
“Scheduler Attributes” on page 298 of the PBS Professional Reference Guide.

11. PBS 19.4.1 and later uses Python 3.6. Update all of your site-defined hooks (not the built-in hooks) to Python 3.6.

a. Export your hooks in ASCII format. For each hook:

qmgr -c 'export hook <hook name> application/x-python default <hook name>.old2.7'

b. Update your hooks to Python 3.6. See https://docs.python.org/3.6/howto/pyporting.html. Name your new hook
file differently; use something like “<hook name>.new3.6”.
IG-156 PBS Professional 2020.1.1 Installation & Upgrade Guide

https://docs.python.org/3.6/howto/pyporting.html

Installing and Upgrading on Cray Chapter 7
c. Import your hooks. For each hook:

qmgr -c 'import hook <hook name> application/x-python default <hook name>.new3.6'

7.7.2.2 Overlay When Existing PBS Version is 18.2 or Higher

The following instructions assume that the PBS server is running on the SDB node and that the PBS MoMs are running
on the login nodes. Please adjust the commands according to your local configuration.

1. Log in to the boot node.

2. If the /rr/current/software/pbspro directory is not present, create it.

3. Copy the new PBS server RPM to /rr/current/software/pbspro on the boot node.

4. Drain the system of running jobs. Retain queued jobs.

5. Shut down PBS on all login nodes:

login# /etc/init.d/pbs stop

6. Shut down PBS on the server:

sdb# /etc/init.d/pbs stop

7. On the boot node, run this command:

boot# xtopview -d /rr/current/software/pbspro -m "Upgrading PBS Pro" -e "rpm -U /mnt/pbspro-
server-*.rpm"

8. Start the PBS server:

sdb# /etc/init.d/pbs start

9. The preempt_order, preempt_prio, preempt_queue_prio, and preempt_sort preemption settings were sched-
uler parameters in $PBS_HOME/sched_priv/sched_config in older versions of PBS. They are now scheduler
attributes with the same names and formats. Make sure that you use qmgr to set the attributes as desired. See
“Scheduler Attributes” on page 298 of the PBS Professional Reference Guide.

10. On each machine that will host a MoM, start the MoM:

login# /etc/init.d/pbs start

11. PBS 19.4.1 and later uses Python 3.6. Update all of your site-defined hooks (not the built-in hooks) to Python 3.6.

a. Export your hooks in ASCII format. For each hook:

qmgr -c 'export hook <hook name> application/x-python default <hook name>.old2.7'

b. Update your hooks to Python 3.6. See https://docs.python.org/3.6/howto/pyporting.html. Name your new hook
file differently; use something like “<hook name>.new3.6”.

c. Import your hooks. For each hook:

qmgr -c 'import hook <hook name> application/x-python default <hook name>.new3.6'

7.8 After Upgrading on Cray XC

7.8.1 Check qstat Wrappers and Scripts

You must check any qstat wrappers or scripts. Either replace any mpp* resources, or modify the wrapper or script to
use values in the job’s Submit_arguments attribute. This attribute contains the original job submission line.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-157

https://docs.python.org/3.6/howto/pyporting.html

Chapter 7 Installing and Upgrading on Cray
7.8.2 Configure PBS to Support Cray XC

PBS provides tight integration with Cray XC. To take advantage of the tight integration, go to "Configuring PBS for
Cray" on page 465 in the PBS Professional Administrator’s Guide.

7.8.3 Enable Inventory Hook

If you upgraded PBS on a Cray XC or a non-Cray XC headnode, make sure that the inventory hook,
PBS_alps_inventory_check, is enabled.

7.9 Cray XC References

XC Series Software Installation and Configuration Guide S-2559

https://pubs.cray.com/content/S-2559/CLE%206.0.UP04/xctm-series-software-installation-and-configuration-guide-cle-
60up04-s-2559-rev-b/install-third-party-software-with-a-custom-image-recipe

XC Series Configurator User Guide S-2560

https://pubs.cray.com/content/S-2560/CLE%206.0.UP04/xctm-series-configurator-user-guide-cle-60up04-s-2560/about-
variable-names-in-the-configurator-and-configuration-worksheets

XC Series DVS Administration Guide S-0005

https://pubs.cray.com/content/S-0005/CLE%206.0.UP05/xctm-series-dvs-administration-guide
IG-158 PBS Professional 2020.1.1 Installation & Upgrade Guide

https://pubs.cray.com/content/S-2559/CLE%206.0.UP04/xctm-series-software-installation-and-configuration-guide-cle-60up04-s-2559-rev-b/install-third-party-software-with-a-custom-image-recipe

https://pubs.cray.com/content/S-2560/CLE%206.0.UP04/xctm-series-configurator-user-guide-cle-60up04-s-2560/about-variable-names-in-the-configurator-and-configuration-worksheets

https://pubs.cray.com/content/S-0005/CLE%206.0.UP05/xctm-series-dvs-administration-guide

8

Starting & Stopping PBS on

Linux

8.1 Automatic Start on Bootup

On installation, PBS is configured to start automatically. Under Linux, PBS starts on bootup using init or systemd.
PBS uses systemd for automatic startup on platforms that support systemctl; for platforms that support only init,
PBS uses init for automatic startup.

You specify which PBS daemons start on each host on bootup in that host’s /etc/pbs.conf. The table below lists the
parameters that control startup of daemons:

8.1.1 Shutting Down Host

When a host running PBS is shut down or rebooted, PBS is shut down via the start/stop script or systemd.

8.2 When to Restart PBS Daemons

• Restart PBS if you make changes to the hardware or a change occurs in the number of CPUs or amount of memory
that is available to PBS. You should restart PBS by typing the following:
<path-to-script>/pbs restart

• Restart PBS after making changes to the /etc/hosts file. See section 2.1.3, “Name Resolution and Network
Configuration”, on page 8

• Restart PBS after changing the name of the PBS service account

• Restart the scheduler(s) if you added a new custom resource to the resources: line in sched_config

Table 8-1: Daemon Start Parameters in pbs.conf

Parameter Description

PBS_START_COMM Set this to 1 if a communication daemon is to run on this host.

PBS_START_MOM Default is 0. Set this to 1 if a MoM is to run on this host.

PBS_START_SCHED Set this to 1 if a scheduler is to run on this host.

PBS_START_SERVER Set this to 1 if server is to run on this host.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-159

Chapter 8 Starting & Stopping PBS on Linux
8.3 Methods for Starting, Stopping, or Restarting

PBS

The PBS daemons can be started by different types of methods. These types are not equivalent. You can use init,
systemd, or the PBS command that starts the daemon.

The following table shows how to start, stop, restart, or status PBS on the local host:

8.3.1 Using systemd

When you use systemctl to start PBS, it uses a PBS unit file. PBS supports systemd where it’s available.

8.3.1.1 Required Privilege

You must be root to run systemctl.

8.3.1.2 Effect of systemctl on Jobs

When you use systemctl to start or stop PBS, any running jobs and subjobs are killed. When you use systemd to
stop PBS, MoM kills her jobs and exits. When you use it to restart PBS, jobs are requeued.

When you use systemd by typing “systemctl stop pbs”, the following take place:

• The server gets a qterm -t quick

• MoM gets a SIGTERM: MoM terminates all running children and exits

• The communication daemon gets a SIGTERM and exits

Table 8-2: Commands to Start, Stop, Restart, Status PBS

Effect init systemd Command

Start
PBS

/etc/init.d/pbs start

or

/etc/rc.d/init.d/pbs start

systemctl start pbs pbs_server

pbs_sched

pbs_mom

pbs_comm

Stop
PBS

/etc/init.d/pbs stop

or

/etc/rc.d/init.d/pbs stop

systemctl stop pbs qterm (stops server, sched-
uler(s), MoM)

kill -INT <PID of
pbs_comm>

Status
PBS

/etc/init.d/pbs status

or

/etc/rc.d/init.d/pbs status

systemctl status pbs qstat

Restart
PBS

/etc/init.d/pbs restart

or

/etc/rc.d/init.d/pbs restart

systemctl restart pbs ---
IG-160 PBS Professional 2020.1.1 Installation & Upgrade Guide

Starting & Stopping PBS on Linux Chapter 8
8.3.1.3 Caveats for Using systemctl

PBS supports most systemctl options, including start, stop, restart, and status. However, PBS does not
support the reload option.

systemd uses the settings in pbs.conf to determine which daemons to start and stop. If you specify in pbs.conf
that a daemon should not start, systemd also will not stop it if it is running. For example, setting PBS_START_MOM
to 0 effectively makes systemd ignore the MoM, and if you do the following steps, the pbs_mom process is not
stopped:

1. Start pbs_mom

2. Set PBS_START_MOM to 0

3. Run systemd with stop as the argument

8.3.2 Using init with PBS Start/Stop Script

When you use init to start PBS, init runs the PBS start/stop script. PBS supports init on all Linux systems.

The script starts, stops, or restarts PBS daemons on the local machine. It can also be used to report the PID of any PBS
daemon on the local machine. The PBS start/stop script reads the pbs.conf file to determine which components
should be started. The start/stop script runs automatically at boot time, starting PBS upon bootup. The start/stop script
runs on and affects only the local host.

The PBS start/stop script is named pbs. To run it, you type the following:

<path to script>/pbs [start|stop|restart|status]

See “pbs” on page 28 of the PBS Professional Reference Guide.

8.3.2.1 Required Privilege

You must be root to run the start/stop script.

8.3.2.2 Using Start/Stop Script to Check Status of Daemons

You can check whether or not each daemon is running by using the PBS start/stop script with the status option. To
check the status of MoM, do the following on MoM’s host:

<path to script>/pbs status

8.3.2.3 Location of the PBS Start/Stop Script

If /etc/init.d exists

/etc/init.d/pbs

Else

/etc/rc.d/init.d/pbs

8.3.2.4 Effect of Start/Stop Script on Jobs

When you use the PBS start/stop script to start or stop PBS, any running jobs and subjobs are killed on the host where
you run the script. When you use the PBS start/stop script to stop PBS on the local host, MoM kills her jobs and exits.
When you use it to restart PBS, jobs are requeued; note that there is a short but non-zero amount of time after MoM and
the server are restarted, when jobs from MoM’s previous session are visible via qstat but not running, before the server
requeues them. If you stop one MoM for a multihost job, that job will probably be killed.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-161

Chapter 8 Starting & Stopping PBS on Linux
When you use the PBS start/stop script by typing “pbs stop”, the following take place:

• The server gets a qterm -t quick

• MoM gets a SIGTERM: MoM terminates all running children and exits

• The communication daemon gets a SIGTERM and exits

8.3.2.5 Start/Stop Script Caveats

• The PBS start/stop script uses the settings in pbs.conf to determine which daemons to start and stop. If you spec-
ify in pbs.conf that a daemon should not start, the script also will not stop it if it is running. For example, setting
PBS_START_MOM to 0 effectively makes the start/stop script or systemd ignore the MoM, and if you do the
following steps, the pbs_mom process is not stopped:

a. Start pbs_mom

b. Set PBS_START_MOM to 0

c. Run the PBS start/stop script or systemd with stop as the argument

• If you start PBS using the start/stop script, you cannot use systemctl to status PBS.

8.3.3 Using the qterm Command to Stop PBS

You use the qterm command to shut down your choice of the following PBS daemons:

• Primary server

• Secondary server

• Whichever default scheduler is running (primary or secondary)

• All MoMs

The qterm command does not shut down pbs_comm.

If you have failover configured, you can choose to shut down either or both servers, or you can shut down the primary
and leave the secondary idle.

You can specify how running jobs and subjobs are treated during shutdown by specifying the type of shutdown. The type
of shutdown performed by the qterm command defaults to “-t quick”, which preserves running jobs and subjobs:

qterm -t quick

The following command shuts down the primary server, the scheduler(s), and all MoMs in the complex. If configured,
the secondary server becomes active. Running jobs and subjobs continue to run:

qterm -s -m

The following command shuts down the primary server, the secondary server, the scheduler(s), and all MoMs in the com-
plex. Running jobs and subjobs continue to run:

qterm -s -m -f

See “qterm” on page 233 of the PBS Professional Reference Guide.

8.3.3.0.i qterm Caveats

• The qterm command does not stop the pbs_comm daemon. You must stop pbs_comm using the start/stop script,
systemd, the service command, or the kill command.

• Shutting PBS down using the qterm command does not perform any of the other cleanup operations that are per-
formed by the PBS start/stop script.
IG-162 PBS Professional 2020.1.1 Installation & Upgrade Guide

Starting & Stopping PBS on Linux Chapter 8
8.4 Starting, Stopping, and Restarting PBS

Daemons

8.4.1 Daemon Execution Requirements

The server, scheduler(s), communication, and MoM processes must run with the real and effective UID of root.

8.4.2 Required Privilege

You must be root to run pbs_server, pbs_mom, pbs_comm, and pbs_sched.

8.4.3 Recommendation for Daemon Start Order

We recommend starting the communication daemon before starting the MoMs, but you can also start it after the MoMs
and before the server.

We recommend starting MoMs before starting the server. This way, MoM will be ready to respond to the server’s “are
you there?” ping, preventing the server from attempting to contact a MoM that is still down. This will cut down on inter-
daemon traffic, especially in larger complexes.

8.4.4 Creation of MoM Home Directory

When you run systemctl or the PBS start/stop script on an execution host, PBS creates MoM’s home directory if it
does not already exist.

8.4.5 Server: Starting, Stopping, Restarting

8.4.5.1 Starting Server Without Failover

On the local host:

PBS_EXEC/sbin/pbs_server [options]

8.4.5.2 Starting Servers With Failover

You can start the servers in any order. If you want to let running jobs and subjobs continue running, use the
pbs_server command to start the servers. Starting via the start/stop script or systemctl kills running jobs and sub-
jobs. If you want to start the primary server when the secondary server is the active server, you do not need to stop the
secondary. When the primary server starts, it will inform the secondary that the primary is taking over and the secondary
can become idle.

• On the primary host, start the primary server:
pbs_server

• You can start the secondary server while it is the active server. On the secondary server host:
pbs_server -F -1

The secondary server makes one attempt to contact the primary server, and becomes active immediately if it cannot.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-163

Chapter 8 Starting & Stopping PBS on Linux
If there is a network outage while the primary starts and the secondary cannot contact it, the secondary will assume the
primary is still down, and remain active, resulting in two active servers. In this case, stop the secondary server, and
restart it when the network is working:

qterm -F

pbs_server

8.4.5.3 Stopping Server Without Failover

To stop the server and leave running jobs and subjobs running:

qterm

8.4.5.3.i Stopping Server via Signals

If you send the server a SIGTERM, the server does a quick shutdown, equivalent to receiving a qterm -t quick.

See “pbs_server” on page 108 of the PBS Professional Reference Guide and “qterm” on page 233 of the PBS Profes-
sional Reference Guide.

8.4.5.4 Stopping Servers With Failover

If you have failover configured, and want to stop the servers but allow running jobs and subjobs to continue running, use
the qterm command. Both the start/stop script and systemctl kill running jobs and subjobs.

• To stop both servers when the primary server is active, and the secondary server is running and idle, do the follow-
ing:
qterm -f

• To stop the primary server and leave the secondary server idle:
qterm -i

• To stop the secondary server only:
qterm -F

8.4.5.5 Restarting Server Without Failover

qterm -t quick

PBS_EXEC/sbin/pbs_server

8.4.5.6 Restarting Servers with Failover

8.4.5.6.i Stopping Servers

If you have failover configured, and want to stop the servers but allow running jobs and subjobs to continue running, use
the qterm command. Both the start/stop script and systemctl kill running jobs and subjobs.

• To stop both servers when the primary server is active, and the secondary server is running and idle, do the follow-
ing:
qterm -f

• To stop the primary server and leave the secondary server idle:
qterm -i

• To stop the secondary server only:
qterm -F
IG-164 PBS Professional 2020.1.1 Installation & Upgrade Guide

Starting & Stopping PBS on Linux Chapter 8
8.4.5.6.ii Starting Servers

You can start the servers in any order. If you want to let running jobs and subjobs continue running, use the
pbs_server command to start the servers. Starting via the start/stop script or systemctl kills running jobs and sub-
jobs. If you want to start the primary server when the secondary server is the active server, you do not need to stop the
secondary. When the primary server starts, it will inform the secondary that the primary is taking over and the secondary
can become idle.

• On the primary host, restart the primary server:
pbs_server

• To restart the secondary server while it is the active server:
pbs_server -F -1

The secondary server makes one attempt to contact the primary server, and becomes active immediately if it cannot.

8.4.5.6.iii Network Outage

If there is a network outage while the primary starts and the secondary cannot contact it, the secondary will assume the
primary is still down, and remain active, resulting in two active servers. In this case, stop the secondary server, and
restart it when the network is working:

qterm -F

pbs_server

8.4.5.7 Restarting Server To Resume Previously-running Jobs

If, when the server was shut down, running jobs and subjobs were killed and requeued, then starting the server with the -
t hot option puts those jobs back in the Running state first. See “pbs_server” on page 108 of the PBS Professional
Reference Guide for details and the options to the pbs_server command.

8.4.6 Scheduler(s): Starting, Stopping, Restarting

8.4.6.1 Starting Default Scheduler

To start the default scheduler directly, do the following:

PBS_EXEC/sbin/pbs_sched [options]

8.4.6.2 Starting Multisched

To start a multisched, call pbs_sched and specify the name and port you already gave it:

pbs_sched -I <name of multisched> -S <same value as sched_port for this multisched>

For example:

pbs_sched -I multisched_1 -S 15050

When you start a multisched, you must specify its name.

See “pbs_sched” on page 105 of the PBS Professional Reference Guide for more information and a description of avail-
able options.

8.4.6.3 Stopping Scheduler or Multisched

1. Find the PID you want:
ps –ef | grep pbs_sched
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-165

Chapter 8 Starting & Stopping PBS on Linux
For the default scheduler, you’ll see “pbs_sched”, but for multischeds, you’ll see “pbs_sched -I <multisched
name>”.

2. Stop the scheduler or multisched:

kill <scheduler PID>

8.4.6.4 Stopping Scheduler(s) via Signals

You can stop a scheduler by sending it SIGTERM or SIGINT. These result in an orderly shutdown of the scheduler.

8.4.6.5 Restarting and Reinitializing Scheduler or Multisched

8.4.6.5.i When to Restart or Reinitialize Scheduler or Multisched

• Restart the scheduler(s) after you change pbs.conf.

• HUP the scheduler(s) if you added any custom resources to the resources: line in <sched_priv direc-
tory>/sched_config.

8.4.6.5.ii Restarting Scheduler or Multisched

1. Find the PID you want:
ps –ef | grep pbs_sched

For the default scheduler, you’ll see “pbs_sched”, but for multischeds, you’ll see “pbs_sched -I <multisched
name>”.

2. Stop the scheduler or multisched:

kill <scheduler PID>

3. Start the scheduler or multisched:

• To start the default scheduler:

PBS_EXEC/sbin/pbs_sched [options]
• To start a multisched, call pbs_sched and specify the name and port you already gave it:

pbs_sched -I <name of multisched> -S <same value as sched_port for this multisched>

8.4.6.5.iii Reinitializing Scheduler or Multisched

Find the PID you want:

ps –ef | grep pbs_sched

For the default scheduler, you’ll see “pbs_sched”, but for multischeds, you’ll see “pbs_sched -I <multisched name>”.

kill -HUP <scheduler PID>

8.4.7 MoMs: Starting, Stopping, Restarting

8.4.7.1 Starting MoM

You start the PBS MoM directly via the pbs_mom command. See “pbs_mom” on page 71 of the PBS Professional Ref-
erence Guide.
IG-166 PBS Professional 2020.1.1 Installation & Upgrade Guide

Starting & Stopping PBS on Linux Chapter 8
8.4.7.2 Stopping MoM

8.4.7.2.i Stopping MoM via Signals

You can stop MoM using the following signals:

8.4.7.2.ii Recommendation to Offline Vnodes Before Stopping MoM

We recommend that you offline vnodes before stopping the MoM. The server tries to keep continual contact with each
MoM. If you offline the vnode before stopping the MoM, the server does not try to stay in contact with the MoM. This
reduces network traffic.

8.4.7.3 Restarting and Reinitializing MoM

8.4.7.4 Whether to Restart or Reinitialize MoM

When you change configuration files on Linux, whether the MoM must be restarted or reinitialized depends on which
MoM configuration file has been changed.

• If only the Version 1 MoM configuration file was changed, you only need to HUP the MoM.

• If you used the pbs_mom -s insert command to add to or change anything in the Version 2 MoM config file,
you can HUP the MoM.

• If you used the pbs_mom -s insert command to remove anything from the Version 2 MoM config file, you
must restart the MoM.

8.4.7.5 Restarting MoM

You can restart MoM with the following options:

See “pbs_mom” on page 71 of the PBS Professional Reference Guide.

Table 8-3: Signals Handled by MoM

Signal Effect

SIGTERM If a MoM is killed with the signal SIGTERM, jobs are killed before MoM exits. Notification of the ter-
minated jobs is not sent to the server until the MoM is restarted. Jobs will still appear to be in the “R”
(running) state.

SIGINT If a MoM is killed with this signal, jobs are not killed before the MoM exits. MoM exits after cleanly
closing network connections.

SIGKILL If a MoM is killed with this signal, jobs are not killed before the MoM exits.

Table 8-4: MoM Restart Options

Option Effect on Jobs

pbs_mom Job processes continue to run, but the jobs themselves are requeued.

pbs_mom -r Running processes associated with jobs that were running before MoM was terminated are killed.
Running jobs and subjobs are requeued or deleted. Do not use this option after a reboot, because pro-
cess numbers will be incorrect and processes unrelated to jobs may be killed.

pbs_mom -p Jobs which are running when MoM is terminated remain running. Do not use after reboot.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-167

Chapter 8 Starting & Stopping PBS on Linux
8.4.7.5.i Preserving Existing Jobs When Restarting MoM

By default, when MoM is started, she allows running processes to continue to run, but tells the server to requeue her
jobs. You can direct MoM to preserve running jobs and subjobs and to track them, by using the -p option to the
pbs_mom command. If you have not just rebooted, you can preserve existing jobs:

1. Use the ps command to determine MoM’s process ID. Note that ps arguments vary among Linux systems, thus “-
ef” may need to be replaced by “-aux”.
ps –ef | grep pbs_mom

2. Terminate MoM using the kill command, with MoM’s PID as an argument. The syntax will vary depending on
your system:

kill -INT <MoM PID>

or

kill -s INT <MoM PID>

3. Restart MoM, allowing running jobs and subjobs to continue running through the restart. If your custom resource
query script/program takes longer than the default ten seconds, you can change the alarm timeout via the -a alarm
command line start option:

PBS_EXEC/sbin/pbs_mom -p [-a timeout]

8.4.7.5.ii Caveats for Restarting MoM After a Reboot

Never restart pbs_mom with the -p or the -r option following a reboot of the host system.

When a Linux operating system is first booted, it begins to assign process IDs (PIDs) to processes as they are created.
PID 1 is always assigned to the system "init" process. As new processes are created, they are either assigned the next
PID in sequence or the first empty PID found, which depends on the operating system implementation. Generally, the
session ID of a session is the PID of the top process in the session.

The PBS MoM keeps track of the session IDs of the jobs. If only MoM is restarted on a system, those session IDs/PIDs
have not changed and apply to the correct processes.

If the entire system is rebooted, the assignment of PIDs by the system will start over. Therefore the PID which MoM
thinks belongs to an earlier job will now belong to a different later process. If you restart MoM with -p, she will believe
the jobs are still valid jobs and the PIDs belong to those jobs. When she kills the processes she believes to belong to one
of her earlier jobs, she will now be killing the wrong processes, those created much later but with the same PID as she
recorded for that earlier job.

8.4.7.5.iii Killing Existing Jobs When Restarting MoM

If you wish to kill all existing processes, use the -r option to pbs_mom.

To kill existing jobs, start MoM with the command line:

PBS_EXEC/sbin/pbs_mom -r

8.4.7.5.iv Starting MoM on the HPE MC990X, HPE Superdome Flex, or HPE 8600

For a cpusetted MC990X, Superdome Flex, or 8600, start MoM using the PBS start/stop script or systemd.

8.4.7.5.v Using Existing CPU and Memory for cpusets

By default, MoM removes existing cpusets when she starts. You can specify that MoM is to use existing CPU and mem-
ory allocations for cpusets by using the -p option to the pbs_mom command. This option also preserves running jobs
and subjobs. See “Options to pbs_mom” on page 72 of the PBS Professional Reference Guide.

Vnode definition files are not created when the pbs_mom command is used; use it only when you know that they are
already up to date.
IG-168 PBS Professional 2020.1.1 Installation & Upgrade Guide

Starting & Stopping PBS on Linux Chapter 8
8.4.7.5.vi Effect of Stopping Sister MoM on Multihost Jobs

Stopping a sister MoM for a multi-vnode job may cause the job to be requeued if the primary MoM loses contact with the
sister MoM.

8.4.7.6 Reinitializing MoM

1. Use the ps command to determine MoM’s process ID. Note that ps arguments vary among Linux systems, thus “-
ef” may need to be replaced by “-aux”.
ps –ef | grep pbs_mom

2. HUP MoM using the kill command, with MoM’s PID as an argument:

kill -HUP <MoM PID>

See “pbs_mom” on page 71 of the PBS Professional Reference Guide.

8.4.8 Comms: Starting, Stopping, Restarting

8.4.8.1 Starting Communication Daemon

To start the communication daemon directly, do the following on the local host:

PBS_EXEC/sbin/pbs_comm [-N] [-r <other routers>] [-t <number of threads>]

See “pbs_comm” on page 57 of the PBS Professional Reference Guide.

8.4.8.2 Stopping Communication Daemon via Signals

You can stop the communication daemon using a SIGTERM.

8.5 Impact of Stop-Restart on Running Linux Jobs

8.5.1 Whether to Use Script, Command, or Signal for
Shutdown and Restart

Use the qterm command to shut the server down when running jobs and subjobs must be checkpointed before shut-
down, allowed to run to completion before shutdown, or preserved through shutdown and restart. To preserve running
jobs and subjobs, stop MoM using KILL -INT and use the pbs_mom -p command when restarting MoM.

When you use the PBS start/stop script or systemd to stop PBS, MoM kills her jobs and exits. When you use it to
restart MoM, jobs are requeued.

8.5.2 Scenarios for Stopping Then Restarting Daemons

Choose one of the following recommended sequences, based on the desired impact on jobs, to stop and restart PBS:

• To allow running jobs and subjobs to continue to run:

Shutdown:

qterm -t quick -m -s

<path to start/stop script>/pbs stop (on communication-only host)
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-169

Chapter 8 Starting & Stopping PBS on Linux
Restart:

pbs_server -t warm

pbs_mom -p

pbs_sched

pbs_comm (on server host)
<path to start/stop script>/pbs start (on communication-only host)

• To checkpoint and requeue checkpointable jobs, requeue rerunnable jobs, kill any non-rerunnable jobs, then restart
and run jobs that were previously running:

Shutdown:

qterm -t immediate -m -s

<path to start/stop script>/pbs stop (on communication-only host)

Restart:

pbs_mom

pbs_server -t hot

pbs_sched

pbs_comm (on server host)
<path to start/stop script>/pbs start (on communication-only host)

• To checkpoint and requeue checkpointable jobs, requeue rerunnable jobs, kill any non-rerunnable jobs, then restart
and run jobs without taking prior state into account:

Shutdown:

qterm -t immediate -m -s

<path to start/stop script>/pbs stop (on communication-only host)

Restart:

pbs_mom

pbs_server -t warm

pbs_sched

pbs_comm (on server host)
<path to start/stop script>/pbs start (on communication-only host)
IG-170 PBS Professional 2020.1.1 Installation & Upgrade Guide

9

Starting & Stopping MoM on

Windows

9.1 Automatic Start on Bootup

On Windows, the PBS MoM daemons are registered as system services, and are automatically started and stopped when
the system boots and shuts down.

• The auto-startup of MoM is controlled by the PBS pbs.conf file and the Services dialog. You invoke this via
Settings->Control Panel->Administrative Tools->Services. Make sure that in pbs.conf your setting for
PBS_START_MOM is correct. If this is set to 0, the service will fail to start up with the message, “incorrect envi-
ronment”.

• On Windows, sometimes MoM may fail to start automatically after the boot. We recommend that you change the
startup mode from " [Startup type: Automatic]" to "[Startup type: Automatic (Delayed Start)]", which means
"shortly after boot".

At the command prompt:

sc config <service name> start= delayed-auto

9.2 When to Restart PBS MoMs

Restart MoM:

• If you make changes to the hardware or a change occurs in the number of CPUs or amount of memory that is avail-
able to PBS

• After creating a Version 2 configuration file

• After changing the name of the PBS service account

• After changing the PBS service account to a non-domain administrator account

• After making changes to the %WINDIR%\system32\dirvers\etc\hosts file

9.3 Starting, Stopping, and Restarting PBS

9.3.1 Required Privilege

To stop or start MoM, you must have Administrator privilege.

9.3.2 Recommendation for Service Start Order

We recommend starting the communication daemon before starting the MoMs, but you can also start it after the MoMs
and before the server.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-171

Chapter 9 Starting & Stopping MoM on Windows
We recommend starting MoMs before starting the server. This way, MoM will be ready to respond to the server’s “are
you there?” ping, preventing the server from attempting to contact a MoM that is still down. This will cut down on inter-
daemon traffic, especially in larger complexes.

9.3.3 Creation of MoM Home Directory

When you run systemctl or the PBS start/stop script on an execution host, PBS creates MoM’s home directory if it
does not already exist.

9.3.4 Windows-specific Service Options

The Windows MoM has the following Windows-only option:

-N

The service runs in standalone mode, not as a Windows service.

9.3.5 Configuring Startup Options to MoM

You can use the startup options to the pbs_mom command when starting the MoM.

The procedure to specify startup options to the MoM is as follows:

1. Go to the Services menu.

2. Select “PBS_MOM”. The MoM service dialog box comes up.

3. Enter the desired options in the “Start parameters” entry line. For example, to specify an alternate MoM configu-
ration file, you might specify the following input:

On Windows systems:

-c "\Program Files (x86)\PBS\home\mom_priv\config2"

4. Click on “Start” to start the MoM service.

9.3.5.1 Saving Startup Options

You can save your options for the future. If PBS_EXEC and PBS_HOME are set:

sc config pbs_mom binpath="%PBS_EXEC%\sbin\pbs_mom.exe -c ""%PBS_HOME%\mom_priv\config2"""

If you don’t save your startup options, the Windows services dialog does not remember the “Start parameters” value
when you close the dialog. You will have to specify the “Start parameters” value for each future restart.

9.3.6 MoMs: Starting, Stopping, Restarting

On Windows, you must restart MoM when any MoM configuration file has been changed.

9.3.6.1 Starting MoM as a Service

On the local host:

net start pbs_mom
IG-172 PBS Professional 2020.1.1 Installation & Upgrade Guide

Starting & Stopping MoM on Windows Chapter 9
9.3.6.2 Starting MoM in Standalone Mode

On the local host:

pbs_mom -N <options>

9.3.6.3 Stopping MoMs

On the local host:

net stop pbs_mom

9.3.6.3.i Effect of Stopping Sister MoM on Multihost Jobs

Stopping a sister MoM for a multi-vnode job may cause the job to be requeued if the primary MoM loses contact with the
sister MoM.

9.3.6.3.ii Recommendation: Offline Vnodes Before Stopping MoM

We recommend that you offline vnodes before stopping the MoM. The server tries to keep continual contact with each
MoM. If you offline the vnode before stopping the MoM, the server does not try to stay in contact with the MoM. This
reduces network traffic.

9.3.6.4 Restarting MoMs

You can restart MoM with the following options:

See section 9.3.5, “Configuring Startup Options to MoM”, on page 172.

On the local host:

Admin> net stop pbs_mom

Admin> net start pbs_mom

9.3.6.4.i Preserving Existing Jobs When Restarting MoM

By default, when MoM is started, she allows running processes to continue to run, but tells the server to requeue her
jobs. You can direct MoM to preserve running jobs and subjobs and to track them, by using the -p option to the
pbs_mom command.

9.3.6.4.ii Caveats for Preserving Existing Jobs When Restarting MoM

• If you restart a sister MoM for a multi-vnode job, the job may be killed because the primary MoM may lose contact
with the sister MoM and requeue the job.

• Never use the -p option to pbs_mom after a reboot.

Table 9-1: MoM Restart Options

Option Effect on Jobs

pbs_mom Job processes will continue to run, but the jobs themselves are requeued.

pbs_mom -p Jobs which were running when MoM terminated remain running.

pbs_mom -r Processes associated with the job are killed. Running jobs and subjobs are returned to the server to
be requeued or deleted. This option should not be used if the system has just been rebooted as the
process numbers will be incorrect and a process not related to the job would be killed.
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-173

Chapter 9 Starting & Stopping MoM on Windows
9.4 Stopping PBS Using the qterm Command

The qterm command is used to shut down, selectively or inclusively, the PBS server, scheduler(s), and MoMs. The
qterm command does not shut down pbs_comm. If you have a failover server configured, then when the primary
server is shut down, the secondary server becomes active unless you shut it down as well. The qterm command can be
run at any PBS host.

You can specify how running jobs and subjobs are treated during shutdown by specifying the type of shutdown. The type
of shutdown performed by the qterm command defaults to “-t quick”, which preserves running jobs and subjobs:

qterm -t quick

The following command shuts down the primary server, the scheduler(s), and all MoMs in the complex. If configured,
the secondary server becomes active. Running jobs and subjobs continue to run:

qterm -s -m

The following command shuts down the primary server, the secondary server, the scheduler(s), and all MoMs in the com-
plex. Running jobs and subjobs continue to run:

qterm -s -m -f

See “qterm” on page 233 of the PBS Professional Reference Guide.

9.4.0.0.i qterm Caveats

• The qterm command does not stop the pbs_comm service. You must stop pbs_comm using the start/stop script
or the kill command.

• Shutting PBS down using the qterm command does not perform any of the other cleanup operations that are per-
formed by the net stop command.

9.5 Impact of Stop-Restart on Running Windows

Jobs

The methods you can use to shut down PBS, and which daemons are shut down, will affect running jobs and subjobs dif-
ferently. You can leave jobs and subjobs running during shutdown.

The impact of a shutdown (and subsequent restart) on running jobs and subjobs depends on whether you use net stop
or the qterm command to shut down PBS, and how pbs_mom is restarted.

You can use the qterm command to shut the server down.

Jobs are not killed when pbs_mom is stopped via net stop; whether they are killed depends on how MoM is
restarted.

Use the qterm command to shut the server down when running jobs and subjobs must be checkpointed before shut-
down, allowed to run to completion before shutdown, or preserved through shutdown and restart.

To preserve running jobs and subjobs, use the -p option to the pbs_mom command when restarting MoM.

9.5.1 Scenarios for Stopping Then Restarting Services

Choose one of the following recommended sequences, based on the desired impact on jobs, to stop and restart PBS.

The start/stop script is located in /etc/init.d/pbs or /etc/rc.d/init.d/pbs.

• To allow running jobs and subjobs to continue to run:
IG-174 PBS Professional 2020.1.1 Installation & Upgrade Guide

Starting & Stopping MoM on Windows Chapter 9
Shutdown:

qterm -t quick -m -s

<path to start/stop script>/pbs stop (on communication-only host)

Restart:

PBS_EXEC/sbin/pbs_server -t warm

pbs_mom -p

PBS_EXEC/sbin/pbs_sched

PBS_EXEC/sbin/pbs_comm (on server host)
<path to start/stop script>/pbs start (on communication-only host)
net start pbs_mom (with -p startup option set)

• To checkpoint and requeue checkpointable jobs, requeue rerunnable jobs, kill any non-rerunnable jobs, then restart
and run jobs that were previously running:
qterm -t immediate -m -s

<path to start/stop script>/pbs stop (on communication-only host)

Restart:

net start pbs_mom

PBS_EXEC/sbin/pbs_server -t hot

PBS_EXEC/sbin/pbs_sched

PBS_EXEC/sbin/pbs_comm (on server host)
<path to start/stop script>/pbs start (on communication-only host)

• To checkpoint and requeue checkpointable jobs, requeue rerunnable jobs, kill any non-rerunnable jobs, then restart
and run jobs without taking prior state into account:

Shutdown:

qterm -t immediate -m -s

<path to start/stop script>/pbs stop (on communication-only host)

Restart:

net start pbs_mom

PBS_EXEC/sbin/pbs_server -t warm

PBS_EXEC/sbin/pbs_sched

PBS_EXEC/sbin/pbs_comm (on server host)
<path to start/stop script>/pbs start (on communication-only host)
PBS Professional 2020.1.1 Installation & Upgrade Guide IG-175

Chapter 9 Starting & Stopping MoM on Windows
IG-176 PBS Professional 2020.1.1 Installation & Upgrade Guide

Index

A
account

installation IG-13
PBS service IG-14

Active Directory IG-13
Admin IG-13
administrators IG-13
authorization IG-12

B
backup directory

overlay upgrade IG-74, IG-75, IG-85, IG-87, IG-98
Windows upgrade IG-113, IG-128, IG-129

C
capmc IG-141
CentOS IG-23
CLE 6 and 7 IG-141
client commands IG-4
commands IG-4

D
delegation IG-13
DIS IG-61
DNS IG-38
Domain Admin Account IG-13
Domain Admins IG-13
Domain User Account IG-13
Domain Users IG-13
domains

mixed IG-17

E
empty queue, node configurations

migration under Linux IG-102, IG-117, IG-118, IG-
132

Enterprise Admins IG-13

F
failover

migration IG-75, IG-87, IG-99, IG-114, IG-130
file

.rhosts IG-12

.shosts IG-12
hosts.equiv IG-15, IG-39

pbs.conf IG-44
services IG-61

G
gethostbyaddr IG-60

H
headnode IG-21

I
IETF IG-9, IG-60
IMPS IG-141
installation

Windows MoMs IG-37
installation account IG-13

M
migration upgrade IG-67

Linux IG-95
Windows IG-111, IG-127

mixed domains IG-17
MoM IG-4
moving jobs

migration upgrade under Linux IG-109, IG-125

N
network

ports IG-60
services IG-60

NTFS IG-42

O
output files IG-12
overlay upgrade IG-67

backup directory IG-74, IG-75, IG-85, IG-87, IG-98
Linux IG-72

P
PBS service account IG-14
PBS_BATCH_SERVICE_PORT IG-61
PBS_BATCH_SERVICE_PORT_DIS IG-61
PBS_DATA_SERVICE_PORT IG-61
PBS_EXEC IG-21, IG-43
PBS_EXEC/pbs_sched_config
PBS Professional 2020.1 Installation & Upgrade Guide IG-177

Index
overlay upgrade IG-78, IG-90, IG-103, IG-119, IG-
133

PBS_HOME IG-21, IG-43
PBS_LEAF_NAME IG-64
PBS_MAIL_HOST_NAME IG-64
PBS_MANAGER_SERVICE_PORT IG-61
pbs_mom IG-4

starting during overlay IG-80
PBS_MOM_HOST_NAME IG-64
PBS_MOM_SERVICE_PORT IG-61
PBS_OUTPUT_HOST_NAME IG-64
PBS_PRIMARY IG-64
pbs_probe IG-65
pbs_sched IG-3, IG-4
PBS_SCHEDULER_SERVICE_PORT IG-61
PBS_SECONDARY IG-64
PBS_SERVER IG-64
pbs_server IG-3, IG-4
PBS_SERVER_HOST_NAME IG-64
PBS_START_COMM IG-161
PBS_START_MOM IG-161
PBS_START_SCHED IG-161
PBS_START_SERVER IG-161
primary server IG-64

Q
qalter IG-16
qsub IG-16

R
Red Hat Enterprise Linux IG-23
Release Notes

upgrade recommendations IG-67, IG-95

S
scheduler IG-4
Schema Admins IG-14
scp IG-12
secondary server IG-64
secure copy IG-12
server IG-4

primary IG-64
secondary IG-64

service account
PBS IG-14

ssh IG-12
starting

MoM IG-168
SuSE IG-23

T
tar file

overlay upgrade IG-75, IG-87

U
upgrade

migration IG-67
migration under Linux IG-95
migration under Windows IG-111, IG-127
overlay IG-67

upgrading
Linux IG-72
Windows IG-111, IG-127

W
Windows IG-15, IG-17, IG-23

X
X forwarding IG-65
xauth IG-65
IG-178 PBS Professional 2020.1 Installation & Upgrade Guide

Altair®

PBS Professional®

2020.1.1

Administrator’s Guide

You are reading the Altair PBS Professional 2020.1.1

Administrator’s Guide (AG)

Updated 9/30/20

Copyright © 2003-2020 Altair Engineering, Inc. All rights reserved.

ALTAIR ENGINEERING INC. Proprietary and Confidential. Contains Trade Secret Information. Not for use or disclo-
sure outside of Licensee’s organization. The software and information contained herein may only be used internally and
are provided on a non-exclusive, non-transferable basis. Licensee may not sublicense, sell, lend, assign, rent, distribute,
publicly display or publicly perform the software or other information provided herein, nor is Licensee permitted to
decompile, reverse engineer, or disassemble the software. Usage of the software and other information provided by Altair
(or its resellers) is only as explicitly stated in the applicable end user license agreement between Altair and Licensee. In
the absence of such agreement, the Altair standard end user license agreement terms shall govern.

Use of Altair’s trademarks, including but not limited to “PBS™”, “PBS Professional®”, and “PBS Pro™”, “PBS
Works™”, “PBS Control™”, “PBS Access™”, “PBS Analytics™”, “PBScloud.io™”, and Altair’s logos is subject to
Altair's trademark licensing policies. For additional information, please contact Legal@altair.com and use the wording
“PBS Trademarks” in the subject line.

For a copy of the end user license agreement(s), log in to https://secure.altair.com/UserArea/agreement.html or contact
the Altair Legal Department. For information on the terms and conditions governing third party codes included in the
Altair Software, please see the Release Notes.

This document is proprietary information of Altair Engineering, Inc.

Contact Us

For the most recent information, go to the PBS Works website, www.pbsworks.com, select "My PBS", and log in with
your site ID and password.

Altair

Altair Engineering, Inc., 1820 E. Big Beaver Road, Troy, MI 48083-2031 USA www.pbsworks.com

Sales

pbssales@altair.com 248.614.2400

Please send any questions or suggestions for improvements to agu@altair.com.

https://secure.altair.com/UserArea/agreement.html
http://www.pbsworks.com
http://www.pbsworks.com

Technical Support

Need technical support? We are available from 8am to 5pm local times:

Location Telephone e-mail

Australia +1 800 174 396 anz-pbssupport@india.altair.com

China +86 (0)21 6117 1666 pbs@altair.com.cn

France +33 (0)1 4133 0992 pbssupport@europe.altair.com

Germany +49 (0)7031 6208 22 pbssupport@europe.altair.com

India +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

Italy +39 800 905595 pbssupport@europe.altair.com

Japan +81 3 6225 5821 pbs@altairjp.co.jp

Korea +82 70 4050 9200 support@altair.co.kr

Malaysia +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

North America +1 248 614 2425 pbssupport@altair.com

Russia +49 7031 6208 22 pbssupport@europe.altair.com

Scandinavia +46 (0)46 460 2828 pbssupport@europe.altair.com

Singapore +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

South Africa +27 21 831 1500 pbssupport@europe.altair.com

South America +55 11 3884 0414 br_support@altair.com

UK +44 (0)1926 468 600 pbssupport@europe.altair.com

Contents

1 New Features 1
1.1 New Features in PBS 2020.1 . 1

1.2 Changes in Previous Releases . 2

1.3 Commercial-only Features . 15

1.4 Backward Compatibility . 15

2 Configuring the Server and Queues 17
2.1 The Server. 17

2.2 How PBS Uses Mail . 19

2.3 Queues . 21

3 Configuring MoMs and Vnodes 33
3.1 About MoMs . 33

3.2 About Vnodes: Virtual Nodes . 37

3.3 Creating Vnodes . 38

3.4 Configuring Vnodes. 41

3.5 Deleting Vnodes . 49

4 Scheduling 53
4.1 Chapter Contents . 53

4.2 Scheduling Each Partition Separately . 55

4.3 Scheduling Policy Basics . 62

4.4 Choosing a Policy . 79

4.5 About Schedulers . 89

4.6 Using Queues in Scheduling . 98

4.7 Scheduling Restrictions and Caveats . 99

4.8 Errors and Logging . 100

4.9 Scheduling Tools. 100
PBS Professional 2020.1 Administrator’s Guide AG-v

Contents
5 Using PBS Resources 229
5.1 Chapter Contents . 229

5.2 Introduction to PBS Resources . 230

5.3 Glossary . 230

5.4 Categories of Resources. 233

5.5 Resource Types . 237

5.6 Resource Formats. 237

5.7 Setting Values for Resources . 239

5.8 Overview of Ways Resources Are Used . 243

5.9 Resources Allocated to Jobs and Reservations . 244

5.10 Using Resources to Track and Control Allocation. 252

5.11 Using Resources for Topology and Job Placement . 253

5.12 Using Resources to Prioritize Jobs . 254

5.13 Using Resources to Restrict Server or Queue Access . 254

5.14 Custom Resources . 255

5.15 Managing Resource Usage. 287

5.16 Where Resource Information Is Kept . 309

5.17 Viewing Resource Information . 311

5.18 Resource Recommendations and Caveats. 313

6 Managing Power Usage 315
6.1 Monitoring and Controlling Job Power Usage. 315

6.2 Managing Node Power on Cray XC . 320

6.3 Power Management Attributes, Resources, Etc.. 322

6.4 Caveats and Restrictions for Power Management . 325

7 Provisioning 327
7.1 Introduction . 327

7.2 Definitions . 327

7.3 How Provisioning Can Be Used . 327

7.4 How Provisioning Works . 328

7.5 Configuring Provisioning . 335

7.6 Viewing Provisioning Information . 340

7.7 Requirements and Restrictions . 343

7.8 Defaults and Backward Compatibility . 345

7.9 Example Scripts . 345

7.10 Advice and Caveats . 353

7.11 Errors and Logging . 355
AG-vi PBS Professional 2020.1 Administrator’s Guide

Contents
8 Security 359
8.1 Configurable Features. 359

8.2 User Roles and Required Privilege . 359

8.3 Using Access Control Lists . 362

8.4 Authentication for Daemons & Users . 377

8.5 Encrypting PBS Communication . 380

8.6 Restricting Execution Host Access . 384

8.7 Access to Schedulers . 385

8.8 Changing the PBS Service Account Password. 385

8.9 Paths and Environment Variables . 386

8.10 File and Directory Permissions . 386

8.11 Root-owned Jobs . 387

8.12 Passwords. 387

8.13 Windows Firewall . 388

8.14 Logging Security Events . 388

9 Making Your Site More Robust 391
9.1 Robustness . 391

9.2 Failover . 391

9.3 Checkpoint and Restart. 410

9.4 Reservation Fault Tolerance . 424

9.5 Vnode Fault Tolerance for Job Start and Run. 426

9.6 Preventing Communication and Timing Problems . 433

9.7 Preventing File System Problems . 440

9.8 OOM Killer Protection . 441

10 Using MPI with PBS 443
10.1 Integration with MPI. 443

10.2 Prerequisites . 443

10.3 Types of Integration. 443

10.4 Transparency to the User . 445

10.5 Integrating Intel MPI 4.0.3 On Linux Using Environment Variables . 445

10.6 Integrating Intel MPI 4.0.3 on Windows Using Wrapper Script . 446

10.7 Integrating MPICH2 1.4.1p1 on Windows Using Wrapper Script . 446

10.8 Integration Using the TM Interface . 446

10.9 Integration on the Fly using the pbs_tmrsh Command . 446

10.10 Integration by Wrapping . 447

10.11 Wrapping an MPI Using the pbsrun_wrap Script . 449

10.12 Unwrapping MPIs Using the pbsrun_unwrap Script . 452

10.13 Integration By Hand. 452

10.14 How Processes are Started Using MPI and PBS . 458

10.15 Limit Enforcement with MPI. 460

10.16 Restrictions and Caveats for MPI Integration . 461
PBS Professional 2020.1 Administrator’s Guide AG-vii

Contents
11 Configuring PBS for Cray 463
11.1 Support for Shasta . 463

11.2 Configuring PBS for Cray XC Series. 464

11.3 Introduction to PBS on Cray XC . 465

11.4 Relationship of PBS Vnodes to Cray XC Nodes . 465

11.5 Requirements for Cray XC . 466

11.6 Restrictions for Cray XC . 466

11.7 Resources, Parameters, etc. for Cray XC. 466

11.8 Automatic Configuration for Cray XC . 467

11.9 Recommended Manual Configuration for Cray XC. 469

11.10 Improving Server/MoM Inventory Performance for Cray XC. 473

11.11 Synchronizing PBS with ALPS Inventory on Cray XC. 475

11.12 Support for Xeon Phi on Cray XC . 475

11.13 Using Hyperthreading on Cray XC . 482

11.14 Viewing Cray XC Information . 482

11.15 Resource Restrictions and Deprecations for Cray XC . 484

11.16 Caveats and Advice for Cray XC. 484

11.17 Errors and Logging on Cray XC . 488

12 Support for HPE 491
12.1 Briefly, How PBS Manages Cpusets . 491

12.2 Cpusets and Vnodes. 491

12.3 Requirements for Managing Cpusets . 491

12.4 Where to Use Cpusets . 491

12.5 Settings for sharing Attribute . 491

12.6 Comprehensive System Accounting . 492

13 Managing Jobs 493
13.1 Routing Jobs . 493

13.2 Limiting Number of Jobs Considered in Scheduling Cycle . 493

13.3 Allocating Resources to Jobs . 493

13.4 Grouping Jobs By Project . 495

13.5 Job Prologue and Epilogue . 496

13.6 Linux Shell Invocation . 501

13.7 When Job Attributes are Set . 502

13.8 Job Termination. 504

13.9 Job Exit Status Codes. 507

13.10 Rerunning or Requeueing a Job . 509

13.11 Job IDs . 510

13.12 Where to Find Job Information . 510

13.13 Job Directories . 511

13.14 The Job Lifecycle . 514

13.15 Managing Job History . 517

13.16 Environment Variables . 520

13.17 Adjusting Job Running Time . 520

13.18 Managing Number of Run Attempts . 521

13.19 Managing Amount of Memory for Job Scripts . 521

13.20 Allowing Interactive Jobs on Windows . 521

13.21 Releasing Unneeded Vnodes from Jobs. 524

13.22 Tolerating Vnode Faults . 525

13.23 Managing Job Array Size . 525

13.24 Recommendations . 525
AG-viii PBS Professional 2020.1 Administrator’s Guide

Contents
14 Administration 527
14.1 The PBS Configuration File. 527

14.2 Environment Variables . 533

14.3 Event Logging . 534

14.4 Managing Machines . 541

14.5 Managing the Data Service . 545

14.6 Setting File Transfer Mechanism. 547

14.7 Some Performance Tips . 555

14.8 Temporary File Location for PBS Components. 555

14.9 Administration Caveats . 557

14.10 Support for Globus . 557

14.11 Support for Hyperthreading . 557

14.12 How To... 558

15 Configuring and Using PBS with Cgroups 559
15.1 Chapter Contents . 559

15.2 Introduction to Cgroups. 559

15.3 Why Use Cgroups? . 560

15.4 How PBS Uses Cgroups . 561

15.5 Configuring Cgroups . 564

15.6 Configuring MPI for Cgroups. 591

15.7 Managing Jobs with Cgroups . 594

15.8 Caveats and Errors . 595

16 Using PBS with Containers 597
16.1 Introduction . 597

16.2 The PBS Container Hook . 598

16.3 Prerequisites . 598

16.4 Configuring PBS for Containers . 599

16.5 Caveats and Restrictions . 602

16.6 Errors and Logging . 602

17 Accounting 603
17.1 The Accounting Log File . 603

17.2 Viewing Accounting Information . 604

17.3 Format of Accounting Log Messages . 604

17.4 Types of Accounting Log Records . 606

17.5 Timeline for Accounting Messages . 619

17.6 Resource Accounting . 625

17.7 Options, Attributes, and Parameters Affecting Accounting . 630

17.8 Accounting Caveats and Advice . 632

18 Mixed Linux-Windows Operation 635
18.1 Introduction to Mixed Linux-Windows Operation. 635

18.2 Configuration . 635

18.3 Troubleshooting Mixed Linux-Windows Complex . 637
PBS Professional 2020.1 Administrator’s Guide AG-ix

Contents
19 Problem Solving 639
19.1 Debugging Tools . 639

19.2 Security and Permissions Problems . 640

19.3 Troubleshooting Jobs . 641

19.4 Troubleshooting Daemons . 645

19.5 Troubleshooting Vnodes . 647

19.6 Troubleshooting Client Commands. 647

19.7 Troubleshooting PBS Licenses . 649

19.8 Crash Recovery. 649

19.9 Other Troubleshooting. 650

19.10 Getting Help . 651

Index 653
AG-x PBS Professional 2020.1 Administrator’s Guide

1

New Features

This chapter briefly lists new features by release, with the most recent listed first.

For deprecations, please see the Release Notes.

The Release Notes included with this release of PBS Professional list all new features in this version of PBS Professional,
and any warnings or caveats. Be sure to review the Release Notes, as they may contain information that was not available
when this book was written.

1.1 New Features in PBS 2020.1

New Cgroups Hook

PBS has an expanded cgroups hook with many new capabilities. This hook replaces the cpuset MoM. See Chapter 15,
"Configuring and Using PBS with Cgroups", on page 561.

Cloud Bursting Feature

PBS now has its own cloud bursting feature. See the PBS Cloud Guide.

Budget Allocation Feature

PBS now has its own budget allocation feature. See the PBS Budget Guide.

Workload Simulation Feature

PBS now has its own workload simulation feature. See the PBS Simulate Guide.

Timeout for Dynamic Server Resource Scripts

By default, PBS allows a dynamic server resource script 30 seconds to run. You can configure the timeout; see section
5.14.3.1, “Dynamic Server-level Resources”, on page 267.

Specifying Hosts or Vnodes to Keep when Releasing Unneeded Vnodes

You can specify how many hosts or which vnodes to keep when releasing unneeded vnodes. See “pbs_release_nodes”
on page 92 of the PBS Professional Reference Guide.

Using Undo Live Recorder to Capture Daemon Execution Recordings

You can use Undo Live Recorder to capture execution history for analysis by Altair support. See section 19.1.4, “Send-
ing Daemon Execution Recordings to Altair”, on page 643.

PBS Reconfirms Degraded Reservations

If reservation vnodes become unavailable, PBS looks for replacements. See section 9.4.2, “Finding Replacement
Vnodes for Degraded and In-conflict Reservations”, on page 427.

New Default for TPP Message Processing

The default for the number of TPP messages the server can process per thread iteration is now 64. See
“rpp_max_pkt_check” on page 295 of the PBS Professional Reference Guide.

Automatic Deletion of Idle Reservations

PBS can automatically delete idle reservations. See "Introduction to Creating and Using Advance and Standing Reserva-
tions", on page 136 of the PBS Professional User’s Guide.
PBS Professional 2020.1.1 Administrator’s Guide AG-1

Chapter 1 New Features
Flexible Job-specific Reservations

You can create flexible job-specific reservations for queued or running jobs. See "Job-specific Reservations", on page
140 of the PBS Professional User’s Guide.

Altering Reservation Duration, Authorized Groups, Authorized Users

You can alter the duration of a reservation; see “pbs_ralter” on page 86 of the PBS Professional Reference Guide.

Accounting Record for Job Suspend and Resume

PBS records job suspension and resumption in the accounting log. See Chapter 17, "Accounting", on page 607.

Managing Number of Scheduler Threads

You can set the maximum number of threads used by each scheduler. See section 4.5.7.3, “Setting Number of Scheduler
Threads”, on page 98.

Configurable Authentication Methods

You can use various authentication methods with PBS; see section 8.4, “Authentication for Daemons & Users”, on page
378.

Using TLS for Encryption

You can use TLS encryption with PBS. See section 8.5, “Encrypting PBS Communication”, on page 381.

Mixed Operation on Linux and Windows

You can use both Linux and Windows execution and client hosts in the same PBS complex. See Chapter 18, "Mixed
Linux-Windows Operation", on page 639.

Run Jobs on First Available Resources (Beta 2020.1)

You can submit a set of jobs that would all accomplish the same thing, but that specify different resources. PBS runs
only the first that can run. See "Running Your Job on First Available Resources (2020.1 Beta)", on page 108 of the PBS
Professional User’s Guide.

New pbs_login Command

PBS includes a new command for user authentication called pbs_login. See “pbs_login” on page 69 in the PBS Pro-
fessional Installation & Upgrade Guide.

One way to sort jobs for preemption

Jobs are chosen for preemption only by which have been running the shortest time. See section 4.9.33, “Using Preemp-
tion”, on page 180.

New Threading Option for Schedulers

You can specify the number of threads each scheduler runs. See “pbs_sched” on page 105 of the PBS Professional Ref-
erence Guide.

License Server for Node and Socket Licenses

PBS uses a license server to license hosts in the complex. See the PBS Works Licensing Guide.

Specifying Additional Arguments for Container Engines

Job submitters can specify additional container engine arguments such as secondary groups and shared memory; see
"Specifying Additional Arguments to Container Engine", on page 131 of the PBS Professional User’s Guide.

1.2 Changes in Previous Releases

Preemption via Deletion (19.4)

You can use deletion to preempt jobs. See section 4.9.33, “Using Preemption”, on page 180.
AG-2 PBS Professional 2020.1.1 Administrator’s Guide

New Features Chapter 1
New Scheduler Attributes for Preemption (19.4)

The preempt_order, preempt_prio, preempt_queue_prio, and preempt_sort preemption settings are now scheduler
attributes with the same names and formats. See “Scheduler Attributes” on page 298 of the PBS Professional Reference
Guide.

All Groups Included in Group ACLs (19.4)

All of a user’s groups are included in the list of groups in group ACLs. See section 8.3.4.5, “Contents of Group ACLs”,
on page 364.

Changes to qstat Job Output (19.4)

Wide output lines can be displayed for any default or alternate qstat job output formats, and when output size is too
large for a field, the last character is replaced with an asterisk. See “qstat” on page 197 of the PBS Professional Refer-
ence Guide.

Subjob Run Count Tracking (19.4)

PBS tracks the run_count attribute for subjobs, and holds job arrays whose subjobs hit the run count limit. See section
13.18, “Managing Number of Run Attempts”, on page 523.

Faster Read of Custom Job Resources by Execution Hooks (19.4)

You can specify which custom resources are cached at MoMs so that execution hooks can read them faster. See section
5.14.2.3.x, “Allowing Execution Hooks to Read Custom Job Resources Faster”, on page 261.

Applications Running in Containers Can Use Ports (19.4)

PBS can provide ports for applications running in containers. See "Using PBS with Containers".

Support for Singularity Containers (19.4)

You can run PBS jobs in Singularity containers. See "Using PBS with Containers".

New Post-suspend and Pre-resume Hooks (19.4)

PBS has two new hook events for just after suspending a job and just before resuming it. See "Event Types" on page 87
in the PBS Professional Hooks Guide.

Scheduler Logging Consistent with Other Daemons (19.4)

Schedulers use the same logging scheme as other daemons. See “Event Logging” on page 536 of the PBS Professional
Reference Guide.

Option to Capture Only PBS Configuration Information with pbs_snapshot (19.4)

You can use the new pbs_snapshot --basic option to capture just PBS configuration information. See
“pbs_snapshot” on page 112 of the PBS Professional Reference Guide.

Support for Cray Shasta Systems (19.4)

PBS is supported on Cray’s Shasta systems. See section 11.1, “Support for Shasta”, on page 465.

Expanded and New Accounting Records (19.4)

PBS writes a new a accounting record when a job is altered, and the Q record is expanded to include more informa-
tion. See section 17.4, “Types of Accounting Log Records”, on page 610.

IP Address Can Be Used for Vnode Name (19.4)

You can use the IP address as the vnode name. See “Vnode Name” on page 358 of the PBS Professional Reference
Guide.

Developer Libraries and Headers in Developer Package (19.4)

The libraries and headers needed for development but not for running PBS have been moved to a developer package. See
"Developer Headers and Libraries" on page 19 in the PBS Professional Programmer’s Guide.
PBS Professional 2020.1.1 Administrator’s Guide AG-3

Chapter 1 New Features
PBS Uses Python 3 (19.4)

As of 19.4.1, PBS uses Python 3.

New Basic Option to pbs_snapshot (19.4)

The pbs_snapshot command has a new --basic option. See “pbs_snapshot” on page 112 of the PBS Professional
Reference Guide.

New Maintenance Reservation (19.4)

PBS provides a new type of reservations for performing maintenance. See section 4.9.37, “Reservations”, on page 197.

Windows MoMs and Clients Run with Linux Server, Schedulers, Comms (19.4)

As of 19.4.1, PBS complexes that run Windows MoMs and Clients run with Linux server, schedulers, and comms.

Undo Live Recorder Debugger (19.4)

Undo’s Live Recorder integration enhances our ability to pinpoint root causes of problematic behavior. (This capability
is used under the direction of Altair support staff to speed troubleshooting.)

PBS Defaults to 24/7 Primetime (19.2)

You can use PBS without configuring primetime and/or holidays. See section 4.9.34, “Using Primetime and Holidays”,
on page 191

Microsecond Logging (19.2)

You can choose to have daemons log with microsecond resolution. See section 14.3.4.1, “Event Logfile Format”, on
page 539.

Limiting ncpus Count to Cores (19.2)

You can opt not to include hyperthreads when calculating the value for ncpus that MoM reports to the server. See Chap-
ter 15, "Configuring and Using PBS with Cgroups", on page 561.

Change in Enabling Power Provisioning (19.2)

You enable power provisioning by enabling the PBS_power hook. See Chapter 6, "Managing Power Usage", on page
315.

Settable Maximum Job ID (19.2)

You can set the maximum value for job IDs, job array IDs, and reservation IDs, using the max_job_sequence_id server
attribute.

Job Vnode Fault Tolerance (19.2)

You can allocate extra vnodes to jobs to allow jobs to successfully start and run despite vnode failures. See section 9.5,
“Vnode Fault Tolerance for Job Start and Run”, on page 428.

Hooks Support Reliable Job Startup and Run (19.2)

Hooks have been enhanced to allow you to provide jobs with extra vnodes in case of vnode failure. See section 9.5,
“Vnode Fault Tolerance for Job Start and Run”, on page 428.

New Reservation End Hook (19.2)

You can create hooks for the end of a reservation. See "resv_end: Event when Reservation Ends" on page 90 in the PBS
Professional Hooks Guide.

Enhancements to pbs_snapshot (19.2)

You can run pbs_snapshot without root privilege, and the command captures JSON output. See “pbs_snapshot” on
page 112 of the PBS Professional Reference Guide.

Tunable Job Release Wait Time for Cray (19.2)

You can set the amount of time that PBS waits between sending release requests to ALPS. See section 11.9.7, “Set ALPS
Reservation Release Timeout on Cray XC”, on page 474.
AG-4 PBS Professional 2020.1.1 Administrator’s Guide

New Features Chapter 1
Managing Power Usage on Cray (18.2)

You can power nodes up and down, limit ramp rate, and use power profiles for jobs. See Chapter 6, "Managing Power
Usage", on page 315.

On Cray, PBS Creates One Vnode per Compute Node (18.2)

Default behavior on the Cray has changed to create one vnode per compute node. See section 11.8, “Automatic Config-
uration for Cray XC”, on page 469.

Suspend and Resume on Cray (18.2)

You can use suspend and resume on Cray. See section 11.16.5, “Suspending and Resuming Jobs on Cray XC”, on page
487

Installing PBS on Cray CLE 5.2 via RPM (18.2)

PBS is installed on Cray CLE 5.2 via RPM. See “Changes for Cray XC Installation” on page 142 in the PBS Profes-
sional Installation & Upgrade Guide.

Performance Enhancement for PBS on Cray via Improved MoM Reporting (18.2)

You can improve the performance of PBS on Cray by using the vnode_pool vnode attribute. This allows only one MoM
to report inventory, and reduces communication traffic. See section 11.10, “Improving Server/MoM Inventory Perfor-
mance for Cray XC”, on page 475.

Periodic Synchronization of Inventory on Cray (18.2)

PBS periodically makes sure that its inventory matches what ALPS reports. See section 11.11, “Synchronizing PBS with
ALPS Inventory on Cray XC”, on page 477.

On Cray, Automatic Creation of One Vnode Per Compute Node (18.2)

PBS automatically creates one vnode for each compute node. See section 11.8, “Automatic Configuration for Cray XC”,
on page 469.

Installing PBS on CLE 6 via IMPS (18.2)

See “Installing PBS on CLE 6 and 7” on page 142 in the PBS Professional Installation & Upgrade Guide.

Support for Xeon Phi (18.2)

PBS supports Xeon Phi. See Chapter 11, "Support for Xeon Phi on Cray XC", on page 477.

1.2.1 New Scheduling Features

Restricting Placement Set Creation to Resources with Values that Have Been Set (18.2)

See section 4.9.32, “Placement Sets”, on page 168.

Soft Walltimes for Jobs (18.2)

You can set a soft walltime for jobs, and PBS can estimate a job’s soft walltime. See section 4.9.44, “Using Soft Wall-
time”, on page 218

Formula Uses Fairshare (18.2)

You can use fairshare in the job sorting formula. See section 4.9.21, “Using a Formula for Computing Job Execution Pri-
ority”, on page 149.

Manage Partitions with Multischeds (18.2)

You can schedule each partition separately. See section 4.2, “Scheduling Each Partition Separately”, on page 55.

Run Jobs in a Cloud (18.2)

PBS can burst jobs to a cloud. See Chapter 19, "Cloud Bursting with PBS", on page 463.
PBS Professional 2020.1.1 Administrator’s Guide AG-5

Chapter 1 New Features
1.2.2 New Hooks Features

The execjob_prologue Hook Runs on All Sister MoMs (18.2)

The execjob_prologue hook runs on all sister MoMs. See "execjob_prologue: Event Just Before Execution of Top-
level Job Process" on page 97 in the PBS Professional Hooks Guide.

Python Version Changed to 2.7.1 (18.2)

PBS 18.2.1 uses Python 2.7.1. The use of Python 2.5.1 is deprecated.

Periodic Server Hook (18.2)

PBS has a periodic hook that runs at the server. See "periodic: Periodic Event at Server Host" on page 95 in the PBS Pro-
fessional Hooks Guide.

Hook to Run Job Start Time Estimator (18.2)

PBS has a built-in hook named PBS_est that can run the job start time estimator. See section 4.9.15, “Estimating Job
Start Time”, on page 131.

Configurable Python Interpreter Restarts (18.2)

You can configure how often you want the Python interpreter to restart. See "Restarting the Python Interpreter" on page
23 in the PBS Professional Hooks Guide.

PBS Can Report Custom Resources Set in Hooks (18.2)

MoM can accumulate and report custom resources that are set in a hook. See "Setting Job Resources in Hooks" on page
49 in the PBS Professional Hooks Guide

1.2.3 Other New Features

Managing Job Resource Use with Cgroups (18.2)

You can use cgroups to manage the resources used by jobs. See Chapter 15, "Configuring and Using PBS with Cgroups",
on page 561.

Running Jobs in Containers (18.2)

Job submitters can run each job in its own container. See Chapter 16, "Using PBS with Containers", on page 599 and
"Running Your Job in a Container", on page 130 of the PBS Professional User’s Guide.

Power Provisioning (18.2)

PBS can monitor and control job power usage. See Chapter 6, "Managing Power Usage", on page 315.

Collecting Diagnostic Information with pbs_snapshot Command (18.2)

See “pbs_snapshot” on page 112 of the PBS Professional Reference Guide.

New pbs_ralter Command (18.2)

You can change reservations using the pbs_ralter command. See "Modifying Reservations", on page 142 of the
PBS Professional User’s Guide.

Privileged Access to Server for MoMs (18.2)

You can give all MoMs privileged access to the server without having to explicitly add their hosts to the acl_hosts
server attribute. See section 8.3.7.3, “Access to Server for MoMs”, on page 370.

Releasing Unneeded Vnodes from Jobs (18.2)

You can release vnodes that were allocated to jobs when those vnodes are no longer needed. See "Releasing Unneeded
Vnodes from Your Job", on page 128 of the PBS Professional User’s Guide.
AG-6 PBS Professional 2020.1.1 Administrator’s Guide

New Features Chapter 1
Running Subjobs Survive Server Restart (18.2)

Subjobs of an array job will continue to run during a restart of the server.

Writing Output and Error Files Directly to Final Destination (18.2)

You can have PBS write your standard output and error files directly to their final destination. See "Writing Files
Directly to Final Destination", on page 45 of the PBS Professional User’s Guide.

Deleting Output and Error Files (18.2)

You can have PBS delete your standard output and error files. See "Avoiding Creation of stdout and/or stderr", on page
43 of the PBS Professional User’s Guide.

Output for qstat in JSON and DSV Formats; qstat Attribute Output on Single Line (18.2)

You can get output from qstat in JSON or DSV formats. You can also print out attribute information in one unbroken
line. See “qstat” on page 197 in the PBS Professional Installation & Upgrade Guide.

Specifying Resources to Release on Suspension (18.2)

You can specify which resources you want released when jobs are suspended. See section 5.9.6.2, “Job Suspension and
Resource Usage”, on page 250.

Maintenance State for Powered-up Vnodes (18.2)

You can suspend a job and put all the vnodes belonging to a job into the maintenance state. See section 14.4.2, “Per-
forming Maintenance on Powered-up Vnodes”, on page 544.

Debuginfo RPM Package (18.2)

PBS is packaged with a debuginfo RPM package. See section 19.1.3, “Using the debuginfo RPM Package”, on page
643.

Logging Hostname and Interfaces (18.2)

Each time a log file is opened, PBS logs the hostname and interface information. See section 14.3, “Event Logging”, on
page 536.

Subjobs Survive Server Restarts (18.2)

Subjobs keep running after you stop the server. See “Impact of Stop-Restart on Running Linux Jobs” on page 169 in the
PBS Professional Installation & Upgrade Guide and “Impact of Stop-Restart on Running Windows Jobs” on page 174 in
the PBS Professional Installation & Upgrade Guide.

You can see all attributes for subjobs; see "Viewing Status of a Job Array", on page 156 of the PBS Professional User’s
Guide.

Jobs Can Use Provisioning for Some Chunks (18.2)

Jobs can request an AOE for some chunks as long as all chunks use the same AOE. See Chapter 12, "Using Provision-
ing", on page 201.

Node Licenses (18.2)

You can license your hosts using node licenses. See the PBS Works Licensing Guide.

PBS Can Send Mail for Subjobs (18.2)

PBS can send mail for subjobs. See "Specifying Email Notification", on page 25 of the PBS Professional User’s Guide.

Server Periodic Hook (14.2)

You can run a hook periodically at the server. See "periodic: Periodic Event at Server Host" on page 95 in the PBS Pro-
fessional Hooks Guide.

Hook to Run Job Start Time Estimator (14.2)

PBS has a built-in hook named PBS_est that can run the job start time estimator. See section 4.9.15, “Estimating Job
Start Time”, on page 131.
PBS Professional 2020.1.1 Administrator’s Guide AG-7

Chapter 1 New Features
PBS Can Report Custom Resources Set in Hooks (14.2)

MoM can accumulate and report custom resources that are set in a hook. See section 5.2.4.12, “Setting Job Resources in
Hooks”, on page 49.

Configurable Python Interpreter Restarts (14.2)

You can configure how often you want the Python interpreter to restart. See "Restarting the Python Interpreter" on page
23 in the PBS Professional Hooks Guide.

Python Version Changed to 2.7.1 (14.2)

PBS 14.2.1 uses Python 2.7.1. The use of Python 2.5.1 is deprecated.

Name for MoM to Use for Parent Vnode (14.2)

You can specify the name that MoM should use for her parent vnode and child vnodes. See section 3.3.2, “How to
Choose Vnode Names”, on page 38.

Grouping Jobs and Sorting by ID (14.2)

When getting job status, you can group jobs and sort them by ID. See "Grouping Jobs and Sorting by ID", on page 183
of the PBS Professional User’s Guide.

Support for systemd (14.2)

PBS supports using sytemctl commands to start, stop, restart, and status PBS. See “Methods for Starting, Stopping, or
Restarting PBS” on page 160 in the PBS Professional Installation & Upgrade Guide.

Support for Native Package Managers on Linux (14.2)

PBS supports use of RPM for installation and upgrading. See “Installation” on page 19 in the PBS Professional Installa-
tion & Upgrade Guide and “Upgrading” on page 65 in the PBS Professional Installation & Upgrade Guide.

Server Sets Job Comment on Run or Reject (14.2)

The server sets the job comment when the job is run or rejected. See section 13.7.3.1, “Comment Set When Running
Job”, on page 505.

Update to Accounting R Record (14.2)

PBS writes the R accounting record when MoM is restarted with -p or -r. See section , “R”, on page 617.

Interactive GUI Jobs on Windows (13.1)

Users can run interactive GUI jobs on Windows. See "Submitting Interactive GUI Jobs on Windows", on page 125 of the
PBS Professional User’s Guide.

Administrators can choose a remote viewer for interactive GUI jobs. See section 13.20.1, “Configuring PBS for Remote
Viewer on Windows”, on page 524.

MUNGE Integration (13.1)

PBS can use MUNGE to create and validate credentials. See section 8.4.4, “Authentication via MUNGE”, on page 379.

Controlling Backfill Depth at the Queue (13.1)

Administrators can choose the backfilling depth independently at each queue. See section 4.9.3, “Using Backfilling”, on
page 105.

Optional Scheduler Cycle Speedup (13.1)

You can optionally speed up the scheduling cycle. See section 4.9.40, “Scheduler Cycle Speedup”, on page 208.

Preventing Some Jobs from Being Top Jobs (13.1)

You can prevent a job from being a top job by setting its topjob_ineligible attribute to True. See section 4.9.17.1, “Mak-
ing Jobs Ineligible to be Top Jobs”, on page 137.
AG-8 PBS Professional 2020.1.1 Administrator’s Guide

New Features Chapter 1
Improved Mail on Windows (13.1)

Under Windows, you can specify an SMTP server. (As of 19.4.1, PBS does not use an SMTP server.)

New Hook Events (13.0)

PBS provides three new hook events:

• An execjob_launch hook runs just before MoM runs the user’s program

• An execjob_attach hook runs when pbs_attach is called

• An exechost_startup hook runs when MoM starts up

See "When Hooks Run" on page 15 in the PBS Professional Hooks Guide, "execjob_launch: Event when Execution Host
Receives Job" on page 98 in the PBS Professional Hooks Guide, "execjob_attach: Event when pbs_attach() runs" on
page 100 in the PBS Professional Hooks Guide, and "exechost_startup: Event When Execution Host Starts Up" on page
106 in the PBS Professional Hooks Guide.

Configuration Files for Hooks (13.0)

You can use configuration files with hooks. See "Using Hook Configuration Files" on page 32 in the PBS Professional
Hooks Guide.

Configuring Vnodes in Hooks (13.0)

You can use hooks to configure vnode attributes and resources. See "Setting and Unsetting Vnode Resources and
Attributes" on page 48 in the PBS Professional Hooks Guide.

Adding Custom Resources in Hooks (13.0)

You can use hooks to add custom non-consumable host-level resources. See "Adding Custom Non-consumable Host-
level Resources" on page 64 in the PBS Professional Hooks Guide.

Node Health Hook Features (13.0)

PBS has node health checking features for hooks. You can offline and clear vnodes, and restart the scheduling cycle. See
"Offlining and Clearing Vnodes Using the fail_action Hook Attribute" on page 66 in the PBS Professional Hooks Guide
and "Restarting Scheduler Cycle After Hook Failure" on page 63 in the PBS Professional Hooks Guide.

Hook Debugging Enhancements (13.0)

You can get hooks to produce debugging information, and then read that information in while debugging hooks. See
"Debugging Hooks" on page 159 in the PBS Professional Hooks Guide.

Managing Built-in Hooks (13.0)

You can enable and disable built-in hooks. See "Managing Built-in Hooks" on page 155 in the PBS Professional Hooks
Guide.

Scheduler Does not Trigger modifyjob Hooks (13.0)

The scheduler does not trigger modifyjob hooks. See the PBS Professional Hooks Guide.

Faster, Asynchronous Communication Between Daemons (13.0)

PBS has a communication daemon that provides faster, asynchronous communication between the server, scheduler, and
MoM daemons. See “Communication” on page 45 in the PBS Professional Installation & Upgrade Guide.

Enhanced Throughput of Jobs (13.0)

By default, the scheduler runs asynchronously to speed up job start, and jobs that have been altered via qalter,
server_dyn_res, or peering can run in the same scheduler cycle in which they were altered. See section 4.5.7.1,
“Improving Throughput of Jobs”, on page 97.

Creating Custom Resources via qmgr (13.0)

You can create any custom resources using nothing but the qmgr command. See section 5.14.2.4, “Defining Custom
Resources via qmgr”, on page 263.
PBS Professional 2020.1.1 Administrator’s Guide AG-9

Chapter 1 New Features
Job Sorting Formula: Python Math Functions and Threshold (13.0)

You can use standard Python math functions in the job sorting formula. You can also set a threshold for job priority,
below which jobs cannot run. See section 4.9.21, “Using a Formula for Computing Job Execution Priority”, on page
149.

Fairshare: Formula and Decay Factor (13.0)

You can use a mathematical formula for fairshare, and you can set a custom decay factor. See section 4.9.19, “Using
Fairshare”, on page 138.

Preempted Jobs can be Top Jobs (13.0)

You can specify that preempted jobs should be classified as top jobs. See section 4.9.16, “Calculating Job Execution Pri-
ority”, on page 134. You can use a new scheduler attribute called sched_preempt_enforce_resumption for this; see
section 4.9.3, “Using Backfilling”, on page 105.

Limiting Preemption Targets (13.0)

You can specify which jobs can be preempted by a given job. See section 4.9.33.4.i, “Setting Job Preemption Targets”,
on page 182.

Limiting Number of Jobs in Execution Queues (13.0)

You can speed up the scheduling cycle by limiting the number of jobs in execution queues. See section 4.5.7.2, “Limit-
ing Number of Jobs Queued in Execution Queues”, on page 98.

Improved Round-robin Behavior (13.0)

The round_robin scheduler parameter produces improved behavior. See section 4.9.38, “Round Robin Queue Selec-
tion”, on page 204.

Limiting Resources Allocated to Queued Jobs (13.0)

You can set limits on the amounts of resources allocated to queued jobs specifically. See section 5.15.1, “Managing
Resource Usage By Users, Groups, and Projects, at Server & Queues”, on page 287.

Running qsub in the Foreground (13.0)

By default, the qsub command runs in the background. You can run it in the foreground using the -f option. See
“qsub” on page 213 of the PBS Professional Reference Guide.

Windows Users can Use UNC Paths (13.0)

Windows users can use UNC paths for job submission and file staging. See "Set up Paths", on page 9 of the PBS Profes-
sional User’s Guide and "Using UNC Paths", on page 34 of the PBS Professional User’s Guide.

Automatic Installation and Upgrade of Database (13.0)

PBS automatically installs or upgrades its database. See “Automatic Upgrade of Database (13.0)” on page 66 in the PBS
Professional Installation & Upgrade Guide.

Longer Job and Reservation Names (13.0)

You can use job and reservation names up to 236 characters in length. See “Formats” on page 353 of the PBS Profes-
sional Reference Guide.

Address Disambiguation for Multihomed Systems (13.0)

You can disambiguate addresses for contacting the server, sending mail, sending outgoing traffic, and delivering output
and error files. See “PBS with Multihomed Systems” on page 60 in the PBS Professional Installation & Upgrade Guide.

Support for Hydra Process Manager in Intel MPI (13.0)

Intel MPI is integrated with PBS. See "Integrating Intel MPI 4.0.3 On Linux Using Environment Variables” on page 447.

Enhancements to pbsnodes Command (13.0)

You can now use the pbsnodes command to edit the comment attribute of a host, to write out host information, and to
operate on specific vnodes. See "pbsnodes” on page 35.
AG-10 PBS Professional 2020.1.1 Administrator’s Guide

New Features Chapter 1
Primary Group of Job Owner or Reservation Creator Automatically Added to Job group_list (13.0)

The job submitter’s and reservation creator’s primary group is automatically added to the job or reservation group_list
attribute. See "qsub” on page 213 and "pbs_rsub” on page 96.

Intel MPI Integrated under Windows (13.0)

MPI is integrated with PBS under Windows (as well as Linux). See "Integrating Intel MPI 4.0.3 on Windows Using
Wrapper Script” on page 448.

MPICH2 Integrated under Windows (13.0)

MPICH2 is integrated with PBS under Windows (as well as Linux). See "Integrating MPICH2 1.4.1p1 on Windows
Using Wrapper Script” on page 448.

PBS pbsdsh Command Available under Windows (13.0)

The pbsdsh command is available under Windows. See "pbsdsh” on page 29.

PBS TM APIs Available under Windows (13.0)

The PBS TM APIs are available under Windows. See "TM Library” on page 93 of the PBS Professional Programmer’s
Guide.

PBS pbs_attach Command Available under Windows (13.0)

The pbs_attach command is available under Windows. See "pbs_attach” on page 55.

Xeon Phi Reported on Cray (13.0)

PBS automatically detects and reports a Xeon Phi in the ALPS inventory. See "Using Xeon Phi Vnodes on Cray XC", on
page 195 of the PBS Professional User’s Guide.

Command Line Editing in qmgr (12.2)

The qmgr command provides a history and allows you to edit command lines. See “Reusing and Editing the qmgr Com-
mand Line” on page 150 of the PBS Professional Reference Guide.

Interactive Jobs Available under Windows (12.2)

Job submitters can run interactive jobs under Windows. See "Running Your Job Interactively", on page 121 of the PBS
Professional User’s Guide.

Job Run Count is Writable (12.2)

Job submitters and administrators can set the value of a job’s run count. See section 13.18, “Managing Number of Run
Attempts”, on page 523 and "Controlling Number of Times Job is Re-run", on page 119 of the PBS Professional User’s
Guide.

runjob Hook can Modify Job Attributes (12.2)

The runjob hook can modify a job’s attributes and resources. See "Using Attributes and Resources in Hooks" on page 44
in the PBS Professional Hooks Guide.

Jobs can be Suspended under Windows (12.2)

You can suspend and resume a job under Windows.

Configuration of Directory for PBS Component Temporary Files (12.2)

You can configure the root directory where you want PBS components to put their temporary files. See section 14.8,
“Temporary File Location for PBS Components”, on page 557.

Execution Event and Periodic Hooks (12.0)

You can write hooks that run at the execution host when the job reaches the execution host, when the job starts, ends, is
killed, and is cleaned up. You can also write hooks that run periodically on all execution hosts. See the PBS Professional
Hooks Guide.
PBS Professional 2020.1.1 Administrator’s Guide AG-11

Chapter 1 New Features
Shrink-to-fit Jobs (12.0)

PBS allows users to specify a variable running time for jobs. Job submitters can specify a walltime range for jobs where
attempting to run the job in a tight time slot can be useful. Administrators can convert non-shrink-to-fit jobs into shrink-
to-fit jobs in order to maximize machine use. See "Adjusting Job Running Time", on page 110 of the PBS Professional
User’s Guide and section 4.9.42, “Using Shrink-to-fit Jobs”, on page 210.

PBS Supports Socket Licensing (11.3)

PBS lets you use socket licenses to license hosts. See the PBS Works Licensing Guide.

Deleting Job History (11.3)

You can delete job histories. See section 13.15.9, “Deleting Moved Jobs and Job Histories”, on page 522.

Managing Resource Usage by Project (11.2)

You can set resource usage limits for projects, at the server and queue. You can set limits for the amount of each resource
being used, or for the number of jobs. Jobs have a new attribute called project. See section 5.15.1, “Managing Resource
Usage By Users, Groups, and Projects, at Server & Queues”, on page 287.

PBS Daemons Protected from OOM Killer (11.2)

PBS daemons are protected from being terminated by an OOM killer. See section 9.8, “OOM Killer Protection”, on page
443.

PBS Supports X Forwarding for Interactive Jobs (11.2)

PBS allows users to receive X output from interactive jobs. See "Receiving X Output from Interactive Linux Jobs", on
page 124 of the PBS Professional User’s Guide, and section 14.2.1.1, “Contents of Environment File”, on page 535.

Support for Accelerators on Cray (11.2)

PBS provides tight integration for accelerators on Cray. See Chapter 11, "Configuring PBS for Cray", on page 465.

Support for Interlagos on Cray (11.1)

No longer supported.

Improved Cray Integration (11.0)

PBS is more tightly integrated with Cray systems. You can use the PBS select and place language when submitting Cray
jobs. See section , “Configuring PBS for Cray”, on page 465.

Vnode Access for Hooks (11.0)

Hooks have access to vnode attributes and resources. See the PBS Professional Hooks Guide.

Enhanced Job Placement (11.0)

PBS allows job submitters to scatter chunks by vnode in addition to scattering by host. PBS also allows job submitters to
reserve entire hosts via a job’s placement request. See "Specifying Job Placement", on page 64 of the PBS Professional
User’s Guide.

Choice in PBS service account Name (11.0)

Under Windows, the PBS service account used to run PBS daemons can have any name. See “Creating PBS Service
Account in Domained Environment” on page 40 in the PBS Professional Installation & Upgrade Guide.

Change of Licensing Method (11.0)

As of 11.0, PBS is licensed using a new Altair license server. See the PBS Works Licensing Guide.

Change in Data Management (11.0)

PBS uses a new data service. See section 14.5, “Managing the Data Service”, on page 547.

Choice in Job Requeue Timeout (11.0)

You can choose how long the job requeue process should be allowed to run. See section 9.6.3, “Setting Job Requeue
Timeout”, on page 439.
AG-12 PBS Professional 2020.1.1 Administrator’s Guide

New Features Chapter 1
Backfilling Around Top N Jobs (10.4)

PBS can backfill around the most deserving jobs. You can configure the number of jobs PBS backfills around. See sec-
tion 4.9.3, “Using Backfilling”, on page 105.

Estimating Job Start Times (10.4)

PBS can estimate when jobs will run, and which vnodes each job will use. See section 4.9.15, “Estimating Job Start
Time”, on page 131.

Unified Job Submission (10.4)

PBS allows users to submit jobs using the same scripts, whether the job is submitted on a Windows or Linux system. See
"Python Job Scripts", on page 14 of the PBS Professional User’s Guide.

Provisioning (10.2)

PBS provides automatic provisioning of an OS or application on vnodes that are configured to be provisioned. When a
job requires an OS that is available but not running, or an application that is not installed, PBS provisions the vnode with
that OS or application. See Chapter 7, "Provisioning", on page 327.

New Hook Type (10.2)

PBS has a new hook type which can be triggered when a job is to be run. See the PBS Professional Hooks Guide.

New Scheduler Attribute (10.2)

PBS allows the administrator to set the scheduler’s cycle time using the new sched_cycle_length scheduler attribute.
See the pbs_sched_attributes(7B) manual page.

Walltime as Checkpoint Interval Measure (10.2)

PBS allows a job to be checkpointed according to its walltime usage. See the pbs_job_attributes(7B) manual
page.

Managing Resource Usage (10.1)

You can set separate limits for resource usage by individual users, individual groups, generic users, generic groups, and
the total used. You can limit the amount of resources used, and the number of queued and running jobs. These limits can
be defined separately for each queue and for the server. See section 5.15.1, “Managing Resource Usage By Users,
Groups, and Projects, at Server & Queues”, on page 287. These new limits are incompatible with the limit attributes
existing before Version 10.1.

Managing Job History (10.1)

PBS Professional can provide job history information, including what the submission parameters were, whether the job
started execution, whether execution succeeded, whether staging out of results succeeded, and which resources were
used. PBS can keep job history for jobs which have finished execution, were deleted, or were moved to another server.
See section 13.15, “Managing Job History”, on page 519.

Reservation Fault Tolerance (10.1)

PBS attempts to reconfirm reservations for which associated vnodes have become unavailable. See section 9.4, “Reser-
vation Fault Tolerance”, on page 426.

Checkpoint Support via Epilogue (10.1)

Checkpointed jobs can be requeued if the epilogue exits with a special value. See section 9.3.7.3, “Requeueing via Epi-
logue”, on page 423.

Hooks (10.0)

Hooks are custom executables that can be run at specific points in the execution of PBS. They accept, reject, or modify
the upcoming action. This provides job filtering, patches or workarounds, and extends the capabilities of PBS, without
the need to modify source code. See the PBS Professional Hooks Guide.
PBS Professional 2020.1.1 Administrator’s Guide AG-13

Chapter 1 New Features
Versioned Installation (10.0)

PBS is now automatically installed in versioned directories. For most platforms, different versions of PBS can coexist,
and upgrading is simplified. See Chapter 3, "Installation", on page 19 and Chapter 6, "Upgrading", on page 65 in the
PBS Professional Installation and Upgrade Guide.

Resource Permissions for Custom Resources (9.2)

You can set permissions on custom resources so that they are either invisible to users or cannot be requested by users.
This also means that users cannot modify a resource request for those resources via qalter. See section 5.14.2.3.vi,
“Resource Permission Flags”, on page 260.

Extension to Job Sorting Formula (9.2)

The job sorting formula has been extended to include parentheses, exponentiation, division, and unary plus and minus.
See section 4.9.3, “Using Backfilling”, on page 105.

Eligible Wait Time for Jobs (9.2)

A job that is waiting to run can be accruing “eligible time”. Jobs can accrue eligible time when they are blocked due to a
lack of resources. This eligible time can be used in the job sorting formula. Jobs have two new attributes, eligible_time
and accrue_type, which indicates what kind of wait time the job is accruing. See section 4.9.13, “Eligible Wait Time for
Jobs”, on page 126.

Job Staging and Execution Directories (9.2)

PBS now provides per-job staging and execution directories. Jobs have new attributes sandbox and jobdir, the MoM has
a new option $jobdir_root, and there is a new environment variable called PBS_JOBDIR. If the job’s sandbox
attribute is set to PRIVATE, PBS creates a job-specific staging and execution directory. If the job’s sandbox attribute is
unset or is set to HOME, PBS uses the user’s home directory for staging and execution, which is how previous versions of
PBS behaved. If MoM’s $jobdir_root is set to a specific directory, that is where PBS will create job-specific stag-
ing and execution directories. If MoM’s $jobdir_root is unset, PBS will create the job-specific staging and execu-
tion directory under the user’s home directory. See section 13.13.1, “Staging and Execution Directories for Job”, on page
513.

Standing Reservations (9.2)

PBS now provides both advance and standing reservation of resources. A standing reservation is a reservation of
resources for specific recurring periods of time. See section 4.9.37, “Reservations”, on page 197.

New Server Attribute for Job Sorting Formula (9.1)

The new server attribute “job_sort_formula” is used for sorting jobs according to a site-defined formula. See section
4.9.21, “Using a Formula for Computing Job Execution Priority”, on page 149.

Change to sched_config (9.1)

The default for job_sort_key of “cput” is commented out in the default sched_config file. It is left in as a usage
example.

Change to Licensing (9.0)

PBS now depends on an Altair license server that will hand out licenses to be assigned to PBS jobs. See the PBS Works
Licensing Guide. PBS Professional versions 8.0 and below will continue to be licensed using the proprietary licensing
scheme.

Installing With Altair Licensing (9.0)

If you will use floating licenses, we recommend that you install and configure the Altair license server before installing
and configuring PBS. PBS starts up faster. See “Overview of Installation” on page 19 in the PBS Professional Installa-
tion & Upgrade Guide.
AG-14 PBS Professional 2020.1.1 Administrator’s Guide

New Features Chapter 1
Unset Host-level Resources Have Zero Value (9.0)

An unset numerical resource at the host level behaves as if its value is zero, but at the server or queue level it behaves as
if it were infinite. An unset string or string array resource cannot be matched by a job’s resource request. An unset bool-
ean resource behaves as if it is set to “False”. See section 4.9.28.7, “Matching Unset Resources”, on page 161.

Better Management of Resources Allocated to Jobs (9.0)

The resources allocated to a job from vnodes will not be released until certain allocated resources have been freed by all
MoMs running the job. The end of job accounting record will not be written until all of the resources have been freed.
The “end” entry in the job end (‘E’) record will include the time to stage out files, delete files, and free the resources.
This will not change the recorded “walltime” for the job.

1.3 Commercial-only Features

PBS is dual-licensed. Altair releases a commercial version and an open-source version. The core of the product is the
same, but the commercial version contains additional features available only in the commercial (licensed) version of
PBS. For example:

• Estimated start times for non-top jobs via pbs_est

• Container integration

• PBS licensing

1.4 Backward Compatibility

1.4.1 New and Old Resource Usage Limits Incompatible

The new resource usage limits are incompatible with the old resource usage limits. See section 5.15.1.15, “Old Limit
Attributes: Server and Queue Resource Usage Limit Attributes Existing Before Version 10.1”, on page 302, section
5.15.1.13.v, “Do Not Mix Old And New Limits”, on page 301, and section 5.15.1.14.i, “Error When Setting Limit
Attributes”, on page 301.

1.4.2 Job Dependencies Affected By Job History

Enabling job history changes the behavior of dependent jobs. If a job j1 depends on a finished job j2 for which PBS is
maintaining history, PBS releases j1’s dependency, and takes appropriate action. If job j1 depends on a finished job j3
that has been purged from job history, j1 is rejected just as in previous versions of PBS where the job was no longer in the
system.

1.4.3 PBS path information no longer saved in
AUTOEXEC.BAT

Any value for PATH saved in AUTOEXEC.BAT may be lost after installation of PBS. If there is any path information
that needs to be saved, AUTOEXEC.BAT must be edited by hand after the installation of PBS. PBS path information is
no longer saved in AUTOEXEC.BAT.
PBS Professional 2020.1.1 Administrator’s Guide AG-15

Chapter 1 New Features
1.4.4 OS-level Checkpointing Not Supported

PBS does not directly support OS-level checkpointing. PBS supports checkpointing using site-supplied methods. See
section 9.3, “Checkpoint and Restart”, on page 412.

1.4.5 Scheduler Parameters Changed to Scheduler
Attributes (19.4.1)

The preempt_order, preempt_prio, preempt_queue_prio, and preempt_sort preemption settings were scheduler
parameters in $PBS_HOME/sched_priv/sched_config in older versions of PBS. They are now scheduler attributes with
the same names and formats. You cannot use the old parameters. Make sure that you use qmgr to set the attributes as
desired. See “Scheduler Attributes” on page 298 of the PBS Professional Reference Guide.
AG-16 PBS Professional 2020.1.1 Administrator’s Guide

2

Configuring the Server and

Queues

This chapter describes how to configure the server and any queues.

2.1 The Server

2.1.1 Configuring the Server

You configure the server by setting server attributes via the qmgr command:

Qmgr: set server <attribute> = <value>

For a description of the server attributes, see “Server Attributes” on page 281 of the PBS Professional Reference Guide.

For a description of the qmgr command, see “qmgr” on page 149 of the PBS Professional Reference Guide.
PBS Professional 2020.1.1 Administrator’s Guide AG-17

Chapter 2 Configuring the Server and Queues
2.1.2 Default Server Configuration

The default configuration from the binary installation sets the default server settings. An example server configuration is
shown below:

qmgr

Qmgr: print server

#

Create queues and set their attributes.

Create and define queue workq

#

create queue workq

set queue workq queue_type = Execution

set queue workq enabled = True

set queue workq started = True

#

Set server attributes.

#

set server default_queue = workq

set server log_events = 511

set server mail_from = adm

set server query_other_jobs = True

set server resources_default.ncpus = 1

set server resv_enable = True

set server node_fail_requeue = 310

set server max_array_size = 10000

set server default_chunk.ncpus=1

2.1.3 The PBS Node File

The server creates a file of the nodes managed by PBS. This node file is written only by the server. On startup each
MoM sends a time-stamped list of her known vnodes to the server. The server updates its information based on that
message. If the time stamp on the vnode list is newer than what the server recorded before in the node file, the server will
create any vnodes which were not already defined. If the time stamp in the MoM’s message is not newer, then the server
will not create any missing vnodes and will log an error for any vnodes reported by MoM but not already known.

Whenever new vnodes are created, the server sends a message to each MoM with the list of MoMs and each vnode man-
aged by the MoMs. The server will only delete vnodes when they are explicitly deleted via qmgr.

This is different from the node file created for each job. See "The Job Node File", on page 77 of the PBS Professional
User’s Guide.

2.1.4 Server Configuration Attributes

See “Server Attributes” on page 281 of the PBS Professional Reference Guide for a table of server attributes.
AG-18 PBS Professional 2020.1.1 Administrator’s Guide

Configuring the Server and Queues Chapter 2
2.1.5 Recording Server Configuration

If you wish to record the configuration of a PBS server for re-use later, you may use the print subcommand of
qmgr(8B). For example,

qmgr -c "print server" > /tmp/server.out

qmgr -c "print node @default" > /tmp/nodes.out

will record in the file /tmp/server.out the qmgr subcommands required to recreate the current configuration
including the queues. The second file generated above will contain the vnodes and all the vnode properties. The com-
mands could be read back into qmgr via standard input:

qmgr < /tmp/server.out

qmgr < /tmp/nodes.out

2.1.6 Support for Globus

Globus can still send jobs to PBS, but PBS no longer supports sending jobs to Globus. The Globus MoM is no longer
available.

2.1.7 Configuring the Server for Licensing

The PBS server must be configured for licensing. You must set the location where PBS will look for the license
server(s), by setting the server attribute pbs_license_info, then force the server to re-query for licenses by setting the
server’s scheduling attribute to True. The other server licensing attributes have defaults, but you may wish to set them
as well. See the PBS Works Licensing Guide.

You may also wish to have redundant license servers. See the Altair License Management System Installation and Oper-
ations Guide, available at www.pbsworks.com.

2.2 How PBS Uses Mail

PBS sends mail to the administrator for administration-related issues, and to job submitters for job-related issues. See
"Specifying Email Notification", on page 25 of the PBS Professional User’s Guide for information about mail PBS sends
to job submitters.

PBS sends mail to the administrator under the following circumstances:

• When failover occurs, PBS sends an email is sent to and from the account defined in the server’s mail_from
attribute.

• When the database is stopped unexpectedly. For example:
"Panic shutdown of Server on database error. Please check PBS_HOME file system for no space

condition."

• When your license is expiring, PBS sends mail once a day.

2.2.1 Configuring Server Mail Address

You can configure the account that is used as the address to both send and receive administrative mail. These are the
same account. For example, when failover occurs, an email is sent to and from the account defined in the server’s
mail_from attribute, saying that failover has occurred.
PBS Professional 2020.1.1 Administrator’s Guide AG-19

Chapter 2 Configuring the Server and Queues
Use the qmgr command to set the mail_from server attribute to an address that is monitored regularly:

Qmgr: s server mail_from=<address>

You cannot configure which mail server PBS uses. PBS uses the default mail server. On Linux, this is /usr/lib/
sendmail.

2.2.2 Specifying Mail Delivery Domain

You can use the PBS_MAIL_HOST_NAME parameter in pbs.conf on the server host to direct mail to a domain in
which the user can receive it. For example, if a job is submitted from a cluster node, it may not be possible for mail to be
delivered there, especially if the job runs on a different cluster.

You can specify the destination domain for email that is sent by the server to the administrator or to job submitters or res-
ervation creators by setting the PBS_MAIL_HOST_NAME parameter in pbs.conf.

2.2.2.1 Delivering Mail to Administrator

The default user name for administrative mail is “adm”. The following table shows where PBS sends administrator
mail:

2.2.2.2 Delivering Mail to Job Submitter or Reservation Creator

The Mail_Users attribute is a list of one or more user names. For each entry in the list, PBS handles the entry according
to the rules in the following table showing where PBS sends job or reservation mail:

Table 2-1: How PBS Sets Administrator Mail

Value of mail_from Destination

<username>@<hostname> <username>@<hostname>

user user

(Destination depends on mail server configuration)

unset adm

(Destination depends on mail server configuration)

Table 2-2: How PBS Sets Job or Reservation Mail

Value of
Mail_Users

Value of PBS_MAIL_HOST_NAME

Set Unset

<user-

name>@<ho

stname>

Linux: <username>@<hostname> <username>@<hostname>

user user@PBS_MAIL_HOST_NAME user@<server FQDN from Job_Owner

attribute of job>

unset <job owner>@ PBS_MAIL_HOST_NAME Linux: <job owner>@ <server FQDN from

Job_Owner attribute of job>
AG-20 PBS Professional 2020.1.1 Administrator’s Guide

Configuring the Server and Queues Chapter 2
2.2.3 Attributes, Parameters Etc. Affecting Mail

PBS_MAIL_HOST_NAME

Parameter in pbs.conf. Optional. Used in addressing mail regarding jobs and reservations that is sent to users
specified in a job or reservation’s Mail_Users attribute. See section 2.2.2, “Specifying Mail Delivery Domain”,
on page 20.

Should be a fully qualified domain name. Cannot contain a colon (“:”).

mail_from

Server attribute. Mail is sent from and to this account when failover occurs.

Mail_Users

Job and reservation attribute. List of users to whom mail about job or reservation is sent.

Mail_Points

Job and reservation attribute. List of events where PBS sends mail to users who are the job or reservation
owner, or are listed in the Mail_Users job or reservation attribute.

PBS_O_MAIL

Value of MAIL environment variable, taken from job submitter’s environment.

2.3 Queues

When a job is submitted to PBS and accepted, it is placed in a queue. Despite the fact that the name implies first-in, first-
out ordering of jobs, this is not the case. Job submission order does not determine job execution order. See Chapter 4,
"Scheduling", on page 53.

You can create different queues for different purposes: queues for certain kinds of jobs, queues for specific groups,
queues for specific vnodes, etc. You can tell PBS how to automatically route jobs into each queue. PBS has a default
execution queue named workq, where jobs are placed when no queue is requested. You can specify which queue should
be the default. See section 2.3.14, “Specifying Default Queue”, on page 32.

2.3.1 Kinds of Queues

2.3.1.1 Execution and Routing Queues

There are two main types of PBS queues: routing and execution.

• A routing queue is used only to move jobs to other queues. These destination queues can be routing or execution
queues, and can be located at different PBS servers. For more information on creating and using routing queues, see
section 2.3.6, “Routing Queues”, on page 25.

• An execution queue is used as the home for a waiting or running job. A job must reside in an execution queue to be
eligible to run. The job remains in the execution queue during the time it is running. See section 2.3.5, “Execution
Queues”, on page 23.
PBS Professional 2020.1.1 Administrator’s Guide AG-21

Chapter 2 Configuring the Server and Queues
2.3.1.2 Available Kinds of Queues

PBS supplies the following kinds of execution and routing queues:

2.3.2 Basic Queue Use

The simplest form of PBS uses just one queue. The queue is an execution queue named workq. This queue is always
created, enabled, and started for you during installation. After a basic installation, this queue is ready to hold jobs sub-
mitted by users.

2.3.3 Creating Queues

To create a queue, use the qmgr command to create it and set its queue_type attribute:

Qmgr: create queue <queue name>
Qmgr: set queue <queue_name> queue_type = <execution or route>

For example, to create an execution queue named exec_queue, set its type, start it, and enable it:

Qmgr: create queue exec_queue
Qmgr: set queue exec_queue queue_type = execution
Qmgr: set queue exec_queue enabled = True
Qmgr: set queue exec_queue started = True

Table 2-3: Kinds of Queues

Kind of Queue Description Link

Routing queues Used for moving jobs to another queue See section 2.3.6, “Routing Queues”, on page
25

Execution
queues

Reservation
queues

Created for reservation. Do not operate
on these directly; instead, operate on
the reservation.

See section 2.3.5.2.iv, “Reservation Queues”,
on page 24

Dedicated time
queues

Holds jobs that run only during dedi-
cated time.

See section 2.3.5.2.i, “Dedicated Time
Queues”, on page 24

Primetime
queues

Holds jobs that run only during prime-
time.

See section 2.3.5.2.ii, “Primetime and Non-
Primetime Queues”, on page 24

Non-primetime
queues

Holds jobs that run only during non-
primetime.

See section 2.3.5.2.ii, “Primetime and Non-
Primetime Queues”, on page 24

Anytime queues Queue with no dedicated time or
primetime restrictions

See section 2.3.5.2.iii, “Anytime Queues”, on
page 24

Express queues High-priority queue; priority is set to
the level signifying that it is an express
queue

See section 2.3.5.3.i, “Express Queues”, on
page 24

Anti-express
queue

Low-priority queue designed for work
that should run only when no other jobs
need the resources

See section 4.9.1, “Anti-Express Queues”, on
page 102
AG-22 PBS Professional 2020.1.1 Administrator’s Guide

Configuring the Server and Queues Chapter 2
Now we will create a routing queue, which will send jobs to our execution queue:

Qmgr: create queue routing_queue
Qmgr: set queue routing_queue queue_type = route
Qmgr: set queue routing_queue route_destinations = exec_queue

2.3.4 Enabling, Disabling, Starting, and Stopping Queues

When you enable a queue, you allow it to accept jobs, meaning that jobs can be enqueued in the queue. When you dis-
able a queue, you disallow it from accepting jobs. Queues are disabled by default. You enable a queue by setting its
enabled attribute to True:

Qmgr: set queue <queue name> enabled = True

When you start a queue, you allow the jobs in the queue to be executed. Jobs are selected to be run according to the
scheduling policy. When you stop a queue, you disallow jobs in that queue from running, regardless of scheduling pol-
icy. Queues are stopped by default. You start a queue by setting its started attribute to True:

Qmgr: set queue <queue name> started = True

2.3.5 Execution Queues

Execution queues are used to run jobs; jobs must be in an execution queue in order to run. PBS does not route from exe-
cution queues.

2.3.5.1 Where Execution Queues Get Their Jobs

By default, PBS allows jobs to be moved into execution queues via the qmove command, by hooks, from routing
queues, and by being submitted to execution queues. You can specify that an execution queue should accept only those
jobs that are routed from a routing queue by PBS, by setting the queue’s from_route_only attribute to True:

Qmgr: set queue <queue name> from_route_only = True

2.3.5.2 Execution Queues for Specific Time Periods

PBS provides a mechanism that allows you to specify that the jobs in an execution queue can run only during specific
time periods. PBS provides a different kind of execution queue for each kind of time period. The time periods you can
specify are the following:

Reservations

You can create an advance, standing, job-specific, or maintenance reservation. See section 4.9.37, “Reserva-
tions”, on page 197.

Dedicated time

Dedicated time is a period of time with a defined beginning and end. You can define multiple dedicated times.

Primetime

Primetime is a recurring time period with a defined beginning and end. You can define primetime to be different
for each day of the week.

Non-primetime

Non-primetime is a recurring time period with a defined beginning and end. Non-primetime begins when
primetime ends, and vice versa.
PBS Professional 2020.1.1 Administrator’s Guide AG-23

Chapter 2 Configuring the Server and Queues
Holidays

Holidays are dates defined in the <sched_priv directory>/holidays file. PBS provides an example
file with everything commented out, and you define your own holidays and primetime. Holiday time is treated
like non-primetime, meaning jobs in non-primetime queues run during holiday time.

Anytime queue

The term “anytime queue” means a queue that is not a primetime or a non-primetime queue.

2.3.5.2.i Dedicated Time Queues

The jobs in a dedicated time execution queue can run only during dedicated time. Dedicated time is defined in
<sched_priv directory>/dedicated_time. See section 4.9.10, “Dedicated Time”, on page 125.

To specify that a queue is a dedicated time queue, you prefix the queue name with the dedicated time keyword. This key-
word defaults to “ded”, but can be defined in the dedicated_prefix scheduler parameter in <sched_priv direc-
tory>/sched_config. See “dedicated_prefix” on page 250 of the PBS Professional Reference Guide.

2.3.5.2.ii Primetime and Non-Primetime Queues

The jobs in a primetime queue run only during primetime, and the jobs in a non-primetime queue run only during non-
primetime. Primetime and non-primetime are defined in <sched_priv directory>/holidays. See section
4.9.34, “Using Primetime and Holidays”, on page 191.

To specify that a queue is a primetime or non-primetime queue, you prefix the queue name with the primetime or non-
primetime keyword. For primetime, this keyword defaults to “p_”, and for non-primetime, the keyword defaults to
“np_”, but these can be defined in the primetime_prefix and nonprimetime_prefix scheduler parameters in
<sched_priv directory>/sched_config. See “Scheduler Parameters” on page 249 of the PBS Professional
Reference Guide.

2.3.5.2.iii Anytime Queues

An anytime queue is a queue whose jobs can run at any time. An anytime queue is simply a queue that is not a dedicated
time, primetime, or non-primetime queue.

2.3.5.2.iv Reservation Queues

When the pbs_rsub command is used to create a reservation or to convert a job into a reservation job, PBS creates a
reservation queue. Jobs in the queue run only during the reservation. Do not operate on these queues directly; instead,
operate on the reservations. See section 4.9.37, “Reservations”, on page 197.

2.3.5.3 Prioritizing Execution Queues

You can set the priority of each execution queue as compared to the other queues in this complex by specifying a value
for the priority queue attribute:

Qmgr: set queue <queue name> priority = <value>

A higher value for priority means the queue has greater priority. There is no limit to the priority that you can assign to a
queue, however it must fit within integer size. See “Queue Attributes” on page 311 of the PBS Professional Reference
Guide.

For how queue priority is used in scheduling, see section 4.9.36, “Queue Priority”, on page 196.

2.3.5.3.i Express Queues

A queue is an express queue if its priority is greater than or equal to the value that defines an express queue. This value
is set in the preempt_queue_prio parameter in <sched_priv directory>/sched_config. The default value
for preempt_queue_prio is 150.

You do not need to set by_queue to True in order to use express queues.
AG-24 PBS Professional 2020.1.1 Administrator’s Guide

Configuring the Server and Queues Chapter 2
For how express queues can be used, see section 4.9.18, “Express Queues”, on page 137.

2.3.6 Routing Queues

A routing queue is used only to route jobs; jobs cannot run from a routing queue. A routing queue has the following
properties:

• Can route to multiple destinations

• Tries destinations in round-robin fashion, in the order listed

• Can route to execution queues

• Can route to other routing queues

• Can route to queues in other complexes (at other servers)

Destinations can be specified in the following ways:

route_destinations = Q1

route_destinations = Q1@Server1

route_destinations = "Q1, Q2@Server1, Q3@Server2"

route_destinations += Q1

route_destinations += "Q4, Q5@Server3"

2.3.6.1 How Routing Works

Whenever a job is in a started routing queue, PBS immediately attempts to route the job to a destination queue. The result
is one of the following:

• The job is routed to one of the destination queues.

• The attempt to route is permanently rejected by each destination, and the job is deleted.

• Every destination rejects the job, but at least one rejection is temporary. In this case, the destination is tried again
later, after the amount of time specified in the routing queue’s route_retry_time attribute.

• If the job exceeds the time set in the queue’s route_lifetime attribute, the job is deleted.

If there are multiple routing queues containing jobs to be routed, the routing queues are processed in the order in which
they are displayed in the output of a qstat -Q command.

When PBS routes a job, it tries each destination in the order listed. The job’s destination is the first queue that accepts it.

Queue priority does not play a role in routing jobs.

2.3.6.2 Requirements for Routing Queues

• A routing queue’s destination queues must be created before being specified in the routing queue’s
route_destinations attribute.

• A routing queue’s route_destinations attribute must be specified before enabling and starting the routing queue.

• A routing queue must be enabled in order to route jobs.
PBS Professional 2020.1.1 Administrator’s Guide AG-25

Chapter 2 Configuring the Server and Queues
2.3.6.3 Caveats and Advice for Routing Queues

• Avoid routing loops. If a job makes more than 20 routing hops, it is discarded, and PBS sends mail to the job owner
if the job’s Mail_Points attribute contains “a” for “abort”. Avoid setting a routing queue’s destination to be the rout-
ing queue itself.

• When routing to a complex that is using failover, it's a good idea to include the names of both primary and secondary
servers in a routing destination:
route_destinations = "destQ@primary_server, destQ@secondary_server"

• When routing a job between complexes, the job’s owner must be able to submit a job to the destination complex.

• When routing to a destination in another complex, the source and destination complexes should use the same version
of PBS. If not, you may need a submission hook to modify incoming jobs.

• It is recommended to list the destination queues in order of the most restrictive first, because the first queue which
meets the job’s requirements and is enabled will be its destination

2.3.6.4 Using Resources to Route Jobs Between Queues

You can use resources to direct jobs to the desired queues. The server will automatically route jobs that are in routing
queues, based on job resource requests. The destination queue can be at the local server or at another server. If you have
more than one PBS complex, you may want to route jobs between the complexes, depending on the resources available at
each complex.

You can set up queues for specific kinds of jobs, for example jobs requesting very little memory, a lot of memory, or a
particular application. You can then route jobs to the appropriate queues.

A routing queue tests destination queues in the order listed in the queue’s route_destinations attribute. The job is placed
in the first queue that meets the job’s request and is enabled.

Please read all of the subsections for this section.

2.3.6.4.i How Queue and Server Limits Are Applied, Except Running Time

The following applies to to all resources except for min_walltime and max_walltime.

You can set a minimum and a maximum for each resource at each queue using the resources_min.<resource name>
and resources_max.<resource name> queue attributes. Any time a job is considered for entry into a queue, the job’s
resource request is tested against resources_min.<resource name> and resources_max.<resource name> for that
queue. The job’s resource request must be greater than or equal to the value specified in resources_min.<resource

name>, and less than or equal to the value specified in resources_max.<resource name>.

The job is tested only against existing resources_min.<resource name> and resources_max.<resource name> for
the queue.

Only those resources that are specified in the job’s resource request are tested, so if a job does not request a particular
resource, and did not inherit a default for that resource, the minimum and maximum tests for that resource are not applied
to the job.

If you want jobs requesting only a specific value for a resource to be allowed into a queue, set the queue’s
resources_min.<resource name> and resources_max.<resource name> to the same value. This resource can be
numeric, string, string array, or Boolean.

If you limit queue access using a string array, a job must request one of the values in the string array to be allowed into
the queue. For example, if you set resources_min.strarr and resources_max.strarr to “blue,red,black”, jobs can
request –l strarr=blue, -l strarr=red, or –l strarr=black to be allowed into the queue.
AG-26 PBS Professional 2020.1.1 Administrator’s Guide

Configuring the Server and Queues Chapter 2
2.3.6.4.ii How Queue and Server Running Time Limits are Applied

For shrink-to-fit jobs, running time limits are applied to max_walltime and min_walltime, not walltime. To set a running
time limit for shrink-to-fit jobs, you cannot use resources_max or resources_min for max_walltime or min_walltime.
Instead, use resources_max.walltime and resources_min.walltime. See section 4.9.42.6, “Shrink-to-fit Jobs and
Resource Limits”, on page 213.

2.3.6.4.iii Resources Used for Routing and Admittance

You can route jobs using the following kinds of resources:

• Any server-level or queue-level (job-wide) built-in or custom resource, whether it is numeric, string, or Boolean, for
example ncpus and software

When routing jobs with min_walltime and/or max_walltime, PBS examines the values for resources_min.walltime
and resources_max.walltime at the server or queue. See section 2.3.6.4.ii, “How Queue and Server Running Time
Limits are Applied”, on page 27.

• The following built-in chunk-level resources:

accelerator_memory

mem

mpiprocs

naccelerators

ncpus

nodect

vmem

• Custom vnode-level (chunk-level) resources that are global and have the n, q, or f flags set

• Any resource in the job’s Resource_List attribute; see section 5.9.2, “Resources Requested by Job”, on page 245.
For string or string array resources, see section 2.3.6.4.iv, “Using String, String Array, and Boolean Values for Rout-
ing and Admittance”, on page 27.

When jobs are routed using a chunk-level resource, routing is based on the sum of that resource across all chunks.

2.3.6.4.iv Using String, String Array, and Boolean Values for Routing and
Admittance

When using strings or string arrays for routing or admittance, you can use only job-wide (server-level or queue-level)
string or string array resources. String or string array resources in chunks are ignored. The resources_min and
resources_max attributes work as expected with numeric values. In addition, they can be used with string and Boolean
values to force an exact match; this is done by setting both to the same value. For example, to limit jobs entering queue
big to those that specify arch=unicos8, or that do not specify a value for arch:

Qmgr: set q App1Queue resources_max.software=App1
Qmgr: set q App1Queue resources_min.software=App1

2.3.6.4.v Examples of Routing Jobs

You can force all jobs into a routing queue, or you can allow users to request some queues but not others. If you set up
the default queue be a routing queue, and make all execution queues accept jobs only from routing queues, all jobs are
initially forced into a routing queue.
PBS Professional 2020.1.1 Administrator’s Guide AG-27

Chapter 2 Configuring the Server and Queues
Alternatively, you can set up one routing queue and a couple of execution queues which accept jobs only from routing
queues, but add other queues which can be requested. Or you could allow jobs to request the execution queues, by mak-
ing the execution queues also accept jobs that aren’t from routing queues.

Example 2-1: Jobs can request one execution queue named WorkQ. All jobs that do not request a specific queue are
routed according to their walltime:

• Create a routing queue RouteQ and make it the default queue:
Qmgr: create queue RouteQ queue_type = route
Qmgr: set server default_queue = RouteQ

• Create two execution queues, LongQ and ShortQ. One is for long-running jobs, and one is for short-running jobs:
Qmgr: create queue LongQ queue_type = execution
Qmgr: create queue ShortQ queue_type = execution

• Set resources_min.walltime and resources_max.walltime on these queues:
Qmgr: set queue LongQ resources_min.walltime = 5:00:00
Qmgr: set queue ShortQ resources_max.walltime = 4:59:00

• For LongQ and ShortQ, disallow jobs that are not from a route queue:
Qmgr: set queue LongQ from_route_only = True
Qmgr: set queue ShortQ from_route_only = True

• Set the destinations for RouteQ to be LongQ and ShortQ:
Qmgr: set queue RouteQ route_destinations = “ShortQ, LongQ”

• Create a work queue that can be requested:
Qmgr: create queue WorkQ queue_type = execution

• Enable and start all queues:
Qmgr: active queue RouteQ,LongQ,ShortQ,WorkQ
Qmgr: set queue enabled = True
Qmgr: set queue started = True

• Set default for walltime at the server so that jobs that don’t request it inherit the default, and land in ShortQ:
Qmgr: set server resources_default.walltime = 4:00:00

Example 2-2: Jobs are not allowed to request any queues. All jobs are routed to one of three queues based on the job’s
walltime request:

• Create a routing queue RouteQ and make it the default queue:
Qmgr: create queue RouteQ queue_type = route
Qmgr: set server default_queue = RouteQ

• Create three execution queues, LongQ, MedQ, and ShortQ. One is for long-running jobs, one is for medium jobs,
and one is for short-running jobs:
Qmgr: create queue LongQ queue_type = execution
Qmgr: create queue MedQ queue_type = execution
Qmgr: create queue ShortQ queue_type = execution

• Set resources_min.walltime and resources_max.walltime on these queues:
Qmgr: set queue LongQ resources_min.walltime = 10:00:00
Qmgr: set queue MedQ resources_max.walltime = 9:59:00
Qmgr: set queue MedQ resources_min.walltime = 5:00:00
Qmgr: set queue ShortQ resources_max.walltime = 4:59:00

• For LongQ, MedQ, and ShortQ, disallow jobs that are not from a route queue:
Qmgr: set queue LongQ from_route_only = True
Qmgr: set queue MedQ from_route_only = True
Qmgr: set queue ShortQ from_route_only = True
AG-28 PBS Professional 2020.1.1 Administrator’s Guide

Configuring the Server and Queues Chapter 2
• Set the destinations for RouteQ to be LongQ, MedQ and ShortQ:
Qmgr: set queue RouteQ route_destinations = “ShortQ, MedQ, LongQ”

• Enable and start all queues:
Qmgr: active queue RouteQ,LongQ,ShortQ,MedQ
Qmgr: set queue enabled = True
Qmgr: set queue started = True

2.3.6.4.vi Caveats for Queue Resource Limits

If a job is submitted without a request for a particular resource, and no defaults for that resource are set at the server or
queue, and either the server or queue has resources_max.<resource name> set, the job inherits that maximum value.
If the queue has resources_max.<resource name> set, the job inherits the queue value, and if not, the job inherits the
server value.

2.3.6.5 Using Access Control to Route Jobs

You can route jobs based on job ownership by setting access control limits at destination queues. A queue’s access con-
trol limits specify which users or groups are allowed to have jobs in that queue. Default behavior is to disallow an entity
that is not listed, so you need only list allowed entities.

To set the list of allowed users at a queue:

Qmgr: set queue <queue name> acl_users = “User1@*.example.com, User2@*.example.com”

To enable user access control at a queue:

Qmgr: set queue <queue name> acl_user_enable = True

To set the list of allowed groups at a queue:

Qmgr: set queue <queue name> acl_groups = “Group1, Group2”

To enable group access control at a queue:

Qmgr: set queue <queue name> acl_group_enable = True

For a complete explanation of access control, see section 8.3, “Using Access Control Lists”, on page 362.

2.3.6.6 Allowing Routing of Held or Waiting Jobs

By default, PBS will not route jobs that are held. You can allow a routing queue to route held jobs by setting the queue’s
route_held_jobs attribute to True:

Qmgr: set queue <queue name> route_held_jobs = True

By default, PBS will not route jobs whose execution_time attribute has a value in the future. You can allow a routing
queue to route jobs whose start time is in the future by setting the queue’s route_waiting_jobs attribute to True:

Qmgr: set queue <queue name> route_waiting_jobs = True

2.3.6.7 Setting Routing Retry Time

The default time between routing retries is 30 seconds. To set the time between routing retries, set the value of the
queue’s route_retry_time attribute:

Qmgr: set queue <queue name> route_retry_time = <value>
PBS Professional 2020.1.1 Administrator’s Guide AG-29

Chapter 2 Configuring the Server and Queues
2.3.6.8 Specifying Job Lifetime in Routing Queue

By default, PBS allows a job to exist in a routing queue for an infinite amount of time. To change this, set the queue’s
route_lifetime attribute:

Qmgr: set queue <queue name> route_lifetime = <value>

2.3.7 Queue Requirements

• Each queue must have a unique name. The name must be alphanumeric, and must begin with an alphabetic charac-
ter

• A server may have multiple queues of either or both types, but the server must have at least one execution queue
defined.

2.3.8 Queue Configuration Attributes

Queue configuration attributes fall into three groups:

• Those which apply to both types of queues

• Those which apply only to execution queues

• Those which apply only to routing queues

If an “execution queue only” attribute is set for a routing queue, or vice versa, it is ignored. However, as this situation
might indicate the administrator made a mistake, the server will write a warning message on stderr about the conflict.
The same message is written when the queue type is changed and there are attributes that do not apply to the new type.

See “Queue Attributes” on page 311 of the PBS Professional Reference Guide for a table of queue attributes.

2.3.9 Viewing Queue Status

To see the status of a queue, including values for attributes, use the qstat command:

qstat -Qf <queue name>

To see the status of all queues:

qstat -Qf

The status of the queue is reported in the State field. The field shows two letters. One is either E (enabled) or D (dis-
abled.) The other is R (running, same as started) or S (stopped.) Attributes with non-default values are displayed. See
“qstat” on page 197 of the PBS Professional Reference Guide.

The following queue attributes contain queue status information:
AG-30 PBS Professional 2020.1.1 Administrator’s Guide

Configuring the Server and Queues Chapter 2
total_jobs

state_count

resources_assigned

hasnodes

enabled

started

2.3.10 Deleting Queues

Use the qmgr command to delete queues.

Qmgr: delete queue <queue name>

2.3.10.1 Caveats for Deleting Queues

• A queue that has queued or running jobs cannot be deleted.

• A queue that is associated with a vnode via that vnode’s queue attribute cannot be deleted. To remove the associa-
tion, save the output of pbsnodes -a to a file and search for the queue. Unset the queue attribute for each associ-
ated vnode.

2.3.11 Defining Queue Resources

For each queue, you can define the resources you want to have available at that queue. To set the value for an existing
resource, use the qmgr command:

Qmgr: set queue <queue name> resources_available.<resource name> = <value>

For example, to set the value of the Boolean resource RunsMyApp to True at QueueA:

Qmgr: set queue QueueA resources_available.RunsMyApp = True

For information on how to define a new resource at a queue, see section 5.14, “Custom Resources”, on page 255.

For information on defining default resources at a queue, see section 5.9.3.3, “Specifying Job-wide Default Resources at
Queue”, on page 246 and section 5.9.3.2.ii, “Specifying Chunk Default Resources at Queue”, on page 246.

2.3.12 Setting Queue Resource Defaults

The jobs that are placed in a queue inherit the queue’s defaults for any resources not specified by the job’s resource
request. You can specify each default resource for each queue. This is described in section 5.9.3, “Specifying Job
Default Resources”, on page 245. Jobs inherit default resources according to the rules described in section 5.9.4, “Allo-
cating Default Resources to Jobs”, on page 247.

2.3.13 How Default Server and Queue Resources Are Applied
When Jobs Move

When a job is moved from one server to another, the following changes happen:

• Any default resources that were applied by the first server are removed

• Default resources from the new server are applied to the job
PBS Professional 2020.1.1 Administrator’s Guide AG-31

Chapter 2 Configuring the Server and Queues
When a job is moved from one queue to another, the following changes happen:

• Any default resources that were applied by the first queue are removed

• Default resources from the new queue are applied to the job

For more details on how default resources are inherited when a job is moved, see section 5.9.4.3, “Moving Jobs Between
Queues or Servers Changes Defaults”, on page 248.

2.3.14 Specifying Default Queue

PBS has a default execution queue named workq, where jobs are placed when no queue is requested. You can specify
which queue should be the default. To specify the queue which is to accept jobs when no queue is requested, set the
server’s default_queue attribute to the name of the queue:

Qmgr: set server default_queue = <queue name>

2.3.15 Associating Queues and Vnodes

You can set up vnodes so that they accept jobs only from specific queues. See section 4.9.2, “Associating Vnodes with
Queues”, on page 103.

2.3.16 Configuring Access to Queues

You can configure each queue so that only specific users or groups can submit jobs to the queue. See section 8.3, “Using
Access Control Lists”, on page 362.

2.3.17 Setting Limits on Usage at Queues

You can set limits on different kinds of usage at each queue:

• You can limit the size of a job array using the max_array_size queue attribute

• You can limit the number of jobs or the usage of each resource by each user or group, or overall. See section 5.15.1,
“Managing Resource Usage By Users, Groups, and Projects, at Server & Queues”, on page 287

2.3.18 Queues and Failover

For information on configuring routing queues and failover, see section 9.2.6.1, “Configuring Failover to Work with
Routing Queues”, on page 409.

2.3.19 Additional Queue Information

For a description of each queue attribute, see “Queue Attributes” on page 311 of the PBS Professional Reference Guide.

For information on using queues for scheduling, see section 4.6, “Using Queues in Scheduling”, on page 98.
AG-32 PBS Professional 2020.1.1 Administrator’s Guide

3

Configuring MoMs and Vnodes

3.1 About MoMs

A MoM runs and manages the jobs on each execution host. The pbs_mom daemon starts jobs on the execution host,
monitors and reports resource usage, enforces resource usage limits, manages job file transfer, and notifies the server
when the job is finished. When the MoM starts a job, she creates a new session that is as identical to the user’s login ses-
sion as is possible. For example, under Linux, if the user’s login shell is csh, then MoM creates a session in which
.login and .cshrc are run. MoM returns the job’s output to the user. The MoM performs any communication with job
tasks and with other MoMs. The MoM on the first vnode on which a job is running manages communication with the
MoMs on the remaining vnodes on which the job runs. The MoM on the first vnode is called the primary execution

host MoM.

The MoM writes a log file in PBS_HOME/mom_logs. The MoM writes an error message in its log file when it encoun-
ters any error. The MoM also writes other miscellaneous information to its log file. If it cannot write to its log file, it
writes to standard error.

You start a MoM via the pbs_mom command. The executable for pbs_mom is in PBS_EXEC/sbin, and can be run
only by root. For Linux, see “MoMs: Starting, Stopping, Restarting” on page 166 in the PBS Professional Installation &
Upgrade Guide, and for Windows, see “MoMs: Starting, Stopping, Restarting” on page 172 in the PBS Professional
Installation & Upgrade Guide.

The MoM also runs any prologue scripts before the job runs, and runs any epilogue scripts after the job runs.

PBS supplies a hook that you can use to manage cgroups on each execution host, and via the hook, cpusets. See Chapter
15, "Configuring and Using PBS with Cgroups", on page 561. If you are running the cgroups hook, any epilogue script
will not run. The cgroups hook has an execjob_epilogue event which takes precedence over an epilogue script, so if
you are running the cgroups hook, make your epilogue script into an execjob_epilogue hook instead.

3.1.1 Configuring MoMs

3.1.1.1 MoM Configuration File

During the installation process, PBS creates a Version 1 configuration file for each MoM. Each parameter in this file
controls some aspect of MoM’s behavior. To configure MoM’s behavior, edit this file, and set each parameter as desired.

The default location for the Version 1 configuration file is on MoM’s host, in PBS_HOME/mom_priv/config, or if
PBS_MOM_HOME is defined, PBS_MOM_HOME/mom_priv/config. It can be in a different location; in that case, MoM must be
started with the -c option. See “pbs_mom” on page 71 of the PBS Professional Reference Guide.

If you add or change anything via a Version 1 configuration file, you can HUP the MoM, but if you remove anything, you
must restart the MoM so that the default value is re-applied.

The Version 1 configuration file must be secure. It must be owned by a user ID and group ID both less than 10 and must
not be world-writable.

For a complete description of the syntax and contents of the Version 1 configuration file, see “MoM Parameters” on page
239 of the PBS Professional Reference Guide.
PBS Professional 2020.1.1 Administrator’s Guide AG-33

Chapter 3 Configuring MoMs and Vnodes
3.1.1.2 Editing Version 1 Files

Use your favorite text editor to edit Version 1 configuration files.

When you edit any PBS configuration file, make sure that you put a newline at the end of the file. The Notepad applica-
tion does not automatically add a newline at the end of a file; you must explicitly add the newline.

3.1.1.3 Caveats and Restrictions for Configuration Files

• The pbs_mom -d option changes where MoM looks for PBS_HOME, and using this option will change where
MoM looks for all configuration files. If you use the -d option, MoM will look in the new location for all MoM and
vnode configuration files. Instead, we recommend setting the location of PBS_HOME or PBS_MOM_HOME in /etc/
pbs.conf on MoM’s host.

• When you edit any PBS configuration file, make sure that you put a newline at the end of the file. The Notepad
application does not automatically add a newline at the end of a file; you must explicitly add the newline.

3.1.1.4 When MoM Reads Configuration Files

MoM reads pbs.conf at startup, and her own configuration files at startup and reinitialization. On Linux, this is when
pbs_mom receives a SIGHUP signal or is started or restarted, and on Windows, when MoM is started or restarted.

If you make changes to the hardware or a change occurs in the number of CPUs or amount of memory that is available to
PBS, such as a non-PBS process releasing a cpuset, you should restart PBS, by typing the following:

<path-to-script>/pbs restart

The MoM daemon is normally started by the PBS start/stop script.

When MoM is started, it opens its Version 1 configuration file, mom_priv/config, in the path specified in
pbs.conf, if the file exists. If it does not, MoM will continue anyway. The config file may be placed elsewhere or
given a different name, by starting pbs_mom using the -c option with the new file and path specified. See “MoMs:
Starting, Stopping, Restarting” on page 172 in the PBS Professional Installation & Upgrade Guide.

The files are processed in this order:

1. Version 1 configuration file

2. PBS reserved configuration files

3. Version 2 configuration files

Within each category, the files are processed in lexicographic order.

The contents of a file that is read later will override the contents of a file that is read earlier.

If there is an error in mom_priv/config, MoM will not start.

3.1.2 Configuring MoM Polling Cycle

3.1.2.1 Cgroups Hook Can Replace Polling

The cgroups hook (see Chapter 15, "Configuring and Using PBS with Cgroups", on page 561) can provide accurate
accounting information and job resource usage management, so that MoM does not need to perform periodic job
resource usage polling. If you use the cgroups hook to manage jobs at a host, MoM does not need to poll throughout the
life of the job, and the server and the datastore experience less traffic.

Each time a MoM polls, the server rewrites all of the job’s data to the datastore, causing traffic to the data store. If you
have smaller jobs, MoM needs to poll often in order to get reasonably accurate information. If you have many of these
jobs, this slows the server and reduces throughput.
AG-34 PBS Professional 2020.1.1 Administrator’s Guide

Configuring MoMs and Vnodes Chapter 3
Each job is always polled at the start and end, regardless of periodic polling. MoM polls at job end, before running the
epilogue, when she detects that the last job task is done. If the job was spawned with tm_spawn, MoM can get an accu-
rate value for cput. If the job was tm_attached and the cgroups hook is not running on the host, she cannot get an
accurate value for cput, because a process other than MoM reaped the job. For example, if memory is reaped by some-
thing other than MoM, there is no way to get usage. However, if the cgroups hook is managing that job, the hook can get
accurate usage.

If the cgroups hook manages the jobs at a host, MoM does not need to do any periodic job polling at that host.

3.1.2.2 Polling on Linux

MoM’s polling cycle is determined by the values of $min_check_poll and $max_check_poll in the Version 1 configu-
ration file. The interval between each poll starts at $min_check_poll and increases with each cycle until it reaches
$max_check_poll, after which it remains the same. The amount by which the cycle increases is the following:

(max_check_poll - min_check_poll + 19) / 20

The default value for $max_check_poll is 120 seconds. The minimum is 1 second.

The default value for $min_check_poll is 10 seconds. The minimum is 1 second.

The start of a new job resets the polling for all of the jobs being managed by this MoM.

MoM polls for resource usage for cput, walltime, mem and ncpus.

3.1.2.2.i Linux Polling Caveats

Please note that polling intervals cannot be considered to be exact:

• The polling calculation simply provides a minimum amount of time between one poll and the next.

• The actual time between polls can vary. The actual time taken by MoM also depends on the other tasks MoM is per-
forming, such as starting jobs, running a prologue or epilogue, etc.

• The timing of MoM’s activities is not completely under her control, because she is a user process.

• The finest granularity for calculating polling is in seconds.

3.1.2.3 Polling on Windows

On Windows, MoM updates job usage at fixed intervals of 10 seconds. The $min_check_poll and $max_check_poll
parameters are not used by MoM on Windows. MoM looks for any job that has exceeded a limit for walltime, mem, or
cput, and terminates jobs that have exceeded the limit.

3.1.2.4 How Polling is Used

• Job-wide limits are enforced by MoM using polling. See section 5.15.2.4.i, “Job Memory Limit Enforcement on
Linux”, on page 306. MoM can enforce cpuaverage and cpuburst resource usage. See section 5.15.2.5.i, “Aver-
age CPU Usage Enforcement”, on page 307 and section 5.15.2.5.ii, “CPU Burst Usage Enforcement”, on page 308.

• MoM enforces the $restrict_user access restrictions on the polling cycle controlled by $min_check_poll and
$max_check_poll. See section 14.4.7, “Restricting User Access to Execution Hosts”, on page 546.

• Cycle harvesting has its own polling interval. See “$kbd_idle <idle wait> <min use> <poll interval>” on page 243
of the PBS Professional Reference Guide for information on $kbd_idle.
PBS Professional 2020.1.1 Administrator’s Guide AG-35

Chapter 3 Configuring MoMs and Vnodes
3.1.2.5 Polling for Multi-host Jobs

Polling cycles are different on the primary execution host MoM and sister MoMs.

• The primary execution host MoM polls immediately when a task is started and again after the minimum polling
period, then continues polling at each maximum polling period

• Sister MoMs poll a full cycle after the first task is created there

3.1.2.6 Recommendations for Polling Interval

Consider the workload at the host, and the overall workload at the server, when you set polling intervals. MoM’s polling
period should depend on the length of the typical job, and the importance for your site of accurate accounting. If you
have many small jobs, frequent polling can take up a lot of MoM’s cycles, and cause heavy traffic for the datastore and
the server.

You may want to set $min_check_poll and $max_check_poll to somewhat higher values than the defaults. For exam-
ple, for a 1-hour job, you could poll at 10-minute intervals. We do not recommend a value for $max_check_poll of less
than 30 seconds. We do not recommend setting $min_check_poll to less than 10 seconds.

3.1.3 Files and Directories Used by MoM

If PBS_MOM_HOME is present in the pbs.conf file, pbs_mom will use that directory for its “home” instead of
PBS_HOME.

3.1.3.1 Linux Files and Directories Used by MoM

Under Linux, all files and directories that MoM uses must be owned by root. MoM uses the following files and directo-
ries:

Table 3-1: MoM Files and Directories Under Linux

File/Directory Description Permissions

/etc/pbs.conf File 0644

aux Directory 0755

checkpoint Directory 0700

checkpoint script File 0755

mom_logs Directory 0755

mom_priv Directory 0751

mom_priv/jobs Directory 0751

mom_priv/config File 0644

mom_priv/prologue File 0755

mom_priv/epilogue File 0755

pbs_environment File 0644

spool Directory 1777 (drwxrwxrwt)

undelivered Directory 1777 (drwxrwxrwt)
AG-36 PBS Professional 2020.1.1 Administrator’s Guide

Configuring MoMs and Vnodes Chapter 3
3.1.3.2 Linux Files and Directories Used by MoM

Under Windows, these directories must have at least Full Control permission for the local Administrators group. MoM
uses the following files and directories:

3.2 About Vnodes: Virtual Nodes

A virtual node, or vnode, is an abstract object representing a set of resources which form a usable part of a machine. This
could be an entire host, a NUMA node, a nodeboard, or a blade. A single host can be represented by one vnode or multi-
ple vnodes. PBS views hosts as being composed of one or more vnodes, and PBS can manage and schedule each vnode
independently. One PBS MoM manages all of the vnodes for each host.

Version 2 configuration files (optional) Files 0755

PBS reserved configuration files Files ----

Job temporary directory Directory 1777

Table 3-2: MoM Files and Directories Under Windows

File/Directory Description Ownership/Permission

pbs.conf File

auxiliary Directory At least Full Control permission for the local Administrators group and read-
only access to Everyone

checkpoint Directory At least Full Control permission for the local Administrators group

checkpoint script File At least Full Control permission for the local Administrators group

mom_logs Directory At least Full Control permission for the local Administrators group and read-
only access to Everyone

mom_priv Directory At least Full Control permission for the local Administrators group and read-
only access to Everyone

mom_priv/jobs Directory At least Full Control permission for the local Administrators group and read-
only access to Everyone

mom_priv/con-
fig

File At least Full Control permission for the local Administrators group

pbs_environme
nt

File At least Full Control permission for the local Administrators group and read-
only to Everyone

spool Directory Full access to Everyone

undelivered Directory Full access to Everyone

Job’s temporary
directory

Directory Writable by Everyone

Table 3-1: MoM Files and Directories Under Linux

File/Directory Description Permissions
PBS Professional 2020.1.1 Administrator’s Guide AG-37

Chapter 3 Configuring MoMs and Vnodes
3.2.1 Parent Vnodes and Child Vnodes

Each machine is represented by at least one vnode. The main vnode is called the parent vnode. Vnodes that represent
machine resources such as CPUs are called child vnodes.

For single-vnode machines, the parent vnode is also the child vnode, and this vnode represents all of the machine’s
resources, including its hardware.

For machines with more than one vnode, the parent vnode does not correspond to any actual hardware; instead, it is a col-
lection of information that applies to the host but not the individual vnodes, such as dynamic host-level resources and
shared resources. On multi-vnode machines, resources such as CPUs are represented in child vnodes.

3.3 Creating Vnodes

3.3.1 Overview of Creating Vnodes

1. For each machine, you create one parent vnode using qmgr. See "Creating the Parent Vnode” on page 40.

For a single-vnode machine, vnode creation is done.

2. For a machine which will have more than one vnode, after you create the parent vnode, PBS handles creation of the
child vnodes:

• If you run the cgroups hook with vnode_per_numa_node set to true, the cgroups hook creates all the local
child vnodes. We recommend using the cgroups hook for hosts where you need to fence jobs in or take advan-
tage of the topology to keep job processes on nearby resources. See "Creating Child Vnodes via Cgroups
Hook” on page 40.

• If you are not using the cgroups hook to create child vnodes, you can have PBS create any child vnodes. You
tell MoM which vnodes to create and how to set their attributes and resources by specifying them in a Version 2
configuration file. See "Creating Child Vnodes via Version 2 Configuration File” on page 40.

3. After all vnodes have been created, you can set vnode attributes and resources if necessary. See "Configuring
Vnodes” on page 41.

3.3.1.1 Overview of Creating Vnodes on Cray XC

On the Cray XC, you create the parent vnode for each login node and MAMU node. After that, MoM creates any child
vnodes.

3.3.2 How to Choose Vnode Names

MoM needs to know what name you will use for the parent vnode when she starts up. So if you decide to use a non-
default name, define the name before starting MoM.

By default, the cgroups hook and MoM use the non-canonicalized hostname returned by gethostname() for the host
as the vnode name. If you use the hostname, use the part before the first dot. You can use the hostname() command
without any extra flags to get the hostname:

hostname<return>

For example, if this returns “myhost.mydomain”, use “myhost”.

You can choose the name for the parent vnode, such as an alias, or a name bound to another IP address on the host.

Except for Cray XC, you can use the IP address as the name of the parent vnode.
AG-38 PBS Professional 2020.1.1 Administrator’s Guide

Configuring MoMs and Vnodes Chapter 3
To use any parent vnode name that is not the default, you must specify the name by setting the
PBS_MOM_NODE_NAME parameter in the host’s /etc/pbs.conf. For example, if you use a name that has a dot in it
and you don’t set PBS_MOM_NODE_NAME, hooks will fail.

If you’ve already started MoM, then in order for MoM to be able to use the non-default name, you need to make the
name available to her, then restart her. For example, to use the IP address:

1. Add PBS_MOM_NODE_NAME=<IP address> to pbs.conf on the execution host

2. Restart MoM

When PBS_MOM_NODE_NAME is defined, MoM performs a sanity check to ensure that the value is a resolvable
host.

3.3.2.1 Names of Child Vnodes

If the cgroups hook creates child vnodes, it creates them with the same name as the parent vnode, with an index number.
For example, on a machine with two NUMA nodes where each NUMA node is represented by a vnode, you’ll have the
parent vnode plus two child vnodes; if the parent vnode is named “myhost”, they are named “myhost[0]” and
“myhost[1]”.

If you create child vnodes via a Version 2 configuration file, each vnode in your complex must have a unique name
within the complex. We recommend using or at least including the name of the parent vnode, to ensure uniqueness and to
make vnodes recognizable. Do not use square brackets for anything but the index.

3.3.2.2 Caveats for Vnode Names

• Do not change the name of the parent vnode after you create it

• If there is a dot in the name, you must set resources_available.host by hand; otherwise the part after the dot is
stripped

• If you use an IP address as the name of a vnode, you must set it in PBS_MOM_NODE_NAME

• On Cray XC, you cannot use the IP address as the name of the vnode

• You cannot use a vnode attribute as the name of a vnode

• Vnode names are case-insensitive

• If you create a vnode with a different name from the short name returned by hostname, and you don’t set it in
PBS_MOM_NODE_NAME, the following happens:

• MoM creates a vnode whose name is the short name returned by hostname()

• The vnode you created is not recognized by MoM, and is marked stale

3.3.2.3 Errors and Logging for Vnode Names

• If PBS_MOM_NODE_NAME is unset and the call to gethostname() fails, or if PBS_MOM_NODE_NAME
is set and the value does not conform to RFCs 952 and 1123, the following message is printed to the MoM log:
Unable to obtain my host name

• Once the hostname is obtained, MoM ensures the hostname resolves properly. If the hostname fails to resolve, the
following message is printed to the MoM log:
Unable to resolve my host name
PBS Professional 2020.1.1 Administrator’s Guide AG-39

Chapter 3 Configuring MoMs and Vnodes
3.3.3 Creating the Parent Vnode

1. Make sure MoM can look up the name of the parent vnode when she starts. Follow the rules in section 3.3.2, “How
to Choose Vnode Names”, on page 38. Choose the name for the parent vnode:

• If you will use the default, make sure that PBS_MOM_NODE_NAME is not set, or set it to the default. To get
the default name, run this at MoM’s host, and use the part before the dot:
hostname<return>

• If you will use a non-default name, set it in PBS_MOM_NODE_NAME in /etc/pbs.conf on the MoM host.
For example, to use the IP address for the name of the vnode, add this to /etc/pbs.conf on the execution host:

PBS_MOM_NODE_NAME=<IP address>

2. Start MoM using systemd or the PBS start/stop script:

systemctl start pbs

or

<path to script>/pbs start

For details on starting and stopping MoM, see “Methods for Starting, Stopping, or Restarting PBS” on page 160 in
the PBS Professional Installation & Upgrade Guide.

3. Use the qmgr command to create the parent vnode:

qmgr -c 'create node <vnode name> [<attribute>=<value>]'

All comma-separated attribute-value strings must be enclosed in quotes:

qmgr -c 'create node <vnode name> ["<attribute>=<value>, <attribute>=<value>"]'

Attributes and their possible values are listed in “Vnode Attributes” on page 320 of the PBS Professional Reference
Guide.

3.3.4 Creating Child Vnodes for Multi-vnode Machines

3.3.4.1 Creating Child Vnodes via Cgroups Hook

If you are running the cgroups hook with vnode_per_numa_node set to true, the hook creates the local child vnodes.

1. If you have not done so yet, create the parent vnode; see Chapter 3, "Creating the Parent Vnode", on page 40.

2. Configure and enable the cgroups hook. Follow all the instructions in Chapter 15, "Configuring and Using PBS with
Cgroups", on page 561.

3. Restart the MoM:

<path to PBS start/stop script>/pbs restart

or

systemctl restart pbs

3.3.4.2 Creating Child Vnodes via Version 2 Configuration File

1. If you have not done so yet, create the parent vnode; see Chapter 3, "Creating the Parent Vnode", on page 40.

2. If you are not using the cgroups hook, you can create any child vnodes by defining the child vnodes you want in a
Version 2 configuration file, so MoM creates the vnodes for you.
AG-40 PBS Professional 2020.1.1 Administrator’s Guide

Configuring MoMs and Vnodes Chapter 3
Note that in prior versions of PBS, a Version 2 configuration file was the preferred method for advanced GPU con-
figuration (see "Advanced GPU Scheduling” on page 284). As of version 2020.1, the cgroups hook makes it much
easier for job submitters to request exclusive use of GPUs. However, if you want to continue to use Version 2 con-
figuration files for managing GPUs, you can do so.

See section 3.4.3.1, “Creating Version 2 Configuration Files”, on page 43.

3. Restart the MoM:

<path to PBS start/stop script>/pbs restart

or

systemctl restart pbs

4. Check for stale vnodes. Make sure you spell “Stale” with a capital S:

qmgr -c 'print node @default' | grep “Stale”

3.3.5 Caveats for Creating Vnodes

When using qmgr to create vnodes, create only the parent vnode on each host. Do not use qmgr to create child vnodes
on a multi-vnode host; MoM will not know about these, and cannot use them.

3.4 Configuring Vnodes

Each vnode has an associated set of attributes and resources, such as CPUs, memory, and partition. Vnode attributes are
listed and described in “Vnode Attributes” on page 320 of the PBS Professional Reference Guide. Vnode resources can
be built-in or custom (defined by you.) See Chapter 5, "Using PBS Resources", on page 229.

3.4.1 Methods for Configuring Vnodes

You may need to configure vnodes after you create them. You can use the following methods:

• Using exechost_startup hooks to set vnode attributes and resources

This method is powerful and flexible. You can interrogate the host; for example, you can check whether a vnode
exists before setting values for it. You can use this to set the sharing attribute and resources_available.host. If
the cgroups hook creates your vnodes, make sure that the cgroups hook runs before the hook that configures the
vnodes. Your exechost_startup hooks run when MoM is restarted. See "Setting and Unsetting Vnode Resources
and Attributes" on page 48 in the PBS Professional Hooks Guide.

• Using Version 2 vnode configuration files, either to modify vnodes created by the cgroups hook, or to tell MoM to
create the vnodes you specify. See section 3.4.3, “Version 2 Vnode Configuration Files”, on page 42.

Make sure that a Version 2 configuration file matches your available vnodes every time MoM is started. If your
machine reboots with a missing blade, your earlier placement set information will not make sense because child
vnode names will not match the available hardware. You can use a script to regenerate this file each time the
machine starts, and run the script before MoM is restarted.

You can use a Version 2 configuration file to set the sharing attribute and the value of resources_available.host
(you cannot set these via qmgr).

An advantage of using a Version 2 configuration file is that if you delete and re-create the parent vnode, you don’t
have to re-create this file. MoM automatically picks up everything in a Version 2 configuration file, whereas if you
use qmgr you have to re-run all your configuration commands.
PBS Professional 2020.1.1 Administrator’s Guide AG-41

Chapter 3 Configuring MoMs and Vnodes
If you use the cgroups hook to create child vnodes, and you want to modify these child vnodes, make sure you create
the Version 2 configuration file after the vnodes are created, and that you use the exact vnode names that the cgroups
hook knows about, by checking the output of pbsnodes -av.

If you set a value using qmgr, this value overrides the existing value, and you cannot change the value using another
method, such as a Version 2 configuration file. If you want to use a different method to set a value that has been set
via qmgr, use qmgr to unset the value, then HUP the MoM.

Version 2 configuration files are read when MoM is restarted. See section 3.4.3, “Version 2 Vnode Configuration
Files”, on page 42.

• Using the qmgr command to set vnode attribute and resource values

You can easily use qmgr to set values across your complex. You cannot use this to set the sharing attribute or
resources_available.host. If you delete and re-create a vnode, the effects of your configuration commands are
lost. Changes take place immediately. See “qmgr” on page 149 of the PBS Professional Reference Guide.

• Using the pbsnodes -o or pbsnodes -r command to mark all vnodes on a host as offline or not offline

You must use qmgr to change the state of a single vnode in a multi-vnode host. Changes take place immediately.
See “pbsnodes” on page 35 of the PBS Professional Reference Guide.

3.4.2 Rules for Configuring Vnodes

• If you are using the cgroups hook to create child vnodes and manage subsystems, do not change attribute or resource
values that are set by the cgroups hook.

• To set the sharing attribute or resources_available.host, you must use an exechost_startup hook or a Version 2
configuration file. You cannot use qmgr. See section 3.4.4, “Configuring the Vnode Sharing Attribute”, on page 46.

• Set the Mom attribute for the parent vnode only. You can set the initial value only via qmgr -c ‘create node
<vnode name>’ to tell the server at what IP address MoM is located. The server will later update it based on the
MoM’s response. The server only queries for the canonicalized address of the MoM host, unless you let it know via
the Mom attribute; if you have set PBS_LEAF_NAME in /etc/pbs.conf to something else, make sure you set the
Mom attribute at vnode creation.

3.4.2.1 Rules for Configuring Vnodes on Cray XC

• On Cray XC, we recommend using an exechost_startup hook instead of a Version 2 configuration file; the inven-
tory hook will detect any inconsistency and send a HUP to MoM.

• On Cray XC compute nodes, never change the sharing attribute.

• We do not recommend using Version 2 configuration files on Cray XC. A Version 2 configuration file on ALPS can
interfere with the mechanism whereby ALPS updates PBS. For example, changes to node state will make vnodes
stale. On Cray XC machines, compute nodes are not hosts; they are only vnodes, which means that they become
stale and not down when ALPS marks them no longer available to PBS. Mentioning such stale nodes in Version 2
configuration files would interfere with this mechanism.

3.4.3 Version 2 Vnode Configuration Files

Version 2 configuration files contain settings for vnode attributes and resources. For example, to change the sharing
vnode attribute or resources_available.host, you can use a Version 2 configuration file, or an exechost_startup hook,
but not qmgr. You can use more than one Version 2 configuration file per host, but make sure they do not conflict.

PBS places Version 2 configuration files in an area that is private to each installed instance of PBS.
AG-42 PBS Professional 2020.1.1 Administrator’s Guide

Configuring MoMs and Vnodes Chapter 3
It’s best to automate updates to Version 2 configuration files so that they are created at boot time to match available hard-
ware, because a change in hardware may create a mismatch with an old Version 2 configuration file. This ensures that a
Version 2 configuration file matches your available hardware every time MoM is started. If your machine reboots with a
missing blade, your earlier placement set information will not make sense because child vnode names will be not match
the available hardware. You can use a script to regenerate this file each time the machine starts, and run the script before
MoM is restarted.

An advantage of using a Version 2 configuration file is that if you delete and re-create the parent vnode, you don’t have to
re-create this file. MoM automatically picks up everything in a Version 2 configuration file, whereas if you use qmgr
you have to rerun all your configuration commands.

3.4.3.1 Creating Version 2 Configuration Files

Version 2 configuration files are created by PBS, through a process where you write a source file and then PBS copies it
to the location where Version 2 files are used. Instead of editing one of these directly, you create an input file and give it
as an argument to the pbs_mom -s insert option on the local host (pbs_mom -N -s insert on Windows), and
PBS creates a new configuration file for you.

You use the pbs_mom -s insert command to create Version 2 configuration files. On Windows, use the pbs_mom
command in standalone mode: pbs_mom -N -s insert.

First, you create an input file which is to be the contents of the configuration file. Then, you use the pbs_mom -s
insert command, on the host you want to configure:

Linux:

pbs_mom -s insert <Version 2 configuration file> <input file name>

Windows:

pbs_mom -N -s insert <Version 2 configuration file> <input file name>

After you create the new Version 2 configuration file, restart the MoM.

3.4.3.1.i Syntax of Version 2 Configuration Files

In a Version 2 configuration file, you tell PBS that it’s a Version 2 MoM configuration file by putting a special tag on the
first line:

$configversion 2

The rest of the file describes vnodes, with one attribute specification per line.

The format of the remaining contents of the file is the following:

<vnode name> : <attribute name> = <attribute value>

where

<vnode name>

Sequence of characters not including a colon (":"). The vnode name must be unique in this PBS complex. Vnode
names are case-insensitive. See “Vnode Name” on page 358 of the PBS Professional Reference Guide.

If you’re modifying vnodes created by the cgroups hook, the vnode name must exactly match the output of pbsn-
odes -av.

<attribute name>

Name of the attribute being specified. See “Attribute Name” on page 353 of the PBS Professional Reference Guide.

<attribute value>

Value being specified. Sequence of characters not including an equal sign ("="). See “Resource Formats” on page
359 of the PBS Professional Reference Guide.

White space around the colon and equal sign is ignored.
PBS Professional 2020.1.1 Administrator’s Guide AG-43

Chapter 3 Configuring MoMs and Vnodes
In a Version 2 configuration file, do not use quotes around string array values. This is different from using the qmgr
command; in the qmgr command line, you need to put quotes around the value.

Make sure that the first vnode entry is for the parent vnode. If you don’t need to set anything, you can set the ntype
attribute to “PBS” (the default).

Make sure that there is a newline at the end of the file. Under Windows, the Notepad application does not automatically
add a newline at the end of a file; you must explicitly add the newline.

Make sure that entries do not conflict, whether within one file or multiple files.

Do not use Version 1 (MoM configuration file) syntax or contents in Version 2 files, and vice versa.

3.4.3.1.ii Example of Creating Version 2 Configuration File

Example 3-1: If your machine named “myhost” has 4 vnodes, where two are big (myhost[0] and myhost[1]), and two are
small (myhost[2] and myhost[3]), and you want big jobs to have exclusive use of myhost[0] and myhost[1], and
small jobs to share myhost[2] and myhost[3]:

a. Set sharing for big and small vnodes by creating a file "set_sharing" containing the following:

$configversion 2

myhost: ntype = PBS

myhost[0]: sharing = default_excl

myhost[0]: resources_available.nodetype=big

myhost[1]: sharing = default_excl

myhost[1]: resources_available.nodetype=big

myhost[2]: sharing = default_shared

myhost[2]: resources_available.nodetype=small

myhost[3]: sharing = default_shared

myhost[3]: resources_available.nodetype=small

b. Use the pbs_mom -s insert <filename> <script> option at myhost to create its configuration file:

Linux:

pbs_mom -s insert sharing_config set_sharing

Windows:

pbs_mom -N -s insert sharing_config set_sharing

PBS creates the new Version 2 configuration file called “sharing_config”. Its contents will override previously-
read sharing settings.

c. Restart the MoM after changing the configuration file:

Linux:

kill -INT <MoM PID>

PBS_EXEC/sbin/pbs_mom

or

systemctl restart pbs

or

<path to start/stop script>/pbs restart

Windows:

net stop pbs_mom

net start pbs_mom

Jobs can then request nodetype = big or nodetype=small, or you can use a hook to route jobs, etc.
AG-44 PBS Professional 2020.1.1 Administrator’s Guide

Configuring MoMs and Vnodes Chapter 3
3.4.3.2 Listing and Viewing Version 2 Configuration Files

You can list and view the Version 2 configuration files at each host.

To see the list of Version 2 configuration files:

Linux:

pbs_mom -s list

Windows:

pbs_mom -N -s list

To display the contents of a Version 2 configuration file:

Linux:

pbs_mom -s show <filename>

Windows:

pbs_mom -N -s show <filename>

See “pbs_mom” on page 71 of the PBS Professional Reference Guide.

3.4.3.3 Moving Version 2 Configuration Files

To move a set of Version 2 configuration files from one MoM host to another:

1. List the Version 2 files at the source instance:
pbs_mom -s list

2. Save a copy of each file at the source instance:

pbs_mom -s show <V2 filename> > <new input file>

3. Create the new Version 2 configuration files at the destination host. For each file:

pbs_mom -s insert <Version 2 file> <new input file>

3.4.3.4 Removing Version 2 Configuration Files

You can remove a Version 2 configuration file:

Linux:

pbs_mom -s remove <filename>

Windows:

pbs_mom -N -s remove <filename>

See “pbs_mom” on page 71 of the PBS Professional Reference Guide.
PBS Professional 2020.1.1 Administrator’s Guide AG-45

Chapter 3 Configuring MoMs and Vnodes
3.4.3.5 Caveats for Version 2 Configuration Files

• If you are using the cgroups hook to create child vnodes at a host, and you use a Version 2 configuration file to mod-
ify those child vnodes:

• Make sure that you use exactly the same vnode names in the Version 2 configuration file as those that the
cgroups hook has created; check the output of pbsnodes -av.

• Do not use a Version 2 configuration file to change hardware settings for that host.

• If you set a value using qmgr, this value overrides the existing value, and you cannot change the value using another
method, such as a Version 2 configuration file. If you want to use a different method to set a value that has been set
via qmgr, use qmgr to unset the value, then HUP the MoM.

• The pbs_mom -d option changes where MoM looks for PBS_HOME, and using this option will change where
MoM looks for all configuration files. If you use the -d option, MoM will look in the new location for all MoM and
vnode configuration files. Instead, we recommend setting the location of PBS_HOME or PBS_MOM_HOME in /etc/
pbs.conf on MoM’s host.

• When you edit any PBS configuration file, make sure that you put a newline at the end of the file. The Notepad
application does not automatically add a newline at the end of a file; you must explicitly add the newline.

3.4.3.6 PBS Reserved Configuration Files

PBS reserved configuration files are created by PBS and are prefixed with "PBS". You cannot create or modify a config-
uration file whose name begins with “PBS”. Do not move PBS reserved configuration files.

3.4.4 Configuring the Vnode Sharing Attribute

When PBS places a job, it can do so on hardware that is either already in use or has no jobs running on it. PBS can make
the choice at the vnode level or at the host level. How this choice is made is controlled by a combination of the value of
each vnode’s sharing attribute and the placement requested by a job.

You can set each vnode’s sharing attribute so that the vnode or host is always shared, is always exclusive, or so that it
honors the job’s placement request. If the vnode attribute is set to force_shared or force_excl, the value of a vnode’s
sharing attribute takes precedence over a job’s placement request. If the vnode attribute is set to default_, the job
request overrides the vnode attribute.

Each vnode can be allocated exclusively to one job (each job gets its own vnodes), or its resources can be shared among
jobs (PBS puts as many jobs as possible on a vnode). If a vnode is allocated exclusively to a job, all of its resources are
assigned to the job. The state of the vnode becomes job-exclusive. No other job can use the vnode.

Hosts can also be allocated exclusively to one job, or shared among jobs. If a host is to be allocated exclusively to one
job, all of the host must be used: if any vnode from a host has its sharing attribute set to either default_exclhost or
force_exclhost, all vnodes on that host must have the same value for the sharing attribute.

For a complete description of the sharing attribute, and a table showing the interaction between the value of the sharing
attribute and the job’s placement request, see “sharing” on page 324 of the PBS Professional Reference Guide.

3.4.4.1 Sharing on a Multi-vnode Machine

On a multi-vnode shared-memory machine, a scheduler will share memory from a chunk even if all the CPUs are used by
other jobs. It will first try to put a chunk entirely on one vnode. If it can, it will run it there. If not, it will break the
chunk up across any vnode it can get resources from, even for small amounts of unused memory.

To keep a job in a single vnode, use -lplace=group=vnode; if you want to restrict it to larger sets of vnodes, identify
those sets using a custom string or string_array resource and use it in -lplace=group=<resource>. If you already have
resources used in node_group_key you can usually use these.
AG-46 PBS Professional 2020.1.1 Administrator’s Guide

Configuring MoMs and Vnodes Chapter 3
3.4.4.2 Setting the sharing Vnode Attribute

To set the sharing attribute for a vnode, use either:

• An exechost_startup hook; see "Setting and Unsetting Vnode Resources and Attributes" on page 48 in the PBS
Professional Hooks Guide

• A Version 2 configuration file; see section 3.4.4, “Configuring the Vnode Sharing Attribute”, on page 46

3.4.4.3 Viewing Sharing Information

You can use the qmgr or pbsnodes commands to view sharing information. See “qmgr” on page 149 of the PBS Pro-
fessional Reference Guide and “pbsnodes” on page 35 of the PBS Professional Reference Guide.

3.4.4.4 Sharing Caveats

• On the Cray XC, on cray_compute vnodes, the sharing attribute is set to force_exclhost by default. Do not
change this setting, because ALPS does not support sharing a compute vnode with more than one job.

• The term “sharing” is also used to describe the case where MoM manages a resource that is shared among her
vnodes, for example an application license shared by the vnodes of a multi-vnode machine.

• The term “sharing” is also used to mean oversubscribing CPUs, where more than one job is run on one CPU; the
jobs are “sharing” a CPU. See section 9.6.5, “Managing Load Levels on Vnodes”, on page 439

• If a host is to be allocated exclusively to one job, all of the host must be used: if any vnode from a host has its sharing
attribute set to either default_exclhost or force_exclhost, all vnodes on that host must have the same value for the
sharing attribute.

• For vnodes with sharing=default_shared, jobs can share a vnode, so that unused memory on partially-allocated
vnodes is allocated to a job. The exec_vnode attribute will show this allocation.

3.4.5 Configuring Vnode Resources

Before configuring vnode (host-level) resources, consider how you will use them. When configuring static resources, it
is best to configure global static resources. Even though they are global, they can be configured at the host level. Global
resources can be operated on via the qmgr command and viewed via the qstat command. When configuring dynamic
resources, if you need the script to run at the execution host, configure local dynamic resources. These resources cannot
be operated on via the qmgr command or viewed via the qstat command. See section 5.4, “Categories of Resources”,
on page 233.

3.4.5.1 Configuring Global Static Vnode Resources

You can create global custom static host-level resources that can be reported by MoM and used for jobs. Follow the
instructions in section 5.14.4.2, “Static Host-level Resources”, on page 270.

You can set values for built-in and custom global static vnode resources; see section 3.4.5, “Configuring Vnode
Resources”, on page 47.

3.4.5.2 Configuring Local Dynamic Vnode Resources

You can create local custom dynamic host-level resources. The primary use of this feature is to add site-specific
resources, such as software application licenses or scratch space. Follow the instructions in section 5.14.4.1, “Dynamic
Host-level Resources”, on page 269.
PBS Professional 2020.1.1 Administrator’s Guide AG-47

Chapter 3 Configuring MoMs and Vnodes
3.4.5.3 Rules for Configuring Vnode Resources

• In general, it is not advisable to set resources_available.ncpus or resources_available.mem to a value greater
than PBS has detected on the machine. This is because you do not want MoM to try to allocate more resources than
are available. However, if you have lots of I/O-bound jobs, you might get away with oversubscribing CPUs.

• In general, it is safe to set resources_available.ncpus or resources_available.mem to a value less than PBS has
detected. If you are using a Version 2 configuration file, consider setting ncpus lower to set aside some of the
resource for the operating system.

• For the parent vnode on a multi-vnode machine, set all values for resources_available.<resource name> to zero
(0), unless the resource is being shared among child vnodes via indirection. Here is an example of the vnode defini-
tion for a parent vnode:
host03: pnames = cbrick, router

host03: sharing = ignore_excl

host03: resources_available.ncpus = 0

host03: resources_available.mem = 0

host03: resources_available.vmem = 0

• When MoM creates a vnode, she automatically sets values for the following resources according to information
from the host:

resources_available.ncpus

resources_available.arch

resources_available.mem

• If you set the value of a resource via qmgr, that setting is carried forth across server restarts.

• If you add or change a value via a Version 2 configuration file, you can HUP the MoM. If you remove a value, you
must restart MoM so that she uses the default. (Hint: to avoid restarting MoM, use the configuration file to set the
default.)

• You can set values for the sharing attribute and resources_available.host only in an exechost_startup or
exechost_periodic hook, or in a Version 2 configuration file. You cannot use qmgr to set these.

• Version 2 configuration files take effect before exechost_startup hooks.

3.4.6 Configuring Vnodes via the qmgr Command

You can use the qmgr command to set attribute and resource values for individual vnodes, for single-vnode and multi-
vnode machines.

To set a vnode’s attribute:

qmgr -c ‘set node <vnode name> <attribute> = <value>’

We describe the qmgr command in “qmgr” on page 149 of the PBS Professional Reference Guide.
AG-48 PBS Professional 2020.1.1 Administrator’s Guide

Configuring MoMs and Vnodes Chapter 3
3.4.6.1 Caveats for Setting Values via qmgr Command

• When setting hardware resources, be careful about setting these to values that are higher than what MoM or the
cgroups hook did. If you have lots of I/O-bound jobs, you might get away with oversubscribing CPUs.

• It is usually safe to set hardware resources to values lower than what MoM or the cgroups hook did.

• If you are not using the cgroups hook, consider setting ncpus to a slightly lower value than what MoM reports, to
give some to the operating system.

• If you set a value using qmgr, this value overrides the existing value, and you cannot change the value using another
method, such as a Version 2 configuration file. If you want to use a different method to set a value that has been set
via qmgr, use qmgr to unset the value, then HUP the MoM.

• You cannot set the value of resources_available.host via the qmgr command.

3.4.7 Configuring Vnodes via the pbsnodes Command

You can use the pbsnodes command to set the state all of the vnodes on a host to be offline or not offline. To set the
state attribute of one or more hosts to offline:

pbsnodes -o <hostname [hostname ...]>

To remove the offline setting from the state attribute of one or more hosts:

pbsnodes -r <hostname [hostname ...]>

See “pbsnodes” on page 35 of the PBS Professional Reference Guide.

3.4.7.1 Caveats for pbsnodes Command

For multi-vnode hosts, the pbsnodes command operates on all of the host’s vnodes only. You cannot use it on individ-
ual vnodes where those vnodes are on multi-vnode machines. To operate on individual vnodes, use the qmgr command:

qmgr -c ‘set node <vnode name> state = <new state>‘

When you specify a hostname, the pbsnodes command looks for the value of a vnode’s resources_available.host
resource. If this is different from the PBS_MOM_NODE_NAME parameter, it may be helpful to use a Version 2 con-
figuration file to set resources_available.host to match the PBS_MOM_NODE_NAME parameter (you cannot use
qmgr for this).

Make sure that resources_available.host is unique for each host in your complex.

The pbsnodes -o <target host> command offlines everything with a matching resources_available.<target

host>.

3.5 Deleting Vnodes

3.5.1 Deleting the Vnode on a Single-vnode Machine

Use the qmgr command to delete the vnode:

Qmgr: delete node <vnode name>
PBS Professional 2020.1.1 Administrator’s Guide AG-49

Chapter 3 Configuring MoMs and Vnodes
3.5.2 Deleting Vnodes on a Multi-vnode Machine

3.5.2.1 Deleting Vnodes When Not Using Version 2 Configuration

File

4. Use the qmgr command to delete the vnodes:

Qmgr: delete node <vnode name>

3.5.2.2 Deleting Vnodes When Using Version 2 Configuration File

To delete one or more vnodes on a multi-vnode machine where there is a Version 2 configuration file, you must first
remove the configuration file. Then you can delete the vnodes. You may want to save the existing configuration file and
edit it down to just the vnodes you want to preserve. On the local host:

1. To see the list of Version 2 configuration files:

Linux:

pbs_mom -s list

Windows:

pbs_mom -N -s list

2. To save the contents of a Version 2 configuration file in “tempconfig”:

Linux:

pbs_mom -s show <filename> > tempconfig

Windows:

pbs_mom -N -s show <filename> > tempconfig

3. Edit tempconfig so that it describes only the vnodes you want to keep.

4. Use pbs_mom -s remove to remove the old Version 2 configuration file:

On Linux:

pbs_mom -s remove <filename>

On Windows:

pbs_mom -N -s remove <filename>

5. Use pbs_mom -s insert to create a new Version 2 configuration file describing the vnodes to be retained. If
you created tempconfig, it is your input file:

On Linux:

pbs_mom -s insert <configuration file target> <input file>

On Windows:

pbs_mom -N -s insert <configuration file target> <input file>

6. Restart the MoM:

<path to start/stop script>/pbs restart
AG-50 PBS Professional 2020.1.1 Administrator’s Guide

Configuring MoMs and Vnodes Chapter 3
or

systemctl restart pbs

7. Use the qmgr command to remove the vnodes no longer appearing in your configuration file:

Qmgr: delete node <vnode name>

8. Check for stale vnodes. Make sure you spell “Stale” with a capital S:

qmgr -c 'print node @default' | grep “Stale”

3.5.2.3 Deleting Vnodes on Cray XC

See section 11.16.8, “Deleting Vnodes on Cray XC”, on page 488.
PBS Professional 2020.1.1 Administrator’s Guide AG-51

Chapter 3 Configuring MoMs and Vnodes
AG-52 PBS Professional 2020.1.1 Administrator’s Guide

4

Scheduling

The "Scheduling Policy Basics" section of this chapter describes what PBS can do, so that you can consider these capa-
bilities when choosing how to schedule jobs. The "Choosing a Policy" section describes how PBS can meet the schedul-
ing needs of various workloads. The "Scheduling Tools" section describes each scheduling tool offered by PBS.

4.1 Chapter Contents

4.1 Chapter Contents . 53
4.2 Scheduling Each Partition Separately . 55

4.2.1 Creating and Configuring a Multisched . 55
4.2.2 Starting a Multisched . 57
4.2.3 Configuring Your Partitions for Multischeds. 57
4.2.4 Using the Default Scheduler with Multischeds . 58
4.2.5 Multisched Caveats and Restrictions . 58
4.2.6 Attributes Used with Multischeds . 58
4.2.7 Multisched Errors and Logging . 60
4.2.8 Multisched Deprecations . 62

4.3 Scheduling Policy Basics . 62
4.3.1 How Scheduling Can Be Used . 62
4.3.2 What Is Scheduling Policy? . 63
4.3.3 Basic PBS Scheduling Behavior. 63
4.3.4 Sub-goals . 63
4.3.5 Job Prioritization and Preemption . 64
4.3.6 Resource Allocation to Users, Projects & Groups . 70
4.3.7 Time Slot Allocation . 72
4.3.8 Job Placement Optimization. 73
4.3.9 Resource Efficiency Optimizations . 76
4.3.10 Overrides . 78

4.4 Choosing a Policy . 79
4.4.1 Overview of Kinds of Policies . 79
4.4.2 FIFO: Submission Order . 79
4.4.3 Prioritizing Jobs by User, Project or Group . 80
4.4.4 Allocating Resources by User, Project or Group . 80
4.4.5 Scheduling Jobs According to Size Etc. 82
4.4.6 Scheduling Jobs into Time Slots . 84
4.4.7 Default Scheduling Policy . 86
4.4.8 Examples of Workload and Policy . 88

4.5 About Schedulers . 89
4.5.1 Configuring a Scheduler. 89
4.5.2 Making a Scheduler Read its Configuration. 95
4.5.3 Scheduling on Resources . 95
4.5.4 Starting, Stopping, and Restarting a Scheduler . 95
4.5.5 The Scheduling Cycle. 96
4.5.6 How Available Consumable Resources are Counted . 97
PBS Professional 2020.1.1 Administrator’s Guide AG-53

Chapter 4 Scheduling
4.5.7 Improving Scheduler Performance. 97
4.6 Using Queues in Scheduling . 98
4.7 Scheduling Restrictions and Caveats . 99

4.7.1 One Policy Per Scheduler . 99
4.7.2 Jobs that Cannot Run on Current Resources . 99
4.7.3 Resources Not Controlled by PBS . 99
4.7.4 No Pinning of Processes to Cores. 100

4.8 Errors and Logging . 100
4.8.1 Logfile for scheduler . 100

4.9 Scheduling Tools. 100
4.9.1 Anti-Express Queues . 102
4.9.2 Associating Vnodes with Queues . 103
4.9.3 Using Backfilling . 105
4.9.4 Examining Jobs Queue by Queue. 110
4.9.5 Checkpointing. 111
4.9.6 Organizing Job Chunks . 112
4.9.7 cron Jobs . 112
4.9.8 Using Custom and Default Resources . 113
4.9.9 Using Idle Workstation Cycle Harvesting . 115
4.9.10 Dedicated Time. 125
4.9.11 Dependencies . 126
4.9.12 Dynamic Resources . 126
4.9.13 Eligible Wait Time for Jobs . 126
4.9.14 Sorting Jobs by Entity Shares (Was Strict Priority) . 131
4.9.15 Estimating Job Start Time . 131
4.9.16 Calculating Job Execution Priority. 134
4.9.17 Calendaring Jobs. 137
4.9.18 Express Queues. 137
4.9.19 Using Fairshare. 138
4.9.20 FIFO Scheduling. 148
4.9.21 Using a Formula for Computing Job Execution Priority . 149
4.9.22 Gating Jobs at Server or Queue . 155
4.9.23 Managing Application Licenses . 155
4.9.24 Limits on Per-job Resource Usage . 156
4.9.25 Limits on Project, User, and Group Jobs . 156
4.9.26 Limits on Project, User, and Group Resource Usage . 156
4.9.27 Using Load Balancing . 156
4.9.28 Matching Jobs to Resources . 159
4.9.29 Node Grouping . 162
4.9.30 Overrides . 162
4.9.31 Peer Scheduling . 165
4.9.32 Placement Sets . 168
4.9.33 Using Preemption . 180
4.9.34 Using Primetime and Holidays. 191
4.9.35 Provisioning . 196
4.9.36 Queue Priority. 196
4.9.37 Reservations . 197
4.9.38 Round Robin Queue Selection . 204
4.9.39 Routing Jobs . 205
4.9.40 Scheduler Cycle Speedup . 208
4.9.41 Shared vs. Exclusive Use of Resources by Jobs. 209
4.9.42 Using Shrink-to-fit Jobs . 210
4.9.43 SMP Cluster Distribution . 217
4.9.44 Using Soft Walltime . 218
AG-54 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.45 Sorting Jobs on a Key. 220
4.9.46 Sorting Jobs by Requested Priority . 222
4.9.47 Sorting Queues into Priority Order. 222
4.9.48 Starving Jobs. 222
4.9.49 Using Strict Ordering . 224
4.9.50 Sorting Vnodes on a Key . 225

4.2 Scheduling Each Partition Separately

You can leave your complex as a single default partition, or you can divide your complex into partitions, and run a sepa-
rate scheduler for each partition. PBS automatically creates a default partition containing all queues and vnodes that are
not explicitly labeled with a partition name. You can create named partitions, simply by labeling each queue and vnode
with the desired partition. You can choose whether to assign each queue and vnode to a specific partition, or to have it
remain as part of the default partition.

PBS has two kinds of schedulers:

• A default scheduler that handles the workload for the default partition (all queues and vnodes that have not been
explicitly assigned to a named partition)

The default scheduler runs its own scheduling policy.

You cannot assign any non-default partitions to the default scheduler.

The default scheduler runs only on the server host.

• A multisched that handles a named, non-default partition

Each multisched runs its own scheduling policy, and can schedule jobs for one named partition.

A multisched requires at least one queue and one vnode in its partition in order to be able to schedule jobs.

Multischeds cannot share partitions.

A multisched can run on any host.

A named partition is a collection of vnodes labeled with a partition name, along with one or more queues also labeled
with the same partition name. A vnode can be in at most one partition. You can put some or all of your vnodes into par-
titions, where they will be scheduled by the multisched assigned to the partition. You can also leave vnodes out of named
partitions; those vnodes will be scheduled by the default scheduler.

You can have as many named partitions and multischeds as you want. Each partition can have only one multisched. Each
partition requires at least one execution queue.

Each multisched schedules only from the queue(s) in its partition, and only to the vnode(s) in its partition. Jobs do not
span partitions.

You can define a unique policy for each scheduler.

4.2.1 Creating and Configuring a Multisched

4.2.1.1 Prerequisites for Creating a Multisched

You must be a PBS administrator or Manager to create a scheduler.

You must supply a name when you create a multisched. The maximum length for the name is 15 characters.
PBS Professional 2020.1.1 Administrator’s Guide AG-55

Chapter 4 Scheduling
Before you start a multisched, you must create the sched_priv and sched_log directories for it.

• The default name for the sched_priv directory is sched_priv_<multisched name>, and the default location is on
the server/scheduler host, directly under PBS_HOME, alongside the sched_priv of the default scheduler. You can set
the name and location as desired, but we recommend keeping it in PBS_HOME. The sched_priv directory should have
permissions 750, and should be accessible by the multisched. It should be owned by root. It cannot be shared with
another multisched.

• Populate the sched_priv directory with the following:
sched_config

Required.

holidays

Required.

resource_group

Necessary for fairshare tree.

dedicated_time

Required.

We provide default copies of these files in PBS_EXEC/etc.

• The default name and location for the multisched logging directory is sched_logs_<multisched name> (note the
plural), on the server/scheduler host, directly under PBS_HOME, alongside the sched_logs of the default scheduler.
You can set the name and location as desired, but we recommend keeping it in PBS_HOME. The sched_log directory
should have permissions 755, and should be accessible by the multisched. It should be owned by root. It cannot be
shared with another multisched.

4.2.1.2 Creating a Multisched

You use the qmgr command to create a scheduler:

qmgr -c "create sched <multisched name>"

For example:

qmgr -c "create sched multisched_1"

This creates a multisched with its attributes set to the defaults.

4.2.1.3 Configuring a Multisched

You must set the partition and sched_port multisched attributes:

qmgr -c "set sched <multisched name> partition = <partition name>"

qmgr -c "set sched <multisched name> sched_port = <port number>"

4.2.1.4 Enabling a Multisched

To enable a multisched, set its scheduling attribute to True:

qmgr -c "set sched <scheduler name> scheduling = 1"
AG-56 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.2.2 Starting a Multisched

Do not start a multisched until:

• Its sched_priv directory is ready. See section 4.2.1.1, “Prerequisites for Creating a Multisched”, on page 55

• You have assigned it a partition. See section 4.2.1.3, “Configuring a Multisched”, on page 56

4.2.2.1 Starting a Multisched on Linux

Start a multisched by calling pbs_sched and specifying the name and port you already gave it:

pbs_sched -I <name of multisched> -S <same value as sched_port for this multisched>

For example:

pbs_sched -I multisched_1 -S 15050

When you start a multisched, you must specify its name.

4.2.3 Configuring Your Partitions for Multischeds

To schedule using partitions, compose each partition and start its multisched:

• Put each vnode into at most one partition, or leave it in the default partition; partitions cannot share vnodes. If put-
ting the vnode into a named partition, set the value of the partition vnode attribute to the name of its partition:

qmgr -c set node <vnode name> partition=<partition name>

For example:

qmgr -c set node <vnode1> partition=<part1>

• Assign at least one execution queue to each named partition: set the value of the partition queue attribute to the
name of its partition:

qmgr -c set queue <queue name> partition=<partition name>

For example:

qmgr -c set queue <queue1> partition=<part1>

• Create the desired multisched. See section 4.2.1, “Creating and Configuring a Multisched”, on page 55.

• Assign a multisched to each named partition: set the value of the partition multisched attribute to the name of its par-
tition:

qmgr -c "set sched <multisched name> partition=<partition name>"

For example:

qmgr -c "set sched multisched_1 partition=part1"

• Enable the multisched:

qmgr -c ‘set sched <multisched name> scheduling=1’
For example:
qmgr -c 'set sched multisched_1 scheduling=1'

• Start the multisched, and specify the port number:

pbs_sched -I <name of multisched> -S <same value as sched_port for this multisched>

For example:

pbs_sched -I multisched_1 -S 15050
PBS Professional 2020.1.1 Administrator’s Guide AG-57

Chapter 4 Scheduling
4.2.4 Using the Default Scheduler with Multischeds

PBS automatically creates the default scheduler; its name is “default”. The sched_priv directory of the default scheduler
is always $PBS_HOME/sched_priv. The default scheduler writes its logs in $PBS_HOME/sched_logs. If you do nothing,
the default scheduler uses the default scheduling policy defined in the default sched_config file. Default behavior is
described in section 4.4.7, “Default Scheduling Policy”, on page 86. You can set the desired policy for the default sched-
uler. The default scheduler schedules jobs using queues and vnodes in the default partition.

4.2.4.1 Configuring the Default Scheduler

When you use the qmgr command to configure the default scheduler, specify its name:

qmgr -c "set sched default <attribute> = <value>"

For example:

qmgr -c "set sched default job_sort_formula_threshold = <value>"

4.2.5 Multisched Caveats and Restrictions

• You cannot delete the default scheduler.

• You cannot change the name of the default scheduler.

• You cannot set sched_host, sched_priv, or sched_port for the default scheduler.

• If you create a new queue or vnode without assigning it to a specific partition, it is scheduled by the default sched-
uler.

• You cannot assign a new multisched to a partition that is already assigned to a multisched, or vice versa. To make
the change, offline the vnodes, wait for jobs to finish running, then un-assign and re-assign the multisched or parti-
tion.

• You cannot change a queue to a routing queue when the queue has its partition attribute set.

• You cannot associate a vnode and a queue and assign them separate partitions.

• If there is more than one scheduler, job run limits for the entire complex set at the server are not supported. Queue
limits are enforced.

• All schedulers in the complex have as a default value for backfill_depth the value that is set at the server. For each
scheduler, this is overridden by the setting at a scheduler’s queue.

• All schedulers in the complex use the same value for job_sort_formula, so all schedulers use the same formula.

• If the complex has more than one scheduler, you cannot use complex-wide fairshare. Each scheduler manages its
own fairshare tree.

4.2.6 Attributes Used with Multischeds

partition

Scheduler attribute. Partition for which this scheduler is to run jobs. Cannot be set on default scheduler.

Format: String

Default: “None”
AG-58 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
partition

Vnode attribute. Name of partition to which this vnode is assigned. A vnode can be assigned to at most one
partition.

Settable by Manager and Operator, viewable by all.

Format: String

partition

Queue attribute. Name of partition to which this queue is assigned.

Cannot be set for routing queue.

An execution queue cannot be changed to a routing queue while this attribute is set.

Settable by Manager, administrator, viewable by all.

Format: String

sched_log

Scheduler attribute. Directory where this scheduler writes its logs. Permissions should be 755. Must be owned
by root. Cannot be shared with another scheduler. For default scheduler, directory is always PBS_HOME/
sched_log.

Settable by Manager, administrator, viewable by all.

Default: $PBS_HOME/sched_logs_<scheduler name>

sched_port

Scheduler attribute. Port on which this scheduler listens. Cannot be set on default scheduler.

Settable by Manager, administrator, viewable by all.

Default: None

sched_host

Scheduler attribute. Hostname on which scheduler runs.

Cannot be set on default scheduler; value for default scheduler is server hostname.

Settable by Manager or administrator, viewable by all.

scheduling

Scheduler attribute. Enables scheduling of jobs. If you set the server’s scheduling attribute, that value is
assigned to the default scheduler’s scheduling attribute, and vice versa.

Settable by Manager or administrator, viewable by all.

Default value for default scheduler: True

Default value for multisched: False

scheduler_iteration

Scheduler attribute. Time between scheduling iterations. If you set the server’s scheduler_iteration attribute,
that value is assigned to the default scheduler’s scheduler_iteration attribute, and vice versa.

Settable by Manager, administrator, viewable by all.

Default: 600

sched_priv

Scheduler attribute. Directory where this scheduler keeps fairshare usage, resource_group, holidays, and
sched_config. Must be owned by root. For default scheduler, directory is always PBS_HOME/sched_priv.

Settable by Manager or administrator, viewable by all.

Default: $PBS_HOME/sched_priv_<scheduler name>
PBS Professional 2020.1.1 Administrator’s Guide AG-59

Chapter 4 Scheduling
state

Scheduler attribute. State of this scheduler.

Set by server. Readable by all.

Valid values: one of down, idle, scheduling

down: scheduler is not running

idle: scheduler is running and is waiting for a scheduling cycle to be triggered

scheduling: scheduler is running and is in a scheduling cycle

Format: String

Default value for default scheduler: idle

Default value for multisched: down

comment

Scheduler attribute. Can be set by PBS or administrator. For certain scheduler errors, PBS sets the scheduler’s
comment attribute to specific error messages. You can use the comment field to notify another administrator
of something, but PBS does overwrite the value of comment under certain circumstances.

Format: String

4.2.6.1 Behavior of Attributes Shared by Server and Scheduler

If you set the server’s scheduling or scheduler_iteration attributes, the changes are applied to the default scheduler,
and its corresponding scheduling or scheduler_iteration attributes are given the new setting(s). The reverse is also
true.

4.2.7 Multisched Errors and Logging

4.2.7.1 Multisched Error Messages Appearing in Scheduler

Comment

A scheduler’s comment attribute can be set to specific error messages.

• Setting the sched_log attribute to an invalid value produces a scheduler comment. If the log directory is not acces-
sible by the scheduler:
Unable to change the sched_log directory

In addition, the scheduling attribute is set to False.

• Attempting to set the sched_priv attribute to an invalid value:
Unable to change the sched_priv directory

In addition, the scheduling attribute is set to False.

• Setting sched_priv to a directory that fails validation checking produces a scheduler comment. If the sched_priv
directory is not accessible by the scheduler, or the scheduler files are not found in the directory:
PBS failed validation checks for sched_priv directory

In addition, the scheduling attribute is set to False.
AG-60 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.2.7.2 Multisched Error Messages Appearing in Scheduler Logs

• Attempting to start a multisched before assigning it a partition:
Scheduler does not contain a partition

• When the partition has been removed from a multisched, the multisched is shut down.
Scheduler does not contain a partition

• When the scheduler cannot get its attribute information from the server:
Unable to retrieve the scheduler attributes from server

4.2.7.3 Multisched Error Messages Appearing in Server Logs

• Attempting to set sched_port, sched_priv, or sched_host for the default scheduler:
Operation is not permitted on default scheduler

• Attempting to set the partition for the default scheduler:
Operation is not permitted on default scheduler

In addition, the error code is set to 15223.

• Attempting to assign a sched_priv to a multisched while that directory is already assigned to another multisched:
Another scheduler has same value for its sched_priv directory

In addition, the error code is set to 15216.

• Attempting to assign a sched_log to a multisched while that directory is already assigned to another multisched:
Another scheduler has same value for its sched_log directory

In addition, the error code is set to 15215.

• If the server is not able to reach a scheduler one of the following messages appears:
Unable to reach scheduler associated with partition [<partition ID>]

Unable to reach scheduler associated with job <job ID>
PBS Professional 2020.1.1 Administrator’s Guide AG-61

Chapter 4 Scheduling
4.2.7.4 Multisched Errors Returned by qmgr Command

• Attempting to associate a vnode with a queue that has not been assigned to the same partition:
qmgr obj=<vnode name> svr=<server name>: Partition <partition name> is not part of queue for node

qmgr: Error (15220) returned from server

• Attempting to assign a partition to a vnode when that vnode is associated with a queue and the queue is not assigned
to the same partition:
qmgr obj=<vnode name> svr=<server name>: Queue <queue name> is not part of partition for node

qmgr: Error (15219) returned from server

• When a queue is associated with one or more vnodes, and a partition is assigned to the queue and vnodes, attempting
to change the queue’s partition:
qmgr obj=<queue name> svr=<server name>: Invalid partition in queue

qmgr: Error (15221) returned from server

• Attempting to assign a partition to a multisched while that partition is already assigned to another multisched:
Partition <partition name> is already associated with scheduler <scheduler name>.

• Attempting to set the partition attribute for a routing queue:
qmgr obj=<queue name> svr=<server name>: Cannot assign a partition to route queue

qmgr: Error (15217) returned from server

• Attempting to change an execution queue to a routing queue while the partition attribute is set:
qmgr obj=<queue name> svr=<server name>: Cannot queue_type=route if partition is set

qmgr: Error (15218) returned from server

4.2.8 Multisched Deprecations

Using qmgr on the default scheduler, without specifying it name, is deprecated. The old syntax is supported for back-
ward compatibility.

Example of old syntax:

qmgr -c "set sched job_sort_formula_threshold = <value>"

Same with new syntax:

qmgr -c "set sched default job_sort_formula_threshold = <value>"

4.3 Scheduling Policy Basics

4.3.1 How Scheduling Can Be Used

You can use the scheduling tools provided by PBS to implement your chosen scheduling policy, so that your jobs run in
the way you want.
AG-62 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
Your policy can do the following:

• Prioritize jobs according to your specification

• Run jobs according to their relative importance

• Award specific amounts of resources such as CPU time to projects, users, and groups according to rules that you set

• Make sure that resources are not misused

• Optimize how jobs are placed on vnodes, so that jobs run as efficiently as possible

• Use special time slots for particular tasks

• Optimize throughput or turnaround time for jobs

4.3.2 What Is Scheduling Policy?

Scheduling policy determines when each job is run and on which resources. In other words, a scheduling policy
describes a goal, or intended behavior. For convenience, we describe a scheduling policy as being a combination of sub-
goals, for example a combination of how resources should be allocated and how efficiency should be maximized.

You implement a scheduling policy using the tools PBS provides. A scheduling tool is a feature that allows you control
over some aspect of scheduling. For example, the job sorting formula is a tool that allows you to define how you want
job execution priority to be computed. Some scheduling tools are supplied by the PBS scheduler(s), and some are sup-
plied by other elements of PBS, such as the hooks, server, queues or resources.

You can group the resources in your complex into partitions, and you can run a separate scheduling policy on each parti-
tion.

4.3.3 Basic PBS Scheduling Behavior

The basic behavior of PBS is that it always places jobs where it finds the resources requested by the job. PBS will not
place a job where that job would use more resources than PBS thinks are available. For example, if you have two jobs,
each requesting 1 CPU, and you have one vnode with 1 CPU, PBS will run only one job at a time on the vnode. You do
not have to configure PBS for this basic behavior.

PBS determines what hardware resources are available and configures them for you. However, you do have to inform
PBS which custom resources and non-hardware resources are available and where, how much, and whether they are con-
sumable or not. In addition, in order to ensure that jobs are sent to the appropriate vnodes for execution, you also need to
make sure that they request the correct resources. You can do this either by having users submit their jobs with the right
resource requests, using hooks that set job resources, or by configuring default resources for jobs to inherit.

4.3.4 Sub-goals

Your scheduling policy is the combination that you choose of one or more sub-goals. For example, you might need to
meet two particular sub-goals: you might need to prioritize jobs a certain way, and you might need to use resources effi-
ciently. You can choose among various outcomes for each sub-goal. For example, you can choose to prioritize jobs
according to size, owner, owner’s usage, time of submission, etc.
PBS Professional 2020.1.1 Administrator’s Guide AG-63

Chapter 4 Scheduling
In the following sections, we describe the tools PBS offers for meeting each of the following sub-goals.

• Job prioritization and preemption; see section 4.3.5, “Job Prioritization and Preemption”, on page 64.

• Resource allocation & limits; see section 4.3.6, “Resource Allocation to Users, Projects & Groups”, on page 70.

• Time slot allocation; see section 4.3.7, “Time Slot Allocation”, on page 72.

• Job placement optimizations; see section 4.3.8, “Job Placement Optimization”, on page 73.

• Resource efficiency optimizations; see section 4.3.9, “Resource Efficiency Optimizations”, on page 76.

• Overrides; see section 4.3.10, “Overrides”, on page 78.

4.3.5 Job Prioritization and Preemption

Job prioritization is any technique you use to come up with a ranking of each job’s relative importance. You can specify
separate priority schemes for both execution and preemption.

4.3.5.1 Where PBS Uses Job Priority

PBS calculates job priority for two separate tasks: job execution and job preemption. Job execution priority is used with
other factors to determine when to run each job. Job preemption priority is used to determine which queued jobs are
allowed to preempt which running jobs in order to use their resources and run. These two tasks are independent, and it is
important to make sure that you do not make them work at cross-purposes. For example, you do not want to have a class
of jobs having high execution priority and low preemption priority; these jobs would run first, and then be preempted
first.

Preemption comes into play when a scheduler examines the top job and determines that it cannot run now. If preemption
is enabled, a scheduler checks to see whether the top job has sufficient preemption priority to be able to preempt any run-
ning jobs, and then if it does, whether preempting jobs would yield enough resources to run the top job. If both are true,
a scheduler preempts running jobs and runs the top job.

If you take no action to configure how jobs should be prioritized, they are considered in submission order, one queue at a
time. If you don’t prioritize queues, the queues are examined in an undefined order.

4.3.5.2 Overview of Prioritizing Jobs

PBS provides several tools for setting job execution priority. There are queue-based tools for organizing jobs, moving
them around, and specifying the order in which groups of jobs should be examined. There are tools for sorting jobs into
the order you want. There is a meta-tool (strict ordering) that allows you to specify that the top job must go next, regard-
less of whether the resources it requires are available now.

A scheduler can use multiple sorting tools, in succession. You can combine your chosen sorting tools with queue-based
tools to give a wide variety of behaviors. Most of the queue-based tools can be used together. A scheduler can treat all
jobs as if they are in a single queue, considering them all with respect to each other, or it can examine all queues that have
the same priority as a group, or it can examine jobs queue by queue, comparing each job only to other jobs in the same
queue.

You can change how execution priority is calculated, depending on which time slot is occurring. You can divide time up
into primetime, non-primetime, and dedicated time.

When a scheduler calculates job execution priority, it uses a built-in system of job classes. PBS runs special classes of
jobs before it considers queue membership. These classes are for reservation, express, preempted, and starving jobs.
Please see section 4.9.16, “Calculating Job Execution Priority”, on page 134. After these jobs are run, a scheduler fol-
lows the rules you specify for queue behavior. Within each queue, jobs are sorted according to the sorting tools you
choose.
AG-64 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.3.5.3 Using Queue-based Tools to Prioritize Jobs

4.3.5.3.i Using Queue Order to Affect Order of Consideration

When a scheduler examines queued jobs, it can consider all of the jobs in its partition as a whole, it can round-robin
through groups of queues where the queues are grouped by priority, or it can examine jobs in only one queue at a time.
These three systems are incompatible. Queues are always sorted by priority.

The by_queue scheduler parameter controls whether a scheduler runs all the jobs it can from the highest-priority queue
before moving to the next, or treats all jobs as if they are in a single queue. By default, this parameter is set to True.
When examining jobs one queue at a time, a scheduler runs all of the jobs it can from the highest-priority queue first,
then moves to the next highest-priority queue and runs all the jobs it can from that queue, and so on. See section 4.9.4,
“Examining Jobs Queue by Queue”, on page 110.

The round_robin scheduler parameter controls whether or not a scheduler round-robins through queues. When a sched-
uler round-robins through queues, it groups the queues by priority, and round-robins first through the highest-priority
group, then the next highest-priority group, and so on, running all of the jobs that it can from that group. So within each
group, if there are multiple queues, a scheduler runs the top job from one queue, then the top job from the next queue, and
so on, then goes back to the first queue, runs its new top job, goes to the next queue, runs its new top job, and so on until
it has run all of the jobs it can from that group. All queues in a group must have exactly the same priority. The order in
which queues within a group are examined is undefined. If all queues have different priorities, a scheduler starts with the
highest-priority queue, runs all its jobs, moves to the next, runs its jobs, and so on until it has run all jobs from each
queue. This parameter overrides by_queue. See section 4.9.38, “Round Robin Queue Selection”, on page 204.

If you want queues to be considered in a specific order, you must assign a different priority to each queue. Queues are
always sorted by priority. See section 4.9.47, “Sorting Queues into Priority Order”, on page 222. Give the queue you
want considered first the highest priority, then the next queue the next highest priority, and so on. If you want groups of
queues to be considered together for round-robining, give all queues in each group one priority, and all queues in the next
group a different priority. If the queues don’t have priority assigned to them, the order in which they are considered is
undefined. To set a queue’s priority, use the qmgr command to assign a value to the priority queue attribute. See section
2.3.5.3, “Prioritizing Execution Queues”, on page 24.

4.3.5.3.ii Using Express Queues in Job Priority Calculation

You can create express queues, and route jobs into them, if you want to give those jobs special priority.

An express queue is a queue whose priority is high enough to qualify as an express queue; the default for qualification is
150, but this can be set using the preempt_queue_prio scheduler attribute. For information on configuring express
queues, see section 2.3.5.3.i, “Express Queues”, on page 24.

When calculating execution priority, a PBS scheduler uses a built-in job class called “Express” which contains all jobs
that have a preemption level greater than that of the normal_jobs level. By default, those jobs are jobs in express queues.
See section 4.9.16, “Calculating Job Execution Priority”, on page 134.

You can create preemption levels that include jobs in express queues. Jobs in higher preemption levels are allowed to
preempt jobs in lower levels. See section 4.9.33, “Using Preemption”, on page 180.

4.3.5.3.iii Routing Jobs into Queues

You can configure PBS to automatically put each job in the most appropriate queue. There are several approaches to this.
See section 4.9.39, “Routing Jobs”, on page 205.

4.3.5.3.iv Using Queue Priority when Computing Job Priority

You can configure a scheduler so that job priority is partly determined by the priority of the queue in which the job
resides. See section 4.9.36, “Queue Priority”, on page 196.
PBS Professional 2020.1.1 Administrator’s Guide AG-65

Chapter 4 Scheduling
4.3.5.4 Using Job Sorting Tools to Prioritize Jobs

A scheduler can use multiple job sorting tools in succession to determine job execution priority. A scheduler groups all
jobs waiting to run into classes, and then applies the sorting tools you choose to all jobs in each class.

• You can create a formula that a scheduler uses to sort jobs. A scheduler applies this formula to all jobs in its parti-
tion, using it to calculate a priority for each job. For example, you can specify in the formula that jobs requesting
more CPUs have higher priority. If the formula is defined, it overrides fairshare and sorting jobs on keys. See sec-
tion 4.9.21, “Using a Formula for Computing Job Execution Priority”, on page 149.

• You can use the fairshare algorithm to sort jobs. This algorithm allows you to set a resource usage goal for users or
groups. Jobs are prioritized according to each entity’s usage; jobs whose owners have used the smallest percentage
of their allotment go first. For example, you can track how much CPU time is being used, and allot each group a
percentage of the total. See section 4.9.19, “Using Fairshare”, on page 138.

• You can sort jobs according to the same usage allotments you set up for fairshare. In this case, jobs whose owners
are given the highest allotment go first. See section 4.9.14, “Sorting Jobs by Entity Shares (Was Strict Priority)”, on
page 131.

• You can sort jobs on one or more keys, for example, you can sort jobs first by the number of CPUs they request, then
by the amount of memory they request. You can specify that either the high or the low end of the resulting sort has
higher priority.

You can create a custom resource, and use a hook to set a value for that resource for each job, and then sort on the
resource.

See section 4.9.45, “Sorting Jobs on a Key”, on page 220.

• You can run jobs in the order in which they were submitted. See section 4.9.20, “FIFO Scheduling”, on page 148.

• You can run jobs according to the priority requested for each job at submission time. This priority can be set via a
hook. See section 4.9.46, “Sorting Jobs by Requested Priority”, on page 222 and the PBS Professional Hooks
Guide.

4.3.5.5 Prioritizing Jobs by Wait Time

You can use the amount of time a job has been waiting to run in the priority calculation. There are two ways to measure
wait time:

• Eligible waiting time: how long a job has been waiting to run due to a shortage of resources, rather than because its
owner isn’t allowed to run jobs now. See section 4.9.13, “Eligible Wait Time for Jobs”, on page 126

• Amount of time waiting in the queue

Both of these ways can be used when computing whether or not a job is starving. You can specify how long a job must
be waiting to be considered starving. See section 4.9.48, “Starving Jobs”, on page 222.

You can use a job’s eligible waiting time in the job sorting formula. See section 4.9.21, “Using a Formula for Computing
Job Execution Priority”, on page 149.

When a job is considered to be starving, it is automatically assigned special execution priority, and placed in the Starving
execution priority class; see section 4.9.16, “Calculating Job Execution Priority”, on page 134. You can configure pre-
emption levels that include starving jobs; see section 4.9.33, “Using Preemption”, on page 180.

4.3.5.6 Calculating Preemption Priority

Execution priority and preemption priority are two separate systems of priority.
AG-66 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
By default, if the top job cannot run now, and it has high preemption priority, a scheduler will use preemption to run the
top job. A scheduler will preempt jobs with lower preemption priority so that it can use the resources to run the top job.
The default definition of jobs with high preemption priority is jobs in express queues. You can configure many levels of
preemption priority, specifying which levels can preempt which other levels. See section 4.9.33, “Using Preemption”, on
page 180.

4.3.5.7 Making Preempted Jobs Top Jobs

You can specify that a scheduler should make preempted jobs be top jobs. See section 4.9.3.7, “Configuring Backfill-
ing”, on page 107.

4.3.5.8 Preventing Jobs from Being Preempted

You may have jobs that should not be preempted, regardless of their priority. These can be jobs which cannot be effec-
tively preempted, so that preempting them would waste resources. To prevent these jobs from being preempted, do one
or both of the following:

• Set a value for the preempt_targets resource at all jobs that specify a value for a custom resource. For example,
define a Boolean resource named Preemptable, and add “Resource_List.Preemptable=true” to preempt_targets for
all jobs. Then set the value of Resource_List.Preemptable to False for the jobs you don’t want preempted.

For example, if we want JobA and JobB to be able to preempt Job1 and Job2, but not Job3:

Define a Boolean resource named “Preemptable”

For Job1 and Job2, set Resource_List.Preemptable to True:

qsub ... -l Preemptable=True ...

or

qalter -l Preemptable=True Job1 Job2

For Job3, set Resource_List.Preemptable to False:

qalter -l Preemptable=False Job3

For JobA and JobB, set Resource_List.preempt_targets to “Preemptable=True”:

qalter -l preempt_targets=Resource_List.Preemptable=True JobA JobB

• Route jobs you don’t want preempted to one or more specific queues, and then use a hook to make sure that no jobs
specify these queues in their preempt_targets.

4.3.5.9 Meta-priority: Running Jobs Exactly in Priority Order

By default, when scheduling jobs, PBS orders jobs according to execution priority, then considers each job, highest-pri-
ority first, and runs the next job that can run now. If a job cannot run now because the resources required are unavailable,
the default behavior is to skip the job and move to the next in order of priority.

You can tell PBS to use a different behavior called strict ordering. This means that you tell PBS that it must not skip a
job when choosing which job to run. If the top job cannot run, no job runs.

You can see that using strict ordering could lead to decreased throughput and idle resources. In order to prevent idle
resources, you can tell PBS to run small filler jobs while it waits for the resources for the top job to become available.
These small filler jobs do not change the start time of the top job. See section 4.9.49, “Using Strict Ordering”, on page
224 and section 4.9.3, “Using Backfilling”, on page 105.
PBS Professional 2020.1.1 Administrator’s Guide AG-67

Chapter 4 Scheduling
4.3.5.10 Using Different Calculations for Different Time Periods

PBS allows you to divide time into two kinds, called primetime and non-primetime. All time is covered by one or the
other of these two kinds of time. The times are arbitrary; you can set them up however you like. You can also choose not
to define them, and instead to treat all time the same.

You can configure two separate, independent ways of calculating job priority for primetime and non-primetime. The
same calculations are used during dedicated time; dedicated time is a time slot made up of primetime and/or non-prime-
time. Many scheduler parameters are prime options, meaning that they can be configured separately for primetime and
non-primetime. For example, you can configure fairshare as your sorting tool during primetime, but sort jobs on a key
during non-primetime.

If you use the formula, it is in force all of the time.

See section 4.9.34, “Using Primetime and Holidays”, on page 191.

4.3.5.11 When Priority Is Not Enough: Overrides

Sometimes, the tools available for setting job priority don’t do everything you need. For example, it may be necessary to
run a job right away, regardless of what else is running. Or you may need to put a job on hold. Or you might need to
tweak the way the formula works for the next N jobs. See section 4.9.30, “Overrides”, on page 162.

4.3.5.12 Elements to Consider when Prioritizing Jobs

• Whether users, groups, or projects affect job priority: for techniques to use user, group, or project to affect job prior-
ity, see section 4.4.3, “Prioritizing Jobs by User, Project or Group”, on page 80.

• Reservation jobs: jobs in reservations cannot be preempted.

• Starving jobs: PBS has a built-in execution priority for starving jobs, but you can give starving jobs the highest exe-
cution priority by giving them the highest preemption priority and enabling preemption. See section 4.9.16, “Calcu-
lating Job Execution Priority”, on page 134 and section 4.9.33, “Using Preemption”, on page 180.

• Express jobs: PBS has a built-in execution priority for express jobs. You can set the preemption priority for express
jobs; see section 4.9.33, “Using Preemption”, on page 180.

• Preempted jobs: PBS has a built-in execution priority for preempted jobs. See section 4.9.16, “Calculating Job Exe-
cution Priority”, on page 134.

• Large or small jobs: you may want to give large and/or small jobs special treatment. See section 4.4.5, “Scheduling
Jobs According to Size Etc.”, on page 82.

• User’s priority request for job: the job submitter can specify a priority for the job at submission. You can sort jobs
according to each job’s specified priority. See section 4.9.46, “Sorting Jobs by Requested Priority”, on page 222.

• Whether the top job must be the next to run, regardless of whether it can run now; see section 4.9.49, “Using Strict
Ordering”, on page 224.
AG-68 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.3.5.13 List of Job Sorting Tools

4.3.5.13.i Queue-based Tools for Organizing Jobs

• Queue-by-queue: PBS runs all the jobs it can from the first queue before moving to the next queue. Queue order is
determined by queue priority. See section 4.9.4, “Examining Jobs Queue by Queue”, on page 110.

• Round-robin job selection: PBS can select jobs from queues with the same priority in a round-robin fashion. See
section 4.9.38, “Round Robin Queue Selection”, on page 204.

• Queue priority: Queues are always ordered according to their priority; jobs in higher-priority queues are examined
before those in lower-priority queues. See section 2.3.5.3, “Prioritizing Execution Queues”, on page 24.

• Sorting queues: PBS always sorts queues into priority order. See section 4.9.47, “Sorting Queues into Priority
Order”, on page 222.

• Express queues: Jobs in express queues are assigned increased priority. See section 2.3.5.3.i, “Express Queues”, on
page 24, and section 4.3.5.3.ii, “Using Express Queues in Job Priority Calculation”, on page 65.

• Routing: You can set up a queue system so that jobs with certain characteristics are routed to specific queues. See
section 4.9.39, “Routing Jobs”, on page 205.

4.3.5.13.ii Job Sorting Tools

You can use multiple job sorting tools, one at a time in succession. You can use different sorting tools for primetime and
non-primetime.

• Job sorting formula: You create a formula that PBS uses to calculate each job’s priority. See section 4.9.21, “Using a
Formula for Computing Job Execution Priority”, on page 149.

• Fairshare: PBS tracks past usage of specified resources, and starts jobs based on specified usage ratios. See section
4.9.19, “Using Fairshare”, on page 138.

• Sorting jobs on keys: PBS can sort jobs according to one or more keys, such as requested CPUs or memory; see sec-
tion 4.9.45, “Sorting Jobs on a Key”, on page 220.

• Entity shares (strict priority): Jobs are prioritized according to the owner’s fairshare allocation. See section 4.9.14,
“Sorting Jobs by Entity Shares (Was Strict Priority)”, on page 131.

• FIFO: Jobs can be run in submission order. See section 4.9.20, “FIFO Scheduling”, on page 148.

• Job’s requested priority: you can sort jobs on the priority requested for the job; see section 4.9.46, “Sorting Jobs by
Requested Priority”, on page 222.
PBS Professional 2020.1.1 Administrator’s Guide AG-69

Chapter 4 Scheduling
4.3.5.13.iii Other Job Prioritization Tools

• Strict ordering: you can specify that jobs must be run in priority order, so that a job that cannot run because resources
are unavailable is not skipped. See section 4.9.49, “Using Strict Ordering”, on page 224.

• Waiting time: PBS can assign increased priority to jobs that have been waiting to run. See section 4.9.13, “Eligible
Wait Time for Jobs”, on page 126, and section 4.9.48, “Starving Jobs”, on page 222.

• Setting job execution priority: PBS can set job execution priority according to a set of rules. See section 4.9.16,
“Calculating Job Execution Priority”, on page 134.

• Preemption: PBS preempts lower-priority jobs in order to run higher-priority jobs. See section 4.9.33, “Using Pre-
emption”, on page 180.

• Starving jobs: Jobs that have been waiting for a specified amount of time can be given increased priority. See sec-
tion 4.9.48, “Starving Jobs”, on page 222.

• Preventing preemption: You can prevent certain jobs from being preempted. See section 4.3.5.8, “Preventing Jobs
from Being Preempted”, on page 67.

• Making preempted jobs top jobs: PBS can backfill around preempted jobs. See section 4.9.3.5, “Backfilling Around
Preempted Jobs”, on page 106.

• Behavior overrides: you can intervene manually in how jobs are run. See section 4.9.30, “Overrides”, on page 162.

4.3.6 Resource Allocation to Users, Projects & Groups

If you need to ensure fairness, you may need to make sure that resources are allocated fairly. If different users, groups, or
projects own or pay for different amounts of hardware or machine time, you may need to allocate resources according to
these amounts or proportions.

You can allocate hardware-based resources such as CPUs or memory, and/or time-based resources such as walltime or
CPU time, according to to the agreed amounts or proportions. You can also control who starts jobs.

4.3.6.1 Limiting Amount of Resources Used

4.3.6.1.i Allocation Using Resource Limits

You can use resource limits as a way to enforce agreed allocation amounts. This is probably the most straightforward
way, and the easiest to explain to your users. PBS provides a system for limiting the total amount of each resource used
by projects, users, and groups at the server and at each queue. For example, you can set a limit on the number of CPUs
that any generic user can use at one time at QueueA, but set three different individual limits for each of three users that
have special requirements, at the same queue. See section 5.15.1, “Managing Resource Usage By Users, Groups, and
Projects, at Server & Queues”, on page 287.

4.3.6.1.ii Allocation Using Fairshare

The PBS fairshare tool allows you to start jobs according to a formula based on resource usage by job owners. You can
designate who the valid job owners are, which resources are being tracked, and how much of the resources each owner is
allowed to be using. Fairshare uses a moving average of resource usage, so that a user who in the recent past has not used
their share can use more now. For example, you can track usage of the cput resource, and give one group 40 percent of
usage, one 50 percent, and one group, 10 percent. See section 4.9.19, “Using Fairshare”, on page 138.

4.3.6.1.iii Allocation Using Routing

If you do not want to place usage limits directly on projects, users, or groups, you can instead route their jobs to specific
queues, where those queues have their own resource usage limits.
AG-70 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
To route jobs this way, force users to submit jobs to a routing queue, and set access control limits at each execution
queue. See section 8.3, “Using Access Control Lists”, on page 362. Make the routing queue be the default queue:

Qmgr: set server default_queue = <routing queue name>

Using this method, you place a limit for total resource usage at each queue, for each resource you care about. See section
5.15.1, “Managing Resource Usage By Users, Groups, and Projects, at Server & Queues”, on page 287.

You can also route jobs to specific queues, where those queues can send jobs only to specific vnodes. See section 4.9.2,
“Associating Vnodes with Queues”, on page 103.

4.3.6.2 Limiting Jobs

4.3.6.2.i Limiting Number of Jobs per Project, User, or Group

You can set limits on the numbers of jobs that can be run by projects, users, and groups. You can set these limits for each
project, user, and group, and you can set them at the server and at each queue. You can set a generic limit for all projects,
users, or groups, and individual limits that override the generic limit. For example, you can set a limit that says that no
user at its partition can run more than 8 jobs. Then you can set a more specific limit for QueueA, so that users at QueueA
can run 4 jobs. Then you can set a limit for User1 and User2 at QueueA, so that they can run 6 jobs. See section 5.15.1,
“Managing Resource Usage By Users, Groups, and Projects, at Server & Queues”, on page 287.

4.3.6.2.ii Allocation Using Round-robin Queue Selection

PBS can select jobs from queues by examining groups of queues in round-robin fashion, where all queues in each group
have the same priority. When using the round-robin method, a scheduler considers the first queue in a group, tries to run
the top job from that queue, then considers the next queue, tries to run the top job from that queue, then considers the
next queue, and so on, in a circular fashion. A scheduler runs all the jobs it can from the highest-priority group first, then
moves to the group with the next highest priority.

If you want a simple way to control how jobs are started, you can use round-robin where each queue in a group belongs
to a different user or entity. See section 4.9.38, “Round Robin Queue Selection”, on page 204.

4.3.6.2.iii Limiting Resource Usage per Job

If you are having trouble with large jobs taking up too much of a resource, you can limit the amount of the resource being
used by individual jobs. You can set these limits at each queue, and at the server. See section 5.15.2, “Placing Resource
Limits on Jobs”, on page 304.
PBS Professional 2020.1.1 Administrator’s Guide AG-71

Chapter 4 Scheduling
4.3.6.3 Resource Allocation Tools

The following is a list of scheduling tools that you can use for allocating resources or limiting resources or jobs:

• Matching: PBS places jobs where the available resources match the job’s resource requirements; see section 4.9.28,
“Matching Jobs to Resources”, on page 159.

• Reservations: Users can create advance and standing reservations for specific resources for specific time periods.
See section 4.9.37, “Reservations”, on page 197.

• Fairshare: PBS tracks past usage of specified resources, and starts jobs based on specified usage ratios. See section
4.9.19, “Using Fairshare”, on page 138.

• Routing: You can set up a queue system so that jobs with certain characteristics are routed to specific queues. See
section 2.3.6, “Routing Queues”, on page 25 and section 4.9.39, “Routing Jobs”, on page 205.

• Limits on resource usage by projects, users, and groups: You can set limits on user and group resource usage. See
section 4.9.26, “Limits on Project, User, and Group Resource Usage”, on page 156.

• Round-robin job selection: PBS can select jobs from queues that have the same priority in a round-robin fashion.
See section 4.9.38, “Round Robin Queue Selection”, on page 204.

• Sorting queues: PBS always sorts queues into priority order. See section 4.9.47, “Sorting Queues into Priority
Order”, on page 222.

• Limits on number of jobs for projects, users, and groups: You can set limits on the numbers of jobs that can be run by
projects, users, and groups. See section 5.15.1, “Managing Resource Usage By Users, Groups, and Projects, at
Server & Queues”, on page 287.

• Limits on resources used by each job: You can set limits on the amount of each resource that any job can use. See
section 4.9.24, “Limits on Per-job Resource Usage”, on page 156.

• Using custom resources to limit resource usage: You use custom resources to manage usage. See section 4.9.8,
“Using Custom and Default Resources”, on page 113.

• Gating and admission requirements: You can specify admission requirements for jobs. See section 4.9.22, “Gating
Jobs at Server or Queue”, on page 155.

• Making jobs inherit default resources: You can use default resources to manage jobs. See section 4.9.8, “Using Cus-
tom and Default Resources”, on page 113.

4.3.7 Time Slot Allocation

Time slot allocation is the process of creating time slots within which only specified jobs are allowed to run.

4.3.7.1 Why Allocate Time Slots

You may want to set up blocks of time during which only certain jobs are allowed to run. For example, you might need
to ensure that specific high-priority jobs have their own time slot, so that they are guaranteed to be able to run and finish
before their results are required.

You may want to divide jobs into those that run at night, when no one is around, and those that run during the day,
because their owners need the results then.

You might want to run jobs on desktop clusters only at night, when the primary users of the desktops are away.

When you upgrade PBS, a chunk of dedicated time can come in very handy. You set up dedicated time for a time period
that is long enough for you to perform the upgrade, and you make sure the time slot starts far enough out that no jobs will
be running.

You may want to run different scheduling policies at different times or on different days.
AG-72 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.3.7.2 How to Allocate Time Slots

Time slots are controlled by queues: primetime queues, non-primetime queues, dedicated time queues, and reservation
queues. For this, you use your favorite routing method to move jobs into the desired queues. See section 4.9.39, “Rout-
ing Jobs”, on page 205.

4.3.7.2.i Allocation Using Primetime and Holidays

You can specify how to divide up days or weeks, and designate each time period to be either primetime or non-prime-
time. You can use this division in the following ways:

• You can run a different policy during primetime from that during non-primetime

• You can run specific jobs during primetime, and others during non-primetime

See section 4.9.34, “Using Primetime and Holidays”, on page 191.

4.3.7.2.ii Allocation Using Dedicated Time

Dedicated time is a time period where the only jobs that are allowed to run are the ones in dedicated time queues. The
policy you use during dedicated time is controlled by the normal primetime and non-primetime policies; those times
overlap dedicated time.

If you don’t allow any jobs into a dedicated time queue, you can use it to perform maintenance, such as an upgrade.

See section 4.9.10, “Dedicated Time”, on page 125.

4.3.7.2.iii Allocation Using Reservations

You and any other PBS user can create advance and standing reservations. These are time periods with a defined start
and end, for a specific, defined set of resources. Reservations are used to make sure that specific jobs can run on time.
See section 4.9.37, “Reservations”, on page 197.

4.3.7.2.iv Allocation Using cron Jobs

You can use cron to run jobs at specific times. See section 4.9.7, “cron Jobs”, on page 112.

4.3.7.3 Time Slot Allocation Tools

The following is a list of scheduling tools that you can use to create time slots:

• Primetime and holidays: You can specify days and times that are to be treated as prime execution time. See section
4.9.34, “Using Primetime and Holidays”, on page 191.

• Dedicated time: You can set aside blocks of time reserved for certain system operations. See section 4.9.30.6,
“Using Dedicated Time”, on page 164.

• cron jobs: You can use cron to run jobs. See section 4.9.30.7, “Using cron Jobs”, on page 164.

• Reservations: Users can create advance and standing reservations for specific resources for specific time periods.
See section 4.9.37, “Reservations”, on page 197.

4.3.8 Job Placement Optimization

PBS automatically places jobs where they can run, but you can refine how jobs are placed.

Optimizations are the techniques you use to increase throughput, turnaround, or efficiency, by taking advantage of where
jobs can be run.

PBS places jobs according to placement optimization settings in tools to specify how vnodes should be organized, how
jobs should be distributed, and how resources should be used.
PBS Professional 2020.1.1 Administrator’s Guide AG-73

Chapter 4 Scheduling
4.3.8.1 Why Optimize Placement

PBS automatically places jobs where they can run, matching jobs to resources, so why optimize placement?

• You can help PBS refine its understanding of hardware topology, so that PBS can place jobs where they will run
most efficiently.

• If you have some vnodes that are faster than others, you can preferentially place jobs on those vnodes.

• You may need to place jobs according to machine ownership, so that for example only jobs owned by a specific
group run on a particular machine.

• You can take advantage of unused workstation computing capacity.

• You can balance the workload between two or more PBS partitions or complexes, trading jobs around depending on
the workload on each partition or complex.

• You can specify whether or not certain vnodes should be used for more than one job at a time.

• You can tell PBS to avoid placing jobs on highly-loaded vnodes

4.3.8.2 Matching Jobs to Resources

By default, PBS places jobs where the available resources match the job’s resource requirements. See section 4.9.28,
“Matching Jobs to Resources”, on page 159.

4.3.8.3 Organizing and Selecting Vnodes

By default, the order in which PBS examines vnodes is undefined. The default setting for vnode sorting is the following:

node_sort_key: “sort_priority HIGH all”

However, sort_priority means sort on each vnode’s priority attribute, but by default, that attribute is unset.

PBS can organize vnodes into groups. By default, PBS does not organize vnodes into groups.

By default, when PBS chooses vnodes for a job, it runs down its list of vnodes, searching until it finds vnodes that can
supply the job with the requested resources. You can improve this in two ways:

• PBS provides a way to organize your vnodes so that jobs can run on groups of vnodes, where the selected group of
vnodes provides the job with good connectivity. This can improve memory access and interprocess communication
timing. PBS then searches through these groups of vnodes, called placement sets, looking for the smallest group that
satisfies the job’s requirements. Each placement set is a group of vnodes that share a value for a resource. An illus-
trative example is a group of vnodes that are all connected to the same high speed switch, so that all of the vnodes
have the same value for the switch resource. For detailed information on how placement sets work and how to con-
figure them, see section 4.9.32, “Placement Sets”, on page 168.

• By default, the order in which PBS examines vnodes, whether in or outside of placement sets, is undefined. PBS can
sort vnodes on one or more keys. Using this tool, you can specify which vnodes should be selected first. For infor-
mation on sorting vnodes on keys, see section 4.9.50, “Sorting Vnodes on a Key”, on page 225.

You can sort vnodes in conjunction with placement sets.

4.3.8.4 Distributing Jobs

All of the following methods for distributing jobs can be used together.
AG-74 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.3.8.4.i Filtering Jobs to Specific Vnodes

If you want to run certain kinds of jobs on specific vnodes, you can route those jobs to specific execution queues, and tie
those queues to the vnodes you want. For example, if you want to route jobs requesting large amounts of memory to
your large-memory machines, you can set up an execution queue called LMemQ, and associate that queue with the large-
memory vnodes. You can route any kind of job to its own special execution queue. For example, you can route jobs
owned by the group that owns a cluster to a special queue which is associated with the cluster. For details on routing jobs,
see section 4.9.39, “Routing Jobs”, on page 205. For details on associating vnodes and queues, see section 4.9.2, “Asso-
ciating Vnodes with Queues”, on page 103.

4.3.8.4.ii Running Jobs at Least-loaded Partition or Complex

You can set up cooperating PBS partitions and complexes that automatically run jobs from each other’s queues. This
allows you to dynamically balance the workload across multiple, separate PBS partitions and complexes. See section
4.9.31, “Peer Scheduling”, on page 165.

4.3.8.4.iii Using Idle Workstations

You can run jobs on workstations whenever they are not being used by their owners. PBS can monitor workstations for
user activity or load, and run jobs when those jobs won’t interfere with the user’s operation. See section 4.9.9, “Using
Idle Workstation Cycle Harvesting”, on page 115.

4.3.8.4.iv Avoiding Highly-loaded Vnodes

You can tell PBS not to run jobs on vnodes that are above a specified load. This is in addition to the default behavior,
where PBS does not run jobs that request more of a resource than it thinks each vnode can supply. See section 4.9.27,
“Using Load Balancing”, on page 156.

4.3.8.4.v Placing Job Chunks on Desired Hosts

You can tell PBS to place each job on as few hosts as possible, to place each chunk of a job on a separate host, a separate
vnode, or on any vnode. You can specify this behavior for the jobs at a queue and at the server.

You can do the following

• Set default placement behavior for the queue or server: jobs inherit placement if they do not request it; see section
5.9.3.5, “Specifying Default Job Placement”, on page 246

• Use a hook to set each job’s placement request (Resource_List.place). See the PBS Professional Hooks Guide

For more on placing chunks, see section 4.9.6, “Organizing Job Chunks”, on page 112.

For information on how jobs request placement, see section 2.59.2.6, “Requesting Resources and Placing Jobs”, on page
216.

4.3.8.5 Shared or Exclusive Resources and Vnodes

PBS can give jobs their own vnodes, or fill vnodes with as many jobs as possible. A scheduler uses a set of rules to deter-
mine whether a job can share resources or a host with another job. These rules specify how the vnode sharing attribute
should be combined with a job’s placement directive. The vnode’s sharing attribute supersedes the job’s placement
request.

You can set each vnode’s sharing attribute so that the vnode or host is always shared, always exclusive, or so that it hon-
ors the job’s placement request. See section 4.9.41, “Shared vs. Exclusive Use of Resources by Jobs”, on page 209.
PBS Professional 2020.1.1 Administrator’s Guide AG-75

Chapter 4 Scheduling
4.3.8.6 Tools for Organizing Vnodes

• Placement sets: PBS creates sets of vnodes organized by the values of multiple resources. See section 4.9.32,
“Placement Sets”, on page 168.

• Sorting vnodes on keys: PBS can sort vnodes according to specified keys. See section 4.9.50, “Sorting Vnodes on a
Key”, on page 225.

4.3.8.7 Tools for Distributing Jobs

• Routing: You can set up a queue system so that jobs with certain characteristics are routed to specific queues. See
section 2.3.6, “Routing Queues”, on page 25 and section 4.9.39, “Routing Jobs”, on page 205.

• Associating vnodes with queues: You can specify that jobs in a given queue can run only on specific vnodes, and
vice versa. See section 4.9.2, “Associating Vnodes with Queues”, on page 103.

• Idle workstation cycle harvesting: PBS can take advantage of unused workstation CPU time. See section 4.9.9,
“Using Idle Workstation Cycle Harvesting”, on page 115.

• Peer scheduling: PBS partitions and complexes can exchange jobs. See section 4.9.31, “Peer Scheduling”, on page
165.

• Load balancing: PBS can place jobs so that machines have balanced loads. See section 4.9.27, “Using Load Balanc-
ing”, on page 156.

• SMP cluster distribution (deprecated): PBS can place jobs in a cluster as you specify. See section 4.9.43, “SMP
Cluster Distribution”, on page 217.

4.3.9 Resource Efficiency Optimizations

PBS automatically runs each job where the resources required for the job are available. You can refine the choices PBS
makes.

Resource optimizations are the techniques you use to increase throughput, turnaround, or efficiency, by taking advantage
of how resources are used.

Before reading this section, please make sure you understand how resources are used by reading section 4.9.28, “Match-
ing Jobs to Resources”, on page 159.

4.3.9.1 Why Optimize Use of Resources

You may want to take advantage of the following:

• If you are using strict ordering, you can prevent resources from standing idle while the top job waits for its resources
to become available

• PBS can estimate the start times of jobs, so that users can stay informed

• PBS can provision vnodes with the environments that jobs require

• PBS can track resources that are outside of the control of PBS, such as scratch space

• You can take advantage of unused workstation computing capacity

• You can balance the workload between two or more PBS partitions or complexes, trading jobs around depending on
the workload on each partition or complex.

• You can specify whether or not certain vnodes should be used for more than one job at a time.

• Users can specify that jobs that are dependent on the output of other jobs run only after the other jobs complete

• You can tell PBS to avoid placing jobs on highly-loaded vnodes
AG-76 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.3.9.2 How to Optimize Resource Use

4.3.9.2.i Backfilling Around Top Jobs

PBS creates a list of jobs ordered by priority, and tries to run the jobs in order of priority. You can force all jobs to be run
in exact order of their priority, using strict ordering. See section 4.9.49, “Using Strict Ordering”, on page 224. However,
this can reduce resource utilization when the top job cannot run now and must wait for resources to become available,
idling the entire partition or complex. You can offset this problem by using backfilling, where PBS tries to fit smaller
jobs in around the top job that cannot run. The start time of the top job is not delayed. Job walltimes are required in
order to use backfilling. You can specify the number of jobs around which to backfill. You can also disable this feature.
See section 4.9.3, “Using Backfilling”, on page 105.

PBS can shrink the walltime of shrink-to-fit jobs into available time slots. These jobs can be used to backfill around top
jobs and time boundaries such as dedicated time or reservations. See section 4.9.42, “Using Shrink-to-fit Jobs”, on page
210.

If you do not use strict ordering, PBS won’t necessarily run jobs in exact priority order. PBS will instead run jobs so that
utilization is maximized, while trying to preserve priority order.

4.3.9.2.ii Using Dependencies

Job submitters can specify dependencies between jobs. For example, if you have a data analysis job that must run after
data collection and cleanup jobs, you can specify that. See section 4.9.11, “Dependencies”, on page 126.

4.3.9.2.iii Estimating Start Time for Jobs

You can tell PBS to estimate start times and execution vnodes for either the number of jobs being backfilled around, or
all jobs. Users can then see when their jobs are estimated to start, and the vnodes on which they are predicted to run. See
section 4.9.15, “Estimating Job Start Time”, on page 131.

4.3.9.2.iv Provisioning Vnodes with Required Environments

PBS can provision vnodes with environments (applications or operating systems) that jobs require. This means that a job
can request a particular environment that is not yet on a vnode, but is available to be instantiated there. See section
4.9.35, “Provisioning”, on page 196.

4.3.9.2.v Tracking Dynamic Resources

You can use dynamic PBS resources to represent elements that are outside of the control of PBS, typically for application
licenses and scratch space. You can represent elements that are available to the entire partition or PBS complex as
server-level resources, or elements that are available at a specific host or hosts as host-level resources. For an example of
configuring a server-level dynamic resource, see section 5.14.3.1.i, “Example of Configuring Dynamic Server-level
Resource”, on page 267. For an example of configuring a dynamic host-level resource, see section 5.14.4.1.i, “Example
of Configuring Dynamic Host-level Resource”, on page 269.

For a complete description of how to create and use dynamic resources, see section 5.14, “Custom Resources”, on page
255.

4.3.9.3 Optimizing Resource Use by Job Placement

4.3.9.3.i Sending Jobs to Partition or Complex Having Lightest Workload

You can set up cooperating PBS partitions or complexes that automatically run jobs from each other’s queues. This
allows you to dynamically balance the workload across multiple, separate partitions or complexes. See section 4.9.31,
“Peer Scheduling”, on page 165.
PBS Professional 2020.1.1 Administrator’s Guide AG-77

Chapter 4 Scheduling
4.3.9.3.ii Using Idle Workstations

You can run jobs on workstations whenever they are not being used by their owners. PBS can monitor workstations for
user activity or load, and run jobs when those jobs won’t interfere with the user’s operation. See section 4.9.9, “Using
Idle Workstation Cycle Harvesting”, on page 115.

4.3.9.3.iii Avoiding Highly-loaded Vnodes

You can tell PBS not to run jobs on vnodes that are above a specified load. This is in addition to the default behavior,
where PBS does not run jobs that request more of a resource than it thinks each vnode can supply. See section 4.9.27,
“Using Load Balancing”, on page 156.

4.3.9.4 Resource Efficiency Optimization Tools

The following is a list of scheduling tools that you can use to optimize how resources are used:

• Backfilling around most important job(s): PBS can place small jobs in otherwise-unused blocks of resources. See
section 4.9.3, “Using Backfilling”, on page 105.

• Dependencies: Users can specify requirements that must be met by previous jobs in order for a given job to run. See
section 4.9.11, “Dependencies”, on page 126.

• Estimating start time of jobs: PBS can estimate when jobs will start, so that users can be informed. See section
4.9.15, “Estimating Job Start Time”, on page 131.

• Provisioning vnodes with required environments: PBS can provision vnodes with the environments that jobs require.
See section 4.9.35, “Provisioning”, on page 196.

• Using dynamic resources: PBS can track resources such as scratch space and licenses. See section 4.9.12, “Dynamic
Resources”, on page 126.

• Idle workstation cycle harvesting: PBS can take advantage of unused workstation CPU time. See section 4.9.9,
“Using Idle Workstation Cycle Harvesting”, on page 115.

• Peer scheduling: PBS partitions and complexes can exchange jobs. See section 4.9.31, “Peer Scheduling”, on page
165.

• Load balancing: PBS can place jobs so that machines have balanced loads. See section 4.9.27, “Using Load Balanc-
ing”, on page 156.

4.3.10 Overrides

Overrides are the techniques you use to override the specified scheduling behavior of PBS.
AG-78 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.3.10.1 Why and How to Override Scheduling

• If you need to run a job immediately, you can tell PBS to run a job now. You can optionally specify the vnodes and
resources to run it. See section 4.9.30.1, “Run a Job Manually”, on page 162.

• If you need to prevent a job from running, you can tell PBS to place a hold on a job. See section 4.9.30.2, “Hold a
Job Manually”, on page 163.

• If you need to change how the formula computes job priority, you can make on-the-fly changes to how the formula is
computed. See section 4.9.30.5, “Change Formula On the Fly”, on page 164.

• If you need a block of time where you can control what’s running, for example for upgrading PBS, you can create
dedicated time. See section 4.9.30.6, “Using Dedicated Time”, on page 164.

• If you need to submit jobs at a certain time, you can use cron to run jobs. See section 4.9.30.7, “Using cron Jobs”,
on page 164.

• If you need to change job resource requests, programs, environment, or attributes, you can use hooks to examine
jobs and alter their characteristics. See the PBS Professional Hooks Guide.

• If you need to prevent a scheduler from calendaring jobs, you can set their topjob_ineligible attribute to True. See
section 4.9.17, “Calendaring Jobs”, on page 137.

4.4 Choosing a Policy

4.4.1 Overview of Kinds of Policies

You can tune PBS to produce any of a wide selection in scheduling behaviors. You can choose from a wide variety of
behaviors for each sub-goal, resulting in many possible scheduling policies. However, policies can be grouped into the
following kinds:

• FIFO, where you essentially run jobs in the order in which they were submitted; see section 4.4.2, “FIFO: Submis-
sion Order”, on page 79

• According to user or group priority, where the job’s priority is determined by the owner’s priority; see section 4.4.3,
“Prioritizing Jobs by User, Project or Group”, on page 80

• According to resource allocation rules, where jobs are run so that they use resources following a set of rules for how
resources should be awarded to users or groups; see section 4.4.4, “Allocating Resources by User, Project or Group”,
on page 80

• According to the size of the job, for example measured by CPU or memory request; see section 4.4.5, “Scheduling
Jobs According to Size Etc.”, on page 82

• By setting up time slots for specific uses; see section 4.4.6, “Scheduling Jobs into Time Slots”, on page 84

4.4.2 FIFO: Submission Order

If you want jobs to run in the order in which they are submitted, use FIFO. You can use FIFO across the entire partition
or complex, or within each queue.

If it’s important that jobs run exactly in submission order, use FIFO with strict ordering. However, if you don’t want
resources to be idle while a top job is stuck, you can use FIFO with strict ordering and backfilling.

To run jobs in submission order, see section 4.9.20.1, “Configuring Basic FIFO Scheduling”, on page 148 .

To run jobs in submission order across the entire partition or complex, see section 4.9.20.2, “FIFO for Entire Partition Or
Complex”, on page 148.
PBS Professional 2020.1.1 Administrator’s Guide AG-79

Chapter 4 Scheduling
To run jobs in submission order, examining queues in order of queue priority, see section 4.9.20.3, “Queue by Queue
FIFO”, on page 149.

To run jobs in submission order, with strict ordering, see section 4.9.20.4, “FIFO with Strict Ordering”, on page 149.

To run jobs in submission order, with strict ordering and backfilling, see section 4.9.20.5, “FIFO with Strict Ordering and
Backfilling”, on page 149.

4.4.3 Prioritizing Jobs by User, Project or Group

If you need to run jobs from some users, groups, or projects before others, you can prioritize jobs using the following
techniques:

• Routing each entity’s jobs to its own execution queue, assigning the queue the desired priority, and examining jobs
queue by queue. See the following:

• For routing: section 2.3.6, “Routing Queues”, on page 25

• For setting queue priority: section 2.3.5.3, “Prioritizing Execution Queues”, on page 24

• For examining jobs queue by queue: section 4.9.4, “Examining Jobs Queue by Queue”, on page 110

• Routing each entity’s jobs to its own execution queue, where the jobs inherit a custom resource that you use in the
job sorting formula. See the following:

• For routing: section 2.3.6, “Routing Queues”, on page 25

• For inherited resources: section 13.3, “Allocating Resources to Jobs”, on page 495

• For the job sorting formula: section 4.9.21, “Using a Formula for Computing Job Execution Priority”, on page
149

• Using a hook to allocate a custom resource to each job, where the hook sets the value according to the priority of the
job’s owner, group, or project, then using the resource in the job sorting formula. See the following:

• For hooks: the PBS Professional Hooks Guide

• For custom resources: section 5.14, “Custom Resources”, on page 255

• For the job sorting formula: section 4.9.21, “Using a Formula for Computing Job Execution Priority”, on page
149

• Assigning a greater fairshare allocation in the fairshare tree to the users or groups whose jobs must run first, and run-
ning jobs according to entity shares. See the following:

• For fairshare: section 4.9.19, “Using Fairshare”, on page 138

• For entity shares: section 4.9.14, “Sorting Jobs by Entity Shares (Was Strict Priority)”, on page 131

4.4.4 Allocating Resources by User, Project or Group

When you want to divide up hardware usage among users, groups, or projects, you can make sure you allocate resources
along those lines. You can do this in the following ways:

• Allocate portions of the entire partition or complex to each entity; see section 4.4.4.1, “Allocating Portions of Parti-
tion Or Complex”, on page 81

• Allocate portions of all machines or clusters to each entity, or use controlled allocation for some hardware, with a
free-for-all elsewhere; see section 4.4.4.2, “Allocating Portions of Machines or Clusters”, on page 81

• Lock entities into using specific hardware; see section 4.4.4.3, “Locking Entities into Specific Hardware”, on page
82
AG-80 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.4.4.1 Allocating Portions of Partition Or Complex

4.4.4.1.i Allocating Specific Amounts

To allocate specific amounts of resources across the entire partition or complex, you can use resource limits at the server.
These limits set the maximum amount that can be used, ensuring that projects, users, or groups stay within their bounds.
You can set a limit for each resource, and make it different for each project, user, and group. You can set a different limit
for each project, user, and group, for each resource.

For example, you can set a limit of 48 CPUs in use at once by most groups, but give groupA a limit of 96 CPUs. You can
give each individual user a limit of 8 CPUs, but give UserA a limit of 10 CPUs, and UserB a limit of 4 CPUs.

To set limits for usage across the entire partition or complex, set the limits at the server.

See section 5.15.1, “Managing Resource Usage By Users, Groups, and Projects, at Server & Queues”, on page 287.

4.4.4.1.ii Allocating Percentages

To allocate a percentage of the resources being used in the partition managed by a scheduler, you can use fairshare. Fair-
share tracks a moving average of resource usage, so it takes past use into account. You choose which resources to track.
You can tune the influence of past usage.

To use fairshare across the entire partition or complex, make sure that both by_queue and round_robin are False.

Fairshare is described in section 4.9.19, “Using Fairshare”, on page 138.

4.4.4.2 Allocating Portions of Machines or Clusters

You can allocate fixed amounts of a machine or groups of machines. You can do this for as many machines as you want.
For example, on HostA, you can give GroupA 100 CPUs, GroupB 150 CPUs, and GroupC 50 CPUs, while at HostB,
GroupA gets 10, GroupB gets 8, and GroupC gets 25.

To allocate fixed portions of a specific machine or group of machines, you use these tools in combination:

• Create an execution queue for this machine; see section 2.3.3, “Creating Queues”, on page 22.

• Route jobs belonging to the users or groups who share this machine into a queue. Each machine or cluster that
requires controls gets its own queue. See section 4.9.39, “Routing Jobs”, on page 205.

• Associate the queue with the vnodes in question; see section 4.9.2, “Associating Vnodes with Queues”, on page 103.

• Set a limit at the queue for each resource that you care about, for each project, user, or group. These limits control
use of the vnodes associated with the queue only. See section 5.15.1, “Managing Resource Usage By Users, Groups,
and Projects, at Server & Queues”, on page 287.

You can prevent unauthorized usage by setting generic project, user, and group limits for the machine’s queue to zero.
However, you probably don’t want users to submit their jobs to a queue where they are not allowed to run, only to have
those jobs languish. You can avoid this by doing the following:

• Setting up a routing queue; see section 2.3.6, “Routing Queues”, on page 25.

• Making the routing queue be the default queue:
Qmgr: set server default_queue = <routing queue name>

• Making the routing queue the only queue that accepts job submission: set from_route_only to True on execution
queues tied to hardware. See section 2.3.5.1, “Where Execution Queues Get Their Jobs”, on page 23.

• Using queue access control to limit which jobs are routed into the execution queue; see section 2.3.6.5, “Using
Access Control to Route Jobs”, on page 29.

You can either set up allocations for every machine, or you can set up allocations for only some machines, leaving a free-
for-all for the others. If you want access to be unrestricted for some machines, do not set limits at the server.
PBS Professional 2020.1.1 Administrator’s Guide AG-81

Chapter 4 Scheduling
4.4.4.3 Locking Entities into Specific Hardware

You can send all jobs from some projects, users, or groups to designated hardware, essentially limiting them to a sand-
box. To do this, do the following:

• Create an execution queue for the sandbox hardware; see section 2.3.3, “Creating Queues”, on page 22.

• Create at least one other execution queue; see section 2.3.3, “Creating Queues”, on page 22.

• Create a routing queue; see section 2.3.3, “Creating Queues”, on page 22.

• Make the routing queue be the default queue:
Qmgr: set server default_queue = <routing queue name>

• Force all users to submit jobs to the routing queue: set from_route_only to True on all other queues. See section
2.3.5.1, “Where Execution Queues Get Their Jobs”, on page 23.

• Use queue access control to route according to user or group: route jobs from the controlled users or groups into the
sandbox queue only. See section 2.3.6.5, “Using Access Control to Route Jobs”, on page 29.

• Use a job submission hook to route according to project: route the jobs from the desired project(s) to the sandbox
queue. See the PBS Professional Hooks Guide.

• Associate the sandbox queue with the sandbox vnodes. See section 4.9.2, “Associating Vnodes with Queues”, on
page 103.

Note that you can either allow all projects, users, or groups into the sandbox queue, or allow only the controlled projects,
users, or groups into the sandbox queue.

4.4.5 Scheduling Jobs According to Size Etc.

You may need to treat jobs differently depending on their size or other characteristics. For example, you might want to
run jobs differently depending on the number of CPUs or amount of memory requested by the job, or whether the job
requests GPUs.

• Give special priority to a group of jobs

• Run a group of jobs on designated hardware

• Run a group of jobs in designated time slots: reservations, dedicated time, and primetime or non-primetime

There are two main approaches to doing this. You can route jobs into queues, or you can use hooks to set values. Here is
an outline:

• Route certain kinds of jobs into their own queues, in order to treat each kind differently. This works for priority,
hardware, and time slots. See section 4.4.5.1, “Special Treatment via Routing”, on page 82

• Route each kind to its own queue, using queue-based routing or a submission hook;

• Use queue-based methods to set job priority or to run the jobs on certain hardware or in certain time slots

• Use hooks to set priority for jobs or to set a custom resource that will send jobs to certain hardware. This does not
work for time slots. See section 4.4.5.2, “Special Treatment via Hooks”, on page 84.

• Use a submission hook to set each job’s Priority attribute, or set a value for a custom resource used in the job
sorting formula

• Use a submission hook to set a custom host-level resource value for each job, where the value matches the value
at the desired hardware

4.4.5.1 Special Treatment via Routing

Use a routing queue or a hook to route jobs into a special queue, where the jobs are given special priority, or are run on
special hardware, or are run in special time slots.
AG-82 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.4.5.1.i Routing via Queues

• Create your destination queues. See section 2.3.3, “Creating Queues”, on page 22.

• Set limits at the destination queues, so that each queue receives the correct jobs. See section 2.3.6.4, “Using
Resources to Route Jobs Between Queues”, on page 26.

• Create a routing queue, and set its destination queues. See section 2.3.6, “Routing Queues”, on page 25.

• Make the routing queue be the default queue:
Qmgr: set server default_queue = <routing queue name>

4.4.5.1.ii Using Hooks to Route Jobs

You can use a submission hook to move jobs into the queues you want. See section 4.9.39.2.ii, “Hooks as Mechanism to
Move Jobs”, on page 207.

4.4.5.1.iii Giving Routed Jobs Special Priority

You can give routed jobs special priority in the following ways:

• Have the jobs inherit a custom resource from the special queue, and use this resource in the job sorting formula.

• For how to have jobs inherit custom resources, see section 13.3, “Allocating Resources to Jobs”, on page 495.

• For how to use the job sorting formula, see section 4.9.21, “Using a Formula for Computing Job Execution Pri-
ority”, on page 149.

• Give the queue itself special priority, and use queue priority in the job sorting formula.

• For how to assign priority to queues, see section 2.3.5.3, “Prioritizing Execution Queues”, on page 24

• For how to use the job sorting formula, see section 4.9.21, “Using a Formula for Computing Job Execution Pri-
ority”, on page 149.

4.4.5.1.iv Running Jobs on Special Vnodes

Now that the special jobs are routed to a special queue, associate that queue with the special vnodes. See section 4.9.2,
“Associating Vnodes with Queues”, on page 103.

4.4.5.1.v Running Jobs in Special Time Slots

If you want to run jobs during dedicated time, route the jobs into one or more dedicated time queues. In the same way,
for primetime or non-primetime, route jobs into primetime or non-primetime queues. You can also route jobs into reser-
vation queues for reservations that you have created for this purpose.

For using dedicated time, see section 4.9.10, “Dedicated Time”, on page 125

For using primetime and non-primetime, see section 4.9.34, “Using Primetime and Holidays”, on page 191

For using reservations, see section 4.9.37, “Reservations”, on page 197
PBS Professional 2020.1.1 Administrator’s Guide AG-83

Chapter 4 Scheduling
4.4.5.2 Special Treatment via Hooks

4.4.5.2.i Setting Job Priority Via Hook

You can set a job’s Priority attribute using a hook. Note that users can qalter the job’s Priority attribute. Use a job
submission hook to set the job priority, by doing one of the following:

• Set a custom numeric resource for the job, and use the resource in the job sorting formula

• For how to use hooks, see the PBS Professional Hooks Guide

• For how to use the job sorting formula, see section 4.9.21, “Using a Formula for Computing Job Execution Pri-
ority”, on page 149.

• Set the job’s Priority attribute, and sort jobs on a key, where the key is the job’s Priority attribute.

• For how to set job attributes, see the PBS Professional Hooks Guide

• For how to sort jobs on a key, see section 4.9.45, “Sorting Jobs on a Key”, on page 220

4.4.5.2.ii Routing Jobs to Hardware via Hooks

You can send jobs to particular hardware without using a particular queue, by using a hook. See section 4.9.39.4.i,
“Using Hooks to Tag Jobs”, on page 208.

4.4.6 Scheduling Jobs into Time Slots

You can schedule jobs in time slots in the following ways:

• Set aside time slots for specific entities; see section 4.4.6.1, “Setting Aside Time Slots for Entities”, on page 84

• Lock entities into specific time slots; see section 4.4.6.2, “Locking Entities into Time Slots”, on page 85

4.4.6.1 Setting Aside Time Slots for Entities

You can set aside time slots that are reserved exclusively for certain users or groups. You can use reservations, dedicated
time, primetime, or non-primetime.

4.4.6.1.i Reservations

Reservations set aside one or more blocks of time on the requested resources. Users can create their own reservations, or
you can create them and set their access control to allow only specified users to submit jobs to them. See section 4.9.37,
“Reservations”, on page 197.

4.4.6.1.ii Dedicated Time

During dedicated time, the only jobs allowed to run are those in dedicated queues. The drawback to dedicated time is
that it applies to the entire partition or complex. If you want to set aside one or more dedicated time slots for a user or
group, do the following:

• Create a dedicated queue. See section 2.3.5.2.i, “Dedicated Time Queues”, on page 24.

• Define dedicated time. See section 4.9.10, “Dedicated Time”, on page 125.

• Set access control on the dedicated queue so that only the particular users or groups you want can submit jobs to the
queue. See section 2.3.6.5, “Using Access Control to Route Jobs”, on page 29.

• If you want to limit access on a dedicated queue to a specific project, set the generic limit for queued jobs for
projects at that queue to zero, and then set the individual limit for the specific project higher.
AG-84 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.4.6.1.iii Non-primetime

You can set up primetime and non-primetime so that one of them, for example, non-primetime, is used as a special time
slot allocated to particular users or groups. The advantage of using non-primetime is that you can set up a separate
scheduling policy for it, for example, using fairshare during non-primetime and sorting jobs on a key during primetime.
Note that the formula, if defined, is in force all of the time. To use non-primetime, do the following:

• Create a non-primetime queue; see section 2.3.3, “Creating Queues”, on page 22 and section 2.3.5.2.ii, “Primetime
and Non-Primetime Queues”, on page 24.

• Define primetime and non-primetime; see section 4.9.34, “Using Primetime and Holidays”, on page 191.

• Set access control on the non-primetime queue so that only the particular users or groups you want can submit jobs
to the queue. See section 2.3.6.5, “Using Access Control to Route Jobs”, on page 29.

• Make sure that the scheduling policy you want is in force during non-primetime. See section 4.9.34.1, “How Prime-
time and Holidays Work”, on page 192.

4.4.6.2 Locking Entities into Time Slots

You can make all jobs from some users or groups run during designated time slots. You can run them during a reserva-
tion, dedicated time, or non-primetime.

4.4.6.2.i Locking Entities into Reservations

To allow a user to submit jobs only into a reservation, do the following:

• Create a reservation for the resources and time(s) you want the controlled user(s) to use. When creating the reserva-
tion, set access control to allow the controlled user(s). See section 4.9.37, “Reservations”, on page 197 and section
8.3.8.3, “Setting and Changing Reservation Access”, on page 372.

• Set access control on all queues except the reservation’s queue to deny the controlled user(s); see section 2.3.6.5,
“Using Access Control to Route Jobs”, on page 29.

4.4.6.2.ii Locking Entities into Dedicated Time

You can create a dedicated time queue, and send all jobs from controlled projects, users, or groups to that queue. You can
route their jobs to it, and you can allow them to submit directly to it. To lock one or more projects, users, or groups into
one or more dedicated time slots, do the following:

• Create a dedicated time queue; see section 2.3.3, “Creating Queues”, on page 22 and section 2.3.5.2.i, “Dedicated
Time Queues”, on page 24.

• Create at least one other execution queue; see section 2.3.3, “Creating Queues”, on page 22.

• Create a routing queue; see section 2.3.3, “Creating Queues”, on page 22.

• Prevent controlled users from submitting to non-dedicated time execution queues: set from_route_only to True on
the non-dedicated time execution queues. See section 2.3.5.1, “Where Execution Queues Get Their Jobs”, on page
23.

• Use queue access control to allow jobs from the controlled users or groups into the dedicated time queue only. See
section 2.3.6.5, “Using Access Control to Route Jobs”, on page 29

• Use a job submission hook to route jobs from controlled projects into the dedicated time queue. See the PBS Profes-
sional Hooks Guide

• .Make the routing queue be the default queue:
Qmgr: set server default_queue = <routing queue name>

Note that you can either allow all users into the dedicated time queue, or allow only the controlled users into the dedi-
cated time queue.
PBS Professional 2020.1.1 Administrator’s Guide AG-85

Chapter 4 Scheduling
4.4.6.2.iii Locking Entities into Non-primetime

You can create a non-primetime queue, and send all jobs from controlled users, groups, or projects to that queue. You
can route their jobs to it, and you can allow them to submit directly to it. To lock one or more users, groups, or projects
into one or more non-primetime slots, do the following:

• Create a non-primetime queue; see section 2.3.3, “Creating Queues”, on page 22 and section 2.3.5.2.ii, “Primetime
and Non-Primetime Queues”, on page 24.

• Create at least one other execution queue; see section 2.3.3, “Creating Queues”, on page 22.

• Create a routing queue; see section 2.3.3, “Creating Queues”, on page 22.

• Prevent controlled users from submitting to primetime execution queues: set from_route_only to True on the prime-
time execution queues. See section 2.3.5.1, “Where Execution Queues Get Their Jobs”, on page 23.

• Make the routing queue be the default queue:
Qmgr: set server default_queue = <routing queue name>

• Use queue access control to allow jobs from the controlled users or groups into the non-primetime queue only. See
section 2.3.6.5, “Using Access Control to Route Jobs”, on page 29.

• Use a job submission hook to route jobs from controlled projects into the non-primetime queue. See the PBS Profes-
sional Hooks Guide

• Define primetime and non-primetime; see section 4.9.34, “Using Primetime and Holidays”, on page 191.

• Make sure that the scheduling policy you want is in force during non-primetime. See section 4.9.34.1, “How Prime-
time and Holidays Work”, on page 192.

Note that you can either allow all users into the non-primetime queue, or allow only the controlled users into the non-
primetime queue.

4.4.7 Default Scheduling Policy

The default scheduling policy is determined by the default settings for all of the attributes, parameters, etc. that determine
a scheduler’s behavior. For a list of all of these elements, see section 4.5.1, “Configuring a Scheduler”, on page 89.

The default behavior of a scheduler is the following:

• A scheduler matches jobs with available resources. This means that a scheduler places each job only where that job
has enough resources to run. See section 4.9.28, “Matching Jobs to Resources”, on page 159.

• A scheduler will not over-allocate the resources that are listed in the scheduler’s resources parameter. The defaults
for these are ncpus, mem, arch, host, vnode, aoe. See section 4.9.28.1, “Scheduling on Consumable Resources”,
on page 159.

• A scheduler sorts vnodes according to its node_sort_key parameter, whose default setting is the following:
node_sort_key: “sort_priority HIGH all”

This means that vnodes are sorted by the value of their priority attribute, with high-priority vnodes used first. A
scheduler places jobs first on vnodes that are first in the sorted list.

Note that all vnodes have the same default priority upon creation, so the default sorted order for vnodes is undefined.
AG-86 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
See section 4.9.50, “Sorting Vnodes on a Key”, on page 225.

• Queues are sorted according to the value of their priority attribute, so that queues with a higher priority are consid-
ered before those with a lower priority. See section 2.3.5.3, “Prioritizing Execution Queues”, on page 24.

• Jobs are considered according to the priority of their queues. A scheduler runs all of the jobs that it can from the
highest-priority queue before moving to the next queue, and so on. See section 4.9.4, “Examining Jobs Queue by
Queue”, on page 110.

• Within each queue, jobs are considered in submission order.

• Starving jobs are given a special priority called starving. The default time required to become a starving job is 24
hours. See section 4.9.48, “Starving Jobs”, on page 222.

• Jobs in an express queue are placed in the express_queue preemption priority level. They are also placed in the
Express execution priority class. The default priority for a queue to be an express queue is 150. See section
2.3.5.3.i, “Express Queues”, on page 24.

• Queued jobs are sorted according to their priority. Special jobs are all prioritized ahead of normal jobs, without
regard to the queue in which they reside. The order for job priority for special jobs, highest first, is reservation jobs,
jobs in express queues, preempted jobs, starving jobs. After this, a scheduler looks at normal jobs, queue by queue.
All jobs in express queues, all preempted jobs, and all starving jobs are considered before a scheduler looks at the
individual queues.

See section 4.9.16, “Calculating Job Execution Priority”, on page 134.

• A scheduler will preempt lower-priority jobs in order to run higher-priority jobs (preemptive_sched is True by
default). By default, it has two levels of job priority, express_queue, and normal_jobs, where express_queue
jobs can preempt normal_jobs. This is set in the scheduler’s preempt_prio attribute.

When a scheduler chooses among jobs of the same priority for a job to preempt, it uses the only setting for
preempt_sort, which is min_time_since_start, choosing jobs that have been running for the shortest time.

When a scheduler chooses how to preempt a job, it uses the default setting for its preempt_order attribute, which is
SCR, meaning that first it will attempt suspension, then checkpointing, then if necessary requeueing.

See section 4.9.33, “Using Preemption”, on page 180.

• A scheduler will do its best to backfill smaller jobs around the job it has decided is the most important job. See sec-
tion 4.9.3, “Using Backfilling”, on page 105.

• Primetime by default is 24/7. Any holiday is considered non-primetime. You can define primetime and holidays in
the file <sched_priv directory>/holidays. These dates should be adjusted yearly to reflect your local hol-
idays. See section 4.9.34, “Using Primetime and Holidays”, on page 191.

• A scheduler runs every 10 minutes unless a new job is submitted or a job finishes execution. See section 4.5.5, “The
Scheduling Cycle”, on page 96.

• In TPP mode, a scheduler runs with the throughput_mode scheduler attribute set to True by default, so the sched-
uler runs asynchronously, and doesn’t wait for each job to be accepted by MoM, which means it also doesn’t wait for
an execjob_begin hook to finish. Especially for short jobs, this can give better scheduling performance.

When throughput_mode is True, jobs that have been changed can run in the same scheduling cycle in which they
were changed, for the following changes:

• Jobs that are qaltered

• Jobs that are changed via server_dyn_res scripts

• Jobs that are peered to a new queue

See “Scheduler Attributes” on page 298 of the PBS Professional Reference Guide.
PBS Professional 2020.1.1 Administrator’s Guide AG-87

Chapter 4 Scheduling
4.4.8 Examples of Workload and Policy

• If you need to have high-priority jobs run soon, and nothing distinguishes the high-priority jobs from the rest:

• Create advance reservations for the high-priority jobs, and have users submit those jobs to the reservations; see
section 4.9.37, “Reservations”, on page 197

• If you want to run jobs in submission order:

• FIFO; see section 4.9.20, “FIFO Scheduling”, on page 148

• If you have low-priority jobs that should run only when other jobs don’t need the resources:

• Set up an anti-express queue; see section 4.9.1, “Anti-Express Queues”, on page 102

• If you have a mix of jobs, and want to run big jobs first:

• Sort jobs on a key, using ncpus as the key, to run big jobs first; see section 4.4.5, “Scheduling Jobs According to
Size Etc.”, on page 82

• If you have a mix of jobs, and want to give big jobs high priority, but avoid having idle resources:

• Sort jobs on a key, using ncpus as the key, to run big jobs first; see section 4.4.5, “Scheduling Jobs According to
Size Etc.”, on page 82

• Use backfilling; see section 4.9.3, “Using Backfilling”, on page 105

• If you want to have all users start about the same number of jobs:

• Use round robin, give each user their own queue, and give each queue the same priority; see section 4.9.38,
“Round Robin Queue Selection”, on page 204

• If you want to always give each user access to a certain amount of a resource, but allow more if no one else is using
it:

• Use soft limits for the amount each user can use; see section 5.15.1, “Managing Resource Usage By Users,
Groups, and Projects, at Server & Queues”, on page 287 and section 4.9.33, “Using Preemption”, on page 180

• If your partition or site has more than one funding source:

• See section 4.4.4, “Allocating Resources by User, Project or Group”, on page 80

• If you have lots of users in a partition or complex:

• Use resource limits; see section 5.15.1, “Managing Resource Usage By Users, Groups, and Projects, at Server &
Queues”, on page 287, or

• Use fairshare; see section 4.9.19, “Using Fairshare”, on page 138

• If you have jobs that must run at the end of the day:

• Use dependencies for end-of-day accounting; see section 4.9.11, “Dependencies”, on page 126

• If you need to ensure that jobs run in certain hours on desktops:

• Use cycle harvesting; see section 4.9.9, “Using Idle Workstation Cycle Harvesting”, on page 115, or

• Use primetime & non-primetime for nighttime; see section 4.9.34, “Using Primetime and Holidays”, on page
191

• If you want to be sure a job will run:

• Create an advance reservation; see section 4.9.37, “Reservations”, on page 197

• If you have more than one partition or complex, and you want to balance the workload across the partitions or com-
plexes:

• Use peer scheduling; see section 4.9.31, “Peer Scheduling”, on page 165

• If you have some jobs that should prefer to run on one set of vnodes, and other jobs that should prefer to run on
another set of vnodes, but if the preferred vnodes are busy, a job can run on the non-preferred vnodes:

• Use peer scheduling. Set up two partitions or complexes, give the pulling queues low priority, and use queue
AG-88 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
priority in the job sorting formula. See section 4.9.31, “Peer Scheduling”, on page 165, section 2.3.5.3, “Priori-
tizing Execution Queues”, on page 24, and section 4.9.21, “Using a Formula for Computing Job Execution Pri-
ority”, on page 149. You can use a routing queue to initially send jobs to the correct partition or complex. See
section 2.3.6, “Routing Queues”, on page 25

• If you have two (or more) sets of vnodes, and jobs should run on one set or the other, but not both. Additionally, jobs
should not have to request where they run. For example, one set of vnodes is new, and one is old:

• Use a routing queue and two execution queues. Associate each execution queue with one set of vnodes. Put the
execution queue for the preferred set of vnodes first in the routing list, but put a limit on the number of queued
jobs in the execution queues, so that both queues will fill up. Otherwise the routing queue will preferentially fill
the first in its routing list. See section 2.3.6, “Routing Queues”, on page 25, and section 4.9.2, “Associating
Vnodes with Queues”, on page 103

• If you need to apportion a single vnode or cluster according to ownership:

• See section 4.4.4, “Allocating Resources by User, Project or Group”, on page 80

• If you have more than one high-priority queue, and at least one low-priority queue, and you want all jobs in high-pri-
ority queues to be considered as one group, and run in submission order:

• Use the job sorting formula to sort jobs on queue priority:

set server job_sort_formula = queue_priority

• Give all queues whose jobs should be considered together the same priority

• Set the by_queue scheduler attribute to False

• If you want to place jobs on the vnodes with the fewest CPUs first, saving bigger vnodes for larger jobs:

• Sort vnodes so that those with fewer CPUs come first:

node_sort_key: “ncpus LOW”

4.5 About Schedulers

Each scheduler, pbs_sched, implements its own scheduling policy. A scheduler communicates with MoMs to query
the state of host-level resources and with the server to learn about the availability of jobs to execute and the state of
server-level resources.

4.5.1 Configuring a Scheduler

4.5.1.1 Where a Scheduler Gets Its Information

Each scheduler has its own sched_priv directory, where it keeps scheduler-specific files. For a multisched, this is
$PBS_HOME/sched_priv_<scheduler name>; for the default scheduler, it is always $PBS_HOME/sched_priv/.

The behavior of a scheduler is controlled by the information provided by the following sources:

PBS_est

Hook that runs estimator process which calculates estimated start time and vnodes for jobs. See section 4.9.15,
“Estimating Job Start Time”, on page 131.

<sched_priv directory>/resource_group

Contains the description of the fairshare tree. Created by you. Can be edited. Read on startup and HUP of
scheduler.

<sched_priv directory>/usage

Contains the usage database. Do not edit. Instead, use the pbsfs command while a scheduler is stopped; see
“pbsfs” on page 31 of the PBS Professional Reference Guide.
PBS Professional 2020.1.1 Administrator’s Guide AG-89

Chapter 4 Scheduling
<sched_priv directory>/sched_config

Contains scheduler configuration options, also called scheduler parameters, e.g. fairshare_decay_time,
job_sort_key. Read on startup and HUP.

Can be edited. Each entry must be a single, unbroken line. Entries must be double-quoted if they contain
whitespace.

See “Scheduler Parameters” on page 249 of the PBS Professional Reference Guide.

<sched_priv directory>/dedicated_time

Contains definitions of dedicated time. Can be edited. Read on startup and HUP.

<sched_priv directory>/holidays

Where you define primetime, non-primetime, and holidays. Can be edited. Read on startup and HUP.

Options to pbs_sched command

Control some scheduler behavior. Set on invocation. See “pbs_sched” on page 105 of the PBS Professional
Reference Guide.

Scheduler attributes

Control some scheduler behavior. Can be set using qmgr. Read every scheduling cycle. See “Scheduler
Attributes” on page 298 of the PBS Professional Reference Guide.

Server attributes

Several server attributes control scheduler behavior. Can be set using qmgr. The following table lists the
server attributes that affect scheduling, along with a brief description. Read every scheduling cycle.

Some limit attributes are marked as “old”. These are incompatible with, and are replaced by, the new limit
attributes described in section 5.15.1, “Managing Resource Usage By Users, Groups, and Projects, at Server &
Queues”, on page 287.

For a complete description of each attribute, see “Server Attributes” on page 281 of the PBS Professional Refer-
ence Guide.

Table 4-1: Server Attributes Involved in Scheduling

Attribute Effect

backfill_depth Specifies backfilling behavior. Sets the number of jobs that are to be
backfilled around.

default_queue Specifies queue for jobs that don’t request a queue

eligible_time_enable Controls starving behavior.

est_start_time_freq Obsolete. Not used. Interval at which PBS calculates estimated
start times and vnodes for all jobs.

job_sort_formula Formula for computing job priorities.

max_group_res Old. The maximum amount of the specified resource that any single
group may consume in this PBS complex.

max_group_res_soft Old. The soft limit for the specified resource that any single group
may consume in this complex.
AG-90 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
max_group_run Old. The maximum number of jobs owned by the users in one group
allowed to be running within this complex at one time.

max_group_run_soft Old. The maximum number of jobs owned by the users in one group
allowed to be running in this complex at one time.

max_queued The maximum number of jobs allowed to be queued or running in
the partition managed by a scheduler. Can be specified for users,
groups, or all.

max_queued_res.<resource

name>

The maximum amount of the specified resource allowed to be allo-
cated to jobs queued or running in the partition managed by a sched-
uler. Can be specified for users, groups, or all.

max_run The maximum number of jobs allowed to be running in the partition
managed by a scheduler. Can be specified for users, groups, or all.

max_run_res.<resource name> The maximum amount of the specified resource allowed to be allo-
cated to jobs running in the partition managed by a scheduler. Can
be specified for users, groups, or all.

max_run_res_soft.<resource

name>

Soft limit on the amount of the specified resource allowed to be allo-
cated to jobs running in the partition managed by a scheduler. Can
be specified for users, groups, or all.

max_run_soft Soft limit on the number of jobs allowed to be running in the parti-
tion managed by a scheduler. Can be specified for users, groups,
or all.

max_running Old. The maximum number of jobs allowed to be selected for exe-
cution at any given time, from all possible jobs.

max_user_res Old. The maximum amount within this complex that any single user
may consume of the specified resource.

max_user_res_soft Old. The soft limit on the amount of the specified resource that any
single user may consume within a complex.

max_user_run Old. The maximum number of jobs owned by a single user allowed
to be running within the partition managed by a scheduler at one
time.

max_user_run_soft Old. The soft limit on the number of jobs owned by a single user
that are allowed to be running within this complex at one time.

node_fail_requeue Controls whether running jobs are automatically requeued or are
deleted when the primary execution host fails. Number of seconds
to wait after losing contact with the primary execution host MoM
before requeueing or deleting jobs. See “node_fail_requeue” on
page 290 of the PBS Professional Reference Guide.

node_group_enable Specifies whether node grouping is enabled.

node_group_key Specifies the resource to use for node grouping.

Table 4-1: Server Attributes Involved in Scheduling

Attribute Effect
PBS Professional 2020.1.1 Administrator’s Guide AG-91

Chapter 4 Scheduling
Vnode attributes

Several vnode attributes control scheduler behavior. Can be set using qmgr. The following table lists the
vnode attributes that affect scheduling, along with a brief description. Read every scheduling cycle. For a com-
plete description of each attribute, see “Vnode Attributes” on page 320 of the PBS Professional Reference
Guide.

resources_available The list of available resources and their values defined on the server.

resources_max The maximum amount of each resource that can be requested by any
single job in this complex, if there is not a resources_max value
defined for the queue at which the job is targeted.

scheduler_iteration deprecated The time between scheduling iterations.

scheduling deprecated Enables scheduling of jobs.

resources_assigned The total of each type of resource allocated to jobs running and exit-
ing in this complex, plus the total of each type of resource allocated
to any started reservations.

Table 4-2: Vnode Attributes Involved in Scheduling

Attribute Effect

current_aoe This attribute identifies the AOE currently instantiated on this vnode.

no_multinode_jobs Controls whether jobs which request more than one chunk are allowed to execute on
this vnode.

partition The partition to which this vnode is assigned.

pcpus The number of physical CPUs on the vnode.

priority The priority of this vnode compared with other vnodes.

provision_enable Controls whether this vnode can be provisioned.

queue The queue with which this vnode is associated.

resources_assigned The total amount of each resource allocated to running and exiting jobs and started
reservations running on this vnode.

resources_available The list of resources and the amounts available on this vnode

sharing Specifies whether more than one job at a time can use the resources of the vnode or
the vnode’s host.

state Shows or sets the state of the vnode.

Table 4-1: Server Attributes Involved in Scheduling

Attribute Effect
AG-92 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
Queue attributes

Several queue attributes control scheduler behavior. Can be set using qmgr. The following table lists the queue
attributes that affect scheduling, along with a brief description. Read every scheduling cycle. For a complete
description of each attribute, see “Queue Attributes” on page 311 of the PBS Professional Reference Guide.

Table 4-3: Queue Attributes Involved in Scheduling

Attribute Effect

backfill_depth Specifies backfilling behavior. Sets the number of jobs that are to be
backfilled around.

enabled Specifies whether this queue accepts new jobs.

from_route_only Specifies whether this queue accepts jobs only from routing queues.

max_array_size The maximum number of subjobs that are allowed in an array job.

max_group_res Old. The maximum amount of the specified resource that any single
group may consume in this queue.

max_group_res_soft Old. The soft limit for the specified resource that any single group
may consume in this queue.

max_group_run Old. The maximum number of jobs owned by the users in one group
allowed to be running within this queue at one time.

max_group_run_soft Old. The maximum number of jobs owned by the users in one group
allowed to be running in this queue at one time.

max_queuable Old. The maximum number of jobs allowed to reside in the queue at
any given time.

max_queued The maximum number of jobs allowed to be queued in or running
from the queue. Can be specified for users, groups, or all.

max_queued_res.<resource

name>

The maximum amount of the specified resource allowed to be allo-
cated to jobs queued in or running from the queue. Can be specified
for users, groups, or all.

max_run The maximum number of jobs allowed to be running from the
queue. Can be specified for users, groups, or all.

max_run_res.<resource name> The maximum amount of the specified resource allowed to be allo-
cated to jobs running from the queue. Can be specified for users,
groups, or all.

max_run_res_soft.<resource

name>

Soft limit on the amount of the specified resource allowed to be allo-
cated to jobs running from the queue. Can be specified for users,
groups, or all.

max_run_soft Soft limit on the number of jobs allowed to be running from the
queue. Can be specified for users, groups, or all.

max_running Old. The maximum number of jobs allowed to be selected for exe-
cution at any given time, from all possible jobs.
PBS Professional 2020.1.1 Administrator’s Guide AG-93

Chapter 4 Scheduling
List of jobs and server-level resources queried from server

Read every scheduling cycle.

Resources in Resource_List job attribute

Read every scheduling cycle.

max_user_res Old. The maximum amount of the specified resource that the jobs of
any single user may consume.

max_user_res_soft Old. The soft limit on the amount of the specified resource that any
single user may consume in this queue.

max_user_run Old. The maximum number of jobs owned by a single user allowed
to be running from the queue at one time.

max_user_run_soft Old. The soft limit on the number of jobs owned by a single user
that are allowed to be running from this queue at one time.

node_group_key Specifies the resource to use for node grouping.

Priority The priority of this queue compared to other queues of the same type
in this PBS partition or complex.

resources_assigned The total of each type of resource allocated to jobs running and exit-
ing in this queue.

resources_available The list of available resources and their values defined on the queue.

resources_max The maximum amount of each resource that can be requested by any
single job in this queue.

resources_min The minimum amount of each resource that can be requested by a
single job in this queue.

route_destinations The list of destinations to which jobs may be routed.

route_held_jobs Specifies whether jobs in the held state can be routed from this
queue.

route_lifetime The maximum time a job is allowed to reside in a routing queue. If a
job cannot be routed in this amount of time, the job is aborted.

route_retry_time Time delay between routing retries. Typically used when the net-
work between servers is down.

route_waiting_jobs Specifies whether jobs whose execution_time attribute value is in
the future can be routed from this queue.

started Specifies whether jobs in this queue can be scheduled for execution.

state_count The number of jobs in each state currently residing in this queue.

Table 4-3: Queue Attributes Involved in Scheduling

Attribute Effect
AG-94 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
List of host-level resources queried from MoMs

Read every scheduling cycle.

4.5.1.2 Reference Copies of Files

PBS is installed with a reference copy of the holidays file in which everything is commented out, in PBS_EXEC/etc/
pbs_holidays.

4.5.2 Making a Scheduler Read its Configuration

If you change a scheduler’s configuration file, the scheduler must re-read it for the changes to take effect. To get a sched-
uler to re-read its configuration information, without stopping the scheduler, you can HUP the scheduler:

kill -HUP <scheduler PID>

If you set a scheduler attribute using qmgr, the change takes effect immediately and you do not need to HUP the sched-
uler.

4.5.3 Scheduling on Resources

A scheduler honors all resources listed in the resources: line in <sched_priv directory>/sched_config.
If this line is not present, a scheduler honors all resources, built-in and custom. It is more efficient to list just the
resources that you want a scheduler to schedule on.

4.5.4 Starting, Stopping, and Restarting a Scheduler

4.5.4.1 When and How to Start a Scheduler

During normal operation, startup of the scheduler is handled automatically. The PBS daemons are started automatically
at bootup by the PBS start/stop script. During failover, the secondary server automatically tries to use the primary sched-
uler, and if it cannot, it starts its own scheduler.

To start the default scheduler by hand:

PBS_EXEC/sbin/pbs_sched [options]

See “pbs_sched” on page 105 of the PBS Professional Reference Guide.

For how to start a multisched, see section 4.2.2, “Starting a Multisched”, on page 57.

4.5.4.2 When and How to Stop a Scheduler

You must stop a scheduler for the following operations:

• (Recommended) Using the pbsfs command; see “pbsfs” on page 31 of the PBS Professional Reference Guide.

• Upgrading PBS Professional; see “Upgrading” on page 65 in the PBS Professional Installation & Upgrade Guide.

A scheduler traps signals during the scheduling cycle. You can kill a scheduler at the end of the cycle, or if necessary,
immediately. A scheduler does not write the fairshare usage file when it is killed with -9, but it does write the file when
it is killed without -9.

You must be root on the scheduler’s host.

To stop a scheduler at the end of a cycle:

kill <scheduler PID>
PBS Professional 2020.1.1 Administrator’s Guide AG-95

Chapter 4 Scheduling
To stop a scheduler immediately:

kill -9 <scheduler PID>

4.5.4.3 When and How to Restart a Scheduler

Under most circumstances, when you restart a scheduler, you do not need to specify any options to the pbs_sched
command. See “pbs_sched” on page 105 of the PBS Professional Reference Guide. Start a scheduler this way:

PBS_EXEC/sbin/pbs_sched [options]

4.5.5 The Scheduling Cycle

A scheduler runs in a loop. Inside each loop, it starts up, performs all of its work, and then stops. The scheduling cycle
is triggered by a timer and by several possible events.

When there are no events to trigger the scheduling cycle, it is started by a timer. The time between starts is set in each
scheduler’s scheduler_iteration server attribute. The default value is 10 minutes.

The maximum duration of the cycle is set in each scheduler’s sched_cycle_length attribute. A scheduler will terminate
its cycle if the duration of the cycle exceeds the value of the attribute. The default value for the length of the scheduling
cycle is 20 minutes. A scheduler does not include the time it takes to query dynamic resources in its cycle measurement.

4.5.5.1 Triggers for Scheduling Cycle

A scheduler starts when the following happen:

• The specified amount of time has passed since the previous start

• A job is submitted

• A job finishes execution.

• A new reservation is created

• A reservation starts

• Scheduling is enabled

• The server comes up

• A job is qrun

• A queue is started

• A job is moved to a local queue

• Eligible wait time for jobs is enabled

• A reservation is re-confirmed after being degraded

• A hook restarts the scheduling cycle

4.5.5.1.i Logging Scheduling Triggers

The server triggers scheduler cycles. The reason for triggering a scheduling cycle is logged by the server. See section
14.3.4.2, “Scheduler Commands”, on page 540.
AG-96 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.5.5.2 Actions During Scheduling Cycle

The following is a list of a scheduler’s actions during a scheduling cycle. The list is not in any special order.

• A scheduler gets the state of the world:

• A scheduler queries the server for the following:

• Status of jobs in queues

• All global server, queue, and host-level resources

• Server, queue, vnode, and scheduler attribute settings

• Reservations

• A scheduler runs dynamic server resource queries for resources listed in the “server_dyn_res” line in
sched_config

• A scheduler runs dynamic host-level resource queries for resources listed in the “mom_resources” line (depre-
cated as of 18.2.1) in sched_config

• A scheduler logs a message at the beginning of each scheduling cycle saying whether it is primetime or not, and
when this period of primetime or non-primetime will end. The message is of this form:
“It is primetime and it will end in NN seconds at MM/DD/YYYY HH:MM:SS”

or

“It is non-primetime and it will end in NN seconds at MM/DD/YYYY HH:MM:SS”

• Given scheduling policy, available jobs and resources, and scheduling cycle length, a scheduler examines as many
jobs as it can, and runs as many jobs as it can.

4.5.6 How Available Consumable Resources are Counted

When a scheduler checks for available consumable resources, it uses the following calculation:

resouces_available.<resource name> - total resources assigned for this resource

total resources assigned is the total amount of resources_assigned.<resource name> for all other running and exit-
ing jobs and, at the server and vnodes, for started reservations.

For example, if a scheduler is calculating available memory, and two other jobs are running, each with 2GB of memory
assigned, and resources_available.mem is 8GB, the scheduler figures that it has 4GB to work with.

4.5.7 Improving Scheduler Performance

4.5.7.1 Improving Throughput of Jobs

You can tell a scheduler to run asynchronously, so it doesn’t wait for each job to be accepted by MoM, which means it
also doesn’t wait for an execjob_begin hook to finish. For short jobs, this can give you better scheduling performance.
To run a scheduler asynchronously, set the scheduler’s throughput_mode attribute to True (this attribute is True by
default).

When throughput_mode is True, jobs that have been changed can run in the same scheduling cycle in which they were
changed, for the following changes:

• Jobs that are qaltered (for example, in cron jobs)

• Jobs that are changed via server_dyn_res scripts

• Jobs that are peered to a new queue
PBS Professional 2020.1.1 Administrator’s Guide AG-97

Chapter 4 Scheduling
throughput_mode

Scheduler attribute. When set to True, this scheduler runs asynchronously and can start jobs faster. Only avail-
able when complex is in TPP mode.

Format: Boolean

Default: True

Example:

qmgr -c "set sched throughput_mode=<Boolean value>"

You can run a scheduler asynchronously only when the complex is using TPP mode. For details about TPP mode, see
“Communication” on page 45 in the PBS Professional Installation & Upgrade Guide. Trying to set the value to a non-
Boolean value generates the following error message:

qmgr obj= svr=default: Illegal attribute or resource value

qmgr: Error (15014) returned from server

4.5.7.2 Limiting Number of Jobs Queued in Execution Queues

If you limit the number of jobs queued in execution queues, you can speed up the scheduling cycle. You can set an indi-
vidual limit on the number of jobs in each queue, or a limit at the server, and you can apply these limits to generic and
individual users, groups, and projects, and to overall usage. You specify this limit by setting the
queued_jobs_threshold queue or server attribute. See section 5.15.1.9, “How to Set Limits at Server and Queues”, on
page 296.

If you set a limit on the number of jobs that can be queued in execution queues, we recommend that you have users sub-
mit jobs to a routing queue only, and route jobs to the execution queue as space becomes available. See section 4.9.39,
“Routing Jobs”, on page 205.

4.5.7.3 Setting Number of Scheduler Threads

By default, each scheduler starts one thread on its host. You can modify the number of threads a scheduler starts, either
by starting the scheduler with pbs_sched -t <num threads>, or by setting the PBS_SCHED_THREADS con-
figuration parameter in pbs.conf, or the PBS_SCHED_THREADS environment variable. The pbs_sched -t
option overrides the environment variable, which overrides the value in pbs.conf.

4.6 Using Queues in Scheduling

A queue is a PBS mechanism for holding jobs. PBS has queue-based tools for handling jobs; for example, you can set
queue-based limits on resource usage by jobs. PBS uses queues for a variety of purposes. Before reading this section,
please familiarize yourself with the mechanics of creating and configuring queues, by reading section 2.3, “Queues”, on
page 21.
AG-98 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
Queues are used in the following ways:

• Holding submitted jobs

• Prioritizing jobs and ordering job selection:

• PBS provides tools for selecting jobs according to the queue they are in; see section 4.3.5.3, “Using Queue-
based Tools to Prioritize Jobs”, on page 65

• Queue priority can be used in calculating job priority; see section 4.9.36, “Queue Priority”, on page 196

• Providing tools for managing time slots

• Reservations: you can reserve specific resources for defined time slots. Queues are used for advance and stand-
ing reservations; see section 4.9.37, “Reservations”, on page 197, and "Reserving Resources", on page 135 of
the PBS Professional User’s Guide

• Dedicated time; see section 4.9.10, “Dedicated Time”, on page 125

• Primetime and holidays; see section 4.9.34, “Using Primetime and Holidays”, on page 191

• Routing jobs: Many ways to route jobs are listed in section 4.9.39, “Routing Jobs”, on page 205

• Providing tools for managing resources

• Managing resource usage by users; see section 5.15.1, “Managing Resource Usage By Users, Groups, and
Projects, at Server & Queues”, on page 287

• Managing resource usage by jobs; see section 5.15.2, “Placing Resource Limits on Jobs”, on page 304

• Setting resource and job limits used for preemption: you can specify how much of a resource or how many jobs
a user or group can use before their jobs are eligible to be preempted. See section 5.15.1.4, “Hard and Soft Lim-
its”, on page 290 and section 4.9.33, “Using Preemption”, on page 180.

• Assigning default resources to jobs; see section 5.9.4, “Allocating Default Resources to Jobs”, on page 247

4.7 Scheduling Restrictions and Caveats

4.7.1 One Policy Per Scheduler

Each scheduler runs a single scheduling policy.

4.7.2 Jobs that Cannot Run on Current Resources

A scheduler checks to see whether each job could possibly run now, counting resources as if there were no other jobs,
and all current resources could be used by this job. A scheduler counts resources only from those vnodes that are on line.
If a vnode is marked offline, its resources are not counted.

A scheduler determines whether a job cannot run on current resources only when backfilling is used. If backfilling is
turned off, then a scheduler won't determine whether or not a job has requested more than can be supplied by current
resources. It decides only that it can't run now. If the job cannot run now because vnodes are unavailable, there is no log
message. If the job requests more than is available in the partition managed by a scheduler, there is a log message. In
both cases, the job stays queued.

4.7.3 Resources Not Controlled by PBS

When a scheduler runs each cycle, it gets the state of its world, including dynamic resources outside of the control of
PBS. If non-PBS processes are running on the vnodes PBS uses, it is possible that another process will use enough of a
dynamic resource such as scratch space to prevent a PBS job that requested that resource from running.
PBS Professional 2020.1.1 Administrator’s Guide AG-99

Chapter 4 Scheduling
4.7.4 No Pinning of Processes to Cores

PBS does not pin processes to cores. This can be accomplished in the job launch script using, for example, taskset or
dplace.

4.8 Errors and Logging

4.8.1 Logfile for scheduler

You can set a scheduler’s logging to record different kinds of events. See section 14.3.3.1.iii, “Specifying Scheduler Log
Events”, on page 538.

The server triggers scheduler cycles. The reason for triggering a scheduling cycle is logged by the server. See section
14.3.4.2, “Scheduler Commands”, on page 540.

4.9 Scheduling Tools

In this section (all of section 4.9, “Scheduling Tools”, on page 100, and its subsections), we describe each scheduling
tool, including how to configure it.

The following table lists PBS scheduling tools, with links to descriptions:

Table 4-4: List of Scheduling Tools

Scheduling Tool Incompatible Tools Link

Anti-express queue soft queue limits See section 4.9.1, “Anti-Express Queues”, on page
102

Associating vnodes with queues See section 4.9.2, “Associating Vnodes with
Queues”, on page 103

Backfilling fairshare or preemption w/
backfilling+strict ordering

See section 4.9.3, “Using Backfilling”, on page 105

Examining jobs queue-by-queue round robin, queues as fair-
share entities

See section 4.9.4, “Examining Jobs Queue by
Queue”, on page 110

Checkpointing See section 4.9.5, “Checkpointing”, on page 111

Organizing job chunks See section 4.9.6, “Organizing Job Chunks”, on page
112

cron jobs See section 4.9.7, “cron Jobs”, on page 112

Custom resources See section 4.9.8, “Using Custom and Default
Resources”, on page 113

Cycle harvesting reservations See section 4.9.9, “Using Idle Workstation Cycle
Harvesting”, on page 115

Dedicated time See section 4.9.10, “Dedicated Time”, on page 125

Default resources See section 4.9.8, “Using Custom and Default
Resources”, on page 113
AG-100 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
Dependencies See section 4.9.11, “Dependencies”, on page 126

Dynamic resources (server &
host)

See section 4.9.12, “Dynamic Resources”, on page
126

Eligible wait time for jobs See section 4.9.13, “Eligible Wait Time for Jobs”, on
page 126

Entity shares (was strict priority) formula, fairshare, FIFO See section 4.9.14, “Sorting Jobs by Entity Shares
(Was Strict Priority)”, on page 131

Estimating job start time See section 4.9.15, “Estimating Job Start Time”, on
page 131

Calculating job execution priority See section 4.9.16, “Calculating Job Execution Prior-
ity”, on page 134

Express queues See section 4.9.18, “Express Queues”, on page 137

Fairshare starving, strict ordering,
using the fairshare_perc
option to job_sort_key

See section 4.9.19, “Using Fairshare”, on page 138

FIFO See section 4.9.20, “FIFO Scheduling”, on page 148

Formula See section 4.9.21, “Using a Formula for Computing
Job Execution Priority”, on page 149

Gating jobs at server or queue See section 4.9.22, “Gating Jobs at Server or Queue”,
on page 155

Managing application licenses See section 4.9.23, “Managing Application
Licenses”, on page 155

Limits on per-job resource usage See section 4.9.24, “Limits on Per-job Resource
Usage”, on page 156

Limits on project, user, and group
jobs

See section 4.9.25, “Limits on Project, User, and
Group Jobs”, on page 156

Limits on project, user, and group
resource usage

See section 4.9.26, “Limits on Project, User, and
Group Resource Usage”, on page 156

Load balancing node_sort_key using
unused or assigned
options,

See section 4.9.27, “Using Load Balancing”, on page
156

Matching jobs to resources See section 4.9.28, “Matching Jobs to Resources”, on
page 159

Node grouping See section 4.9.29, “Node Grouping”, on page 162

Overrides See section 4.9.30, “Overrides”, on page 162

Peer scheduling See section 4.9.31, “Peer Scheduling”, on page 165

Placement sets See section 4.9.32, “Placement Sets”, on page 168

Preemption cgroups hook cannot be used
with suspend/resume

See section 4.9.33, “Using Preemption”, on page 180

Table 4-4: List of Scheduling Tools

Scheduling Tool Incompatible Tools Link
PBS Professional 2020.1.1 Administrator’s Guide AG-101

Chapter 4 Scheduling
4.9.1 Anti-Express Queues

An anti-express queue is a preemptable low-priority queue, designed for jobs that should run only when no other jobs
need the resources. These jobs are preempted if any other job needs the resources. An anti-express queue has the lowest
priority of all queues in this queue’s partition. Jobs in this queue have a soft limit of zero, so that any job running from
this queue is over its queue soft limit.

Preemption targets See section 4.9.33.4, “Using Preemption Targets”, on
page 182

Primetime and holidays See section 4.9.34, “Using Primetime and Holidays”,
on page 191

Provisioning See section 4.9.35, “Provisioning”, on page 196

Queue priority See section 4.9.36, “Queue Priority”, on page 196

Advance and standing reserva-
tions

cycle harvesting See section 4.9.37, “Reservations”, on page 197

Round robin queue examination by_queue See section 4.9.38, “Round Robin Queue Selection”,
on page 204

Routing jobs See section 4.9.39, “Routing Jobs”, on page 205

Shared or exclusive vnodes and
hosts

See section 4.9.41, “Shared vs. Exclusive Use of
Resources by Jobs”, on page 209

Shrinking jobs to fit See section 4.9.42, “Using Shrink-to-fit Jobs”, on
page 210

SMP cluster distribution avoid_provision See section 4.9.43, “SMP Cluster Distribution”, on
page 217

Soft walltime See section 4.9.44, “Using Soft Walltime”, on page
218.

Sorting jobs using job_sort_key See section 4.9.45, “Sorting Jobs on a Key”, on page
220

Sorting jobs on job’s requested
priority

See section 4.9.46, “Sorting Jobs by Requested Prior-
ity”, on page 222

Sorting queues

(deprecated in 13.0)

See section 4.9.47, “Sorting Queues into Priority
Order”, on page 222

Starving jobs fairshare See section 4.9.48, “Starving Jobs”, on page 222

Strict ordering Backfilling combined with
fairshare

See section 4.9.49, “Using Strict Ordering”, on page
224

Sorting vnodes on a key smp_cluster_dist set to
other than pack, or load bal-
ancing, with unused or
assigned options to
node_sort_key

See section 4.9.50, “Sorting Vnodes on a Key”, on
page 225

Table 4-4: List of Scheduling Tools

Scheduling Tool Incompatible Tools Link
AG-102 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
See section 4.9.33, “Using Preemption”, on page 180.

4.9.1.1 Configuring Anti-express Queues via Priority

To configure an anti-express queue by using queue priority, do the following:

• Create an execution queue called lowprio:
Qmgr: create queue lowprio
Qmgr: set queue lowprio queue_type=e
Qmgr: set queue lowprio started=true
Qmgr: set queue lowprio enabled=true

• By default, all new queues have a priority of zero. Make sure all queues have a value set for priority, and that lowp-
rio has the lowest priority:
Qmgr: set queue workq priority=10

• Set the soft limit on the number of jobs that can run from that queue to zero for all users:
Qmgr: set queue lowprio max_run_soft = ”[u:PBS_GENERIC=0]”

• Make sure that jobs over their queue soft limits have lower preemption priority than normal jobs. Edit
<sched_priv directory>/sched_config, and do the following:

• Put “normal_jobs” before “queue_softlimits”. For example:

preempt_prio: "express_queue, normal_jobs, queue_softlimits"

• Use preemption:

preemptive_sched: True ALL

4.9.1.2 Configuring Anti-express Queues via Preemption Targets

To use preemption targets, include this queue in Resource_List.preempt_targets for all jobs. You can do this with a
hook, with server and/or queue defaults, or by qaltering the jobs. Set each job’s
Resource_List.preempt_targets=queue=<name of anti-express queue>.

4.9.1.3 Anti-express Queue Caveats

If you use soft limits on the number of jobs that users can run at other queues, jobs that are over their soft limits at other
queues will also have the lowest preemption priority.

4.9.2 Associating Vnodes with Queues

You can associate each vnode with one or more queues. When a vnode is associated with a queue, that means it accepts
jobs from that queue only. There are two arrangements:

• One or more vnodes associate with one queue

• One or more vnodes associate with multiple queues

These two arrangements require different methods of configuration.

You do not need to associate vnodes with queues in order to have jobs run on the vnodes that have the right application,
as long as the application is a resource that can be requested by jobs.
PBS Professional 2020.1.1 Administrator’s Guide AG-103

Chapter 4 Scheduling
4.9.2.1 Associating Vnodes With One Queue

You can associate one or more vnodes with a queue, using the vnode’s queue attribute. Using this method, each vnode
can be associated with at most one queue. Each queue can be associated with more than one vnode. If you associate a
queue and one or more vnodes using this method, any jobs in the queue can run only on the associated vnodes, and the
only jobs that can run on the vnodes are the ones in the queue.

To associate a vnode with a queue, set the vnode’s queue attribute to the name of the queue you want. For example, to
associate the vnode named Vnode1 with the queue named Queue1:

Qmgr: set node Vnode1 queue=Queue1

4.9.2.2 Associating Vnodes With Multiple Queues

You can use custom host-level resources to associate one or more vnodes with more than one queue. A scheduler will
use the resources for scheduling just as it does with any resource.

In order to map a vnode to more than one queue, you must define a new host-level string array custom resource. This
string array holds a string that has the same value for the queue and vnode you wish to associate. The mechanism of
association is that a job that lands in the queue inherits that value for the resource, and then the job can run only on
vnodes having a matching value for the resource. You can associate more than one queue with a vnode by setting the
resource to the same value at each queue.

In some cases, you can use the same resource to route jobs and to associate vnodes with queues. For the method
described here, you use host-level resources to associate vnodes with queues. The rules for which resources can be used
for routing are given in section 2.3.6.4.iii, “Resources Used for Routing and Admittance”, on page 27. How jobs inherit
resources is described in section 5.9.4, “Allocating Default Resources to Jobs”, on page 247.

4.9.2.2.i Procedure to Associate Vnodes with Multiple Queues

To associate one or more vnodes with one or more queues, do the following:

1. Define the new host-level resource:

qmgr -c 'create resource <new resource> type=string_array, flag=h'

2. Instruct the scheduler to honor the resource. Add the new resource to $<sched_priv directory>/
sched_config:

resources: "ncpus, mem, arch, host, vnode, <new resource>"

3. HUP the scheduler:

kill -HUP <scheduler PID>

4. Set each queue’s default_chunk for the new resource to the value you are using to associate it with vnodes:

Qmgr: set queue <queue name> default_chunk.<new resource> = <value>

For example, if one queue is “MathQ” and one queue is “SpareQ”, and the new resource is “Qlist”, and you want to
associate a set of vnodes and queues based on ownership by the math department, you can make the queue resource
value be “math”:

Qmgr: set queue MathQ default_chunk.Qlist = math
Qmgr: set queue SpareQ default_chunk.Qlist = math

5. Set the value for the new resource at each vnode:

Qmgr: set node <vnode name> resources_available.<new resource> = <associating value>

For example, to have the vnode named “Vnode1” associated with the queues owned by the math department:

Qmgr: set node Vnode1 resources_available.Qlist = math
AG-104 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.2.2.ii Example of Associating Multiple Vnodes with Multiple Queues

Now, as an example, assume you have 2 queues: “PhysicsQ” and “ChemQ”, and you have 3 vnodes: vn[1], vn[2], and
vn[3]. You want Physics jobs to run on vn[1] and vn[2], and you want Chem jobs to run on vn[2] and vn[3]. Each
department gets exclusive use of one vnode, but both must share a vnode.

 To achieve the following mapping:

PhysicsQ -->vn[1], vn[2]

ChemQ --> vn[2], vn[3]

Which is the same as:

vn[1] <-- PhysicsQ

vn[2] <-- PhysicsQ, ChemQ

vn[3] <-- ChemQ

1. Define the new host-level resource:
Qmgr: create resource Qlist type=string_array, flag=h

2. Instruct the scheduler to honor the resource. Add the new resource to $<sched_priv directory>/
sched_config:

resources: "ncpus, mem, arch, host, vnode, Qlist”

3. HUP the scheduler:

kill -HUP <scheduler PID>

4. Add queue to vnode mappings:

Qmgr: s n vn[1] resources_available.Qlist="PhysicsQ"
Qmgr: s n vn[2] resources_available.Qlist= "PhysicsQ,ChemQ"
Qmgr: s n vn[3] resources_available.Qlist="ChemQ"

5. Force jobs to request the correct Qlist values:

Qmgr: s q PhysicsQ default_chunk.Qlist=PhysicsQ
Qmgr: s q ChemQ default_chunk.Qlist=ChemQ

4.9.3 Using Backfilling

Backfilling means fitting smaller jobs around the higher-priority jobs that a scheduler is going to run next, in such a way
that the higher-priority jobs are not delayed. When a scheduler is using backfilling, the scheduler considers highest-pri-
ority jobs top jobs. Backfilling changes the algorithm that a scheduler uses to run jobs:

• When backfilling is not being used, a scheduler looks at each job in priority order, tries to run the job now, and if it
cannot, it moves on to the next-highest-priority job.

• When backfilling is being used, a scheduler tries to run the top job now, and if it cannot, it makes sure that no other
job that it runs in this cycle will delay the top job. It also fits smaller jobs in around the top job.

Backfilling allows you to keep resources from becoming idle when the top job cannot run.

Backfilling applies all of the time; it is not a prime option.

4.9.3.1 Glossary

Top job

A top job has the highest execution priority according to scheduling policy, and a scheduler plans resources and
start time for this job first. Top jobs exist only when a scheduler is using backfilling.
PBS Professional 2020.1.1 Administrator’s Guide AG-105

Chapter 4 Scheduling
Filler job

Smaller job that fits around top jobs. Running a filler job does not change the start time or resources for a top
job. This job runs next only when backfilling is being used (meaning that a top job cannot start next because
insufficient resources are available for the top job, but whatever is available is enough for the filler job).

4.9.3.2 Backfilling Separately at the Server and Queues

You can configure the number of top jobs that PBS backfills around by setting the value of the backfill_depth server and
queue attributes. For example, if you set backfill_depth to 3, PBS backfills around the top 3 jobs. See “Server
Attributes” on page 281 of the PBS Professional Reference Guide.

You can specify a different number of top jobs for each queue. You can also specify the number of top jobs for the
server. Any queues that do not have their own backfill depth share in the server’s backfill depth count. For example, you
have three queues Q1, Q2, and Q3, and you set the backfill depth at Q1 to be 5 and the backfill depth at the server to be
3. In this example, the top 5 jobs in Q1 will run as soon as possible, and be backfilled around, but there are only 3 top job
slots allocated to the jobs in Q2 and Q3.

If you do not set a value for the backfill depth at the server, it defaults to 1.

4.9.3.3 How Backfilling Works

A scheduler makes a list of jobs to run in order of priority, for any queue that has an individual backfill depth, for the
server if there are queues without a backfill depth set. These lists are composed according to execution priority described
in section 4.9.16, “Calculating Job Execution Priority”, on page 134. These are top jobs.

If you use backfilling, a scheduler looks for smaller jobs that can fit into the usage gaps around the highest-priority jobs
in each list. A scheduler looks in each prioritized list of jobs and chooses the highest-priority smaller jobs that fit. Filler
jobs are run only if they will not delay the start time of top jobs.

A scheduler creates a fresh list of top jobs at every scheduling cycle, so if a new higher-priority job has been submitted, it
will be considered.

You can use shrink-to-fit jobs to backfill into otherwise unusable time slots. PBS checks whether a shrink-to-fit job
could shrink into the available slot, and if it can, runs it. See section 4.9.42, “Using Shrink-to-fit Jobs”, on page 210.

Backfilling is useful in the following circumstances:

• When the strict_ordering scheduler parameter is turned on, filler jobs are fitted around higher-priority jobs. Without
backfilling, no job runs if the top job cannot run. See section 4.9.49, “Using Strict Ordering”, on page 224

• When the help_starving_jobs scheduler parameter is turned on, filler jobs are fitted around starving jobs. See sec-
tion 4.9.48, “Starving Jobs”, on page 222

4.9.3.4 Backfilling Around N Jobs

You can configure the number of top jobs that PBS backfills around by setting the value of the backfill_depth server
attribute. For example, if you set backfill_depth to 3, PBS backfills around the top 3 jobs. See “Server Attributes” on
page 281 of the PBS Professional Reference Guide.

4.9.3.5 Backfilling Around Preempted Jobs

When you set the sched_preempt_enforce_resumption scheduler attribute to True, a scheduler adds preempted jobs
to the set of jobs around which it backfills. A scheduler ignores backfill_depth when backfilling around jobs in the Pre-

empted execution class. By default the sched_preempt_enforce_resumption scheduler attribute is False.
AG-106 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.3.6 Backfilling Around Starving Jobs

When you take starving jobs into consideration, by setting the help_starving_jobs scheduler parameter to True, starving
jobs can be added to the top jobs. They can continue to wait for resources once they are the top job, blocking other jobs
from running. See section 4.9.48, “Starving Jobs”, on page 222.

4.9.3.7 Configuring Backfilling

To configure backfilling, do the following:

1. Choose how many jobs to backfill around. If you want to backfill around more than 1 job, set the backfill_depth
server attribute to the desired number. The default is 1. Set this parameter to less than 100.

2. Choose whether you want any queues to share the list of top jobs at the server. Do not set backfill_depth at those
queues. If you want any queues to share this list, set the server’s backfill_depth attribute to the desired value. The
default is 1. Set this parameter to less than 100.

3. For the queues where you want a separate backfill depth, choose how many jobs to backfill around at each queue.
Set the backfill_depth queue attribute to the desired number.

4. Make sure that jobs request walltime by making them inherit a walltime resource if they don’t explicitly request it.
For options, see section 4.9.3.11.i, “Ensure Jobs Are Eligible for Backfilling”, on page 109.

5. Choose whether you want to backfill around preempted jobs. To do this, set the
sched_preempt_enforce_resumption scheduler attribute to True.

6. Make sure that the strict_ordering scheduler parameter is set to True for all time if you use backfilling.

7. Choose whether you want to backfill around starving jobs. If you do, make sure that the help_starving_jobs sched-
uler parameter is set to True.
PBS Professional 2020.1.1 Administrator’s Guide AG-107

Chapter 4 Scheduling
When most jobs become top jobs, they are counted toward the limit set in backfill_depth. Some top jobs are not counted
toward backfill_depth. The following table shows how backfilling can be configured and which top jobs affect
backfill_depth. Unless explicitly stated, top jobs are counted towards backfill_depth. A scheduler stops considering
jobs as top jobs when it has reached backfill_depth, except for preempted jobs, which do not count toward that limit.
When backfill is off, a scheduler does not have a notion of “top jobs”. When help_starving_jobs is off, a scheduler has
no notion of starving jobs.

4.9.3.8 Backfilling and Strict Ordering

When you use strict ordering, a scheduler runs jobs in exactly the order of their priority. If backfill_depth is set to zero
and the top job cannot run, no job is able to run. Backfilling can prevent resources from standing idle while the top job
waits for its resources to become available. See section 4.9.49, “Using Strict Ordering”, on page 224.

Table 4-5: Configuring Backfilling

Parameter and
Attribute Settings

When Classes Are Top Jobs

b
a
c
k
fi

ll
_
d

e
p

th

s
tr

ic
t_

o
rd

e
ri

n
g

s
c
h

e
d

_
p

re
e
m

p
t_

e
n

fo
rc

e
_
re

s
u

m
p

ti
o

n

h
e
lp

_
s
ta

rv
in

g
_
jo

b
s

Express Preempted Starving Normal

>0 T T T Top jobs Top jobs, not counted in
backfill_depth

Top jobs Top jobs

>0 T T F Top jobs Top jobs, not counted in
backfill_depth

Starving class does not exist Top jobs

>0 T F T Top jobs Top jobs Top jobs Top jobs

>0 T F F Top jobs Top jobs Starving class does not exist Top jobs

>0 F T T No Top jobs, not counted in
backfill_depth

Top jobs No

>0 F T F No Top jobs, not counted in
backfill_depth

Starving class does not exist No

>0 F F T No No Top jobs No

>0 F F F No No Starving class does not exist No
AG-108 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.3.9 Backfilling and Scheduler Cycle Speed

You can choose a trade-off between scheduling cycle speed and the fineness of the granularity with which estimated start
times are calculated. You do this by setting the opt_backfill_fuzzy scheduler attribute via qmgr. You can choose off,
low, medium, or high. For no speedup, choose off. For maximum speedup, choose high.

Qmgr: set sched opt_backfill_fuzzy [off | low | medium | high]

See section 4.9.40, “Scheduler Cycle Speedup”, on page 208.

4.9.3.10 Attributes and Parameters Affecting Backfilling

backfill_depth

Server and queue attribute. Specifies backfilling behavior. Sets the number of jobs that are to be backfilled
around. See “Server Attributes” on page 281 of the PBS Professional Reference Guide and “Queue Attributes”
on page 311 of the PBS Professional Reference Guide.

opt_backfill_fuzzy

Scheduler attribute. You can use this setting to trade between scheduling cycle speed and estimated start time
granularity. See “Queue Attributes” on page 311 of the PBS Professional Reference Guide.

sched_preempt_enforce_resumption

Scheduler attribute. When this attribute is True and backfill_depth is greater than zero, a scheduler treats pre-
empted jobs like top jobs and backfills around them. This effectively increases the value of backfill_depth by
the number of preempted jobs.

The configuration parameters backfill_prime and prime_exempt_anytime_queues do not relate to backfilling. They
control the time boundaries of regular jobs with respect to primetime and non-primetime. See section 4.9.34, “Using
Primetime and Holidays”, on page 191.

4.9.3.11 Backfilling Recommendations and Caveats

4.9.3.11.i Ensure Jobs Are Eligible for Backfilling

When calculating backfilling, PBS treats a job that has no walltime specified as if its walltime is eternity. A scheduler
will never use one of these jobs as a filler job. You can avoid this by ensuring that each job has a realistic walltime, by
using the following methods:

• At qsub time via a hook

• By setting the queue’s resources_default.walltime attribute

• By setting the server’s resources_default.walltime attribute

• At qsub time via the server’s default_qsub_arguments

4.9.3.11.ii Number of Jobs to Backfill Around

The more jobs being backfilled around, the longer the scheduling cycle takes.

4.9.3.11.iii Dynamic Resources and Backfilling

Using dynamic resources and backfilling may result in some jobs not being run because a dynamic resource is tempo-
rarily unavailable. This may happen when a job requesting a dynamic resource is selected as the top job. A scheduler
must estimate when resources will become available, but it can only query for resources available at the time of the
query, not resources already in use, so it will not be able to predict when resources in use become available. Therefore
the scheduler won’t be able to schedule the job. In addition, since dynamic resources are outside of the control of PBS,
they may be consumed between the time a scheduler queries for the resource and the time it starts a job.
PBS Professional 2020.1.1 Administrator’s Guide AG-109

Chapter 4 Scheduling
4.9.3.11.iv Avoid Using Strict Ordering, Backfilling, and Fairshare

It is inadvisable to use strict ordering and backfilling with fairshare.

The results may be non-intuitive. Fairshare will cause relative job priorities to change with each scheduling cycle. It is
possible that while a large job waits for a slot, jobs from the same entity or group will be chosen as the filler jobs, and the
usage from these small jobs will lower the priority of the large job.

For example, if a user has a large job that is the most deserving but cannot run, smaller jobs owned by that user will chew
up the user's usage, and prevent the large job from ever being likely to run. Also, if the small jobs are owned by a user in
one area of the fairshare tree, no large jobs owned by anyone else in that section of the fairshare tree are likely to be able
to run.

4.9.3.11.v Using Preemption, Strict Ordering, and Backfilling

Using preemption with strict ordering and backfilling may reshuffle the top job(s) if high-priority jobs are preempted.

4.9.3.11.vi Warning About Backfilling and Provisioning

A scheduler will not run a job requesting an AOE on a vnode that has a top job scheduled on it in the future.

A scheduler will not use a job requesting an AOE as a top job.

4.9.3.11.vii Backfilling and Estimating Job Start Time

When a scheduler is backfilling around jobs, it estimates the start times and execution vnodes for the top jobs being back-
filled around. See section 4.9.15, “Estimating Job Start Time”, on page 131.

4.9.3.11.viii Using Strict Ordering and Backfilling with Only One of Primetime or
Non-primetime

If you use backfilling, it is used all of the time. However, you can use strict ordering during primetime, non-primetime,
or all the time. When PBS is using strict ordering and backfilling, a scheduler saves a spot for each high-priority job
around which it is backfilling. If you configure PBS to use strict ordering and backfilling for only one of primetime or
non-primetime, and you have large jobs that must wait a long time before enough resources are available, the saved spots
can be lost in the transition.

4.9.4 Examining Jobs Queue by Queue

When a scheduler examines waiting jobs, it can either consider all of the jobs in its partition as a whole, or it can consider
jobs queue by queue. When considering jobs queue by queue, a scheduler runs all the jobs it can from the first queue
before examining the jobs in the next queue, and so on. This behavior is controlled by the by_queue scheduler parame-
ter.

When the by_queue scheduler parameter is set to True, jobs in the highest-priority queue are evaluated as a group, then
jobs in the next-highest priority queue are evaluated. In this case, PBS runs all the jobs it can from each queue before
moving to the next queue, with the following exception: if there are jobs in the Reservation, Express, Preempted, or
Starving job execution classes, those are considered before any queue. These classes are described in section 4.9.16,
“Calculating Job Execution Priority”, on page 134.

The by_queue parameter applies to all of the queues in a scheduler’s partition. This means that either all jobs are sched-
uled as if they are in one large queue, or jobs are scheduled queue by queue.

All queues are always sorted by queue priority. To set queue priority, set each queue’s priority attribute to the desired
value. A queue with a higher value is examined before a queue with a lower value. If you do not assign priorities to
queues, their ordering is undefined. See section 4.9.36, “Queue Priority”, on page 196.

The by_queue parameter is a primetime option, meaning that you can configure it separately for primetime and non-
primetime, or you can specify it for all of the time.

See “by_queue” on page 250 of the PBS Professional Reference Guide.
AG-110 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.4.1 Configuring PBS to Consider Jobs Queue by Queue

• Set the by_queue scheduler parameter to True

• Assign a priority to each queue

• Choose whether you want queue by queue during primetime, non-primetime, or both. If you want separate behavior
for primetime and non-primetime, list by_queue twice. For example:
by_queue True prime

by_queue False non_prime

4.9.4.2 Parameters and Attributes Affecting Queue by Queue

• The by_queue scheduler parameter; see “by_queue” on page 250 of the PBS Professional Reference Guide.

• The priority queue attribute; see “Queue Attributes” on page 311 of the PBS Professional Reference Guide.

4.9.4.3 Caveats and Advice for Queue by Queue

• The by_queue scheduler parameter is overridden by the round_robin scheduler parameter when round_robin is set
to True.

• When by_queue is True, queues cannot be designated as fairshare entities, and fairshare will work queue by queue
instead of on all jobs at once.

• When by_queue is True, job execution priority may be affected. See section 4.9.16, “Calculating Job Execution
Priority”, on page 134.

• The by_queue parameter is not required when using express queues.

• You can have FIFO scheduling for all your jobs across a given scheduler’s partition, if you are using a single execu-
tion queue or have by_queue set to False. However, you can have FIFO scheduling for the jobs within each queue
if you set by_queue to True and specify a different priority for each queue. See section 4.9.20, “FIFO Scheduling”,
on page 148.

4.9.5 Checkpointing

You can use checkpointing as a scheduling tool, by including it as a preemption method, an aid in recovery, a way to cap-
ture progress from a shrink-to-fit job, and when using the qhold command.

For a complete description of how to use and configure checkpointing, see section 9.3, “Checkpoint and Restart”, on
page 412.

4.9.5.1 Checkpointing as a Preemption Method

When a job is preempted via checkpointing, MoM runs the checkpoint_abort script, and PBS kills and requeues the job.
When a scheduler elects to run the job again, the MoM runs the restart script to restart the job from where it was check-
pointed. See section 4.9.33, “Using Preemption”, on page 180.

4.9.5.2 Checkpointing as a Way to Capture Progress and Help

Recover Work

When you use checkpointing to capture a job’s progress before the job is terminated, for example when a shrink-to-fit
job’s wall time is exceeded, MoM runs the snapshot checkpoint script, and the job continues to run. See section 9.3,
“Checkpoint and Restart”, on page 412.
PBS Professional 2020.1.1 Administrator’s Guide AG-111

Chapter 4 Scheduling
4.9.5.3 Checkpointing When Using the qhold Command

When the qhold command is used to hold a checkpointable job, MoM runs the checkpoint_abort script, and PBS kills,
requeues, and holds the job. A job with a hold on it must have the hold released via the qrls command in order to be eli-
gible to run. For a discussion of the use of checkpointing for the qhold command, see section 9.3.7.6, “Holding a Job”,
on page 424. See “qhold” on page 147 of the PBS Professional Reference Guide and “qrls” on page 180 in the PBS Pro-
fessional Installation & Upgrade Guide.

4.9.6 Organizing Job Chunks

You can specify how job chunks should be organized onto hosts or vnodes. Jobs can request their placement arrange-
ment, and you can set defaults at queues and at the server to be inherited by jobs that do not request a placement. You can
tell PBS to do the following:

• Put all chunks from a job onto a single host using the place=pack statement.

• Put each chunk on a separate host using the place=scatter statement. The number of chunks must be fewer than
or equal to the number of hosts.

• Put each chunk on a separate vnode using the place=vscatter statement. The number of chunks must be fewer
than or equal to the number of vnodes.

• Put each chunk anywhere using the place=free statement.

To specify a placement default, set resources_default.place=<arrangement>, where arrangement is pack, scatter,
vscatter, or free. For example, to have the default at QueueA be pack:

Qmgr: set queue QueueA resources_default.place=pack

You can specify that job chunks must be grouped in a certain way. For example, to require that chunks all end up on a
shared router, use this:

place=group=router

For more about jobs requesting placement, see “Requesting Resources and Placing Jobs” on page 216 of the PBS Profes-
sional Reference Guide.

4.9.6.1 Caveats for Organizing Job Chunks

A placement specification for arrangement, sharing, and grouping is treated as one package by PBS. This means that if a
job requests only one, any defaults set for the others are not inherited. For example, if you set a default of
place=pack:excl:group=router, and a job requests only place=pack, the job does not inherit excl or
group=router. See “Requesting Resources and Placing Jobs” on page 216 of the PBS Professional Reference Guide.

4.9.7 cron Jobs

You can use cron jobs to make time-dependent modifications to settings, where you are scheduling according to time
slots. For example, you can change settings for primetime and non-primetime configurations, making the following
changes:

• Set nodes offline or not offline

• Change the number of ncpus on workstations

• Change the priority of queues, for example to change preemption behavior

• Start or stop queues

• Set primetime & non-primetime options
AG-112 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.7.1 Caveats for cron Jobs

• Make sure that your cron jobs behave correctly when PBS is not running.

• Be careful when changing available resources, such as when offlining vnodes. You might prevent jobs from running
that would otherwise run. For details, see section 4.7.2, “Jobs that Cannot Run on Current Resources”, on page 99.

If PBS is down when your cron job runs, the change specified in the cron job won’t happen. For example, if you
use cron to offline a vnode and then bring it online later, it won’t come online if PBS is down during the second
operation.

4.9.8 Using Custom and Default Resources

The information in this section relies on understanding how jobs are allocated resources via inheriting defaults or via
hooks. Before reading this section, please read section 13.3, “Allocating Resources to Jobs”, on page 495.

For complete details of how to configure and use custom resources, please see section 5.14, “Custom Resources”, on
page 255.

You can use custom and default resources for several purposes:

• Routing jobs to the desired vnodes; see section 4.9.8.2, “Using Custom Resources to Route Jobs”, on page 113

• Assigning execution priority to jobs; see section 4.9.8.3, “Using Custom Resources to Assign Job Execution Prior-
ity”, on page 114

• Tracking and controlling the allocation of resources; see section 4.9.8.4, “Using Custom Resources to Track and
Control Resource Allocation”, on page 114

• Representing elements such as GPUs, FPGAs, and switches; see section 4.9.8.5, “Using Custom Resources to Rep-
resent GPUs, FPGAs, Switches, Etc.”, on page 114

• Allowing users to request platform-specific resources, for example Cray-specific resources; see section 4.9.8.6,
“Using Custom Resources to Allow Platform-specific Resource Requests”, on page 114

• Allowing users to submit jobs that run on a Cray as they would if using the aprun command; see section 4.9.8.7,
“Using Custom Resources to Allow Platform-specific Behavior”, on page 115

• Shrinking job walltimes so that they can run in time slots that are less than the expected maximum. See section
4.9.42, “Using Shrink-to-fit Jobs”, on page 210.

4.9.8.1 Techniques for Allocating Custom Resources to Jobs

In addition to using custom resources to represent physical elements such as GPUs, you can use custom resources as tags
that you attach to jobs in order to help schedule the jobs. You can make these custom resources into tools that can be
used only for managing jobs, by making them unalterable and unrequestable, and if desired, invisible to users.

For how to assign custom and default resources to jobs, see section 13.3, “Allocating Resources to Jobs”, on page 495.

4.9.8.2 Using Custom Resources to Route Jobs

You can use several techniques to route jobs to the desired queues and/or vnodes. Depending on your partition’s or site’s
configuration, you may find it helpful to use custom resources with one or more of these techniques.

• You can force users to submit jobs to the desired queues by setting resource limits at queues. You can use custom
resources to represent arbitrary elements, for example, department. In this case you could limit which department
uses each queue. You can set a default value for the department at the server, or create a hook that assigns a value for
the department.
PBS Professional 2020.1.1 Administrator’s Guide AG-113

Chapter 4 Scheduling
For how queue resource limits are applied to jobs, see section 2.3.6.4.i, “How Queue and Server Limits Are Applied,
Except Running Time”, on page 26.

• Use default resources or a hook to assign custom resources to jobs when the jobs are submitted. Send the jobs to
routing queues, then route them, using the resources, to other queues inside or outside the PBS partition or complex.
Again, custom resources can represent arbitrary elements.

For how routing queues work, see section 2.3.6, “Routing Queues”, on page 25

• Use peer scheduling to send jobs between PBS partitions or complexes. You can set resource limits on the furnish-
ing queue in order to limit the kinds of jobs that are peer scheduled. You can assign custom resources to jobs to rep-
resent arbitrary elements, for example peer queueing only those jobs from a specific project. You can assign the
custom resource by having the job inherit it or via a hook.

For how to set up peer scheduling, see section 4.9.31, “Peer Scheduling”, on page 165

• You can route jobs from specific execution queues to the desired vnodes, by associating the vnodes with the queues.
See section 4.9.2, “Associating Vnodes with Queues”, on page 103.

• You can create placement sets so that jobs are placed according to resource values. Placement sets are created where
vnodes share a value for a resource; you can use custom resources to create the placement sets you want. See section
4.9.32, “Placement Sets”, on page 168.

4.9.8.3 Using Custom Resources to Assign Job Execution Priority

You can use custom resources as coefficients in the job sorting formula. You can assign custom resources to jobs using
the techniques listed in section 13.3, “Allocating Resources to Jobs”, on page 495. The value of each custom resource
can be based on a project, an application, etc.

For example, you can create a custom resource called “ProjPrio”, and the jobs that request the “Bio” project can be given
a value of 5 for ProjPrio, and the jobs that request the “Gravel” project can be given a value of 2 for ProjPrio. You can
assign this value in a hook or by routing the jobs into special queues from which the jobs inherit the value for ProjPrio.

For information on using the job sorting formula, see section 4.9.21, “Using a Formula for Computing Job Execution Pri-
ority”, on page 149.

4.9.8.4 Using Custom Resources to Track and Control Resource

Allocation

You can use resources to track and control usage of things like CPUs and memory. For example, you might want to limit
the number of jobs using a particular vnode. See section 5.10, “Using Resources to Track and Control Allocation”, on
page 252.

4.9.8.5 Using Custom Resources to Represent GPUs, FPGAs,

Switches, Etc.

You can use custom resources to represent GPUs, FPGAs, high performance switches, etc. For examples, see section
5.14.7, “Using GPUs”, on page 283, and section 5.14.8, “Using FPGAs”, on page 286.

4.9.8.6 Using Custom Resources to Allow Platform-specific Resource

Requests

PBS is integrated with Cray, and provides special custom resources to represent Cray resources. You can create other
custom resources to represent other platform-specific elements. For an example, see section 11.9.6, “Allowing Users to
Request Login Node Groups on Cray XC”, on page 474.
AG-114 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.8.7 Using Custom Resources to Allow Platform-specific Behavior

You can create custom resources that allow Cray users to run jobs that behave the same way they would if the user had
used the aprun command.

4.9.9 Using Idle Workstation Cycle Harvesting

You can configure workstations at your partition or site so that PBS can run jobs on them when their “owners” are away
and they are idle. This is called idle workstation cycle harvesting. This can give your partition or site additional
resources to run jobs during nights and weekends, or even during lunch.

You can configure PBS to use the following methods to decide when a workstation is not being used by its owner:

• Keyboard/mouse activity

• X-Window monitoring

• Load average (not recommended)

On some systems cycle harvesting is simple to implement, because the console, keyboard, and mouse device access
times are periodically updated by the operating system. The PBS MoM process can track this information, and mark the
vnode busy if any of the input devices is in use. On other systems, however, this data is not available: on some
machines, PBS can monitor the X-Window system in order to obtain interactive idle time, and on others, PBS itself mon-
itors keyboard and mouse activity.

Jobs on workstations that become busy are not migrated; they remain on the workstation until they complete execution,
are rerun, or are deleted.

4.9.9.1 Platforms Supporting Cycle Harvesting

Due to different operating system support for tracking mouse and keyboard activity, the availability and method of sup-
port for cycle harvesting varies based on the computer platform in question. The following table lists the method and sup-
port for each platform.

4.9.9.2 The $kbd_idle MoM Configuration Parameter

Cycle harvesting based on keyboard/mouse activity and X-Windows monitoring is controlled by the $kbd_idle MoM
configuration parameter in PBS_HOME/mom_priv/config on the workstation in question. This parameter has the
following format:

$kbd_idle <idle_wait> <min_use> <poll_interval>

Declares that the vnode will be used for batch jobs during periods when the keyboard and mouse are not in use.

idle_wait
Time, in seconds, that the workstation keyboard and mouse must be idle before being considered available
for batch jobs.

Must be set to value greater than 0 for cycle harvesting to be enabled.

Format: Integer

Table 4-6: Cycle Harvesting Support Methods

System Status Method Reference

Linux supported keyboard/mouse section 4.9.9.3, “Cycle Harvesting Based on Keyboard/Mouse Activ-
ity”, on page 116

Windows supported keyboard/mouse section 4.9.9.4, “Cycle Harvesting on Windows”, on page 117
PBS Professional 2020.1.1 Administrator’s Guide AG-115

Chapter 4 Scheduling
No default

min_use
Time, in seconds, during which the workstation keyboard or mouse must continue to be in use before the
workstation is determined to be unavailable for batch jobs.

Format: Integer

Default: 10

poll_interval
Interval, in seconds, at which MoM checks for keyboard and mouse activity.

Format: Integer

Default: 1

4.9.9.3 Cycle Harvesting Based on Keyboard/Mouse Activity

PBS can monitor a workstation for keyboard and mouse activity, and run batch jobs on the workstation when the key-
board and mouse are not being used. PBS sets the state of the vnode to either free or busy, depending on whether or not
there is keyboard or mouse activity, and runs jobs only when the state of the vnode is free. PBS sets the state of the
vnode to free when the vnode’s mouse and keyboard have shown no activity for the specified amount of time. If PBS
determines that the vnode is being used, it sets the state of the vnode to busy and suspends any running jobs, setting their
state to U (user busy).

This method is used for Linux operating systems.

4.9.9.3.i Configuring Cycle Harvesting Using Keyboard/Mouse Activity

To configure cycle harvesting using keyboard and mouse activity, do the following:

1. Set the $kbd_idle MoM configuration parameter by editing the $kbd_idle parameter in PBS_HOME/mom_priv/
config on the workstation.

2. HUP the MoM on the workstation:

kill -HUP <pbs_mom PID>

4.9.9.3.ii Example of Cycle Harvesting Using Keyboard/Mouse Activity

The following is an example setting for the parameter:

$kbd_idle 1800 10 5

This setting for the parameter in MoM’s config file specifies the following:

• PBS marks the workstation as free if the keyboard and mouse are idle for 30 minutes (1800 seconds)

• PBS marks the workstation as busy if the keyboard or mouse is used for 10 consecutive seconds

• The states of the keyboard and mouse are to be checked for activity every 5 seconds

Here, we walk through how this example would play out, to show the roles of the arguments to the $kbd_idle parameter:

Let’s start with a workstation that has been in use for some time by its owner. The workstation is in state busy.

Now the owner goes to lunch. After 1800 seconds (30 minutes), PBS changes the workstation’s state to free and
starts a job on the workstation.

Some time later, someone walks by and moves the mouse or enters a command. Within the next 5 seconds (idle poll
period), pbs_mom notes the activity. The job is suspended and placed in state U, and the workstation is marked
busy.

If 10 seconds pass and there is no additional keyboard/mouse activity, the job is resumed and the workstation again
is either free (if any CPUs are available) or job-busy (if all CPUs are in use.)
AG-116 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
However, if keyboard/mouse activity continues during that 10 seconds, the workstation remains busy and the job
remains suspended for at least the next 1800 seconds.

4.9.9.3.iii Caveats for Cycle Harvesting Using Keyboard/Mouse Activity

• There is no default for idle_wait; you must set it to a value greater than 0 in order to enable cycle harvesting using
keyboard/mouse activity.

4.9.9.4 Cycle Harvesting on Windows

A process called pbs_idled monitors keyboard and mouse activity and keeps MoM informed of user activity. The
user being monitored can be sitting at the machine, or using a remote desktop.

The pbs_idled process is managed in one of two ways. PBS can use a service called PBS_INTERACTIVE to moni-
tor the user’s session. If the PBS_INTERACTIVE service is registered, MoM starts the service, and the service starts
and stops pbs_idled. The PBS_INTERACTIVE service runs under a local system account. PBS uses the
PBS_INTERACTIVE service only where partition or site policy allows a local system account to be a service account. If
this is not allowed (so the service is not registered), pbs_idled is started and stopped using the log on/log off script.
Do not use both the PBS_INTERACTIVE service and a log on/log off script.

A pbs_idled process monitors the keyboard and mouse activity while a user is logged in. This process starts when the
user logs on, and stops when the user logs off. Only a user with administrator privileges, or the user being monitored,
can stop pbs_idled.

MoM uses two files to communicate with pbs_idled:

• MoM creates PBS_HOME/spool/idle_poll_time and writes the value of her $kbd_idle polling interval
parameter to it. The pbs_idled process reads the value of the polling interval from idle_poll_time.

• MoM creates PBS_HOME/spool/idle_touch. The pbs_idled process updates the time stamp of the
idle_touch file when a user is active, and MoM reads the time stamp.

4.9.9.4.i Configuring Cycle Harvesting on Windows

To configure cycle harvesting, do the following:

1. Make sure that you are a user with administrator privileges.

2. Set the $kbd_idle MoM configuration parameter by editing the $kbd_idle parameter in PBS_HOME/mom_priv/
config on the workstation.

3. Configure how pbs_idled starts:

a. If your policy allows a local system account to be a service account, register the PBS_INTERACTIVE service:

pbs_interactive -R

b. If your policy does not allow a local system account to be a service account:

1. Configure the log on script as described in section 4.9.9.4.ii, “Configuring pbs_idled in Log On Script in
Domain Environment”, on page 118.

2. Configure the log off script as described in section 4.9.9.4.iii, “Configuring pbs_idled in Log Off Script in
Domain Environment”, on page 119.

4. Restart the MoM.
PBS Professional 2020.1.1 Administrator’s Guide AG-117

Chapter 4 Scheduling
4.9.9.4.ii Configuring pbs_idled in Log On Script in Domain Environment

1. You must be a user with administrator privileges.

2. On the domain controller host, open Administrator Tools.

3. In Administrator Tools, open Active Directory Users and Computers.

4. Right-click on the Organizational Unit where you want to apply the group policy for logging on and logging off.

5. Click on Properties.

6. Go to the Group Policy tab under the Properties window.

7. Click on New.

8. Type “LOG-IN-OUT-SCRIPT” as the name of the policy.

9. Select the Group Policy Object you have just created; click Edit. The Group Policy Object editing window will
open.

10. Open Window Settings in User Configuration.

11. Open Scripts (Logon/Logoff).

12. Open Logon. A Logon Properties window will open.

13. Open Notepad in another window. In Notepad, you create the command that starts the pbs_idled process:

pbs_idled start

14. Save that document as “pbs_idled_logon.bat”.

15. In the Logon Properties window, click on Show Files. A logon script folder will open in a new window.

16. Copy pbs_idled_logon.bat into the logon script folder and close the logon script folder window.

17. In the Logon Properties window, click on Add, and then click on Browse. Select pbs_idled_logon.bat and then
click on Open.

18. Click on OK, then Apply, then again OK.

19. Close the Group Policy Object editor and the Properties window.

20. Close the Active Directory Users and Computers window.

21. Close the Administrator Tools window.
AG-118 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.9.4.iii Configuring pbs_idled in Log Off Script in Domain Environment

1. You must be a user with administrator privileges.

2. On the domain controller host, open Administrator Tools.

3. In Administrator Tools, open Active Directory Users and Computers.

4. Right-click on the Organizational Unit where you want to apply the group policy for logging on and logging off.

5. Click on Properties.

6. Go to the Group Policy tab under the Properties window.

7. Click on New.

8. Type “LOG-IN-OUT-SCRIPT” as the name of the policy.

9. Select the Group Policy Object you have just created; click Edit. The Group Policy Object editing window will
open.

10. Open Window Settings in User Configuration.

11. Open Scripts (Logon/Logoff).

12. Open Logoff. A Logoff Properties window will open.

13. Open Notepad in another window. In Notepad, you create the command that stops the pbs_idled process:

pbs_idled stop

14. Save that document as “pbs_idled_logoff.bat”.

15. In the Logoff Properties window, click on Show Files. A logoff script folder will open in a new window.

16. Copy pbs_idled_logoff.bat into the logoff script folder and close the logoff script folder window.

17. In the Logoff Properties window, click on Add, and then click on Browse. Select pbs_idled_logoff.bat and then
click on Open.

18. Click on OK, then Apply, then again OK.

19. Close the Group Policy Object editor and the Properties window.

20. Close the Active Directory Users and Computers window.

21. Close the Administrator Tools window.

4.9.9.4.iv The PBS_INTERACTIVE Service

The PBS_INTERACTIVE service starts the pbs_idled process, as the current user, in the current active user’s ses-
sion. Each time a user logs on, the service starts a pbs_idled for that user, and when that user logs off, the service
stops that user’s pbs_idled process.

The service runs under a local system account. If your policy allows a local system account to be a service account, you
can use PBS_INTERACTIVE. Otherwise you must configure pbs_idled in log on/log off scripts.

If you have configured the $kbd_idle MoM parameter, and you have registered the service, MoM starts the service. The
service cannot be started manually.

If you will use PBS_INTERACTIVE, you must register the service. The installer cannot register the service.

• To register the PBS_INTERACTIVE service:
pbs_interactive -R
PBS Professional 2020.1.1 Administrator’s Guide AG-119

Chapter 4 Scheduling
Upon successful execution of this command, the following message is displayed:

“Service PBS_INTERACTIVE installed successfully”

• To unregister the PBS_INTERACTIVE service:
pbs_interactive -U

Upon successful execution of this command, the following message is displayed:

“Service PBS_INTERACTIVE uninstalled successfully”

• To see the version number for PBS_INTERACTIVE service:
pbs_interactive --version

4.9.9.4.v Errors and Logging

If the $kbd_idle MoM parameter is configured, MoM attempts to use cycle harvesting. MoM looks for the
PBS_INTERACTIVE service in the Service Control Manager. If she finds the service, she starts it.

1. If she cannot find the service, MoM logs the following message at event class 0x0002:
“Can not find PBS_INTERACTIVE service, Continuing Cycle Harvesting with Logon/Logoff Script”

2. MoM looks for PBS_HOME/spool/idle_touch. If she finds it, she uses cycle harvesting.

3. If she cannot find the file, MoM disables cycle harvesting and logs the following message at event class 0x0002:

“Cycle Harvesting Failed, Please contact Admin”

MoM logs the following messages at event class 0x0001.

• If MoM fails to open the Service Control Manager:
“OpenSCManager failed for PBS_INTERACTIVE”

• If MoM fails to open the PBS_INTERACTIVE service:
“OpenService failed for PBS_INTERACTIVE”

• If MoM fails to start the PBS_INTERACTIVE service:
“Could not start PBS_INTERACTIVE service”

• If MoM fails to get status information about the PBS_INTERACTIVE service:
“Can not get information about PBS_INTERACTIVE service”

• If MoM fails to send a stop control message to the PBS_INTERACTIVE service:
“Could not stop PBS_INTERACTIVE service”

• If the PBS_INTERACTIVE service does not respond in a timely fashion:
“PBS_INTERACTIVE service did not respond in timely fashion”

• If MoM fails to create idle_touch and idle_poll_time in PBS_HOME/spool directory:
“Can not create file < full path of idle file >”

• If MoM fails to write the idle polling interval into PBS_HOME/spool/idle_poll_time:
“Can not write idle_poll time into < full path of idle_poll_time file > file”

4.9.9.4.vi Caveats for Cycle Harvesting on Windows

• Under Windows, if the pbs_idled process is killed, cycle harvesting will not work.

• Under Windows, cycle harvesting may not work correctly on machines where more than one user is logged in, and
users are not employing Switch User.

• Do not use both the PBS_INTERACTIVE service and a log on/log off script.
AG-120 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.9.5 Cycle Harvesting by Monitoring X-Windows

On Linux machines where the OS does not periodically update console, keyboard, and mouse device access times, PBS
can monitor X-Window activity instead. PBS uses an X-Window monitoring process called pbs_idled. This process
runs in the background and monitors X and reports to the pbs_mom whether or not the vnode is idle. pbs_idled is
located in $PBS_EXEC/sbin.

To configure PBS for cycle harvesting by monitoring X-Windows, perform the following steps:

1. Create a directory for pbs_idled. This directory must have the same permissions as /tmp (i.e. mode 1777). This
will allow the pbs_idled program to create and update files as the user, which is necessary because the program
runs as the user. For example:
mkdir PBS_HOME/spool/idledir

chmod 1777 PBS_HOME/spool/idledir

2. Turn on keyboard idle detection in the MoM config file:

$kbd_idle <idle wait value>

3. Include pbs_idled as part of the X-Windows startup sequence.

The best and most secure method of starting pbs_idled is via the system-wide Xsession file. This is the script
which is run by xdm (the X login program) and sets up each user's X-Windows environment.

You must place the startup line for pbs_idled before that of the window manager.

You must make sure that pbs_idled runs in the background.

On systems that use Xsession to start desktop sessions, insert a line invoking pbs_idled near the top of the file.

For example, insert the following line in a Linux Xsession file:

/usr/pbs/sbin/pbs_idled &

If access to the system-wide Xsession file is not available, you can add pbs_idled to every user's personal
.xsession or .xinitrc file, depending on the local OS requirements for starting X-windows programs upon
login.

4.9.9.6 Cycle Harvesting Based on Load Average

As of version 2020.1, the load_balancing scheduler parameter is deprecated.

Cycle harvesting based on load average means that PBS monitors each workstation’s load average, runs jobs where
workstations have loads below a specified level, and suspends any batch jobs on workstations whose load has risen above
the limit you set. When a workstation’s owner uses the machine, the workstation’s load rises.

When you configure cycle harvesting based on load average, you are performing the same configuration as for load bal-
ancing using load average. For a complete description of load balancing, see section 4.9.27, “Using Load Balancing”, on
page 156.

4.9.9.6.i Attributes and Parameters Affecting Cycle Harvesting Based on Load
Average

load_balancing

Deprecated (2020.1).

Scheduler parameter. When set to True, this scheduler places jobs only where the load average is below the
specified limit.

Format: Boolean

Default: False all
PBS Professional 2020.1.1 Administrator’s Guide AG-121

Chapter 4 Scheduling
$ideal_load <load>

MoM parameter. Defines the load below which the vnode is not considered to be busy. Used with the
$max_load directive.

Example:

$ideal_load 1.8

Format: Float

No default

$max_load <load> [suspend]

MoM parameter. Defines the load above which the vnode is considered to be busy. Used with the $ideal_load
directive. No new jobs are started on a busy vnode.

The optional suspend directive tells PBS to suspend jobs running on the node if the load average exceeds the
$max_load number, regardless of the source of the load (PBS and/or logged-in users). Without this directive,
PBS will not suspend jobs due to load.

We recommend setting this to a slightly higher value than your target load (which is typically the number of
CPUs), for example .25 + ncpus.

Example:

$max_load 3.25

Format: Float

Default: number of CPUs

resv_enable

Vnode attribute. Controls whether the vnode can be used for advance and standing reservations. When set to
True, this vnode can be used for reservations.

Format: Boolean

Default: True

no_multinode_jobs

Vnode attribute. Controls whether jobs which request more than one chunk are allowed to execute on this
vnode. When set to True, jobs requesting more than one chunk are not allowed to execute on this vnode.

Format: Boolean

Default: False

4.9.9.6.ii How Cycle Harvesting Based on Load Average Works

Cycle harvesting based on load average means that PBS monitors the load average on each machine. When the load on a
workstation is below what is specified in the $ideal_load MoM parameter, PBS sets the state of the workstation to free.
A scheduler will run jobs on vnodes whose state is free. When the load on a workstation exceeds the setting for
$max_load, PBS sets the state of the workstation to busy, and suspends jobs running on the workstation. PBS does not
start jobs on a vnode whose state is busy. When the load drops below the setting for $ideal_load, PBS sets the state to
free, and resumes the jobs that were running on the workstation.

PBS thinks that a 1-CPU job raises a vnode’s load by 1. On machines being used for cycle harvesting, you set the values
for $max_load and $ideal_load to reasonable limits. On other machines, you set these to values that will never be
exceeded, so that load is effectively ignored.

On machines where these parameters are unset, the vnode’s state is not set according to its load, so jobs are not sus-
pended because a vnode is busy. However, if $max_load and $ideal_load are unset, they are treated as if they have the
same value as resources_available.ncpus, and because there is usually a small background load, PBS will lose the use
of a CPU’s worth of load.
AG-122 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
The load_balancing scheduler parameter (deprecated as of version 2020.1) controls a behavior wherein a scheduler
won’t place a job where the anticipated load would exceed $max_load. For example if a machine has a load of 1.25, is
running a 1-CPU job, and has 2 CPUs, PBS won’t place another 1-CPU job there.

4.9.9.6.iii Configuring Cycle Harvesting Based on Load Average

To set up cycle harvesting for idle workstations based on load average, perform the following steps:

1. If PBS is not already installed on the target execution workstations, do so now, selecting the execution-only install
option. See the PBS Professional Installation & Upgrade Guide.

2. Edit the PBS_HOME/mom_priv/config configuration file on each target execution workstation, adding the
$max_load and $ideal_load configuration parameters. Make sure they have values that will not interfere with
proper operation. See section 4.9.9.6.v, “Caveats for Cycle Harvesting Based on Load Average”, on page 124.

$max_load <load limit that allows jobs to run>

$ideal_load <load at which to start jobs>

3. Edit the PBS_HOME/mom_priv/config configuration file on each machine where you are not using cycle har-
vesting, adding the $max_load and $ideal_load configuration parameters. Make sure they have values that will
never be exceeded.

$max_load <load limit that will never be exceeded>

$ideal_load <load limit that will never be exceeded>

4. HUP the MoM:

kill -HUP <pbs_mom PID>

5. Edit the <sched_priv directory>/sched_config configuration file to direct the scheduler to perform
scheduling based on load_balancing.

load_balancing: True ALL

6. If you wish to oversubscribe the vnode’s CPU(s), set its resources_available.ncpus to a higher number. Do this
only on single-vnode machines. You must be cautious about matching ncpus and $max_load. See "Caveats for
Cycle Harvesting Based on Load Average" on page 124 in the PBS Professional Administrator’s Guide.

7. HUP the scheduler:

kill -HUP <pbs_sched PID>

8. Set the vnode’s resv_enable attribute to False, to prevent the workstation from being used for reservations.

Qmgr: set node <vnode name> resv_enable = False

9. Set the vnode’s no_multinode_jobs attribute to True, to prevent the workstation from stalling multichunk jobs.

Qmgr: set node <vnode name> no_multinode_jobs = True

4.9.9.6.iv Viewing Load Average Information

You can see the state of a vnode using the pbsnodes -a command.
PBS Professional 2020.1.1 Administrator’s Guide AG-123

Chapter 4 Scheduling
4.9.9.6.v Caveats for Cycle Harvesting Based on Load Average

• Be careful with the settings for $ideal_load and $max_load. You want to make sure that when the workstation
owner is using the machine, the load on the machine triggers MoM to report being busy, and that PBS does not start
any new jobs while the user is working.

• For information about keeping your partition or site running smoothly using $max_load and $ideal_load, see sec-
tion 9.6.5, “Managing Load Levels on Vnodes”, on page 439

• If you set ncpus higher than the number of actual CPUs, and set $max_load higher to match, keep in mind that the
workstation user could end up with an annoyingly slow workstation. This can happen when PBS runs jobs on the
machine, but the combined load from the jobs and the user is insufficient for MoM to report being busy.

4.9.9.7 Cycle Harvesting and File Transfers

The cycle harvesting feature interacts with file transfers in one of two different ways, depending on the method of file
transfer:

• If the user’s job includes file transfer commands (such as rcp or scp) within the job script, and such a command is
running when PBS decides to suspend the job on the vnode, then the file transfer is suspended as well.

• If the job has PBS file staging parameters (i.e. stagein=, stageout=file1...), and the load goes above $max_load, the
file transfer is not suspended. This is because the file staging is not part of the job script execution, and is not subject
to suspension. See "Detailed Description of Job Lifecycle", on page 37 of the PBS Professional User’s Guide.

4.9.9.8 Parallel Jobs With Cycle Harvesting

Cycle harvesting is not recommended for hosts that will run multi-host jobs. However, you may find that your partition
or site benefits from using cycle harvesting on these machines. We provide advice on how to prevent cycle harvesting on
these machines, and advice on how to accomplish it.

4.9.9.8.i General Advice: Parallel Jobs Not Recommended

Cycle harvesting is somewhat incompatible with multi-host jobs. If one of the hosts being used for a parallel job running
on several hosts is being used for cycle harvesting, and the user types at the keyboard, job execution will be delayed for
the entire job because the tasks running on that host will be suspended.

To prevent a machine which is being used for cycle harvesting from being assigned a multi-host job, set the vnode’s
no_multinode_jobs attribute to True. This attribute prevents a host from being used by jobs that span multiple hosts.

4.9.9.8.ii How to Use Cycle Harvesting with Multi-host Jobs

When a single-host job is running on a workstation configured for cycle harvesting, and that host becomes busy, the job
is suspended. However, suspending a multi-host parallel job may have undesirable side effects because of inter-process
communications. For a job which uses multiple hosts when one or more of the hosts becomes busy, the default action is
to leave the job running.

However, you can specify that the job should be requeued and subsequently re-scheduled to run elsewhere when any of
the hosts on which the job is running becomes busy. To enable this action, add the following parameter to MoM’s config-
uration file:

$action multinodebusy 0 requeue

where multinodebusy is the action to modify; “0” (zero) is the action timeout value (it is ignored for this action); and
requeue is the new action to perform. The only action that can be performed is requeueing.

Multi-host jobs which are not rerunnable (i.e. those submitted with the qsub -rn option) will be killed if the requeue
argument is configured for the multinodebusy action and a vnode becomes busy.
AG-124 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.9.9 Cycle Harvesting Caveats and Restrictions

4.9.9.9.i Cycle Harvesting and Multi-host Jobs

Cycle harvesting is not recommended for hosts that will run multi-host jobs. See section 4.9.9.8.i, “General Advice: Par-
allel Jobs Not Recommended”, on page 124.

4.9.9.9.ii Cycle Harvesting and Reservations

Cycle harvesting is incompatible with jobs in reservations. Reservations should not be made on a machine used for cycle
harvesting, because the user may appear during the reservation period and use the machine’s keyboard. This will sus-
pend the jobs in the reservation, defeating the purpose of making a reservation.

To prevent a vnode which is being used for cycle harvesting from being used for reservations, set the vnode’s
resv_enable attribute to False. This attribute controls whether the vnode can be used for reservations.

4.9.9.9.iii File Transfers with Cycle Harvesting

File transfers behave differently depending on job details. See section 4.9.9.7, “Cycle Harvesting and File Transfers”, on
page 124.

4.9.9.9.iv Cycle Harvesting on Windows

• Under Windows, if the pbs_idled process is killed, cycle harvesting will not work.

• Under Windows, cycle harvesting may not work correctly on machines where more than one user is logged in.

4.9.10 Dedicated Time

PBS provides a feature called dedicated time which allows you to define times during which the only jobs that can run
are the ones in dedicated queues. You can use dedicated time for things like upgrades.

You can define multiple dedicated times. Any job in a dedicated time queue must have a walltime in order to run. Jobs
without walltimes will never run. PBS won’t let a reservation conflict with dedicated time. Hooks should not access or
modify the dedicated time file.

For information on configuring dedicated time queues, see section 2.3.5.2.i, “Dedicated Time Queues”, on page 24.

4.9.10.1 Dedicated Time File

You define dedicated time by adding one or more time slots in the file <sched_priv directory>/
dedicated_time. A time slot is a start date and start time and an end date and end time. Format:

<start date> <start time> <end date> <end time>

expressed as

MM/DD/YYYY HH:MM MM/DD/YYYY HH:MM

Any line whose first non-whitespace character is a pound sign (“#”) is a comment.

Example:

#Dedicated time for maintenance

04/15/2007 12:00 04/15/2007 15:30

A sample dedicated time file (PBS_EXEC/etc/pbs_dedicated) is included in the installation.

The dedicated time file is read on startup and HUP.
PBS Professional 2020.1.1 Administrator’s Guide AG-125

Chapter 4 Scheduling
4.9.10.2 Steps in Defining Dedicated Time

You define dedicated time by performing the following steps:

1. Edit the file <sched_priv directory>/dedicated_time and add one or more time slots.

2. HUP or restart the scheduler:

Linux:

kill -HUP <pbs_sched PID>

4.9.10.3 Recommendations for Dedicated Time

If you need to set up dedicated time for something like system maintenance, you may want to avoid having the machines
become idle for a significant period before dedicated time starts. You can allow jobs to shrink their walltimes to fit into
those shorter-than-normal slots before dedicated time. See section 4.9.42, “Using Shrink-to-fit Jobs”, on page 210.

4.9.11 Dependencies

PBS allows job submitters to specify dependencies between jobs, for example specifying that job J2 can only run if job
J1 finishes successfully. In addition, you can add dependencies to existing jobs via a hook, default arguments to qsub,
or via the qalter command.

For a description of how job dependencies work, see "Using Job Dependencies", on page 107 of the PBS Professional
User’s Guide.

For how to use hooks, see the PBS Professional Hooks Guide.

For how to add default qsub arguments, see “Server Attributes” on page 281 of the PBS Professional Reference Guide.

For how to use the qalter command, see “qalter” on page 127 of the PBS Professional Reference Guide.

4.9.12 Dynamic Resources

You can use dynamic PBS resources to represent elements that are outside of the control of PBS, typically for application
licenses and scratch space. You can represent elements that are available to the entire PBS partition or complex as
server-level resources, or elements that are available at a specific host or hosts as host-level resources. For an example of
configuring a server-level dynamic resource, see section 5.14.3.1.i, “Example of Configuring Dynamic Server-level
Resource”, on page 267. For an example of configuring a dynamic host-level resource, see section 5.14.4.1.i, “Example
of Configuring Dynamic Host-level Resource”, on page 269.

For a complete description of how to create and use dynamic resources, see section 5.14, “Custom Resources”, on page
255.

4.9.13 Eligible Wait Time for Jobs

PBS provides a method for tracking how long a job that is eligible to run has been waiting to run. By “eligible to run”,
we mean that the job could run if the required resources were available. The time that a job waits while it is not running
can be classified as “eligible” or “ineligible”. Roughly speaking, a job accrues eligible wait time when it is blocked due
to a resource shortage, and accrues ineligible wait time when it is blocked due to project, user, or group limits. A job can
be accruing any of the following kinds of time. A job can only accrue one kind of wait time at a time, and cannot accrue
wait time while it is running.
AG-126 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.13.1 Types of Time Accrued

eligible_time

Job attribute. The amount of wall clock wait time a job has accrued because the job is blocked waiting for
resources, or any other reason not covered by the other kinds of time. For a job currently accruing
eligible_time, if we were to add enough of the right type of resources, the job would start immediately. View-
able via qstat -f by job owner, Manager and Operator. Settable by Operator or Manager.

ineligible_time

The amount of wall clock time a job has accrued because the job is blocked by limits on the job’s project, owner,
or group, or because the job is blocked because of its state.

run_time

The amount of wall clock time a job has spent running.

exiting

The amount of wall clock time a job has spent exiting.

initial_time

The amount of wall clock wait time a job has accrued before the type of wait time has been determined.

4.9.13.2 How Eligible Wait Time Works

A job accrues ineligible_time while it is blocked by project, user, or group limits, such as:

max_run

max_run_soft

max_run_res.<resource name>

max_run_res_soft.<resources>

A job also accrues ineligible_time while it is blocked due to a user hold or while it is waiting for its start time, such as
when submitted via

qsub -a <run-after> …

A job accrues eligible_time when it is blocked by a lack of resources, or by anything not qualifying as ineligible_time or
run_time. A job’s eligible_time will only increase during the life of the job, so if the job is requeued, its eligible_time is
preserved, not set to zero. The job’s eligible_time is not recalculated when a job is qmoved or moved due to peer sched-
uling.

For information on project, user, and group limits, see section 5.15.1, “Managing Resource Usage By Users, Groups, and
Projects, at Server & Queues”, on page 287.

The kind of time a job is accruing is sampled periodically, with a granularity of seconds.

A job’s eligible_time attribute can be viewed via qstat -f.

4.9.13.3 Configuring Eligible Wait Time

To enable using eligible time as the job’s wait time, set the eligible_time_enable server attribute to True.
PBS Professional 2020.1.1 Administrator’s Guide AG-127

Chapter 4 Scheduling
4.9.13.4 How Eligible Wait Time Is Used

• If eligible time is enabled, it is used as each job’s starving time.

• You can choose to use each job’s eligible wait time as the amount of time it is starving. See section 4.9.48, “Starving
Jobs”, on page 222.

• When a job is requeued, for example being checkpointed and aborted or preempted, its accumulated queue waiting
time depends on how that time is calculated:

• If you are using eligible time, the accumulated waiting time is preserved

• If you are not using eligible time, the accumulated waiting time is lost

See section 9.3, “Checkpoint and Restart”, on page 412 and section 4.9.33, “Using Preemption”, on page 180.

4.9.13.5 Altering Eligible Time

A Manager or Operator can set the value for a job’s eligible_time attribute using the qalter command, for example:

qalter -Weligible_time=<time> <job ID>

4.9.13.6 Attributes Affecting Eligible Time

eligible_time_enable

Server attribute. Enables accumulation of eligible time for jobs. Controls whether a job’s eligible_time
attribute is used as its starving time. See section 4.9.48, “Starving Jobs”, on page 222.

On an upgrade from versions of PBS prior to 9.1 or on a fresh install, eligible_time_enable is set to False by
default.

When eligible_time_enable is set to False, PBS does not track eligible_time. Whether eligible_time contin-
ues to accrue for a job or not is undefined. The output of qstat -f does not include eligible_time for any
job. Accounting logs do not show eligible_time for any job submitted before or after turning
eligible_time_enable off. Log messages do not include accrual messages for any job submitted before or after
turning eligible_time_enable off. If the scheduling formula includes eligible_time, eligible_time evaluates to
0 for all jobs.

When eligible_time_enable is changed from False to True, jobs accrue eligible_time or ineligible_time or
run_time as appropriate. A job’s eligible_time is used for starving calculation starting with the next scheduling
cycle; changing the value of eligible_time_enable does not change the behavior of an active scheduling cycle.
AG-128 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
accrue_type

Job attribute. Indicates what kind of time the job is accruing.

The job’s accrue_type attribute is visible via qstat only by Manager, and is set only by the server.

eligible_time

Job attribute. The amount of wall clock wait time a job has accrued because the job is blocked waiting for
resources, or any other reason not covered by ineligible_time. For a job currently accruing eligible_time, if we
were to add enough of the right type of resources, the job would start immediately. Viewable via qstat -f by
job owner, Manager and Operator. Settable by Operator or Manager.

4.9.13.7 Logging

The server prints a log message every time a job changes its accrue_type, with both the new accrue_type and the old
accrue_type. These are logged at the 0x0400 event class.

Server logs for this feature display the following information:

• Time accrued between samples

• The type of time in the previous sample, which is one of initial time, run time, eligible time or ineligible time

• The next type of time to be accrued, which is one of run time, eligible time or ineligible time

• The eligible time accrued by the job, if any, until the current sample

Table 4-7: The accrue_type Job Attribute

Type
Numeric

Representation
Type

JOB_INITIAL 0 initial_time

JOB_INELIGIBLE 1 ineligible_time

JOB_ELIGIBLE 2 eligible_time

JOB_RUNNING 3 run_time

JOB_EXIT 4 exit_time
PBS Professional 2020.1.1 Administrator’s Guide AG-129

Chapter 4 Scheduling
Example:

08/07/2007 13:xx:yy;0040;Server@host1;Job;163.host1;job accrued 0 secs of initial_time, new
accrue_type=eligible_time, eligible_time=00:00:00

08/07/2007 13:xx:yy;0040;Server@host1;Job;163.host1;job accrued 1821 secs of eligible_time, new
accrue_type=ineligible_time, eligible_time=01:20:22

08/07/2007 13:xx:yy;0040;Server@host1;Job;163.host1;job accrued 2003 secs of ineligible_time, new
accrue_type=eligible_time, eligible_time=01:20:22

08/07/2007 13:xx:yy;0040;Server@host1;Job;163.host1;job accrued 61 secs of eligible_time, new
accrue_type=run_time, eligible_time=01:21:23

08/07/2007 13:xx:yy;0040;Server@host1;Job;163.host1;job accrued 100 secs of run_time, new
accrue_type=ineligible_time, eligible_time=01:21:23

08/07/2007 13:xx:yy;0040;Server@host1;Job;163.host1;job accrued 33 secs of ineligible_time, new
accrue_type=eligible_time, eligible_time=01:21:23

08/07/2007 13:xx:yy;0040;Server@host1;Job;163.host1;job accrued 122 secs of eligible_time, new
accrue_type=run_time, eligible_time=01:23:25

08/07/2007 13:xx:yy;0040;Server@host1;Job;163.host1;job accrued 1210 secs of run_time, new
accrue_type=exiting, eligible_time=01:23:25

The example shows the following changes in time accrual:

• initial to eligible

• eligible to ineligible

• ineligible to eligible

• eligible to running

• running to ineligible

• ineligible to eligible

• eligible to running

• running to exiting

The server also logs the change in accrual when the job’s eligible_time attribute is altered using qalter. For example,
if the job’s previous eligible time was 123 seconds, and it has been altered to be 1 hour and 1 minute:

Accrue type is eligible_time, previous accrue type was eligible_time for 123 secs, due to qalter
total eligible_time=01:01:00

4.9.13.8 Accounting

Each job's eligible_time attribute is included in the “E” and “R” records in the PBS accounting logs. See section 17.4,
“Types of Accounting Log Records”, on page 610.

Example:

08/07/2007 19:34:06;E;182.Host1;user=user1 group=user1 jobname=STDIN queue=workq ctime=1186494765
qtime=1186494765 etime=1186494765 start=1186494767 exec_host=Host1/0
exec_vnode=(Host1:ncpus=1) Resource_List.ncpus=1 Resource_List.nodect=1
Resource_List.place=pack Resource_List.select=1:ncpus=1 session=4656 end=1186495446
Exit_status=-12 resources_used.cpupercent=0 resources_used.cput=00:00:00
resources_used.mem=3072kb resources_used.ncpus=1 resources_used.vmem=13356kb
resources_used.walltime=00:11:21 eligible_time=00:10:00

4.9.13.9 Caveats for Eligible Time

A job that is dependent on another job can accrue eligible time only after the job on which it depends has finished.
AG-130 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
The action of a hook may affect a job’s eligible time. See "Effect of Hooks on Job Eligible Time" on page 73 in the PBS
Professional Hooks Guide.

4.9.14 Sorting Jobs by Entity Shares (Was Strict Priority)

You can sort jobs according to how much of the fairshare tree is allocated to the entity that owns the job. The fairshare
percentages in the fairshare tree describe each entity’s share. Using entity shares is sorting jobs on a key, using the
fairshare_perc option to the job_sort_key scheduler parameter.

Using entity shares, the jobs from an entity with greater allocation in the fairshare tree run before the jobs with a smaller
allocation.

4.9.14.1 Configuring Entity Shares

To configure entity shares, do the following:

• Define fairshare tree entity allocation in <sched_priv directory>/resource_group. See section 4.9.19,
“Using Fairshare”, on page 138. You can use a simple fairshare tree, where every entity’s parent_group is root.

• Give each entity shares according to desired priority, with higher-priority entities getting larger allocations.

• Set the unknown_shares scheduler parameter to 1. This causes any entity not in your list of approved entities
to have a tiny allocation, and the lowest priority.

For example:

usr1 60 root 5

usr2 61 root 15

usr3 62 root 15

usr4 63 root 10

usr5 64 root 25

usr6 65 root 30

• Set fairshare_perc as the option to job_sort_key, for example:
job_sort_key: “fairshare_perc HIGH all”

4.9.14.2 Viewing Entity Shares

When you are root, you can use the pbsfs command to view the fairshare tree allocations.

4.9.15 Estimating Job Start Time

PBS can use a built-in hook called PBS_est that runs the job start time estimator, to estimate when jobs will run, and
which vnodes each job will use. PBS estimates job start times and vnodes for all jobs using an asynchronous process, not
the PBS server, scheduler, or MoM daemons. This estimator process is started by the PBS_est hook, whose default
interval is 120 seconds. By default, the PBS_est hook is disabled.

Jobs have an attribute called estimated for reporting estimated start time and estimated vnodes. This attribute reports the
values of two read-only built-in resources, start_time and exec_vnode. Each job’s estimated start time is reported in esti-

mated.start_time, and its estimated vnodes are reported in estimated.exec_vnode.

PBS automatically sets the value of each job’s estimated.start_time value to the estimated start time for each job.
PBS Professional 2020.1.1 Administrator’s Guide AG-131

Chapter 4 Scheduling
4.9.15.1 Configuring Start Time Estimation

When a scheduler is backfilling around top jobs, it estimates the start times and exec_vnode for those jobs being back-
filled around. By default, PBS_est is disabled. If you want PBS_est to estimate start times and exec_vnode for all
jobs, enable it:

• Enable the built-in PBS_est hook:
qmgr -c "set pbshook PBS_est enabled = true"

The default frequency for PBS_est is 120 seconds. You can set the frequency:

qmgr -c "set pbshook PBS_est freq = <interval in seconds>"

You set the number of jobs to be backfilled around by setting the server and/or queue backfill_depth attribute to the
desired number. See section 4.9.3, “Using Backfilling”, on page 105.

Example 4-1: To estimate start times for the top 5 jobs every scheduling cycle, and for all jobs every 3000 seconds:

qmgr -c 'set server backfill_depth=5'

qmgr -c 'set pbshook PBS_est enabled = true'

qmgr -c 'set pbshook PBS_est freq = 3000'

At each interval, the PBS_est hook checks whether the estimator process is running. If the estimator process is running
when the PBS_est hook hits an interval and performs this check, the PBS_est hook does not stop the estimator process
or start a new one. It allows the estimator process to finish running. If the estimator process is not running when the
PBS_est hook hits an interval, the PBS_est hook starts a new estimator process.

4.9.15.2 Controlling User Access to Start Times and Vnode List

4.9.15.2.i Making Start Time or Vnodes Invisible

You can make job estimated start times and vnodes invisible to unprivileged users by adding resource permission flags to
the start_time or exec_vnode resources. To do this, use qmgr to add the resource, and include the i flag, in the same
way you would for a custom resource being made invisible.

Example of making start_time and exec_vnode invisible to users:

qmgr -c 'set resource start_time flag=i'

qmgr -c 'set resource exec_vnode flag=i'

You can always make the start time and vnodes visible again to unprivileged users by removing the flags via qmgr.

See section 5.14.2.3.vi, “Resource Permission Flags”, on page 260.

4.9.15.2.ii Allowing Users to See Only Their Own Job Start Times

If you want users to be able to see the start times for their own jobs, but not those of other users, set the server’s
query_other_jobs attribute to False, and do not set the i or r permission flags. Setting the server’s query_other_jobs
attribute to False prevents a user from seeing anything about other users’ jobs.

4.9.15.3 Attributes and Parameters Affecting Job Start Time

Estimation

backfill

Server attribute

backfill_depth

Server attribute

backfill_depth

Queue attribute
AG-132 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
enabled

Hook attribute

estimated

Job attribute

freq

Hook attribute.

help_starving_jobs

Scheduler parameter

strict_ordering

Scheduler parameter

4.9.15.4 Viewing Estimated Start Times

You can view the estimated start times and vnodes of jobs using the qstat command. If you use the -T option to
qstat when viewing job information, the Est Start Time field is displayed. Running jobs are shown above queued
jobs.

See “qstat” on page 197 of the PBS Professional Reference Guide.

If the estimated start time or vnode information is invisible to unprivileged users, no estimated start time or vnode infor-
mation is available via qstat.

Example output:

qstat -T

 Est

 Req'd Req'd Start

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

------- -------- ----- -------- ----- --- --- ------ ----- - -----

5.host1 user1 workq foojob 12345 1 1 128mb 00:10 R --

9.host1 user1 workq foojob -- 1 1 128mb 00:10 Q 11:30

10.host1 user1 workq foojob -- 1 1 128mb 00:10 Q Tu 15

7.host1 user1 workq foojob -- 1 1 128mb 00:10 Q Jul

8.host1 user1 workq foojob -- 1 1 128mb 00:10 Q 2010

11.host1 user1 workq foojob -- 1 1 128mb 00:10 Q >5yrs

13.host1 user1 workq foojob -- 1 1 128mb 00:10 Q --

4.9.15.5 Selecting Jobs By Estimated Start Time

You can use the qselect command to select jobs according to their start times by using the -t suboption to the -t
option. This selects jobs according to the value of the estimated.start_time attribute. See “qselect” on page 186 of the
PBS Professional Reference Guide.

4.9.15.6 Logging

Whenever a scheduler estimates the start time of a job, it logs the start time. A scheduler does not log the estimated
exec_vnode of a job.
PBS Professional 2020.1.1 Administrator’s Guide AG-133

Chapter 4 Scheduling
4.9.15.7 Caveats and Advice

• The estimated.start_time of a job array is the time calculated for the first queued subjob only.

• Cached estimated start times are only as fresh as the last time PBS calculated them.This should be taken into account
when setting the values of the PBS_est hook’s freq attribute and backfill_depth.

• The frequency of calculating start times is a trade-off between having more current start time information and using
fewer computing cycles for non-job work. The background task of calculating start times can be computationally
intensive. This should be taken into account when setting the value of the PBS_est hook’s freq attribute. Depending
on the size of your partition or site, it is probably a good idea not to set it to less than 10 minutes.

• The best value for the PBS_est hook’s freq attribute is workload dependent, but we recommend setting it to two
hours as a starting point.

• If your partition or site has short scheduling cycles of a few minutes, and can use backfilling (and at least one of
strict ordering or starving jobs), you can have the start times for all jobs calculated at each scheduling cycle. To do
this, set backfill_depth to a value greater than the number of jobs the partition or site will ever have, and do not set
the PBS_est hook’s freq attribute.

• We recommend setting backfill_depth to a value that is less than 100.

• The process of computing the estimated start time for jobs is not instantaneous.

• Note that setting backfill_depth changes your scheduling policy. See section 4.9.3, “Using Backfilling”, on page
105.

4.9.16 Calculating Job Execution Priority

When a scheduler examines jobs, either at the whole partition or complex or within a queue, it gives each job an execu-
tion priority, and then uses this job execution priority to select which job(s) to run. Job execution priority is mostly inde-
pendent of job preemption priority. We discuss only job execution priority in this section.

Some of a scheduler’s policy for determining job execution priority is built into PBS, but you can specify how execution
priority is determined for most of the policy.

First, a scheduler divides queued jobs into classes. Then it sorts the jobs within each class.

4.9.16.1 Dividing Jobs Into Classes

PBS groups all jobs into classes, and handles one class at a time. There are special classes that supersede queue order,
meaning that whether or not queues are being examined separately, the jobs in each of those classes are handled before a
scheduler takes queues into account. Those jobs are not ordered according to which queue they reside in. For example,
all starving jobs are handled as a group. PBS has one non-special class called Normal for all non-special jobs. This class
typically contains most PBS jobs. Queue order is imposed on this class, meaning that queue priority affects job execu-
tion order if queues are being handled separately.
AG-134 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
Job execution classes have a built-in order of precedence. All jobs in the highest class are considered before any jobs in
the next class, and so on. Classes are listed in the following table, highest first:

4.9.16.2 Selecting Job Execution Class

A scheduler places each job in the highest-priority class into which the job can fit. So, for example, if a job is both in a
reservation and is starving, the job is placed in the Reservation class.

4.9.16.3 Sorting Jobs Within Classes

Jobs within each class are sorted according to rules specific to each class. The sorting applied to each class is listed in
Table 4-8, “Job Execution Classes,” on page 135.

• The Reservation class is made up of all jobs in reservations.

• The Reservation class is sorted within each reservation.

• The first sort is according to the formula or job_sort_key, depending on which is defined.

• The second sort key is submission time.

• The Express class is made up of all the jobs that have a higher priority than “normal_jobs” in the preempt_prio
scheduler attribute.

• The Express class is sorted first by applying the rules for preemption priority you set in a scheduler’s
preempt_prio attribute, making preemption priority the first sort key.

• The second sort key is the time the job was preempted (if that happened), with the earliest-preempted job having
the highest priority (in this sort).

• The third sort key is the job’s starving time, if any.

• The fourth sort key is the formula, fairshare, or job_sort_key, depending on which is defined.

• The fifth sort key is job submission time.

Table 4-8: Job Execution Classes

Class Description Sort Applied Within Class

Reservation Jobs submitted to an advance, standing, or job-spe-
cific reservation

Formula, job sort key, submission time

Express All jobs with preemption priority higher than normal
jobs. Preemption priority is defined in scheduler’s
preempt_prio attribute.

Jobs are sorted into this class only when preemption is
enabled. See section 4.9.33, “Using Preemption”, on
page 180.

First by preemption priority, then by preemption
time, then starving time, then by formula, then
fairshare, then job sort key, followed by job sub-
mission time

Preempted All jobs that have been preempted. See section
4.9.33, “Using Preemption”, on page 180.

First by preemption time, then starving time,
then by formula, then fairshare, then job sort
key, followed by job submission time

Starving

(deprecate)

Starving jobs. Jobs are sorted into this class only
when starving is enabled by setting
help_starving_jobs to True. See section 4.9.48,
“Starving Jobs”, on page 222

Amount of time counted toward starving, then
by formula, then fairshare, then job sort key, fol-
lowed by job submission time

Normal Jobs that do not belong in any of the special classes Queue order, if it exists, then formula, then fair-
share, then job sort key, followed by job submis-
sion time
PBS Professional 2020.1.1 Administrator’s Guide AG-135

Chapter 4 Scheduling
Jobs are sorted into this class only when preemption is enabled. See section 4.9.33, “Using Preemption”, on page
180. Please note that execution priority classes are distinct from preemption levels, and are used for different pur-
poses.

For example, if preempt_prio is the following:

preempt_prio: “express_queue, starving_jobs, normal_jobs”

The Express class contains all jobs that have preemption priority that is greater than that of normal jobs. In this
example, the Express class is prioritized with top priority for express queue jobs, followed by starving jobs.

Since preemption levels are applied so that a job is put into the highest preemption level possible, in this example, all
starving jobs end up in the Express class.

• The Preempted class is made up of all preempted jobs.

• The first sort key is the time the job was preempted, with the earliest-preempted job having the highest priority
(in this sort).

• The second sort key is the job’s starving time, if any.

• The third sort key is the formula, fairshare, or job_sort_key, depending on which is defined.

• The fourth sort key is job submission time.

When you set the sched_preempt_enforce_resumption scheduler attribute and the strict_ordering scheduler
parameter to True, a scheduler tries harder to run preempted jobs. By default the attribute is False, and in each
scheduling cycle, if a top job cannot run now, a scheduler moves on to the next top job and tries to run it. When the
attribute and the parameter are True, a scheduler treats the job like a top job: it makes sure that no lower-priority job
will delay this job, and it backfills around the job.

• The Starving class is made up of all jobs whose wait time qualifies them as starving.

• The Starving class is sorted first according to the amount of time that counts toward starving for each job. You
can use queue wait time or eligible time as starving time. Jobs are sorted into this class only when starving is
enabled. See section 4.9.48, “Starving Jobs”, on page 222.

• The second sort key is the time the job was preempted (if that happened), with the earliest-preempted job having
the highest priority (in this sort).

• The third sort key is the formula, fairshare, or job_sort_key, depending on which is defined.

• The fourth sort key is job submission time.

• The Normal class is for any jobs that don’t fall into any of the other classes. Most jobs are in this class.

• If queue ordering exists (there are multiple queues, and queues have different priorities set, and round_robin or
by_queue is True), jobs are sorted first by queue order.

• If defined, the formula, fairshare, or job sort key is the second sort key.

• The third sort key is job submission time.

4.9.16.3.i Precedence of Sort Method Used Within Class

If the formula is defined, it overrides fairshare and the job sort key. If fair share is defined, it overrides the job sort key.
If none are defined, jobs are ordered by their arrival time in the queue.

For the job sorting formula, see section 4.9.21, “Using a Formula for Computing Job Execution Priority”, on page 149.

For fairshare, see section 4.9.19, “Using Fairshare”, on page 138.

For sorting jobs on a key, see section 4.9.45, “Sorting Jobs on a Key”, on page 220.
AG-136 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.16.4 Execution Priority Caveats

• Limits are not taken into account when prioritizing jobs for execution. Limits are checked only after setting priority,
when selecting a job to run. The only exception is in the Express class, where soft limits may be taken into account,
because execution priority for Express class jobs is calculated using preemption priority. For details, see section
4.9.33, “Using Preemption”, on page 180.

• When you issue “qrun <job ID>”, without the -H option, the selected job has execution priority between Reser-

vation and Express.

• Jobs are sorted into the Express class only when preemption is enabled. Similarly, jobs are sorted into the Starving
class only when starving is enabled.

4.9.17 Calendaring Jobs

In each scheduling cycle, PBS runs through its list of jobs in the order that you have defined. The backfill depth deter-
mines the number of top jobs; these are the highest-priority jobs in its current list. When strict priority and backfilling are
in force, and PBS cannot run a top job right now, PBS holds a spot open for that job: PBS finds a future spot in the calen-
dar that fits the job’s needs, and doesn’t schedule any other jobs that would interfere with the top job.

PBS rebuilds the calendar with each scheduling cycle.

4.9.17.1 Making Jobs Ineligible to be Top Jobs

By default, a job is eligible to be a top job, meaning that PBS holds resources for it if it cannot run right now (the
topjob_ineligible job attribute defaults to False). If you set the value of a job’s topjob_ineligible attribute to True, that
job cannot become a top job, and PBS does not hold a spot open for that job if it cannot run the job right now. Having the
highest priority is not the same as being a top job.

4.9.17.1.i Caveats for Making Jobs Ineligible to be Top Jobs

When sched_preempt_enforce_resumption is set to True, all preempted jobs become top jobs, regardless of their set-
ting for topjob_ineligible.

4.9.18 Express Queues

An express queue is a queue whose priority is high enough to qualify as an express queue; the default for qualification is
150, but the cutoff can be set using the preempt_queue_prio scheduler attribute. For information on configuring
express queues, see section 2.3.5.3.i, “Express Queues”, on page 24.

You can use express queues as tools to manage job execution and preemption priority.

• You can set up execution priority levels that include jobs in express queues. For information on configuring job pri-
orities in a scheduler, see section 4.9.16, “Calculating Job Execution Priority”, on page 134.

• You can set up preemption levels that include jobs in express queues. For information on preemption, see section
4.9.33, “Using Preemption”, on page 180.

The term “express” is also used in calculating execution priority to mean all jobs that have a preemption level greater
than that of the normal_jobs level.
PBS Professional 2020.1.1 Administrator’s Guide AG-137

Chapter 4 Scheduling
4.9.19 Using Fairshare

Fairshare provides a way to enforce a partition’s or site's resource usage policy. It is a method for ordering the start times
of jobs based on two things: how a site's resources are apportioned, and the resource usage history of partition or site
members. Fairshare ensures that jobs are run in the order of how deserving they are. A scheduler performs the fairshare
calculations each scheduling cycle. If fairshare is enabled, all jobs have fairshare applied to them and there is no exemp-
tion from fairshare.

You can employ basic fairshare behavior, or a policy of the desired complexity.

The fair_share parameter is a primetime option, meaning that you can configure it for either primetime or non-prime-
time, or you can specify it for all of the time. You cannot configure different behaviors for fairshare during primetime
and non-primetime.

You can use fairshare information calculated by PBS in the job sorting formula. See section 4.9.19.6, “Computing Fair-
share Values”, on page 143 and section 4.9.21.7, “Using Fairshare in the Formula”, on page 151.

4.9.19.1 One Fairshare System Per Scheduler

Each scheduler runs one fairshare system. Each fairshare system is independent of any others. If you are running only
the default scheduler (no multischeds), it runs one fairshare system for the entire site. If you are using one or more mul-
tischeds, each of the multischeds runs its own fairshare system, and the default scheduler runs one fairshare system.

Each scheduler has its own usage, resource_group, etc., fairshare files in its sched_priv directory, and its own
sched_config configuration file.

The pbsfs command operates on one scheduler’s fairshare database at a time. You specify which scheduler’s database
to operate on using the pbsfs -I <scheduler name> option.

In the following sections on fairshare, we describe the behavior for any single scheduler.

4.9.19.2 Outline of How Fairshare Works

The owner of a PBS job can be defined for fairshare purposes to be a user, a group, the job’s accounting string, etc. For
example, you can define owners to be groups, and can explicitly set each group’s relationship to all the other groups by
using the tree structure. If you don’t explicitly list an owner, it will fall into the “unknown” catchall. All owners in
“unknown” get the same resource allotment. You can define one group to be part of a larger department.

You specify which resources to track and how you want usage to be calculated. So if you defined job owners to be
groups, then only the usage of groups is considered. PBS tries to ensure that each owner gets the amount of resources
that you have set for it.

4.9.19.3 Enabling Basic Fairshare

If the default fairshare behavior is enabled, PBS enforces basic fairshare rules where all users with queued jobs will get
an equal share of CPU time. The root vertex of the tree will have one child, the unknown vertex. All users will be put
under the unknown vertex, and appear as children of the unknown vertex.

Enable basic fairshare by doing the following:

• In the scheduler’s sched_config file, set the scheduler configuration parameter fair_share to True

• Uncomment the unknown_shares setting so that it is set to unknown_shares: 10

• Specify how you want fairshare to work with primetime and non-primetime. If you want separate behavior for
primetime and non-primetime, list the fair_share parameter twice, once for each time slot. The default is both. For
example:
fair_share True prime

fair_share False non_prime
AG-138 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
Note that a variant of basic fairshare has all users listed in the tree as children of root. Each user can be assigned a differ-
ent number of shares.

4.9.19.4 Configuring the Fairshare Tree

Fairshare uses a tree structure, where each vertex in the tree represents some set of job owners and is assigned usage
shares. Shares are used to apportion the partition’s or site’s resources. The default tree always has a root vertex and an
unknown vertex. The default behavior of fairshare is to give all users the same amount of the resource being tracked. In
order to apportion a partition’s or site's resources according to a policy other than equal shares for each user, you create a
fairshare tree to reflect that policy. To do this, you edit the resource_group file in the scheduler’s sched_priv direc-
tory, which describes that scheduler’s fairshare tree.

To configure non-default fairshare, set up a hierarchical tree structure made up of interior vertices and leaves. Interior
vertices are departments, which can contain both departments and leaves. Leaves are for fairshare entities, defined by
setting fairshare_entity to one of the following: euser, egroup, egroup:euser, Account_Name, or queue. Appor-
tioning of resources for the partition or site is among these entities. These entities' usage of the designated resource is
used in determining the start times of the jobs associated with them. All fairshare entities must be the same type. If you
wish to have a user appear in more than one department, you can use egroup:euser to distinguish between that user's
different resource allotments. Note that in the resource_group file and in the output of pbsfs, interior (non-leaf) ver-
tices are referred to as “groups”, and exterior (leaf) vertices are referred to as “users”.

4.9.19.4.i Allotting Shares in the Tree

You assign shares to each vertex in the tree. The actual number of shares given to a vertex or assigned in the tree is not
important. What is important is the ratio of shares among each set of sibling vertices. Competition for resources is
between siblings only. The sibling with the most shares gets the most resources.

4.9.19.4.ii Shares Among Unknown Entities

The root vertex always has a child called unknown. Any entity not listed in the scheduler’s resource_group file
will be made a child of unknown, designating the entity as unknown. The shares used by unknown entities are con-
trolled by two parameters in the scheduler’s sched_config file: unknown_shares and
fairshare_enforce_no_shares.

The parameter unknown_shares controls how many shares are assigned to the unknown vertex. The shipped
sched_config file contains this line:

#unknown_shares 10

If you leave unknown_shares commented out, the unknown vertex will have 0 shares. If you simply remove the “#”,
the unknown vertex's shares default to 10. The children of the unknown vertex have equal amounts of the shares
assigned to the unknown vertex.

Table 4-9: Using Fairshare Entities

Keyword
Fairshare
Entities

Purpose

euser Username Individual users are allotted shares of the resource being tracked. Each
username may only appear once, regardless of group.

egroup OS group name Groups as a whole are allotted shares of the resource being tracked.

egroup:euser Combinations of user-
name and group name

Useful when a user is a member of more than one group, and needs to
use a different allotment in each group.

Account_Name Account IDs Shares are allotted by account string (Account_Name job attribute).

queue Queues Shares are allotted between queues.
PBS Professional 2020.1.1 Administrator’s Guide AG-139

Chapter 4 Scheduling
The parameter fairshare_enforce_no_shares controls whether an entity without any shares can run jobs. If
fairshare_enforce_no_shares is True, entities without shares cannot run jobs. If it is set to False, entities without any
shares can run jobs, but only when no other entities’ jobs are available to run.

4.9.19.4.iii Format for Describing the Tree

The file describing the fairshare tree contains four columns to describe the vertices in the tree. Here is the format for the
columns:

<Vertex name> <vertex fairshare ID> <parent of vertex> <#shares>

The columns are for a vertex's name, its fairshare ID, the name of its parent vertex, and the number of shares assigned to
this (not the parent) vertex. Vertex names and IDs must be unique. Vertex IDs are integers. The top row in
resource_group contains information for the first vertex, rather than column labels.

Neither the root vertex nor the unknown vertex is described in the resource_group file. They are always added
automatically. Parent vertices must be listed before their children.

For example, we have a tree with two top-level departments, Math and Phys. Under Math are the users Bob and Tom as
well as the department Applied. Under Applied are the users Mary and Sally. Under Phys are the users John and Joe.
Our <sched_priv directory>/resource_group looks like this:

Math 100 root 30

Phys 200 root 20

Applied 110 Math 25

Bob 101 Math 15

Tom 102 Math 10

Mary 111 Applied 1

Sally 112 Applied 2

John 201 Phys 2

Joe 202 Phys 2

If you wish to use egroup:euser as your entity, and Bob to be in two groups pbsgroup1 and pbsgroup2, and Tom to be in
two groups pbsgroup2 and pbsgroup3:

Math 100 root 30

Phys 200 root 20

Applied 110 Math 20

pbsgroup1:Bob 101 Phys 20

pbsgroup2:Bob 102 Math 20

pbsgroup2:Tom 103 Math 10

pbsgroup3:Tom 104 Applied 10

When a user submits a job using -Wgroup_list=<group>, the job’s egroup will be <group>. For example, user
Bob is in pbsgroup1 and pbsgroup2. Bob uses “qsub -Wgroup_list= pbsgroup1” to submit a job that will be
charged to pbsgroup1, and “qsub -Wgroup_list=pbsgroup2” to submit a job that will be charged to pbsgroup2.

The first and third fields are alphanumeric. The second and fourth fields are numeric. Fields can be separated by spaces
and tabs.

4.9.19.4.iv Moving Entities within Fairshare Tree

To move an entity within the fairshare tree, change its parent:

1. Edit <sched_priv directory>/resource_group. Change the parent (column 3) to the desired parent

2. HUP or restart the scheduler
AG-140 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.19.4.v Removing Entities from Fairshare Tree

You may want to remove an entity from the fairshare tree, either because they no longer run jobs, or because you don’t
want them to have their own place in the tree. When an entity that is not in the fairshare tree runs a job, their past and
future usage, including that for jobs running while you remove the entity, shows up in the Unknown group. To remove
an entity from the fairshare tree:

1. Edit the resource_group file to remove the entity line

2. HUP or restart the scheduler

If you do not want an entity’s usage to show up in the Unknown group, use pbsfs -e [-I <multisched
name>] to remove the usage. If you are working on a partition managed by a multisched, you must specify the name of
the multisched:

1. Prevent jobs from being scheduled

2. Run pbsfs -e [-I <multisched name>]

3. Resume scheduling jobs

If you have removed a user from the PBS partition or complex and don’t want their usage to show up any more:

1. Prevent jobs from being scheduled

2. Edit the resource_group file

3. Run pbsfs -e [-I <multisched name>]

4. Resume scheduling jobs

4.9.19.5 Resource Usage for Fairshare

4.9.19.5.i Tracking Resource Usage

You choose which resources to track and how to compute the usage by setting the fairshare_usage_res scheduler con-
figuration parameter in the sched_config file to the fairshare resource formula you want. This parameter can contain
the following:

• Built-in and custom job resources

When you use a resource in the fairshare resource formula, if a value exists for resources_used.<resource

name>, this value is used in the fairshare resource formula. Otherwise, the value is taken from
Resource_List.<resource name>.

• Mathematical operators

You can use standard Python operators and the operators in the Python math module.

The default for the tracked resource is cput (CPU time).

4.9.19.5.ii Adding Usage

An entity's usage always starts at 1. Resource usage tracking begins when a scheduler is started. Each scheduler cycle,
the scheduler adds the usage increment between this cycle and the previous cycle to its sum for the entity.

A static resource does not change its usage from one cycle to the next. If you use a static resource such as ncpus, the
amount being tracked will not change during the lifetime of the job; it will only be added once when the job starts.

Note that if a job ends between two scheduling cycles, its resource usage for the time between the previous scheduling
cycle and the end of the job will not be recorded. A scheduler's default cycle interval is 10 minutes. The scheduling
cycle can be adjusted via the qmgr command. Use

Qmgr: set sched [sched name>] scheduler_iteration=<new value>
PBS Professional 2020.1.1 Administrator’s Guide AG-141

Chapter 4 Scheduling
If the fairshare resource formula in fairshare_usage_res evaluates to a negative number, PBS uses zero instead. So
there is no way to accumulate negative usage.

4.9.19.5.iii Decaying Usage

Each entity's usage is decayed, or reduced periodically, at the interval set in the fairshare_decay_time parameter in the
sched_config file. This interval defaults to 24 hours.

The amount by which usage is decayed is set in the fairshare_decay_factor scheduler parameter.

An entity with a lot of current or recent usage will have low priority for starting jobs, but if the entity cuts resource usage,
its priority will go back up after a few decay cycles.

4.9.19.5.iv Setting Decay Interval and Factor

You set the interval at which usage is decayed by setting the fairshare_decay_time scheduler parameter to the desired
time interval. The default value for this interval is 24 hours. For example, to set this interval to 14 hours and 23 minutes,
put this line in the sched_config file:

fairshare_decay_time: 14:23:00

You set the decay factor by setting the fairshare_decay_factor scheduler parameter to the desired multiplier for usage.
At each decay interval, the usage is multiplied by the decay factor. This attribute is a float whose value must be between
0 and 1. The value must be greater than 0 and less than 1. The default value for this multiplier is 0.5. For example, to set
this multiplier to 70 percent, put this line in sched_config:

fairshare_decay_factor: .7

4.9.19.5.v Examples of Setting Fairshare Usage

To use CPU time as the resource to be tracked, put this line in sched_config:

fairshare_usage_res: cput

To use ncpus multiplied by walltime as the resource to be tracked, put this line in sched_config:

fairshare_usage_res: ncpus*walltime

An example of a more complex formula:

fairshare_usage_res: “ncpus*pow(walltime,.25)*fs_factor”

4.9.19.5.vi Fairshare Resource Advice

We recommend including a time-based resource in the fairshare formula so that usage will grow over time.

4.9.19.5.vii Viewing and Managing Fairshare Usage Data

The pbsfs command provides a command-line tool for viewing and managing some fairshare data. You can display the
data as a tree, a table, or by entity. You can print all information about an entity, or set an entity's usage to a new value.
You can force an immediate decay of all the usage values in the tree. You can compare two fairshare entities. You can
also remove all entities from the unknown department. This makes the tree easier to read. The tree can become
unwieldy because entities not listed in the resource_group file all land in the unknown group. See “pbsfs” on page
31 of the PBS Professional Reference Guide.
AG-142 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
To change fairshare resource usage data, do the following:

1. Stop scheduling:
Qmgr: set sched [<sched name>] scheduling = false

2. Wait until the current scheduling cycle finishes. Check the scheduler’s log.

3. Trim the fairshare tree:

pbsfs -e [-I <multisched name>]

4. Set each entity’s usage to one (cannot be zero). For each leaf entity:

pbsfs -s <entity name> 1 [-I <multisched name>]

5. Start scheduling:

Qmgr: set sched [<sched name>] scheduling = true

The fairshare usage data is written to the file usage file at each scheduling cycle. The usage data is always up to date.

For more information on using the pbsfs command, see “pbsfs” on page 31 of the PBS Professional Reference Guide

4.9.19.6 Computing Fairshare Values

PBS provides fairshare_perc, fairshare_tree_usage, and fairshare_factor as terms to use in the job sorting formula.
You can also use fairshare_perc as an argument to the job_sort_key scheduler parameter.

4.9.19.6.i Computing Target Usage for Each Vertex (fairshare_perc)

How much resource each entity should use is its target usage, computed in fairshare_perc. Target usage is the percent-
age of the shares in the tree allotted to the entity. Target usage does not take history into account.

A vertex's portion of all the shares in the tree is its fairshare_perc. This is computed for all of the vertices in the tree.
Since the leaves of the tree represent the entities among which resources are to be shared, their fairshare_perc sums to
100 percent. Only the leaf nodes sum to 100%; if all of the nodes were summed, the result would be greater then 100%.
Only the leaf nodes of the tree are fairshare entities.

A scheduler computes the fairshare_perc for the vertices this way:

First, it gives the root of the tree a fairshare_perc of 100 percent. It proceeds down the tree, finding the fairshare_perc
first for immediate children of root, then their children, ending with leaves.

1. For each internal vertex A:

sum the shares of its children;

2. For each child J of vertex A:

divide J's shares by the sum to normalize the shares;

multiply J's normalized shares by vertex A's fairshare_perc to find J's fairshare_perc.

The fairshare_perc value can be used in the job sorting formula and as an argument to the job_sort_key scheduler
parameter.

4.9.19.6.ii Computing Effective Usage (fairshare_tree_usage)

An entity’s effective usage is fairshare_tree_usage, and is a value between 0 and 1.

PBS calculates the value for fairshare_tree_usage this way:

For root’s children:

fairshare_tree_usage = percent total usage
For entities below root’s children:
PBS Professional 2020.1.1 Administrator’s Guide AG-143

Chapter 4 Scheduling
fairshare_tree_usage = entity's percent total usage + ((parent's effective usage - entity's percent total usage) *
entity's relative percent of shares within sibling group)

where

entity's percent total usage = entity’s usage / all usage in partition or complex

Summing effective usage for all leaves in the tree does not yield a useful number (such as 1).

4.9.19.6.iii Computing Relative Usage (fairshare_factor)

An entity’s relative usage allows direct comparison between entities. Relative usage is fairshare_factor, and is a value
between 0 and 1. A value of 0.5 means that an entity is using exactly its target usage. A higher value indicates less
resource usage by the entity, meaning that the entity is more deserving. Calculated this way:

2^-(fairshare_tree_usage / entity's fairshare_perc)

4.9.19.6.iv Example of Computing Fairshare Values

Example 4-2: The following fairshare tree shows shares and usage for two groups, each with two people:

Comparing Suzy and Bob:

Bob:

Percent total usage: 100/1200 = 0.083

Parent’s effective usage: 0.1667

Bob’s percentage of shares in group: Bob's 50 shares / (Bob’s 50 shares+ Cathy’s 50 shares) = 0.5

Bob’s effective usage: Bob's percent total usage: 0.0833 + (group1’s effective usage: 0.1667 - Bob's percent
total usage: 0.083) * 0.5 = 0.125

Relative usage formula: 2^-(0.125/0.2) = 0.648

Table 4-10: Example Fairshare Tree

Vertex Shares
Actual
Usage

%
Total

Usage

%
Group
Shares

Target
Usage:

fairshare
_perc

Effective
Usage:

fairshare
_tree_us

age

Relative
Usage:

fairshare
_factor

root 1200 100 1.0 1.0 1.0 1.0

group1 40 200 0.1667 0.4 0.4 0.167 0.75

Bob 50 100 0.0833 0.5 0.2 0.125 0.65

Cathy 50 100 0.0833 0.5 0.2 0.125 0.65

group2 60 1000 0.833 0.6 0.6 0.833 0.38

Suzy 60 0 0 0 0.36 0.5 0.38

Scott 40 1000 0.833 1 0.24 0.833 0.09
AG-144 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
Suzy:

Percent total usage: 0/1200 = 0

Parent's effective usage: 1000/1200 = 0.833

Suzy’s percentage of shares in group: Suzy's 60 shares / (Suzy’s 60 shares + Scott’s 40 shares) = 0.6

Suzy’s effective usage: Suzy's percent total usage: 0 + (group2's usage: 0.833 - Suzy's usage: 0) * 0.6 = 0.5

Relative usage formula: 2^-(0.5/0.36): 0.382

Even though Suzy had a higher fairshare_perc than Bob and less usage than Bob, her relative usage
(fairshare_factor) is quite a bit lower than his, because of the huge amount Scott used.

Output of pbsfs -g:

Our pbsfs output uses the same fairshare data as the previous example.

./pbsfs -g scott

fairshare entity: scott

Resgroup : 11

cresgroup : 15

Shares : 40

Percentage : 24.000000%

fairshare_tree_usage : 0.832973

usage : 1000 (cput)

usage/perc : 4167

Path from root:

TREEROOT : 0 1201 / 1.000 = 1201

group2 : 11 1001 / 0.600 = 1668

scott : 15 1000 / 0.240 = 4167

4.9.19.7 Choosing Which Job to Run

4.9.19.7.i Finding the Most Deserving Entity

The most deserving entity is found by starting at the root of the tree, comparing its immediate children, finding the most
deserving, then looking among that vertex's children for the most deserving child. This continues until a leaf is found. In
a set of siblings, the most deserving vertex will be the vertex with the lowest ratio of resource usage divided by
fairshare_perc.

4.9.19.7.ii Sorting and Selecting Jobs to Run

The job to be run next is selected from the set of jobs belonging to the most deserving entity. The jobs belonging to the
most deserving entity are sorted according to the methods a scheduler normally uses. This means that fairshare effec-
tively becomes the primary sort key. If the most deserving job cannot run, then the next most is selected to run, and so
forth. All of the most deserving entity's jobs are examined first, then those of the next most deserving entity, etcetera.

At each scheduling cycle, a scheduler attempts to run as many jobs as possible. It selects the most deserving job, runs it
if it can, then recalculates to find the next most deserving job, runs it if it can, and so on.

When a scheduler starts a job, all of the job's requested usage is added to the sum for the owner of the job for one sched-
uling cycle. The following cycle, the job’s usage is set to the actual usage that occurred between the first and second
cycles. This prevents one entity from having all its jobs started and using up all of the resource in one scheduling cycle.

4.9.19.8 Files and Parameters Used in Fairshare

sched_config
PBS Professional 2020.1.1 Administrator’s Guide AG-145

Chapter 4 Scheduling
File in the directory specified in the scheduler’s sched_priv attribute

PBS uses the following parameters from sched_config to compute fairshare values:

resource_group

File in the directory specified in the scheduler’s sched_priv attribute

Contains the description of the fairshare tree.

usage

File in the directory specified in the scheduler’s sched_priv attribute

Contains the usage database. Written by PBS. Do not edit. Written each scheduling cycle.

scheduler_iteration

Scheduler attribute. Specifies scheduler cycle frequency; default is 10 minutes.

Qmgr: set sched <scheduler name> scheduler_iteration=<new value>

resources_used.<resource name>

Job attribute. Contains resources used for tracking usage. Default is cput.

4.9.19.9 Ways to Use Fairshare

4.9.19.9.i Fairshare for Partition Or Complex or Within Queues

You can use fairshare to compare all jobs in the partition managed by a scheduler, or within each queue. Fairshare within
a queue means that a scheduler examines the jobs in a queue, and compares them to each other, to determine which job to
start next.

To use fairshare for the entire partition or complex, set the by_queue and round_robin scheduler configuration parame-
ters to False.

To use fairshare within queues, set the by_queue scheduler parameter to True, and round_robin to False. If you want
to examine queues in a particular order, prioritize the queues by setting each queue’s priority attribute.

Table 4-11: sched_config Parameters used in Fairshare

Parameter Use

fair_share [True/False] Enable or disable fairshare

fairshare_usage_res Resource whose usage is to be tracked; default is cput

fairshare_decay_factor Amount to decay usage at each decay interval

fairshare_decay_time Decay interval; default is 24 hours

unknown_shares Number of shares for unknown vertex; default 10, 0 if commented out

fairshare_entity The kind of entity which is having fairshare applied to it. Leaves in the tree
are this kind of entity. Default: euser.

fairshare_enforce_no_shares If an entity has no shares, this controls whether it can run jobs. T: an entity
with no shares cannot run jobs. F: an entity with no shares can only run jobs
when no other jobs are available to run.

by_queue If on, queues cannot be designated as fairshare entities, and fairshare will
work queue by queue instead of on all jobs at once.
AG-146 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
The scheduler configuration parameter by_queue in the sched_config file is set to True by default.

If by_queue is True, queues cannot be designated as fairshare entities.

4.9.19.9.ii Altering Fairshare According to Queue

You can introduce a fairshare factor that is different at each queue. To do this, create a custom floating point resource,
and set each queue’s resources_default.<resource name> to the desired value. Use this resource in the
fairshare_usage_res computation. If you do not set this value at a queue, PBS uses zero for the value. To avoid hav-
ing to set a value at multiple queues, you can set the servers’s resources_default.<resource name> to the default
value for all queues where the value is unset. The server value is used only where the queue value is unset; where the
queue value is set, the queue value takes precedence.

For example, to reduce the priority for jobs in the “expensive” queue by assigning them twice the usage of the jobs in
workq:

• Define the resource:
Qmgr: create resource fs_factor type = float, flag = i

• Set the resource values:
Qmgr: set server resources_default.fs_factor = 1
Qmgr: set queue workq resources_default.fs_factor = 0.3
Qmgr: set queue expensive resources_default.fs_factor = 0.6

• Edit sched_config:
fairshare_usage_res: “fs_factor*ncpus*walltime”

4.9.19.9.iii Using Fairshare in Job Execution Priority

Jobs are sorted as specified by the formula in job_sort_formula, if it exists, then by fairshare, if it is enabled, or if neither
of those is used, by job_sort_key. The job sorting formula can use the following calculated values: fairshare_perc, the
percentage of the fairshare tree for this job’s entity, fairshare_tree_usage, an entity’s effective usage, and
fairshare_factor, an entity’s comparative usage. See section 4.9.16, “Calculating Job Execution Priority”, on page 134.

4.9.19.9.iv Using Fairshare in Job Preemption Priority

You can use the fairshare preemption level in determining job preemption priority. This level applies to jobs whose
owners are over their fairshare allotment. See section 4.9.33, “Using Preemption”, on page 180.

4.9.19.10 Fairshare Restrictions

• Entity shares (strict priority):

If you enable entity shares (strict priority), you use the same fairshare tree that you would use for fairshare. Fair-
share and entity shares (strict priority) are incompatible, so in order to use entity shares, you disable fairshare by set-
ting fair_share to False. For how to configure entity shares, see section 4.9.14, “Sorting Jobs by Entity Shares
(Was Strict Priority)”, on page 131.

• Requeued jobs:

When a job is requeued, it normally retains its original place in its execution queue with its former priority. The job
is usually the next job to be considered during scheduling, unless the relative priorities of the jobs in the queue have
changed. This can happen when the job sorting formula assigns higher priority to another job, another higher-priority
job is submitted after the requeued job started, this job’s owner has gone over their fairshare limit, etc.

• With strict_ordering or backfilling:

We do not recommend using fairshare with strict_ordering, or with strict_ordering and backfilling. The results
may be non-intuitive. Fairshare will cause relative job priorities to change with each scheduling cycle. It is possible
that a job from the same entity or group as the top job will be chosen as the filler job. The usage from the filler job
will lower the priority of the most deserving, i.e. top, job. This could delay the execution of the top job.
PBS Professional 2020.1.1 Administrator’s Guide AG-147

Chapter 4 Scheduling
However, if all of your leaf entities are children of root (the tree has only two levels), and all users tend to submit the
same size jobs, results may be useful.

• With fairshare_perc option to job_sort_key:

Do not use fairshare when using the fairshare_perc option to job_sort_key. You can still use the value of
fairshare_perc in the job sorting formula.

• Static resources:

Do not use static resources such as ncpus as the resource to track. A scheduler adds the incremental change in the
tracked resource at each scheduling cycle, and a static resource will not change.

• With help_starving_jobs:

Do not use fairshare with help_starving_jobs.

4.9.19.11 Fairshare Caveats and Advice

• The most deserving entity can change with every scheduling cycle, if each time a job is run, it changes usage suffi-
ciently.

• Fairshare dynamically reorders the jobs with every scheduling cycle. Strict ordering is a rule that says we always
run the next-most-deserving job. If there were no new jobs submitted, strict ordering could give you a snapshot of
how the jobs would run for the next n days. Hence fairshare appears to break that. However, looked at from a
dynamic standpoint, fairshare is another element in the strict order.

• The half_life parameter is deprecated and has been replaced by the fairshare_decay_time parameter.

• Beware of overflow: PBS stores fairshare allocations in a signed integer (32-bit on Linux x86_64 platforms), and
fairshare usage in a long (64-bit on Linux x86_64 platforms)

4.9.20 FIFO Scheduling

With FIFO scheduling, PBS runs jobs in the order in which they are submitted. You can use FIFO order for all of the jobs
in your partition or complex, or you can go queue by queue, so that the jobs within each queue are considered in FIFO
order.

4.9.20.1 Configuring Basic FIFO Scheduling

To configure basic FIFO scheduling, whether across all a scheduler’s partition or queue by queue, set the following
scheduler parameters and queue/server attribute to these values:

round_robin: False ALL

job_sort_key: (commented out)

fair_share False ALL

backfill_depth: 0

job_sort_formula: (unset)

4.9.20.2 FIFO for Entire Partition Or Complex

To configure FIFO across your entire partition or complex, follow the steps above and do one of the following:

• Use only one execution queue

• Set the by_queue scheduler parameter to False
AG-148 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.20.3 Queue by Queue FIFO

To configure FIFO for each queue separately, first decide how you want queues to be selected. You can set the order in
which PBS chooses queues from which to run jobs, or you can allow the queues to be selected in an undefined way.
First configure this scheduler as in Section 4.9.20.1, "Configuring Basic FIFO Scheduling".

• To allow queues to be selected in an undefined way, set the by_queue scheduler parameter to True.

• To set the order in which queues are selected, do the following:

• Specify a priority for each queue

• Set the by_queue scheduler parameter to True

4.9.20.4 FIFO with Strict Ordering

If your jobs must run exactly in submission order, you can use strict ordering with FIFO scheduling. If you use strict
ordering with FIFO scheduling, this means that when the job that is supposed to run next cannot run, no jobs can run.
This can result in less throughput than you could otherwise achieve. To avoid that problem, you can use backfilling. See
the following section.

To use strict ordering with FIFO scheduling, use the following scheduler parameter settings in <sched_priv direc-
tory>/sched_config and queue/server attribute settings:

strict_ordering: True ALL

round_robin: False ALL

job_sort_key: (commented out)

fair_share False ALL

backfill_depth: 0

job_sort_formula: (unset)

4.9.20.5 FIFO with Strict Ordering and Backfilling

If you want to run your jobs in submission order, except for backfilling around top jobs that are stuck, use the following:

strict_ordering: True ALL

round_robin: False ALL

job_sort_key: (commented out)

fair_share False ALL

backfill_depth: <depth>

job_sort_formula: (unset)

4.9.21 Using a Formula for Computing Job Execution Priority

You can choose to use a formula by which to sort jobs at the finest-granularity level. The formula can only direct how
jobs are sorted at the finest level of granularity. However, that is where most of the sorting work is done.

When a scheduler sorts jobs according to the formula, it computes a priority for each job. The priority computed for each
job is the value produced by the formula. Jobs with a higher value get higher priority. See section 4.9.16.3, “Sorting
Jobs Within Classes”, on page 135 for how the formula is used in setting job execution priority.

Only one formula is used to prioritize all jobs. At each scheduling cycle, the formula is applied to all jobs, regardless of
when they were submitted. If you change the formula, the new formula is applied to all jobs.

For example, if you submit some jobs, change the formula, then submit more jobs, the new formula is used for all of the
jobs, during the next scheduling cycle.
PBS Professional 2020.1.1 Administrator’s Guide AG-149

Chapter 4 Scheduling
You can set a job priority threshold so that jobs with priority at or below the specified value do not run. See section
4.9.21.10, “Setting Minimum Job Priority Value for Job Execution”, on page 152.

You may find that the formula is most useful when you use it with custom resources inherited by or allocated to jobs. For
example, you may want to route all jobs from a particular project to a queue where they inherit a specific value for a cus-
tom resource. Other jobs may end up at a different queue, where they inherit a different value, or they may inherit no
value. You can then use this custom resource in the formula as a way to manage job priority. See section 13.3, “Allocat-
ing Resources to Jobs”, on page 495, and section 4.9.8, “Using Custom and Default Resources”, on page 113.

It may be helpful if these custom resources are invisible and unrequestable by users. See section 4.9.21.12, “Examples of
Using Resource Permissions in Job Sorting Formula”, on page 153.

4.9.21.1 When the Formula is Applied

Once you set job_sort_formula via qmgr, it takes effect with the following scheduling cycle.

Variables are evaluated at the start of the scheduling cycle.

4.9.21.2 Configuring the Job Sorting Formula

• Define the formula:

You specify the formula in the server’s job_sort_formula attribute. To set the job_sort_formula attribute, use the
qmgr command. When specifying the formula, be sure to follow the requirements for entering an attribute value via
qmgr: strings containing whitespace, commas, or other special characters must be enclosed in single or double
quotes. See “Caveats and Restrictions for Setting Attribute and Resource Values” on page 159 of the PBS Profes-
sional Reference Guide. Format:

Qmgr: s s job_sort_formula = "<formula>"

• Optional: set a priority threshold. See section 4.9.21.10, “Setting Minimum Job Priority Value for Job Execution”,
on page 152

4.9.21.3 Requirements for Creating Formula

The job sorting formula must be created at the server host.

Under Linux, root privilege is required in order to operate on the job_sort_formula server attribute.

4.9.21.4 Format of Formula

The formula must be valid Python, and must use Python syntax.The formula can be made up of any number of expres-
sions, where expressions contain terms which are added, subtracted, multiplied, or divided. You can use parentheses,
exponents, unary + and - operators, and the ternary operator (which must be Python). All operators use standard mathe-
matical precedence. The formula can use standard Python mathematical operators and those in the Python math module.

The formula can be any length.

The range for the formula is defined by the IEEE floating point standard for a double.

4.9.21.5 Units in Formula

The variables you can use in the formula have different units. Make sure that some terms do not overpower others, by
normalizing them where necessary. Resources like ncpus are integers, size resources like mem are in kb, so 1gb is
1048576kb, and time-based resources are in seconds (e.g. walltime). Therefore, if you want a formula that combines
memory and ncpus, you’ll have to account for the factor of 1024 difference in the units.
AG-150 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
The following are the units for the supported built-in resources:

Example 4-3: If you use ‘1 * ncpus + 1 * mem’, where mem=2mb, ncpus will have almost no effect on the formula
result. However, if you use ‘1024 * ncpus + 1 * mem’, the scaled mem won’t overpower ncpus.

Example 4-4: You are using gb of mem:

Qmgr: s s job_sort_formula=’1048576 * ncpus + 2 * mem’

Example 4-5: If you want to add days of walltime to queue priority, you might want to multiply the time by 0.0000115,
equivalent to dividing by the number of seconds in a day:

Qmgr: s s job_sort_formula = ‘.0000115*walltime + queue_priority’

Note that a Python bug may make it necessary to multiply by 1.0 in order to prevent rounding to the nearest integer.

4.9.21.6 Resources in Formula

The formula can use resources in the job’s Resource_List attribute, but no other resources. The resources in the job’s
Resource_List attribute are the numeric job-level resources, and may have been explicitly requested, inherited, or
summed from consumable host-level resources. See section 5.9.2, “Resources Requested by Job”, on page 245.

This means that all variables and coefficients in the formula must be resources that were either requested by the job or
were inherited from defaults at the server or queue. These variables and coefficients can be custom numeric resources
inherited by the job from the server or queue, or they are long integers or floats.

You may need to create custom resources at the server or queue level to be used for formula coefficients. See section
4.9.8, “Using Custom and Default Resources”, on page 113.

4.9.21.7 Using Fairshare in the Formula

PBS provides the following fairshare values for use as keywords in the job sorting formula:

See section 4.9.19, “Using Fairshare”, on page 138.

Table 4-12: Job Sorting Formula Units

Resource Units Example

Time resources Integer number of seconds 300

Memory kb 1gb => 1048576kb

ncpus Integer 8

Table 4-13: Fairshare Terms in Formula

Keyword Description

fairshare_perc (was
fair_share_perc)

Percentage of fairshare tree allotted to this job’s entity. See section 4.9.19.6.i, “Computing
Target Usage for Each Vertex (fairshare_perc)”, on page 143.

fairshare_tree_usage Value between 0 and 1, reflecting an entity’s effective usage. See section 4.9.19.6.ii, “Com-
puting Effective Usage (fairshare_tree_usage)”, on page 143.

fairshare_factor Value between 0 and 1, which allows direct comparison between entities. A value of 0.5
means that an entity is using exactly its allotted usage. A higher value indicates less resource
usage by the entity, meaning that the entity is more deserving. See section 4.9.19.6.iii, “Com-
puting Relative Usage (fairshare_factor)”, on page 144.
PBS Professional 2020.1.1 Administrator’s Guide AG-151

Chapter 4 Scheduling
4.9.21.8 Terms in Formula

4.9.21.9 Modifying Coefficients For a Specific Job

Formula coefficients can be altered for each job by using the qalter command to change the value of that resource for
that job. If a formula coefficient is a constant, it cannot be altered per-job.

4.9.21.10 Setting Minimum Job Priority Value for Job Execution

You can specify a minimum job priority value for jobs to run by setting the job_sort_formula_threshold scheduler
attribute. If the value calculated for a job by the job sorting formula is at or below this value, the job cannot run during
this scheduling cycle.

4.9.21.11 Examples of Using the Job Sorting Formula

Examples of formulas:

Example 4-6: 10 * ncpus + 0.01*walltime + A*mem

Table 4-14: Terms in Job Sorting Formula

Terms Allowable Value

Constants <number> or <number>.<number>

Attributes, key-
words, parame-
ters, etc.

queue_priority Value of priority attribute for queue in which job resides

job_priority Value of the job’s priority attribute

fairshare_perc Percentage of fairshare tree allotted to this job’s entity

fairshare_tree_usage The effective usage by the entity

fairshare_factor Value allowing direct comparison between entities

eligible_time Amount of wait time job has accrued while waiting for resources

accrue_type Kind of time job is accruing. See section 4.9.13, “Eligible Wait Time for
Jobs”, on page 126.

Resources ncpus

mem

walltime

cput

Custom numeric job-wide resources Uses the amount requested, not the amount used. Must be of type long,
float, or size. See section 5.14.2.2, “Custom Resource Values”, on page
258.
AG-152 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
Here, “A” is a custom resource.

Example 4-7: ncpus + 0.0001*mem

Example 4-8: To change the formula on a job-by-job basis, alter the value of a resource in the job’s
Resource_List.<resource name>. So if the formula is A *queue_priority + B*job_priority + C*ncpus + D*wall-

time, where A-D are custom numeric resources. These resources can have a default value via resources_default.A
... resources_default.D. You can change the value of a job’s resource through qalter.

Example 4-9: ncpus*mem

Example 4-10: Set via qmgr:

qmgr -c 'set server job_sort_formula= 5*ncpus+0.05*walltime'

Following this, the output from qmgr -c 'print server' will look like

set server job_sort_formula="5*ncpus+0.05*walltime"

Example 4-11:

Qmgr: s s job_sort_formula=ncpus

Example 4-12:

Qmgr: s s job_sort_formula=‘queue_priority + ncpus’

Example 4-13:

Qmgr: s s job_sort_formula=‘5*job_priority + 10*queue_priority’

Example 4-14: Sort jobs using the value of ncpus x walltime:

Formula expression: “ncpus * walltime”

Submit these jobs:

Job 1: ncpus=2 walltime=01:00:00 -> 2*60s = 120

Job 2: ncpus=1 walltime=03:00:00 -> 1*180s = 180

Job 3: ncpus=5 walltime=01:00:00 -> 5*60s = 300

The scheduler logs the following:

Job ;1.host1;Formula Evaluation = 120

Job ;2.host1;Formula Evaluation = 180

Job; 3.host1;Formula Evaluation = 300

The jobs are sorted in the following order:

Job 3

Job 2

Job 1

4.9.21.12 Examples of Using Resource Permissions in Job Sorting

Formula

See section 5.14.2.3.vi, “Resource Permission Flags”, on page 260 for information on using resource permissions.

Example 4-15: You may want to create per-job coefficients in your job sorting formula which are set by system defaults
and which cannot be viewed, requested or modified by the user. To do this, you create custom resources for the for-
mula coefficients, and make them invisible to users. In this example, A, B, C and D are the coefficients. You then
use them in your formula:
PBS Professional 2020.1.1 Administrator’s Guide AG-153

Chapter 4 Scheduling
A *(Queue Priority) + B*(Job Class Priority) + C*(CPUs) + D*(Queue Wait Time)

Example 4-16: You may need to change the priority of a specific job, for example, have one job or a set of jobs run next.
In this case, you can define a custom resource for a special job priority. If you do not want users to be able to change
this priority, set the resource permission flag for the resource to r. If you do not want users to be able to see the pri-
ority, set its resource permission flag to i. For the job or jobs that you wish to give top priority, use qalter to set
the special resource to a value much larger than any formula outcome.

Example 4-17: To use a special priority:

sched_priority = W_prio * wait_secs + P_prio * priority + ... + special_priority

Here, special_priority is very large.

4.9.21.13 Caveats and Error Messages

• If the formula overflows or underflows the sorting behavior is undefined.

• If you set the formula to an invalid formula, qmgr will reject it, with one of the following error messages:
“Invalid Formula Format”

“Formula contains invalid keyword”

“Formula contains a resource of an invalid type”

• If an error is encountered while evaluating the formula, the formula evaluates to zero for that job, and the following
message is logged at event class 0x0100:
“1234.mars;Formula evaluation for job had an error. Zero value will be used”

• The job sorting formula must be set via qmgr at the server host.

• When a job is moved to a new server or queue, it inherits new default resources from that server or queue. If it is
moved to a new server, it is prioritized according to the formula on that server, if one exists.

• If the job is moved to another server through peer scheduling and the pulling server uses queue priority in its job
sorting formula, the queue priority used in the formula will be that of the queue to which the job is moved.

• If you are using FIFO scheduling, the job_sort_formula server attribute must be unset.

• If you are using eligible time in the formula, and eligible_time_enable is False, each job’s eligible time evaluates to
zero in the formula.

• If a job is requeued, and you are using the formula, the job may lose its place, because various factors may affect the
job’s priority. For example, a higher-priority job may be submitted between the time the job is requeued and the
time it would have run, or another job’s priority may be increased due to changes in which jobs are running or wait-
ing.

• If the formula is configured, it is in force during both primetime and non-primetime.

• If an error is encountered while evaluating the formula, the formula evaluates to zero for that job, and the following
message is logged at event class 0x0100:
“1234.mars;Formula evaluation for job had an error. Zero value will be used”

• You may have to work around a Python bug by multiplying by 1.0, in order to prevent rounding to the nearest inte-
ger.

4.9.21.14 Logging

For each job, the evaluated formula answer is logged at the highest log level (0x0400):

“Formula Evaluation = <answer>”
AG-154 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.22 Gating Jobs at Server or Queue

You can set resource limits at the server and queues so that jobs must conform to the limits in order to be admitted. This
way, you can reject jobs that request more of a resource than a scheduler’s partition or a queue can supply.

You can also force jobs into specific queues where they will inherit the desired values for unrequested or custom
resources. You can then use these resources to manage jobs, for example by using the resources in the job sorting for-
mula or to route jobs to particular vnodes.

You can either force users to submit their jobs to specific queues, or you can have users submit jobs to routing queues,
and then route the jobs to the desired queues.

For information on using resources for gating, see section 5.13, “Using Resources to Restrict Server or Queue Access”,
on page 254.

For a description of which resources can be used for gating, see section 2.3.6.4.iii, “Resources Used for Routing and
Admittance”, on page 27.

For how queue resource limits are applied to jobs, see section 2.3.6.4.i, “How Queue and Server Limits Are Applied,
Except Running Time”, on page 26.

For how routing queues work, see section 2.3.6, “Routing Queues”, on page 25.

For how to route jobs to particular vnodes, see section 4.9.2, “Associating Vnodes with Queues”, on page 103.

For how to use resources in the job sorting formula, see section 4.9.21, “Using a Formula for Computing Job Execution
Priority”, on page 149.

4.9.22.1 Gating Caveats

• For most resources, if the job does not request the resource, and no server or queue defaults are set, the job inherits
the maximum gating value for the resource. See section 5.9.3.6, “Using Gating Values As Defaults”, on page 247.

• For shrink-to-fit jobs, if a walltime limit is specified:

• Both min_walltime and max_walltime must be greater than or equal to resources_min.walltime.

• Both min_walltime and max_walltime must be less than or equal to resources_max.walltime.

4.9.23 Managing Application Licenses

PBS does not check application licenses out from the license server. PBS has no direct control over application licenses.
However, you can have a scheduler use a dynamic resource to track application license use. This way, a scheduler knows
how many application licenses are available, and how many have been checked out. For how to configure dynamic
resources to represent application licenses, see section 5.14.6, “Supplying Application Licenses”, on page 274.

Unfortunately, some jobs or applications don’t check out all of the application licenses they use until they have been run-
ning for some time. For example, job J1, which requests licenses, starts running, but doesn’t check them out for a few
minutes. Next, the scheduler considers job J2, which also requests licenses. The scheduler runs its query for the number
of available licenses, and the query returns with a sufficient number of licenses to run J2, so the scheduler starts J2.
Shortly afterward, J1 checks out licenses, leaving too few to run J2.

It might appear that you could track the number of application licenses being used with a static integer PBS resource, and
force jobs requesting application licenses to request this resource as well, but there is a drawback: if a job that has
requested this resource is suspended, its static resources are released, but its application licenses are not. In this case you
could end up with a deceptively high number for available licenses.
PBS Professional 2020.1.1 Administrator’s Guide AG-155

Chapter 4 Scheduling
You can limit the number of jobs that request application licenses, if you know how many jobs can run at one time:

• Create a custom server-level consumable integer resource to represent these jobs. See section 5.14.3, “Creating
Server-level Custom Resources”, on page 267.

• Use qmgr to set resources_available.<job limit> at the server to the number of jobs that can run at one time.

• Force all jobs requesting the application to request one of these. See section 13.3, “Allocating Resources to Jobs”,
on page 495.

4.9.24 Limits on Per-job Resource Usage

You can specify how much of each resource any job is allowed to request, at the server and queue level. The server and
queues each have per-job limit attributes. The resources_min.<resource name> and resources_max.<resource

name> server and queue attributes are limits on what each individual job may request.

You cannot set resources_min or resources_max limits on min_walltime or max_walltime.

See section 5.15.2, “Placing Resource Limits on Jobs”, on page 304, and section 5.13, “Using Resources to Restrict
Server or Queue Access”, on page 254.

4.9.25 Limits on Project, User, and Group Jobs

You can manage the number of jobs being run by users or groups, and the number of jobs being run in projects, at the
server or queue level. For example, you can limit the number of jobs enqueued in queue QueueA by any one group to
30, and by any single user to 5.

See section 5.15.1, “Managing Resource Usage By Users, Groups, and Projects, at Server & Queues”, on page 287.

4.9.26 Limits on Project, User, and Group Resource Usage

You can manage the total amount of each resource that is used by projects, users, or groups, at the server or queue level.
For example, you can manage how much memory is being used by jobs in queue QueueA.

See section 5.15.1, “Managing Resource Usage By Users, Groups, and Projects, at Server & Queues”, on page 287.

4.9.27 Using Load Balancing

As of version 2020.1, the load_balancing scheduler parameter is deprecated. We recommend sorting vnodes according
to load average, described in section 4.9.50.3, “Sorting Vnodes According to Load Average”, on page 226.

PBS can use the load_balancing scheduler parameter to track the load on each execution host, running new jobs on the
host according to the load on the host. You can specify that PBS does this for all machines in a scheduler’s partition.
This is somewhat different behavior from that used for managing the load on vnodes; when managing load levels on
vnodes, a scheduler only pays attention to the state of the vnode, and does not calculate whether a job would put the
vnode over its load limit. Managing load levels on vnodes does not require load balancing to be turned on. See section
9.6.5, “Managing Load Levels on Vnodes”, on page 439. This load balancing tool does not work across vnodes on a
multi-vnoded host.

You use the load_balancing scheduler parameter to control whether PBS tracks the load on each host.

The load_balancing parameter is a primetime option, meaning that you can configure it separately for primetime and
non-primetime, or you can specify it for all of the time.
AG-156 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.27.1 How Load Average is Computed

When load balancing is on, a scheduler queries each MoM once each scheduling cycle for the MoM’s load. MoM checks
the load average on her host every 10 seconds. The load used by MoM is the raw one-minute averaged “loadave”
returned by the operating system.

When a new load is added to a vnode, the load average increases slowly over time, so that more jobs than you want may
be started at first. Eventually, the load average matches the actual load. If this is above the limit, PBS won’t start any
more jobs on that vnode. As jobs terminate, the load average slowly moves down, and it takes time before the vnode is
chosen for new jobs.

Consult your OS documentation to determine load values that make sense.

MoM sets the load only on the parent vnode, so it is the same for all vnodes on a multi-vnode machine.

4.9.27.2 How PBS Uses Load Information

When choosing vnodes for a job, a scheduler considers the load on the vnode in addition to whether the vnode can supply
the resources specified in the job’s Resource_List attribute.

PBS estimates that a 1-CPU job will produce one CPU’s worth of load. This means that if you have a 2-CPU machine
whose load is zero, PBS will put two 1-CPU jobs, or one 2-CPU job, on that machine.

When using load balancing, if a vnode has gone above $max_load, PBS does not run new jobs on the vnode until the
load drops below $ideal_load.

MoM sets the vnode’s state according to its load. When a vnode’s load goes above $max_load, MoM marks the vnode
busy. When the load drops below $ideal_load, MoM marks the vnode free. When a vnode’s state changes, for example
from free to busy, MoM informs the server.

When using load balancing, PBS does not run new jobs on vnodes under the following conditions:

• Vnodes that are marked busy

• Vnodes whose resources, such as ncpus, are already fully allocated

• Vnodes that are above $max_load

• Vnodes where running the job would cause the load to go above $max_load

4.9.27.3 When to Use Load Balancing

When using load balancing (meaning the load_balancing scheduler parameter is True), the only changes to behavior are
the following:

• A scheduler won’t place a job on a vnode whose load is above $max_load

• A scheduler won’t place a job on a vnode where that job would put the load above $max_load

Load balancing is useful when you want to oversubscribe CPUs, managing job placement by load instead. This can help
when you want to run lots of jobs where each job will need only some CPU time, and the average load on the machine
will be reasonable.

4.9.27.4 Suspending Jobs on Overloaded Vnodes

You can specify that MoM should suspend jobs when the load goes above $max_load, by adding the suspend argument
to the $max_load parameter. See section , “$max_load <load> [suspend]”, on page 159. In this case, MoM suspends all
jobs on the vnode until the load drops below $ideal_load, then resumes them. This option is useful only when the source
of the load is not strictly PBS jobs. This option is not recommended when the load is due solely to PBS jobs, because it
can lead to the vnode cycling back and forth between becoming overloaded, being marked busy, suspending all jobs,
being marked free, then starting all jobs, becoming overloaded, and so on.
PBS Professional 2020.1.1 Administrator’s Guide AG-157

Chapter 4 Scheduling
4.9.27.5 Configuring Load Balancing

If you want to oversubscribe CPUs, set the value of ncpus on the vnode to the desired higher value.

We recommend setting the value of $max_load to a slightly higher value than the desired load, for example .25 +

ncpus. Otherwise, a scheduler will not schedule jobs onto the last CPU, because it thinks a 1-CPU job will raise the load
by 1, and the machine probably registers a load above zero.

To configure load balancing, perform the following steps:

1. Turn on load balancing by setting the load_balancing scheduler parameter to True:
load_balancing: True ALL

2. Choose whether you want load balancing during primetime, non-primetime, or all. If you want separate behavior for
primetime and non-primetime, specify each separately. The default is both. Example of separate behavior:

load_balancing True prime

load_balancing False non_prime

3. Set the ideal and maximum desired load for each execution host, by specifying values for $ideal_load and
$max_load in each execution host’s MoM configuration file:

$ideal_load <value at which to start new jobs>

$max_load <value at which to cease starting jobs>

4. Set each host’s resources_available.ncpus to the maximum number of CPUs you wish to allocate on that host.
Follow the recommendations in section 3.4.5, “Configuring Vnode Resources”, on page 47.

4.9.27.6 Load Balancing Caveats and Recommendations

• When setting ncpus and $max_load, consider the ratio between the two. PBS won’t allocate more than the value of
resources_available.ncpus, so you can use this value to keep the load average from getting too high.

• Make sure that load balancing does not interfere with communications. Please read section 9.6.5, “Managing Load
Levels on Vnodes”, on page 439.

• Load balancing is incompatible with sorting vnodes on a key (node_sort_key) when sorting on a resource using the
“unused” or “assigned” parameters. Load balancing will be disabled. See section 4.9.50, “Sorting Vnodes on a
Key”, on page 225.

• You can use load balancing with SMP cluster distribution, but smp_cluster_dist will behave as if it is set to pack.
See section 4.9.43, “SMP Cluster Distribution”, on page 217.

• We recommend setting the value of $max_load to a slightly higher value than the desired load, for example .25 +

ncpus. Otherwise, a scheduler will not schedule jobs onto the last CPU, because it thinks a 1-CPU job will raise the
load by 1, and the machine probably registers a load above zero.

• If you are using cycle harvesting via load balancing, make sure your load balancing settings do not interfere with
cycle harvesting. Be careful with the settings for $ideal_load and $max_load. You want to make sure that when
the workstation owner is using the machine, the load on the machine triggers MoM to report being busy, and that
PBS does not start any new jobs while the user is working. Please read section 4.9.9.6, “Cycle Harvesting Based on
Load Average”, on page 121.

• Using load balancing with multi-vnoded machines is not supported. MoM sets the load average only on the parent
vnode, so all vnodes on a multi-vnoded machine are given the same value regardless of their actual load.

• It is not recommended to specify that MoM should suspend jobs when the load goes above $max_load. See section
4.9.27.4, “Suspending Jobs on Overloaded Vnodes”, on page 157.

• If you configure both placement sets and load balancing, the net effect is that vnodes that are over their load limit
will be removed from consideration.
AG-158 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.27.7 Parameters Affecting Load Balancing

$ideal_load <load>

MoM parameter. Defines the load below which the vnode is not considered to be busy. Used with the
$max_load parameter.

Example:

$ideal_load 1.8

Format: Float

No default

$max_load <load> [suspend]

MoM parameter. Defines the load above which the vnode is considered to be busy. Used with the $ideal_load
parameter.

If the optional suspend argument is specified, PBS suspends jobs running on the vnode when the load average
exceeds $max_load, regardless of the source of the load (PBS and/or logged-in users).

Example:

$max_load 3.5

Format: Float

Default: number of CPUs

load_balancing <T|F> [time slot specification]

Scheduler parameter. When set to True, this scheduler takes into account the load average on vnodes as well as
the resources listed in the resources: line in sched_config. See “load_balancing” on page 253 of the
PBS Professional Reference Guide.

Format: Boolean

Default: False all

4.9.28 Matching Jobs to Resources

A scheduler places each job where the resources requested by the job are available. A scheduler handles built-in and cus-
tom resources the same way. For a complete description of PBS resources, see Chapter 5, "Using PBS Resources", on
page 229.

4.9.28.1 Scheduling on Consumable Resources

A scheduler constrains the use of a resource to the value that is set for that resource in resources_available.<resource

name>. For a consumable resource, a scheduler won’t place more demand on the resource than is available. For exam-
ple, if a vnode has resources_available.ncpus set to 4, a scheduler will place jobs requesting up to a total of 4 CPUs on
that vnode, but no more.

A scheduler computes how much of a resource is available by subtracting the total of resources_assigned.<resource

name> for all running jobs and started reservations from resources_available.<resource name>.

4.9.28.2 Scheduling on Non-Consumable Resources

For non-consumable resources such as arch or host, a scheduler matches the value requested by a job with the value at
one or more vnodes. Matching a job this way does not change whether or not other jobs can be matched as well; non-
consumable resources are not used up by jobs, and therefore have no limits.
PBS Professional 2020.1.1 Administrator’s Guide AG-159

Chapter 4 Scheduling
4.9.28.3 Scheduling on Dynamic Resources

At each scheduling cycle, a scheduler queries each dynamic resource. If a dynamic resource is not under the control of
PBS, jobs requesting it may run in an unpredictable fashion.

4.9.28.4 Scheduling on the walltime Resource

A scheduler looks at each job in priority order, and tries to run the job. A scheduler checks whether there is an open time
slot on the requested resources that is at least as long as the job’s walltime. If there is, the scheduler runs the job.

PBS examines each shrink-to-fit job when it gets to it, and looks for a time slot whose length is between the job’s
min_walltime and max_walltime. If the job can fit somewhere, PBS sets the job’s walltime to a duration that fits the
time slot, and runs the job. For more information about shrink-to-fit jobs, see section 4.9.42, “Using Shrink-to-fit Jobs”,
on page 210.

4.9.28.4.i Caveats for Scheduling on walltime

Do not set values for resources such as walltime at the server or a queue, because a scheduler will not allocate more than
the specified value. This means that if you set resources_available.walltime at the server to 10:00:00, and one job
requests 5 hours and one job requests 6 hours, only one job will be allowed to run at a time, regardless of other idle
resources.

4.9.28.5 Unrequestable or Invisible Resources

You can define custom resources that are invisible to and unrequestable by users, or simply unrequestable by users. A
scheduler treats these resources the same as visible, requestable resources. See section 5.14.2.3.vi, “Resource Permission
Flags”, on page 260.

4.9.28.6 Enforcing Scheduling on Resources

A scheduler chooses which resources to schedule on according to the following rules:

• A scheduler always schedules jobs based on the availability of the following vnode-level resources:

vnode

host

Any Boolean resource

• A scheduler will schedule jobs based on the availability of other resources only if those resources are listed in the
“resources:” line in <sched_priv directory>/sched_config. Some resources are automatically
added to this line. You can add resources to this line. The following resources are automatically added to this line:

aoe

arch

eoe

host

mem

ncpus

vnode
AG-160 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.28.7 Matching Unset Resources

When job resource requests are being matched with available resources, unset resources are treated as follows:

• A numerical resource that is unset on a host is treated as if it were zero

• An unset resource on the server or queue is treated as if it were infinite

• An unset string cannot be matched

• An unset Boolean resource is treated as if it were set to False.

• The resources ompthreads, mpiprocs, and nodes are ignored for unset resource matching.

The following table shows how a resource request will or won’t match an unset resource at the host level.

4.9.28.7.i When Dynamic Resource Script Fails

If a server dynamic resource script fails, a scheduler uses the value of resources_available.<resource name>. If this
was never set, it is treated as an unset resource, described above.

If a host-level dynamic resource script fails, a scheduler treats the resource as if its value is zero.

4.9.28.7.ii Backward Compatibility of Unset Resources

To preserve backward compatibility, you can set the server’s resource_unset_infinite attribute with a list of host-level
resources that will behave as if they are infinite when they are unset. See “resource_unset_infinite” on page 256 of the
PBS Professional Reference Guide for information on resource_unset_infinite.

4.9.28.8 Resource Scheduling Caveats

• Do not set values for resources such as walltime at the server or a queue, because a scheduler will not allocate more
than the specified value. This means that if you set resources_available.walltime at the server to 10:00:00, and
one job requests 5 hours and one job requests 6 hours, only one job will be allowed to run at a time, regardless of
other idle resources.

• Jobs may be placed on different vnodes from those where they would have run in earlier versions of PBS. This is
because a job’s resource request will no longer match the same resources on the server, queues and vnodes.

• Beware of application license race conditions. If two jobs require the same application license, the first job may be
started, but may not get around to using the license before the second job is started and uses the license. The first job
must then wait until the license is available, taking up resources. A scheduler cannot avoid this problem.

Table 4-15: Matching Requests to Unset Host-level Resources

Resource Type Unset Resource Matching Request Value

Boolean False False

float 0.0 0.0

long 0 0

size 0 0

string Never matches

string array Never matches

time 0, 0:0, 0:0.0, 0:0:0 0, 0:0, 0:0.0, 0:0:0
PBS Professional 2020.1.1 Administrator’s Guide AG-161

Chapter 4 Scheduling
4.9.29 Node Grouping

The term “node grouping” has been superseded by the term “placement sets”. Vnodes were originally grouped according
to the value of one resource, so for example all vnodes with a value of linux for arch were grouped together, and all
vnodes with a value of arch1 for arch were in a separate group. We use placement sets now because this means group-
ing vnodes according to the value of one or more resources. See section 4.9.32, “Placement Sets”, on page 168.

4.9.29.1 Configuring Old-style Node Grouping

Configuring old-style node grouping means that you configure the simplest possible placement sets. In order to have the
same behavior as in the old node grouping, group on a single resource. If this resource is a string array, it should only
have one value on each vnode. This way, each vnode will be in only one node group.

You enable node grouping by setting the server’s node_group_enable attribute to True.

You can configure one set of vnode groups for the entire complex by setting the server’s node_group_key attribute to a
resource name.

You can configure node grouping separately for each queue by setting that queue’s node_group_key attribute to a
resource name.

4.9.30 Overrides

You can use various overrides to change how one or more jobs run.

4.9.30.1 Run a Job Manually

You can tell PBS to run a job now, and you can optionally specify where to run it. You run a job manually using the
qrun command.

The -H option to the qrun command makes an important difference:

qrun

When preemption is enabled, a scheduler preempts other jobs in order to run this job. Running a job via qrun
gives the job higher preemption priority than any other class of job, except for reservation jobs.

When preemption is not enabled, a scheduler runs the job only if enough resources are available.

qrun -H

PBS runs the job regardless of scheduling policy and available resources.

The qrun command alone overrides the following:

• Limits on resource usage by users, groups, and projects

• Limits on the number of jobs that can be run at a vnode

• Boundaries between primetime and non-primetime, specified in backfill_prime

• Whether the job is in a primetime queue: you can run a job in a primetime queue even when it’s not primetime, or
vice versa. Primetime boundaries are not honored.

• Dedicated time: you can run a job in a dedicated time queue, even if it’s not in a dedicated time queue, and vice
versa. However, dedicated time boundaries are still honored.

• Top jobs

• The threshold set in the job_sort_formula_threshold scheduler attribute

The qrun command alone does not override the following:

• Server and queue resource usage limits
AG-162 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.30.1.i Using qrun Without -H Option on Shrink-to-fit Jobs

When a shrink-to-fit job is run via qrun, and there is a hard deadline, e.g. reservation or dedicated time, that conflicts
with the shrink-to-fit job’s max_walltime but not its min_walltime, the following happens:

• If preemption is enabled and there is a preemptable job before the hard deadline that must be preempted in order to
run the shrink-to-fit job, preemption behavior means that the shrink-to-fit job does not shrink to fit; instead, it con-
flicts with the deadline and does not run.

• If there is no preemptable job before the hard deadline, the shrink-to-fit job shrinks into the available time and runs.

4.9.30.1.ii Using qrun With -H Option on Shrink-to-fit Jobs

When a shrink-to-fit job is run via qrun -H, the shrink-to-fit job runs, regardless of reservations, dedicated time, other
jobs, etc. When run via qrun -H, shrink-to-fit jobs do not shrink. If the shrink-to-fit job has a requested or inherited
value for walltime, that value is used, instead of one set by PBS when the job runs. If no walltime is specified, the job
runs without a walltime.

See “qrun” on page 182 of the PBS Professional Reference Guide, and section 4.9.33, “Using Preemption”, on page 180.

4.9.30.1.iii qrun Caveats

• A job that has just been run via qrun has top priority only during the scheduling cycle where it was qrun. At the
next scheduling cycle, that job is available for preemption just like any other job.

• Be careful when using qrun -H on jobs or vnodes involved in reservations.

4.9.30.2 Hold a Job Manually

You can use the qhold command to place a hold on a job. The effect of placing a hold depends on whether the job is run-
ning and whether you have checkpointing configured:

• If the job is queued, the job will not run.

• If the job is running and checkpoint-abort is configured, the job is checkpointed, requeued, and held.

• If the job is running and checkpoint-abort is not configured, the only change is that the job’s Hold_Types attribute is
set to User Hold. If the job is subsequently requeued, it will not run until the hold is released.

You can release the hold using the qrls command.

For information on checkpointing jobs, see section 9.3, “Checkpoint and Restart”, on page 412.

See “qhold” on page 147 of the PBS Professional Reference Guide and “qrls” on page 180 of the PBS Professional Ref-
erence Guide.

4.9.30.3 Suspend a Job Manually

You can use the qsig -s suspend command to suspend a job so that it won’t run. If you suspend a job, and then
release it using the qsig -s resume command, the job remains in the suspended state until the required resources are
available.

You can resume the job immediately by doing the following:

1. Resume the job:
qsig -s resume <job ID>

2. Run the job manually:

qrun <job ID>

See “qsig” on page 192 of the PBS Professional Reference Guide.
PBS Professional 2020.1.1 Administrator’s Guide AG-163

Chapter 4 Scheduling
4.9.30.4 Set Special Resource Value Used in Formula

You can change the value of a resource used in the job sorting formula. For example, to give a particular job a higher pri-
ority by changing the value of a custom resource called “higher”:

• Create a custom resource that is invisible to job submitters:
Qmgr: create resource higher type=float, flag=i

• The formula expression includes “higher”:
Qmgr: s s job_sort_formula = “higher”

• Set the default for this resource at the server:

Qmgr: set server resources_default.higher = 1

• These jobs are submitted:

Job 1

Job 2

Job 3

• Change Job 2 so that its value for “higher” is 5:
qalter –l higher = 5 job2

• The scheduler logs the following:
Job;1.host1;Formula Evaluation = 1

Job;2.host1;Formula Evaluation = 5

Job;3.host1;Formula Evaluation = 1

• Jobs are sorted in this order:

Job 2

Job 1

Job 3

4.9.30.5 Change Formula On the Fly

You can change the job sorting formula on the fly, so that the next scheduler iteration uses your new formula. This will
change how job priorities are computed, and can rearrange the order in which jobs are run. See section 4.9.21, “Using a
Formula for Computing Job Execution Priority”, on page 149.

4.9.30.6 Using Dedicated Time

You can set up blocks of dedicated time, where the only jobs eligible to be started or running are the ones in dedicated
time queues. You can use dedicated time for upgrades. See section 4.9.10, “Dedicated Time”, on page 125, and section
2.3.5.2.i, “Dedicated Time Queues”, on page 24.

4.9.30.7 Using cron Jobs

You can use cron jobs to change PBS settings according to the needs of your time slots. See section 4.9.7, “cron Jobs”,
on page 112.

4.9.30.8 Using Hooks

You can use hooks to examine jobs and alter their characteristics. See the PBS Professional Hooks Guide.
AG-164 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.30.9 Preventing Jobs from Being Calendared

You can prevent a scheduler from calendaring a job by setting its topjob_ineligible attribute to True. See section 4.9.17,
“Calendaring Jobs”, on page 137.

4.9.31 Peer Scheduling

Peer scheduling allows separate PBS partitions or complexes to automatically run jobs from each other’s queues. This
means that you can dynamically balance the workload across multiple, separate PBS partitions or complexes. These
cooperating PBS partitions or complexes are referred to as “Peers”.

4.9.31.1 How Peer Scheduling Works

In peer scheduling, a PBS server pulls jobs from one or more peer servers and runs them locally. When Partition or Com-
plex A pulls a job from Partition or Complex B, Partition or Complex A is the “pulling” complex and Partition or Com-
plex B is the “furnishing” partition or complex. When the pulling scheduler determines that another partition’s or
complex’s job can immediately run locally, it moves the job to the specified queue on the pulling server and immediately
run the job. The job is run as if it had been submitted to the pulling partition or complex.

You can set up peer scheduling so that A pulls from B and C, and so that B also pulls from A and C.

A job is pulled only when it can run immediately.

The pulling partition or complex must have all of the resources required by the job, including custom resources.

When a job is pulled from one partition or complex to another, the pulling partition or complex applies its policy to the
job. The job’s execution priority is determined by the policy of the pulling partition or complex. You can set special pri-
ority for pulled jobs; see section 4.9.31.4.ii, “Setting Priority for Pulled Jobs”, on page 167.

4.9.31.2 Prerequisites for Peer Scheduling

• You must create the pulling and furnishing queues before peer scheduling can be configured. See section 2.3.3,
“Creating Queues”, on page 22 on how to create queues.

• When configuring peer scheduling, it is strongly recommended to use the same version of PBS Professional at all
peer locations.

• Make sure that custom resources are consistent across peer locations. Jobs requesting custom resources at one loca-
tion will not be able to run at another unless the same resources are available.

4.9.31.3 Configuring Peer Scheduling

The following sections give details on how to configure peer scheduling. Here is a brief outline:

• Define a flat user namespace on all complexes

• Map pulling queues to furnishing queues

• If necessary, specify port

• Grant manager access to each pulling server

• If possible, make user-to-group mappings be consistent across complexes

• If any of the peering sites is using failover, configure peering to work with failover
PBS Professional 2020.1.1 Administrator’s Guide AG-165

Chapter 4 Scheduling
4.9.31.3.i Defining a Flat User Namespace

Peer scheduling requires a flat user namespace in all complexes involved. This means that user “joe” on the remote peer
system(s) must be the same as user “joe” on the local system. Your site must have the same mapping of user to UID
across all hosts, and a one-to-one mapping of UIDs to usernames. It means that PBS does not need to check whether
X@hostA is the same as X@hostB; it can just assume that this is true. Set flatuid to True:

Qmgr: set server flatuid = True

For more on flatuid, see section 8.3.12, “Flatuid and Access”, on page 376.

4.9.31.3.ii Mapping Pulling Queues to Furnishing Queues

You configure peer scheduling by mapping a furnishing peer’s queue to a pulling peer’s queue. You can map each pull-
ing queue to more than one furnishing queue, or more than one pulling queue to each furnishing queue.

The pulling and furnishing queues must be execution queues, not route queues. However, the queues can be either ordi-
nary queues used for normal work, or special queues set up just for peer scheduling.

You map pulling queues to furnishing queues by setting the peer_queue scheduler configuration option in
<sched_priv directory>/sched_config. The format is:

peer_queue: “<pulling queue> <furnishing queue>@<furnishing server>.domain”

For example, Complex A’s queue “workq” is to pull from two queues: Complex B’s queue “workq” and Complex C’s
queue “slowq”. Complex B’s server is ServerB and Complex C’s server is ServerC. You would add this to Complex A’s
<sched_priv directory>/sched_config:

peer_queue: “workq workq@ServerB.domain.com”

peer_queue: “workq slowq@ServerC.domain.com”

Or if you wish to direct Complex B’s jobs to queue Q1 on Complex A, and Complex C’s jobs to Q2 on Complex A:

peer_queue: “Q1 workq@ServerB.domain.com”

peer_queue: “Q2 fastq@ServerC.domain.com”

In one partition or complex, you can create up to 50 mappings between queues. This means that you can have up to 50
lines in <sched_priv directory>/sched_config beginning with “peer_queue”.

4.9.31.3.iii Specifying Ports

The default port for the server to listen on is 15001, and a scheduler uses any privileged port (1023 and lower). If the fur-
nishing server is not using the default port, you must specify the port when you specify the queue. For example, if Ser-
verB is using port 16001, and you wish to pull jobs from workq at ServerB to workq at ServerA, add this to
<sched_priv directory>/sched_config at ServerA:

peer_queue: “workq workq@ServerB.domain.com:16001”

A scheduler and server communicate via TCP.

4.9.31.3.iv Granting Manager Access to Pulling Servers

Each furnishing server must grant manager access to each pulling server. If you wish jobs to move in both directions,
where Complex A will both pull from and furnish jobs to Complex B, ServerA and ServerB must grant manager access
to each other.

On the furnishing complex:

Qmgr: set server managers += root@pullingServer.domain.com

4.9.31.3.v Making User-to-group Mappings Consistent Across Complexes

If possible, ensure that for each user in a peer complex, that user is in the same group in all participating complexes. So
if user “joe” is in groupX on Complex A, user “joe” should be in groupX on Complex B. This means that a job’s
egroup attribute will be the same on both complexes, and any group limit enforcement can be properly applied.
AG-166 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
There is a condition when using peer scheduling in which group hard limits may not be applied correctly. This can occur
when a job’s effective group, which is its egroup attribute, i.e. the job’s owner’s group, is different on the furnishing and
pulling systems. When the job is moved over to the pulling complex, it can evade group limit enforcement if the group
under which it will run on the pulling system has not reached its hard limit. The reverse is also true; if the group under
which it will run on the pulling system has already reached its hard limit, the job won’t be pulled to run, although it
should.

This situation can also occur if the user explicitly specifies a group via qsub -W group_list.

It is recommended to advise users to not use the qsub options “-u user_list” or “-W group_list=groups” in
conjunction with peer scheduling.

4.9.31.3.vi Configuring Peer Scheduling with Failover

If you are configuring peer scheduling so that Complex A will pull from Complex B where Complex B is configured for
failover, you must configure Complex A to pull from both of Complex B’s servers. For these instructions, see section
9.2.6.2, “Configuring Failover to Work With Peer Scheduling”, on page 409.

4.9.31.4 Peer Scheduling Advice

4.9.31.4.i Selective Peer Scheduling

You can choose the kinds of jobs that can be selected for peer scheduling to a different partition or complex. You can do
the following:

• Set resource limits at the furnishing queue via the resources_min and resources_max queue attributes. See section
2.3.6.4, “Using Resources to Route Jobs Between Queues”, on page 26.

• Route jobs into the furnishing queue via a hook. See "Routing Jobs" on page 7 in the PBS Professional Hooks
Guide.

• Route jobs into the furnishing queue via a routing queue. See section 2.3.6, “Routing Queues”, on page 25.

4.9.31.4.ii Setting Priority for Pulled Jobs

You can set a special priority for pulled jobs by creating a queue that is used only as a pulling queue, and setting the pull-
ing queue’s priority to the desired level. You can then use the queue’s priority when setting job execution priority. See
section 4.3.5.3.iv, “Using Queue Priority when Computing Job Priority”, on page 65.

For example, if you give the pulling queue the lowest priority, the pulling partition or complex will pull a job only when
there are no higher-priority jobs that can run.

You can also have pulled jobs land in a special queue where they inherit a custom resource that is used in the job sorting
formula.

4.9.31.5 How Peer Scheduling Affects Jobs

4.9.31.5.i How Peer Scheduling Affects Inherited Resources

If the job is moved partition or complex to another via peer scheduling, any default resources in the job’s resource list
inherited from the furnishing queue or server are removed. This includes any select specification and place directive that
may have been generated by the rules for conversion from the old syntax. If a job's resource is unset (undefined) and
there exists a default value at the new queue or server, that default value is applied to the job's resource list. If either
select or place is missing from the job's new resource list, it will be automatically generated, using any newly inherited
default values.

When the pulling scheduler runs the job the first time, the job is run as if the job still had all of the resources it had at the
furnishing partition or complex. If the job is requeued and restarted at the pulling partition or complex, the job picks up
new default resources from the pulling partition or complex, and is scheduled according to the newly-inherited resources
from the pulling partition or complex.
PBS Professional 2020.1.1 Administrator’s Guide AG-167

Chapter 4 Scheduling
4.9.31.5.ii How Peer Scheduling Affects Policy Applied to Job

After a job is pulled from one partition or complex to another, the scheduling policy of the pulling partition or complex is
applied to the job.

For example, if you use queue priority in the formula and the job is moved to another server through peer scheduling, the
queue priority used in the formula will be that of the queue to which the job is moved.

When a job is pulled from one partition or complex to another, hooks are applied at the new partition or complex as if the
job had been submitted locally. For example, if the pulling partition or complex has a queuejob hook, that hook runs
when a job is pulled.

4.9.31.5.iii How Peer Scheduling Affects Job Eligible Time

The job’s eligible_time is preserved when a job is moved due to peer scheduling.

4.9.31.5.iv Viewing Jobs That Have Been Moved to Another Server

If you are connected to ServerA and a job submitted to ServerA has been moved from ServerA to ServerB through peer
scheduling, in order to display it via qstat, give the job ID as an argument to qstat. If you only give the qstat
command, the job will not appear to exist. For example, the job 123.ServerA is moved to ServerB. In this case, use

qstat 123

or

qstat 123.ServerA

To list all jobs at ServerB, you can use:

qstat @ServerB

4.9.31.5.v Peer Scheduling and Hooks

When a job is pulled from one complex to another, the following happens:

• Hooks are applied at the new complex as if the job had been submitted locally

• Any movejob hooks at the furnishing server are run

4.9.31.6 Peer Scheduling Caveats

• Each partition or complex can peer with at most 50 other partitions or complexes.

• When using peer scheduling, group hard limits may not be applied correctly. This can occur when the job owner’s
group is different on the furnishing and pulling systems. For help in avoiding this problem, see section 4.9.31.3.v,
“Making User-to-group Mappings Consistent Across Complexes”, on page 166.

• When the pulling scheduler runs the job the first time, the job is run as if the job still had all of the resources it had at
the furnishing partition or complex. If the job is requeued and restarted at the pulling partition or complex, the job
picks up new default resources from the pulling partition or complex, and is scheduled according to the newly-inher-
ited resources from the pulling partition or complex.

• Peer scheduling is not supported for job arrays.

4.9.32 Placement Sets

Placement sets are the sets of vnodes within which PBS will try to place a job. PBS tries to group vnodes into the most
useful sets, according to how well connected the vnodes are, or the values of resources available at the vnodes. Place-
ment sets are used to improve task placement (optimizing to provide a “good fit”) by exposing information on system
configuration and topology. A scheduler tries to put a job in the smallest appropriate placement set.
AG-168 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.32.1 Definitions

Task placement

The process of choosing a set of vnodes to allocate to a job that will satisfy both the job's resource request
(select and place specifications) and the configured scheduling policy.

Placement Set

A set of vnodes. Placement sets are defined by the values of vnode-level string array resources. A placement
set is all of the vnodes that have the same value for a specified defining resource substring. For example, if the
defining resource is a vnode-level string array named “switch”, which can have values “S1”, “S2”, or “S3”: the
set of vnodes which have a substring matching “switch=S2” is a placement set.

Placement sets can be specified at the server or queue level.

Placement Set Series

A set of placement sets; a set of sets of vnodes.

A placement set series is all of the placement sets that are defined by specifying one string array resource. Each
placement set in the series is the set of vnodes that share one value for the resource. There is one placement set
for each value of the resource. If the resource takes on N values at the vnodes, then there are N sets in the series.
For example, if the defining resource is a string array named “switch”, which can have values “S1”, “S2”, or
“S3”, there are three sets in the series. The first is defined by the value “S1”, where all the vnodes in that set
have the value “S1” for the resource switch. The second set is defined by “S2”, and the third by “S3”.

Each of the resources named in node_group_key specifies a placement series. For example, if the server’s
node_group_key attribute contains “router,switch”, then the server has two placement set series.

Placement Pool

All of the placement sets that are defined; the server can have a placement pool, and each queue can have its
own placement pool. If a queue has no placement pool, a scheduler uses the server’s placement pool.

A placement pool is the set of placement set series that are defined by one or more string array resources named
in node_group_key.

For example, if the server’s node_group_key attribute contains “router,switch”, and router can take the values
“R1” and “R2” and switch can take the values “S1”, “S2”, and “S3”, then there are five placement sets, in two
placement series, in the server’s placement pool.

Static Fit

A job statically fits into a placement set if the job could fit into the placement set if the set were empty. It might
not fit right now with the currently available resources.

Dynamic Fit

A job dynamically fits into a placement set if it will fit with the currently available resources (i.e. the job can fit
right now).

4.9.32.2 Requirements for Placement Sets

• Placement sets are enabled by setting the server’s node_group_enable attribute to True

• Server-level placement sets are defined by setting the server’s node_group_key attribute to a list of vnode-level
string array resources.

• Queue-level placement sets are defined by setting a queue’s node_group_key attribute to a list of vnode-level string
array resources.

• At least one vnode-level string array resource must exist on vnodes and be set to values that can be used to assign the
vnodes to placement sets.
PBS Professional 2020.1.1 Administrator’s Guide AG-169

Chapter 4 Scheduling
4.9.32.3 Description of Placement Sets

4.9.32.3.i What Defines a Placement Set, Series, or Pool

Placement sets are defined by the values of vnode-level string array resources. You define placement sets by specifying
the names of these resources in the node_group_key attribute for the server and/or queues. Each value of each resource
defines a different placement set. A placement set is all of the vnodes that have the same value for a specified defining
resource. For example, if the defining resource is a vnode-level string array named “switch”, which has the values “S1”,
“S2”, and “S3”, the set of vnodes where switch has the value “S2” is a placement set. If some vnodes have more than
one substring, and one of those substrings is the same in each vnode, those vnodes make up a placement set. For exam-
ple, if the resource is “router”, and vnode V0 has resources_available.router set to “r1i0,r1”, and vnode V1 has
resources_available.router set to “r1i1,r1”, V0 and V1 are in the placement set defined by resources_available.router

= “r1”. If the resource has N distinct values across the vnodes, including the value zero and being unset, there can be N-

1 or N placement sets defined by that resource. If the only_explicit_psets scheduler attribute is False, there are N
placement sets. If the only_explicit_psets scheduler attribute is True, there are N-1 placement sets; see section
4.9.32.3.v, “Placement Sets Defined by Unset Resources”, on page 171.

Each placement set can have a different number of vnodes; the number of vnodes is determined only by how many
vnodes share that resource value.

Each placement set series is defined by the values of a single resource across all the vnodes. For example, if there are
three switches, S1, S2 and S3, and there are vnodes with resources_available.switch that take on one or more of these
three values, then there will be three placement sets in the series.

Whenever you define any placement sets, you are defining a placement pool. Placement pools can be defined for the
server and for each queue. You define a server-level placement pool by setting the server’s node_group_key to a list of
one or more vnode-level string array resources. You define a queue-level placement pool by similarly setting the queue’s
node_group_key.

4.9.32.3.ii Vnode Participation in Placement Sets, Series, and Pools

Each vnode can be in multiple placement sets, placement set series, and placement pools.

A vnode can be in multiple placement sets in the same placement set series. For example, if the resource is called
“router”, and a vnode’s router resource is set to “R1, R2”, then the vnode will be in the placement set defined by router
= R1 and the set defined by router = R2.

A vnode is in a placement series whenever the resource that defines the series is defined on the vnode. For example, if
placement sets are defined by the values of the router and the switch resources, and a vnode has value R1 for router, and
S1 for switch, then the vnode is in both placement series, because it is in the set that shares the R1 value for router, and
the set that shares the S1 value for switch. Each of those sets is one of a different series.

The server has its own placement pool if the server’s node_group_key attribute is set to at least one vnode-level string
array resource. Similarly, each queue can have its own placement pool. A vnode can be in any placement pool that spec-
ifies a resource that is defined on the vnode.

4.9.32.3.iii Multihost Placement Sets

Placement sets, series, and pools can span hosts. Placement sets can be made up of vnodes from anywhere, regardless of
whether the vnode is from a multi-vnode host.

To set up a multihost placement set, choose a string array resource for the purpose, and list it in the desired
node_group_key attribute. For example, create a string_array resource called “span”:

Qmgr: create resource span type=string_array, flag=h

Add the resource “span” to node_group_key on the server or queue. Use qmgr to give it the same value on all the
desired vnodes. You can write a script that sets the same value on each vnode that you want in your placement set.
AG-170 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.32.3.iv Machines with Multiple Vnodes

Machines with multiple vnodes are represented as a generic set of vnodes. Placement sets are used to allocate resources
on a single machine to improve performance and satisfy scheduling policy and other constraints. Jobs are placed on
vnodes using placement set information.

4.9.32.3.v Placement Sets Defined by Unset Resources

The only_explicit_psets scheduler attribute controls whether unset resources define placement sets.

• If the only_explicit_psets scheduler attribute is False, vnodes where a defining resource is unset are grouped into
their own placement set, for each defining resource. For example, if you have ten vnodes, on which there is a string
resource COLOR, where two have COLOR set to “red”, two are set to “blue”, two are set to “green” and the rest are
unset, there will be four placement sets defined by the resource COLOR. This is because the fourth placement set
consists of the four vnodes where COLOR is unset. This placement set will also be the largest. Every resource
listed in node_group_key can potentially define such a placement set.

• If the only_explicit_psets scheduler attribute is True, vnodes where a resource is unset are not grouped into place-
ment sets.

4.9.32.3.vi Placement Sets and Node Grouping

Node grouping is the same as one placement set series, where the placement sets are defined by a single resource. Node
grouping has been superseded by placement sets.

In order to have the same behavior as in the old node grouping, group on a single resource. If this resource is a string
array, it should only have one value on each vnode. This way, each vnode will only be in one node group.

4.9.32.4 How Placement Sets Are Used

You use placement sets to group vnodes according to the value of one or more resources. Placement sets allow you to
group vnodes into useful sets.

You can run multi-vnode jobs in one placement set. For example, it makes the most sense to run a multi-vnode job on
vnodes that are all connected to the same high-speed switch.

PBS will attempt to place each job in the smallest possible set that is appropriate for the job.

4.9.32.4.i Order of Placement Pool Selection

A scheduler chooses one placement pool from which to select a placement set.

Queue placement pools override the server’s placement pool. If a queue has a placement pool, jobs from that queue are
placed using the queue’s placement pool. If a queue has no placement pool (the queue’s node_group_key is not
defined), jobs are placed using the server’s placement pool, if it exists.

A per-job placement set is defined by the -l place statement in the job’s resource request. Since the job can only
request one value for the resource, it can only request one specific placement set. A job’s place=group resource
request overrides the sets defined by the queue’s or server’s node_group_key.

A scheduler chooses the most specific placement pool available, following this order of precedence:

1. A per-job placement set (job’s place=group= request)

2. A placement set from the placement pool for the job’s queue

3. A placement set from the placement pool in a scheduler’s partition
PBS Professional 2020.1.1 Administrator’s Guide AG-171

Chapter 4 Scheduling
4.9.32.4.ii Order of Placement Set Consideration Within Pool

A scheduler looks in the selected placement pool and chooses the smallest possible placement set that is appropriate for
the job. A scheduler examines the placement sets in the pool and orders them, from smallest to largest, according to the
following rules:

1. Static total ncpus of all vnodes in set

2. Static total mem of all vnodes in set

3. Dynamic free ncpus of all vnodes in set

4. Dynamic free mem of all vnodes in set

If a job can fit statically within any of the placement sets in the placement pool, then a scheduler places a job in the first
placement set in which it fits dynamically. This ordering ensures a scheduler will use the smallest possible placement set
in which the job will dynamically fit. If there are multiple placement sets where the job fits statically, but some are being
used, a scheduler uses the first placement set where the job can run now. If the job fits statically into at least one place-
ment set, but these placement sets are all busy, a scheduler waits until a placement set can fit the job dynamically.

For example, we have the following placement sets, and a job that requests 8 CPUs:

Set1 ncpus = 4

Set2 ncpus = 12; this placement set is full

Set3 ncpus = 16; this placement set is not being used

The scheduler looks at Set1; Set1 is statically too small, and the scheduler moves to the next placement set. Set2 is stati-
cally large enough, but the job does not fit dynamically. The scheduler looks at Set3; Set3 is large enough, and the job
fits dynamically. The scheduler runs the job in Set3.

If the job requests 24 CPUs, the scheduler attempts to run the job in the set consisting of all vnodes that are associated
with a specific queue, if do_not_span_psets is False.

4.9.32.4.iii Determining Whether Job Can Run

Whether the job can run in the selected placement pool is determined by the value of the do_not_span_psets attribute.

• If this attribute is False, and a job cannot statically fit into any placement set in the selected placement pool, a
scheduler ignores defined placement sets and uses all vnodes that satisfy job restrictions as its placement set, and
runs the job without regard to placement sets. For example, if the job’s queue has access to a restricted set of
vnodes, the job runs within that set of vnodes.

• If the attribute is True, a scheduler does not run the job.

4.9.32.4.iv Order of Vnode Selection Within Set

A scheduler orders the vnodes within the selected placement set using the following rules:

• If node_sort_key is set, vnodes are sorted by node_sort_key. See section 4.9.50, “Sorting Vnodes on a Key”, on
page 225.

• If node_sort_key is not set, the order in which the vnodes are returned by pbs_statnode(). This is the default
order the vnodes appear in the output of the pbsnodes -a command.

A scheduler places the job on the vnodes according to their ordering above.
AG-172 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.32.5 Summary of Placement Set Requirements

The steps to configure placement sets are given in the next section. The requirements are summarized here for conve-
nience:

• Definitions of the resources of interest

• Vnodes defining a value for each resource to be used for placement sets (e.g., rack)

• If defined via vnode definition, you must HUP the MoMs involved

• The server’s or queue’s node_group_key attribute must be set to the resources to be used for placement sets. For
example, if we have custom resources named “rack”, “socket”, “board”, and “boardpair”, which are to be used for
placement sets:
Qmgr: set server node_group_key = “rack,socket,board,boardpair”

• No signals needed, takes effect immediately

• Placement sets must be enabled at the server by setting the server’s node_group_enable attribute to True. For
example:
Qmgr: set server node_group_enable=True

• No signals needed, takes effect immediately

Adding a resource to a scheduler's resources: line is required only if the resource is to be specifically requested by
jobs. It is not required for -lplace=group=<resource name>.

4.9.32.6 How to Configure Placement Sets

The following steps show how to satisfy the requirements for placement sets:

1. If the vnodes that you will use in placement sets are not defined, define them. See section 3.3, “Creating Vnodes”,
on page 38.

2. If the vnode-level string array resources that you will use to define placement sets do not exist, create them. See sec-
tion 5.14.4, “Configuring Host-level Custom Resources”, on page 269.

3. If values for the vnode-level string array resources that you will use to define placement sets are not set at the vnodes
you wish to use, set the values. See section 3.4, “Configuring Vnodes”, on page 41.

4. If you use vnode definition files to set values for vnode-level string array resources, HUP the MoMs involved.

5. To create queue placement pools, set the node_group_key attribute to the name(s) of one or more vnode-level string
array resources. Do this for each queue for which you want a separate pool. For example:

Qmgr: set queue workq node_group_key = <router,switch>

6. To create a server placement pool, set the node_group_key server attribute to the name(s) of one or more vnode-
level string array resources. For example:

Qmgr: set server node_group_key = <router,switch>
PBS Professional 2020.1.1 Administrator’s Guide AG-173

Chapter 4 Scheduling
For example, to create a server-level placement pool for the resources host, L2 and L3:

Qmgr: set server node_group_key = "host,L2,L3"

7. Set the server’s node_group_enable attribute to True

Qmgr: set server node_group_enable = True

8. Set the do_not_span_psets scheduler attribute to True if you don’t want jobs to span placement sets.

Qmgr: set sched do_not_span_psets = True

9. Set the only_explicit_psets attribute to True if you don’t want a scheduler to create placement sets from unset
resources.

Qmgr: set sched only_explicit_psets = True

10. For ease of reviewing placement set information, you can add the name of each resource used in each vnode’s
pnames attribute:

Qmgr: active node <vnode name>,<vnode name>,...
Qmgr: set node pnames += <resource name>

or

Qmgr: set node pnames = <resource list>

For example:

Qmgr: set node pnames = “board,boardpair,iruquadrant,iruhalf,iru,rack”

We recommend using the parent vnode for any placement set information that is invariant for a given host.

Resources used only for defining placement sets, and not for allocation to jobs, do not need to be listed in the
resources: line in <sched_priv directory>/sched_config. So for example if you create a resource just
for defining placement sets, and jobs will not be requesting this resource, you do not need to list it in the resources:
line.
AG-174 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.32.7 Examples of Creating Placement Sets

4.9.32.7.i Cluster with Four Switches

This cluster is arranged as shown with vnodes 1-4 on Switch1, vnodes 5-10 on Switch2, and vnodes 11-24 on Switch3.
Switch1 and Switch2 are on Switch4.

Figure 4-1:Cluster with Four Switches

To make the placement sets group the vnodes as they are grouped on the switches:

Create a custom resource called switch. The -h flag makes the resource requestable:

Qmgr: create resource switch type=string_array, flag=h

On vnodes[1-4] set:

Qmgr: set node <vnode name> resources_available.switch="switch1,switch4"

On vnodes[5-10] set:

Qmgr: set node <vnode name> resources_available.switch="switch2,switch4"

(14 vnodes)

Vnode1

Vnode2

Vnode3

Vnode4

Switch1

Switch4

Vnode17

Vnode18

Vnode19

Vnode20

Vnode21

Vnode22

Vnode23

Vnode24

Vnode13

Vnode14

Vnode15

Vnode16

Switch3

Vnode12

Vnode11

Switch2

Vnode10

Vnode9

Vnode8

Vnode7

Vnode6

Vnode5

(4 vnodes)

(6 vnodes)
PBS Professional 2020.1.1 Administrator’s Guide AG-175

Chapter 4 Scheduling
On vnodes[11-24] set:

Qmgr: set node <vnode name> resources_available.switch="switch3"

On the server set:

Qmgr: set server node_group_enable=True
Qmgr: set server node_group_key=switch

So you have 4 placement sets:

The placement set "switch1" has 4 vnodes

The placement set "switch2" has 6 vnodes

The placement set "switch3" has 14 vnodes

The placement set "switch4" has 10 vnodes

PBS will try to place a job in the smallest available placement set. Does the job fit into the smallest set (switch1)? If not,
does it fit into the next smallest set (switch2)? This continues until it finds one where the job will fit.

4.9.32.7.ii Example of Configuring Placement Sets on a Multi-vnode Machine

For information on how to configure vnodes via Version 2 configuration files, see section 3.4.3, “Version 2 Vnode Con-
figuration Files”, on page 42.

In this example, we define a new placement set using the new resource “NewRes”. We create a file called SetDefs that
contains the changes we want.

1. Create the new resource:
Qmgr: create resource NewRes type=string_array, flag=h

2. Add NewRes to the server's node_group_key

Qmgr: set server node_group_key+="NewRes"

3. Add NewRes to the value of the pnames attribute for the parent vnode. This makes the name of the resource you
used easily available. Add a line like this to SetDefs:

host3: resources_available.pnames =...,NewRes

4. For each vnode, V, that's a member of a new placement set you're defining, add a line of the form:

V: resources_available.NewRes = <value1[,...]>

All the vnodes in the new set should have lines of that form, with the same resource value, in the new configuration
file.

Here the value of the resource is “P” and/or “Q”.

We’ll put vnodes A, B and C into one placement set, and vnodes B, C and D into another.

A: resources_available.NewRes2 = P

B: resources_available.NewRes2 = P,Q

C: resources_available.NewRes2 = P,Q

D: resources_available.NewRes2 = Q

For each new placement set you define, use a different value for the resource.

5. Add SetDefs and tell MoM to read it, to make a Version 2 vnode configuration file NewConfig:

pbs_mom -s insert NewConfig SetDefs

6. Stop and restart the MoM. For Linux, see “Restarting and Reinitializing MoM” on page 167 in the PBS Professional
Installation & Upgrade Guide, and for Windows, see “Restarting MoMs” on page 173 in the PBS Professional
Installation & Upgrade Guide.
AG-176 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.32.7.iii Example of Placement Sets Using Colors

A placement pool is defined by two resources: colorset1 and colorset2, by using
“node_group_key=colorset1,colorset2”.

If a vnode has the following values set:

resources_available.colorset1=blue, red

resources_available.colorset2=green

The placement pool contains at least three placement sets. These are:

{resources_available.colorset1=blue}

{resources_available.colorset1=red}

{resources_available.colorset2=green}

This means the vnode is in all three placement sets. The same result would be given by using one resource and setting it
to all three values, e.g. colorset=blue,red,green.

Example: We have five vnodes v1 - v5:

v1 color=red host=mars

v2 color=red host=mars

v3 color=red host=venus

v4 color=blue host=mars

v5 color=blue host=mars

The placement sets are defined by

node_group_key=color

The resulting node groups would be: {v1, v2, v3}, {v4, v5}

4.9.32.7.iv Simple Switch Placement Set Example

Say you have a cluster with two high-performance switches each with half the vnodes connected to it. Now you want to
set up placement sets so that jobs will be scheduled only onto the same switch.

First, create a new resource called “switch”. See section 5.14.2, “Defining New Custom Resources”, on page 257.

Next, we need to enable placement sets and specify the resource to use:

Qmgr: set server node_group_enable=True
Qmgr: set server node_group_key=switch

Now, set the value for switch on each vnode:

Qmgr: active node vnode1,vnode2,vnode3
Qmgr: set node resources_available.switch=A
Qmgr: active node vnode4,vnode5,vnode6
Qmgr: set node resources_available.switch=B

Now there are two placement sets:

switch=A: {vnode1, vnode2, vnode3}

switch=B: {vnode4, vnode5, vnode6}

4.9.32.8 Placement Sets and Reservations

When PBS chooses a placement set for a reservation, it makes the same choices as it would for a regular job. It fits the
reservation into the smallest possible placement set. See section 4.9.32.4.ii, “Order of Placement Set Consideration
Within Pool”, on page 172.
PBS Professional 2020.1.1 Administrator’s Guide AG-177

Chapter 4 Scheduling
When a reservation is created, it is created within a placement set, if possible. If no placement set will satisfy the reser-
vation, placement sets are ignored. The vnodes allocated to a reservation are used as one single placement set for jobs in
the reservation; they are not subdivided into smaller placement sets. A job within a reservation runs within the single
placement set made up of the vnodes allocated to the reservation.

4.9.32.9 Placement Sets and Load Balancing

If you configure both placement sets and load balancing, the net effect is that vnodes that are over their load limit will be
removed from consideration.

4.9.32.10 Viewing Placement Set Information

You can find information about placement sets in the following places:

• The server’s node_group_enable attribute shows whether placement sets are enabled

• The server’s node_group_key attribute contains the names of resources used for that queue’s placement pool

• Each queue’s node_group_key attribute contains the names of resources used for that queue’s placement pool

• Each vnode’s pnames attribute can contain the names of resources used for placement sets, if properly set

• A scheduler’s do_not_span_psets attribute shows whether jobs are allowed to span placement sets

• A scheduler’s only_explicit_psets attribute shows placement sets are created using unset resources

• PBS-generated MoM configuration files contain names and values of resources

4.9.32.11 Placement Set Caveats and Advice

• If there is a vnode-level platform-specific resource set on the vnodes on a multi-vnode machine, then
node_group_key should probably include this resource, because this will enable PBS to run jobs in more logical
sets of vnodes.

• If the user specifies a job-specific placement set, for example -lplace=group=switch, but the job cannot stati-
cally fit into any switch placement set, then the job will still run, but not in a switch placement set.

• The pnames vnode attribute is for displaying to the administrator the resources used for placement sets. This
attribute is not used by PBS.

4.9.32.11.i Non-backward-compatible Change in Node Grouping

Given the following example configuration:

vnode1: switch=A

vnode2: switch=A

vnode3: switch=B

vnode4: switch=B

vnode5: switch unset

Qmgr: s s node_group_key=switch

There is no change in the behavior of jobs submitted with qsub -l ncpus=1

version 7.1: The job can run on any node: node1, ..., node5

version 8.0: The job can run on any node: node1, ..., node5

Example of 8.0 and later behavior: jobs submitted with qsub -lnodes=1

version 7.1: The job can only run on nodes: node1, node2, node3, node4. It will never use node5

version 8.0: The job can run on any node: node1, ..., node5
AG-178 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
Overall, the change for version 8.0 was to include every vnode in placement sets (when enabled). In particular, if a
resource is used in node_group_key, PBS will treat every vnode as having a value for that resource, hence every vnode
will appear in at least one placement set for every resource. For vnodes where a string resource is "unset", PBS will
behave as if the value is “”.

4.9.32.12 Attributes and Parameters Affecting Placement Sets

do_not_span_psets

Scheduler attribute. Specifies whether or not this scheduler requires the job to fit within one of the existing
placement sets. When do_not_span_psets is set to True, a scheduler will require the job to fit within a single
existing placement set. A scheduler checks all placement sets, whether or not they are currently in use. If the job
fits in a currently-used placement set, the job must wait for the placement set to be available. If the job cannot fit
within a single placement set, it will not run.

When this attribute is set to False, a scheduler first attempts to place the job in a single placement set. All exist-
ing placement sets are checked. If the job fits in an occupied placement set, the job waits for the placement set
to be available. If there is no existing placement set, occupied or empty, into which the job could fit, the job
runs regardless of placement sets, running on whichever vnodes can satisfy the job’s resource request.

Format: Boolean

Default value: False (This matches behavior of PBS 10.4 and earlier)

Example: To require jobs to fit within one placement set:

Qmgr: set sched do_not_span_psets=True

node_group_enable

Server attribute. Specifies whether placement sets are enabled.

Format: Boolean

Default: False

node_group_key

Server and queues have this attribute. Specifies resources to use for placement set definition. Queue’s attribute
overrides server’s attribute.

Format: string_array

Default: Unset

only_explicit_psets

Scheduler attribute. Specifies whether placement sets are created using unset resources. If False, for each
defining resource, if there are vnodes where the value of the resource is unset, PBS creates a placement set for
the series defined by that resource. If True, PBS does not create placement sets for resources that are unset.

Format: Boolean

Default: False

4.9.32.13 Errors and Logging

If do_not_span_psets is set to True, and a job requests more resources than are available in one placement set, the fol-
lowing happens:

• The job's comment is set to the following:
“Not Running: can't fit in the largest placement set, and can't span psets”

• The following message is printed to the scheduler’s log:
“Can't fit in the largest placement set, and can't span placement sets”
PBS Professional 2020.1.1 Administrator’s Guide AG-179

Chapter 4 Scheduling
4.9.33 Using Preemption

PBS provides the ability to preempt currently running jobs in order to run higher-priority work. This is called preemption
or preemptive scheduling. PBS has two different approaches to specifying preemption:

• You can define a set of preemption priorities for all jobs. Jobs that have high preemption priority preempt those with
low preemption priority. Preemption priority is mostly independent of execution priority. See section 4.9.33.7,
“Preemption Levels”, on page 184.

• You can specify a set of preemption targets for each job. You can also set defaults for these targets at the server and
queues. Preemption targets are jobs in specific queues or that have requested specific resources. See section
4.9.33.4, “Using Preemption Targets”, on page 182.

Preemption is a primetime option, meaning that you can configure it separately for primetime and non-primetime, or you
can specify it for all of the time.

4.9.33.1 Glossary

Preempt

Stop one or more running jobs in order to start a higher-priority job

Preemption level

Job characteristic that determines preemption priority. Levels can be things like being in an express queue,
starving, having an owner who is over a soft limit, being a normal job, or having an owner who is over a fair-
share allotment

Preemption method

The method by which a job is preempted. This can be checkpointing, suspension, requeueing, or deletion

Preemption priority

How important this job is compared to other jobs, when considering whether to preempt

Preemption Target

A preemption target is a job in a specified queue or a job that has requested a specified resource. The queue
and/or resource is specified in another job’s Resource_List.preempt_targets.

4.9.33.2 Preemption Parameters and Attributes

The scheduler parameters that control preemption are defined in <sched_priv directory>/sched_config. A
scheduler also has attributes that control preemption; they can be set via qmgr. Parameters and attributes that control
preemption are listed here:

preemptive_sched

Parameter. Enables job preemption.

Format: String

Default: True all

preempt_order

Attribute. Defines the order of preemption methods which this scheduler will use on jobs. Can contain any of
S, C, R, and D, in any order.

Format: String, as quoted list

Default: “SCR”
AG-180 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
preempt_prio

Attribute. Specifies the ordering of priority of different preemption levels.

Format: String, as quoted list

Default: “express_queue, normal_jobs”

preempt_queue_prio

Attribute. Specifies the minimum queue priority required for a queue to be classified as an express queue.

Format: Integer

Default: 150

preempt_sort

Attribute. Whether jobs most eligible for preemption will be sorted according to their start times. Allowable
values: “min_time_since_start”. The first job preempted will be that with most recent start time.

Format: String

Default: min_time_since_start

preempt_targets

Resource that a job can request or inherit from the server or a queue. The preempt_targets resource lists one
or more queues and/or one or more resources. Jobs in those queues, and jobs that request those resources, are
the jobs that can be preempted.

restrict_res_to_release_on_suspend

Server attribute. Comma-separated list of consumable resources to be released when jobs are suspended. If
unset, all consumable resources are released on suspension. See section 5.9.6.2, “Job Suspension and Resource
Usage”, on page 250 and “Server Attributes” on page 281 of the PBS Professional Reference Guide.

Format: string_array

Default: unset

Python type: list

resources_released

Job attribute. Listed by vnode, consumable resources that were released when the job was suspended. Popu-
lated only when restrict_res_to_release_on_suspend server attribute is set. See section 5.9.6.2, “Job Sus-
pension and Resource Usage”, on page 250 and “Job Attributes” on page 328 of the PBS Professional Reference
Guide.

Format: String of the form: (<vnode>:<resource name>=<value>:<resource

name>=<value>:...)+(<vnode>:<resource name>=<value>:...)

Python type: str

resource_released_list

Job attribute. Sum of each consumable resource requested by the job that was released when the job was sus-
pended. Populated only when restrict_res_to_release_on_suspend server attribute is set. See section
5.9.6.2, “Job Suspension and Resource Usage”, on page 250 and “Job Attributes” on page 328 of the PBS Pro-
fessional Reference Guide.

Format: String of the form: resource_released_list.<resource

name>=<value>,resource_released_list.<resource name>=<value>, ...
PBS Professional 2020.1.1 Administrator’s Guide AG-181

Chapter 4 Scheduling
sched_preempt_enforce_resumption

Scheduler attribute. Specifies whether this scheduler creates a special execution priority class for preempted
jobs. If so, this scheduler runs these jobs just after any higher-priority jobs. See section 4.9.16, “Calculating
Job Execution Priority”, on page 134.

Format: Boolean

Default: False

Python type: pbs.pbs_resource

4.9.33.3 How Preemption Works

If preemption is enabled, a scheduler uses preemption as part of its normal pattern of examining each job and figuring out
whether or not it can run now. If a job with high preemption priority cannot run immediately, a scheduler looks for jobs
with lower preemption priority. A scheduler finds jobs in the lowest preemption level that have been started the most
recently. A scheduler preempts these jobs and uses their resources for the higher-priority job. A scheduler tracks
resources used by lower-priority jobs, looking for enough resources to run the higher-priority job. If a scheduler cannot
find enough work to preempt in order to run a given job, it will not preempt any work.

A job running in a reservation cannot be preempted.

A job’s preemption priority is determined by its preemption level.

4.9.33.4 Using Preemption Targets

You can restrict the set of jobs that can be preempted by an entity, by setting that entity’s preempt_targets resource to a
list of jobs and/or queues that can be preempted. This resource is a string array which can contain a list of queues and/or
job resources. You specify job resources as Resource_List.<resource>=<value>.

Syntax:

preempt_targets="Queue=<queue name>[,Queue=<queue name>],Resource_List.<resource
name>=<value>[,Resource_List.<resource name>=<value>]"

or

preempt_targets=None
The preempt_targets resource has the following keywords:

Queue=<queue name>

Jobs in the specified queue are eligible to be preempted. “Queue” is case-insensitive.

None

The job, or the jobs at the queue or server whose preempt_targets resource is set to NONE cannot preempt
other jobs. “None” is case-insensitive.

In order for a job to preempt another job, the job to be preempted must have lower preemption priority than the preempt-
ing job.

4.9.33.4.i Setting Job Preemption Targets

Preemption targets work as a restriction on which jobs can be preempted by a particular job. If a job has requested
preempt_targets, a scheduler searches for lower-priority jobs among only the jobs specified in that job’s
preempt_targets. If a job has not requested preempt_targets, the scheduler searches among all jobs. For example, if
a scheduler is trying to run JobA, and JobA requests preempt_targets="queue=Queue1,Resource_List.arch=linux",
JobA is eligible to preempt only those jobs in Queue1 and/or that request arch=linux. In addition, JobA can only pre-
empt jobs with lower preemption priority than JobA.

You can prevent a job from preempting any other job in the complex by setting its preemption_targets to the keyword
“None” (case-insensitive).
AG-182 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
You can set preempt_targets for a job during submission:

-l preempt_targets=...

You can set preempt_targets via qalter:

qalter -l preempt_targets=...

4.9.33.4.ii Setting Queue Preemption Targets

You can set the default preemption target for jobs in a queue. For example, you can specify that the jobs in a particular
queue can preempt the jobs in one or more listed queues:

qmgr -c 'set queue <queue name> resources_default.preempt_targets="QUEUE=<queue name>,QUEUE=<queue
name>"'

For example:

qmgr -c 'set queue high_prio_queue resources_default.preempt_targets="QUEUE=queueA,QUEUE=queueB"'

You can prevent the jobs in a queue which don’t explicitly request preempt_targets from preempting other jobs by set-
ting the queue’s default preempt_targets to “NONE”:

qmgr -c "set queue <queue name> resources_default.preempt_targets=NONE"

For example:

qmgr -c "set queue lowest_prio_queue resources_default.preempt_targets=NONE"

4.9.33.4.iii Setting Default Server Preemption Targets

You can set the default preemption target for jobs at a server. For example, you can specify that the jobs at a server can
preempt the jobs in one or more listed queues:

qmgr -c 'set server resources_default.preempt_targets="QUEUE=<queue name>,QUEUE=<queue name>"'

For example:

qmgr -c 'set server resources_default.preempt_targets="QUEUE=queueA,QUEUE=queueB"'

You can prevent the jobs which don’t explicitly request preempt_targets from preempting other jobs by setting the
server’s default preempt_targets to “NONE”:

qmgr -c "set server resources_default.preempt_targets=NONE"

For example:

qmgr -c "set server resources_default.preempt_targets=NONE"

4.9.33.5 Preemption and Job Execution Priority

PBS has an execution class we call Preempted for jobs that have been preempted. A scheduler restarts preempted jobs
as soon as the preemptor finishes and any other higher-priority jobs finish. See section 4.9.16, “Calculating Job Execu-
tion Priority”, on page 134.

4.9.33.6 Triggers for Preemption

If preemption is enabled, preemption is used during the following:

• The normal scheduling cycle

• When you run a job via qrun
PBS Professional 2020.1.1 Administrator’s Guide AG-183

Chapter 4 Scheduling
4.9.33.7 Preemption Levels

A preemption level is a class of jobs, where all the jobs in the class share a characteristic. PBS provides built-in preemp-
tion levels, and you can combine them or ignore them as you need, except for the normal_jobs class, which is required.
The built-in preemption levels are listed in the table below.

You can specify the relative priority of each preemption level, by listing the levels in the desired order in the
preempt_prio scheduler attribute. Placing a level earlier in the list, meaning to the left, gives it higher priority. For
example, if your list is “express_queue”, “normal_jobs”, “server_softlimits”, you are giving the
highest priority to jobs in express queues, and the lowest priority to jobs that are over their server soft limits. You can list
levels in any order, but be careful not to work at cross-purposes with your execution priority. See section 4.9.16, “Calcu-
lating Job Execution Priority”, on page 134.

The default value for preempt_prio is the following:

preempt_prio: “express_queue, normal_jobs”

If you do not list a preemption level in the preempt_prio scheduler attribute, the jobs in that level are treated like normal
jobs. For example, if you do not list server_softlimits, then jobs that are over their server soft limits are treated like jobs
in the normal_jobs level.

You can create new levels that are combinations of the built-in levels. For example, you can define a level which is
express_queue + server_softlimits . This level contains jobs that are in express queues and are over their server soft

limits. You would probably want to place this level just to the right of the express_queue level, meaning that these jobs
could be preempted by jobs that are in express queues but are not over their server soft limits.

You can give two or more levels the same priority. To do this, put a plus sign (“+”) between them, and do not list either
level separately in preempt_prio. You are creating a new level that includes all the built-in levels that should have the
same priority. For example, to list express queue jobs as highest in priority, then fairshare and starving jobs at the next
highest priority, then normal jobs last, create a new level that contains the fairshare and starving_jobs levels:

preempt_prio: “express_queue, fairshare+starving_jobs, normal_jobs”

You can be specific about dividing up jobs: if you want jobs in the express queue to preempt jobs that are also in the
express queue but are over their server soft limits, list each level separately:

preempt_prio: “express_queue, express_queue+server_softlimits, normal_jobs”

However, be careful not to create a runaway effect by placing levels that are over limits before those that are not, for
example, express_queue+server_softlimits to the left of express_queue.

Table 4-16: Built-in Preemption Levels

Preemption Level Description

express_queue Jobs in express queues. See section 4.9.33.7.ii, “The Express Queues Preemption Level”, on
page 186

starving_jobs A job that is starving. See section 4.9.33.7.iv, “The Starving Job Preemption Level”, on
page 186

normal_jobs The preemption level into which a job falls if it does not fit into any other specified level.
See section 4.9.33.7.v, “The Normal Jobs Preemption Level”, on page 187

fairshare When the entity owning a job exceeds its fairshare limit. See section 4.9.33.7.iii, “The Fair-
share Preemption Level”, on page 186

queue_softlimits Jobs which are over their queue soft limits. See section 4.9.33.7.i, “The Soft Limits Preemp-
tion Level”, on page 185

server_softlimits Jobs which are over their server soft limits. See section 4.9.33.7.i, “The Soft Limits Preemp-
tion Level”, on page 185
AG-184 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
You must list normal_jobs in the preempt_prio scheduler attribute.

4.9.33.7.i The Soft Limits Preemption Level

You can set a limit, called a hard limit, on the number of jobs that can be run or the amount of a resource that can be con-
sumed by a person, a group, or by everyone, and this limit can be applied at the server and at each queue. If you set such
a limit, that is the greatest number of jobs that will be run, or the largest amount of the resource that will be consumed.

You can also set a soft limit on the number of jobs that can be run or the amount of a resource that can be consumed. This
soft limit should be lower than the hard limit, and should mark the point where usage changes from being normal to
being “extra, but acceptable”. Usage in this “extra, but acceptable” range can be treated by PBS as being lower priority
than the normal usage. PBS can preempt jobs that are over their soft limits. The difference between the soft limit and the
hard limit provides a way for users or groups to use resources as long as no higher-priority work is waiting.

Example 4-18: Using group soft limits

One group of users, group A, has submitted enough jobs that the group is over their soft limit. A second group,
group B, submits a job and are under their soft limit. If preemption is enabled, jobs from group A are preempted
until the job from group B can run.

Example 4-19: Using soft limits on number of running jobs

Given the following:

• You have three users, UserA, UserB, and UserC

• Each has a soft limit of 3 running jobs

• UserA runs 3 jobs

• UserB runs 4 jobs

• UserC submits a job to an express queue

This means:

• UserB has 1 job over the soft limit, so UserB’s jobs are eligible for preemption by UserC’s job

Example 4-20: Using soft limits on amount of resource being used

Given the following:

• Queue soft limit for ncpus is 8

• UserA’s jobs use 6 CPUs

• UserB’s jobs use 10 CPUs

This means:

• UserB is over their soft limit for CPU usage

• UserB’s jobs are eligible for preemption

To use soft limits in preemption levels, you must define soft limits. Soft limits are specified by setting server and queue
limit attributes. The attributes that control soft limits are:

max_run_soft

Sets the soft limit on the number of jobs that can be running

max_run_res_soft.<resource name>

Sets the soft limit on the amount of a resource that can be consumed by running jobs

Soft limits are enforced only when they are used as a preemption level.
PBS Professional 2020.1.1 Administrator’s Guide AG-185

Chapter 4 Scheduling
To use soft limits as preemption levels, add their keywords to the preempt_prio attribute:

• To create a preemption level for those over their soft limits at the server level, add “server_softlimits” to the
preempt_prio attribute.

• To create a preemption level for those over their soft limits at the queue level, add “queue_softlimits” to the
preempt_prio attribute.

• To create a preemption level for those over their soft limits at both the queue and server, add
“server_softlimits+queue_softlimits” to the preempt_prio attribute.

The jobs of a user or group are over their soft limit only as long as the number of running jobs or the amount of resources
used by running jobs is over the soft limit. If some of these jobs are preempted or finish running, and the soft limit is no
longer exceeded, the jobs of that user or group are no longer over their soft limit, and no longer in that preemption level.
For example, if the soft limit is 3 running jobs, and UserA runs 4 jobs, as soon as one job is preempted and only 3 of
UserA’s jobs are running, UserA’s jobs are no longer over their soft limit.

For a complete description of the use of these attributes, see section 5.15.1.4, “Hard and Soft Limits”, on page 290.

4.9.33.7.ii The Express Queues Preemption Level

The express_queue preemption level applies to jobs residing in express queues. An express queue is an execution
queue with priority at or above the value set in the preempt_queue_prio scheduler attribute. The default value for this
parameter is 150.

Express queues do not require the by_queue scheduler parameter to be True.

If you will use the express_queue preemption level, you probably want to configure at least one express queue, along
with some method of moving jobs into it. See section 2.3, “Queues”, on page 21.

If you have more than one express queue, and they have different priorities, you are effectively creating separate sub-lev-
els for express queues. Jobs in a higher-priority express queue have greater preemption priority than jobs in lower-prior-
ity express queues.

See “preempt_queue_prio” on page 254 of the PBS Professional Reference Guide.

4.9.33.7.iii The Fairshare Preemption Level

The fairshare preemption level applies to jobs owned by entities who are over their fairshare allotment. For example, if
each of five users has 20 percent of the fairshare tree, and UserA is using 25 percent of the resources being tracked for
fairshare, UserA’s jobs become eligible for preemption at the fairshare preemption level.

To use the fairshare preemption level, you must enable fairshare. See section 4.9.19, “Using Fairshare”, on page 138.

4.9.33.7.iv The Starving Job Preemption Level

The starving_jobs preemption level applies to jobs that are starving. Starving jobs are jobs that have been waiting at
least a specified amount of time to run.

To use the starving_jobs preemption level, you must enable starving:

• Set the <sched_priv directory>/sched_config help_starving_jobs parameter to True

• Set the amount of time that a job must wait before it is starving in the max_starve scheduler parameter

• Optionally, use eligible time for waiting time. See section 4.9.13, “Eligible Wait Time for Jobs”, on page 126.

See section 4.9.48, “Starving Jobs”, on page 222.
AG-186 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.33.7.v The Normal Jobs Preemption Level

One special class, normal_jobs, is the default class for any job not otherwise specified. If a job does not fall into any of
the specified levels, it is placed in normal_jobs.

Example 4-21: Starving jobs have the highest priority, then normal jobs, then jobs whose entities are over their fairshare
limit:

preempt_prio: “starving_jobs, normal_jobs, fairshare”

Example 4-22: Starving jobs whose entities are also over their fairshare limit are lower priority than normal jobs:

preempt_prio: “normal_jobs, starving_jobs+fairshare”

4.9.33.8 Selecting Preemption Level

PBS places each job in the most exact preemption level, or the highest preemption level that fits the job.

Example 4-23: We have a job that is starving and over its server soft limits. The job is placed in the “starving_jobs”
level:

preempt_prio: “starving_jobs, normal_jobs, server_softlimits”

Example 4-24: We have a job that is starving and over its server soft limits. The job is placed in the
“starving_jobs+server_softlimits” level:

preempt_prio: “starving_jobs, starving_jobs+server_softlimits, normal_jobs, server_softlimits”

4.9.33.9 Sorting Within Preemption Level

If there is more than one job within the preemption level chosen for preemption, PBS chooses jobs within that level
according to their start time. By default, PBS preempts the job which started running most recently. .

For example, if we have two jobs where job A started running at 10:00 a.m. and job B started running at 10:30 a.m:

• The default behavior preempts job B

The allowable value for the preempt_sort attribute is “min_time_since_start”.

The default value for the preempt_sort attribute is “min_time_since_start”.

4.9.33.10 Preemption Methods

A scheduler can preempt a job in one of the following ways:

• Suspend the job

• Checkpoint the job

• Requeue the job

• Delete the job

A scheduler tries to preempt a job using the methods listed in the order you specify. This means that if you specify that
the order is “checkpoint, suspend, requeue, delete”, the scheduler first tries to checkpoint the job, and if it cannot, it tries
to suspend the job, and if it cannot do that, it tries to requeue the job, and if it cannot requeue the job, it tries to delete it.

You can specify the order of these attempts in the preempt_order scheduler attribute.

The preempt_order attribute defines the order of preemption methods which a scheduler uses on jobs. This order can
change depending on the percentage of time remaining on the job. The ordering can be any combination of S, C, R, and
D (for suspend, checkpoint, requeue, and delete).

The contents is an ordering, for example “SCRD” optionally followed by a percentage of time remaining and another
ordering.
PBS Professional 2020.1.1 Administrator’s Guide AG-187

Chapter 4 Scheduling
The format is a quoted list(“”).

Example 4-25: PBS should first attempt to use suspension to preempt a job, and if that is unsuccessful, then requeue the
job:

preempt_order: “SR”

Example 4-26: If the job has between 100-81% of requested time remaining, first try to suspend the job, then try check-
point, then requeue. If the job has between 80-51% of requested time remaining, then attempt suspend then check-
point; and between 50% and 0% time remaining just attempt to suspend the job:

preempt_order: “SCR 80 SC 50 S”

The default value for preempt_order is “SCR”.

You cannot repeat a method within a percentage specification. Note that in the example above, the S method appears
only once per percentage.

4.9.33.10.i Preemption Via Checkpoint

When a job is preempted via checkpointing, MoM runs the checkpoint_abort script, and PBS kills and requeues the job.
When a scheduler elects to run the job again, the scheduler runs the restart script to restart the job from where it was
checkpointed.

To preempt via checkpointing, you must define both of the following:

• The checkpointing action in the MoM’s checkpoint_abort $action parameter that is to take place when the job is
preempted

• The restarting action in the MoM’s restart $action parameter that is to take place when the job is restarted

To do this, you must supply checkpointing and restarting scripts or equivalents, and then configure the MoM’s
checkpoint_abort and restart $action parameters. Do not use the $action checkpoint MoM parameter; it is used when
the job should keep running.

See section 9.3, “Checkpoint and Restart”, on page 412.

4.9.33.10.ii Preemption Via Suspension

Jobs are normally suspended via the SIGSTOP signal and resumed via the SIGCONT signal. An alternate suspend or
resume signal can be configured in MoM’s $suspendsig configuration parameter. See “pbs_mom” on page 71 of the
PBS Professional Reference Guide.

4.9.33.10.iii Suspended Jobs and Resources

Suspended jobs will hold onto some memory and disk space. Suspended jobs may hold application licenses if the appli-
cation releases them only when it exits. See section 5.9.6.2.iv, “Suspension/resumption Resource Caveats”, on page 251.

4.9.33.10.iv Preemption Via Requeue

When a job is preempted and requeued, the job stops execution and is requeued. A requeued job’s eligible time is pre-
served. The amount of time allowed to requeue a job is controlled by the job_requeue_timeout server attribute. See
“Server Attributes” on page 281 of the PBS Professional Reference Guide.

A job that is not eligible to be requeued, meaning a job that was submitted with “-r n”, will not be selected to be pre-
empted via requeue.

4.9.33.10.v Preemption via Deletion

When a job is preempted via deletion, the job is deleted. It is not requeued. Deletion is not in the default preemption
order.
AG-188 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.33.11 Enabling Preemption

Preemptive scheduling is enabled by setting parameters in a scheduler’s configuration file <sched_priv direc-
tory>/sched_config.

To enable preemption, you must do the following:

1. Specify the preemption levels to be used by setting preempt_prio to desired preemption levels (the default is
“express_queue, normal_jobs”)

The preempt_prio attribute must contain an entry for normal_jobs.

2. Optional: specify preemption order by setting preempt_order

3. If you will use the fairshare preemption level, configure fairshare. See section 4.9.19, “Using Fairshare”, on page
138.

4. If you will use the starving_jobs preemption level, configure starving. See section 4.9.33.7.iv, “The Starving Job
Preemption Level”, on page 186.

5. If you will use the server_softlimits and/or queue_softlimits preemption levels, configure server and/or queue soft
limits. See section 4.9.33.7.i, “The Soft Limits Preemption Level”, on page 185.

6. Enable preemption by setting preemptive_sched to True . It is True by default.

7. Choose whether to use preemption during primetime, non-primetime, or all of the time. The default is ALL. If you
want separate behavior for primetime and non-primetime, specify each separately. For example:

preemptive_sched: True prime

preemptive_sched: False non_prime
PBS Professional 2020.1.1 Administrator’s Guide AG-189

Chapter 4 Scheduling
4.9.33.12 Preemption Example

Below is an example of (part of) a scheduler’s configuration file, showing an example configuration for preemptive
scheduling.

turn on preemptive scheduling

#

preemptive_sched: TRUE ALL

#

set the queue priority level for express queues

preempt_queue_prio: 150

#

specify the priority of jobs as: express queue

(highest) then starving jobs, then normal jobs,

followed by jobs who are starving but the user/group

is over a soft limit, followed by users/groups over

their soft limit but not starving

#

preempt_prio: “express_queue, starving_jobs, normal_jobs, starving_jobs+server_softlimits,
server_softlimits”

#

specify when to use each preemption method.

If the first method fails, try the next

method. If a job has between 100-81% time

remaining, try to suspend, then checkpoint

then requeue. From 80-51% suspend and then

checkpoint, but don't requeue.

If between 50-0% time remaining, then just

suspend it.

#

preempt_order: “SCR 80 SC 50 S”

4.9.33.13 Preemption Caveats and Recommendations

• Do not use preemption via deletion along with a runjob hook that can reject the job often. In this case jobs are
deleted and the preempting job is rejected.

• When using any of the fairshare, soft limits, express queue, or starving jobs preemption levels, be sure to enable the
corresponding PBS feature. For example, when using preemption with the fairshare preemption level, be sure to
turn fairshare on. Otherwise, you will be using stale fairshare data to preempt jobs.

• It’s important to be careful about the order of the preemption levels and the sizes of the limits at queue and server.
For example, if you make users who are over their server soft limits have higher priority than users who are over
their queue soft limits, and you set the soft limit higher at the server than at the queue, you can end up with users
who have more jobs running preempting users who have fewer jobs running.

In this example, a user with more jobs preempts a user with fewer jobs
AG-190 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
Given the following:

• preempt_prio attribute contains “server_softlimits, queue_softlimits”

• Server soft limit is 5

• Queue soft limit is 3

• User1 has 6 jobs running

• User2 has 4 jobs running

This means:

• User1 has higher priority, because User1 is over the server soft limit

• User1’s jobs can preempt User2’s jobs

To avoid this scenario, you could set the preempt_prio attribute to contain “server_softlimits,
queue_softlimits, server_softlimits+queue_softlimits”. In this case User1 would have lower
priority, because User1 is over both soft limits.

• Preemption priority is mostly independent of execution priority. You can list preemption levels in any order in
preempt_prio, but be careful not to work at cross-purposes with your execution priority. Be sure that you are not
preempting jobs that have higher execution priority. See section 4.9.16, “Calculating Job Execution Priority”, on
page 134.

• Using preemption with strict ordering and backfilling may change which job is being backfilled around.

• When a job is suspended via checkpoint or requeue, it loses it queue wait time. This does not apply to preemption
via suspension.

• If a high-priority job has been selected to preempt lower-priority jobs, but is rejected by a runjob hook, a scheduler
undoes the preemption of the low-priority jobs. Suspended jobs are resumed, and checkpointed jobs are restarted.

• A job that has requested an AOE will not preempt another job, regardless of whether the job’s requested AOE
matches an instantiated AOE. Running jobs are not preempted by jobs requesting AOEs.

• If a job is checkpointed by a scheduler because it was preempted, a scheduler briefly applies a hold, but releases the
hold immediately after checkpointing the job, and runs the restart script when the job is scheduled to run.

• When jobs are preempted via requeueing, the requeue can fail if the job being preempted takes longer than the
allowed timeout. See section 9.6.3, “Setting Job Requeue Timeout”, on page 439.

• When you issue “qrun <job ID>”, without the -H option, the selected job has preemption priority between Res-

ervation and Express, for that scheduling cycle. However, at the following scheduling cycle, the preemption prior-
ity of the selected job returns to whatever it would be without qrun.

• When sched_preempt_enforce_resumption is set to True, all suspended jobs become top jobs, regardless of
their setting for topjob_ineligible.

• PBS will not use suspension or checkpointing to preempt a job that requests a value for eoe.

• Do not use suspend/resume and the cgroups hook on the same hosts. Doing so may result in jobs being rejected.

4.9.34 Using Primetime and Holidays

Often it is useful to run different scheduling policies for specific intervals during the day or work week. PBS provides a
way to specify two types of interval, called primetime and non-primetime.

Between them, primetime and non-primetime cover all time. There is no time slot that is neither primetime nor non-
primetime. This includes dedicated time. Primetime and/or non-primetime overlap dedicated time.

You can use non-primetime for such tasks as running jobs on desktop clusters at night.
PBS Professional 2020.1.1 Administrator’s Guide AG-191

Chapter 4 Scheduling
4.9.34.1 How Primetime and Holidays Work

By default, primetime is 24/7. A scheduler looks in the <sched_priv directory>/holidays file for definitions of
primetime, non-primetime, and holidays. You can edit this file to define your holidays and primetime.

Many PBS scheduling parameters can be specified separately for primetime, non-primetime, or all of the time. This
means that you can use, for example, fairshare during primetime and no fairshare during non-primetime. These parame-
ters have a time slot default of all, meaning that if enabled, they are in force all of the time.

A scheduler applies the parameters defined for primetime during the primetime time slots, and applies parameters
defined for non-primetime during the non-primetime time slots. Any scheduler parameters defined for all time are run
whether it is primetime or not.

Any holidays listed in the holidays file are treated as non-primetime. To have a holiday treated like a normal workday or
weekend, do not list it in the holidays file.

There are default behaviors for primetime and non-primetime, but you can set up the behavior you want for each type.
The names “primetime” and “non-primetime” are meant to be informative, but they are arbitrary. The default for prime-
time is 24/7, meaning that primetime is all of the time by default. Example holidays are provided, but commented out, in
the holidays file.

You can define primetime and non-primetime queues. Jobs in these queues can run only during the designated time.
Queues that are not defined specifically as primetime or non-primetime queues are called “anytime queues”.

4.9.34.2 Configuring Primetime and Non-primetime

In order to use primetime and non-primetime, you must have a holidays file with the current year in it.

You can specify primetime and non-primetime time slots by specifying them in the <sched_priv directory>/
holidays file.

The format of the primetime and non-primetime section of the holidays file is the following:

YEAR YYYY

<day> <prime> <nonprime>

<day> <prime> <nonprime>

In YEAR YYYY, YYYY is the current year.

Day can be weekday, monday, tuesday, wednesday, thursday, friday, saturday, or sunday.

Each day line must have all three fields.

Any line that begins with a “*” or a “#” is a comment.

Weekday names must be lowercase.

The ordering of elements in this file is important. The ordering of <day> lines in the holidays file controls how prime-
time is determined. A later line takes precedence over an earlier line.

For example:

weekday 0630 1730

friday 0715 1600

means the same as

monday 0630 1730

tuesday 0630 1730

wednesday 0630 1730

thursday 0630 1730

friday 0715 1600
AG-192 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
However, if a specific day is followed by “weekday”,

friday 0700 1600

weekday 0630 1730

the “weekday” line takes precedence, so Friday will have the same primetime as the other weekdays.

Times can be expressed as one of the following:

• HHMM with no colons(:)

• The word “all”

• The word “none”

4.9.34.3 Configuring Holidays

You can specify primetime and non-primetime time slots by specifying them in the <sched_priv directory>/
holidays file.

You must specify the year, otherwise primetime is in force at all times, and PBS will not recognize any holidays. Specify
the year here, where YYYY is the current year:

YEAR YYYY

Holidays are specified in lines of this form:

<day of year> <month day-of-month> <holiday name>

PBS uses the <day of year> field and ignores the <date> string.

Day of year is the julian day of the year between 1 and 365 (e.g. “1”).

Month day-of-month is the calendar date, for example “Jan 1”.

Holiday name is the name of the holiday, for example “New Year’s Day”.

4.9.34.4 Example of holidays File

YEAR 2020

* Prime Non-Prime

* Day Start Start

*

 weekday 0600 1730

 saturday none all

 sunday none all

*

* Day of Calendar Company Holiday

* Year Date Holiday

 1 Jan 1 New Year's Day

 20 Jan 20 Martin Luther King Day

 48 Feb 17 Presidents Day

 146 May 25 Memorial Day

 186 Jul 4 Independence Day

 251 Sep 7 Labor Day

 286 Oct 12 Columbus Day

 316 Nov 11 Veterans Day

 331 Nov 26 Thanksgiving

 360 Dec 25 Christmas Day
PBS Professional 2020.1.1 Administrator’s Guide AG-193

Chapter 4 Scheduling
4.9.34.5 Reference Copy of holidays File

A reference copy of the holidays file contains example holidays that are commented out. It is provided in PBS_EXEC/
etc/pbs_holidays. The file looks like this:

* UNCOMMENT AND CHANGE THIS TO THE CURRENT YEAR

*YEAR 1970

*

* Prime/Nonprime Table

*

* Prime Non-Prime

* Day Start Start

*

* UNCOMMENT AND SET THE REQUIRED PRIME/NON-PRIME START TIMES

* weekday 0600 1730

* saturday none all

* sunday none all

*

* Day of Calendar Company

* Year Date Holiday

*

* UNCOMMENT AND ADD CALENDAR HOLIDAYS TO BE CONSIDERED AS NON-PRIME DAYS

* 1 Jan 1 New Year's Day

* 359 Dec 25 Christmas Day

4.9.34.6 Defining Primetime and Non-primetime Queues

Jobs in a primetime queue can start only during primetime. Jobs in a non-primetime queue can start only during non-
primetime. Jobs in an anytime queue can start at any time.

You define a primetime queue by naming it using the primetime prefix. The prefix is defined in the primetime_prefix
scheduler parameter. The default is “p_”. For example, you could name a primetime queue “p_queueA”, using the
default.

Similarly, you define a non-primetime queue by prefixing the name. The prefix is defined in the nonprimetime_prefix
scheduler parameter, and defaults to “np_”.

4.9.34.7 Controlling Whether Jobs Cross Primetime Boundaries

You can control whether jobs are allowed to start running in one time slot and finish in another, for example when job A
starts during primetime and finishes a few minutes into non-primetime. When a job runs past the boundary, it delays the
start of a job that is constrained to run only in the later time slot. For example, if job B can run only during non-prime-
time, it may have to wait while job A uses up non-primetime before it can start. You can control this behavior for all
queues, or you can exempt anytime queues, controlling only primetime and non-primetime queues. You can also specify
how much time past the boundary a job is allowed to run.

To prevent a scheduler from starting any jobs which would run past a primetime/non-primetime boundary, set the
backfill_prime scheduler parameter to True. You can specify this separately for primetime and non-primetime. If you
specify it for one type of time slot, it prevents those jobs from crossing the next boundary. For example, if you set the
following:

backfill_prime True prime
AG-194 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
jobs in primetime slots are not allowed to cross into non-primetime slots.

If you set the following:

backfill_prime True non_prime

jobs in non-primetime slots are not allowed to cross into primetime slots.

To exempt jobs in anytime queues from the control of backfill_prime, set the prime_exempt_anytime_queues sched-
uler parameter to True. This means that jobs in an anytime queue are not prevented from running across a primetime/
nonprimetime or non-primetime/primetime boundary.

To allow jobs to spill over a certain amount of time past primetime/non-primetime boundaries, but no more, specify this
amount of time in the prime_spill scheduler parameter. You can specify separate behavior for primetime and non-prime-
time jobs. For example, to allow primetime jobs to spill by 20 minutes, but only allow non-primetime jobs to spill by
1minute:

prime_spill 00:20:00 prime

prime_spill 00:01:00 non_prime

The prime_spill scheduler parameter applies only when backfill_prime is True.

4.9.34.8 Logging

A scheduler logs a message at the beginning of each scheduling cycle indicating whether it is primetime or not, and when
this period of primetime or non-primetime will end. The message is at log level 0x0100. The message is of this form:

“It is primetime and it will end in NN seconds at MM/DD/YYYY HH:MM:SS”

or

“It is non-primetime and it will end in NN seconds at MM/DD/YYYY HH:MM:SS”

4.9.34.9 Scheduling Parameters Affecting Primetime

backfill_prime

This scheduler will not run jobs which would overlap the boundary between primetime and non-primetime.

Format: Boolean

Default: False all

nonprimetime_prefix

Queue names which start with this prefix will be treated as non-primetime queues. Jobs within these queues will
only run during non-primetime.

Format: String

Default: np_

primetime_prefix

Queue names starting with this prefix are treated as primetime queues. Jobs will only run in these queues during
primetime.

Format: String

Default: p_
PBS Professional 2020.1.1 Administrator’s Guide AG-195

Chapter 4 Scheduling
prime_exempt_anytime_queues

Determines whether anytime queues are controlled by backfill_prime.

If set to True, jobs in an anytime queue will not be prevented from running across a primetime/non-primetime
or non-primetime/primetime boundary.

If set to False, the jobs in an anytime queue may not cross this boundary, except for the amount specified by
their prime_spill setting.

Format: Boolean

Default: False

prime_spill

Specifies the amount of time a job can spill over from non-primetime into primetime or from primetime into
non-primetime. This option can be separately specified for prime- and non-primetime. This option is only
meaningful if backfill_prime is True.

Format: Duration

Default: 00:00:00

4.9.34.10 Caveats for Primetime and Holidays

• In order to use primetime and non-primetime, you must have a holidays file with the current year in it. If there is
no holidays file with a year in it, primetime is in force all of the time.

• You cannot combine holidays files.

• If you use the formula, it is in force all of the time.

• If there is no YEAR line in the holidays file, primetime is in force at all times. If there is more than one YEAR line,
the last one is used.

• If the information for any day is missing or incorrect, primetime is in force for all of that day.

4.9.35 Provisioning

PBS provides automatic provisioning of an OS or application, on vnodes that are configured to be provisioned. When a
job requires an OS that is available but not running, or an application that is not installed, PBS provisions the vnode with
that OS or application.

You can configure vnodes so that PBS will automatically install the OS or application that jobs need in order to run on
those vnodes. For example, you can configure a vnode that is usually running RHEL to run SLES instead whenever the
Physics group runs a job requiring SLES. If a job requires an application that is not usually installed, PBS can install the
application in order for the job to run.

You can use provisioning for booting multi-boot systems into the desired OS, downloading an OS to and rebooting a
diskless system, downloading an OS to and rebooting from disk, instantiating a virtual machine, etc. You can also use
provisioning to run a configuration script or install an application.

For a complete description of how provisioning works and how to configure it, see Chapter 7, "Provisioning", on page
327.

4.9.36 Queue Priority

Queues and queue priority play several different roles in scheduling, so this section contains pointers to other sections.

Each queue can have a different priority. A higher value for priority means the queue has greater priority. By default,
queues are sorted from highest to lowest priority. Jobs in the highest priority queue will be considered for execution
before jobs from the next highest priority queue. If queues don’t have different priority, queue order is undefined.
AG-196 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
Each queue’s priority is specified in its priority attribute By default, the queue priority attribute is unset. There is no limit
to the priority that you can assign to a queue, however it must fit within integer size. See “Queue Attributes” on page 311
of the PBS Professional Reference Guide.

4.9.36.1 Configuring Queue Priority

You can specify the priority of each queue by setting a value for its priority attribute:

Qmgr: set queue <queue name> priority = <value>

4.9.36.2 Using Queue Priority

You can configure a scheduler so that job execution or preemption priority is partly or entirely determined by the priority
of the queue in which the job resides. Queue priority can be used for the following purposes:

• Queue priority can be used as a term in the job sorting formula. See section 4.9.21, “Using a Formula for Computing
Job Execution Priority”, on page 149

• Queue priority can be used to specify the order in which queues are examined when scheduling jobs. If you want
jobs to be examined queue by queue, in order of queue priority, you must specify a different priority for each queue.
A queue with a higher value is examined before a queue with a lower value. See section 4.3.5.3.i, “Using Queue
Order to Affect Order of Consideration”, on page 65

• You can set up execution priority levels that include jobs in express queues. For information on configuring job pri-
orities in a scheduler, see section 4.9.16, “Calculating Job Execution Priority”, on page 134.

• You can set up preemption levels that include jobs in express queues. For information on preemption, see section
4.9.33, “Using Preemption”, on page 180.

A queue is an express queue if its priority is greater than or equal to the value that defines an express queue. For more
about using express queues, see section 4.9.18, “Express Queues”, on page 137.

4.9.36.3 Queue Priority Caveats

• If you use queue priority in the formula and the job is moved to another server through peer scheduling, the queue
priority used in the formula will be that of the new queue to which the job is moved.

4.9.37 Reservations

PBS provides a way to reserve specific resources for a defined time period. If you want reservations in which to run jobs,
you can make one-time reservations, or you can make a series of reservations, where each one is for the same resources,
but for a different time period. Or, if you want to secure resources for a specific (perhaps troublesome) job, you can cre-
ate a job-specific reservation for that job at submission time, while the job is queued, or later while the job is running.

If you want to sequester hosts for maintenance, you can create a maintenance reservation. Maintenance reservations
block out time on specified machines, preventing jobs from being started where you need to perform maintenance tasks.

Advance, standing, and job-specific reservations are “job reservations”, to distinguish them from maintenance reserva-
tions.

Reservations are useful for accomplishing the following job-related tasks:

• To get a time slot on a specific host

• To run a job in a specific time slot, meaning at or by a specific time

• To be sure a job will run

• To have a high-priority job run soon

• To make sure that a job doesn’t lose access to resources when needs to be re-run
PBS Professional 2020.1.1 Administrator’s Guide AG-197

Chapter 4 Scheduling
4.9.37.1 Definitions

Advance reservation

A reservation for a set of resources for a specified time. The reservation is available only to the creator of the
reservation and any users or groups specified by the creator.

Degraded reservation

A job-specific or advance reservation for which one or more associated vnodes are unavailable.

A standing reservation for which one or more vnodes associated with the soonest occurrence are unavailable.

Job-specific reservation

A reservation created for a specific job, for the same resources that the job requested.

Job-specific ASAP reservation

Reservation created for a specific queued job, for the same resources the job requests. PBS schedules the reser-
vation to run as soon as possible, and PBS moves the job into the reservation. Created when you use
pbs_rsub -Wqmove=<job ID> on a queued job.

Job-specific now reservation

Reservation created for a specific running job. PBS immediately creates a job-specific now reservation on the
same resources as the job is using, and moves the job into the reservation. The reservation is created and starts
running immediately when you use pbs_rsub --job <job ID> on a running job.

Job-specific start reservation

Reservation created for a specific queued job, for the same resources the job requests. PBS starts the job
according to scheduling policy. When the job starts, PBS creates and starts the reservation, and PBS moves the
job into the reservation. Created when you use qsub -Wcreate_resv_from_job=true on a queued
job.

Maintenance reservation

A reservation designed for performing maintenance on the specified hosts for the specified time. Created using
pbs_rsub --hosts <host list>.

Occurrence of a standing reservation

An occurrence of a standing reservation behaves like an advance reservation, with the following exceptions:

• While a job can be submitted to a specific advance reservation, it can only be submitted to the standing res-
ervation as a whole, not to a specific occurrence. You can only specify when the job is eligible to run. See
“qsub” on page 213 of the PBS Professional Reference Guide.

• When an advance reservation ends, it and all of its jobs, running or queued, are deleted, but when an occur-
rence ends, only its running jobs are deleted.

Each occurrence of a standing reservation has reserved resources which satisfy the resource request, but each
occurrence may have its resources drawn from a different source. A query for the resources assigned to a stand-
ing reservation will return the resources assigned to the soonest occurrence, shown in the resv_nodes attribute
reported by pbs_rstat.

Also called an instance of a standing reservation.

Soonest occurrence of a standing reservation

The occurrence which is currently active, or if none is active, then it is the next occurrence.

Standing reservation

An advance reservation which recurs at specified times. For example, the user can reserve 8 CPUs and 10GB
every Wednesday and Thursday from 5pm to 8pm, for the next three months.
AG-198 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.37.2 Job Reservations

4.9.37.2.i Creating Advance and Standing Reservations

Any PBS user can create both advance and standing reservations for jobs using the pbs_rsub command. PBS either
confirms that the reservation can be made, or rejects the request. Once the reservation is confirmed, PBS creates a queue
for the reservation’s jobs. Jobs are then submitted to this queue.

When a reservation is confirmed, it means that the reservation will not conflict with currently running jobs, other con-
firmed reservations, or dedicated time, and that the requested resources are available for the reservation. A reservation
request that fails these tests is rejected. All occurrences of a standing reservation must be acceptable in order for the
standing reservation to be confirmed.

The pbs_rsub command returns a reservation ID, which is the reservation name. For an advance reservation, this res-
ervation ID has the format:

R<sequence number>.<server name>

For a standing reservation, this reservation ID refers to the entire series, and has the format:

S<sequence number>.<server name>

The user specifies the resources for a reservation using the same syntax as for a job.

See "Reserving Resources", on page 135 of the PBS Professional User’s Guide, for detailed information on creation and
use of reservations.

The time for which a reservation is requested is in the time zone at the submission host.

4.9.37.2.ii Job-Specific Reservations

A job-specific reservation is for the same resources that the job requested. Job-specific reservations are intended to pre-
serve access to the job’s resources in the case where a job may need to be modified and then re-run, so that the job does
not need to wait to be re-scheduled.

Any PBS user can create a job-specific reservation.

A job-specific reservation ID has the format:

R<sequence number>.<server name>

Job-specific reservations cannot be used with job arrays.

4.9.37.2.iii Creating Job-specific Start Reservations

Job submitters can create a job-specific start reservation at submission time. The job is scheduled normally, and when it
starts, PBS creates and starts a reservation on the same resources, and puts the job into the reservation. To create a job-
specific reservation at submission time, set the job’s create_resv_from_job attribute to True:

qsub ... -Wcreate_resv_from_job=1

To create a job-specific start reservation from a queued job, use qalter to set the create_resv_from_job attribute to
True.

4.9.37.2.iv Creating Job-specific ASAP Reservations

Job submitters can create a job-specific ASAP from a queued job. PBS creates the reservation for the same resources the
job requests, moves the job into the reservation, and schedules the reservation to start as soon as possible.

To create a job-specific ASAP reservation:

pbs_rsub -Wqmove=<job ID>
PBS Professional 2020.1.1 Administrator’s Guide AG-199

Chapter 4 Scheduling
Note that job-specific ASAP reservations, once created, do not adjust themselves to a change in resource availability. An
ASAP reservation can cause resources to go idle while waiting for the reservation to start. For example, if a job sched-
uled to finish before an ASAP reservation finishes early, and no jobs can be backfilled into the new open slot, resources
will sit idle until the reservation runs. In addition, if a high-priority job comes in after an ASAP reservation has been cre-
ated for a lower-priority job, the high-priority job must wait until after the reservation finishes.

To get the equivalent of flexible ASAP reservations that don’t cause idle resources, use a job sort formula with a custom
priority term, for example “cust_high_pri”, and set this term to a high value, for example 10, for the desired job. Then
you can alter the job: qalter -l cust_high_pri=10 -Wcreate_resv_from_job=true. Make sure that
cust_high_pri has a large enough coefficient in the formula to change the job priority.

4.9.37.2.v Creating Job-specific Now Reservations

Job submitters can create a job-specific now from a running job. PBS creates the reservation for the same resources the
job is using, starts the reservation, and moves the job into the reservation.

To create a job-specific now reservation:

pbs_rsub --job <job ID>

4.9.37.2.vi Job Reservations and Placement Sets

When PBS chooses a placement set for a reservation, it makes the same choices as it would for a regular job. It fits the
reservation into the smallest possible placement set. See section 4.9.32.4.ii, “Order of Placement Set Consideration
Within Pool”, on page 172.

When a reservation is created, it is created within a placement set, if possible. If no placement set will satisfy the reser-
vation, placement sets are ignored, if the scheduler’s do_not_span_psets attribute is False. If no placement set will
satisfy the reservation, and the scheduler’s do_not_span_psets attribute is True, the reservation is not created.

The vnodes allocated to a reservation are used as one single placement set for jobs in the reservation; they are not subdi-
vided into smaller placement sets. A job within a reservation runs within the single placement set made up of the vnodes
allocated to the reservation.

4.9.37.2.vii Requesting Resources for Job Reservations

Reservations request resources using the same mechanism that jobs use. If a resource is unrequestable, users cannot
request it for a reservation. If a resource is invisible, users cannot view it or request it for a reservation.

4.9.37.2.viii Job Reservations and Provisioning

Users can create reservations that request AOEs. Each reservation can have at most one AOE specified for it. Any jobs
that run in that reservation must not request a different AOE. See section 7.4.3, “Provisioning And Reservations”, on
page 331.

The vnodes allocated to a reservation that requests an AOE are put in the resv-exclusive state when the reservation runs.
These vnodes are not shared with other reservations or with jobs outside the reservation.

For information on restrictions applying to reservations used with provisioning, see section 7.7.2.3, “Vnode Reservation
Restrictions”, on page 344.

For how to avoid problems with provisioning and reservations, see section 7.10.1, “Using Provisioning Wisely”, on page
353.

4.9.37.2.ix Job Reservation Priority

A job running in a reservation cannot be preempted.

A job running in a reservation has the highest execution priority.
AG-200 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.37.2.x Querying Reservations

To query a reservation, use the pbs_rstat command. See "Viewing the Status of a Reservation", on page 143 of the
PBS Professional User’s Guide. To delete a reservation, use the pbs_rdel command, not the qmgr command.

4.9.37.2.xi Controlling Access to Job Reservations

You can specify which projects, users, and groups can and cannot submit jobs to reservations. Use the pbs_rsub -U/
-G command to set the reservation’s acl_users and/or acl_groups attributes, and pbs_ralter -U/-G to change
them. See section 8.3.8, “Reservation Access”, on page 371.

4.9.37.2.xii Job Reservation Fault Tolerance

PBS automatically keeps track of the vnodes assigned to reservations, and tries to find replacement vnodes for those that
become unavailable. See section 9.4, “Reservation Fault Tolerance”, on page 426.

4.9.37.2.xiii Logging Standing Reservation Information

The start and end of each occurrence of a standing reservation is logged as if each occurrence were a single advance res-
ervation.

Reservation-related messages are logged at level PBSEVENT_RESV, which is 0x0200 (512).

4.9.37.2.xiv Accounting

Resources requested for a reservation are recorded in the reservation’s Resource_List attribute, and reported in the
accounting log B and Y records for the reservation. See section 17.5.3, “Timeline for Reservation Accounting Mes-
sages”, on page 627.

4.9.37.3 Maintenance Reservations

You can create maintenance reservations using pbs_rsub --hosts <host list>. Maintenance reservations are
designed to make the specified hosts available for the specified amount of time, regardless of what else is happening:

• You can create a maintenance reservation that includes or is made up of vnodes that are down or offline.

• Maintenance reservations ignore the value of a vnode’s resv_enable attribute.

• PBS immediately confirms any maintenance reservation.

• Maintenance reservations take precedence over other reservations; if you create a maintenance reservation that over-
laps an advance or standing job reservation, the overlapping vnodes become unavailable to the job reservation, and
the job reservation is in conflict with the maintenance reservation. PBS looks for replacement vnodes; see "Reserva-
tion Fault Tolerance" on page 426 in the PBS Professional Administrator’s Guide.

PBS will not start any new jobs on vnodes overlapping or in a maintenance reservation. However, jobs that were already
running on overlapping vnodes continue to run; you can let them run or requeue them.

You cannot specify place or select for a maintenance reservation; these are created by PBS:

• PBS creates the reservation’s placement specification so that hosts are assigned exclusively to the reservation. The
placement specification is always the following:

-lplace=exclhost
• PBS sets the reservation’s resv_nodes attribute value so that all CPUs on the reserved hosts are assigned to the

maintenance reservation. The select specification is always the following:

-lselect=host=<host1>:ncpus=<number of CPUs at host1>+host=<host2>:ncpus=<number of CPUs at
host2>+...

Maintenance reservations are prefixed with M. A maintenance reservation ID has the format:

M<sequence number>.<server name>

You cannot create a recurring maintenance reservation.
PBS Professional 2020.1.1 Administrator’s Guide AG-201

Chapter 4 Scheduling
Creating a maintenance reservation does not trigger a scheduling cycle.

You must have manager or operator privilege to create a maintenance reservation.

4.9.37.4 Modifying Reservations

You can use the pbs_ralter command to alter an existing reservation. You can use this command to modify a job-specific
reservation or an advance reservation or the next or current instance of a standing reservation. Syntax:

pbs_ralter [-D <duration>] [-E <end time>] [-G <auth group list>] [-I <block time>] [-m <mail points>] [-M <mail
list>] [-N <reservation name>] [-R <start time>] [-U <auth user list>] <reservation ID>

After the change is requested, the change is either confirmed or denied. On denial of the change, the reservation is not
deleted and is left as is, and the following message appears in the server’s log:

Unable to alter reservation <reservation ID>

When a reservation is confirmed, the following message appears in the server’s log:

Reservation alter successful for <reservation ID>

To find out whether or not the change was allowed:

• Use the pbs_rstat command: see whether you altered reservation attribute(s)

• Use the interactive option: check for confirmation after the blocking time has run out

If the reservation has not started and it cannot be confirmed on the same vnodes, PBS searches for another set of vnodes.
See section 9.4, “Reservation Fault Tolerance”, on page 426.

You must be the reservation owner or the PBS Administrator to run this command.

For details, see “pbs_ralter” on page 86 of the PBS Professional Reference Guide.

4.9.37.5 Attributes Affecting Reservations

We list the server, vnode, and job attributes affecting reservations here. See the full list of reservation attributes in "Res-
ervation Attributes" on page 303 in the PBS Professional Administrator’s Guide. See “Server Attributes” on page 281 of
the PBS Professional Reference Guide and “Vnode Attributes” on page 320 of the PBS Professional Reference Guide.

Table 4-17: Attributes Affecting Reservations

Entity Attribute Effect

Server acl_resv_host_enable Controls whether or not the server uses the acl_resv_hosts access control lists.

Server acl_resv_hosts List of hosts from which reservations may and may not be created at this server.

Server acl_resv_group_enable Controls whether or not the server uses the acl_resv_groups access control
lists.

Server acl_resv_groups List of groups who may and may not create reservations at this server.

Server acl_resv_user_enable Controls whether or not the server uses the acl_resv_users access control lists.

Server acl_resv_users List of users who may and may not create reservations at this server.

Server resv_enable Controls whether or not reservations can be created at this server.

Server reserve_retry_time Length of time to wait between when a reservation becomes degraded and when
PBS tries to reconfirm the reservation, as well as interval between attempts to
reconfirm a degraded reservation. Default: 600 (10 minutes)
AG-202 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.37.6 Reservation Advice and Caveats

• Do not delete a reservation’s queue.

• Do not start a reservation’s queue (do not set the reservation’s started attribute to True). Jobs will run prematurely.

• Do not try to set attribute values for a reservation queue directly; instead, operate on the reservation.

• Reservations are incompatible with cycle harvesting. Do not allow reservations on machines used for cycle harvest-
ing. The user may begin using the machine, which will suspend any PBS jobs, possibly preventing them from fin-
ishing before the reservation runs out. Set each cycle harvesting vnode’s resv_enable attribute to False, to prevent
the vnode from being used for reservations.

• You can write hooks that execute, modifying a reservation’s attributes, when a reservation is created. See the PBS
Professional Hooks Guide.

• Allow enough time in reservations. If a job is submitted to a reservation with a duration close to the walltime of the
job, provisioning could cause the job to be terminated before it finishes running, or to be prevented from starting. If
a reservation is designed to take jobs requesting an AOE, leave enough extra time in the reservation for provisioning.

• Hosts or vnodes that have been configured to accept jobs only from a specific queue (vnode-queue restrictions) can-
not be used for advance reservations. Hosts or vnodes that are being used for cycle harvesting should not be used for
reservations.

• Hosts with $max_load and $ideal_load configured should not be used for reservations. Set the resv_enable vnode
attribute on these hosts to False.

• For troubleshooting problems with reservations, see "Reservation Caveats and Errors", on page 147 of the PBS Pro-
fessional User’s Guide.

• Be careful when using qrun -H on jobs or vnodes involved in reservations. Make sure that you don’t oversub-
scribe reserved resources.

• In order to create reservations, the submission host must have its timezone set to a value that is understood by the
PBS server. See section 19.9.5, “Unrecognized Timezone Variable”, on page 655.

• Avoid making reservations for resources that are out of the control of PBS. Resources that are managed through a
server_dyn_res script may not be available when jobs need them.

• If you create a maintenance reservation that overlaps an advance or standing job reservation, the maintenance reser-
vation takes precedence, the overlapping vnodes become unavailable to the job reservation, and the job reservation
becomes degraded. PBS looks for replacement vnodes; see section 9.4, “Reservation Fault Tolerance”, on page 426.
Any job reservation overlapping a maintenance reservation goes into the RESV_IN_CONFLICT substate (12).

• Note that job-specific ASAP reservations, once created, do not adjust themselves to a change in resource availability.
An ASAP reservation can cause resources to go idle while waiting for the reservation to start. For example, if a job
scheduled to finish before an ASAP reservation finishes early, and no jobs can be backfilled into the new open slot,
resources will sit idle until the reservation runs.

• To get the equivalent of flexible ASAP reservations that don’t cause idle resources, use a job sort formula with a cus-
tom priority term, for example “cust_high_pri”, and set this term to a high value, for example 10, for the desired job.
Then you can alter the job: qalter -l cust_high_pri=10 -Wcreate_resv_from_job=true.

Vnode queue Associates the vnode with an execution queue. If this attribute is set, this vnode
cannot be used for reservations.

Vnode resv_enable Controls whether the vnode can be used for reservations. Default is True, but
set to False for a vnode used for cycle harvesting.

Job create_resv_from_job Controls whether PBS creates a job-specific reservation for this job.

Table 4-17: Attributes Affecting Reservations

Entity Attribute Effect
PBS Professional 2020.1.1 Administrator’s Guide AG-203

Chapter 4 Scheduling
4.9.38 Round Robin Queue Selection

PBS can select jobs from queues by examining the queues in round-robin fashion. The behavior is round-robin only
when you have groups of queues where all queues in each group have the same priority.

The order in which queues are selected is determined by each queue’s priority. You can set each queue’s priority; see sec-
tion 2.3.5.3, “Prioritizing Execution Queues”, on page 24. If queue priorities are not set, they are undefined. If you do
not prioritize the queues, their order is undefined.

When you have multiple queues with the same priority, a scheduler round-robins through all of the queues with the same
priority as a group. So if you have Q1, Q2, and Q3 at a priority of 100, Q4 and Q5 at a priority of 50, and Q6 at a priority
of 10, a scheduler will round-robin through Q1, Q2, and Q3 until all of those jobs are out of the way, then the scheduler
will round-robin through Q4 and Q5 until there are no more jobs in them, and finally the scheduler will go through Q6.

When using the round-robin method with queues that have unique priorities, a scheduler runs all jobs from the first
queue, then runs all the jobs in the next queue, and so on.

To specify that PBS should the round-robin method to select jobs, set the value of the round_robin scheduler parameter
to True.

The round_robin parameter is a primetime option, meaning that you can configure it separately for primetime and non-
primetime, or you can specify it for all of the time.

You can use the round-robin method as a resource allocation tool. For example, if you need to run the same number of
jobs from each group, you can put each group’s jobs in a different queue, and then use round-robin to run jobs, one from
each queue.

The round-robin method is also used in PBS for some features that are not controlled by the round_robin scheduler
attribute. They are the following:

• Routing queues try destinations in round-robin fashion, in the order listed

• The SMP cluster distribution parameter, smp_cluster_dist, can use a round-robin method to place jobs

See “round_robin” on page 256 of the PBS Professional Reference Guide.

4.9.38.1 Round-robin Caveats

• Each scheduling cycle starts with the highest-priority queue. Therefore, when using round-robin, this queue gets
preferential treatment.

• When set to True, the round_robin parameter overrides the by_queue parameter.

• If round robin and strict ordering are True, and backfilling is not being used, and the top job cannot run, whether
because of resources or rejection by MoM, no job runs. However, if round robin is True and strict ordering is False,
and the top job in the current queue cannot run, the next top job is considered instead. For example, we have 3
queues, each with 3 jobs, and with the same priority:

Q1: J1 J2 J3

Q2: J4 J5 J6

Q3: J7 J8 J9

If round_robin and strict_ordering are True, and J1 cannot run, no job runs.

If round_robin is True and strict_ordering is False, and J1 cannot run, job order is J4, J7, J2, J5, J8, J3, etc.

• With round_robin and strict_ordering set to True, a job continually rejected by a runjob hook may prevent other
jobs from being run. A well-written hook would put the job on hold or requeue the job with a start time at some later
time to allow other jobs in the same queue to be run.
AG-204 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.39 Routing Jobs

Before reading this section, please read about the mechanics of configuring and using routing queues, in section 2.3.6,
“Routing Queues”, on page 25.

In this section, we use the term “routing” to mean the general process of moving a job somewhere, whether it is from one
queue to another, from one partition or complex to another, or from a queue to particular vnodes.

Routing jobs can involve collecting jobs so they don’t stray into the wrong queues, moving those jobs to the correct
queues, and filtering which jobs are allowed into queues.

You may need to collect jobs into a routing queue, before moving them to the correct destination queue. If you use a
routing queue, you can force users to submit jobs to the routing queue only, you can grab jobs as they are submitted and
put them in the routing queue, and you can set a routing queue as the default. The mechanisms to collect jobs are
described below, and listed here:

• Setting default queue; see section 4.9.39.1.i, “Default Queue as Mechanism to Collect Jobs”, on page 206

• Grabbing jobs upon submission; see section 4.9.39.1.ii, “Grabbing Jobs Upon Submission”, on page 206

• Disallowing direct submission to execution queues; see section 4.9.39.1.iii, “Disallowing Direct Submission as
Mechanism to Collect Jobs”, on page 206

• Disallowing submission using access controls; see section 4.9.39.3.ii, “Access Controls as Filtering Mechanism”, on
page 207

There is also a one-step process, but depending on the number of jobs being submitted, it may be too slow. You can also
simply examine them upon submission and send them where you want. The method is listed here:

• Examining jobs upon submission and routing them using a hook; see section 4.9.39.1.iv, “Examining Jobs Upon
Submission”, on page 206.

You can use any of several mechanisms for moving jobs. Each is described in subsections below. The mechanisms for
moving jobs are the following:

• Routing Queues; see section 4.9.39.2.i, “Routing Queues as Mechanism to Move Jobs”, on page 206

• Hooks; see section 4.9.39.2.ii, “Hooks as Mechanism to Move Jobs”, on page 207

• Peer scheduling; see section 4.9.39.2.iii, “Peer Scheduling as Mechanism to Move Jobs”, on page 207

• The qmove command; see section 4.9.39.2.iv, “The qmove Command as Mechanism to Move Jobs”, on page 207

You can use filtering methods to control which jobs are allowed into destination queues. We describe filtering methods
in subsections below. The filtering mechanisms are the following:

• Resource limits; jobs are filtered by resource request. See section 4.9.39.3.i, “Resource Limits as Filtering Mecha-
nism”, on page 207

• Access control limits; jobs are filtered by owner. See section 4.9.39.3.ii, “Access Controls as Filtering Mechanism”,
on page 207

You can use a combination of moving a job and “tagging” it, that is, including a special custom resource in the job’s
resource request, to route the job. If you set the resource using a hook, you can route the job either to a queue or to
vnodes. If you make the job inherit the resource from a queue, you can route it only to vnodes. You can set resource lim-
its for the special custom resource at the receiving queue, allowing in only jobs with the special resource. You can set the
special custom resource at vnodes, so that the job must run there. Mechanisms for tagging jobs are listed here:

• Using a hook to assign a resource; see section 4.9.39.4.i, “Using Hooks to Tag Jobs”, on page 208

• Associating vnodes with queues; see section 4.9.2.2, “Associating Vnodes With Multiple Queues”, on page 104

• Changing the job’s resource request using the qalter command; see section 4.9.39.4.ii, “Using the qalter Com-
mand to Tag Jobs”, on page 208
PBS Professional 2020.1.1 Administrator’s Guide AG-205

Chapter 4 Scheduling
4.9.39.1 Mechanisms for Collecting Jobs

4.9.39.1.i Default Queue as Mechanism to Collect Jobs

To make it easy on your users, have their jobs land in your routing queue by default. You probably don’t want frustrated
users trying to submit jobs without specifying a queue, only to have the jobs be rejected if you have set access controls
on, or only allowed routing to, the default queue. The server’s default_queue attribute specifies the name of the default
queue. To make things easy, make the default queue be the routing queue:

Qmgr: set server default_queue = <queue name>

4.9.39.1.ii Grabbing Jobs Upon Submission

You can allow users to submit jobs to any queue, and then scoop up the newly-submitted jobs and put them in the desired
queue. To do this, you write a hook. See the PBS Professional Hooks Guide.

4.9.39.1.iii Disallowing Direct Submission as Mechanism to Collect Jobs

If you are using a routing queue, you can disallow job submission to all other queues. This forces users to submit jobs to
the routing queue. You should probably make the routing queue be the default queue in this case, to avoid irritating
users. Whether or not a queue allows direct job submission is controlled by its from_route_only attribute. To disallow
job submission to a queue:

Qmgr: set queue <queue name> from_route_only = True

4.9.39.1.iv Examining Jobs Upon Submission

You can use a job submission hook to examine each job as it is submitted, and then route it to the desired queue. For
example, you can route jobs directly according to resource request, project, owner, etc. See the PBS Professional Hooks
Guide.

4.9.39.2 Mechanisms for Moving Jobs

4.9.39.2.i Routing Queues as Mechanism to Move Jobs

Routing queues are a mechanism supplied by PBS that automatically move jobs from a routing queue to another queue.
You can direct which destination queues accept a job using these filters at each destination queue:

• Resource limits: you can set up execution queues designed for specific kinds of jobs, and then route each kind of job
separately. For example, you can create two execution queues, and one routing queue, and route all jobs requesting
large amounts of memory to one of the execution queues, and the rest of the jobs to the other queue. See section
2.3.6.4, “Using Resources to Route Jobs Between Queues”, on page 26.

• Access control limits: you can set up destination queues that are designed for specific groups of users. Each queue
accepts jobs only from a designated set of users or groups. For example, if you have three departments, Math, Phys-
ics, and Chemistry, the queue belonging to Math accepts only users from the Math department. See section 2.3.6.5,
“Using Access Control to Route Jobs”, on page 29.

When routing a job between complexes, the job’s owner must be able to submit a job to the destination complex.

For how to configure and use routing queues, see section 2.3.6, “Routing Queues”, on page 25.
AG-206 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.39.2.ii Hooks as Mechanism to Move Jobs

You can use a submission hook to move jobs into queues such as dedicated time queues, queues with special priority, or
reservation queues. You write the hook so that it identifies the jobs that should go into a particular queue, and then
moves them there. For example, your hook can move all jobs from ProjectA to a specific queue. This is a snippet, where
you would replace <destination queue> with the queue name.

import pbs

e = pbs.event()

e.job.queue = pbs.server().queue("<destination queue>")

For complete information on hooks, see the PBS Professional Hooks Guide.

4.9.39.2.iii Peer Scheduling as Mechanism to Move Jobs

To send jobs from one partition or complex to another, you use peer scheduling. In peer scheduling, the partition or com-
plex that supplies the jobs (the “furnishing” partition or complex) contains at least one special queue (the “furnishing
queue”), whose jobs can be pulled over to another partition or complex, to be run at the other partition or complex. The
partition or complex that pulls jobs contains a special queue (the “pulling queue”), where those pulled jobs land.

You can use any of the job routing methods, such as routing queues, tagging, or hooks, to control which jobs land in the
furnishing queue.

You can use any of the job filtering methods, such as resource limits or access controls, to control which jobs land in the
furnishing queue.

You can use job submission hooks on the jobs that land in the pulling queue.

See section 4.9.31, “Peer Scheduling”, on page 165.

4.9.39.2.iv The qmove Command as Mechanism to Move Jobs

You can use the qmove command, either manually or via a cron job, to move jobs into the desired queues. See
“qmove” on page 172 of the PBS Professional Reference Guide.

4.9.39.3 Mechanisms for Filtering Jobs

4.9.39.3.i Resource Limits as Filtering Mechanism

You can filter whether each job is accepted at the server or a queue based on the job’s resource request. For example, you
can control which jobs are allowed to be submitted to the server, by limiting the amount of memory a job is allowed to
request. You can do the same at execution queues. These limits apply regardless of the routing mechanism being used,
and apply to jobs being submitted directly to the queue. See section 5.13, “Using Resources to Restrict Server or Queue
Access”, on page 254.

4.9.39.3.ii Access Controls as Filtering Mechanism

You can filter jobs whether each job is accepted at the server or a queue based on the job’s owner, or the job owner’s
group. At each queue and at the server, you can create a different list of the users who can submit jobs and the users who
cannot submit jobs. You can do the same for groups.

For example, you can set up a routing queue and several execution queues, where each execution queue has access con-
trols allowing only certain users and groups. When PBS routes the jobs from the routing queue, it will route them into
the execution queues that accept owners of the jobs. See section 2.3.6.5, “Using Access Control to Route Jobs”, on page
29.

4.9.39.3.iii Hooks as Filtering Mechanism

You can filter which jobs are accepted at the server or queues according to any criterion, using a hook. For example, you
can write a hook that disallows jobs that request certain combinations of resources. See the PBS Professional Hooks
Guide.
PBS Professional 2020.1.1 Administrator’s Guide AG-207

Chapter 4 Scheduling
4.9.39.4 Mechanisms for Tagging Jobs

4.9.39.4.i Using Hooks to Tag Jobs

You can use a hook to force certain jobs to run on particular hardware, by having the hook set the value of a host-level
custom resource in a job’s resource request. The hook sets this resource to match the value at the selected vnodes, so that
the job must run on one or more of those vnodes. You can use the job’s project to determine how the job is tagged. Note
that the value at other vnodes should be different, otherwise the job could end up on vnodes you don’t want.

• Define a host-level custom resource; see section 5.14.4, “Configuring Host-level Custom Resources”, on page 269.

• Set this resource to a special value on the special vnodes only. See section 5.7.2, “Setting Values for Global Static
Resources”, on page 241.

• Create a hook that filters jobs by size, project, or other characteristic, and sets the value of the custom resource to the
special value, in the job’s resource request. See the PBS Professional Hooks Guide

If you must use a routing queue, and you need to route on host-level resources (resources in the job’s select specifica-
tion), you can use a hook to tag jobs so that they are routed correctly. The hook reads the job’s host-level resource
request, and sets the job’s server-level resource request accordingly. This server-level resource is used for routing:

• Create a custom server-level resource that you use exclusively for routing; set it to appropriate values on the destina-
tion queues; see section 5.14.3, “Creating Server-level Custom Resources”, on page 267

• Create a submit hook to extract the host-level resource value and use it to populate the custom resource that you use
exclusively for routing; see the PBS Professional Hooks Guide

4.9.39.4.ii Using the qalter Command to Tag Jobs

You can change a job’s resource request using the qalter command. This way you can override normal behavior. See
“qalter” on page 127 of the PBS Professional Reference Guide.

4.9.40 Scheduler Cycle Speedup

4.9.40.1 Top Job Calculation Speedup

When you are using backfilling, you can choose whether and how much you want to speed up the scheduling cycle
(within limits). You can get shorter scheduling cycle duration with coarser granularity in estimating start times for jobs.
When you are using backfilling, a scheduler calculates estimated start times for jobs. You can choose not to make this
trade-off (keeping fine granularity in start time estimation), or you can choose low, medium, or high speedup. See sec-
tion 4.9.3, “Using Backfilling”, on page 105.

4.9.40.1.i Configuring Top Job Calculation Speedup

You configure top job calculation speedup by using qmgr to set the opt_backfill_fuzzy scheduler attribute:

Qmgr: set sched opt_backfill_fuzzy [off | low | medium | high]

where each option has the following effect:

off

This scheduler uses its normal, finest granularity. No speedup.

low

This scheduler uses fairly fine granularity, not as fine as normal. Some speedup.

medium

This scheduler uses medium granularity. Medium speedup.

high

This scheduler uses the coarsest granularity. Greatest speedup.
AG-208 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
The options off, low, medium, and high are not case-sensitive. You can use only one option at a time. Since this is an
attribute and not a scheduler parameter, it is not a primetime option.

4.9.40.1.ii What Changing Calculation Speed Affects

Changing this attribute takes effect on the next scheduling cycle. If you change this attribute, top jobs are recalculated in
the next scheduling cycle.

Once as ASAP reservation is made, it is fixed. If you change opt_backfill_fuzzy later, the reservation start time does not
change, even if it becomes degraded. PBS finds new vnodes for degraded reservations, but does not change the start
times.

4.9.40.1.iii Caveats and Restrictions for Top Job Calculation Speedup

This option is effective only when you are using backfilling.

4.9.41 Shared vs. Exclusive Use of Resources by Jobs

When PBS places a job, it can do so on hardware that is either already in use or has no jobs running on it. PBS can make
the choice at the vnode level or at the host level. How this choice is made is controlled by a combination of the value of
each vnode’s sharing attribute and the placement requested by a job.

You can set each vnode’s sharing attribute so that the vnode or host is always shared, is always exclusive, or so that it
honors the job’s placement request. If the vnode attribute is set to force_shared or force_excl, the value of a vnode’s
sharing attribute takes precedence over a job’s placement request. If the vnode attribute is set to default_, the job
request overrides the vnode attribute.

Each vnode can be allocated exclusively to one job (each job gets its own vnodes), or its resources can be shared among
jobs (PBS puts as many jobs as possible on a vnode). If a vnode is allocated exclusively to a job, all of its resources are
assigned to the job. The state of the vnode becomes job-exclusive. No other job can use the vnode.

Hosts can also be allocated exclusively to one job, or shared among jobs. If a host is to be allocated exclusively to one
job, all of the host must be used: if any vnode from a host has its sharing attribute set to either default_exclhost or
force_exclhost, all vnodes on that host must have the same value for the sharing attribute.

For a complete description of the sharing attribute, and a table showing the interaction between the value of the sharing
attribute and the job’s placement request, see “sharing” on page 324 of the PBS Professional Reference Guide.

4.9.41.1 Sharing on a Multi-vnode Machine

On a multi-vnode shared-memory machine, a scheduler will share memory from a chunk even if all the CPUs are used by
other jobs. It will first try to put a chunk entirely on one vnode. If it can, it will run it there. If not, it will break the
chunk up across any vnode it can get resources from, even for small amounts of unused memory.

To keep a job in a single vnode, use -lplace=group=vnode; if you want to restrict it to larger sets of vnodes, identify
those sets using a custom string or string_array resource and use it in -lplace=group=<resource>. If you already have
resources used in node_group_key you can usually use these.

4.9.41.2 Setting the sharing Vnode Attribute

To set the sharing attribute for a vnode, use either:

• An exechost_startup hook; see "Setting and Unsetting Vnode Resources and Attributes" on page 48 in the PBS
Professional Hooks Guide

• A Version 2 configuration file; see section 3.4.4, “Configuring the Vnode Sharing Attribute”, on page 46
PBS Professional 2020.1.1 Administrator’s Guide AG-209

Chapter 4 Scheduling
4.9.41.3 Viewing Sharing Information

You can use the qmgr or pbsnodes commands to view sharing information. See “qmgr” on page 149 of the PBS Pro-
fessional Reference Guide and “pbsnodes” on page 35 of the PBS Professional Reference Guide.

4.9.41.4 Sharing Caveats

• On the Cray XC, on cray_compute vnodes, the sharing attribute is set to force_exclhost by default. Do not
change this setting, because ALPS does not support sharing a compute vnode with more than one job.

• The term “sharing” is also used to describe the case where MoM manages a resource that is shared among her
vnodes, for example an application license shared by the vnodes of a multi-vnode machine.

• The term “sharing” is also used to mean oversubscribing CPUs, where more than one job is run on one CPU; the
jobs are “sharing” a CPU. See section 9.6.5, “Managing Load Levels on Vnodes”, on page 439

• If a host is to be allocated exclusively to one job, all of the host must be used: if any vnode from a host has its sharing
attribute set to either default_exclhost or force_exclhost, all vnodes on that host must have the same value for the
sharing attribute.

• For vnodes with sharing=default_shared, jobs can share a vnode, so that unused memory on partially-allocated
vnodes is allocated to a job. The exec_vnode attribute will show this allocation.

4.9.42 Using Shrink-to-fit Jobs

4.9.42.1 Shrink-to-fit Jobs

PBS allows you or the job submitter to adjust the running time of a job to fit into an available scheduling slot. The job’s
minimum and maximum running time are specified in the min_walltime and max_walltime resources. PBS chooses the
actual walltime. Any job that requests min_walltime is a shrink-to-fit job.

4.9.42.1.i Requirements for a Shrink-to-fit Job

A job must have a value for min_walltime to be a shrink-to-fit job. Shrink-to-fit jobs are not required to request
max_walltime, but it is an error to request max_walltime and not min_walltime.

Jobs that do not have values for min_walltime are not shrink-to-fit jobs, and their walltime can be specified by the user,
inherited through defaults, or set in a hook.

4.9.42.1.ii Comparison Between Shrink-to-fit and Non-shrink-to-fit Jobs

Shrink-to-fit jobs are treated the same as non-shrink-to-fit jobs unless explicitly stated. For example, job priority is not
affected by being shrink-to-fit. The only difference between a shrink-to-fit and a non-shrink-to-fit job is how the job’s
walltime is treated. PBS sets the walltime at the time the job is run; any walltime settings not computed by PBS are
ignored.

4.9.42.2 Where to Use Shrink-to-fit Jobs

If you have jobs that can run for less than the expected time to completion and still make useful progress, you can use
them as shrink-to-fit jobs in order to maximize utilization.
AG-210 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
You can use shrink-to-fit jobs for the following:

• Jobs that are internally checkpointed. This includes jobs which are part of a larger effort, where a job does as much
work as it can before it is killed, and the next job in that effort takes up where the previous job left off.

• Jobs using periodic PBS checkpointing

• Jobs whose real running time might be much less than the expected time

• When you have set up dedicated time for system maintenance, and you want to keep machines well-utilized right up
until shutdown, submitters who want to risk having a job killed before it finishes can run speculative shrink-to-fit
jobs. Similarly, speculative jobs can take advantage of the time just before a reservation starts

• Any job where the submitter does not mind running the job as a speculative attempt to finish some work

4.9.42.3 Running Time of a Shrink-to-fit Job

4.9.42.3.i Setting Running Time Range for Shrink-to-fit Jobs

It is only required that the job request min_walltime to be a shrink-to-fit job. If a job requests min_walltime but does not
request max_walltime, you may want to use a hook or defaults to set a reasonable value for max_walltime. If you use
defaults, you may want to route shrink-to-fit jobs to a special queue where they inherit a value for max_walltime if they
haven’t got one already. See section 4.9.39, “Routing Jobs”, on page 205.

Requesting max_walltime without requesting min_walltime is an error.

A job can end up with a value for min_walltime and max_walltime when the user specifies them, when it inherits them
from server or queue defaults, or when they are set in a hook.

Job submitters can set the job’s running time range by requesting min_walltime and max_walltime, for example:

qsub -l min_walltime=<min walltime>, max_walltime=<max walltime> <job script>

You can set min_walltime or max_walltime using a hook, whether or not the job requests it. You can set up defaults so
that the job inherits these resources if they are not explicitly requested or set in a hook.

4.9.42.3.ii Inheriting Values for min_walltime and max_walltime

The min_walltime and max_walltime resources inherit values differently. A job can inherit a value for max_walltime
from resources_max.walltime; the same is not true for min_walltime. This is because once a job is shrink-to-fit, PBS
can use a walltime limit for max_walltime.

If a job is submitted without a value for min_walltime, the value for min_walltime for the job becomes the first of the fol-
lowing that exists:

• Server’s default qsub arguments

• Queue’s resources_default.min_walltime

• Server’s resources_default.min_walltime

If a shrink-to-fit job is submitted without a value for max_walltime, the value for max_walltime for the job becomes the
first of the following that exists:

• Server’s default qsub arguments

• Queue’s resources_default.max_walltime

• Server’s resources_default.max_walltime

• Queue’s resources_max.walltime

• Server’s resources_max.walltime
PBS Professional 2020.1.1 Administrator’s Guide AG-211

Chapter 4 Scheduling
4.9.42.3.iii Setting walltime for Shrink-to-fit Jobs

For a shrink-to-fit job, PBS sets the walltime resource based on the values of min_walltime and max_walltime, regard-
less of whether walltime is specified for the job. You cannot use a hook to set the job’s walltime, and any queue or server
defaults for walltime are ignored, except for the case where the job is run via qrun -H; see section 4.9.42.8.ii, “Using
qrun With -H Option”, on page 213.

PBS examines each shrink-to-fit job when it gets to it, and looks for a time slot whose length is between the job’s
min_walltime and max_walltime. If the job can fit somewhere, PBS sets the job’s walltime to a duration that fits the
time slot, and runs the job. The chosen value for walltime is visible in the job’s Resource_List.walltime attribute. Any
existing walltime value, regardless of where it comes from (user, queue default, hook, previous execution), is reset to the
new calculated running time.

If a shrink-to-fit job is run more than once, PBS recalculates the job’s running time to fit an available time slot that is
between min_walltime and max_walltime, and resets the job’s walltime, each time the job is run.

4.9.42.4 How PBS Places Shrink-to-fit Jobs

A PBS scheduler treats shrink-to-fit jobs the same way as it treats non-shrink-to-fit jobs when it schedules them to run. A
scheduler looks at each job in order of priority, and tries to run it on available resources. If a shrink-to-fit job can be
shrunk to fit in an available slot, a scheduler runs it in its turn. A scheduler chooses a time slot that is at least as long as
the job’s min_walltime value. A shrink-to-fit job may be placed in a time slot that is shorter than its max_walltime value,
even if a longer time slot is available.

For a multi-vnode job, PBS chooses a walltime that works for all of the chunks required by the job, and places job chunks
according to the placement specification.

4.9.42.5 Shrink-to-fit Jobs and Time Boundaries

The time boundaries that constrain job running time are the following:

• Reservations

• Dedicated time

• Primetime

• Start time for a top job

Time boundaries are not affected by shrink-to-fit jobs.

A shrink-to-fit job can shrink to avoid time boundaries, as long as the available time slot before the time boundary is
greater than min_walltime.

If any job is already running, whether or not it is shrink-to-fit, and you introduce a new period of dedicated time that
would impinge on the job’s running time, PBS does not kill or otherwise take any action to prevent the job from hitting
the new boundary.

4.9.42.5.i Shrink-to-fit Jobs and Prime Time

If you have enabled prime time by setting backfill_prime to True, shrink-to-fit jobs will honor the boundary between
primetime and non-primetime. If prime_spill is True, shrink-to-fit jobs are scheduled so that they cross the prime-non-
prime boundary by up to prime_spill duration only. If prime_exempt_anytime_queues is set to True, a job submitted
in an anytime queue is not affected by primetime boundaries.
AG-212 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.42.6 Shrink-to-fit Jobs and Resource Limits

4.9.42.6.i Shrink-to-fit Jobs and Gating at Server or Queue

Shrink-to-fit jobs must honor any resource limits at the server or queues. If a walltime limit is specified:

• Both min_walltime and max_walltime must be greater than or equal to resources_min.walltime.

• Both min_walltime and max_walltime must be less than or equal to resources_max.walltime.

If resource limits are not met, a job submission or modification request will fail with the following error:

“Job exceeds queue and/or server resource limits”

4.9.42.6.ii Gating Restrictions

You cannot set resources_min or resources_max for min_walltime or max_walltime. If you try, you will see the fol-
lowing error message, for example for min_walltime:

“Resource limits can not be set for min_walltime“

4.9.42.7 Shrink-to-fit Jobs and Preemption

When preempting other jobs, shrink-to-fit jobs do not shrink. Their walltime is set to their max_walltime.

4.9.42.8 Using qrun on Shrink-to-fit Jobs

If you use qrun on a shrink-to-fit job, its behavior depends on whether you use the -H option to qrun.

4.9.42.8.i Using qrun Without -H Option

When a shrink-to-fit job is run via qrun, it can shrink into available space to run. However, if preemption is enabled and
there is a preemptable job that must be preempted in order to run the shrink-to-fit job, the preemptable job is preempted
and the shrink-to-fit job shrinks and runs.

When a shrink-to-fit job is run via qrun, and there is a hard deadline, e.g. reservation or dedicated time, that conflicts
with the shrink-to-fit job’s max_walltime but not its min_walltime, the following happens:

• If preemption is enabled and there is a preemptable job before the hard deadline that must be preempted in order to
run the shrink-to-fit job, preemption behavior means that the shrink-to-fit job does not shrink to fit; instead, it con-
flicts with the deadline and does not run.

• If preemption is enabled and there is no preemptable job before the hard deadline, the shrink-to-fit job shrinks into
the available time and runs.

4.9.42.8.ii Using qrun With -H Option

When a shrink-to-fit job is run via qrun -H, the shrink-to-fit job runs, regardless of reservations, dedicated time, other
jobs, etc. When run via qrun -H, shrink-to-fit jobs do not shrink. If the shrink-to-fit job has a requested or inherited
value for walltime, that value is used, instead of one set by PBS when the job runs. If no walltime is specified, the job
runs without a walltime.

4.9.42.9 Modifying Shrink-to-fit and Non-shrink-to-fit Jobs

4.9.42.9.i Modifying min_walltime and max_walltime

You can change min_walltime and/or max_walltime for a shrink-to-fit job using modifyjob or queuejob hooks, or by
using the qalter command. Any changes take effect after the current scheduling cycle. Changes affect only queued
jobs; running jobs are unaffected unless they are rerun.
PBS Professional 2020.1.1 Administrator’s Guide AG-213

Chapter 4 Scheduling
4.9.42.9.ii Making Non-shrink-to-fit Jobs into Shrink-to-fit Jobs

You can convert a normal non-shrink-to-fit job into a shrink-to-fit job using the following methods:

• Use a hook that does the following:

• Sets max_walltime to the job’s walltime

• Sets min_walltime to a useful value

• Use resources_default at the server or a queue. For a queue, you might want to set that queue’s from_route_only
attribute to True.

• Route to a queue that has resources_default.min_walltime set.

• Use the qalter command to set values for min_walltime and max_walltime.

Any changes take effect after the current scheduling cycle. Changes affect only queued jobs; running jobs are unaffected
unless they are rerun.

4.9.42.9.iii Making Shrink-to-fit Jobs into Non-shrink-to-fit Jobs

To make a shrink-to-fit job into a normal, non-shrink-to-fit job, use either a hook or the qalter command to do the fol-
lowing:

• Set the job’s walltime to the value for max_walltime (beware of allowing the job to run into existing reservations
etc.)

• Unset min_walltime

• Unset max_walltime

4.9.42.9.iv Hooks for Running Time Limits

If you want to set a new running time limit for shrink-to-fit jobs, you can use a hook. However, this hook must set the
value of max_walltime, rather than walltime, since hook settings for walltime for a shrink-to-fit job are ignored.

4.9.42.10 Viewing Running Time for a Shrink-to-fit Job

4.9.42.10.i Viewing min_walltime and max_walltime

You can use qstat -f to view the values of the min_walltime and max_walltime. For example:

% qsub -lmin_walltime=01:00:15, max_walltime=03:30:00 job.sh

<job-id>

% qstat -f <job-id>

...

resource_list.min_walltime=01:00:15

resource_list.max_walltime=03:30:00

You can use tracejob to display max_walltime and min_walltime as part of the job's resource list. For example:

12/16/2011 14:28:55 A user=pbsadmin group=Users project=_pbs_project_default

…

Resource_List.max_walltime=10:00:00

Resource_List.min_walltime=00:00:10

4.9.42.10.ii Viewing walltime for a Shrink-to-fit Job

PBS sets a job’s walltime only when the job runs. While the job is running, you can see its walltime via qstat -f.
While the job is not running, you cannot see its real walltime; it may have a value set for walltime, but this value is
ignored.
AG-214 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
You can see the walltime value for a finished shrink-to-fit job if you are preserving job history. See section 13.15, “Man-
aging Job History”, on page 519.

You can see the walltime value for a finished shrink-to-fit job in the scheduler log.

4.9.42.11 Lifecycle of a Shrink-to-fit Job

4.9.42.11.i Execution of Shrink-to-fit Jobs

Shrink-to-fit jobs are started just like non-shrink-to-fit jobs.

4.9.42.11.ii Termination of Shrink-to-fit Jobs

When a shrink-to-fit job exceeds the walltime PBS has set for it, it is killed by PBS exactly as a non-shrink-to-fit job is
killed when it exceeds its walltime.

4.9.42.12 The min_walltime and max_walltime Resources

max_walltime

Maximum walltime allowed for a shrink-to-fit job. Job’s actual walltime is between max_walltime and
min_walltime. PBS sets walltime for a shrink-to-fit job. If this resource is specified, min_walltime must also be
specified. Must be greater than or equal to min_walltime. Cannot be used for resources_min or
resources_max. Cannot be set on job arrays or reservations. If not specified, PBS uses an eternal time slot.
Can be requested only outside of a select statement. Non-consumable. Default: None. Type: duration. Python
type: pbs.duration

min_walltime

Minimum walltime allowed for a shrink-to-fit job. When this resource is specified, job is a shrink-to-fit job. If
this attribute is set, PBS sets the job’s walltime. Job’s actual walltime is between max_walltime and
min_walltime. Must be less than or equal to max_walltime. Cannot be used for resources_min or
resources_max. Cannot be set on job arrays or reservations. Can be requested only outside of a select state-
ment. Non-consumable. Default: None. Type: duration. Python type: pbs.duration

4.9.42.13 Accounting and Logging for Shrink-to-fit Jobs

4.9.42.13.i Accounting Log Entries for min_walltime and max_walltime

The accounting log will contain values for min_walltime and max_walltime, as part of the job’s Resource_List attribute.
This attribute is recorded in the S, E, and R records in the accounting log. For example, if the following job is submitted:

qsub -l min_walltime="00:01:00",max_walltime="05:00:00" -l select=2:ncpus=1 job.sh

This is the resulting accounting record:

…S…….. Resource_List.max_walltime=05:00:00 Resource_List.min_walltime=00:01:00
Resource_List.ncpus=2 Resource_List.nodect=2 Resource_List.place=pack
Resource_List.select=2:ncpus=1 Resource_List.walltime=00:06:18 resources_assigned.ncpus=2

…R…….. Resource_List.max_walltime=05:00:00 Resource_List.min_walltime=00:01:00
Resource_List.ncpus=2 Resource_List.nodect=2 Resource_List.place=pack
Resource_List.select=2:ncpus=1 Resource_List.walltime=00:06:18

…E……. Resource_List.max_walltime=05:00:00 Resource_List.min_walltime=00:01:00
Resource_List.ncpus=2 Resource_List.nodect=2 Resource_List.place=pack
Resource_List.select=2:ncpus=1 Resource_List.walltime=00:06:18…….
PBS Professional 2020.1.1 Administrator’s Guide AG-215

Chapter 4 Scheduling
4.9.42.13.ii Logging

• When a scheduler finds a primetime/dedicated time conflict with a shrink-to-fit job, and the job can be shrunk, the
following message is logged in the scheduler logs, with log level PBSEVENT_DEBUG2:
“Considering shrinking job to duration=<duration>, due to prime/dedicated time conflict”

Sample message from the scheduler log:

“03/26/2012 11:53:55;0040;pbs_sched;Job;98.host3;Considering shrinking job to duration=1:06:05,
due to a prime/dedicated time conflict”

This message doesn't indicate or guarantee that the job will eventually be shrunk and run. This message shows that
the job's maximum running time conflicted with primetime and the job can still be run by shrinking its running time.

• When a scheduler finds a reservation/top job conflict with a shrink-to-fit job, and the job can be shrunk, the follow-
ing message is logged in the scheduler logs, with log level PBSEVENT_DEBUG2:
“Considering shrinking job to duration=<duration>”, due to reservation/top job conflict”

Sample log message from the scheduler log:

 “03/26/2012 11:53:55;0040;pbs_sched;Job;98.host3; Considering shrinking job to
duration=1:06:05, due to reservation/top job conflict”

This message doesn't indicate or guarantee that the job will eventually be shrunk and run. This message shows that
the job's maximum running time conflicted with a reservation or top job and the job can still be run by shrinking its
running time.

• When a scheduler runs the shrink-to-fit job, the following message is logged in the scheduler logs with log level
PBSEVENT_DEBUG2:
“Job will run for duration=<duration>”

Sample scheduler log message:

 “03/26/2012 11:53:55;0040;pbs_sched;Job;98.host3;Job will run for duration=1:06:05”

4.9.42.14 Caveats and Restrictions for Shrink-to-fit Jobs

• It is erroneous to specify max_walltime for a job without specifying min_walltime. If a queuejob or modifyjob
hook attempts this, the following error appears in the server logs. If attempted via qsub or qalter, the following
error appears in the server log and is printed as well:
'Can not have “max_walltime” without “min_walltime”'

• It is erroneous to specify a min_walltime that is greater than max_walltime. If a queuejob or modifyjob hook
attempts this, the following error appears in the server logs. If attempted via qsub or qalter, the following error
appears in the server log and is printed as well:
'“min_walltime” can not be greater than “max_walltime”'

• Job arrays cannot be shrink-to-fit. You cannot have a shrink-to-fit job array. It is erroneous to specify a
min_walltime or max_walltime for a job array. If a queuejob or modifyjob hook attempts this, the following error
appears in the server logs. If attempted via qsub or qalter, the following error appears in the server log and is
printed as well:
'”min_walltime” and “max_walltime” are not valid resources for a job array'

• Reservations cannot be shrink-to-fit. You cannot have a shrink-to-fit reservation. It is erroneous to set min_walltime
or max_walltime for a reservation. If attempted via pbs_rsub, the following error is printed:
'”min_walltime” and “max_walltime” are not valid resources for reservation.'

• It is erroneous to set resources_max or resources_min for min_walltime and max_walltime. If attempted, the fol-
lowing error message is displayed, whichever is appropriate:
“Resource limits can not be set for min_walltime”

“Resource limits can not be set for max_walltime”
AG-216 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.43 SMP Cluster Distribution

This tool is deprecated. PBS provides a method for distributing single-chunk jobs to a cluster of single-vnode machines
according to a simple set of rules. The method is called SMP cluster distribution. It takes into account the resources
specified on the resources: line in <sched_priv directory>/sched_config. The SMP cluster distribution
method allows you to choose one of three job distribution systems:

4.9.43.1 How to Use SMP Cluster Distribution

To use SMP cluster distribution, do the following:

• Set the smp_cluster_dist scheduler parameter to the desired value. For example, to enable SMP cluster distribution
using the round robin algorithm during primetime, and the pack algorithm during non-primetime, set the following
in the scheduler’s configuration file:
smp_cluster_dist: round_robin prime

smp_cluster_dist: pack non_prime

• Set resources_available.<resource name> to the desired limit on each vnode. You do not need to set any of the
resources that are automatically set by PBS. For a list of these, see section 5.7.1.1, “How Vnode Available Resource
Values are Set”, on page 239.

• Specify the resources to use during scheduling, in <sched_priv directory>/sched_config:
resources: “ncpus, mem, arch, host, ...”

The smp_cluster_dist parameter is a primetime option, meaning that you can configure it separately for primetime and
non-primetime, or you can specify it for all of the time.

4.9.43.2 How To Disable SMP Cluster Distribution

To ensure that SMP cluster distribution does not interfere with your scheduling policy, leave the smp_cluster_dist
parameter set to its default value:

smp_cluster_dist pack all

Table 4-18: SMP Cluster Distribution Options

Option Meaning

pack Pack all jobs onto one vnode, until that vnode is full, then move to the next vnode

round_robin Place one job on each vnode in turn, before cycling back to the first vnode

lowest_load Place the job on the host with the lowest load average
PBS Professional 2020.1.1 Administrator’s Guide AG-217

Chapter 4 Scheduling
4.9.43.3 SMP Cluster Distribution Caveats and Advice

• This feature was intended for early implementations of complexes, and probably is not useful for you.

• If you use this feature, you are committed to using it for the entire partition or complex; you cannot designate some
machines where it will be used and others where it will not be used.

• If smp_cluster_dist with either round_robin or lowest_load is used with node_sort_key set to unused or
assigned, smp_cluster_dist is set to pack.

• The avoid_provision provisioning policy is incompatible with the smp_cluster_dist scheduler configuration param-
eter. If a job requests an AOE, the avoid_provision policy overrides the behavior of smp_cluster_dist.

• This feature is applied only to single-chunk jobs that specify an arrangement of pack. Multi-chunk jobs are ignored.

• This feature is useful only for single-vnode machines. On a multi-vnoded machine, this feature distributes jobs
across vnodes, but those jobs can end up all stuck on a single host.

• The choice of smp_cluster_dist with round_robin can be replaced by sorting vnodes according to unused CPUs,
which does a better job:
node_sort_key: “ncpus HIGH unused”

4.9.44 Using Soft Walltime

A scheduler requires walltime to do backfilling. Job submitters want to avoid having their jobs killed if they run over
their walltimes, so they may overestimate job walltimes. You can give a scheduler tighter time slots by giving jobs soft
walltimes. Jobs are not killed if they go over their soft walltimes. If a job has both a walltime and a soft walltime, a
scheduler uses the soft walltime.

When a job exceeds its soft walltime, PBS estimates a new soft walltime, and records the estimate in the job’s esti-

mated.soft_walltime attribute. The estimated.soft_walltime job attribute is readable by all, but writable only by PBS.

4.9.44.1 Assigning Soft Walltime to Jobs

You can set a soft walltime for a job by having it request the soft_walltime resource. You can set it in a server hook, or
by using qalter or resources_default.

The soft_walltime resource can be requested for a job only by PBS Managers. The soft_walltime resource cannot be set
at job submission time, except by a queuejob hook, because job submission uses user permissions. Soft walltime cannot
be set in MoM hooks.

You can create a custom resource and allow users to request it, and then set the value of soft_walltime to that resource.
See an example in section 4.9.44.4, “Allowing Job Submitters to Set Soft Walltime”, on page 219.

4.9.44.2 How Soft and Hard Walltimes Are Used

When a job is queued:

• If the job is a top job, its soft_walltime is used in determining where the job fits into the calendar

• If the job is a filler job, its soft_walltime is used in determining whether the job conflicts with top jobs

• If the job is a filler job, its hard walltime is used in determining whether the job conflicts with confirmed reserva-
tions

• If dedicated time is used, soft_walltime is used in determining whether the job will finish before dedicated time
starts

• If backfill_prime is set, soft_walltime is used in determining whether the job will finish before the next prime
boundary + prime_spill
AG-218 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
When a job is running:

• If resources_used.walltime <= soft_walltime, the job continues to run

• If resources_used.walltime > soft_walltime, the job has exceeded its soft_walltime. The job is not killed; the
job's soft_walltime is extended:

• Every time the job exceeds its soft_walltime, it is extended by 100% of its original soft_walltime

• If both a soft_walltime and a hard walltime are set, the soft_walltime is never extended past the job's hard
walltime

• If a job exceeds its soft_walltime and crosses over into dedicated_time, PBS does not kill the job

• The value of Resource_List.soft_walltime does not change. A scheduler sets the estimated.soft_walltime
job attribute to the new soft_walltime estimate

• If a job is a preemption candidate, and preempt_order is based on the percentage the job has completed (e.g.,
preempt_order SCR 20 S), the initial soft_walltime request is used to determine the percentage of completion

• If the job runs past its initial soft_walltime request, preempt_order behaves as if the job is 100% complete. It
remains at 100% complete for the remainder of the job regardless of how many times the soft_walltime is
extended. For example, if a job has soft_walltime=1:00:00, at 59m, the job is at 99% complete. At 1:00:00, the
soft_walltime is extended to 2:00:00. At 1:30:00 the job remains at 100% complete since it has reached its
original soft_walltime request

When confirming reservations:

• Only a job's hard walltime is used in determining when jobs end

• A job's soft_walltime is not used when confirming reservations

4.9.44.3 Examples of Using Soft Walltime

Example 4-27: Job J has a soft_walltime=1:00:00 but no hard walltime

J exceeds its soft_walltime. J is extended by its original soft_walltime to 2:00:00.

If J exceeds its soft_walltime again, J is extended again by its original soft_walltime to 3:00:00

Example 4-28: Job K has a soft_walltime=1:00:00 and a hard walltime=1:30:00

K exceeds its soft_walltime. Because 2:00:00 is past its hard walltime, K is extended to its limit of 1:30:00 instead.

4.9.44.4 Allowing Job Submitters to Set Soft Walltime

Example of hook to allow users to directly set soft_walltime:

import pbs

e = pbs.event()

j = e.job

j.Resource_List["soft_walltime"] = pbs.duration(j.Resource_List["set_soft_walltime"])

Job submitters request the new resource:

% qsub -l set_soft_walltime=1:00:00 -l select=1:ncpus=1
PBS Professional 2020.1.1 Administrator’s Guide AG-219

Chapter 4 Scheduling
4.9.44.5 Caveats and Restrictions for Soft Walltime

• The soft_walltime resource is not sent to the MoM when the job is started.

• A shrink-to-fit job requesting soft_walltime is rejected, because a job's min_walltime is the minimum amount of
time a job needs to get any real work done. A job's hard walltime can be set to its min_walltime. A job's
soft_walltime has to be shorter than its hard walltime. This means that the soft_walltime would have to be shorter
than the job's minimum amount of time to get any real work done. The two features do not make sense together.

4.9.45 Sorting Jobs on a Key

PBS allows you to sort jobs on a key that you specify. This can be used when setting both execution and preemption pri-
ority. Sorting jobs comes into play after jobs have been divided into classes, because each class may contain more than
one job. You can sort on one or more of several different keys, and for each key, you can sort either from low to high or
from high to low.

You configure sorting jobs on a key by setting values for the job_sort_key scheduler parameter. When preemption is
enabled, jobs are automatically sorted by preemption priority. Table 4-8, “Job Execution Classes,” on page 135 shows
where this step takes place.

You can create an invisible, unrequestable custom resource, and use a hook to set the value of this resource for each job.
The hook modifies the job’s resource request to include the new resource, and sets the value to whatever the hook com-
putes. Then you can sort jobs according to the value of this resource.

The job_sort_key parameter is a primetime option, meaning that you can configure it separately for primetime and non-
primetime, or you can specify it for all of the time.

4.9.45.1 job_sort_key Syntax

job_sort_key: “<sort key> HIGH | LOW <primetime option>”

You can use the following keys for sorting jobs:

You can sort on up to 20 keys.

The argument to the job_sort_key parameter is a quoted string. The default for job_sort_key is that it is not in force.

See “job_sort_key” on page 252 of the PBS Professional Reference Guide.

4.9.45.2 Configuring Sorting Jobs on a Key

You can specify more than one sort key, where you want a primary sort key, a secondary sort key, etc.

Table 4-19: Keys for Sorting Jobs

Sort Key
Allowed
Order

Description

<PBS resource> HIGH | LOW Sorts jobs according to how much of the specified resource they request.

fairshare_perc HIGH | LOW Sorts according to fairshare percentage allotted to entity that owns job. This
percentage is defined in the resource_group file.

If user A has more priority than user B, all of user A's jobs are always run first.
Past history is not used.

job_priority HIGH | LOW Sorts jobs by the value of each job’s priority attribute.

sort_priority HIGH | LOW Deprecated. Replaced by job_priority option.
AG-220 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
If you specify more than one entry for job_sort_key, the first entry is the primary sort key, the second entry is the second-
ary sort key, which is used to sort equal-valued entries from the first sort, and so on.

Each entry is specified one to a line.

To sort jobs on a key, set the job_sort_key scheduler parameter:

• Set the desired key

• Specify whether high or low results should come first

• Specify the primetime behavior

A scheduler’s configuration file is read on startup and HUP.

4.9.45.3 Examples of Sorting Jobs on Key

Example 4-29: Sort jobs so that those with long walltime come first:

job_sort_key: “walltime HIGH”

Example 4-30: For example, if you want big jobs to run first, where “big” means more CPUs, and if the CPUs are the
same, more memory, sort on the number of CPUs requested, then the amount of memory requested:

job_sort_key: “ncpus HIGH” all

job_sort_key: “mem HIGH” all

Example 4-31: Sort jobs so that those with lower memory come first:

job_sort_key: “mem LOW” prime

Example 4-32: Sort jobs according to the value of an invisible custom resource called JobOrder:

job_sort_key: “JobOrder LOW” all

4.9.45.4 Caveats and Advice for Sorting Jobs on Key

• Do not use fairshare_perc as the sort key when using fairshare, meaning the fair_share scheduler parameter is
enabled. If you do this, a scheduler will attempt to sort a set of jobs where each job has the same sort key value.
This will not sort the jobs.

• Use the fairshare_perc option only when ordering jobs by entity shares. See section 4.9.14, “Sorting Jobs by Entity
Shares (Was Strict Priority)”, on page 131.

• To run big jobs first, use ncpus as the primary sort key for job_sort_key:
job_sort_key: “ncpus HIGH”

• The job_sort_key parameter is overridden by the job sorting formula and by fairshare. It is invalid to set both
job_sort_formula and job_sort_key at the same time. If they are both set, job_sort_key is ignored and the following
error message is logged:
“Job sorting formula and job_sort_key are incompatible. The job sorting formula will be used.”

• A scheduler’s configuration file contains an example line for job_sort_key. This line is commented out, but shows
an example of job_sort_key with “cput” as the sorting key.

• The preempt_priority argument to the job_sort_key parameter is deprecated. Jobs are now automatically sorted
by preemption priority when preemption is enabled.
PBS Professional 2020.1.1 Administrator’s Guide AG-221

Chapter 4 Scheduling
4.9.46 Sorting Jobs by Requested Priority

You can sort jobs according to the priority that was requested for the job. This value is found in the job’s Priority
attribute. You can use this value in the following ways:

• The term job_priority represents the value of the job’s priority attribute in the job sorting formula. See section
4.9.21, “Using a Formula for Computing Job Execution Priority”, on page 149.

• The job_sort_key scheduler parameter can take the term job_priority as an argument. The term job_priority repre-
sents the value of the job’s Priority attribute. See section 4.9.45, “Sorting Jobs on a Key”, on page 220.

You can use a hook to set or change the value of a job’s Priority attribute. See the PBS Professional Hooks Guide.

4.9.47 Sorting Queues into Priority Order

PBS always sorts all the execution queues in your partition or complex according to their priority, and uses that ordering
when examining queues individually. Queues are ordered with the highest-priority queue first.

If you want queues to be considered in a specific order, you must assign a different priority to each queue. Give the
queue you want considered first the highest priority, then the next queue the next highest priority, and so on. To set a
queue’s priority, use the qmgr command to assign a value to the priority queue attribute.

Qmgr: set queue <queue name> priority = <value>

Sorting queues into priority order is useful for the following:

• Examining queues one at a time. See section 4.9.4, “Examining Jobs Queue by Queue”, on page 110.

• Selecting jobs from queues in a round-robin fashion. See section 4.9.38, “Round Robin Queue Selection”, on page
204.

4.9.47.1 Caveats and Advice when Sorting Queues

• If you do not set queue priorities, queue ordering is undefined.

• The sort_queues parameter is obsolete (version 20).

4.9.48 Starving Jobs

PBS can keep track of the amount of time a job has been waiting to run, and then mark the job as starving if this time has
passed a specified limit. You can use this starving status in calculating both execution and preemption priority.

4.9.48.1 Enabling Starving

You enable tracking whether jobs are starving by setting the help_starving_jobs scheduler parameter to True.

You specify the amount of time required for a job to be considered starving in the max_starve scheduler parameter. The
default for this parameter is 24 hours.

The help_starving_jobs parameter is a primetime option, meaning that you can configure it separately for primetime and
non-primetime, or you can specify it for all of the time. See “help_starving_jobs” on page 251 of the PBS Professional
Reference Guide.

4.9.48.2 Time Used for Starving

PBS can use one of the following kinds of time to determine whether a job is starving:

• The job’s eligible wait time, described in section 4.9.13, “Eligible Wait Time for Jobs”, on page 126

• The amount of time the job has been queued
AG-222 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
You specify which to use in the server’s eligible_time_enable attribute. When eligible_time_enable is set to True,
each job’s eligible_time value is used as its wait time for starving. If eligible_time_enable is set to False, the amount
of time the job has been queued is used as its wait time for starving. The default for eligible_time_enable is False.

If the server’s eligible_time_enable attribute is set to False, the following rules apply:

• The amount of time the job has been queued is used as its wait time for starving.

• Jobs lose their queue wait time whenever they are requeued, as with the qrerun command. This includes when
they are checkpointed or requeued (but not suspended) during preemption.

• Suspended jobs do not lose their queue wait time. However, when they become suspended, the amount of time since
they were submitted is counted towards their queue wait time. For example, if a job was submitted, then remained
queued for 1 hour, then ran for 26 hours, then was suspended, if max_starve is 24 hours, then the job will become
starving.

If the server’s eligible_time_enable attribute is set to True, the following rules apply:

• The job’s eligible_time value is used as its wait time for starving.

• Jobs do not lose their eligible_time when they are requeued.

• Jobs do not lose their eligible_time when they are suspended.

4.9.48.3 Starving and Job Priority

Starving is one of the job classes used by PBS to calculate job execution priority. If you enable starving jobs, PBS will
classify starving jobs in the Starving class, which gives them greater than ordinary priority. See section 4.9.16, “Calcu-
lating Job Execution Priority”, on page 134. Each job’s eligible wait time can also be used in the job sorting formula
used to calculate job execution priority. See section 4.9.21, “Using a Formula for Computing Job Execution Priority”, on
page 149.

Starving is one of the job classes that you can use when specifying how preemption should work. You can choose how
much preemption priority is given to starving jobs when you set preemption levels. See section 4.9.33, “Using Preemp-
tion”, on page 180.

4.9.48.4 Parameters and Attributes Affecting Starving

The following table lists the parameters and attributes that affect starving:

Table 4-20: Parameters and Attributes Affecting Starving

Parameter or
Attribute

Location Effect

help_starving_jobs <sched_priv directory>/
sched_config

Controls whether long-waiting jobs are
considered starving. When set to True,
jobs can be starving. Default: True all

max_starve <sched_priv directory>/
sched_config

Amount of wait time for job to be consid-
ered starving. Default: 24 hours.

eligible_time_enable Server attribute Controls whether a job’s wait time is taken
from its eligible_time or from its queued
time. When set to True, a job’s
eligible_time is used as its wait time.
Default: False.

eligible_time Job attribute The amount of time a job has been blocked
from running due to lack of resources.
PBS Professional 2020.1.1 Administrator’s Guide AG-223

Chapter 4 Scheduling
4.9.48.5 Starving and Queued or Running Jobs

A job can only accumulate starving time while it waits to run, not while it runs. When a job is running, it keeps the starv-
ing status it had when it was started. While a job is running, if it wasn’t starving before, it can’t become starving. How-
ever, it keeps its starving status if it became starving while queued.

4.9.48.6 Starving and Subjobs

Subjobs that are queued can become starving. Starving status is applied to individual subjobs in the same way it is
applied to jobs. The queued subjobs of a job array can become starving while others are running. If a job array has starv-
ing subjobs, then the job array is starving.

4.9.48.7 Starving and Backfilling

Because a starving job can become a top job, but can continue to be unable to run due to a lack of resources, you may
find it useful to use backfilling around starving jobs. See section 4.9.3, “Using Backfilling”, on page 105.

4.9.48.8 Starving Caveats

Do not enable starving with fairshare, meaning do not set both the fair_share and help_starving_jobs scheduler param-
eters to True.

4.9.49 Using Strict Ordering

By default, when scheduling jobs, PBS orders jobs according to execution priority, then considers each job, highest-pri-
ority first, and runs the next job that can run now. Using strict ordering means that you tell PBS that it must not skip a job
when choosing which job to run. If the top job cannot run, no job runs.

Strict ordering does not change how execution priority is calculated.

4.9.49.1 Configuring Strict Ordering

To configure strict ordering, set the strict_ordering scheduler parameter to True.

The strict_ordering parameter is a primetime option, meaning that you can configure it separately for primetime and
non-primetime, or you can specify it for all of the time. See “strict_ordering” on page 257 of the PBS Professional Ref-
erence Guide.

4.9.49.2 How Strict Ordering Works

When strict_ordering is True, a scheduler runs jobs in exactly the order of their priority.

Strict ordering does not affect how job priority is calculated, but it does change which execution priority classes a sched-
uler uses; see section 4.9.16, “Calculating Job Execution Priority”, on page 134.

4.9.49.3 Combining Strict Ordering and Backfilling

Strict ordering alone may cause some resources to stand idle while the top job waits for resources to become available. If
you want to prevent this, you can use backfilling with strict ordering. Using backfilling, if the top job cannot run, filler
jobs can be squeezed in around the job that cannot run. See section 4.9.3, “Using Backfilling”, on page 105.
AG-224 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.49.4 Strict Ordering and Calendaring

If you mark a job’s topjob_ineligible attribute True, PBS does not put that job in the calendar if it cannot run right now.
See section 4.9.17, “Calendaring Jobs”, on page 137.

4.9.49.5 Strict Ordering Caveats

• It is inadvisable to use strict ordering and backfilling with fairshare. The results may be non-intuitive. Fairshare will
cause relative job priorities to change with each scheduling cycle. It is possible that a job from the same entity or
group as the desired large job will be chosen as the filler job. The usage from these filler jobs will lower the priority
of the top job.

For example, if a user has a large job that is the top job, and that job cannot run, smaller jobs owned by that user will
chew up the user's usage, and prevent the large job from being likely to ever run. Also, if the small jobs are owned
by a user in one area of the fairshare tree, no large jobs owned by anyone else in that section of the fairshare tree are
likely to be able to run.

• Using dynamic resources with strict ordering and backfilling may result in unpredictable scheduling. See section
4.9.3.11, “Backfilling Recommendations and Caveats”, on page 109.

• Using preemption with strict ordering and backfilling may change which job is the top job.

• With both round robin and strict ordering, a job continually rejected by a runjob hook may prevent other jobs from
being run. A well-written hook would put the job on hold or requeue the job at some later time to allow other jobs in
the same queue to be run.

4.9.50 Sorting Vnodes on a Key

PBS can sort vnodes according to a key that you specify. This can be used when deciding which vnodes to use for jobs.
Sorting vnodes comes into play after a placement set has been selected, or when a job will run on vnodes associated with
a queue, or when placement sets are not used, because in those cases there may be more vnodes available than are
needed. You can sort vnodes on one or more different keys, and for each key, you can sort from high to low, or the
reverse.

You can sort on the last_used_time and Priority vnode attributes, and vnode resources.

The default way to sort vnodes is according to the value of the vnode priority attribute, from higher to lower.

When you sort vnodes according to the assigned or unused amount of a resource, the vnode list is re-sorted after every
job is run. This is because each job may change the usage for that resource.

You configure sorting vnodes on a key by setting values for the node_sort_key scheduler parameter.

The node_sort_key parameter is a primetime option, meaning that you can configure it separately for primetime and
non-primetime, or you can specify it for all of the time.

When vnodes are not sorted on a key, their order is undefined.

4.9.50.1 node_sort_key Syntax

node_sort_key: “sort_priority HIGH | LOW” <prime option>

node_sort_key: “<resource name> HIGH | LOW' <prime option>

node_sort_key: “<resource name> HIGH | LOW total | assigned | unused” <prime option>

where

total

Use the resources_available value
PBS Professional 2020.1.1 Administrator’s Guide AG-225

Chapter 4 Scheduling
assigned

Use the resources_assigned value

unused

Use the value given by resources_available - resources_assigned

Specifying a resource such as mem or ncpus sorts vnodes by the resource specified. Note that a scheduler rounds all
resources of type size, including mem , up to the nearest kb.

Specifying the sort_priority keyword sorts vnodes on the vnode priority attribute.

The default third argument for a resource is total. If the third argument, total | assigned | unused, is not specified with a
resource, total is used. This provides backwards compatibility with previous releases.

The values used for sorting must be numerical.

4.9.50.2 Configuring Sorting Vnodes on a Key

You can specify up to 20 sort keys, where you want a primary sort key, a secondary sort key, etc.

If you specify more than one entry for node_sort_key, the first entry is the primary sort key, the second entry is the sec-
ondary sort key, which is used to sort equal-valued entries from the first sort, and so on.

Each entry is specified one to a line.

To sort jobs on a key, set the node_sort_key scheduler parameter:

• Set the desired key

• Specify whether high or low results should come first

• For sorting on a resource, optionally specify total, assigned, or unused

• Specify the primetime behavior

A scheduler’s configuration file is read on startup and HUP.

The argument to the node_sort_key parameter is a quoted string. The default for node_sort_key is the following:

node_sort_key: “sort_priority HIGH” all

See “node_sort_key” on page 253 of the PBS Professional Reference Guide.

4.9.50.3 Sorting Vnodes According to Load Average

To place jobs on the vnodes with the lowest load:

• Create a custom host-level resource to reflect current load, named for example “r5m”:
qmgr -c "create resource aveload type=long,flag=h"

• Write an exechost_periodic hook to set the resource to the value of the load average; see “Log loads on vnodes” on
page 284 in the PBS Professional Installation & Upgrade Guide for an example of an exechost_periodic hook that
reads the load on the host.

• Use the aveload resource as your node_sort_key:

node_sort_key: “r5m LOW” all
AG-226 PBS Professional 2020.1.1 Administrator’s Guide

Scheduling Chapter 4
4.9.50.4 Examples of Sorting Vnodes

Example 4-33: This sorts vnodes by the highest number of unused CPUs:

node_sort_key: “ncpus HIGH unused” all

Example 4-34: This sorts vnodes by the highest amount of memory assigned to vnodes, but only during primetime:

node_sort_key: “mem HIGH assigned” prime

Example 4-35: This sorts vnodes according to speed. You want to run jobs on the fastest host available. You have 3
machines, where HostA is fast, HostB is medium speed, and HostC is slow.

Set node priorities so that faster machines have higher priority:

Qmgr: set node HostA priority = 200
Qmgr: set node HostB priority = 150
Qmgr: set node HostC priority = 100

Specify that vnodes are sorted according to priority, with highest priority first:

node_sort_key: "sort_priority HIGH" ALL

Example 4-36: The old “nodepack” behavior can be achieved by this:

node_sort_key: “ncpus low unused”

Example 4-37: In this example of the interactions between placement sets and node_sort_key, we have 8 vnodes num-
bered 1-8. The vnode priorities are the same as their numbers. However, in this example, when unsorted, the vnodes
are selected in the order 4, 1, 3, 2, 8, 7, 5, 6. This is to illustrate the change in behavior due to node_sort_key.

We use:

node_sort_key: “sort_priority LOW”

Using node_sort_key, the vnodes are sorted in order, 1 to 8. We have three placement sets:

A: 1, 2, 3, 4 when sorted by node_sort_key; 4, 1, 3, 2 when no node_sort_key is used

B: 5, 6, 7, 8 when sorted by node_sort_key; 8, 7, 5, 6 when no node_sort_key is used

C: 1-8 when sorted, 4, 1, 3, 2, 8, 7, 5, 6 when not sorted.

A 6-vnode job will not fit in either A or B, but will fit in C. Without the use of node_sort_key, it would get vnodes
4, 1, 3, 2, 8, 7. With node_sort_key, it would get vnodes 1 - 6, still in placement set C.

4.9.50.5 Caveats for Sorting Vnodes

• Sorting on a resource with node_sort_key and using “unused” or “assigned” cannot be used with load_balancing.
If both are used, load balancing will be disabled.

• Sorting on a resource and using “unused” or “assigned” cannot be used with smp_cluster_dist when it is set to
anything but “pack”. If both are used, smp_cluster_dist will be set to “pack”.

• A scheduler rounds all resources of type size, including mem, up to the nearest kb. This can affect how vnodes are
sorted when you are sorting on mem.
PBS Professional 2020.1.1 Administrator’s Guide AG-227

Chapter 4 Scheduling
AG-228 PBS Professional 2020.1.1 Administrator’s Guide

5

Using PBS Resources

This chapter covers PBS resources, including providing resources for user jobs, setting up resources such as application
licenses and scratch space, how to make objects inherit resources, and how to use, define, and view resources.

For a list of built-in and custom Cray XC resources automatically created by PBS, see “List of Built-in Resources” on
page 259 of the PBS Professional Reference Guide.

5.1 Chapter Contents

5.1 Chapter Contents . 229
5.2 Introduction to PBS Resources . 230
5.3 Glossary. 230
5.4 Categories of Resources . 233

5.4.1 Built-in vs. Custom Resources . 233
5.4.2 Server vs. Queue vs. Vnode Resources . 233
5.4.3 Consumable vs. Non-consumable Resources. 234
5.4.4 Static vs. Dynamic Resources . 234
5.4.5 Global vs. Local Resources . 235
5.4.6 Requested vs. Default Resources . 235
5.4.7 Shared vs. Non-shared Vnode Resources. 235
5.4.8 Platform-specific vs. Generally Available Resources . 236
5.4.9 Job-wide vs. Chunk Resources. 236

5.5 Resource Types . 237
5.6 Resource Formats . 237

5.6.1 Resource Names . 238
5.7 Setting Values for Resources . 239

5.7.1 How Resource Values are Set . 239
5.7.2 Setting Values for Global Static Resources . 241
5.7.3 Setting Values for Local Static Resources . 241
5.7.4 Setting Values for String Arrays . 241
5.7.5 When Resource Changes Take Effect . 242
5.7.6 Caveats for Setting Resource Values . 242

5.8 Overview of Ways Resources Are Used . 243
5.8.1 How the Scheduler Uses Resources . 243
5.8.2 Advice on Using string and string_array Resources . 243

5.9 Resources Allocated to Jobs and Reservations . 244
5.9.1 Allocating Chunks . 244
5.9.2 Resources Requested by Job. 245
5.9.3 Specifying Job Default Resources . 245
5.9.4 Allocating Default Resources to Jobs. 247
5.9.5 Dynamic Resource Allocation Caveats . 250
5.9.6 Period When Resource is Used by Job. 250

5.10 Using Resources to Track and Control Allocation . 252
5.11 Using Resources for Topology and Job Placement. 253

5.11.1 Restrictions on Using Resources for Job Placement . 253
5.12 Using Resources to Prioritize Jobs . 254
5.13 Using Resources to Restrict Server or Queue Access. 254
PBS Professional 2020.1.1 Administrator’s Guide AG-229

Chapter 5 Using PBS Resources
5.13.1 Admittance Limits for walltime, min_walltime, and max_walltime . 254

5.13.2 Restrictions on Resources Used for Admittance . 255
5.14 Custom Resources . 255

5.14.1 How to Use Custom Resources . 255
5.14.2 Defining New Custom Resources. 257
5.14.3 Creating Server-level Custom Resources . 267
5.14.4 Configuring Host-level Custom Resources . 269
5.14.5 Using Scratch Space . 273
5.14.6 Supplying Application Licenses. 274
5.14.7 Using GPUs . 283
5.14.8 Using FPGAs . 286
5.14.9 Defining Host-level Resource for Applications . 286
5.14.10 Custom Resource Caveats . 286

5.15 Managing Resource Usage . 287
5.15.1 Managing Resource Usage By Users, Groups, and Projects, at Server & Queues 287
5.15.2 Placing Resource Limits on Jobs . 304
5.15.3 Limiting the Number of Jobs in Queues. 309

5.16 Where Resource Information Is Kept . 309
5.16.1 Files . 309
5.16.2 MoM Configuration Parameters. 310
5.16.3 Attributes . 311

5.17 Viewing Resource Information . 311
5.17.1 Resource Information in Accounting Logs . 312
5.17.2 Resource Information in Daemon Logs . 312
5.17.3 Finding Current Value . 313
5.17.4 Restrictions on Viewing Resources . 313

5.18 Resource Recommendations and Caveats . 313

5.2 Introduction to PBS Resources

PBS resources represent things such as CPUs, memory, application licenses, switches, scratch space, and time. They can
also represent whether or not something is true, for example, whether a machine is dedicated to a particular project. PBS
provides a set of built-in resources, and allows you to define additional custom resources. For some systems, PBS cre-
ates specific custom resources. The scheduler matches requested resources with available resources, according to rules
defined by the administrator. PBS can enforce limits on resource usage by jobs. The administrator can specify which
resources are available at the server, each queue, and each vnode.

5.3 Glossary

Reservation

A reservation for a specific set of resources for a specified start time and duration in the future. See section
4.9.37, “Reservations”, on page 197.

Borrowing vnode

A shared vnode resource is available for use by jobs at more than one vnode, but is managed at just one vnode.
A borrowing vnode is a vnode where a shared vnode resource is available, but not managed.
AG-230 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
Built-in resource

A resource that is defined in PBS Professional as shipped. Examples of built-in resources are ncpus, which
tracks the number of CPUs, and mem, which tracks memory. See section 5.4.1, “Built-in vs. Custom
Resources”, on page 233.

Chunk

A set of resources allocated as a unit to a job. Specified inside a selection directive. All parts of a chunk come
from the same host. In a typical MPI (Message-Passing Interface) job, there is one chunk per MPI process.

Consumable resource

A consumable resource is a resource that is reduced or taken up by being used. Examples of consumable
resources are memory or CPUs. See section 5.4.3, “Consumable vs. Non-consumable Resources”, on page 234.

CPU

Has two meanings, one from a hardware viewpoint, and one from a software viewpoint:

1. A core. The part of a processor that carries out computational tasks. Some systems present virtual cores,
for example in hyperthreading.

2. Resource required to execute a program thread. PBS schedules jobs according, in part, to the number of
threads, giving each thread a core on which to execute. The resource used by PBS to track CPUs is called
“ncpus”. The number of CPUs available for use defaults to the number of cores reported by the OS. When
a job requests one CPU, it is requesting one core on which to run.

Custom resource

A resource that is not defined in PBS as shipped. Custom resources are created by the PBS administrator or by
PBS for some systems. See section 5.4.1, “Built-in vs. Custom Resources”, on page 233 and section 5.14,
“Custom Resources”, on page 255.

Floating license

A unit of license dynamically allocated (checked out) when a user begins using an application on some host
(when the job starts), and deallocated (checked in) when a user finishes using the application (when the job
ends).

Generic group limit

A limit that applies separately to groups at the server or a queue. This is the limit for groups which have no indi-
vidual limit specified. A limit for generic groups is applied to the usage across the entire group. A separate
limit can be specified at the server and each queue.

Generic user limit

A limit that applies separately to users at the server or a queue. This is the limit for users who have no individ-
ual limit specified. A separate limit for generic users can be specified at the server and at each queue.

Global resource

A global resource is defined in a resources_available attribute, at the server, a queue, or a host. Global
resources can be operated on via the qmgr command and are visible via the qstat and pbsnodes com-
mands. See section 5.4.5, “Global vs. Local Resources”, on page 235.

Group limit

Refers to configurable limits on resources and jobs. This is a limit applied to the total used by a group, whether
the limit is a generic group limit or an individual group limit.

Indirect resource

A shared vnode resource at vnode(s) where the resource is not defined, but which share the resource.
PBS Professional 2020.1.1 Administrator’s Guide AG-231

Chapter 5 Using PBS Resources
Individual group limit

Applies separately to groups at the server or a queue. This is the limit for a group which has its own individual
limit specified. An individual group limit overrides the generic group limit, but only in the same context, for
example, at a particular queue. The limit is applied to the usage across the entire group. A separate limit can be
specified at the server and each queue.

Individual user limit

Applies separately to users at the server or a queue. This is the limit for users who have their own individual
limit specified. A limit for an individual user overrides the generic user limit, but only in the same context, for
example, at a particular queue. A separate limit can be specified at the server and each queue.

Limit

A maximum that can be applied in various situations:

• The maximum number of jobs that can be queued

• The maximum number of jobs that can be running

• The maximum number of jobs that can be queued and running

• The maximum amount of a resource that can be allocated to queued jobs

• The maximum amount of a resource that can be consumed at any time by running jobs

• The maximum amount of a resource that can be allocated to queued and running jobs

Local resource

A local resource is defined in a Version 1 MoM configuration file. Local resources cannot be operated on via
the qmgr command and are not visible via the qstat and pbsnodes commands. Local resources can be
used by the scheduler. See section 5.4.5, “Global vs. Local Resources”, on page 235.

Managing vnode

The vnode where a shared vnode resource is defined, and which manages the resource.

Memory-only vnode

Represents a node board that has only memory resources (no CPUs).

Non-consumable resource

A non-consumable resource is a resource that is not reduced or taken up by being used. Examples of non-con-
sumable resources are Boolean resources and walltime. See section 5.4.3, “Consumable vs. Non-consumable
Resources”, on page 234.

Overall limit

Limit on the total usage. In the context of server limits, this is the limit for usage at the PBS complex. In the
context of queue limits, this is the limit for usage at the queue. An overall limit is applied to the total usage at
the specified location. Separate overall limits can be specified at the server and each queue.

Resource

A resource can be something used by a job, such as CPUs, memory, high-speed switches, scratch space,
licenses, or time, or it can be an arbitrary item defined for another purpose. PBS provides built-in resources,
and allows custom-defined resources.

Shared resource

A vnode resource defined and managed at one vnode, but available for use at other vnodes.

User limit

Refers to configurable limits on resources and jobs. A user’s limit, whether generic or individual.
AG-232 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.4 Categories of Resources

A PBS resource has several defining characteristics describing where and how it is used, how it was defined, etc. Each
characteristic puts it in one of a set of categories. A resource inhabits several categories at once; for example, a resource
can be a custom global static consumable server resource. We describe the sets of categories below.

5.4.1 Built-in vs. Custom Resources

Built-in resources are the resources that are already defined for you in PBS. PBS supplies built-in resources including
number of CPUs, CPU time, and memory. For a list of built-in resources, see “Resources Built Into PBS” on page 265 of
the PBS Professional Reference Guide. Custom resources are those that you define, or that PBS creates for some sys-
tems. For example, if you wanted a resource to represent scratch space, you could define a resource called Scratch, and
specify a script which queries for the amount of available scratch space. See section 5.14, “Custom Resources”, on page
255.

5.4.2 Server vs. Queue vs. Vnode Resources

PBS resources can be available at the server, queues, both the server and queues, or at vnodes. Any of these resources
can be static or dynamic, built-in or custom, and consumable or non-consumable. Vnode resources can additionally be
global or local.

5.4.2.1 Server Resources

A server resource, also called a server-level resource, is a resource that is available at the server. A server resource is
available to be consumed or matched at the server if you set the server’s resources_available.<resource name>
attribute to the available or matching value. For example, you can define a custom resource called FloatingLicenses
and set the server’s resources_available.FloatingLicenses attribute to the number of available floating licenses.

A server resource is a job-wide resource. This means that a job can request this resource for the entire job, but not for
individual chunks.

An example of a job-wide resource is shared scratch space, or any custom resource that is defined at the server and queue
level.

5.4.2.2 Queue Resources

A queue resource, also called a queue-level resource, is available to be consumed or matched by jobs in the queue if you
set the queue’s resources_available.<resource name> attribute to the available or matching value.

A queue resource is a job-wide resource. A job can request a queue resource for the entire job, but not for individual
chunks.

An example of a job-wide resource is floating licenses, or any custom resource that is defined at both server and queue
level.

5.4.2.3 Resources Defined at Both Server and Queue

Custom resources can be defined to be available either at vnodes or at both the server and queues. Consumable custom
resources that are defined at the server and queue level have their consumption monitored at the server and queue level.
In our example, if a job requests one FloatingLicenses, then the value of the resources_assigned.FloatingLicenses
attribute is incremented by one at both the server and the queue in which the job resides.
PBS Professional 2020.1.1 Administrator’s Guide AG-233

Chapter 5 Using PBS Resources
5.4.2.4 Vnode Resources

A vnode resource, also called a vnode-level or host-level resource, is available only at vnodes. A vnode resource is a
chunk-level resource, meaning that it can be requested for a job only inside of a chunk.

5.4.3 Consumable vs. Non-consumable Resources

A consumable resource is one that is reduced by being used. Consumable resources include ncpus, mem and vmem by
default, and any custom resource defined with the -n or -f flags.

A non-consumable resource is not reduced through use, meaning that allocation to one job does not affect allocation to
other jobs. The scheduler matches jobs to non-consumable resources. Examples of non-consumable resources are wall-

time, file, cput, pcput, pmem, pvmem, nice, or Boolean resources.

The following table shows which resource types are consumable:

5.4.4 Static vs. Dynamic Resources

Static resources are managed by PBS and have values that are fixed until you change them or until you change the hard-
ware and MoM reports a new value for memory or number of CPUs.

Dynamic resources are not under the control of PBS, meaning that they can change independently of PBS. Dynamic
resources are reported via a script; PBS runs a query to discover the available amount. Server dynamic resources use a
script that runs at the server host. Host-level (MoM) dynamic resources use a script that runs at the execution host.

Static and dynamic resources can be available at the server or host level.

The default timeout for a server dynamic resource script is 30 seconds. You can specify a timeout for server dynamic
resources in each scheduler’s server_dyn_res_alarm attribute. If the script does not finish before the timeout, the
scheduler uses a value of zero for the dynamic server resource. If you set the timeout to zero, the scheduler does not
place a time limit on the script.

5.4.4.1 Dynamic Resource Caveats

• Dynamic resource values are displayed in qstat, but the value displayed is the last value retrieved, not the current
value. Dynamic resources have no resources_available.<resource name> representation anywhere in PBS.

• Dynamic resources can take longer to discover because PBS runs a script to determine each one.

Table 5-1: Consumable and Non-consumable Resources

Resource Type Consumable vs. Non-consumable

Boolean Non-consumable

duration Non-consumable

float Consumable

long Consumable

Size Consumable

string Non-consumable

string_array Non-consumable
AG-234 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.4.5 Global vs. Local Resources

5.4.5.1 Global Static Resources

Global static resources are defined in resources_available attributes at the server, queue, or vnode, and are available at
the server, queue, or vnode level. Global static resources can be operated on via the qmgr command and viewed via the
qstat command. Values for built-in global static resources are set via the qmgr command. The walltime and aoe
resources are examples of global static resources. For custom global static resources, see section 5.14.2.9, “Example of
Defining Each Type of Custom Resource”, on page 265.

5.4.5.2 Global Dynamic Resources

Global dynamic resources can be used at the server, queue, or vnode level. Global host-level dynamic resources can be
viewed via the qstat command. Server dynamic resource values have no resources_available.<resource name> rep-
resentation anywhere in PBS. See section 5.14.3.1, “Dynamic Server-level Resources”, on page 267.

The value displayed via qstat for a dynamic resource is the most recently retrieved, not the current value.

5.4.5.3 Local Static Resources

It is not recommended to use local static resources. Local static resources are defined in the MoM Version 1 configura-
tion file. These resources cannot be operated on via the qmgr command or viewed via the qstat command. They have
no entry in the vnode’s resources_available.<resource name> resources. They can be used by the scheduler.

5.4.5.4 Local Dynamic Resources

Dynamic local resources are defined in the MoM Version 1 configuration file. These are scripts that run on the execution
host where they are defined and return a value. These resources can be used by the scheduler. Host dynamic resource
values have no resources_available.<resource name> representation anywhere in PBS. See section 5.14.4.1,
“Dynamic Host-level Resources”, on page 269.

The value displayed via qstat for a dynamic resource is the most recently retrieved, not the current value.

5.4.6 Requested vs. Default Resources

A job’s requested resources are the resources explicitly requested by the job. Default resources are resources that you
specify that each job should have if not requested. For example, you can specify that any job that does not request wall-

time gets 12 hours of walltime. For jobs that do request walltime, the default of 12 hours is not applied.

For information on default resources, see section 5.9.3, “Specifying Job Default Resources”, on page 245 and section
5.9.4, “Allocating Default Resources to Jobs”, on page 247.

5.4.7 Shared vs. Non-shared Vnode Resources

5.4.7.1 Non-shared Vnode Resources

Most vnode resources are not shared. When a resource is defined at one vnode for use by jobs only at that vnode, the
resource is not shared. For example, when resources_available.ncpus is set to 4 on a single-vnode machine, and no
other vnodes have resources_available.ncpus defined as a pointer to this resource, this resource is not shared.
PBS Professional 2020.1.1 Administrator’s Guide AG-235

Chapter 5 Using PBS Resources
5.4.7.2 Shared Vnode Resources

When more than one vnode needs access to the same actual resource, that resource can be shared among those vnodes.
The resource is defined at one vnode, and the other vnodes that supply the resource contain a pointer to that vnode. Any
of the vnodes can supply that resource to a job, but only up to the amount where the total being used by jobs is less than
or equal to the total available at the vnode where the resource is defined. For example, if you had a 4-vnode machine
which had 8GB of memory, and wanted any single vnode to be able to supply up to 8GB to jobs, you would make the
memory a shared resource. See section 5.14.4.3, “Shared Host-level Resources”, on page 271.

5.4.8 Platform-specific vs. Generally Available Resources

Most PBS built-in resources are available on, and apply to, all supported platforms. However, PBS provides some
resources specifically designed for a given platform. These platform-specific resources are not applicable to any other
platform, and cannot be used on platforms other than the one(s) for which they are designed. For example, PBS creates
custom resources that represent Cray XC elements, such as the Cray XC nid and the Cray XC label.

5.4.9 Job-wide vs. Chunk Resources

5.4.9.1 Job-wide Resources

A job-wide resource applies to the entire job, and is available at the server or queue, but not at the host level. Job-wide
resources are requested outside of a select statement, using this form:

-l <resource name>=<value>

For example, to request one hour of walltime for a job:

-l walltime=1:00:00

Examples of job-wide resources are walltime, scratch space, and licenses.

5.4.9.2 Chunk Resources

A chunk resource applies to the part of the job running on that chunk, and is available at the host level. Chunk resources
are requested inside a select statement. A single chunk is requested using this form:

-l select=<resource name>=<value>:<resource name>=<value>

For example, one chunk might have 2 CPUs and 4GB of memory:

-l select=ncpus=2:mem=4gb

To request multiples of a chunk, prefix the chunk specification by the number of chunks:

-l select=[number of chunks]<chunk specification>

For example, to request six of the previous chunk:

-l select=6:ncpus=2:mem=4gb

To request different chunks, concatenate the chunks using the plus sign (“+”):

-l select=[number of chunks]<chunk specification>+[number of chunks]<chunk specification>

For example, to request two kinds of chunks, one with 2 CPUs per chunk, and one with 8 CPUs per chunk, both kinds
with 4GB of memory:

-l select=6:ncpus=2:mem=4gb+3:ncpus=8:mem=4GB
AG-236 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.5 Resource Types

PBS supplies the following types of resources:

Boolean

Duration

Float

Long

Size

String

String Array

5.6 Resource Formats

Custom resources follow the same rules as built-in resources: custom resource names must be PBS NAMEs, allowable
values for float and long resources are the same as for built-in resources, and custom Boolean, time, size, string or string
array resources must have the same format as built-in resources.

Boolean

Name of Boolean resource is a string.

Values:

TRUE, True, true, T, t, Y, y, 1

FALSE, False, false, F, f, N, n, 0

Duration

A period of time, expressed either as

An integer whose units are seconds
or

[[hours:]minutes:]seconds[.milliseconds]
in the form:

[[HH:]MM:]SS[.milliseconds]
Milliseconds are rounded to the nearest second.

Float

Floating point. Allowable values: [+-] 0-9 [[0-9] ...][.][[0-9] ...]

Long

Long integer. Allowable values: 0-9 [[0-9] ...], and + and -
PBS Professional 2020.1.1 Administrator’s Guide AG-237

Chapter 5 Using PBS Resources
<queue name>@<server name>

Size

Number of bytes or words. The size of a word is 64 bits.

Format: <integer>[<suffix>]

where suffix can be one of the following:

Default: bytes

Note that a scheduler rounds all resources of type size up to the nearest kb.

String

Any character, including the space character.

Only one of the two types of quote characters, " or ', may appear in any given value.

Values:[_a-zA-Z0-9][[-_a-zA-Z0-9 ! " # $ % ´ () * + , - . / : ; < = > ? @ [\] ^ _ ' { | } ~] ...]

String resource values are case-sensitive. No limit on length.

String Array

Comma-separated list of strings.

Strings in string_array may not contain commas. No limit on length.

Python type is str.

A string array resource with one value works exactly like a string resource.

5.6.1 Resource Names

Resource names are case-insensitive PBS NAMEs. Resource names can be 64 characters in length.

This is a generic term, used to describe various PBS entities. For example, attribute names are PBS NAMEs.

Must start with an alphabetic character, and may contain only the following: alpha-numeric, underscore (“_”),
or dash (“-”).

Do not use PBS keywords as PBS NAMEs.

Table 5-2: Size in Bytes

Suffix Meaning Size

b or w Bytes or words 1

kb or kw Kilobytes or kilowords 2 to the 10th, or 1024

mb or mw Megabytes or megawords 2 to the 20th, or 1,048,576

gb or gw Gigabytes or gigawords 2 to the 30th, or 1,073,741,824

tb or tw Terabytes or terawords 2 to the 40th, or 1024 gigabytes

pb or pw Petabytes or petawords 2 to the 50th, or 1,048,576 gigabytes
AG-238 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.7 Setting Values for Resources

5.7.1 How Resource Values are Set

PBS automatically collects information about some resources such as ncpus and mem and sets their initial values
accordingly. If you explicitly set the value for a resource, that value is carried forth across server restarts.

Since the value for each dynamic resource is set by PBS to the value returned by a script or command, it makes sense set
values for static resources only.

Resources that are not explicitly set can inherit their values from defaults. Jobs can inherit default resources; see section
5.9.4, “Allocating Default Resources to Jobs”, on page 247.

You set values for custom and built-in resources using the same methods. You can set resource values using the follow-
ing methods:

• Using qmgr:

To set the available amount of a non-string_array resource, use the qmgr command, either from the command line
or within qmgr:

qmgr -c "set <object> ressources_available.<resource name> = <value>"

Qmgr: set <object> resources_available.<resource name> = <value>

To set or change the available amount of a string_array resource, use the qmgr command, either from the command
line or within qmgr:

qmgr -c "set <object> resources_available.<resource name> = <value>"

qmgr -c 'set <object> resources_available.<resource name> = "<value,value>"'

qmgr -c 'set <object> resources_available.<resource name> += <value>'

qmgr -c 'set <object> resources_available.<resource name> -= <value>'

Qmgr: set <object> resources_available.<resource name> = <value>

Qmgr: set <object> resources_available.<resource name> = '<value,value>'

Qmgr: set <object> resources_available.<resource name> += <value>

Qmgr: set <object> resources_available.<resource name> -= <value>

To unset the value of an attribute:

qmgr -c "unset <object> resources_available.<resource name>"

Qmgr: unset <object> resources_available.<resource name>

where <object> is one of server, queue, hook, node, or sched.

For example, to set resources_max.walltime at the server to be 24 hours:

Qmgr: set server resources_max.walltime = 24:00:00

See “qmgr” on page 149.

• Using a Version 2 configuration file; see section 3.4.3, “Version 2 Vnode Configuration Files”, on page 42.

• Setting the value in a hook; see "Using Attributes and Resources in Hooks" on page 44 in the PBS Professional
Hooks Guide.

5.7.1.1 How Vnode Available Resource Values are Set

PBS stores values for the global resources available at a vnode in that vnode’s resources_available.<resource name>
attribute.
PBS Professional 2020.1.1 Administrator’s Guide AG-239

Chapter 5 Using PBS Resources
5.7.1.1.i Vnode Resources Set by PBS

PBS automatically sets the value for certain resources available at each vnode, meaning that PBS sets the value for the
vnode’s resources_available.<resource name> attribute. For example, PBS automatically sets the value of
resources_available.ncpus at each vnode. The following table lists the vnode resources that are set automatically by
PBS.

5.7.1.1.ii Setting Vnode Resources Manually

You can set values for available vnode resources:

• You can set values for a vnode’s resources_available in a hook. See "Setting and Unsetting Vnode Resources and
Attributes" on page 48 in the PBS Professional Hooks Guide. If you set a vnode resource in a hook, MoM will no
longer update the resource.

• You can set values for a vnode’s resources_available attribute in a Version 2 configuration file; see section 3.4.3,
“Version 2 Vnode Configuration Files”, on page 42.

• You can set most values for a vnode’s resources_available attribute using qmgr, but not for
resources_available.host; see “Operating on Attributes and Resources” on page 158 of the PBS Professional Ref-
erence Guide.

Table 5-3: Resources Set by PBS

Resource Name Initial Value Notes

arch Value reported by OS Settable. If you unset the value, it remains
unset until MoM is restarted.

host Short form of hostname in Mom

vnode attribute

Settable. If you unset the value, it remains
unset until MoM is restarted.

mem Amount reported by OS Settable. If you unset the value, it remains
unset until MoM is restarted.

ncpus Number of CPUs reported by OS Settable. If you unset this value, the MoM
will reset it to the value reported by the OS.

PBScrayhost On CLE 3.0 and higher, set to

value of mpp_host for this system

Do not set.

PBScraylabel_<label name> Concatenation of PBScraylabel_

and label name. Set to True on all

of node s vnodes .

Do not set.

PBScraynid Value of node_id for this compute

node

Do not set.

PBScrayorder Value starts at 1 and increments by 1
for each node in inventory

Do not set

router Name of router, from topology file Applies to vnodes on certain HPE systems
only

vnode Name of the vnode Vnode name must be specified via the
qmgr create node command.
AG-240 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.7.1.2 Setting Server and Queue Resource Values

You can set resources, such as default and available resources, for queues and for the server, using qmgr:

Qmgr: set queue <queue name> resources_default<resource name> = <value>
Qmgr: set queue <queue name> resources_available.<resource name> = <value>
Qmgr: set server resources_available.<resource name> = <value>

5.7.1.3 Setting Job Resources

5.7.1.3.i Setting Requested Resource Values

Job resources, stored in the Resource_List job attribute, can be set initially at submission in the job request. You can
augment or change these values. You can set values for a job’s Resource_List attribute using hooks. See "Setting Job
Resources in Hooks" on page 49 in the PBS Professional Hooks Guide.

5.7.1.3.ii Setting Used Resource Values

The resources used by a job are set in the job’s resources_used attribute

You can set values for a job’s resources_used attribute using hooks. These values will appear in the accounting log and
in qstat -f output. See "Setting Job Resources in Hooks" on page 49 in the PBS Professional Hooks Guide.

5.7.1.3.iii Setting Estimated Values

If the PBS_est built-in hook is enabled, PBS automatically sets the value of the estimated.start_time job resource to
the estimated start time for each job. Otherwise, PBS sets the value only for top jobs.

5.7.2 Setting Values for Global Static Resources

To set the value for a global vnode, queue, or server resource, use the qmgr command to set the value of the appropriate
resources_available.<resource name> attribute.

Example 5-1: Set the value of floatlicenses at the server to 10:

Qmgr: set server resources_available.floatlicenses = 10

Example 5-2: Set the value of RunsMyApp to True at the vnode named vnode1:

Qmgr: set node vnode1 resources_available.RunsMyApp = True

5.7.2.1 Restrictions on Setting Values for Global Static Resources

When setting global static vnode resources on multi-vnode machines, follow the rules in section 3.4.5, “Configuring
Vnode Resources”, on page 47.

5.7.3 Setting Values for Local Static Resources

It is not recommended to use local static resources, because these resources cannot be requested, and cannot be viewed
using qstat or managed using qmgr. To set the value of a parent vnode resource, edit PBS_HOME/mom_priv/con-
fig and change the value section of the resource’s line.

5.7.4 Setting Values for String Arrays

A string array that is defined on vnodes can be set to a different set of strings on each vnode.
PBS Professional 2020.1.1 Administrator’s Guide AG-241

Chapter 5 Using PBS Resources
Example of defining and setting a string array:

• Define a new resource:
Qmgr: create resource foo_arr type=string_array, flag=h

• Setting via qmgr:
Qmgr: set node n4 resources_available.foo_arr=“f1, f3, f5”

• Vnode n4 has 3 values of foo_arr: f1, f3, and f5. We add f7:
Qmgr: set node n4 resources_available.foo_arr+=f7

• Vnode n4 now has 4 values of foo_arr: f1, f3, f5 and f7.

• We remove f1:
Qmgr: set node n4 resources_available.foo_arr-=f1

• Vnode n4 now has 3 values of foo_arr: f3, f5, and f7.

• Submission:
qsub –l select=1:ncpus=1:foo_arr=f3

5.7.5 When Resource Changes Take Effect

If you change the value of a resource via the qmgr command, the change takes effect immediately.

If you change the value of a resource in a configuration file, the change takes effect the next time the configuration file is
read.

5.7.6 Caveats for Setting Resource Values

• It is not recommended to set the value for resources_available.ncpus. The exception is when you want to oversub-
scribe CPUs. See section 9.6.5.1.iii, “How To Share CPUs”, on page 440.

• Do not attempt to set values for resources_available.<resource name> for dynamic resources.

• Do not set values for any resources, except those such as shared scratch space or floating licenses, at the server or a
queue, because the scheduler will not allocate more than the specified value. For example, if you set
resources_available.walltime at the server to 10:00:00, and one job requests 5 hours and one job requests 6 hours,
only one job will be allowed to run at a time, regardless of other idle resources.

5.7.6.1 Caveats for Setting Resource Values at Multi-vnode

Machines

• When setting global static vnode resources on multi-vnode machines, follow the rules in section 3.4.5, “Configuring
Vnode Resources”, on page 47.

• It is not recommended to change the value of ncpus at vnodes on a multi-vnoded machine.

• On the parent vnode, all values for resources_available.<resource name> should be zero (0), unless the resource
is being shared among other vnodes via indirection.
AG-242 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.8 Overview of Ways Resources Are Used

Resources are used in several ways in PBS. The following table lists the ways resources are used, and gives links to the
section describing each one:

5.8.1 How the Scheduler Uses Resources

How the scheduler uses resources is described in section 4.9.28, “Matching Jobs to Resources”, on page 159.

5.8.2 Advice on Using string and string_array Resources

Resource names are case-insensitive.

5.8.2.1 Using string Resources

Format of string resources:

Any character, including the space character.

Only one of the two types of quote characters, " or ', may appear in any given value.

Values:[_a-zA-Z0-9][[-_a-zA-Z0-9 ! " # $ % ´ () * + , - . / : ; < = > ? @ [\] ^ _ ' { | } ~] ...]

String resource values are case-sensitive. No limit on length.

Non-consumable.

We do not recommend using non-printing characters.

When using qsub -l <string resource>=<string value>, you must escape string values for both qsub
and the shell. Example:

qsub -lteststring='\"abc def\"'

Table 5-4: How Resources Are Used

Use Description

Allocation to and use by jobs See section 5.9, “Resources Allocated to Jobs and Reservations”, on page 244

Limiting job resource usage See section 5.15.2, “Placing Resource Limits on Jobs”, on page 304

Restricting access to server and queues See section 5.13, “Using Resources to Restrict Server or Queue Access”, on
page 254

Routing jobs See section 2.3.6.4, “Using Resources to Route Jobs Between Queues”, on
page 26

Describing topology and placing jobs See section 5.11, “Using Resources for Topology and Job Placement”, on page
253

Setting job execution priority See section 5.12, “Using Resources to Prioritize Jobs”, on page 254

Reserving resources ahead of time See section 4.9.37, “Reservations”, on page 197.

Tracking and controlling allocation See section 5.10, “Using Resources to Track and Control Allocation”, on page
252

Determining job preemption priority See section 4.9.33, “Using Preemption”, on page 180
PBS Professional 2020.1.1 Administrator’s Guide AG-243

Chapter 5 Using PBS Resources
The final quote should be single, not double.

5.8.2.2 Using string_array Resources

Format of string_array resources:

Comma-separated list of strings.

Strings in string_array may not contain commas. No limit on length.

Python type is str.

A string array resource with one value works exactly like a string resource.

Non-consumable. Resource request will succeed if request matches one of the values. Resource request can contain
only one string.

The value of resources_default.<string array resource> can only be one string.

5.9 Resources Allocated to Jobs and Reservations

Resources allocated to jobs provide the job with amounts of CPUs and memory to be consumed by the job’s processes, as
well as qualities such as architecture and host. The resources allocated to a job are those that the job requests and those
that are assigned to it through resource defaults that you define, or by hooks you write.

Jobs use resources at the job-wide and chunk level. Job-wide resources such as walltime or vmem are applied to and
requested by the job as a whole. Chunk-level resources, such as ncpus, are applied and requested in individual chunks.

Jobs explicitly request resources either at the vnode level in chunks defined in a selection statement, or in job-wide
resource requests. See “Resources Built Into PBS” on page 265 of the PBS Professional Reference Guide and "Request-
ing Resources", on page 51 of the PBS Professional User’s Guide.

Jobs inherit resource defaults for resources not explicitly requested. See section 5.9.4, “Allocating Default Resources to
Jobs”, on page 247.

Chunk-level resources are made available at the host (vnode) level by defining them via resources_available.<resource

name> at the vnode, and are requested using -l select=<resource name>=<value>.

Job-wide resources are made available by defining them via resources_available.<resource name> at the queue or
server. These resources are requested using -l <resource name> =<value>.

The scheduler matches requested resources with available resources, according to rules defined by the administrator.

When a job is requesting a string array resource, it can request only one of the values set in the string array resource. The
job will only be placed on a vnode where the job’s requested string matches one of the values of the string array resource.
For example, if the resource named Colors is set to “red, blue, green” on vnode V1, and “red, blue” on V2:

• A job can request only one of “red”, “blue”, or “green”

• A job requesting Colors=green will only be placed on V1

5.9.1 Allocating Chunks

Chunks cannot be split across hosts. Chunks can be made up of vchunks. If a chunk is broken up over multiple vnodes,
all participating vnodes must belong to the same execution host. Each vnode supplies a vchunk. These participating
vnodes are supplying the vchunks that make up the chunk. A chunk defines a logical set of resources, for example, those
needed for an MPI task. The resources must come from a single host, but if the requested resources exceed that of any
one vnode, the physical resources can be taken from multiple vnodes on the same host.
AG-244 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.9.2 Resources Requested by Job

The job’s Resource_List attribute lists the following resources requested by the job:

• Job-wide resources explicitly requested by the job, inherited from defaults, or assigned by hooks

• The following built-in chunk-level resources explicitly requested by the job, inherited from defaults, or assigned by
hooks:

mpiprocs

ncpus

mem

vmem

• Custom vnode-level (chunk-level) resources that are global and have the n, q, or f flags set, explicitly requested by
the job, inherited from defaults, or assigned by hooks

5.9.3 Specifying Job Default Resources

You can specify which resources are automatically added to job resource requests. When a job does not request a spe-
cific resource, the default value for that resource is automatically added to the job’s resource request.

You can also use hooks to add resources to a job’s resource request, but we describe that elsewhere in the PBS Profes-
sional Hooks Guide.

The amount of each resource a job is allowed to use is the amount in its resource request. See section 5.15.2, “Placing
Resource Limits on Jobs”, on page 304. Therefore you may wish to add default limits on resource usage. This is done by
adding default resources to the job’s resource request. For example, if a job does not request walltime, but you do not
want jobs not specifying walltime to run for more than 12 hours, you can specify a default of 12 hours for walltime. Jobs
that do specify walltime do not inherit this default; they keep their requested amount.

You can use default resources to manage jobs. For example, if you want to keep track of and limit the number of jobs
using something such as a disk arm, you can have each job using the disk arm automatically request one counting
resource. Then you can place a limit on the amount of this resource that can be in use at one time. This technique is
described in section 5.10, “Using Resources to Track and Control Allocation”, on page 252.

Default resources can be defined for the server and for each queue. Default resources defined at the server are applied to
all jobs. Default resources at a queue are applied only to the jobs that are in that queue.

Default resources on the server and queue can be job-wide, which is the same as adding -l <resource name> to the
job’s resource request, or they can be chunk resources, which is the same as adding :<resource name>=<value>
to a chunk.

Job-wide resources are specified via resources_default on the server or queue, and chunk resources are specified via
default_chunk on the server or queue. You can also specify default resources to be added to any qsub arguments. In
addition, you can specify default placement of jobs.

5.9.3.1 Specifying Job-wide Default Resources at Server

To specify a server-level job-wide default resource, use the qmgr command to set the server’s resources_default
attribute:

Qmgr: set server resources_default.<resource name>=<value>

For example, to set the default architecture on the server:

Qmgr: set server resources_default.arch=linux
PBS Professional 2020.1.1 Administrator’s Guide AG-245

Chapter 5 Using PBS Resources
5.9.3.2 Setting Server and Queue Default Job Chunk Resource

Values

If a job doesn’t request a specific resource, PBS can assign a default value you specify. PBS stores default values for job
chunk resources in the default_chunk.<resource name> attribute for the server and each queue.

PBS automatically sets the value for default_chunk.ncpus to 1 at the server and queues.

5.9.3.2.i Specifying Chunk Default Resources at Server

To specify a server-level chunk default resource, use the qmgr command to set the server’s default_chunk attribute:

Qmgr: set server default_chunk.<resource name>=<value>

For example, if you want all chunks that don’t specify ncpus or mem to inherit the values you specify:

Qmgr: set server default_chunk.ncpus=1
Qmgr: set server default_chunk.mem=1gb

5.9.3.2.ii Specifying Chunk Default Resources at Queue

To specify a queue-level chunk default resource, use the qmgr command to set the queue’s default _chunk attribute:

Qmgr: set queue <queue name> default_chunk.<resource name>=<value>

For example, if you want all chunks that don’t specify ncpus or mem to inherit the values you specify:

Qmgr: set queue small default_chunk.ncpus=1
Qmgr: set queue small default_chunk.mem=512mb

5.9.3.3 Specifying Job-wide Default Resources at Queue

To specify a default for a job-wide resource at a queue, use the qmgr command to set the queue’s resources_default
attribute:

Qmgr: set queue <queue name> resources_default.<resource name> = <value>

5.9.3.4 Specifying Default qsub Arguments

You can set defaults for any qsub arguments not explicitly requested by each job. You do this at the server by using the
qmgr command to set the server’s default_qsub_arguments attribute:

Qmgr: set server default_qsub_arguments=<string containing arguments>

For example, to set the default for the Rerunable job attribute in each job’s resource request, and the name of the job:

Qmgr: set server default_qsub_arguments= ”-r y -N MyJob”

Or to set a default Boolean in each job’s resource request so that jobs don’t run on Red unless they explicitly ask to do
so:

Qmgr: set server default_qsub_arguments=”-l Red=False”

5.9.3.5 Specifying Default Job Placement

You can specify job placement defaults at both the server and queue level. You use the qmgr command to set the
resources_default.place attribute at the server or queue:

Qmgr: set queue <queue name> resources_default.place=<value>

For example, to set the default job placement for a queue:

Qmgr: set queue Q1 resources_default.place=free
AG-246 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
When setting default placement involving a colon, enclose the value in double quotes:

Qmgr: set server resources_default.place=”<value>”

For example, to set default placement at the server to pack:shared, do the following:

Qmgr: set server resources_default.place= "pack:shared"

See "Specifying Job Placement", on page 64 of the PBS Professional User’s Guide for detailed information about how -l
place is used.

5.9.3.6 Using Gating Values As Defaults

For most resources, if the job does not request the resource, and no server or queue defaults are set, the job inherits the
maximum gating value for the resource. If this is set at the queue, the queue value of resources_max.<resource name>
is used. If this is set only at the server, the job inherits the value set at the server.

5.9.3.7 Default Resource Caveats

• While users cannot request custom resources that are created with the r flag, jobs can inherit these as defaults from
the server or queue resources_default.<resource name> attribute.

• A qsub or pbs_rsub hook does not have resources inherited from the server or queue resources_default or
default_chunk as an input argument.

• Default qsub arguments and server and queue defaults are applied to jobs at a coarse level. Each job is examined to
see whether it requests a select and a place. This means that if you specify a default placement, such as excl, with
-lplace=excl, and the user specifies an arrangement, such as pack, with -lplace=pack, the result is that the
job ends up with -lplace=pack, NOT -lplace=pack:excl. The same is true for select; if you specify a
default of -lselect=2:ncpus=1, and the user specifies -lselect=mem=2GB, the job ends up with -lse-
lect=mem=2GB.

5.9.4 Allocating Default Resources to Jobs

Jobs inherit default resources, job-wide or per-chunk, with the following order of precedence.

See section 5.9.3, “Specifying Job Default Resources”, on page 245 for how to set these defaults.

For each chunk in the job's selection statement, first default qsub arguments are applied, then queue chunk defaults are
applied, then server chunk defaults are applied. If the chunk does not contain a resource defined in the defaults, the
default is added. The chunk defaults are specified in the default_chunk.<resource name> server or queue attribute.

Table 5-5: Order In Which Default Resources Are Assigned to Jobs

Order of assignment Default value Affects Chunks? Job-wide?

1 Default qsub arguments If specified If specified

2 Queue’s default_chunk Yes No

3 Server’s default_chunk Yes No

4 Queue’s resources_default No Yes

5 Server’s resources_default No Yes

6 Queue’s resources_max No Yes

7 Server’s resources_max No Yes
PBS Professional 2020.1.1 Administrator’s Guide AG-247

Chapter 5 Using PBS Resources
For example, if the queue in which the job is enqueued has the following defaults defined,

default_chunk.ncpus=1

default_chunk.mem=2gb

then a job submitted with this selection statement:

select=2:ncpus=4+1:mem=9gb

will have this specification after the default_chunk elements are applied:

select=2:ncpus=4:mem=2gb+1:ncpus=1:mem=9gb

In the above, mem=2gb and ncpus=1 are inherited from default_chunk.

The job-wide resource request is checked against queue resource defaults, then against server resource defaults, then
against the queue’s resources_max.<resource name>, then against the server’s resources_max.<resource name>. If
a default or maximum resource is defined which is not specified in the resource request, it is added to the resource
request.

5.9.4.1 Default Resource Allocation for min_walltime and

max_walltime

The min_walltime and max_walltime resources inherit values differently. A job can inherit a value for max_walltime
from resources_max.walltime; the same is not true for min_walltime. This is because once a job is shrink-to-fit, PBS
can use a walltime limit for max_walltime. See section 4.9.42.3.ii, “Inheriting Values for min_walltime and
max_walltime”, on page 211.

5.9.4.2 Default Resource Allocation Caveats

• Resources assigned from the default_qsub_arguments server attribute are treated as if the user requested them. A
job will be rejected if it requests a resource that has a resource permission flag, whether that resource was requested
by the user or came from default_qsub_arguments. Be aware that creating custom resources with permission
flags and then using these in the default_qsub_arguments server attribute can cause jobs to be rejected. See sec-
tion 5.14.2.3.vi, “Resource Permission Flags”, on page 260.

• Default qsub arguments and server and queue defaults are applied to jobs at a coarse level. Each job is examined to
see whether it requests a select and a place. This means that if you specify a default placement, such as excl, with
-lplace=excl, and the user specifies an arrangement, such as pack, with -lplace=pack, the result is that the
job ends up with -lplace=pack, NOT -lplace=pack:excl. The same is true for select; if you specify a
default of -lselect=2:ncpus=1, and the user specifies -lselect=mem=2GB, the job ends up with -lse-
lect=mem=2GB.

5.9.4.3 Moving Jobs Between Queues or Servers Changes Defaults

If the job is moved from the current queue to a new queue or server, any default resources in the job’s Resource_List
inherited from the current queue or server are removed. The job then inherits any new default resources. This includes a
select specification and place directive generated by the rules for conversion from the old syntax. If a job's resource is
unset (undefined) and there exists a default value at the new queue or server, that default value is applied to the job's
resource list. If either select or place is missing from the job's new resource list, it will be automatically generated, using
any newly inherited default values.

Jobs may be moved between servers when peer scheduling is in operation. Given the following set of queue and server
default values:

• Server

resources_default.ncpus=1

• Queue QA
AG-248 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
resources_default.ncpus=2

default_chunk.mem=2GB

• Queue QB

default_chunk.mem=1GB

no default for ncpus

The following illustrate the equivalent select specification for jobs submitted into queue QA and then moved to (or sub-
mitted directly to) queue QB:

Example 5-3: Submission:

qsub -l ncpus=1 -lmem=4gb

• In QA:
select=1:ncpus=1:mem=4gb

- No defaults need be applied

• In QB:
select=1:ncpus=1:mem=4gb

- No defaults need be applied

Example 5-4: Submission:

qsub -l ncpus=1

• In QA:
select=1:ncpus=1:mem=2gb

- Picks up 2GB from queue default chunk and 1 ncpus from qsub

• In QB:
select=1:ncpus=1:mem=1gb

- Picks up 1GB from queue default_chunk and 1 ncpus from qsub

Example 5-5: Submission:

qsub -lmem=4gb

• In QA:
select=1:ncpus=2:mem=4gb

- Picks up 2 ncpus from queue level job-wide resource default and 4GB mem from qsub

• In QB:
select=1:ncpus=1:mem=4gb

- Picks up 1 ncpus from server level job-wide default and 4GB mem from qsub

Example 5-6: Submission:

qsub -lnodes=4

• In QA:
select=4:ncpus=1:mem=2gb

- Picks up a queue level default memory chunk of 2GB. (This is not 4:ncpus=2 because in prior versions, "nodes=x"
implied 1 CPU per node unless otherwise explicitly stated.)

• In QB:
select=4:ncpus=1:mem=1gb
PBS Professional 2020.1.1 Administrator’s Guide AG-249

Chapter 5 Using PBS Resources
(In prior versions, "nodes=x" implied 1 CPU per node unless otherwise explicitly stated, so the ncpus=1 is not
inherited from the server default.)

Example 5-7: Submission:

qsub -l mem=16gb -lnodes=4

• In QA:
select=4:ncpus=1:mem=4gb

(This is not 4:ncpus=2 because in prior versions, "nodes=x" implied 1 CPU per node unless otherwise explicitly
stated.)

• In QB:
select=4:ncpus=1:mem=4gb

(In prior versions, "nodes=x" implied 1 CPU per node unless otherwise explicitly stated, so the ncpus=1 is not
inherited from the server default.)

5.9.5 Dynamic Resource Allocation Caveats

When a job requests a dynamic resource, PBS checks to see how much of the resource is available, but cannot know how
much will be used by another job while this job executes. This can lead to a resource shortage. For example, there is
20GB of scratch on a disk, no jobs are running, and a job requests 15GB. This job writes to 5GB during the first part of
its execution, then another job requests 10GB. The second job is started by PBS, because there is 15GB available. Now
there is a shortage of scratch space.

You can avoid this problem by configuring a static consumable resource to represent scratch space. Set it to the amount
of available scratch space. See section 5.14.5.3, “Static Server-level Scratch Space”, on page 274 and section 5.14.5.4,
“Static Host-level Scratch Space”, on page 274.

5.9.6 Period When Resource is Used by Job

5.9.6.1 Exiting Job Keeps Resource

A job that is exiting is still consuming resources assigned to it. Those resources are available for other jobs only when
the job is finished.

5.9.6.2 Job Suspension and Resource Usage

5.9.6.2.i Resource Usage on Suspension

When suspended, a job is not executing and is not charged for walltime.

5.9.6.2.ii Releasing Resources on Suspension

You can specify which consumable resources should be released by PBS when a job is suspended, using the
restrict_res_to_release_on_suspend server attribute. In this attribute you list all of the resources that should be
released when a job is suspended. If you leave this attribute unset, PBS releases all of a job’s consumable resources
when the job is suspended. This does not include the licenses used by the application, if any. You can modify the list to
add and remove resources using “+=” and “-=” operators.

Server attribute where you specify resources to be released:
AG-250 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
restrict_res_to_release_on_suspend

Comma-separated list of consumable resources to be released when jobs are suspended. If unset, all consumable
resources are released on suspension.

Format: Comma-separated list

Python type: list

Default value: unset, meaning all consumable resources are released on suspension

You can see which resources have been released for a given job by looking at these job attributes:

resources_released

Listed by vnode, consumable resources that were released when the job was suspended. Populated only when
restrict_res_to_release_on_suspend server attribute is set. Set by server.

Format: String of the form: (<vnode>:<resource name>=<value>:<resource

name>=<value>:...)+(<vnode>:<resource name>=<value>:...)

Python type: str

resource_released_list

Sum of each consumable resource requested by the job that was released when the job was suspended. Popu-
lated only when restrict_res_to_release_on_suspend server attribute is set. Set by server. You will also see
this amount released at the queue and/or server.

Format: String of the form: resource_released_list.<resource

name>=<value>,resource_released_list.<resource name>=<value>, ...

Python type: pbs.pbs_resource

Jobs are suspended when they are preempted and via qsig -s suspend.

A job is resumed only when sufficient resources are available. When a person resumes a job via qsig -s resume,
the job is not run until resources are available.

5.9.6.2.iii Releasing Resources on Suspension on Cray XC

On Cray XC, when a job is suspended, PBS releases ncpus, but all other resources remain assigned.

5.9.6.2.iv Suspension/resumption Resource Caveats

Dynamic resources can cause problems with suspension and resumption of jobs.

When a job is suspended, its resources are freed, but the scratch space written to by the job is not available.

A job that uses scratch space may not suspend and resume correctly. This is because if the job writes to scratch, and is
then suspended, when PBS queries for available scratch to resume the job, the script may return a value too small for the
job’s request. PBS cannot determine whether the job itself is the user of the scratch space; PBS can only determine how
much is still unused. If a single suspended job has left less scratch space available than it requests, that job cannot be
resumed.

The above is true for any dynamic resource, such as application licenses.

When suspended, a job is not executing and is not charged for walltime.

5.9.6.3 Shrink-to-fit Jobs Get walltime When Executed

PBS computes the walltime value for each shrink-to-fit job when the scheduler runs the job, not before. See section
4.9.42.3.iii, “Setting walltime for Shrink-to-fit Jobs”, on page 212.
PBS Professional 2020.1.1 Administrator’s Guide AG-251

Chapter 5 Using PBS Resources
5.10 Using Resources to Track and Control

Allocation

You can use resources to track and control usage of things like hardware and application licenses. For example, you
might want to limit the number of jobs using floating licenses or a particular vnode. There is more than one way to
accomplish this.

Example 5-8: You can set a complex-wide limit on the number of jobs using a type of complex-wide floating application
license. This example uses a single queue for the entire complex. This method requires job submitters to request
one of a floatlicensecount resource in order to be able to use the license. To set a complex-wide limit, take the fol-
lowing steps:

1. Create a custom static integer license resource that will be tracked at the server and queue:

a. Use qmgr to create the resource:

Qmgr: create resource floatlicensecount type=long, flag=q

b. Add the resource to the resources: line in <sched_priv directory>/sched_config:

resources: “[...], floatlicensecount”

2. HUP the scheduler:

kill -HUP <scheduler PID>

3. Set the available resource at the server using qmgr. If you have enough floating licenses for 4 jobs:

Qmgr: set server resources_available.floatlicensecount = 4

4. Inform job submitters that jobs using they must request one job-wide floatlicensecount resource via the following:

qsub -l floatlicensecount=1

The scheduler will schedule up to 4 jobs at a time using the licenses. You do not need to set the resource at any
queue.

Example 5-9: Here, your job submitters don’t need to request a counting resource. Jobs are routed based on the size of
the request for memory, and the counting resource is inherited from a default. In this example, we are limiting the
number of jobs from each group that can use a particular vnode that has a lot of memory. This vnode is called Mem-

Node.
AG-252 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
Jobs that request 8GB or more of memory are routed into queue BigMem, and inherit a default counting resource
called memcount. All other jobs are routed into queue SmallMem. The routing queue is called RouteQueue.

1. Create a custom static integer memcount resource that will be tracked at the server and queue:

a. Use qmgr to create the resource:

Qmgr: create resource memcount type=long, flag=q

b. Add the resource to the resources: line in <sched_priv directory>/sched_config:

resources: “[...], memcount”

2. HUP the scheduler:

kill -HUP <scheduler PID>

3. Set limits at BigMem and SmallMem so that they accept the correct jobs:

Qmgr: set queue BigMem resources_min.mem = 8gb
Qmgr: set queue SmallMem resources_max.mem = 8gb

4. Set the order of the destinations in the routing queue so that BigMem is tested first, so that jobs requesting exactly
8GB go into BigMem:

Qmgr: set queue RouteQueue route_destinations = “BigMem, SmallMem”

5. Set the available resource at BigMem using qmgr. If you want a maximum of 6 jobs from BigMem to use MemN-

ode:

Qmgr: set queue BigMem resources_available.memcount = 6

6. Set the default value for the counting resource at BigMem, so that jobs inherit the value:

Qmgr: set queue BigMem resources_default.memcount = 1

7. Associate the vnode with large memory with the BigMem queue:

Qmgr: set node MemNode queue = BigMem

The scheduler will only schedule up to 6 jobs from BigMem at a time on the vnode with large memory.

5.11 Using Resources for Topology and Job

Placement

Using the topology information in the server’s node_group_key attribute, PBS examines the values of resources at
vnodes, and uses those values to create placement sets. Jobs are assigned to placement sets according to their resource
requests. Users can specify particular placement sets by requesting the resources that define that particular placement
set. For example, if the switch named A25 connects the desired set of vnodes, a user can request the following:

-l switch=A25

See section 4.9.32, “Placement Sets”, on page 168.

5.11.1 Restrictions on Using Resources for Job Placement

Only vnode-level resources can be used to direct jobs to particular vnodes.
PBS Professional 2020.1.1 Administrator’s Guide AG-253

Chapter 5 Using PBS Resources
5.12 Using Resources to Prioritize Jobs

You can define the formula the scheduler uses to compute job execution priorities. Elements in this formula can be
inherited default custom resources. These resources must be job-wide numeric resources, or consumable host-level
resources. See section 5.9.3, “Specifying Job Default Resources”, on page 245 and section 4.9.21, “Using a Formula for
Computing Job Execution Priority”, on page 149.

You can make jobs inherit numeric resources according to non-numeric qualities, such as the job owner’s group or
whether the job requests a Boolean or string resource. You can do this by either of the following methods:

• Use a hook to identify the jobs you want and alter their resource requests to include the custom resources for the for-
mula. See the PBS Professional Hooks Guide

• Use a routing queue and minimum and maximum resource limits to route jobs to queues where they inherit the
default custom resources for the formula. See section 2.3.6.4, “Using Resources to Route Jobs Between Queues”, on
page 26

For details on how job execution priority is calculated, see section 4.9.16, “Calculating Job Execution Priority”, on page
134.

For a complete description of how PBS prioritizes jobs, see section 4.3.5, “Job Prioritization and Preemption”, on page
64.

5.13 Using Resources to Restrict Server or Queue

Access

You can set resource limits at the server and queues so that jobs must conform to the limits in order to be admitted. This
way, you can reject jobs that request more of a resource than the complex or a queue can supply. You can also force jobs
into specific queues where they will inherit the desired values for unrequested or custom resources. You can then use
these resources to manage jobs, for example by using them in the job sorting formula or to route jobs to particular
vnodes.

You set a maximum for each resource at the server using the resources_max.<resource name> server attribute; there is
no resources_min.<resource name> at the server.

You can set a minimum and a maximum for each resource at each queue using the resources_min.<resource name>
and resources_max.<resource name> queue attributes.

Job resource requests are compared to resource limits the same way, whether at the server or a queue. For a complete
description of how jobs are tested against limits, see section 2.3.6.4.i, “How Queue and Server Limits Are Applied,
Except Running Time”, on page 26.

Job resource requests are compared first to queue admittance limits. If there is no queue admittance limit for a particular
resource, the job’s resource request is compared to the server’s admittance limit.

5.13.1 Admittance Limits for walltime, min_walltime, and
max_walltime

Because min_walltime and max_walltime are themselves limits, they behave differently from other time-based
resources. When a shrink-to-fit job (a job with a value for min_walltime) is compared to server or queue limits, the fol-
lowing must be true in order for the job to be accepted:

• Both min_walltime and max_walltime must be greater than or equal to resources_min.walltime.

• Both min_walltime and max_walltime must be less than or equal to resources_max.walltime.
AG-254 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
You cannot set resources_min or resources_max for min_walltime or max_walltime.

5.13.2 Restrictions on Resources Used for Admittance

For a list of resources that are compared to admittance limits, see section 2.3.6.4.iii, “Resources Used for Routing and
Admittance”, on page 27. For information on using strings, string arrays, and Booleans for admittance controls, see sec-
tion 2.3.6.4.iv, “Using String, String Array, and Boolean Values for Routing and Admittance”, on page 27.

5.14 Custom Resources

You can define, that is, create, new resources within PBS. This section describes how to define and use custom resources.

Once new resources are defined, jobs may request these new resources and the scheduler can schedule on the new
resources.

Using this feature, it is possible to schedule resources where the number or amount available is outside of PBS's control.

Custom resources can be made invisible to users or unalterable by users via resource permission flags. See section
5.14.2.3.vi, “Resource Permission Flags”, on page 260. A user will not be able to print or list custom resources which
have been made either invisible or unalterable.

PBS provides certain custom resources that are designed to reflect resources or properties found on specific systems. Do
not create custom resources with the names that PBS uses for these resources. See “Resources Built Into PBS” on page
265 of the PBS Professional Reference Guide.

5.14.1 How to Use Custom Resources

Custom resources can be static or dynamic, server-level or host-level, and local or global. They can also be shared or not.

5.14.1.1 Choosing the Resource Category

Use dynamic resources for quantities that PBS does not control, such as externally-managed application licenses or
scratch space. PBS runs a script or program that queries an external source for the amount of the resource available and
returns the value via stdout. Use static resources for things PBS does control. PBS tracks these resources internally.

Use server-level resources for things that are not tied to specific hosts, that is, they can be available to any of a set of
hosts. An example of this is a floating application license. Use host-level resources for things that are tied to specific
hosts, like the scratch space on a machine or node-locked application licenses.

5.14.1.1.i Examples of Configuring a Custom Resource

The following table gives examples of configuring each kind of custom resource:

Table 5-6: Examples of Configuring Custom Resources

Use for Resource Link to Example

License: Floating, externally-
managed

See section 5.14.6.3.i, “Example of Floating, Externally-managed License”, on page
275

License: Floating, externally-
managed with features

See section 5.14.6.3.ii, “Example of Floating, Externally-managed License with Fea-
tures”, on page 276

License: Floating, PBS-man-
aged

See section 5.14.6.3.iii, “Example of Floating License Managed by PBS”, on page
277
PBS Professional 2020.1.1 Administrator’s Guide AG-255

Chapter 5 Using PBS Resources
5.14.1.2 Dynamic Custom Resources

A dynamic resource is one which is not under the control of PBS, meaning it can change independently of PBS. In order
to use a dynamic resource, PBS must run a query to discover the available amount of that resource. Dynamic custom
resources can be defined at the server or vnodes.

5.14.1.2.i Dynamic Server-level Custom Resources

A dynamic server-level custom resource is used to track a resource that is available at the server. You use a dynamic
server-level resource to track something that is not under the control of PBS, and changes outside of PBS, for example,
floating application licenses. At each scheduler cycle, the scheduler runs a script at the server host to determine the avail-
able amount of that resource. Server-level custom resources are used as job-wide resources.

5.14.1.2.ii Dynamic Host-level Custom Resources

A dynamic host-level custom resource is used to track a resource that is available at the execution host or hosts. You use
a dynamic host-level resource for a resource that is not under the control of PBS, and changes outside of PBS, for exam-
ple, scratch space. At each scheduler cycle, the scheduler queries the MoM for the available amount of the resource. The
MoM runs a script which returns the current value of the resource. Host-level dynamic resources are used inside chunks.

5.14.1.3 Static Custom Resources

A static resource is one which is under the control of PBS. Any changes to the value are performed by PBS or by the
administrator. Static custom resources are defined ahead of time, at the server, queues or vnodes. Static custom
resources can be local or global.

License: Node-locked, per-host See section 5.14.6.4.iv, “Example of Per-host Node-locked Licensing”, on page 279

License: Node-locked, per-CPU See section 5.14.6.4.vi, “Example of Per-CPU Node-locked Licensing”, on page 281

License: Node-locked, per-use See section 5.14.6.4.v, “Example of Per-use Node-locked Licensing”, on page 280

FPGAs See section 5.14.8, “Using FPGAs”, on page 286

GPUs See section 5.14.7, “Using GPUs”, on page 283

Scratch space: shared See section 5.14.5.1, “Dynamic Server-level (Shared) Scratch Space”, on page 273
and section 5.14.5.3, “Static Server-level Scratch Space”, on page 274

Scratch space: local to a host See section 5.14.5.2, “Dynamic Host-level Scratch Space”, on page 274 and section
5.14.5.4, “Static Host-level Scratch Space”, on page 274

Generic dynamic server-level See section 5.14.3.1.i, “Example of Configuring Dynamic Server-level Resource”, on
page 267

Generic static server-level See section 5.14.3.2.i, “Example of Configuring Static Server-level Resource”, on
page 268

Generic dynamic host-level See section 5.14.4.1.i, “Example of Configuring Dynamic Host-level Resource”, on
page 269

Generic static host-level See section 5.14.4.2.i, “Example of Configuring Static Host-level Resource”, on
page 270

Generic shared static host-level See section 5.14.4.3.v, “Configuring Shared Static Resources”, on page 271

Table 5-6: Examples of Configuring Custom Resources

Use for Resource Link to Example
AG-256 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.14.1.3.i Global Static Custom Resources

Global static custom resource values at vnode, queue and server are set via qmgr, by setting
resources_available.<custom resource name> = <value>. These resources are available at the server, queues, or
vnodes.

5.14.1.3.ii Local Static Custom Resources

Local static custom resources are defined in PBS_HOME/mom_priv/config, and are available only at the host where
they are defined. Note that these resources cannot be set via qmgr or viewed via qstat. It is not recommended to use
local static custom resources.

5.14.1.4 Shared Vnode Resources

A shared vnode resource is managed at one vnode, but available to be used by jobs at others. This allows flexible alloca-
tion of the resource. See section 5.14.4.3, “Shared Host-level Resources”, on page 271 for information on resources
shared across vnodes.

5.14.1.5 Using Custom Resources for Application Licenses

The following table lists application licenses and what kind of custom resource to define for them. See section 5.14.6,
“Supplying Application Licenses”, on page 274 for specific instructions on configuring each type of license and exam-
ples of configuring custom resources for application licenses.

5.14.1.6 Using Custom Resources for Scratch Space

You can configure a custom resource to report how much scratch space is available on machines. Jobs requiring scratch
space can then be scheduled onto machines which have enough. This requires dynamic host-level resources. See section
5.14.5, “Using Scratch Space”, on page 273 and section 5.14.4.1, “Dynamic Host-level Resources”, on page 269.

5.14.2 Defining New Custom Resources

You can define new custom resources as follows:

• To define any custom resource, you can use qmgr.

• To define custom host-level non-consumable resources at vnodes, you can use hooks; see "Adding Custom Non-
consumable Host-level Resources" on page 64 in the PBS Professional Hooks Guide.

Table 5-7: Custom Resources for Application Licenses

Floating or
 Node-locked

Unit Being Licensed
How License is

Managed
Level Resource Type

Floating (site-wide) Token External license manager Server Dynamic

Floating (site-wide) Token PBS Server Static

Node-locked Host PBS Host Static

Node-locked CPU PBS Host Static

Node-locked Instance of Application PBS Host Static
PBS Professional 2020.1.1 Administrator’s Guide AG-257

Chapter 5 Using PBS Resources
5.14.2.1 Defining and Setting Static and Dynamic Custom Resources

The following table lists the differences in defining and setting static and dynamic custom resources at the server, queue
and host level.

5.14.2.2 Custom Resource Values

The rules for custom resource values are the same as for built-in resource values. See “Resource Formats” on page 359
of the PBS Professional Reference Guide.

If a string resource value contains spaces or shell metacharacters, enclose the string in quotes, or otherwise escape the
space and metacharacters. Be sure to use the correct quotes for your shell and the behavior you want. If the string
resource value contains commas, the string must be enclosed in an additional set of quotes so that the command (e.g.
qsub, qalter) will parse it correctly. If the string resource value contains quotes, plus signs, equal signs, colons or
parentheses, the string resource value must be enclosed in yet another set of additional quotes.

5.14.2.3 Resource Flags

5.14.2.3.i Resource Accumulation Flags

When you define a custom resource, you can specify whether it is server-level or host-level, and whether it is consumable
or not. This is done by setting resource accumulation flags via qmgr. A consumable resource is tracked, or accumulated,
in the server, queue or vnode resources_assigned attribute. The resource accumulation flags determine where the value
of resources_assigned.<resource name> is incremented.

Table 5-8: Defining and Setting New Custom Resources

Resource
Type

Server-level
Queue-

level
Host-level

static Set via qmgr Set via
qmgr

Set via qmgr or hook

dynamic Add to server_dyn_res line in
<sched_priv directory>/
sched_config

Cannot be
used.

Add to MoM config file PBS_HOME/mom_priv/
config and mom_resources line (deprecated
as of 18.2.1) in <sched_priv directory>/
sched_config
AG-258 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.14.2.3.ii Allowable Values for Resource Accumulation Flags

The value of <resource flags>, which is the resource accumulation flag for a resource can be one of the following:

Table 5-9: Resource Accumulation Flags

Flag Meaning

(no flags) Indicates a queue-level or server-level resource that is not consumable.

fh The amount is consumable at the host level for only the first vnode allocated to the job (vnode with first
task.) Must be consumable or time-based. Cannot be used with Boolean or string resources. .

This flag specifies that the resource is accumulated at the first vnode, meaning that the value of
resources_assigned.<resource> is incremented only at the first vnode when a job is allocated this
resource or when a reservation requesting this resource on this vnode starts.

h Indicates a host-level resource. Used alone, means that the resource is not consumable. Required for any
resource that will be used inside a select statement. This flag selects hardware. This flag indicates that the
resource must be requested inside of a select statement.

Example: for a Boolean resource named "green":

Qmgr: create resource green type=boolean, flag=h

nh The amount is consumable at the host level, for all vnodes assigned to the job. Must be consumable or
time-based. Cannot be used with Boolean or string resources.

This flag specifies that the resource is accumulated at the vnode level, meaning that the value of
resources_assigned.<resource> is incremented at relevant vnodes when a job is allocated this
resource or when a reservation requesting this resource on this vnode starts.

This flag is not used with dynamic consumable resources. The scheduler will not oversubscribe dynamic
consumable resources.

q The amount is consumable at the queue and server level. When a job is assigned one unit of a resource
with this flag, the resources_assigned.<resource> attribute at the server and any queue is incre-
mented by one. Must be consumable or time-based.

This flag specifies that the resource is accumulated at the queue and server level, meaning that the value
of resources_assigned.<resource> is incremented at each queue and at the server when a job is allo-
cated this resource. When a reservation starts, allocated resources are added to the server’s
resources_assigned attribute.

This flag is not used with dynamic consumable resources. The scheduler will not oversubscribe dynamic
consumable resources.
PBS Professional 2020.1.1 Administrator’s Guide AG-259

Chapter 5 Using PBS Resources
5.14.2.3.iii When to Use Accumulation Flags

The following table shows when to use accumulation flags.

5.14.2.3.iv Example of Resource Accumulation Flags

When defining a static consumable host-level resource, such as a node-locked application license, you would use the “n”
and “h” flags.

When defining a dynamic resource such as a floating license, you would use no flags.

5.14.2.3.v Resource Accumulation Flag Restrictions and Caveats

• Numeric dynamic resources cannot have the q or n flags set. This would cause these resources to be under-used.
These resources are tracked automatically by the scheduler.

5.14.2.3.vi Resource Permission Flags

When you define a custom resource, you can specify whether unprivileged users have permission to view or request the
resource, and whether users can qalter a request for that resource. This is done by setting a resource permission flag
via qmgr.

5.14.2.3.vii Allowable Values for Resource Permission Flags

The permission flag for a resource can be one of the following:

Table 5-10: When to Use Accumulation Flags

Resource
Category

Server Queue Host

Static, consumable flag = q flag = q flag = nh or fh

Static, not consumable flag = (none of h, n, q or f) flag = (none of h, n, q or f) flag = h

Dynamic server_dyn_res line in
sched_config,

flag = (none of h, n, q or f)

(cannot be used) MoM config and
mom_resources line (deprecated
as of 18.2.1) in sched_config,

flag = h

Table 5-11: Resource Permission Flags

Flag Meaning

(no flag) Users can view and request the resource, and qalter a resource request for this resource.

i “Invisible”. Users cannot view or request the resource. Users cannot qalter a resource request for this
resource.

r “Read only”. Users can view the resource, but cannot request it or qalter a resource request for this
resource.
AG-260 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.14.2.3.viii Effect of Resource Permission Flags

• PBS Operators and Managers can view and request a resource, and qalter a resource request for that resource,
regardless of the i and r flags.

• Users, operators and managers cannot submit a job which requests a restricted resource. Any job requesting a
restricted resource will be rejected. If a manager needs to run a job which has a restricted resource with a different
value from the default value, the manager must submit the job without requesting the resource, then qalter the
resource value.

• While users cannot request these resources, their jobs can inherit default resources from
resources_default.<resource name> and default_chunk.<resource name>.

If a user tries to request a resource or modify a resource request which has a resource permission flag, they will get
an error message from the command and the request will be rejected. For example, if they try to qalter a job’s
resource request, they will see an error message similar to the following:

“qalter: Cannot set attribute, read only or insufficient permission Resource_List.hps 173.mars”

5.14.2.3.ix Resource Permission Flag Restrictions and Caveats

• You can specify only one of the i or r flags per resource. If both are specified, the resource is treated as if only the i
flag were specified, and an error message is logged at the default log level and printed to standard error.

• Resources assigned from the default_qsub_arguments server attribute are treated as if the user requested them. A
job will be rejected if it requests a resource that has a resource permission flag whether that resource was requested
by the user or came from default_qsub_arguments.

• The behavior of several command-line interfaces is dependent on resource permission flags. These interfaces are
those which view or request resources or modify resource requests:

pbsnodes

Users cannot view restricted host-level custom resources.

pbs_rstat

Users cannot view restricted reservation resources.

pbs_rsub

Users cannot request restricted custom resources for reservations.

qalter

Users cannot alter a restricted resource.

qmgr

Users cannot print or list a restricted resource.

qselect

Users cannot specify restricted resources via -l Resource_List.

qsub

Users cannot request a restricted resource.

qstat

Users cannot view a restricted resource.

5.14.2.3.x Allowing Execution Hooks to Read Custom Job Resources Faster

You can make it faster for execution hooks to read custom job resources. Execution hooks cannot read custom job
resources via the event, only via the server. However, you can cache a copy of a custom job resource at the MoMs for
faster local reading by execution hooks, by setting the m flag for the resource. The job resources that can be cached are
found in the following job attributes:
PBS Professional 2020.1.1 Administrator’s Guide AG-261

Chapter 5 Using PBS Resources
exec_vnode

Resource_List

resources_used

To create a resource with the m flag set, include the flag. For example, to create two host-level consumable resources r1
and r2 of type long that will be cached at MoMs:

qmgr -c "create resource r1,r2 type=long,flag=mnh"

To unset this flag for r1:

qmgr -c "set resource r1 flag=nh"

You can combine this flag with any other resource flag. Job resources created in an exechost_startup hook have the m
flag set automatically.

5.14.2.3.xi Caveats for Caching Custom Job Resources

Large numbers of job resources that are cached at MoMs can slow things down. If you don’t need execution hooks to be
able to read a custom job resource often, don’t cache the resource at the MoMs.

5.14.2.3.xii Setting Types and Flags for Custom Resources via qmgr

To set the type for a resource:

set resource <resource name> type = <type>

For example:

qmgr -c "set resource foo type=string_array"

To set the flags for a resource:

set resource <resource name> flag=<flag(s)>

For example:

qmgr -c "set resource foo flag=nh"

To set the type and flags for a resource:

set resource <resource name> type=<type>, flag=<flag(s)>

For example:

qmgr -c "set resource foo type=long,flag=nhi"

You can set multiple resources by separating the names with commas. For example:

qmgr -c "set resource r1, r2 type=long"

You cannot set the nh, fh, or q flag for a resource of type string, string_array, or Boolean.

You cannot set both the n and the f flags on one resource.

You cannot have the n or f flags without the h flag.

You cannot set both the i and r flags on one resource.

You cannot unset the type for a resource.

You cannot set the type for a resource that is requested by a current or history job or reservation, or set on a server, queue,
or vnode.

You cannot set the flag(s) to h, nh, fh, or q for a resource that is currently requested by a current or history job or reser-
vation.

You cannot unset the flag(s) for a resource that is currently requested by a current or history job or a reservation, or set on
any server, queue, or vnode.

You cannot alter a built-in resource.
AG-262 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
You can unset custom resource flags, but not their type.

5.14.2.3.xiii

5.14.2.4 Defining Custom Resources via qmgr

You can use qmgr to create and delete custom resources, and to set their type and flags.

You must have PBS Manager privilege to operate on resources via qmgr.

5.14.2.4.i Creating Custom Resources via qmgr

When you define or change a custom resource via qmgr, the changes take place immediately, and you do not have to
restart the server, but you do have to restart scheduler(s).

To create a resource:

qmgr -c 'create resource <resource name>[,<resource name>] [type = <type>], [flag = <flags>]’

For example:

Qmgr: create resource foo type=long,flag=q

To create multiple resources of the same type and flag, separate each resource name with a comma:

qmgr -c "create resource r1,r2 type=long,flag=nh"

You can abbreviate “resource” to “r”:

qmgr -c "create r foo type=long,flag=nh"

You cannot create a resource with the same name as an existing resource.

After you have defined your new custom resource, tell the scheduler how to use it. See section 5.14.2.6, “Allowing Jobs
to Use a Resource”, on page 265.

5.14.2.4.ii Caveats for Defining Host-level Custom Resources via qmgr

If you plan on using a hook to set a job’s resources_used value for a custom host-level resource, or you want to have a
custom resource summed in a job’s resources_used attribute and shown in the accounting log, you must create that
resource using a hook.

5.14.2.4.iii Deleting Custom Resources

If you want to be able to delete a custom resource, make sure that the resource is not requested by any current or history
jobs or current reservations. You can let those jobs finish, qalter them, or delete them. Delete and re-create any reser-
vations that request the resource.

Before you delete a custom resource, you must remove all references to that resource, including where it is used in hooks
or the scheduling formula. When you delete a resource that is set on the server, a queue, or a vnode, PBS unsets the
resource for you.

You cannot delete a custom resource that is listed in the restrict_res_to_release_on_suspend server attribute. You
must first remove the resource from the list:

Qmgr: set server restrict_res_to_release_on_suspend -= <resource name>

You cannot delete a built-in resource.
PBS Professional 2020.1.1 Administrator’s Guide AG-263

Chapter 5 Using PBS Resources
To remove a custom resource:

1. Remove all references to the resource

• Remove it from the formula

• Remove it from hooks

• Let jobs requesting it finish, requeue and then qalter them while they are queued, or delete them

• Delete and re-create any reservations that request the resource

2. Edit the resources: line in <sched_priv directory>/sched_config to remove the unwanted resource
name:

• If the resource is a server dynamic resource, remove the resource name from the server_dyn_res: line

• If the resource is a MoM dynamic resource, remove the resource from the mom_resources: line (deprecated
as of 18.2.1)

3. For each MoM whose Version 2 configuration file contains references to the resource, use the pbs_mom -s
insert command to update the Version 2 configuration file. See section 3.4.3, “Version 2 Vnode Configuration
Files”, on page 42.

4. If the resource is a local dynamic resource, defined in the MoM Version 1 configuration file:

For each host where the unwanted resource is defined, edit PBS_HOME/mom_priv/config and remove the
resource entry line.

5. HUP each MoM; for Linux, see “Restarting and Reinitializing MoM” on page 167 in the PBS Professional Installa-
tion & Upgrade Guide, and for Windows, see “Restarting MoMs” on page 173 in the PBS Professional Installation
& Upgrade Guide.

6. Delete the resource using qmgr:

qmgr -c 'delete resource <resource name>’

For example:

qmgr -c "delete resource foo"

5.14.2.5 Defining Custom Resources via Hooks

You can use hooks to add new custom host-level non-consumable resources, and set their values. See "Adding Custom
Non-consumable Host-level Resources" on page 64 in the PBS Professional Hooks Guide.

You must make the resource usable by the scheduler: see section 5.14.2.6, “Allowing Jobs to Use a Resource”, on page
265.

To delete a custom resource created in a hook, use qmgr. See section 5.14.2.4.iii, “Deleting Custom Resources”, on
page 263.
AG-264 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.14.2.6 Allowing Jobs to Use a Resource

After you define your resource, you need to make it usable by jobs:

1. Put the resource in the “resources:” line in <sched_priv directory>/sched_config. If the resource
is a host-level boolean, you do not need to add it here.

2. If the resource is static, set the value via qmgr.

3. If the resource is dynamic, add it to the correct line in the scheduler’s configuration file:

• If it’s a host -level dynamic resource, it must be added to the mom_resources line (deprecated as of 18.2.1)

• If it’s a server-level resource, it must be added to the server_dyn_res line

4. HUP the scheduler(s)

5.14.2.7 Editing Configuration Files Under Windows

When you edit any PBS configuration file, make sure that you put a newline at the end of the file. The Notepad applica-
tion does not automatically add a newline at the end of a file; you must explicitly add the newline.

5.14.2.8 Dynamic Resource Scripts/Programs

You create the script or program that PBS uses to query the external source. The external source can be a license man-
ager or a command, as when you use the df command to find the amount of available disk space. If the script is for a
server-level dynamic resource, it is placed on the server. If it is for a host-level resource, it is placed on the host(s) where
it will be used.

The default timeout for a server dynamic resource script is 30 seconds. You can specify a timeout for server dynamic
resources in each scheduler’s server_dyn_res_alarm attribute. If the script does not finish before the timeout, the
scheduler uses a value of zero for the dynamic server resource. If you set the timeout to zero, the scheduler does not
place a time limit on the script.

5.14.2.8.i Requirements for Scripts/Programs

• The script must be available to the scheduler, which runs the script

• If you have set up peer scheduling, make sure that the script is available to any scheduler that must run it

• The script must return its output via stdout, and the output must be in a single line ending with a newline

• The script must be owned by root

• The directory containing the script must be owned by root

• The directory containing the script must not give write permission to group or others.

5.14.2.9 Example of Defining Each Type of Custom Resource

In this example, we add five custom resources: a static and a dynamic host-level resource, a static and a dynamic server-
level resource, and a static queue-level resource.

1. The resource must be defined, with appropriate flags set:
Qmgr: create resource staticserverresource type=long, flag=q
Qmgr: create resource statichostresource type=long, flag=nh
Qmgr: create resource dynamicserverresource type=long
Qmgr: create resource dynamichostresource type=long, flag=h
Qmgr: create resource staticqueueresource type=long, flag=q

2. The resource must be added to the scheduler’s list of resources:
PBS Professional 2020.1.1 Administrator’s Guide AG-265

Chapter 5 Using PBS Resources
Add resource to “resources:” line in <sched_priv directory>/sched_config:

resources: “[...], staticserverresource, statichostresource, dynamicserverresource,
dynamichostresource, staticqueueresource”

Host-level Boolean resources do not need to be added to the “resources:” line.

3. HUP the scheduler:

kill -HUP <scheduler PID>

4. If the resource is static, use qmgr to set it at the host, queue or server level:

Qmgr: set node Host1 resources_available.statichostresource=1
Qmgr: set queue Queue1 resources_available.staticqueueresource=1
Qmgr: set server resources_available.staticserverresource=1

See “qmgr” on page 149 of the PBS Professional Reference Guide.

5. If the resource is dynamic:

a. If it’s a host-level resource, add it to the “mom_resources” line (deprecated as of 18.2.1) in <sched_priv
directory>/sched_config:

mom_resources: ”dynamichostresource”

b. Add it to the MoM config file PBS_HOME/mom_priv/config:

Linux or Windows:

dynamichostresource !path-to-command

Windows, spaces in path:

dynamichostresource !”path-to-command”

c. If it’s a server-level resource, add it to the “server_dyn_res” line in <sched_priv directory>/
sched_config:

Linux:

server_dyn_res: “dynamicserverresource !path-to-

command”

Windows, no spaces in path:

server_dyn_res: ‘dynamicserverresource !path-to-

command’

or:

server_dyn_res: “dynamicserverresource !path-to-

command”

Windows, spaces in path:

server_dyn_res: ‘dynamicserverresource !”path-to-

command including spaces”’
AG-266 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.14.3 Creating Server-level Custom Resources

5.14.3.1 Dynamic Server-level Resources

The availability of a dynamic server-level resource is determined by running a script or program specified in the
server_dyn_res line of <sched_priv directory>/sched_config. The value for
resources_available.<resource name> is updated at each scheduling cycle with the value returned by the script. This
script is run at the host where the scheduler runs, once per scheduling cycle. The script must return the value via std-
out in a single line ending with a newline.

The scheduler tracks how much of each numeric dynamic server-level custom resource has been assigned to jobs, and
will not overcommit these resources.

The format of a dynamic server-level resource query is a shell escape:

server_dyn_res: “<resource name> !<path to command>”

In this query,

<resource name> is the name of the resource.

<path to command> is typically the full path to the script or program that performs the query in order to determine the
status and/or availability of the new resource you have added.

The scheduler runs the query and waits for it to finish or time out. The default timeout for a server dynamic resource
script is 30 seconds. You can specify a timeout for server dynamic resources in each scheduler’s
server_dyn_res_alarm attribute.

Dynamic server-level resources are usually used for site-wide externally-managed floating application licenses.

Server dynamic resource values are never visible in qstat, and have no resources_available.<resource name> repre-
sentation anywhere in PBS. If a job has requested a server dynamic resource, then the requested value shows up in the
output of qstat.

5.14.3.1.i Example of Configuring Dynamic Server-level Resource

For a site-wide externally-managed floating application license you will need two resources: one to represent the licenses
themselves, and one to mark the vnodes on which the application can be run. The first is a server-level dynamic resource
and the second is a host-level Boolean, set on the vnodes to send jobs requiring that license to those vnodes.
PBS Professional 2020.1.1 Administrator’s Guide AG-267

Chapter 5 Using PBS Resources
These are the steps for configuring a dynamic server-level resource for a site-wide externally-managed floating license.
If this license could be used on all vnodes, the Boolean resource would not be necessary.

1. Define the resources, for example floatlicense and CanRun:
Qmgr: create resource floatlicense type=long
Qmgr: create resource CanRun type=boolean, flag=h

2. Write a script, for example serverdyn.pl, that returns the available amount of the resource via stdout, and place
it on the server host. For example, it could be placed in /usr/local/bin/serverdyn.pl

3. Configure the scheduler to use the script by adding the resource and the path to the script in the server_dyn_res
line of <sched_priv directory>/sched_config:

server_dyn_res: “floatlicense !/usr/local/bin/serverdyn.pl”

4. Optional: give the scheduler a time limit for the script by setting its server_dyn_res_alarm attribute:

Qmgr: set sched <scheduler name> server_dyn_res_alarm=<new value>

5. Add the new dynamic resource to the resources: line in <sched_priv directory>/sched_config:

resources: “ncpus, mem, arch, [...], floatlicense”

6. Restart the scheduler. See “Restarting and Reinitializing Scheduler or Multisched” on page 166 in the PBS Profes-
sional Installation & Upgrade Guide.

7. Set the Boolean resource on the vnodes where the floating licenses can be run. Here we designate vnode1 and
vnode2 as the vnodes that can run the application:

Qmgr: active node vnode1,vnode2
Qmgr: set node resources_available.CanRun=True

To request this resource, the job’s resource request would include:

-l floatlicense=<number of licenses or tokens required>

-l select=1:ncpus=N:CanRun=1

5.14.3.2 Static Server-level Resources

Static server-level resources are used for resources like floating licenses that PBS will manage. PBS keeps track of the
number of available licenses instead of querying an external license manager.

5.14.3.2.i Example of Configuring Static Server-level Resource

These are the steps for configuring a static server-level resource:

1. Define the resource, for example sitelicense:
Qmgr: create resource sitelicense type=long, flag=q

2. Use the qmgr command to set the value of the resource on the server:

Qmgr: set server resources_available.sitelicense=<number of licenses>

3. Add the new resource to the resources: line in <sched_priv directory>/sched_config.

resources: “ncpus, mem, arch, [...], sitelicense”

4. Restart the scheduler. See “Restarting and Reinitializing Scheduler or Multisched” on page 166 in the PBS Profes-
sional Installation & Upgrade Guide.
AG-268 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.14.4 Configuring Host-level Custom Resources

Host-level custom resources can be static and consumable, static and not consumable, or dynamic. Dynamic host-level
resources are used for things like scratch space.

5.14.4.1 Dynamic Host-level Resources

For dynamic host-level custom resources, the scheduler sends a resource query to each MoM to get the current availabil-
ity for the resource, and uses that value for scheduling. If the MoM returns a value, this value replaces the
resources_available value reported by the server. If the MoM returns no value, the value from the server is kept. If nei-
ther specifies a value, the scheduler sets the resource value to 0.

The available amount of the resource is determined by running a script or program which returns the amount via std-
out. This script or program is specified in the mom_resources line (deprecated as of 18.2.1) in <sched_priv
directory>/sched_config.

The script is run once per scheduling cycle. For a multi-vnode machine, the script is run for the parent vnode. The
resource is shared among the MoM’s vnodes.

The scheduler tracks how much of each numeric dynamic server-level custom resource has been assigned to jobs, and
will not overcommit these resources.

The format of a dynamic host-level resource query is a shell escape:

<resource name> !<path to command>

In this query,

<resource name> is the name of the resource.

<path to command> is typically the full path to the script or program that performs the query in order to determine the
status and/or availability of the new resource you have added.

MoM starts the query and waits for output. The default amount of time that MoM waits is 10 seconds; this period can be
set via the -a alarm_timeout command line option to pbs_mom. For Linux, see “Restarting and Reinitializing
MoM” on page 167 in the PBS Professional Installation & Upgrade Guide, and for Windows, see “Restarting MoMs” on
page 173 in the PBS Professional Installation & Upgrade Guide. If the timeout is exceeded and the shell escape process
has not finished, a log message, “resource read alarm” is written to the MoM’s log file. The process is given another
alarm period to finish and if it does not, another log message is written. The user’s job may not run.

An example of a dynamic host-level resource is scratch space on the execution host.

Host dynamic resource values are never visible in qstat, and have no resources_available.<resource name> repre-
sentation anywhere in PBS.

5.14.4.1.i Example of Configuring Dynamic Host-level Resource

In this example, we configure a custom resource to track host-level scratch space. The resource is called dynscratch.
These are the steps for configuring a dynamic host-level resource:

1. Define the resource, for example dynscratch:
Qmgr: create resource dynscratch type=size, flag=h

2. Write a script, for example hostdyn.pl, that returns the available amount of the resource via stdout. The script
must return the value in a single line, ending with a newline. Place the script on each host where it will be used. For
example, it could be placed in /usr/local/bin/hostdyn.pl.

3. Configure each MoM to use the script by adding the resource and the path to the script in PBS_HOME/mom_priv/
config:

Linux:

dynscratch !/usr/local/bin/hostdyn.pl
PBS Professional 2020.1.1 Administrator’s Guide AG-269

Chapter 5 Using PBS Resources
Windows:

dynscratch !”C:\Program Files\PBS\hostdyn.pl”

4. Reinitialize the MoMs. For Linux, see “Restarting and Reinitializing MoM” on page 167 in the PBS Professional
Installation & Upgrade Guide, and for Windows, see “Restarting MoMs” on page 173 in the PBS Professional
Installation & Upgrade Guide.

5. You may optionally specify any limits on that resource via qmgr, such as the maximum amount available, or the
maximum that a single user can request. For example:

Qmgr: set server resources_max.scratchspace=1gb

6. Add the new resource to the resources: line in <sched_priv directory>/sched_config:

resources: “ncpus, mem, arch, [...], dynscratch”

7. Add the new resource to the mom_resources: line (deprecated as of 18.2.1) in <sched_priv directory>/
sched_config. Create the line if necessary:

mom_resources: “dynscratch”

8. Restart the scheduler. See “Restarting and Reinitializing Scheduler or Multisched” on page 166 in the PBS Profes-
sional Installation & Upgrade Guide.

To request this resource, the resource request would include

-l select=1:ncpus=N:dynscratch=10MB

5.14.4.2 Static Host-level Resources

Use static host-level resources for things that are managed by PBS and available at the host level, such as GPUs.

5.14.4.2.i Example of Configuring Static Host-level Resource

In this example, we configure a consumable host-level resource to track GPUs. These are the steps for configuring a
static host-level resource:

1. Define the resource, for example ngpus:
Qmgr: create resource ngpus type=long, flag=nh

2. Use the qmgr command to set the value of the resource on the host:

Qmgr: set node Host1 ngpus=<number of GPUs>

3. Add the new resource to the resources line in <sched_priv directory>/sched_config.

resources: “ncpus, mem, arch, [...], ngpus”

4. Restart the scheduler. See “Restarting and Reinitializing Scheduler or Multisched” on page 166 in the PBS Profes-
sional Installation & Upgrade Guide.

5. If the GPU host is a multi-vnode machine, you may want to define which GPUs belong in which vnodes. In this
case, do the following:

a. Create a vnode definition file. See section 3.4.3, “Version 2 Vnode Configuration Files”, on page 42.

b. Restart the MoM. For Linux, see “Restarting and Reinitializing MoM” on page 167 in the PBS Professional
Installation & Upgrade Guide, and for Windows, see “Restarting MoMs” on page 173 in the PBS Professional
Installation & Upgrade Guide.

See section 5.14.6.4.iv, “Example of Per-host Node-locked Licensing”, on page 279, section 5.14.6.4.v, “Example of Per-
use Node-locked Licensing”, on page 280, and section 5.14.6.4.vi, “Example of Per-CPU Node-locked Licensing”, on
page 281. These sections give examples of configuring each kind of node-locked license.
AG-270 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.14.4.3 Shared Host-level Resources

Two or more vnodes can share the use of a resource. The resource is managed at one vnode, but available for use at other
vnodes. The MoM manages the sharing of the resource, allocating only the available amount to jobs. For example, if
you want jobs at two separate vnodes to be able to use the same 4GB of memory, you can make the memory be a shared
resource. This way, if a job at one vnode uses all 4GB, no other jobs can use it, but if one job at one vnode uses 2GB,
other jobs at either vnode can use up to 2GB.

5.14.4.3.i Shared Resource Glossary

Borrowing vnode

The vnode where a shared vnode resource is available, but not managed.

Indirect resource

A shared vnode resource at vnode(s) where the resource is not defined, but which share the resource.

Managing vnode

The vnode where a shared vnode resource is defined, and which manages the resource.

Shared resource

A vnode resource defined at managed at one vnode, but available for use at others.

5.14.4.3.ii Configuring Shared Host-level Resources

The resource to be shared is defined as usual at one vnode. This is the managing vnode for that resource. For example,
to make memory be managed at Vnode1:

Qmgr: set node Vnode1 mem = 4gb

At vnodes which will use the same resource, the resource is defined to be indirect. For example, to make memory be
shared and borrowed at Vnode2:

Qmgr: set node Vnode2 mem = @Vnode1

5.14.4.3.iii Shared Dynamic Host-level Resources

Vnode-level dynamic resources, meaning those listed in the mom_resources: line (deprecated as of 18.2.1) in
<sched_priv directory>/sched_config, are shared resources.

5.14.4.3.iv Shared Static Host-level Resources

You can define a static host-level resource to be shared between vnodes. The resource is not shared if you set it to a value
at each vnode.

5.14.4.3.v Configuring Shared Static Resources

1. If the resource to be shared is a custom resource, you must define the resource before setting its value:
Qmgr: create resource <resource name> type=<resource type> [flag = <flags>]

2. Set the resource on the managing vnode:

To set a static value via qmgr:

Qmgr: s n managing_vnode resources_available.<resource name> =<value>

To set a static value, in a Version 2 configuration file:

managing_vnode:<resource name>=<value>

3. Next, set the resource on the borrowing vnode:

To set a shared resource on a borrowing vnode via qmgr:

Qmgr: s n borrowing_vnode resources_available.<resource name>=@managing_vnode
PBS Professional 2020.1.1 Administrator’s Guide AG-271

Chapter 5 Using PBS Resources
To set a shared resource in a Version 2 configuration file:

borrowing_vnode:<resource name>=@managing_vnode

4. HUP the MoMs involved; for Linux, see “Restarting and Reinitializing MoM” on page 167 in the PBS Professional
Installation & Upgrade Guide, and for Windows, see “Restarting MoMs” on page 173 in the PBS Professional
Installation & Upgrade Guide.

Example 5-10: To make a static host-level license dyna-license on hostA be managed by the parent vnode at hostA
and indirect at vnodes hostA0 and hostA1:

Qmgr: set node hostA resources_available.dyna-license=4
Qmgr: set node hostA0 resources_available.dyna-license=@hostA
Qmgr: set node hostA1 resources_available.dyna-license=@hostA

5.14.4.3.vi Restrictions on Shared Host-level Resources

• If your vnodes represent physical units such as blades, sharing resources like ncpus across vnodes may not make
sense.

• If you want to make a resource shared across vnodes, remember that you do not want to schedule jobs on the parent
vnode. To avoid this, the following resources should not be explicitly set on the parent vnode:

ncpus

mem

vmem

5.14.4.3.vii Defining Shared and Non-shared Resources for Multi-vnode Machines

On a multi-vnode machine, you can manage the resources at each vnode. For dynamic host-level resources, the resource
is shared across all the vnodes on the machine, and MoM manages the sharing. For static host-level resources, you can
either define the resource as shared or not. Shared resources are usually set on the parent vnode and then made indirect
at any child vnodes on which you want the resource available. For resources that are not shared, you can set the value at
each vnode.

Example 5-11: To set the resource string_res to round on the parent vnode of host03 and make it indirect at
host03[0] and host03[1]:

Qmgr: set node host03 resources_available.string_res=round
Qmgr: s n host03[0] resources_available.string_res=@host03
Qmgr: s n host03[1] resources_available.string_res=@host03

pbsnodes -va

host03

...

string_res=round

...

host03[0]

...

string_res=@host03

...

host03[1]

...

string_res=@host03

...
AG-272 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
If you had set the resource string_res individually on host03[0] and host03[1]:

Qmgr: s n host03[0] resources_available.string_res=round
Qmgr: s n host03[1] resources_available.string_res=square

pbsnodes -va

host03

...

 <--------string_res not set on parent vnode
...

host03[0]

...

string_res=round

...

host03[1]

...

string_res=square

...

5.14.4.3.viii Shared Resource Restrictions for Multi-vnode Machines

• On the parent vnode, all values for resources_available.<resource name> should be zero (0), unless the resource
is being shared among other vnodes via indirection.

5.14.5 Using Scratch Space

5.14.5.1 Dynamic Server-level (Shared) Scratch Space

If you have scratch space set up so that it’s available to all execution hosts, you can use a server-level custom dynamic
resource to track it. The following are the steps for configuring a dynamic server-level resource called globalscratch to
track globally available scratch space:

1. Define the resource:
Qmgr: create resource globalscratch type=long

2. Write a script, for example serverdynscratch.pl, that returns the available amount of the resource via std-
out, and place it on the server host. For example, it could be placed in /usr/local/bin/serverdyns-
cratch.pl

3. Configure the scheduler to use the script by adding the resource and the path to the script in the server_dyn_res
line of <sched_priv directory>/sched_config:

server_dyn_res: “globalscratch !/usr/local/bin/serverdynscratch.pl”

4. Optional: give the scheduler a time limit for the script by setting its server_dyn_res_alarm attribute:

Qmgr: set sched <scheduler name> server_dyn_res_alarm=<new value>

5. Add the new dynamic resource to the resources: line in <sched_priv directory>/sched_config:

resources: “ncpus, mem, arch, [...], globalscratch”

6. Restart the scheduler. See “Restarting and Reinitializing Scheduler or Multisched” on page 166 in the PBS Profes-
sional Installation & Upgrade Guide.

To request this resource, the job’s resource request would include:

-l globalscratch=<space required>
PBS Professional 2020.1.1 Administrator’s Guide AG-273

Chapter 5 Using PBS Resources
5.14.5.2 Dynamic Host-level Scratch Space

Say you have jobs that require a large amount of scratch disk space during their execution. To ensure that sufficient space
is available during job startup, create a custom dynamic resource so that jobs can request scratch space. To create this
resource, take the steps outlined in section 5.14.4.1.i, “Example of Configuring Dynamic Host-level Resource”, on page
269.

5.14.5.3 Static Server-level Scratch Space

If you want to prevent jobs from stepping on each others’ scratch space, you can define additional vnodes that are used
only to allocate scratch devices, with one vnode per scratch device. Set the sharing attribute on each scratch vnode to
force_excl, so that only one job can request each scratch device. To set the sharing attribute, follow the rules in section
3.4.4, “Configuring the Vnode Sharing Attribute”, on page 46. For example, the scratch devices are /scratch1, /
scratch2, /scratch3, etc. On each scratch device, set resources as follows:

resources_available.ncpus = 0

resources_available.mem = 0

resources_available.scratch = 1

sharing = force_excl

Jobs then request one additional chunk to represent the scratch device, for example:

-l 16:ncpus=1+1:scratch=1

If a job needs to request a specific scratch device, for example /scratch2, that can be done by additionally asking for
the scratch resource:

:scratch=1

5.14.5.4 Static Host-level Scratch Space

If the scratch areas are not mounted on all execution hosts, you can specify which scratch areas are shared among which
subsets of vnodes using indirect resources. See section 5.14.4.3, “Shared Host-level Resources”, on page 271.

5.14.5.5 Caveats for Scratch Space and Jobs

When more than one job uses scratch space, or when a job is suspended, scratch space usage may not be handled cor-
rectly. See section 5.9.5, “Dynamic Resource Allocation Caveats”, on page 250 and section 5.9.6, “Period When
Resource is Used by Job”, on page 250.

5.14.6 Supplying Application Licenses

5.14.6.1 Types of Licenses

Application licenses may be managed by PBS or by an external license manager. Application licenses may be floating or
node-locked, and they may be per-host, where any number of instances can be running on that host, per-CPU, where one
license allows one CPU to be used for that application, or per-run, where one license allows one instance of the applica-
tion to be running. Each kind of license needs a different form of custom resource.

5.14.6.1.i Externally-managed Licenses

Whenever an application license is managed by an external license manager, you must create a custom dynamic resource
for it. This is because PBS has no control over whether these licenses are checked out, and must query the external
license manager for the availability of those licenses. PBS does this by executing the script or program that you specify
in the dynamic resource. This script returns the amount via stdout, in a single line ending with a newline.
AG-274 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.14.6.1.ii Preventing Oversubscription of Externally-managed Licenses

Some applications delay the actual license checkout until some time after the application begins execution. Licenses
could be oversubscribed when the scheduler queries for available licenses, and gets a result including licenses that essen-
tially belong to a job that is already running but has not yet checked them out. To prevent this, you can create a consum-
able custom static integer resource, assign it the total number of licenses, and make each job that requests licenses
request this resource as well. You can use a hook to accomplish this. Alternatively, if you know the maximum number of
jobs that can run using these licenses, you can create a consumable custom static integer resource to track the number of
jobs using licenses, and make each job request this resource.

If licenses are also checked out by applications outside of the control of PBS, this technique will not work.

5.14.6.1.iii PBS-managed Licenses

When an application license is managed by PBS, you can create a custom static resource for it. You set the total number
of licenses using qmgr, and PBS will internally keep track of the number of licenses available.

Use static host-level resources for node-locked application licenses managed by PBS, where PBS is in full control of the
licenses. These resources are static because PBS tracks them internally, and host-level because they are tracked at the
host.

5.14.6.2 License Units and Features

Different licenses use different license units to track whether an application is allowed to run. Some licenses track the
number of CPUs an application is allowed to run on. Some licenses use tokens, requiring that a certain number of tokens
be available in order to run. Some licenses require a certain number of features to run the application.

When using units, after you have defined the license resource called license_name to the server, be sure to set
resources_available.license_name to the correct number of units.

Before starting you should have answers to the following questions:

• How many units of a feature does the application require?

• How many features are required to execute the application?

• How do I query the license manager to obtain the available licenses of particular features?

With these questions answered you can begin configuring PBS Professional to query the license manager servers for the
availability of application licenses. Think of a license manager feature as a resource. Therefore, you should associate a
resource with each feature.

5.14.6.3 Server-level (Floating) Licenses

5.14.6.3.i Example of Floating, Externally-managed License

Here is an example of setting up floating licenses that are managed by an external license server.

For this example, we have a 6-host complex, with one CPU per host. The hosts are numbered 1 through 6. On this com-
plex we have one licensed application which uses floating licenses from an external license manager. Furthermore we
want to limit use of the application only to specific hosts. The table below shows the application, the number of licenses,
the hosts on which the licenses should be used, and a description of the type of license used by the application.

For the floating licenses, we will use three resources. One is a dynamic server resource for the licenses themselves. One
is a global server-level integer to prevent oversubscription. The last is a Boolean resource used to indicate that the float-
ing license can be used on a given host.

Application Licenses Hosts DESCRIPTION

AppF 4 3-6 Uses licenses from an externally managed pool
PBS Professional 2020.1.1 Administrator’s Guide AG-275

Chapter 5 Using PBS Resources
Server Configuration

1. Define the new resources. Specify the resource names, type, and flag(s):
Qmgr: create resource <resource name> type=<type>,flag=<flags>

Host Configuration

2. Set the Boolean resource on the hosts where the floating licenses can be used.

Qmgr: active node host3,host4,host5,host6
Qmgr: set node resources_available.runsAppF = True

Scheduler Configuration

3. Edit the scheduler configuration file:

cd $<sched_priv directory>/

[edit] sched_config

4. Append the new resource names to the resources: line:

resources: “ncpus, mem, arch, host, [...], AppF, AppFcount, runsAppF”

5. Edit the server_dyn_res: line:

server_dyn_res: “AppF !/local/flex_AppF”

6. Optional: give the scheduler a time limit for the script by setting its server_dyn_res_alarm attribute:

Qmgr: set sched <scheduler name> server_dyn_res_alarm=<new value>

7. Restart the scheduler. See “Restarting and Reinitializing Scheduler or Multisched” on page 166 in the PBS Profes-
sional Installation & Upgrade Guide.

You can write a hook that examines the number of AppF licenses requested by each job, and assigns that many
AppFcount to the job, or you can ask your users to request AppFcount.

To request a floating license for AppF and a host on which AppF can run:

qsub -l AppF=1 -l AppFcount=1

-l select=runsAppF=True

The example below shows what the host configuration would look like. What is shown is actually truncated output from
the pbsnodes -a command. Similar information could be printed via the qmgr -c “print node @default”
command as well.

host1

host2

host3

 resources_available.runsAppF = True

host4

 resources_available.runsAppF = True

host5

 resources_available.runsAppF = True

host6

 resources_available.runsAppF = True

5.14.6.3.ii Example of Floating, Externally-managed License with Features

This is an example of a floating license, managed by an external license manager, where the application requires a certain
number of features to run. Floating licenses are treated as server-level dynamic resources. The license server is queried
by an administrator-created script. This script returns the value via stdout in a single line ending with a newline.
AG-276 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
The license script runs on the server host once per scheduling cycle and queries the number of available licenses/tokens
for each configured application.

When submitting a job, the user's script, in addition to requesting CPUs, memory, etc., also requests licenses.

When the scheduler looks at all the enqueued jobs, it evaluates the license request alongside the request for physical
resources, and if all the resource requirements can be met the job is run. If the job's token requirements cannot be met,
then it remains queued.

PBS doesn't actually check out the licenses; the application being run inside the job's session does that. Note that a small
number of applications request varying amounts of tokens during a job run.

Our example needs four features to run an application, so we need four custom resources.

1. Write four scripts, one to query the license server for each of your four features. Complexity of the script is entirely
site-specific due to the nature of how applications are licensed.

2. Define four non-consumable server-level features. These features are defined with no flags:

Qmgr: create resource feature1 type=long
Qmgr: create resource feature3 type=long
Qmgr: create resource feature6 type=long
Qmgr: create resource feature8 type=long

3. Add the feature resources to the resources: line in <sched_priv directory>/sched_config:

resources: “ncpus, mem, arch, [...], feature1, feature3, feature6, feature8”

4. Add each feature’s script path to the server_dyn_res: line in PBS_HOME/server_priv/config:

server_dyn_res: “feature1 !/path/to/script [args]”

server_dyn_res: “feature3 !/path/to/script [args]”

server_dyn_res: “feature6 !/path/to/script [args]”

server_dyn_res: “feature8 !/path/to/script [args]”

5. Optional: give the scheduler a time limit for the scripts by setting its server_dyn_res_alarm attribute:

Qmgr: set sched <scheduler name> server_dyn_res_alarm=<new value>

6. Restart the scheduler. See “Restarting and Reinitializing Scheduler or Multisched” on page 166 in the PBS Profes-
sional Installation & Upgrade Guide.

5.14.6.3.iii Example of Floating License Managed by PBS

Here is an example of configuring custom resources for a floating license that PBS manages. For this you need a server-
level static resource to keep track of the number of available licenses. If the application can run only on certain hosts,
then you will need a host-level Boolean resource to direct jobs running the application to the correct hosts.

In this example, we have six hosts numbered 1-6, and the application can run on hosts 3, 4, 5 and 6. The resource that
will track the licenses is called AppM. The Boolean resource is called RunsAppM.

Server Configuration

1. Define the new resource. Specify the resource names, type, and flag(s):
Qmgr: create resource <resource name> type=<type>,flag=<flags>

Example:

Qmgr: create resource AppM type=long, flag=q
Qmgr: create resource runsAppM type=boolean, flag=h

2. Set a value for AppM at the server. Here, we’re allowing 8 copies of the application to run at once:

Qmgr: set server resources_available.AppM=8
PBS Professional 2020.1.1 Administrator’s Guide AG-277

Chapter 5 Using PBS Resources
Host Configuration

3. Set the value of runsAppM on the hosts. Each qmgr directive is typed on a single line:

Qmgr: active node host3,host4,host5,host6
Qmgr: set node resources_available.runsAppM = True

Scheduler Configuration

4. Edit the scheduler configuration file:

cd $<sched_priv directory>/

[edit] sched_config

5. Append the new resource name to the resources: line. Note that it is not necessary to add a host-level Boolean
resource to this line.

resources: “ncpus, mem, arch, host, [...], AppM, runsAppM”

6. Restart the scheduler. See “Restarting and Reinitializing Scheduler or Multisched” on page 166 in the PBS Profes-
sional Installation & Upgrade Guide.

To request both the application and a host that can run AppM:

qsub -l AppM=1

-l select=1:runsAppM=1 <jobscript>

The example below shows what the host configuration would look like. What is shown is actually truncated output from
the pbsnodes -a command. Similar information could be printed via the qmgr -c “print node @default”
command as well. Since unset Boolean resources are the equivalent of False, you do not need to explicitly set them to
False on the other hosts. Unset Boolean resources will not be printed.

host1

host2

host3

 resources_available.runsAppM = True

host4

 resources_available.runsAppM = True

host5

 resources_available.runsAppM = True

host5

 resources_available.runsAppM = True

5.14.6.4 Host-level (Node-locked) Licenses

5.14.6.4.i Per-host Node-locked Licenses

If you are configuring a custom resource for a per-host node-locked license, where the number of jobs using the license
does not matter, use a host-level Boolean resource on the appropriate host. This resource is set to True. When users
request the license, they can use the following requests:

For a two-CPU job on a single vnode:

-l select=1:ncpus=2:license=1

 For a multi-vnode job:

-l select=2:ncpus=2:license=1

-l place=scatter

Users can also use “license=True”, but this way they do not have to change their scripts.
AG-278 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.14.6.4.ii Per-CPU Node-locked Licenses

If you are configuring a custom resource for a per-CPU node-locked license, use a host-level consumable resource on the
appropriate vnode. This resource is set to the maximum number of CPUs you want used on that vnode. Then when
users request the license, they will use the following request:

For a two-CPU, two-license job:

-l select=1:ncpus=2:license=2

5.14.6.4.iii Per-use Node-locked License

If you are configuring a custom resource for a per-use node-locked license, use a host-level consumable resource on the
appropriate host. This resource is set to the maximum number of instances of the application allowed on that host. Then
when users request the license, they will use:

For a two-CPU job on a single host:

-l select=1:ncpus=2:license=1

For a multi-vnode job where each chunk needs two CPUs:

-l select=2:ncpus=2:license=1

-l place=scatter

5.14.6.4.iv Example of Per-host Node-locked Licensing

Here is an example of setting up node-locked licenses where one license is required per host, regardless of the number of
jobs on that host.

For this example, we have a 6-host complex, with one CPU per host. The hosts are numbered 1 through 6. On this com-
plex we have a licensed application that uses per-host node-locked licenses. We want to limit use of the application only
to specific hosts. The table below shows the application, the number of licenses for it, the hosts on which the licenses
should be used, and a description of the type of license used by the application.

For the per-host node-locked license, we will use a Boolean host-level resource called resources_available.runsAppA.
This will be set to True on any hosts that should have the license, and will default to False on all others. The resource is
not consumable so that more than one job can request the license at a time.

Server Configuration

1. Define the new resource. Specify the resource names, type, and flag(s):
create resource <resource name> type=<type>,flag=<flag>

Example:

Qmgr: create resource runsAppA type=boolean, flag=h
Qmgr: create resource AppA type=long, flag=h

Host Configuration

2. Set the value of runsAppA on the hosts. Each qmgr directive is typed on a single line:

Qmgr: active node host1,host2,host3,host4
Qmgr: set node resources_available.runsAppA = True

Application Licenses Hosts DESCRIPTION

AppA 1 1-4 uses a local node-locked application license
PBS Professional 2020.1.1 Administrator’s Guide AG-279

Chapter 5 Using PBS Resources
Scheduler Configuration

3. Edit the scheduler configuration file.

cd $<sched_priv directory>/

[edit] sched_config

4. Append the new resource name to the “resources:” line. Note that it is not necessary to add the host-level Boolean
resource to this line.

resources: “ncpus, mem, arch, [...], AppA, runsAppA”

5. Restart the scheduler. See “Restarting and Reinitializing Scheduler or Multisched” on page 166 in the PBS Profes-
sional Installation & Upgrade Guide.

To request a host with a per-host node-locked license for AppA:

qsub -l select=1:runsAppA=1 <jobscript>

The example below shows what the host configuration would look like. What is shown is actually truncated output from
the pbsnodes -a command. Similar information could be printed via the qmgr -c “print node @default”
command as well. Since unset Boolean resources are the equivalent of False, you do not need to explicitly set them to
False on the other hosts. Unset Boolean resources will not be printed.

host1

 resources_available.runsAppA = True

host2

 resources_available.runsAppA = True

host3

 resources_available.runsAppA = True

host4

 resources_available.runsAppA = True

host5

host6

5.14.6.4.v Example of Per-use Node-locked Licensing

Here is an example of setting up per-use node-locked licenses. Here, while a job is using one of the licenses, it is not
available to any other job.

For this example, we have a 6-host complex, with 4 CPUs per host. The hosts are numbered 1 through 6. On this complex
we have a licensed application that uses per-use node-locked licenses. We want to limit use of the application only to spe-
cific hosts. The licensed hosts can run two instances each of the application. The table below shows the application, the
number of licenses for it, the hosts on which the licenses should be used, and a description of the type of license used by
the application.

For the node-locked license, we will use one static host-level resource called resources_available.AppB. This will be
set to 2 on any hosts that should have the license, and to 0 on all others. The “nh” flag combination means that it is host-
level and it is consumable, so that if a host has 2 licenses, only two jobs can use those licenses on that host at a time.

Server Configuration

1. Define the new resource. Specify the resource names, type, and flag(s):
Qmgr: create resource <resource name> type=<type>,flag=<flags>

Application Licenses Hosts DESCRIPTION

AppB 2 1-2 Uses a local node-locked application license
AG-280 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
Example:

Qmgr: create resource AppB type=long, flag=nh

Host Configuration

2. Set the value of AppB on the hosts to the maximum number of instances allowed. Each qmgr directive is typed on
a single line:

Qmgr: active node host1,host2
Qmgr: set node resources_available.AppB = 2
Qmgr: active node host3,host4,host5,host6
Qmgr: set node resources_available.AppB = 0

Scheduler Configuration

3. Edit the scheduler configuration file.

cd $<sched_priv directory>/

[edit] sched_config

4. Append the new resource name to the resources: line:

resources: “ncpus, mem, arch, host, [...], AppB”

5. Restart the scheduler. See “Restarting and Reinitializing Scheduler or Multisched” on page 166 in the PBS Profes-
sional Installation & Upgrade Guide.

To request a host with a node-locked license for AppB, where you’ll run one instance of AppB on two CPUs:

qsub -l select=1:ncpus=2:AppB=1

The example below shows what the host configuration would look like. What is shown is actually truncated output from
the pbsnodes -a command. Similar information could be printed via the qmgr -c “print node @default”
command as well.

host1

 resources_available.AppB = 2

host2

 resources_available.AppB = 2

host3

 resources_available.AppB = 0

host4

 resources_available.AppB = 0

host5

 resources_available.AppB = 0

host6

 resources_available.AppB = 0

5.14.6.4.vi Example of Per-CPU Node-locked Licensing

Here is an example of setting up per-CPU node-locked licenses. Each license is for one CPU, so a job that runs this
application and needs two CPUs must request two licenses. While that job is using those two licenses, they are unavail-
able to other jobs.
PBS Professional 2020.1.1 Administrator’s Guide AG-281

Chapter 5 Using PBS Resources
For this example, we have a 6-host complex, with 4 CPUs per host. The hosts are numbered 1 through 6. On this complex
we have a licensed application that uses per-CPU node-locked licenses. We want to limit use of the application to specific
hosts only. The table below shows the application, the number of licenses for it, the hosts on which the licenses should be
used, and a description of the type of license used by the application.

For the node-locked license, we will use one static host-level resource called resources_available.AppC. We will pro-
vide a license for each CPU on hosts 3 and 4, so this will be set to 4 on any hosts that should have the license, and to 0 on
all others. The “nh” flag combination means that it is host-level and it is consumable, so that if a host has 4 licenses, only
four CPUs can be used for that application at a time.

Server Configuration

1. Define the new resource. Specify the resource names, type, and flag(s):
Qmgr: create resource <resource name> type=<type>,flag=<flags>

Example:

Qmgr: create resource AppC type=long, flag=nh

Host Configuration

2. Set the value of AppC on the hosts. Each qmgr directive is typed on a single line:

Qmgr: active node host3,host4
Qmgr: set node resources_available.AppC = 4
Qmgr: active node host1,host2,host5,host6
Qmgr: set node resources_available.AppC = 0

Scheduler Configuration

3. Edit the scheduler configuration file:

cd $<sched_priv directory>/

[edit] sched_config

4. Append the new resource name to the resources: line:

resources: “ncpus, mem, arch, host, [...], AppC”

5. Restart the scheduler. See “Restarting and Reinitializing Scheduler or Multisched” on page 166 in the PBS Profes-
sional Installation & Upgrade Guide.

To request a host with a node-locked license for AppC, where you’ll run a job using two CPUs:

qsub -l select=1:ncpus=2:AppC=2

Application Licenses Hosts DESCRIPTION

AppC 4 3-4 uses a local node-locked application license
AG-282 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
The example below shows what the host configuration would look like. What is shown is actually truncated output from
the pbsnodes -a command. Similar information could be printed via the qmgr -c “print node @default”
command as well.

host1

 resources_available.AppC = 0

host2

 resources_available.AppC = 0

host3

 resources_available.AppC = 4

host4

 resources_available.AppC = 4

host5

 resources_available.AppC = 0

host6

 resources_available.AppC = 0

5.14.7 Using GPUs

You can configure PBS to manage GPU resources. You only need to use one method. You can use any of the following
methods, but we recommend using the cgroups hook:

• Managing GPUs via Cgroups does the configuration for you, takes advantage of topology, and provides isolation.
You can use this method to restrict each job to the GPU(s) assigned to it. We recommend using this method: you get
device isolation, job submission is much easier, etc.

• Basic GPU Scheduling works well if you have single-GPU vnodes. The basic method will meet the needs of most
job submitters; it allows a job to request the number of GPUs it needs, as long as the job requests exclusive use of
each node containing the GPUs.

• Advanced GPU Scheduling allows jobs to request specific GPUs. The advanced method provides some flexibility
for multi-job or multi-GPU vnodes, but does not isolate GPUs. PBS Professional allocates GPUs for jobs, but does
not perform the actual binding. The application or the CUDA library binds the application to one or more GPUs.
You cannot combine this with the cgroups hook.

5.14.7.1 Basic GPU Scheduling

Basic scheduling consists of prioritizing jobs based on partition or site policies, controlling access to nodes with GPUs,
ensuring that GPUs are not over-subscribed, and tracking use of GPUs in accounting logs.

Configuring PBS to perform basic scheduling of GPUs is relatively simple, and only requires defining and configuring a
single custom resource to represent the number of GPUs on each node.

This method allows jobs to request unspecified GPUs. Jobs should request exclusive use of the node to prevent other
jobs being scheduled on their GPUs.

5.14.7.1.i Configuring PBS for Basic GPU Scheduling

You configure a single custom consumable resource to represent all GPU devices on an execution host. Create a host-
level global consumable custom resource to represent GPUs. We recommend that the custom GPU resource is named
ngpus. Set the value for this resource at each vnode to the number of GPUs on the vnode.

The ngpus resource is used exactly the way you use the ncpus resource.
PBS Professional 2020.1.1 Administrator’s Guide AG-283

Chapter 5 Using PBS Resources
5.14.7.1.ii Example of Configuring PBS for Basic GPU Scheduling

In this example, there are two execution hosts, HostA and HostB, and each execution host has 4 GPU devices.

1. Create the ngpus resource:
Qmgr: create resource ngpus type=long, flag=nh

2. Stop the server and scheduler. On the server's host, type:

systemctl stop pbs

or

/etc/init.d/pbs stop

3. Edit <sched_priv directory>/sched_config to add ngpus to the list of scheduling resources:

resources: “ncpus, mem, arch, host, vnode, ngpus”

4. Start the server and scheduler. On the server's host, type:

systemctl start pbs

or

/etc/init.d/pbs start

5. Add the number of GPU devices available to each execution host in the cluster via qmgr:

Qmgr: set node HostA resources_available.ngpus=4
Qmgr: set node HostB resources_available.ngpus=4

5.14.7.2 Advanced GPU Scheduling

Advanced scheduling allows a job to separately allocate (request and/or identify) each individual GPU on a node.

In this case, both PBS and the applications themselves must support individually allocating the GPUs on a node.
Advanced scheduling requires defining a child vnode for each GPU.

This capability is useful for sharing a single multi-GPU node among multiple jobs, where each job requires exclusive use
of its GPUs.

5.14.7.2.i Configuring PBS for Advanced GPU Scheduling

You configure each GPU device in its own vnode, and each GPU vnode has a resource to contain the device number of
its GPU.

Create and set two custom resources:

• Create a host-level global consumable resource to represent the GPUs on a vnode. We recommend that this resource
is called ngpus.

Set ngpus on each node to the number of GPUs on that node.

• Create a host-level global non-consumable resource containing the GPU device number, which serves to tie the indi-
vidual GPU to the vnode. We recommend that this resource is called gpu_id.

Set gpu_id for each GPU to the device number of that GPU.
AG-284 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.14.7.2.ii Example of Configuring PBS for Advanced GPU Scheduling

In this example, there is one execution host, HostA, that has two child vnodes, HostA[0] and HostA[1], as well as the
parent vnode. HostA has 4 CPUs, 2 GPUs, and 16 GB of memory.

1. Create the new custom resources:
Qmgr: create resource ngpus type=long, flag=nh
Qmgr: create resource gpu_id type=string, flag=h

2. Stop the server and scheduler. On the server's host, type:

systemctl stop pbs

or

/etc/init.d/pbs stop

3. Edit <sched_priv directory>/sched_config to add ngpus and gpu_id to the list of scheduling resources:

resources: “ncpus, mem, arch, host, vnode, ngpus, gpu_id”

4. Start the server and scheduler. On the server's host, type:

systemctl start pbs

or

/etc/init.d/pbs start

5. Create a vnode configuration file for each execution host where GPUs are present. See section 3.4.3, “Version 2
Vnode Configuration Files”, on page 42. The script for HostA is named hostA_vnodes, and is shown here:

$configversion 2

hostA: resources_available.ncpus = 0

hostA: resources_available.mem = 0

hostA[0]: resources_available.ncpus = 2

hostA[0] : resources_available.mem = 8gb

hostA[0] : resources_available.ngpus = 1

hostA[0] : resources_available.gpu_id = gpu0

hostA[0] : sharing = default_excl

hostA[1] : resources_available.ncpus = 2

hostA[1] : resources_available.mem = 8gb

hostA[1] : resources_available.ngpus = 1

hostA[1] : resources_available.gpu_id = gpu1

hostA[1]: sharing = default_excl

6. Create a Version 2 configuration file for each host with GPUs. For example:

PBS_EXEC/sbin/pbs_mom -s insert HostA_vnodes HostA_vnodes

7. Signal each MoM to re-read its configuration files:

kill -HUP <pbs_mom PID>

5.14.7.3 Managing GPUs Via Cgroups Hook

We describe how to manage your GPUs via cgroups in section 15.5.5.1, “Managing GPUs via Cgroups”, on page 590.
PBS Professional 2020.1.1 Administrator’s Guide AG-285

Chapter 5 Using PBS Resources
5.14.8 Using FPGAs

You can configure a custom resource that allows PBS to track the usage of FPGAs. The FPGAs are detected outside of
PBS at boot time. There are two basic methods for automatic configuration of the FPGA resource:

• Create a global static host-level resource called nfpgas. Create a boot-up script in init.d that detects the presence
of the FPGAs, and sets the value of the nfpgas resource.

• Create a global dynamic host-level resource called nfpgas. This resource calls a script to detect the presence of
FPGAs

We recommend the static resource, because FPGAs are static, and there is a performance penalty for a dynamic resource.

5.14.9 Defining Host-level Resource for Applications

You may need to tag your vnodes with the software that can run on them. You cannot use the built-in software resource
for this; it is a server-level resource and cannot be set per host. You can define a custom resource named, for example,
“node_software”. It should be a string_array, since a host may be able to run more than one application. You can use
qmgr to create your resource:

Qmgr: create resource node_software type=string_array, flag=h

You can use your new custom resource to route jobs: see section 4.9.39, “Routing Jobs”, on page 205.

5.14.10 Custom Resource Caveats

• Because some custom resources are external to PBS, they are not completely under the control of PBS. Therefore it
is possible for PBS to query and find a resource available, schedule a job to run and use that resource, only to have
an outside entity take that resource before the job is able to use it. For example, say you had an external resource of
“scratch space” and your local query script simply checked to see how much disk space was free. It would be possi-
ble for a job to be started on a host with the requested space, but for another application to use the free space before
the job did.

• If a resource is not put in the scheduler’s resources: line, when jobs request the resource, that request will be
ignored. If the resource is ignored, it cannot be used to accept or reject jobs at submission time. For example, if you
create a string resource String1 on the server, and set it to foo, a job requesting “-l String1=bar” will be
accepted. The only exception is host-level Boolean resources, which are considered when scheduling, whether or
not they are in the scheduler’s resources: line.

• Do not create resources with the same names or prefixes that PBS uses when you create custom resources for spe-
cific systems.

• Using dynamic host-level resources can slow the scheduler down, because the scheduler must wait for each
resource-query script to run.
AG-286 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.15 Managing Resource Usage

You can manage resource usage from different directions:

• You can manage resource usage by users, groups, and projects, and the number of jobs, at the server and queue level.
See section 5.15.1, “Managing Resource Usage By Users, Groups, and Projects, at Server & Queues”, on page 287.

• You can manage the total amount of each resource that is used by projects, users or groups, at the server or
queue level. For example, you can manage how much memory is being used by jobs in queue QueueA.

• You can manage the number of jobs being run by projects, users or groups, at the server or queue level. For
example, you can limit the number of jobs enqueued in queue QueueA by any one group to 30, and by any sin-
gle user to 5.

• You can specify how much of each resource any job is allowed to use, at the server and queue level. See section
5.15.2, “Placing Resource Limits on Jobs”, on page 304 and section 5.13, “Using Resources to Restrict Server or
Queue Access”, on page 254.

• You can set default limits for usage for each resource, at the server or queue level, so that jobs that do not request a
given resource inherit that default, and are limited to the inherited amount. For example, you can specify that any
job entering queue QueueA not specifying mem is limited to using 4MB of memory. See section 5.9.3, “Specifying
Job Default Resources”, on page 245.

• You can set limits on the number of jobs that can be in the queued state at the server and/or queue level. You can
apply these limits to users, groups, projects, or everyone. This allows users to submit as many jobs as they want,
while allowing the scheduler to consider only the jobs in the execution queues, thereby speeding up the scheduling
cycle. See section 5.15.3, “Limiting the Number of Jobs in Queues”, on page 309.

5.15.1 Managing Resource Usage By Users, Groups, and
Projects, at Server & Queues

You can set separate limits for resource usage by individual users, individual groups, individual projects, generic users,
generic groups, generic projects, and the total used overall, for queued jobs, running jobs, and queued and running jobs.
You can limit the amount of resources used, and the number of queued jobs, the number of running jobs, and the number
of queued and running jobs. These limits can be defined separately for each queue and for the server. You define the lim-
its by setting server and queue limit attributes. For information about projects, see section 13.4, “Grouping Jobs By
Project”, on page 497.

There are two incompatible sets of server and queue limit attributes used in limiting resource usage. The first set
existed in PBS Professional before Version 10.1, and we call them the old limit attributes. The old limit attributes are
discussed in section 5.15.1.15, “Old Limit Attributes: Server and Queue Resource Usage Limit Attributes Existing
Before Version 10.1”, on page 302. The set introduced in Version 10.1 is called simply the limit attributes, and they are
discussed here.

You can use either the limit attributes or the old limit attributes for the server and queues, but not both. See section
5.15.1.13.v, “Do Not Mix Old And New Limits”, on page 301.

The server and queues each have per-job limit attributes which operate independently of the limits discussed in this sec-
tion. The resources_min.<resource name> and resources_max.<resource name> server and queue attributes are
limits on what each individual job may use. See section 5.13, “Using Resources to Restrict Server or Queue Access”, on
page 254 and section 5.15.2, “Placing Resource Limits on Jobs”, on page 304.
PBS Professional 2020.1.1 Administrator’s Guide AG-287

Chapter 5 Using PBS Resources
5.15.1.1 Examples of Managing Resource Usage at Server and

Queues

You can limit resource usage and job count for specific projects, users and groups:

• UserA can use no more than 6 CPUs, and UserB can use no more than 4 CPUs, at one time anywhere in the PBS
complex.

• The crashtest group can use no more than 16 CPUs at one time anywhere in the PBS complex.

• UserC accidentally submitted 200,000 jobs last week. UserC can now have no more than 25 jobs enqueued at one
time.

• All jobs request the server-level custom resource nodehours, which is used for allocation. UserA cannot use more
than 40 nodehours in the PBS complex. Once UserA reaches the nodehours limit, then all queued jobs owned by
UserA are not eligible for execution.

• You wish to allow UserD to use 12 CPUs but limit all other users to 4 CPUs.

• Jobs belonging to Project A can use no more than 8 CPUs at Queue1.

You can limit the number of jobs a particular project, user or group runs in a particular queue:

• UserE can use no more than 2 CPUs at one time at Queue1, and 6 CPUs at one time at Queue2.

• You wish to limit UserF to 10 running jobs in queue Queue3, but allow all other users unlimited jobs running in the
same queue.

• UserG is a member of Group1. You have a complex-wide limit of 5 running jobs for UserG. You have a limit at
Queue1 of 10 running jobs for Group1. This way, up to 10 of the running jobs in Queue1 can belong to Group1, and
5 of these can belong to UserG.

• UserH is a member of Group1. You have a complex-wide limit of 5 running jobs for UserH. You have a limit at
Queue1 of 10 running jobs for any group in Queue1. This way, no group in Queue1 can run more than 10 jobs total
at one time, and 5 of these can belong to UserH.

• UserJ is a member of Group1. You have a complex-wide limit of 10 running jobs for UserJ. You also have a limit at
Queue1 of 5 running jobs for Group1. This means that there may be up to 5 running jobs owned by users belonging
to Group1 in Queue1, and up to 5 of these can be owned by UserJ. UserJ can also have another 5 running jobs
owned by Group1 in any other queue, or owned by a different group in Queue1.

• No more than 12 jobs belonging to Project A can run at Queue1, and all other projects are limited to 8 jobs at
Queue1.

You can ensure fairness in the use of resources:

• You have multiple departments which have shared the purchase of a large machine. Each department would like to
ensure fairness in the use of the machine, by setting limits on individual users and groups.

• You have multiple departments, each of which purchases its own machines. Each department would like to limit the
use of its machines so that all departmental users have specific limits. In addition, each department would like to
allow non-departmental users to use its machines when they are under-utilized, while giving its own users priority on
its machines. A non-departmental user can run jobs on a departmental machine, as long as no departmental users’
jobs are waiting to run.

5.15.1.2 Glossary

Limit

The maximum amount of a resource that can be consumed at any time by running jobs or allocated to queued
jobs, or the maximum number of jobs that can be running, or the maximum number of jobs that can be queued.
AG-288 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
Overall limit

Limit on the total usage. In the context of server limits, this is the limit for usage at the PBS complex. In the
context of queue limits, this is the limit for usage at the queue. An overall limit is applied to the total usage at
the specified location. Separate overall limits can be specified at the server and each queue.

Generic user limit

Applies separately to users at the server or a queue. The limit for users who have no individual limit specified.
A separate limit for generic users can be specified at the server and at each queue.

Generic group limit

Applies separately to groups at the server or a queue. The limit for groups which have no individual limit speci-
fied. A limit for generic groups is applied to the usage across the entire group. A separate limit can be specified
at the server and each queue.

Generic project limit

Applies separately to projects at the server or a queue. The limit for projects which have no individual limit
specified. A limit for generic projects is applied to the usage across the entire project. A separate limit can be
specified at the server and each queue.

Individual user limit

Applies separately to users at the server or a queue. Limit for users who have their own individual limit speci-
fied. A limit for an individual user overrides the generic user limit, but only in the same context, for example, at
a particular queue. A separate limit can be specified at the server and each queue.

Individual group limit

Applies separately to groups at the server or a queue. Limit for a group which has its own individual limit spec-
ified. An individual group limit overrides the generic group limit, but only in the same context, for example, at
a particular queue. The limit is applied to the usage across the entire group. A separate limit can be specified at
the server and each queue.

Individual project limit

Applies separately to projects at the server or a queue. Limit for a project which has its own individual limit
specified. An individual project limit overrides the generic project limit, but only in the same context, for
example, at a particular queue. The limit is applied to the usage across the entire project. A separate limit can
be specified at the server and each queue.

User limit

A limit placed on one or more users, whether generic or individual.

Group limit

This is a limit applied to the total used by a group, whether the limit is a generic group limit or an individual
group limit.

Project

In PBS, a project is a way to group jobs independently of users and groups. A project is a tag that identifies a set
of jobs. Each job’s project attribute specifies the job’s project.

Project limit

This is a limit applied to the total used by a project, whether the limit is a generic project limit or an individual
project limit.

Queued jobs

In a queue, queued jobs are the jobs that are waiting in that queue.
PBS Professional 2020.1.1 Administrator’s Guide AG-289

Chapter 5 Using PBS Resources
5.15.1.3 Difference Between PBS_ALL and PBS_GENERIC

Note the very important difference between the overall limit and a generic limit. We will describe how this works for
users, but this applies to other entities as well. You set PBS_ALL for an overall limit on the total usage of that resource
by all entities, whereas you set PBS_GENERIC for a limit for any single generic user.

Example 5-12: Difference between overall limit and generic user limit

Given the following:

• The overall server limit for running jobs is 100

• The server limit for generic users is 10

• The individual limit for User1 is 12 jobs

This means:

• Generic users (any single user except User1) can run no more than 10 jobs at this server

• User1 can run 12 jobs at this server

• At this server, no more than 100 jobs can be running at any time

5.15.1.4 Hard and Soft Limits

Hard limits are limits which cannot be exceeded. Soft limits are limits which mark the point where a project, user or
group is using “extra, but acceptable” amounts of a resource. When this happens, the jobs belonging to that project, user
or group are eligible for preemption. See section 4.9.33, “Using Preemption”, on page 180. Soft limits are discussed in
section 4.9.33.7.i, “The Soft Limits Preemption Level”, on page 185.

5.15.1.5 Scope of Limits at Server and Queues

Each of the limits described above can be set separately at the server and at each queue. Each limit’s scope is the PBS
object where it is set. The individual and generic project, user and group limits that are set within one scope interact with
each other only within that scope. For example, a limit set at one queue has no effect at another queue.

The scope of limits set at the server encompasses queues, so that the minimum, more restrictive limit of the two is
applied. For precedence within a server or queue, see section 5.15.1.7, “Precedence of Limits at Server and Queues”, on
page 293.
AG-290 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.15.1.6 Ways To Limit Resource Usage at Server and Queues

You can create a complete set of limits at the server, and you can create another complete set of limits at each queue. You
can set hard and soft limits. See section 4.9.33.7.i, “The Soft Limits Preemption Level”, on page 185. You can limit
resource usage at the server and the queue level for the following:

• Running jobs

• Number of running jobs

• Number of running jobs (soft limit)

• Amount of each resource allocated for running jobs

• Amount of each resource allocated for running jobs (soft limit)

• Queued jobs (this means jobs that are waiting to run from that queue)

• Number of queued jobs

• Amount of each resource allocated for queued jobs

• Queued and running jobs (this means both jobs that are waiting to run and jobs that are running from that queue)

• Number of queued and running jobs

• Amount of each resource allocated for queued and running jobs

These limits can be applied to the following:

• The total usage at the server

• The total usage at each queue

• Amount used by a single user

• Generic users

• Individual users

• Amount used by a single group

• Generic groups

• Individual groups

• Amount used by a single project

• Generic projects

• Individual projects

5.15.1.6.i Limits at Queues

You can limit the number of jobs that are queued at a queue, and running at a queue, and that are both queued and running
at a queue.

You can limit the resources allocated to jobs that are queued at a queue, and running at a queue, and that are both queued
and running at a queue.

Jobs queued at a queue are counted the same whether they were submitted to that queue via the qsub command or its
equivalent API, moved to that queue via the qmove command or its equivalent API, or routed to that queue from another
queue.

When PBS requeues a job, it does not take limits into account.

Routing queues do not run jobs, so you cannot set a limit for the number of running jobs, or the amount of resources
being used by running jobs, at a routing queue.
PBS Professional 2020.1.1 Administrator’s Guide AG-291

Chapter 5 Using PBS Resources
5.15.1.6.ii Generic and Individual Limits

You can set a generic limit for groups, so that each group must obey the same limit. You can likewise set a generic limit
for users and projects. Each generic limit can be set separately at the server and at each queue. For example, if you have
two queues, the generic limit for the number of jobs a user can run be 4 at QueueA and 6 at QueueB.

You can set a different individual limit for each user, and you can set individual limits for groups and for projects. Each
user, group, and project can have a different individual limit at the server and at each queue.

You can use a combination of generic and individual project, user or group limits, at the server and at each queue. Within
the scope of the server or a queue, all projects, users or groups except the ones with the individual limits must obey the
generic limit, and the individual limits override the generic limits.

Example 5-13: Generic and individual user limits on running jobs at QueueA and QueueB

At QueueA:

• At QueueA, the generic user limit is 5

• At QueueA, Bob’s individual limit is 8

• Tom has no individual limit set at QueueA; the generic limit applies

At QueueB:

• At QueueB, the generic user limit is 2

• At QueueB, Tom’s individual limit is 1

• Bob has no individual limit at QueueB; the generic limit applies

This means:

• Bob can run 8 jobs at QueueA

• Bob can run 2 jobs at QueueB

• Tom can run 5 jobs at QueueA

• Tom can run 1 job at QueueB

5.15.1.6.iii Overall Limits

The overall limit places a cap on the total amount of the resource that can be used within the scope in question (server or
queue), regardless of whether project, user, or group limits have been reached. A project, user, or group at the server or
a queue cannot use any more of a resource for which the overall limit has been reached, even if that project, user, or
group limit has not been reached.

Example 5-14: Overall limit at server

Given the following:

• Overall server limit on running jobs is 100

• Bob’s user limit is 10 running jobs

• 98 jobs are already running

• Bob is running zero jobs

This means:

• Bob can start only 2 jobs
AG-292 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.15.1.7 Precedence of Limits at Server and Queues

5.15.1.7.i Interactions Between Limits Within One Scope

Within the scope of a PBS object (server or queue), there is an order of precedence for limits when more than one applies
to a job. The order of precedence for the limits at a queue is the same as the order at the server. The following table
shows how limits interact within one scope:

An individual user limit overrides a generic user limit.

Example 5-15: Individual user limit overrides generic user limit

Given the following:

• Bob has a limit of 10 running jobs

• The generic limit is 5

This means:

• Bob can run 10 jobs

An individual group limit overrides a generic group limit in the same manner as for users.

If the limits for a user and the user’s group are different, the more restrictive limit applies.

Example 5-16: More restrictive user or group limit applies

Given the following:

• Tom’s user limit for running jobs is 8

• Tom’s group limit is 7

This means:

• Tom can run only 7 jobs in that group

If a user belongs to more than one group, that user can run jobs up to the lesser of his user limit or the sum of the group
limits.

Example 5-17: User can run jobs in more than one group

Table 5-12: Limit Interaction Within One Scope

Individual
User

Generic
User

Individual
Group

Generic
Group

Individual
Project

Generic
Project

Individual User
Individual
user

Individual
user

More restrictive More
restrictive

More restric-
tive

More
restrictive

Generic User
Individual
user

Generic user More restrictive More
restrictive

More restric-
tive

More
restrictive

Individual Group
More restric-
tive

More restric-
tive

Individual
group

Individual
group

More restric-
tive

More
restrictive

Generic Group
More restric-
tive

More restric-
tive

Individual
group

Generic
group

More restric-
tive

More
restrictive

Individual Project
More restric-
tive

More restric-
tive

More restrictive More
restrictive

Individual
project

Individual
project

Generic Project
More restric-
tive

More restric-
tive

More restrictive More
restrictive

Individual
project

Generic
project
PBS Professional 2020.1.1 Administrator’s Guide AG-293

Chapter 5 Using PBS Resources
Given the following:

• Tom’s user limit is 10 running jobs

• GroupA has a limit of 2 and GroupB has a limit of 4

• Tom belongs to GroupA and GroupB

This means:

• Tom can run 6 jobs, 2 in GroupA and 4 in GroupB

An individual project limit overrides a generic project limit, similar to the way user and group limits work.

Project limits are applied independently of user and group limits.

Example 5-18: Project limits are applied without regard to user and group limits

Given the following:

• Project A has a limit of 2 jobs

• Bob has an individual limit of 4 jobs

• Bob’s group has a limit of 6 jobs

• Bob is running 2 jobs, both in Project A

This means:

• Bob cannot run any more jobs in Project A

5.15.1.7.ii Interactions Between Queue and Server Limits

If the limits for a queue and the server are different, the more restrictive limit applies.

Example 5-19: More restrictive queue or server limit applies

Given the following:

• Server limit on running jobs for generic users is 10

• Queue limit for running jobs from QueueA for generic users is 15

• Queue limit for running jobs from QueueB for generic users is 5

This means:

• Generic users at QueueA can run 10 jobs

• Generic users at QueueB can run 5 jobs

Example 5-20: More restrictive queue or server limit applies

Given the following:

• Bob’s user limit on running jobs, set on the server, is 7

• Bob’s user limit on running jobs, set on QueueA, is 6

This means:

• Bob can run 6 jobs from QueueA

5.15.1.8 Resource Usage Limit Attributes for Server and Queues

Each of the following attributes can be set at the server and each queue:

max_run

The maximum number of jobs that can be running.

max_run_soft

The soft limit on the maximum number of jobs that can be running.
AG-294 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
max_run_res.<resource name>

The maximum amount of the specified resource that can be allocated to running jobs.

max_run_res_soft.<resource name>

The soft limit on the amount of the specified resource that can be allocated to running jobs.

max_queued

The maximum number of jobs that can be queued and running. At the server level, this includes all jobs in the
complex. Queueing a job includes the qsub and qmove commands and the equivalent APIs.

max_queued_res.<resource name>

The maximum amount of the specified resource that can be allocated to queued and running jobs. At the server
level, this includes all jobs in the complex. Queueing a job includes the qsub and qmove commands and the
equivalent APIs.

queued_jobs_threshold

The maximum number of jobs that can be queued. At the server level, this includes all jobs in the complex.
Queueing a job includes the qsub and qmove commands and the equivalent APIs.

queued_jobs_threshold_res.<resource name>

The maximum amount of the specified resource that can be allocated to queued jobs. At the server level, this
includes all jobs in the complex. Queueing a job includes the qsub and qmove commands and the equivalent
APIs.

Each attribute above can be used to specify all of the following:

• An overall limit (at the queue or server)

• A limit for generic users

• Individual limits for specific users

• A limit for generic projects

• Individual limits for specific projects

• A limit for generic groups

• Individual limits for specific groups
PBS Professional 2020.1.1 Administrator’s Guide AG-295

Chapter 5 Using PBS Resources
For example, you can specify the limits for the number of running jobs:

• In the complex:

• The overall server limit (all usage in the entire complex) is 10,000

• The limit for generic users is 5

• The limit for Bob is 10

• The limit for generic groups is 50

• The limit for group GroupA is 75

• The limit for generic projects is 25

• The limit for Project A is 35

• At QueueA:

• The overall queue limit (all usage in QueueA) is 200

• The limit for generic users is 2

• The limit for Bob is 1

• The limit for generic groups is 3

• The limit for group GroupA is 7

• The limit for generic projects is 10

• The limit for Project A is 15

• At QueueB:

• The overall queue limit (all usage in QueueB) is 500

• The limit for generic users is 6

• The limit for Bob is 8

• The limit for generic groups is 15

• The limit for group GroupA is 11

• The limit for generic projects is 20

• The limit for Project A is 30

5.15.1.9 How to Set Limits at Server and Queues

You can set, add, and remove limits by using the qmgr command to set limit attributes.

5.15.1.9.i Syntax

Format for setting a limit attribute:

set server <limit attribute> = “[limit-spec=<limit>], [limit-spec=<limit>],...”

set <queue> <queue name> <limit attribute> = “[limit-spec=<limit>], [limit-spec=<limit>],...”

Format for adding a limit to an attribute:

set server <limit attribute> += “[limit-spec=<limit>], [limit-spec=<limit>],...”

set <queue> <queue name> <limit attribute> += “[limit-spec=<limit>], [limit-spec=<limit>],...”

Format for removing a limit from an attribute; note that the value for <limit> need not be specified when removing a
limit:

set server <limit attribute> -= “[limit-spec], [limit-spec],...”

set <queue> <queue name> <limit attribute> -= “[limit-spec], [limit-spec],...”
AG-296 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
Alternate format for removing a limit from an attribute; note that the value of <limit> used when removing a limit must
match the value of the limit:

set server <limit attribute> -= “[limit-spec=<limit>], [limit-spec=<limit>],...”

set <queue> <queue name> <limit attribute> -= “[limit-spec=<limit>], [limit-spec=<limit>],...”

where limit-spec specifies a user limit, a group limit, or an overall limit:

The limit-spec can contain spaces anywhere except after the colon (“:”).

If there are comma-separated limit-specs, the entire string must be enclosed in double quotes.

A username, group name, or project name containing spaces must be enclosed in quotes.

If a username, group name, or project name is quoted using double quotes, and the entire string requires quotes, the outer
enclosing quotes must be single quotes. Similarly, if the inner quotes are single quotes, the outer quotes must be double
quotes.

PBS_ALL is a keyword which indicates that this limit applies to the usage total.

PBS_GENERIC is a keyword which indicates that this limit applies to generic users or groups.

When removing a limit, the limit value does not need to be specified.

PBS_ALL and PBS_GENERIC are case-sensitive.

5.15.1.9.ii Examples of Setting Server and Queue Limits

Example 5-21: To set the max_queued limit on QueueA to 5 for total usage, and to limit user bill to 3:

Qmgr: s q QueueA max_queued = "[o:PBS_ALL=5], [u:bill =3]"

Example 5-22: On QueueA, set the maximum number of CPUs and the maximum amount of memory that user bill can
request in his queued jobs:

Qmgr: s q QueueA max_queued_res.ncpus ="[u:bill=5]", max_queued_res.mem =
"[u:bill=100mb]"

Example 5-23: To set a limit for a username with a space in it, and to set a limit for generic groups:

Qmgr: s q QueueA max_queued = ‘[u:"\PROG\Named User" = 1], [g:PBS_GENERIC=4]’

Example 5-24: To set a generic server limit for projects, and an individual server limit for Project A:

Qmgr: set server max_queued = ‘[p:PBS_GENERIC=6], [p:ProjectA=8]’

Table 5-13: Specifying Limits

Limit limit-spec

Overall limit o:PBS_ALL

Generic users u:PBS_GENERIC

An individual user u:<username>

Generic groups g:PBS_GENERIC

An individual group g:<group name>

Generic projects p:PBS_GENERIC

An individual project p:<project name>
PBS Professional 2020.1.1 Administrator’s Guide AG-297

Chapter 5 Using PBS Resources
5.15.1.9.iii Examples of Adding Server and Queue Limits

Example 5-25: To add an overall limit for the maximum number of jobs that can be queued at QueueA to 10:

Qmgr: s q QueueA max_queued += [o:PBS_ALL=10]

Example 5-26: To add an individual user limit, an individual group limit, and a generic group limit on queued jobs at
QueueA:

Qmgr: s q QueueA max_queued += "[u:user1= 5], [g:GroupMath=5],[g:PBS_GENERIC=2]"

Example 5-27: To add a limit at QueueA on the number of CPUs allocated to queued jobs for an individual user, and a
limit at QueueA on the amount of memory allocated to queued jobs for an individual user:

Qmgr: s q QueueA max_queued_res.ncpus += [u:tom=5], max_queued_res.mem += [u:tom=100mb]

Example 5-28: To add an individual server limit for Project B:

Qmgr: set server max_queued += [p:ProjectB=4]

5.15.1.9.iv Examples of Removing Server and Queue Limits

It is not necessary to specify the value of the limit when removing a limit, but you can specify the value of the limit.

Example 5-29: To remove the generic user limit at QueueA for queued jobs, use either of the following:

Qmgr: set queue QueueA max_queued -= [u:PBS_GENERIC]
Qmgr: set queue QueueA max_queued -= [u:PBS_GENERIC=2]

Example 5-30: To remove the limit on queued jobs at QueueA for Named User, use either of the following:

Qmgr: set queue QueueA max_queued -= [u:"\PROG\Named User"]
Qmgr: set queue QueueA max_queued -= [u:"\PROG\Named User"=1]

Example 5-31: To remove the limit at QueueA on the amount of memory allocated to an individual user, use either of the
following:

Qmgr: set queue QueueA max_queued_res.mem -= [u:tom]
Qmgr: set queue QueueA max_queued_res.mem -= [u:tom=100mb]

To remove the limit on the number of CPUs allocated to queued jobs for user bill, use either of the following:

Qmgr: set queue QueueA max_queued_res.ncpus -= [u:bill]
Qmgr: set queue QueueA max_queued_res.ncpus -= [u:bill=5]

Example 5-32: To remove a generic user limit and an individual user limit, use either of the following:

Qmgr: set queue QueueA max_queued - -= “[u:user1], [u:PBS_GENERIC]”
Qmgr: set queue QueueA max_queued -= “[u:user1=2], [u:PBS_GENERIC=4]”

Example 5-33: To remove the individual server limit for Project B, use either of the following:

Qmgr: set server max_queued -=[p:ProjectB]
Qmgr: set server max_queued -=[p:ProjectB=4]

5.15.1.10 Who Can Set Limits at Server and Queues

As with other server and queue attributes, only PBS Managers and Operators can set limit attributes.
AG-298 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.15.1.11 Viewing Server and Queue Limit Attributes

5.15.1.11.i Printing Server and Queue Limit Attributes

You can use the qmgr command to print the commands used to set the limit attributes at the server or queue.

Example 5-34: To print all the limit attributes for queue QueueA:

Qmgr: p q QueueA max_queued, max_queued_res

#

Create queues and set their attributes.

#

Create and define queue QueueA

#

create queue QueueA

set queue QueueA max_queued = "[o:PBS_ALL=10]"

set queue QueueA max_queued += "[u:PBS_GENERIC=2]"

set queue QueueA max_queued += "[u:bill=3]"

set queue QueueA max_queued += "[u:tom=15]"

set queue QueueA max_queued += "[u:user1=3]"

set queue QueueA max_queued += '[u:"\PROG\Named User"=1]'

set queue QueueA max_queued += "[g:PBS_GENERIC=2] "

set queue QueueA max_queued += "[g:GroupMath=5]"

set queue QueueA max_queued_res.ncpus = "[u:bill=5]"

set queue QueueA max_queued_res.ncpus += "[u:tom=5]"

set queue QueueA max_queued_res.mem = "[u:bill=100mb]"

set queue QueueA max_queued_res.mem += "[u:tom=100mb]"

5.15.1.11.ii Listing Server and Queue Limit Attributes

You can use the qmgr command to list the limit attributes for the queue or server.

Example 5-35: To list the max_queued and max_queued_res attributes for QueueA:

Qmgr: l q QueueA max_queued, max_queued_res

Queue: QueueA

max_queued = [o:PBS_ALL=10]

max_queued = [g:PBS_GENERIC=2]

max_queued = [g:GroupMath=5]

max_queued = [u:PBS_GENERIC=2]

max_queued = [u:bill=3]

max_queued = [u:tom=15]

max_queued = [u:user1=3]

max_queued = [u:"\PROG\Named User"=1]

max_queued_res.ncpus = [u:bill=5]

max_queued_res.ncpus = [u:tom=5]

max_queued_res.mem = [u:bill=5]

max_queued_res.mem = [u:bill=100mb]

max_queued_res.mem = [u:tom=100mb]
PBS Professional 2020.1.1 Administrator’s Guide AG-299

Chapter 5 Using PBS Resources
5.15.1.11.iii Using the qstat Command to View Queue Limit Attributes

You can use the qstat command to see the limit attribute settings for the queue or server.

Example 5-36: To see the settings for the max_queued and max_queued_res limit attributes for QueueA using the
qstat command:

qstat -Qf QueueA

Queue: QueueA

 ...

max_queued = [o:PBS_ALL=10]

max_queued = [g:PBS_GENERIC=2]

max_queued = [g:GroupMath=5]

max_queued = [u:PBS_GENERIC=2]

max_queued = [u:bill=3]

max_queued = [u:tom=3]

max_queued = [u:cs=3]

max_queued = [u:"\PROG\Named User"=1]

max_queued_res.ncpus = [u:bill=5]

max_queued_res.ncpus = [u:tom=5]

max_queued_res.mem = [u:bill=5]

max_queued_res.mem =[u:bill=100mb]

max_queued_res.mem =[u:tom=100mb]

5.15.1.12 How Server and Queue Limits Work

Affected jobs are jobs submitted by the user or group, or jobs belonging to a project, whose limit has been reached. The
following table shows what happens when a given limit is reached:

Table 5-14: Actions Performed When Limits Are Reached

Limit Action

Running jobs No more affected jobs are run at this server or queue until the number of affected running jobs drops
below the limit.

Queued jobs The queue does not accept any more affected jobs until the number of affected queued jobs drops below
the limit. Affected jobs submitted directly to the queue are rejected. Affected jobs in a routing queue
whose destination is this queue remain in the routing queue. If a job is requeued, the limit is ignored.

Resources for
running jobs

The queue does not run any more affected jobs until the limit would not be exceeded if the next affected
job were to start.

Resources for
queued jobs

The queue does not accept any more affected jobs until the limit would not be exceeded if the next
affected job were to start. Affected jobs submitted directly to the queue are rejected. Affected jobs in a
routing queue whose destination is this queue remain in the routing queue.
AG-300 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.15.1.13 Caveats and Advice for Server and Queue Limits

5.15.1.13.i Avoiding Overflow

On PBS server platforms for which the native size of a long is less than 64 bits, you should refrain from defining a limit
on a resource of type long whose cumulative sum over all queued jobs would exceed the storage capacity of the resource
variable. For example, if each submitted job were to request 100 hours of the cput resource, overflow would occur on a

32-bit platform when 5965 jobs (which is seconds) were queued.

5.15.1.13.ii Ensuring That Limits Are Effective

In order for limits to be effective, each job must specify each limited resource. This can be accomplished using defaults;
see section 5.9.3, “Specifying Job Default Resources”, on page 245. You can also use hooks; see the PBS Professional
Hooks Guide.

5.15.1.13.iii Array Jobs

An array job with N subjobs is considered to consume N times the amount of resources requested when it was submitted.
For example, if there is a server limit of 100 queued jobs, no user would be allowed to submit an array job with more than
100 subjobs.

5.15.1.13.iv Avoiding Job Rejection

Jobs are rejected when users, groups, or projects who have reached their limit submit a job in the following circum-
stances:

• The job is submitted to the execution queue where the limit has been reached

• The job is submitted to the complex, and the server limit has been reached

If you wish to avoid having jobs be rejected, you can set up a routing queue as the default queue. Set the server’s
default_queue attribute to the name of the routing queue. See section 2.3.6, “Routing Queues”, on page 25.

5.15.1.13.v Do Not Mix Old And New Limits

The new limit attributes are incompatible with the old limit attributes. See section 5.15.1.15, “Old Limit Attributes:
Server and Queue Resource Usage Limit Attributes Existing Before Version 10.1”, on page 302. You cannot mix the use
of old and new resource usage limit attributes. This means that:

• If any old limit attribute is set, and you try to set a new limit attribute, you will get error 15141.

• If any new limit attribute is set, and you try to set an old limit attribute, you will get error 15141.

You must unset all of one kind in order to set any of the other kind.

5.15.1.13.vi Do Not Limit Running Time

Beware creating limits such as max_run_res.walltime or max_run_res.max_walltime. The results probably will not be
useful. You will be limiting the amount of walltime that can be requested by running jobs for a user, group, or project.
For example, if you set a walltime limit of 10 hours for group A, then group A cannot run one job requesting 5 hours and
another job requesting 6 hours.

5.15.1.14 Errors and Logging for Server and Queue Limits

5.15.1.14.i Error When Setting Limit Attributes

Attempting to set a new limit attribute while an old limit attribute is set:

"use new/old qmgr syntax, not both"

“Attribute name <new> not allowed. Older name <old> already set'

231 1–() 360000⁄
PBS Professional 2020.1.1 Administrator’s Guide AG-301

Chapter 5 Using PBS Resources
Attempting to set an old limit attribute while a new limit attribute is set:

"use new/old qmgr syntax, not both"

“Attribute name <old> not allowed: Newer name <new> already set''

5.15.1.14.ii Logging Events

Whenever a limit attribute is set or modified, the server logs the event, listing which attribute was modified and who
modified it.

Whenever a limit is reached, and would be exceeded by a job, the scheduler logs the event, listing the limit attribute and
the reason.

5.15.1.14.iii Queued Limit Error Messages

When a limit for queued jobs or resources allocated to queued jobs is reached, the command involved presents a mes-
sage. This command can be qsub, qmove or qalter.

5.15.1.14.iv Run Limit Error Messages

See “Run Limit Error Messages” on page 387 of the PBS Professional Reference Guide for a list of run limit error mes-
sages.

5.15.1.15 Old Limit Attributes: Server and Queue Resource Usage Limit

Attributes Existing Before Version 10.1

The old server and queue limit attributes discussed here existed in PBS Professional before Version 10.1. The old limit
attributes continue to function as they did in PBS Professional 10.0. These attributes are incompatible with the limit
attributes introduced in Version 10.1. See section 5.15.1.13.v, “Do Not Mix Old And New Limits”, on page 301 and sec-
tion 5.15.1.14.i, “Error When Setting Limit Attributes”, on page 301.

The following table shows how the old limit attributes are used:

Table 5-15: Resource Usage Limits Existing Before Version 10.1

Limit
Overall
Limit

Generic Users Generic Groups
Indi-

vidual
Users

Indi-
vidual
Group

Maximum number of running
jobs

max_running max_user_run max_group_run N/A N/A

Maximum number of running
jobs (soft limit)

N/A max_user_run_soft max_group_run_soft N/A N/A

Maximum amount of specified
resource allocated to running
jobs

N/A max_user_res max_group_res N/A N/A

Maximum amount of specified
resource allocated to running
jobs (soft limit)

N/A max_user_res_soft max_group_res_soft N/A N/A

Maximum number of queued
jobs

max_queuable N/A N/A N/A N/A

Maximum amount of specified
resource allocated to queued
jobs

N/A N/A N/A N/A N/A
AG-302 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.15.1.15.i Precedence of Old Limits

If an old limit is defined at both the server and queue, the more restrictive limit applies.

5.15.1.15.ii Old Server Limits

For details of these limits, see “Server Attributes” on page 281 of the PBS Professional Reference Guide.

max_running

The maximum number of jobs allowed to be selected for execution at any given time.

max_group_res,

max_group_res_soft

The maximum amount of the specified resource that all members of the same Linux group may consume simul-
taneously.

max_group_run,

max_group_run_soft

The maximum number of jobs owned by a Linux group that are allowed to be running from this server at one
time.

max_user_res,

max_user_res_soft

The maximum amount of the specified resource that any single user may consume.

max_user_run,

max_user_run_soft

The maximum number of jobs owned by a single user that are allowed to be running at one time.

5.15.1.15.iii Old Queue Limits

For details of these limits, see “Queue Attributes” on page 311 of the PBS Professional Reference Guide.

max_group_res,

max_group_res_soft

The maximum amount of the specified resource that all members of the same Linux group may consume simul-
taneously, in the specified queue.

max_group_run,

max_group_run_soft

The maximum number of jobs owned by a Linux group that are allowed to be running from this queue at one
time

max_queuable

The maximum number of jobs allowed to reside in the queue at any given time. Once this limit is reached, no
new jobs will be accepted into the queue.

max_user_res,

max_user_res_soft

The maximum amount of the specified resource that any single user may consume in submitting to this queue.

max_user_run,

max_user_run_soft

The maximum number of jobs owned by a single user that are allowed to be running at one time from this
queue.
PBS Professional 2020.1.1 Administrator’s Guide AG-303

Chapter 5 Using PBS Resources
5.15.2 Placing Resource Limits on Jobs

Jobs are assigned limits on the amount of resources they can use. Each limit is set at the amount requested or allocated
by default. These limits apply to how much the job can use on each vnode (per-chunk limit) and to how much the whole
job can use (job-wide limit). Limits are derived from both requested resources and applied default resources. For infor-
mation on default resources, see section 5.9.3, “Specifying Job Default Resources”, on page 245.

Each chunk's per-chunk limits determine how much of any resource can be used in that chunk. Per-chunk resource usage
limits are the amount of per-chunk resources requested, both from explicit requests and from defaults.

The consumable resources requested for chunks in the select specification are summed, and this sum makes a job-wide
limit. Job resource limits from sums of all chunks override those from job-wide defaults and resource requests.

Job resource limits set a limit for per-job resource usage. Various limit checks are applied to jobs. If a job's job resource
limit exceeds queue or server restrictions, it will not be put in the queue or accepted by the server. If, while running, a job
exceeds its limit for a consumable or time-based resource, it will be terminated.

5.15.2.1 How Limits Are Derived

Job resource limits are derived in this order from the following:

1. Explicitly requested job-wide resources (e.g. -l resource=value)

2. The following built-in chunk-level resources in the job’s select specification (e.g. -l select =...)

accelerator_memory

mem

mpiprocs

naccelerators

ncpus

nodect

vmem

3. The server’s default_qsub_arguments attribute

4. The queue’s resources_default.<resource name>

5. The server’s resources_default.<resource name>

6. The queue’s resources_max.<resource name>

7. The server’s resources_max.<resource name>

The server’s default_chunk.<resource name> does not affect job-wide limits.

You can use a hook to set a per-chunk limit, using any hook that operates on jobs, such as a job submission hook, a mod-
ify job hook, etc.

5.15.2.2 Configuring Per-job Limits at Server and Queue

You can set per-job limits on the amount of each resource that any one job can use. You can set these limits at the server
and at each queue. For example, you can specify the following limits:

• Jobs at the server can use no more than 48 hours of CPU time

• Jobs at QueueA can use no more than 12 hours of CPU time

• Jobs at QueueA must request more than 2 hours of CPU time
AG-304 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
To set these limits, specify values for the server’s resources_max.<resource name> attribute and each queue’s
resources_max.<resource name> and resources_min.<resource name> attributes. The server does not have a
resources_min.<resource name> attribute. To set the maximum at the server, the format is:

Qmgr: set server resources_max.<resource name> = value

To set the maximum and minimum at the queue, the format is:

Qmgr: set queue <queue name> resources_max.<resource name> = value

Qmgr: set queue <queue name> resources_min.<resource name> = value

For example, to set the 48 hour CPU time limit:

Qmgr: set server resources_max.cput = 48:00:00

5.15.2.2.i Running Time Limits at Server and Queues

For non-shrink-to-fit jobs, you can set limits on walltime at the server or queue. To set a walltime limit for non-shrink-to-
fit jobs at the server or a queue, use resources_max.walltime and resources min.walltime.

For shrink-to-fit jobs, running time limits are applied to max_walltime and min_walltime, not walltime. To set a running
time limit for shrink-to-fit jobs, you cannot use resources_max or resources_min for max_walltime or min_walltime.
Instead, use resources_max.walltime and resources_min.walltime. See section 4.9.42.6, “Shrink-to-fit Jobs and
Resource Limits”, on page 213.

5.15.2.3 Configuring Per-job Resource Limit Enforcement at Vnodes

For a job, enforcement of resource limits is per-MoM, not per-vnode. So if a job requests 3 chunks, each of which has
1MB of memory, and all chunks are placed on one host, the limit for that job for memory for that MoM is 3MB. There-
fore one chunk can be using 2 MB and the other two using 0.5MB and the job can continue to run.

Job resource limits can be enforced for single-vnode jobs, or for multi-vnode jobs that are using a PBS-aware MPI. See
the following table for an overview. Memory limits are handled differently depending on the operating system. See "Job
Memory Limit Enforcement on Linux” on page 306. The ncpus limit can be adjusted in several ways. See "Job ncpus
Limit Enforcement” on page 307 for a discussion. The following table summarizes how resource limits are enforced at
vnodes:

Table 5-16: Resource Limit Enforcement at Vnodes

Limit What Determines When Limit Is Enforced
Scope of

Limit
Enforcement

Method

file size automatically per-process setrlimit()

vmem If job requests or inherits vmem job-wide MoM poll

pvmem If job requests or inherits pvmem per-process setrlimit()

pmem If job requests or inherits pmem per-process setrlimit()

pcput If job requests or inherits pcput per-process setrlimit()

cput If job requests or inherits cput job-wide MoM poll

walltime If job requests or inherits walltime job-wide MoM poll

mem if $enforce mem in MoM’s config job-wide MoM poll

ncpus if $enforce cpuaverage, $enforce cpuburst, or both, in MoM’s
config. See "Job ncpus Limit Enforcement” on page 307.

job-wide MoM poll
PBS Professional 2020.1.1 Administrator’s Guide AG-305

Chapter 5 Using PBS Resources
5.15.2.4 Job Memory Limit Enforcement

You may wish to prevent jobs from swapping memory. To prevent this, you can set limits on the amount of memory a
job can use. Then the job must request an amount of memory equal to or smaller than the amount of physical memory
available.

PBS measures and enforces memory limits in two ways:

• On each host, by setting OS-level limits, using the limit system calls

• By periodically summing the usage recorded in the /proc entries.

Enforcement of mem is dependent on the following:

• Adding $enforce mem to the MoM's config file

• The job requesting or inheriting a default value for mem

You can configure default qsub parameters in the default_qsub_arguments server attribute, or set memory defaults at
the server or queue. See section 5.9.3, “Specifying Job Default Resources”, on page 245.

5.15.2.4.i Job Memory Limit Enforcement on Linux

By default, memory limits are not enforced. To enforce mem resource usage, put $enforce mem into MoM’s config
file, and set defaults for mem so that each job inherits a value if it does not request it.

The mem resource can be enforced at both the job level and the vnode level. The job-wide limit is the smaller of a job-
wide resource request and the sum of that for all chunks. The vnode-level limit is the sum for all chunks on that host.

Job-wide limits are enforced by MoM polling the working set size of all processes in the job’s session. Jobs that exceed
their specified amount of physical memory are killed. A job may exceed its limit for the period between two polling
cycles. See section 3.1.2, “Configuring MoM Polling Cycle”, on page 34.

Per-process limits are enforced by the operating system kernel. PBS calls the kernel call setrlimit() to set the limit
for the top process (the shell), and any process started by the shell inherits those limits. PBS does not know whether the
kernel kills a process for exceeding the limit.

If a user submits a job with a job limit, but not per-process limits (qsub -l cput=10:00) then PBS sets the per-pro-
cess limit to the same value. If a user submits a job with both job and per-process limits, then the per-process limit is set
to the lesser of the two values.

Example: a job is submitted with qsub -lcput=10:00

• There are two CPU-intensive processes which use 5:01 each. The job will be killed by PBS for exceeding the cput
limit. 5:01 + 5:01 is greater than 10:00.

• There is one CPU-intensive process which uses 10:01. It is very likely that the kernel will detect it first.

• There is one process that uses 0:02 and another that uses 10:00. PBS may or may not catch it before the kernel does
depending on exactly when the polling takes place.

If a job is submitted with a pmem limit, or without pmem but with a mem limit, PBS uses the setrlimit(2) call to
set the limit. For most operating systems, setrlimit() is called with RLIMIT_RSS which limits the Resident Set
(working set size). This is not a hard limit, but advice to the kernel. This process becomes a prime candidate to have
memory pages reclaimed.

If vmem is specified and no single process exceeds that limit, but the total usage by all the processes in the job does, then
PBS enforces the vmem limit, but not the pvmem limit, and logs a message. PBS uses MoM polling to enforce vmem.

The limit for pmem is enforced if the job specifies, or inherits a default value for, pmem. When pmem is enforced, the
limit is set to the smaller of mem and pmem. Enforcement is done by the kernel, and applies to any single process in the
job.

The limit for pvmem is enforced if the job specifies, or inherits a default value for, pvmem. When pvmem is enforced,
the limit is set to the smaller of vmem and pvmem. Enforcement is done by the kernel, and applies to any single process
in the job.
AG-306 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
The following table shows which OS resource limits can be used by each operating system.

Note that RLIMIT_RSS, RLIMIT_UMEM, and RLIMIT_VMEM are not standardized (i.e. do not appear in the Open
Group Base Specifications Issue 6).

5.15.2.4.ii Memory Enforcement on cpusets

There should be no need to do so: either the vnode containing the memory in question has been allocated exclusively (in
which case no other job will also be allocated this vnode, hence this memory) or the vnode is shareable (in which case
using mem_exclusive would prevent two CPU sets from sharing the memory). Essentially, PBS enforces the equiva-
lent of mem_exclusive by itself.

5.15.2.5 Job ncpus Limit Enforcement

Enforcement of the ncpus limit (number of CPUs used) is available on all platforms. The ncpus limit can be enforced
using average CPU usage, burst CPU usage, or both. By default, enforcement of the ncpus limit is off. See “$enforce
<limit>” on page 241 of the PBS Professional Reference Guide.

5.15.2.5.i Average CPU Usage Enforcement

Each MoM enforces cpuaverage independently, per MoM, not per vnode. To enforce average CPU usage, put
$enforce cpuaverage in MoM’s config file. You can set the values of three variables to control how the average
is enforced. These are shown in the following table.

Enforcement of cpuaverage is based on the polled sum of CPU time for all processes in the job. The limit is checked
each poll period. Enforcement begins after the job has had average_trialperiod seconds of walltime. Then, the job is
killed if the following is true:

(cput / walltime) > (ncpus * average_cpufactor + average_percent_over / 100)

Table 5-17: RLIMIT Usage in PBS Professional

OS file mem/pmem vmem/pvmem cput/pcput

Linux RLIMIT_FSIZE RLIMIT_RSS RLIMIT_AS RLIMIT_CPU

Table 5-18: Variables Used in Average CPU Usage

Variable Type Description Default

cpuaverage Boolean If present (=True), MoM enforces ncpus when the average
CPU usage over the job's lifetime usage is greater than the
specified limit.

False

average_trialperiod integer Modifies cpuaverage. Minimum job walltime before enforce-
ment begins. Seconds.

120

average_percent_over integer Modifies cpuaverage. Percentage by which the job may
exceed ncpus limit.

50

average_cpufactor float Modifies cpuaverage. ncpus limit is multiplied by this factor
to produce actual limit.

1.025
PBS Professional 2020.1.1 Administrator’s Guide AG-307

Chapter 5 Using PBS Resources
5.15.2.5.ii CPU Burst Usage Enforcement

To enforce burst CPU usage, put $enforce cpuburst in MoM’s config file. You can set the values of four vari-
ables to control how the burst usage is enforced. These are shown in the following table.

MoM calculates an integer value called cpupercent each polling cycle. This is a moving weighted average of CPU
usage for the cycle, given as the average percentage usage of one CPU. For example, a value of 50 means that during a
certain period, the job used 50 percent of one CPU. A value of 300 means that during the period, the job used an average
of three CPUs.

new_percent = change_in_cpu_time*100 / change_in_walltime

weight = delta_weight[up|down] * walltime/max_poll_period

new_cpupercent = (new_percent * weight) + (old_cpupercent * (1-weight))

delta_weight_up is used if new_percent is higher than the old cpupercent value. delta_weight_down is used if
new_percent is lower than the old cpupercent value. delta_weight_[up|down] controls the speed with which cpuper-

cent changes. If delta_weight_[up|down] is 0.0, the value for cpupercent does not change over time. If it is 1.0, cpu-

percent will take the value of new_percent for the poll period. In this case cpupercent changes quickly.

However, cpupercent is controlled so that it stays at the greater of the average over the entire run or ncpus*100.

max_poll_period is the maximum time between samples, set in MoM’s config file by $max_check_poll, with a
default of 120 seconds.

The job is killed if the following is true:

new_cpupercent > ((ncpus * 100 * delta_cpufactor) + delta_percent_over)

The following entries in MoM’s config file turn on enforcement of both average and burst with the default values:

$enforce cpuaverage

$enforce cpuburst

$enforce delta_percent_over 50

$enforce delta_cpufactor 1.05

$enforce delta_weightup 0.4

$enforce delta_weightdown 0.1

$enforce average_percent_over 50

$enforce average_cpufactor 1.025

$enforce average_trialperiod 120

Table 5-19: Variables Used in CPU Burst

Variable Type Description Default

cpuburst Boolean If present (=True), MoM enforces ncpus when CPU burst usage
exceeds specified limit.

False

delta_percent_over integer Modifies cpuburst. Percentage over limit to be allowed. 50

delta_cpufactor float Modifies cpuburst. ncpus limit is multiplied by this factor to
produce actual limit.

1.5

delta_weightup float Modifies cpuburst. Weighting factor for smoothing burst usage
when average is increasing.

0.4

delta_weightdown float Modifies cpuburst. Weighting factor for smoothing burst usage
when average is decreasing.

0.1
AG-308 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
The cpuburst and cpuaverage information show up in MoM's log file, whether or not they have been configured in
mom_priv/config. This is so a site can test different parameters for cpuburst/cpuaverage before enabling enforce-
ment. You can see the effect of any change to the parameters on your job mix before "going live".

Note that if the job creates a child process whose usage is not tracked by MoM during its lifetime, CPU usage can appear
to jump dramatically when the child process exits. This is because the CPU time for the child process is assigned to its
parent when the child process exits. MoM may see a big jump in cpupercent, and kill the job.

5.15.2.5.iii Job Memory Limit Restrictions

Enforcement of mem resource usage is available on all Linux platforms, but not Windows.

5.15.2.6 Changing Job Limits

The qalter command is used to change job limits, with these restrictions:

• A non-privileged user may only lower the limits for job resources

• A Manager or Operator may lower or raise requested resource limits, except for per-process limits such as pcput and
pmem, because these are set when the process starts, and enforced by the kernel.

• When you lengthen the walltime of a running job, make sure that the new walltime will not interfere with any exist-
ing reservations etc.

See “qalter” on page 127 of the PBS Professional Reference Guide.

5.15.3 Limiting the Number of Jobs in Queues

If you limit the number of jobs in execution queues, you can speed up the scheduling cycle. You can set an individual
limit on the number of jobs in each queue, or a limit at the server, and you can apply these limits to generic and individual
users, groups, and projects, and to overall usage. You specify this limit by setting the queued_jobs_threshold queue or
server attribute. See section 5.15.1.9, “How to Set Limits at Server and Queues”, on page 296.

If you set a limit on the number of jobs that can be queued in execution queues, we recommend that you have users sub-
mit jobs to a routing queue only, and route jobs to the execution queue as space becomes available. See section 4.9.39,
“Routing Jobs”, on page 205.

5.16 Where Resource Information Is Kept

Definitions and values for PBS resources are kept in the following files, attributes, and parameters. Attributes specifying
resource limits are not listed here. They are listed in section 5.15.1.8, “Resource Usage Limit Attributes for Server and
Queues”, on page 294 and section 5.15.1.15, “Old Limit Attributes: Server and Queue Resource Usage Limit Attributes
Existing Before Version 10.1”, on page 302.

5.16.1 Files

<sched_priv directory>/sched_config

resources: line

In order for scheduler to be able to schedule using a resource, the resource must be listed in the resources:
line. Format:
PBS Professional 2020.1.1 Administrator’s Guide AG-309

Chapter 5 Using PBS Resources
resources: “<resource name>, [<resource name>, ...]”
Example:

resources: “ncpus, mem, arch, [...], LocalScratch, FloatLicense, SharedScratch”

The only exception is host-level Boolean resources, which do not need to appear in the resources: line.

server_dyn_res: line

Each dynamic server resource must be listed in its own server_dyn_res: line. Format:

server_dyn_res: “<resource name> !<path to script/command>”
Example:

server_dyn_res: “SharedScratch !/usr/local/bin/serverdynscratch.pl”

mom_resources: line (deprecated as of 18.2.1)

Dynamic host resources must be listed in the mom_resources: line. Format:

mom_resources: “<resource name>”
Example:

mom_resources: “LocalScratch”

PBS_HOME/mom_priv/config

Contains MoM configuration parameters and any local resources. Format:

<resource name> !<path to script/command>

Example:

LocalScratch !/usr/local/bin/localscratch.pl

See “MoM Parameters” on page 239 of the PBS Professional Reference Guide.

Version 2 Configuration Files

Contain vnode information. See section 3.4.3, “Version 2 Vnode Configuration Files”, on page 42.

5.16.2 MoM Configuration Parameters

$cputmult <factor>

This sets a factor used to adjust CPU time used by each job. This allows adjustment of time charged and limits
enforced where jobs run on a system with different CPU performance. If MoM’s system is faster than the refer-
ence system, set factor to a decimal value greater than 1.0. For example:

$cputmult 1.5

If MoM’s system is slower, set factor to a value between 1.0 and 0.0. For example:

$cputmult 0.75

$wallmult <factor>

Each job’s walltime usage is multiplied by this factor. For example:

$wallmult 1.5
AG-310 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.16.3 Attributes

Resources are tracked in the following attributes:

5.17 Viewing Resource Information

You can see attribute values of resources for the server, queues, and vnodes using the qmgr or pbsnodes commands.
The value in the server, queue, or vnode resources_assigned attribute is the amount explicitly requested by running and
exiting jobs and, at the server and vnodes, started reservations.

Table 5-20: Attributes Where Resources Are Tracked

Resource Being
Tracked

Attribute Name

Server and
Queue

Vnode Job Reservation

Amount of each resource avail-
able for use at the object
(server, queue, vnode)

resources_available
.<resource name>

resources_available.
<resource name>

Amount of each resource allo-
cated to jobs running and exit-
ing at the object (server, queue,
vnode)

resources_assigned
.<resource name>

resources_assigned
.<resource name>

Amount of each resource used
by the job

resources_used
.<resource
name>

Amount of each job-wide
resource that is assigned to any
job that does not explicitly
request the resource

resources_default.<
resource name>

Amount of each host-level
resource that is assigned to
each chunk of any job where
that does not explicitly request
the resource

default_chunk.<reso
urce name>

List of resources requested by
the object (job or reservation)

Resource_List.
<resource
name>

Resource_List
.<resource
name>

List of chunks for the job.
Each chunk shows the name of
the vnode from which it is
taken along with the host-level,
consumable resources allocated
from that vnode.

exec_vnode

List of vnodes and resources
allocated to them to satisfy the
chunks requested for this reser-
vation or occurrence

resv_nodes
PBS Professional 2020.1.1 Administrator’s Guide AG-311

Chapter 5 Using PBS Resources
You can see job attribute values using the qstat command. The value in the job’s Resource_List attribute is the
amount explicitly requested by the job. See "Resources Requested by Job" on page 245 in the PBS Professional Admin-
istrator’s Guide.

The following table summarizes how to find resource information:

Every consumable resource, for example mem, can appear in four PBS attributes. These attributes are used in the fol-
lowing elements of PBS:

5.17.1 Resource Information in Accounting Logs

For a complete description of the resource information in the PBS accounting logs, see Chapter 17, "Accounting", on
page 607.

5.17.2 Resource Information in Daemon Logs

At the end of each job, the server logs the values in the job’s resources_used attribute, at event class 0x0010.

Upon startup, MoM logs the number of CPUs reported by the OS, at event class 0x0002.

At the end of each job, the MoM logs cput and mem used by each job, and cput used by each job task, at event class
0x0100.

Table 5-21: How to View Resource Information

Location Item to View Command

server default_chunk, default_qsub_arguments,

resources_available, resources_assigned,

resources_default

qmgr, qstat, pbsnodes

scheduler sched_config file Favorite editor or viewer

queues default_chunk, resources_available, resources_assigned,

resources_default

qmgr, qstat

MoM and vnodes resources_available, sharing, pcpus, resources_assigned qmgr, pbsnodes

mom_config file Favorite editor or viewer

job Resource_List qstat

reservation Resource_List pbs_rstat -f

accounting resources_assigned entry in accounting log Favorite editor or viewer

Table 5-22: Values Associated with Consumable Resources

Attribute Vnode Queue Server Accounting Log Job Scheduler

resources_available Yes Yes Yes Yes

resources_assigned Yes Yes Yes Yes

resources_used Yes Yes Yes

Resource_List Yes Yes
AG-312 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.17.3 Finding Current Value

You can find the current value of a resource by subtracting the amount being used from the amount that is defined.

Use the qstat -Bf command, and grep for resources_available.<resource name> and resources_used.<resource

name>. To find the current amount not being used, subtract resources_used.<resource name> from
resources_available.<resource name>.

5.17.4 Restrictions on Viewing Resources

• Dynamic resources shown in qstat do not display the current value, they display the most recent retrieval.
Dynamic resources have no resources_available.<resource name> representation anywhere in PBS.

• Local static host-level resources cannot be viewed via qstat or managed via qmgr.

5.18 Resource Recommendations and Caveats

• It is not recommended to set the value for resources_available.ncpus. The exception is when you want to oversub-
scribe CPUs. See section 9.6.5.1.iii, “How To Share CPUs”, on page 440.

• It is not recommended to change the value of ncpus at vnodes on a multi-vnoded machine.

• If you want to limit how many jobs are run, or how much of each resource is used, use the new limits. See section
5.15, “Managing Resource Usage”, on page 287.

• It is not recommended to create local host-level resources by defining them in the MoM configuration file.

• Do not attempt to set values for resources_available.<resource name> for dynamic resources.

• Externally-managed application licenses may not be available when PBS thinks they are. PBS doesn't actually
check out externally-managed licenses; the application being run inside the job's session does that. Between the
time that the scheduler queries for licenses, and the time the application checks them out, another application may
take the licenses. In addition, some applications request varying amounts of tokens during a job run.

• Jobs may be placed on different vnodes from those where they would have run in earlier versions of PBS. This is
because a job’s resource request will no longer match the same resources on the server, queues and vnodes.

• While users cannot request custom resources that are created with the r flag, jobs can inherit these as defaults from
the server or queue resources_default.<resource name> attribute.

• A qsub or pbs_rsub hook does not have resources inherited from the server or queue resources_default or
default_chunk as an input argument.

• Resources assigned from the default_qsub_arguments server attribute are treated as if the user requested them. A
job will be rejected if it requests a resource that has a resource permission flag, whether that resource was requested
by the user or came from default_qsub_arguments. Be aware that creating custom resources with permission
flags and then using these in the default_qsub_arguments server attribute can cause jobs to be rejected. See sec-
tion 5.14.2.3.vi, “Resource Permission Flags”, on page 260.

• Numeric dynamic resources cannot have the q or n flags set. This would cause these resources to be underused.
These resources are tracked automatically by scheduler.

• The behavior of several command-line interfaces is dependent on resource permission flags. These interfaces are
those which view or request resources or modify resource requests:

pbsnodes

Users cannot view restricted host-level custom resources.

pbs_rstat

Users cannot view restricted reservation resources.
PBS Professional 2020.1.1 Administrator’s Guide AG-313

Chapter 5 Using PBS Resources
pbs_rsub

Users cannot request restricted custom resources for reservations.

qalter

Users cannot alter a restricted resource.

qmgr

Users cannot print or list a restricted resource.

qselect

Users cannot specify restricted resources via -l Resource_List.

qsub

Users cannot request a restricted resource.

qstat

Users cannot view a restricted resource.

• Do not set values for any resources, except those such as shared scratch space or floating application licenses, at the
server or a queue, because the scheduler will not allocate more than the specified value. For example, if you set
resources_available.walltime at the server to 10:00:00, and one job requests 5 hours and one job requests 6 hours,
only one job will be allowed to run at a time, regardless of other idle resources.

• If a job is submitted without a request for a particular resource, and no defaults for that resource are set at the server
or queue, and either the server or queue has resources_max.<resource name> set, the job inherits that maximum
value. If the queue has resources_max.<resource name> set, the job inherits the queue value, and if not, the job
inherits the server value.

• When setting global static vnode resources on multi-vnode machines, follow the rules in section 3.4.5, “Configuring
Vnode Resources”, on page 47.

• Do not create custom resources with the same names or prefixes that PBS uses when you create custom resources for
specific systems.

• Do not set resources_available.place for a vnode.

• Using dynamic host-level resources can slow the scheduler down, because the scheduler must wait for each
resource-query script to run.

• On the parent vnode, all values for resources_available.<resource name> should be zero (0), unless the resource
is being shared among child vnodes via indirection.

• Default qsub arguments and server and queue defaults are applied to jobs at a coarse level. Each job is examined to
see whether it requests a select and a place. This means that if you specify a default placement, such as excl, with
-lplace=excl, and the user specifies an arrangement, such as pack, with -lplace=pack, the result is that the
job ends up with -lplace=pack, NOT -lplace=pack:excl. The same is true for select; if you specify a
default of -lselect=2:ncpus=1, and the user specifies -lselect=mem=2GB, the job ends up with -lse-
lect=mem=2GB.
AG-314 PBS Professional 2020.1.1 Administrator’s Guide

6

Managing Power Usage

6.1 Monitoring and Controlling Job Power Usage

6.1.1 Power Provisioning: Monitoring and Controlling Job
Power Usage

PBS Professional can control and monitor job power usage. PBS can assign a power profile for each job at submission
time to control the job’s power draw, and jobs can request power profiles.

PBS collects energy consumption information and records it in each job’s resources_used.energy value. PBS pro-
vides information about job energy usage in the output of the qstat command, and records energy usage in the account-
ing logs.

For each job or power profile change, PBS provisions each vnode with the required power profile. The eoe resource
represents one or more power profiles on each vnode. Each vnode’s current_eoe attribute shows its current power pro-
file.

Jobs can request a power profile, by requesting a value for the eoe resource, or PBS can set each job’s eoe request.
When a job requests a power profile, it is sent to vnodes that have this profile available, and when the job runs, the
vnodes where the job runs are set to the power profile requested by the job.

The default power setting for a node is no power capping. If a job runs on a node, the node uses the requested power pro-
file, but when the job finishes, the node goes back to the default setting.

6.1.1.1 Monitoring Power Use by Jobs

To see the power used by a job, you can use qstat to examine the job’s resources_used.energy.

6.1.2 Platforms Supporting Power Provisioning

Power provisioning is supported on Cray XC machines and HPE 8600 machines with HPE Performance Cluster Man-
ager (HPCM). It is possible but unsupported to use the feature on other platforms that supply a power management inter-
face.

6.1.3 Power Provisioning on Cray XC

On Cray XC systems, you use the PBS_power hook to provision vnodes with the power requested by jobs, and to mon-
itor job power usage. This is the same hook used for powering nodes up and down and limiting ramp rate. See section
6.2.1, “Managing Node Power on Cray XC with PBS”, on page 320 and section 6.2.2, “Limiting Ramp Rate for Node
Power on Cray XC”, on page 320.
PBS Professional 2020.1.1 Administrator’s Guide AG-315

Chapter 6 Managing Power Usage
6.1.3.1 Overview of Power Provisioning on Cray

• You find out what power settings each vnode can support.

• You choose what power settings will make up each vnode power profile.

• You set the values for resources_available.eoe on vnodes.

• You enable the power provisioning hook.

• You enable power provisioning at specific vnodes.

• Each job requests or is assigned a power profile.

• PBS provisions each vnode with the requested power settings.

6.1.3.2 Selecting Power Profiles

You get the supported power capabilities of each compute node by running the capmc tool with the argument
"get_power_cap_capabilities". Each node reports ranges for its pstate, pgov, pcap_node, and
pcap_accelerator power settings.

You choose the power profiles you want, by selecting values for the pstate, pgov, pcap_node, and pcap_accelerator
attributes for each power profile. Note that some settings for pcap_node may cause pstate to be ignored.

6.1.3.3 Setting Vnode Power Resources and Attributes

You specify the desired power profiles for each vnode by setting the vnode’s resources_available.eoe to the list of pro-
files available at that vnode. For example:

Qmgr: set node compute_node1 resources_available.eoe=”low,med”
Qmgr: set node compute_node2 resources_available.eoe=”med,high”

Once a job is submitted and the hook sets the job’s attributes, the process of setting power profile attributes on vnodes is
handled automatically by PBS when PBS provisions each vnode with the requested values for the power attributes. PBS
tells the Cray what settings to use on each vnode.

6.1.3.4 Setting Job Power Resource Requests

Each job can request or be assigned one of the power profiles you have defined.

You write a queuejob hook that sets each job’s power attributes to the correct values for the requested profile. The hook
maps each profile to a value for each of the power attributes. For example, if a compute node supports the following set-
tings:

pstate range = 100-300

pgov range = 50-150

pcap_node range = 250-500

pcap_accelerator range = 500-1000

and you want to have profiles named “low”, “med”, and “high”, the following table shows sample power profile settings:

Table 6-1: Sample Power Profile Settings

Power Profile pstate pgov pcap_node pcap_accelerator

low 100 50 250 500

med 200 100 350 700

high 300 150 500 1000
AG-316 PBS Professional 2020.1.1 Administrator’s Guide

Managing Power Usage Chapter 6
6.1.3.4.i Writing Power Profile Hook for Cray

Create a queuejob hook that sets each job’s attributes to reflect its requested profile. Set each job’s desired power pro-
file by setting any of the following job attributes in the hook:

• Set the pcap_node job attribute to the value corresponding to the Cray capmc set_power_cap --node
setting

• Set the pstate job attribute to the corresponding Cray ALPS p-state setting. Note that pcap_node takes prece-
dence, and some settings for pcap_node can result in pstate being ignored.

• Set the pcap_accelerator job attribute to the value corresponding to the Cray capmc set_power_cap --
accel setting

• Set the pgov job attribute for CPU throttling to the corresponding setting for p-governor

Example 6-1: We will use three profiles called “low”, “med”, and “high”, and we will set pcap_node and pstate for
each job requesting a profile:

import pbs

e = pbs.event()

j = e.job

profile = j.Resource_List['eoe']

if profile is None:

 res = j.Resource_List['select']

 if res is not None:

 for s in str(res).split('+')[0].split(':'):

 if s[:4] == 'eoe=':

 profile = s.partition('=')[2]

 break

pbs.logmsg(pbs.LOG_DEBUG, "got profile '%s'" % str(profile))

if profile == "low":

 j.Resource_List["pstate"] = "1900000"

 j.Resource_List["pcap_node"] = 100

 pbs.logmsg(pbs.LOG_DEBUG, "set low")

elif profile == "med":

 j.Resource_List["pstate"] = "220000"

 j.Resource_List["pcap_node"] = 200

 pbs.logmsg(pbs.LOG_DEBUG, "set med")

elif profile == "high":

 j.Resource_List["pstate"] = "240000"

 pbs.logmsg(pbs.LOG_DEBUG, "set high")

else:

 pbs.logmsg(pbs.LOG_DEBUG, "unhandled profile '%s'" % str(profile))

e.accept()
PBS Professional 2020.1.1 Administrator’s Guide AG-317

Chapter 6 Managing Power Usage
6.1.3.5 Enabling Power Provisioning on Cray

Enable power provisioning:

1. On each vnode where you want power provisioning enabled, set the power_provisioning vnode attribute to True:
Qmgr: set node <node name> power_provisioning=true

2. Enable the PBS_power hook:

Qmgr: set pbshook PBS_power enabled=true

6.1.3.6 Reporting Energy Usage on Cray

On Cray, PBS collects energy consumption information using capmc or RUR.

If RUR is configured and the energy reported by RUR is different from what is reported by capmc, PBS reports the larger
value for the job.

Using RUR is optional. If you want PBS to collect energy information from RUR, enable RUR using the PBS output plu-
gin. You must modify the RUR configuration file to use the PBS output plugin. This plugin is located in /opt/pbs/lib/
cray/pbs_output.py

See the Cray instructions for this procedure in CLE XC™ System Administration Guide S-2393-5204xc:

http://docs.cray.com/books/S-2393-5204xc//S-2393-5204xc.pdf

See especially the following:

12.6.2 RUR Configuration File

12.7 RUR Plugins

12.7.2 Output Plugins

6.1.3.7 Caveats for Power Provisioning on Cray

Note that pcap_node takes precedence, and some settings for pcap_node can result in pstate being ignored.

6.1.4 Power Provisioning on HPE

6.1.4.1 Overview of Power Provisioning on HPE

On HPE, PBS uses the power API for HPE Performance Cluster Manager (HPCM). PBS handles querying for available
power profiles and setting the eoe resource to the available power profiles. You enable power provisioning at the server
and vnodes.

6.1.4.2 Setting Power Profiles on HPE

On each vnode, PBS queries the HPE Performance Cluster Manager (HPCM) for available power profiles, and sets the
vnode’s resources_available.eoe to the power profiles available on that vnode.
AG-318 PBS Professional 2020.1.1 Administrator’s Guide

Managing Power Usage Chapter 6
6.1.4.3 Enabling Power Provisioning on HPE

To enable power provisioning:

1. On each vnode where you want power provisioning enabled, set the power_provisioning vnode attribute to True:
Qmgr: set node <node name> power_provisioning=true

2. Enable the PBS_power hook:

Qmgr: set pbshook PBS_power enabled=true

3. HUP each MoM. If the vnode does not report resources_available.eoe, HUP the MoM again.

6.1.5 Terminology for Power Provisioning

Activate a power profile

To set a power profile on a node, for example, to set a node’s power profile to match the specifications for
“low”.

Deactivate a power profile

To reset the power profile of the node to its default setting, which is no power capping.

6.1.6 Caveats and Restrictions for Using Power Profiles

• Make sure that your power provisioning queuejob hook takes into account your desired order of precedence for an
explicit request for pcap_node and/or pstate versus a request for a profile. You may want users to be able to over-
ride power profile settings for pcap_node and/or pstate, or you may want profiles to override explicit requests.

• You cannot use power profiles on any hosts where the PBS server and/or scheduler are running.

• You cannot suspend jobs on vnodes that are using power profiles, meaning that you cannot use preemption via sus-
pension on vnodes that are using power profiles.

• If you disable the PBS_power hook while a job is running, the vnodes where the job runs do not have their profile
deactivated when the job finishes, and the job’s resources_used.energy value is not set at the end of the job.

• A prologue script will not run when the PBS_power hook is enabled. Any prologue script must be converted to an
execjob_prologue hook.

• If a job does not request a value for eoe, there is no activation of a power profile on a node, but the job’s
resources_used.energy is still calculated.

• If a job requests values for both aoe and eoe, PBS addresses the aoe request first.

• There is no PBS interface to RUR that can be used by administrators or job submitters.

• If pbs.conf is not in /etc on a host, add PBS_CONF_FILE to the PBS_HOME/pbs_environment file for that host,
and set it to the path to pbs.conf on the host. For example, if /var/pbs.conf is the location of the pbs.conf file,
add the following line to PBS_HOME/pbs_environment:
PBS_CONF_FILE=/var/pbs.conf

• PBS does not automatically set resources_available.eoe on machines that host the PBS server/scheduler.

• PBS can provide precise power consumption accounting only where jobs are allocated exclusively. Vnodes must
have the sharing attribute set so that jobs get exclusive use of the vnode, or jobs must request exclusive use of
vnodes.
PBS Professional 2020.1.1 Administrator’s Guide AG-319

Chapter 6 Managing Power Usage
6.2 Managing Node Power on Cray XC

You can manage node power and limit the ramp rate on Cray XC* systems running CLE 6.0 and later. You can use the
PBS_power hook to manage node power and to limit ramp rate on Cray XC systems. This is the same hook used on
Cray XC for provisioning vnodes with the power requested by jobs and monitoring job power usage. See section 6.1.3,

Power Provisioning on Cray XC , on page 315 . PBS_power is a built-in periodic server hook. It takes a list of
nodes to power up and manages power ramp rate, and communicates with vendor power APIs through a generic PMI
interface. This hook powers up or down no more than max_concurrent_nodes nodes at once. When this hook is
enabled, PBS sets the power_provisioning server attribute to True.

6.2.1 Managing Node Power on Cray XC with PBS

This version of PBS Professional allows you to automatically power down nodes that are not being used, and then power
them up again only when they are needed for a job or reservation.

PBS periodically checks to see which nodes should be powered down, and if a node has been idle for the minimum spec-
ified amount of time, PBS powers down the node. You can specify the amount of node idle time that triggers powering
down a node. PBS also periodically checks to see which nodes should be powered up so that a job or reservation can use
them.

You can specify which nodes are eligible for power management by PBS, and the maximum number of nodes to power
down or up at one time.

In addition, PBS minimizes the number of power cycles experienced by nodes, because power cycling a node puts a
strain on the hardware. To do this, PBS avoids powering up nodes that have just been powered down.

6.2.1.1 Using the PBS_power hook for Managing Node Power on

Cray

PBS manages node power through the PBS_power hook. The hook takes a list of nodes and communicates with vendor
power APIs through a generic PMI interface to manage node power.

You configure node power management via server and vnode attributes. To enable this feature, enable the PBS_power
hook.

You specify which nodes are eligible for power management by PBS via the power_provisioning vnode attribute.

You set the minimum amount of idle time for a node to be powered down in the node_idle_limit hook configuration
parameter. Set the limit on the number of nodes that can be powered up or down at one time in the
max_concurrent_nodes hook configuration parameter. Specify the minimum amount of time a node is powered down
in the min_node_down_delay hook configuration parameter.

PBS records the time when a node is powered off in the last_state_change_time vnode attribute, and tracks the node’s
idle time by updating the last_used_time vnode attribute at the end of any job or reservation involving the node.

When a job or reservation is scheduled on a vnode, PBS sets the the job’s estimated.start_time attribute. The hook cal-
culates how much time it needs to power up all the nodes required. Using the Cray rules for powering a node up, PBS
gives a node 600 seconds to power up. The PBS_power hook powers up nodes in batches of max_concurrent_nodes,
with 600 seconds between each batch.

6.2.2 Limiting Ramp Rate for Node Power on Cray XC

PBS allows you to limit the ramp rate for the Cray system, by communicating with the capmc utility. The PBS_power
power management hook controls the number of nodes whose C-state can be changed.

When ramping nodes up or down, the hook steps through sleep states.
AG-320 PBS Professional 2020.1.1 Administrator’s Guide

Managing Power Usage Chapter 6
6.2.2.1 Using the PBS_power for Managing Ramp Rate on Cray

You can manage the ramp rate behavior of the power management hook by setting parameters in the PBS_power hook
configuration file. The hook configuration file contains parameters the hook uses as guides for its behavior, and parame-
ters that the hook uses when it communicates with capmc. This file must conform to JSON syntax.

We show a sample file in section 6.2.2.2, “Sample Power Management Configuration File”, on page 321.

You can also export and look at the installed PBS power management hook configuration file:

qmgr -c “export pbshook PBS_power application/x-config default” > PBS_power.json

You can edit this file and change its parameters, then read it back in:

qmgr -c “import pbshook PBS_power application/x-config default PBS_power.json”

6.2.2.2 Sample Power Management Configuration File

Here is a sample configuration file, showing the ramp rate parameters:

{

"power_ramp_rate_enable": "True",

"power_on_off_enable": "False",

"node_idle_limit": "1000",

"min_node_down_delay": "600",

"max_jobs_analyze_limit": "80",

"max_concurrent_nodes": "5"

}

PBS Professional 2020.1.1 Administrator’s Guide AG-321

Chapter 6 Managing Power Usage
6.2.3 Power Management Hook Configuration Parameters

6.3 Power Management Attributes, Resources, Etc.

energy

Resource. Consumable. PBS records the job’s energy usage in the job’s resources_used.energy.

Format: float

Units: kWh

eoe

Resource. Stands for “Energy Operational Environment”. Non-consumable. When set on a vnode in
resources_available.eoe, contains the list of available power profiles. When set for a job in
Resource_List.eoe, can contain at most one power profile. (A job can request only one power profile.) Auto-
matically added to resources: line in sched_config.

Default value for resources_available.eoe: unset

Format: string_array

current_eoe

Vnode attribute. Shows the current value of eoe on the vnode.

Visible to all. Settable by manager. We do not recommend setting this attribute manually.

Format: string

Default: unset

Table 6-2: Hook Configuration Parameters

Configuration File
Parameter

Default
Value

Description

power_ramp_rate_enable False Enables ramp rate limiting for the system.

Nodes can be ramped up to sleep state C1 and ramped down to sleep state C6.

power_on_off_enable False Enables powering nodes on and off for nodes where the poweroff_eligible
vnode attribute is True.

node_idle_limit 1800 Length of time in seconds for a node to be left idle before it is considered for
powering down or ramping down.

min_node_down_delay 1800 Length of time in seconds for a node that is powered off to remain so until it
is considered for powering up or ramping up.

max_jobs_analyze_limit 100 The maximum number of jobs that are analyzed for power-on or ramp-up.
The jobs considered here are those which have a current esti-

mated.start_time and exec_vnode. For these attributes to be current, set
the strict_ordering scheduler parameter to True, and make sure jobs are sub-
mitted with a specification for walltime.

max_concurrent_nodes 5 Limit on number of nodes that can be powered on or off or ramped up or
down at a time.
AG-322 PBS Professional 2020.1.1 Administrator’s Guide

Managing Power Usage Chapter 6
last_state_change_time

Vnode attribute. Records the most recent time that this node changed state.

Set by PBS. Readable by Manger and Operator.

Format: integer seconds since epoch

Default: no default

last_used_time

Vnode attribute. Records the most recent time that this node finished being used for a job or reservation.

Set at creation or reboot time. Updated when node is released early from a running job. Reset when node is
ramped up.

Set by PBS. Readable by Manger and Operator.

Format: integer seconds since epoch

Default: no default

max_concurrent_nodes

Hook configuration parameter. Specifies the maximum number of nodes that can be powered up or down at one
time. Enabled when the the PBS_power hook is enabled. Used by the PBS_power hook.

set by Manager and Operator. Readable by all.

Format: positive integer

Default: 5

min_node_down_delay

Hook configuration parameter. Specifies the minimum time a node is powered down before it can be powered
back up. Enabled when the the PBS_power hook is enabled.

set by Manager and Operator. Readable by all.

Format: integer seconds

Default: 1800 seconds

node_idle_limit

Hook configuration parameter. Specifies the minimum idle time for a node to be considered for powering
down. Enabled when the the PBS_power hook is enabled.

set by Manager and Operator. Readable by all.

Format: integer seconds

Default: 1800 seconds

pstate

Job attribute. Cray ALPS reservation setting for CPU frequency corresponding to p-state. See BASIL 1.4 doc-
umentation.

Settable by and visible to all PBS users.

Units: hertz

Format: string

Default: unset

Example: pstate = 2200000
PBS Professional 2020.1.1 Administrator’s Guide AG-323

Chapter 6 Managing Power Usage
pgov

Job attribute. Cray ALPS reservation setting for CPU throttling corresponding to p-governor. See BASIL 1.4
documentation. We do not recommend using this attribute.

Visible to all. Settable by all.

Format: string

Default: unset

pcap_node

Job attribute. Power cap for a node. Corresponds to Cray capmc set_power_cap --node setting. See
capmc documentation.

Visible to and settable by all.

Units: watts

Format: int

Default: unset

pcap_accelerator

Job attribute. Power cap for an accelerator. Corresponds to Cray capmc set_power_cap --accel set-
ting. See capmc documentation.

Visible to and settable by all.

Units: watts

Format: int

Default: unset

poweroff_eligible

Vnode attribute. Specifies whether this node is eligible to have its power managed by PBS.

set by Manager. Readable by all.

Format: Boolean

Default: False (not eligible)

power_provisioning

Server attribute. Reflects use of power profiles and managing node power via PBS. Set by PBS to True when
the PBS_power hook is enabled.

Set by PBS. Read-only.

Format: Boolean

Default: unset, which behaves like False (not enabled)

power_provisioning

Vnode attribute. Specifies whether this node is eligible to have its power managed by PBS, including whether it
can use power profiles.

set by Manager. Readable by all.

Format: Boolean

Default: False (not eligible)

sleep

Vnode state. Indicates that this vnode was ramped down or powered off via PBS power management. This tells
the scheduler that it can schedule jobs on this vnode; in that case PBS powers the vnode back up.
AG-324 PBS Professional 2020.1.1 Administrator’s Guide

Managing Power Usage Chapter 6
6.4 Caveats and Restrictions for Power

Management

• If a reservation is created with a start time coming up soon, where the reservation requires nodes that are currently
powered off, the reservation may start in degraded mode until all of the nodes can be powered up.

• Do not set resources_available.eoe on vnodes. This is handled by PBS.
PBS Professional 2020.1.1 Administrator’s Guide AG-325

Chapter 6 Managing Power Usage
AG-326 PBS Professional 2020.1.1 Administrator’s Guide

7

Provisioning

PBS provides automatic provisioning of an OS or application on vnodes that are configured to be provisioned. When a
job requires an OS that is available but not running, or an application that is not installed, PBS provisions the vnode with
that OS or application.

7.1 Introduction

You can configure vnodes so that PBS will automatically install the OS or application that jobs need in order to run on
those vnodes. For example, you can configure a vnode that is usually running RHEL to run SLES instead whenever the
Physics group runs a job requiring SLES. If a job requires an application that is not usually installed, PBS can install the
application in order for the job to run.

You can use provisioning for booting multi-boot systems into the desired OS, downloading an OS to and rebooting a
diskless system, downloading an OS to and rebooting from disk, instantiating a virtual machine, etc. You can also use
provisioning to run a configuration script or install an application.

7.2 Definitions

AOE

The environment on a vnode. This may be one that results from provisioning that vnode, or one that is already
in place

Master Provisioning Script, Master Script

The script that makes up the provisioning hook

Provision

To install an OS or application, or to run a script which performs installation and/or setup

Provisioning Hook

The hook which performs the provisioning, either by calling other scripts or running commands

Provisioning Tool

A tool that performs the actual provisioning, e.g. HPE Performance Cluster Manager (HPCM)

Provisioned Vnode

A vnode which, through the process of provisioning, has an OS or application that was installed, or which has
had a script run on it

7.3 How Provisioning Can Be Used

• Each application requires specific version of OS
PBS Professional 2020.1.1 Administrator’s Guide AG-327

Chapter 7 Provisioning
The site runs multiple applications, and each application may be certified to run on a specific OS. In this situation, a
job that will run an application requiring a specific OS requests the OS, and PBS provisions the required OS.

• The site needs differently configured images of the same OS to be loaded at different times

The site has multiple projects, and each project requires the OS to be configured in a different way on a group of
hosts. In this situation, PBS provisions groups of hosts with the correct OS image, for the time period needed by
each project. The OS image is configured and supplied by the site administrator.

• The entire site needs different OSes at different times of day

The entire site runs one OS during certain hours, and a different OS at other times.

• A user reserves multiple vnodes running the same version of an OS

A user may need a specific version of an OS for a period of time. For example, a user needs 5 nodes running a spe-
cific version of RHEL from 5pm Friday until 5am Monday.

• The administrator wants to limit the number of hosts that are being provisioned at any one time, for any of the fol-
lowing reasons:

• The network can become overwhelmed transferring OS images to execution nodes

• The hosts can draw excessive power if many are powering up at the same time

• Some sites notify the administrator whenever an execution node goes down, and when several vnodes are provi-
sioned, the administrator is paged repeatedly

7.4 How Provisioning Works

7.4.1 Overview of Provisioning

PBS allows you to create a provisioning hook, which is a hook that is triggered by a provisioning event. When this hook
is triggered, it manages the required provisioning on the vnodes to be provisioned. The hook calls a provisioning mech-
anism such as HPE Performance Cluster Manager to accomplish the provisioning.

Provisioning can be the following:

• Directly installing an OS or application

• Running a script which may perform setup or installation

PBS allows you to configure each vnode with a list of available AOEs. This list is specified in the vnode’s
resources_available.aoe resource. Each vnode’s current_aoe attribute shows that vnode’s current AOE. The sched-
uler queries each vnode’s aoe resource and current_aoe attribute in order to determine which vnodes to provision for
each job.

When users submit jobs, they can request a specific AOE for each job. When the scheduler runs each job, it either finds
the vnodes that satisfy the job’s requirements, or provisions the required vnodes.

Users can create reservations that request AOEs. Each reservation can have at most one AOE specified for it. Any jobs
that run in that reservation must not request a different AOE.

7.4.1.1 Rebooting When Provisioning

When provisioning a vnode with some AOEs, the vnode must be rebooted as part of the provisioning process. Some OS
installations, for example, require rebooting. In this case, the provisioning script must cause the vnode to be rebooted.

When the installation does not require a reboot, the provisioning script does not need to cause the vnode to be rebooted.
For example, provisioning with some applications does not require a reboot.
AG-328 PBS Professional 2020.1.1 Administrator’s Guide

Provisioning Chapter 7
7.4.2 How Vnodes Are Selected for Provisioning

Each job can request at most one AOE. When scheduling the job, PBS looks for vnodes with the requested AOE, as with
any other resource. If there are not enough vnodes with the requested AOE, PBS tries to provision vnodes in order to sat-
isfy the job’s requirements.

7.4.2.1 Provisioning Policy

PBS allows a choice of provisioning policies. You set the scheduler’s provision_policy configuration parameter to be
either “avoid_provision” or “aggressive_provision”. The default provisioning policy is “aggressive_provision”.

avoid_provision

PBS first tries to satisfy the job’s request from free vnodes that already have the requested AOE instantiated.
PBS uses node_sort_key to sort these vnodes.

If it cannot satisfy the job’s request using vnodes that already have the requested AOE instantiated, it does the
following:

• PBS uses node_sort_key to select the free vnodes that must be provisioned in order to run the job, choos-
ing from vnodes that are free, provisionable, and offer the requested AOE, regardless of which AOE is
instantiated on them.

• Of the selected vnodes, PBS provisions any that do not have the requested AOE instantiated on them.

aggressive_provision

PBS selects vnodes to be provisioned without considering which AOE is currently instantiated.

PBS uses node_sort_key to select the vnodes on which to run the job, choosing from vnodes that are free, pro-
visionable, and offer the requested AOE, regardless of which AOE is instantiated on them. Of the selected
vnodes, PBS provisions any that do not have the requested AOE instantiated on them.

7.4.2.2 Examples of Vnode Selection

The following examples show how provisioning policy can affect which vnodes are selected for provisioning.

Example 7-1: 3 vnodes

In sched_config:

node_sort_key: “ncpus HIGH”

We have 3 nodes as described in the following table:

No jobs are running on any of the vnodes.

Case 1: aggressive provisioning

provision_policy: "aggressive_provision"

Job submitted with -lselect=ncpus=1:aoe=aoe1

In this case, host3 is used to run the job and host3 is provisioned.

Table 7-1: Example Configuration

Vnode/Host Number of CPUs Current AOE State

host1 1 aoe1 free

host2 2 unset free

host3 3 aoe2 free
PBS Professional 2020.1.1 Administrator’s Guide AG-329

Chapter 7 Provisioning
Case 2: avoiding provisioning

provision_policy: "avoid_provision"

Job submitted with -lselect=ncpus=1:aoe=aoe1

In this case, host1 is used to run the job and host1 is not provisioned.

Example 7-2: 5 vnodes

The following table shows the example configuration:

The vnodes are sorted in the order N1, N2, N3, N4, N5.

A job is submitted with:

qsub -lselect=3:ncpus=1:aoe=aoe1 -lplace=scatter

The job needs three vnodes with aoe1. Assume that all other requests except that for the AOE can be satisfied by any
vnode.

Case 1: aggressive provisioning

The scheduler selects N2, N3 and N4. It has not considered the AOE instantiated on these vnodes. It then provisions
N2 and N3 since N2 has a different AOE instantiated on it and N3 is not provisioned yet. N4 is not provisioned,
because it has the requested AOE already instantiated.

Case 2: avoiding provisioning

First, the scheduler selects N4 and N5. It does not choose N2 since it has a different AOE instantiated, and it does not
choose N3 since it does not have any AOE instantiated. But N4 and N5 together do not satisfy the job's requirement
of 3 vnodes.

Second, the scheduler seeks vnodes that if provisioned can satisfy the job’s request. N2 and N3 can each satisfy the
job’s request, so it chooses N2, because it comes first in sorted order.

The job runs on N4, N5 and N2. N2 is provisioned.

7.4.2.3 Rules for Vnode Selection for Provisioning

A vnode is not selected for provisioning for the following reasons:

• It does not have the requested AOE available in its list

• It does not have provisioning enabled on it

• It has other running or suspended jobs

• It already has the requested AOE

Table 7-2: Example Configuration

Vnode/Host AOE Available Current AOE State

N1 aoe1, aoe2 aoe1 busy

N2 aoe1, aoe2 aoe2 free

N3 aoe1, aoe2 NULL free

N4 aoe1, aoe2 aoe1 free

N5 aoe1, aoe2 aoe1 free
AG-330 PBS Professional 2020.1.1 Administrator’s Guide

Provisioning Chapter 7
7.4.2.4 Triggering Provisioning

When a job requires a vnode, and the vnode’s current_aoe attribute is unset, or is set to a different AOE from the one
requested, the vnode is provisioned.

7.4.3 Provisioning And Reservations

7.4.3.1 Creating Reservations that Request AOEs

A reservation can request at most one AOE.

When a user creates a reservation that requests an AOE, the scheduler searches for vnodes that can satisfy the reserva-
tion. When searching, the scheduler follows the rule specified in the provision_policy scheduling parameter in
<sched_priv directory>/sched_config. See the pbs_sched(8B) manual page.

The vnodes allocated to a reservation that requests an AOE are put in the resv-exclusive state when the reservation runs.
These vnodes are not shared with other reservations or with jobs outside the reservation.

7.4.3.2 Submitting Jobs to a Reservation

If a job that requests an AOE is submitted to a reservation, the reservation must request the same AOE.

7.4.3.3 Running a Job in a Reservation Having a Requested AOE

A job can run in a reservation that has requested an AOE, as long as the job fits the following criteria:

• It requests the same AOE as the reservation

If the job has requested no AOE, or an AOE different from that of the reservation, the job is rejected.

7.4.4 How Provisioning Affects Jobs

7.4.4.1 Preemption and Provisioning

A job that has requested an AOE will not preempt another job, regardless of whether the job’s requested AOE matches an
instantiated AOE. Running jobs are not preempted by jobs requesting AOEs.

7.4.4.2 Backfilling and Provisioning

If the job being backfilled around or the job doing the backfilling share a vnode, a job that has requested an AOE will not
play any part in backfilling:

• It will not be backfilled around by smaller jobs.

• It will not be used as the job that backfills around another job.

7.4.4.3 Walltime and Provisioning

A job’s walltime clock is started after provisioning is over.
PBS Professional 2020.1.1 Administrator’s Guide AG-331

Chapter 7 Provisioning
7.4.4.4 Using qrun

When a job requesting an AOE is run via qrun -H, the following happens:

• If the requested AOE is available on the specified vnodes, those vnodes are provisioned with the requested AOE

• If the requested AOE is not available on the specified vnodes, the job is held

7.4.5 Vnode States and Provisioning

7.4.5.1 States Associated With Provisioning

The following vnode states are associated with provisioning:

provisioning

A vnode is in the provisioning state while it is in the process of being provisioned. No jobs are run on vnodes in
the provisioning state.

wait-provision

There is a limit on the maximum number of vnodes that can be in the provisioning state. This limit is specified
in the server’s max_concurrent_provision attribute. If a vnode is to be provisioned, but cannot because the
number of concurrently provisioning vnodes has reached the specified maximum, the vnode goes into the wait-

provisioning state. No jobs are run on vnodes in the wait-provisioning state.

resv-exclusive

The vnodes allocated to a reservation that requests an AOE are put in the resv-exclusive state when the reserva-
tion runs. These vnodes are not shared with other reservations or with jobs outside the reservation.

7.4.5.2 Provisioning Process

The following table describes how provisioning and vnode state transitions interact:

Table 7-3: Vnode State Transitions and Provisioning

Event
Starting

Vnode State
Ending Vnode

State

Vnode is selected for provisioning free provisioning

Provisioning on vnode finishes provisioning free

1. Job running on this vnode leaving some resources available

2. No job running on this vnode

free free

Job running on this vnode, using all resources free job-busy

Vnode is selected for provisioning, but other vnodes being provisioned have
already reached maximum allowed number of concurrently provisioning
vnodes

free wait-provisioning

This vnode is waiting to be provisioned for a multi-vnode job, and provision-
ing fails for another of the job’s vnodes

wait-provisioning free

Provisioning fails for this vnode provisioning offline

This vnode is waiting to be provisioned, and another vnode finishes provi-
sioning, bringing the total number of provisioning vnodes below the limit
specified in max_concurrent_provision

wait-provisioning provisioning
AG-332 PBS Professional 2020.1.1 Administrator’s Guide

Provisioning Chapter 7
7.4.5.3 Vnode State When Provisioning Fails

If provisioning fails on a vnode, that vnode is put into the offline state.

If provisioning for a multi-vnode job fails on one vnode, any vnodes in the wait-provisioning state are put into the free
state.

7.4.5.4 Using the qmgr Command on Vnodes In Process of

Provisioning

The following changes cannot be made to a provisioning vnode (a vnode in the provisioning state):

• Changing value of current_aoe vnode attribute

• Modifying resource resources_available.aoe

• Changing the state of the vnode. The qmgr command returns an error if this is attempted.

• Deleting the vnode from the server. The qmgr command returns an error if this is attempted.

The following can be modified while a vnode is provisioning:

• The server's max_concurrent_provision attribute

• A provisioning vnode’s provision_enable attribute

The following cannot be set on the server host:

• current_aoe vnode attribute

• provision_enable vnode attribute

• The resources_available.aoe resource

7.4.6 Attributes, Resources, and Parameters Affecting
Provisioning

7.4.6.1 Host-level Resources

aoe

The built-in aoe resource is a list of AOEs available on a vnode. Case-sensitive. You specify the list of AOEs
that can be requested on a vnode by setting the value of resources_available.aoe to that list. Each job can
request at most one AOE.

Automatically added to the “resources” line in <sched_priv directory>/sched_config.

Cannot be modified while a vnode is provisioning.

Non-consumable. Cannot be set on the server host. Can be set only by a Manager.

Format: string_array.

Default: unset.

Python attribute value type: str
PBS Professional 2020.1.1 Administrator’s Guide AG-333

Chapter 7 Provisioning
7.4.6.2 Vnode Attributes

current_aoe

The current_aoe vnode attribute shows which AOE is currently instantiated on a vnode. Case-sensitive.

At startup, each vnode’s current_aoe attribute is unset. You must set the attribute to the currently instantiated
AOE if you want the scheduler to be able to choose vnodes efficiently.

The value of this attribute is set automatically after a vnode is provisioned.

This attribute cannot be modified while a vnode is provisioning.

Cannot be set on the server host. Settable by Manager only; visible to all.

Format: String.

Default: Unset.

provision_enable

This attribute controls whether the vnode can be provisioned. If set to True, the vnode can be provisioned.

Cannot be set on the server host.

Settable by Manager only; visible to all.

Format: Boolean

Default: Unset

7.4.6.3 Server Attributes

max_concurrent_provision

The maximum number of vnodes allowed to be in the process of being provisioned. Settable by Manager only;
readable by all. When unset, default value is used. Cannot be set to zero; previous value is retained.

Format: Integer

Default: 5

Python attribute value type: int

7.4.6.4 Hook Attributes

All attributes of the provisioning hook affect provisioning. See “Hook Attributes” on page 349 of the PBS Professional
Reference Guide.

7.4.6.5 Scheduler Configuration Parameters

provision_policy

Specifies the provisioning policy to be used. Valid values: avoid_provision, aggressive_provision.

avoid_provision
PBS first tries to satisfy the job’s request from free vnodes that already have the requested AOE instanti-
ated. PBS uses node_sort_key to sort these vnodes.

If it cannot satisfy the job’s request using vnodes that already have the requested AOE instantiated, it does
the following:

PBS uses node_sort_key to select the free vnodes that must be provisioned in order to run the job,
choosing from vnodes that are free, provisionable, and offer the requested AOE, regardless of which
AOE is instantiated on them.

Of the selected vnodes, PBS provisions any that do not have the requested AOE instantiated on them.
AG-334 PBS Professional 2020.1.1 Administrator’s Guide

Provisioning Chapter 7
aggressive_provision
PBS selects vnodes to be provisioned without considering which AOE is currently instantiated.

PBS uses node_sort_key to select the vnodes on which to run the job, choosing from vnodes that are free,
provisionable, and offer the requested AOE, regardless of which AOE is instantiated on them. Of the
selected vnodes, PBS provisions any that do not have the requested AOE instantiated on them.

Default: “aggressive_provision”.

7.5 Configuring Provisioning

7.5.1 Overview of Configuring Provisioning

The administrator configures provisioning attributes, provides a provisioning tool, and writes a provisioning hook. The
administrator configures each vnode to be provisioned with a list of AOE resources, where each resource is an AOE that
is available to be run on that vnode. These resources are tags that tell the scheduler what can be run on that vnode. The
administrator should also inform the scheduler about the current environment on each vnode, by setting the vnode’s
current_aoe attribute. It is also necessary to enable provisioning on each vnode to be provisioned and to set provision-
ing policy at the server and scheduler.

7.5.1.1 Steps in Configuring Provisioning

These are the steps that the administrator must take:

1. Provide a provisioning tool such as HPE Performance Cluster Manager (HPCM). See section 7.5.2, “Provide a Pro-
visioning Tool”, on page 335.

2. Prepare each OS, application, or script that is to be used in provisioning. See section 7.5.3, “Prepare Images”, on
page 336.

3. Configure each vnode to be provisioned with the appropriate resources. See section 7.5.4, “Define aoe Resources”,
on page 336.

4. Optional: publish each vnode’s current AOE. See section 7.5.5, “Inform Scheduler of Current AOE”, on page 336.

5. Write the provisioning hook’s script. See section 7.5.6, “Write the Provisioning Script”, on page 337.

6. Create the empty provisioning hook, import the script, and configure the hook. See section 7.5.7, “Create and Con-
figure the Provisioning Hook”, on page 338.

7. Configure provisioning policy. See section 7.5.8, “Configure Provisioning Policy”, on page 339.

8. Enable provisioning on vnodes. See section 7.5.9, “Enable Provisioning on Vnodes”, on page 340.

9. Enable the provisioning hook. See section 7.5.10, “Enable Provisioning Hook”, on page 340.

7.5.2 Provide a Provisioning Tool

For each vnode you wish to provision, there must be a provisioning tool that can be used on that vnode. This provision-
ing tool can either be written into the provisioning hook script, or be a separate script that is called by the provisioning
hook script. You can write the provisioning tool yourself, or you can use something like the HPE Performance Cluster
Manager (HPCM) cluster management tool. Your provisioning tool may be able to employ network-accessible power
control units.
PBS Professional 2020.1.1 Administrator’s Guide AG-335

Chapter 7 Provisioning
7.5.3 Prepare Images

You must prepare each image, application, or script you will use. Make sure that each is available to the target vnode.
For example, if you use a diskless node server, put your images on the diskless node server.

The values for the ncpus and mem resources must be the same for all OS images that may be instantiated on a given
vnode.

7.5.4 Define aoe Resources

The aoe resource is of type string_array, and is used to hold the names of the AOEs available at each vnode. This
resource is not consumable. This resource is unset by default, and by default is added to the resources line in
<sched_priv directory>/sched_config. See “Resources Built Into PBS” on page 265 of the PBS Profes-
sional Reference Guide. The aoe resource is visible to all, but settable by the PBS Manager and Operator only.

The scheduler must be able to find out which AOEs can be run on which vnodes. To tag each vnode with the AOEs that
can run on it, set that vnode’s resources_available.aoe attribute to the list of available AOEs. For example, if vnode V1
is to run RHEL and SLES, and the hook script will recognize rhel and sles, set the vnode’s resources_available.aoe
attribute to show this:

Qmgr: set node V1 resources_available.aoe = “rhel, sles”

It is recommended that you make a list of all of the AOEs that may be used in provisioning in your PBS complex. The
list is to facilitate script writing and resource configuration. Each entry in this list should contain at least the following
information:

• Full description of the AOE

• Resource name of the AOE

• Vnodes that are to run the AOE

• Location where script should look for the AOE

For example, the list might look like the following table:

7.5.5 Inform Scheduler of Current AOE

Each vnode has an attribute called current_aoe which is used to tell the scheduler what the vnode’s current AOE is. This
attribute is unset by default. The attribute is of type string. It is visible to all, but settable by the PBS Manager only.

Table 7-4: Example AOE List

Description
Resource

Name
Vnodes Location

SuSE SLES 12 64-bit sles12 mars, jupiter,
neptune, pluto

imageserver.example.com:/images/sles12-
image

SuSE SLES 15 64-bit sles15 mars, jupiter,
pluto

imageserver.example.com:/images/sles15-
image

Red Hat Enterprise
Linux 8 64-bit

rhel7 luna, aitne, io imageserver.example.com:/images/rhel8-
image

Windows Server 2016
64-bit

winsrv16 luna, aitne, io \\WinServer\ C:\images\winsrv16
AG-336 PBS Professional 2020.1.1 Administrator’s Guide

Provisioning Chapter 7
You can set this attribute on each vnode that will be used in provisioning. Set it to the value of the AOE that is currently
instantiated on the vnode. So for example, using the table in section 7.5.4, “Define aoe Resources”, on page 336, if
vnode pluto is running 64-bit SuSE SLES 15, set current_aoe to sles15:

Qmgr: set node pluto current_aoe = sles15

When PBS provisions a vnode with a new AOE, the PBS server sets the value of current_aoe to the new AOE.

If PBS cannot provision a vnode with the desired AOE, it marks the vnode offline and unsets the value of current_aoe.

7.5.6 Write the Provisioning Script

You create the provisioning hook using a provisioning script which must manage all provisioning, either directly, or indi-
rectly by calling other scripts. The script in the hook is the master provisioning script.

The script that does the provisioning must have the logic needed to provision the specified vnode with the specified AOE.

There are two types of provisioning. One is when the vnode is rebooted after installing/uninstalling the OS/application
or running the script. The other is when the vnode is not rebooted after installing/uninstalling the OS/application or run-
ning the script.

The master provisioning script must meet the following requirements:

• Written in Python

• Arguments to the script are the vnode name and the AOE name

• If the vnode must be rebooted for provisioning, the provisioning script must cause the target vnode to be rebooted

• Must indicate success using the correct return value:

• Return pbs.event.accept(0) if provisioning is successful and the vnode is rebooted

• Return pbs.event.accept(1) if provisioning is successful and the vnode is not rebooted

• Must indicate failure to PBS by using pbs.event.reject()

• If the master provisioning script calls other scripts, it must wait for them to finish before returning success or failure
to PBS

7.5.6.1 Arguments to Master Script

The arguments to the master script are the following:

• Name of vnode to be provisioned

Supplied to the hook via the PBS provision event object, as pbs.event.vnode

• Name of AOE to be instantiated on the target vnode

Supplied to the hook via the PBS provision event object, as pbs.event.aoe

These values can be passed to scripts that are called by the master script.

7.5.6.2 Return Values

The master script must indicate to PBS whether it succeeded or failed in a way that PBS can understand.
PBS Professional 2020.1.1 Administrator’s Guide AG-337

Chapter 7 Provisioning
7.5.6.2.i Success

By default, pbs.event.accept() returns zero. The script must return different values for successful provisioning, depend-
ing on whether the vnode is rebooted:

• If provisioning is successful and the vnode is rebooted, the script must return 0 (zero) to PBS via
pbs.event.accept(0).

• If provisioning is successful and the vnode is not rebooted, the script must return 1 (one) to PBS via
pbs.event.accept(1).

7.5.6.2.ii Failure

If provisioning fails, the script must use pbs.event.reject() to indicate failure. By default, pbs.event.reject() returns
255. To return another failure code, use the following:

pbs.event.reject(error message, error code)

where error code is any number between 2 and 255. Returning an error code in pbs.event.reject() is optional.

7.5.6.3 Master Script Calls Subscript

Often, the master script (the hook script) calls another script, depending on the provisioning required. The subscript does
the actual provisioning of the target vnode with the requested AOE. In this case, the master script must wait for the sub-
script to return and indicate success or failure. The master script then propagates the result to PBS.

Example of a fragment of a master script calling a subscript:

return_value = os.system("/var/vendor/vendor_prov.sh " <arguments to vendor_prov.sh>)

7.5.7 Create and Configure the Provisioning Hook

The provisioning hook causes any provisioning to happen. The provisioning hook is a Python script which either does
the provisioning directly or calls other scripts or tools. Typically the provisioning hook calls other scripts, which do the
actual work of provisioning. For complete information on writing hooks, see the PBS Professional Hooks Guide.

You can have at most one provisioning hook. Do not attempt to create more than one provisioning hook.

In the steps that follow, we use as examples a provisioning hook named “Provision_Hook”, and an ASCII script named
“master_provision.py”.

7.5.7.1 Create the Hook

To create the provisioning hook:

Qmgr: create hook <hook name>

For example, to create a provisioning hook called Provision_Hook:

Qmgr: create hook Provision_Hook

7.5.7.2 Import the Hook Script

If the hook script is called “master_provision.py”, and it is ASCII, and it is located in /root/data/, importing
the hook script looks like this:

Qmgr: import hook Provision_Hook application/x-python default /root/data/
master_provision.py

See "Importing Hooks" on page 34 in the PBS Professional Hooks Guide for more about importing hooks.
AG-338 PBS Professional 2020.1.1 Administrator’s Guide

Provisioning Chapter 7
7.5.7.3 Configure the Hook Script

7.5.7.3.i Set Event Type

The event type for the provisioning hook is called “provision”. To set the event type:

Qmgr: set hook Provision_Hook event = provision

Do not try to assign more than one event type to the provisioning hook.

7.5.7.3.ii Set Alarm Time

The default alarm time for hooks is 30 seconds. This may be too short for a provisioning hook. You should set the
alarm time to a value that is slightly more than the longest time required for provisioning. Test provisioning each AOE,
and find the longest time required, then add a small amount of extra time. To set the alarm time:

Qmgr: set hook Provision_Hook alarm = <number of seconds required>

7.5.8 Configure Provisioning Policy

7.5.8.1 Set Maximum Number of Concurrently Provisioning Vnodes

The value of the server’s max_concurrent_provision attribute specifies the largest number of vnodes that can be in the
process of provisioning at any time. The default value of this attribute is 5. Set the value of this attribute to the largest
number of vnodes you wish to have concurrently provisioning. See section 7.4.6.3, “Server Attributes”, on page 334 for
more information on the attribute.

7.5.8.1.i Considerations

You may wish to limit the number of hosts that can be in the process of provisioning at the same time:

• So that the network isn’t overwhelmed transferring OS images to execution nodes

• So the hosts won't draw excessive power when powering up at the same time

Many sites have tools that notify them when an execution node goes down. You may want to avoid being paged every
time an execution node is provisioned with a new AOE.

7.5.8.2 Set Scheduling Policy

When a job is scheduled to be run, and the job requests an AOE, PBS can either try to fit the job on vnodes that already
have that AOE instantiated, or it can choose the vnodes regardless of AOE. Choosing regardless of AOE is the default
behavior; the assumption is that the chances of finding free vnodes that match all the requirements including that of the
requested AOE are not very high.

Provisioning policy is controlled by the provision_policy scheduling parameter in <sched_priv directory>/
sched_config. This parameter is a string which can take one of two values: avoid_provision or
aggressive_provision. If you want PBS to try first to use vnodes whose AOEs already match the requested AOE, set
provision_policy to avoid_provision. If you want PBS to choose vnodes regardless of instantiated AOE, set it to
aggressive_provision.

For details about the provision_policy parameter, see section 7.4.2.1, “Provisioning Policy”, on page 329.

For jobs that do not request an AOE, node_sort_key is used to choose vnodes.
PBS Professional 2020.1.1 Administrator’s Guide AG-339

Chapter 7 Provisioning
7.5.9 Enable Provisioning on Vnodes

PBS will provision only those vnodes that have provisioning enabled. Provisioning on each vnode is controlled by its
provision_enable attribute. This attribute is Boolean, with a default value of False. You enable provisioning on a
vnode by setting its provision_enable attribute to True.

This attribute cannot be set to True on the server host.

See section 7.4.6.2, “Vnode Attributes”, on page 334 for details about the provision_enable vnode attribute.

7.5.10 Enable Provisioning Hook

The last step in configuring provisioning is enabling the provisioning hook. The provisioning hook is enabled when its
enabled attribute is set to True. To set the enabled attribute to True for the provisioning hook named Provision_Hook:

Qmgr: set hook Provision_Hook enabled = True

7.6 Viewing Provisioning Information

7.6.1 Viewing Provisioning Hook Contents

To see the contents of the provisioning hook, export them:

qmgr -c "export hook <hook name> application/x-python default" > <output-path>/<output-filename>

For example, if the provisioning hook is named Provision_Hook, and you wish to export the contents to /usr/user1/
hook_contents:

qmgr -c "export hook Provision_Hook application/x-python default" > /usr/user1/hook_contents

7.6.2 Viewing Provisioning Hook Attributes

To view the provisioning hook’s attributes, use the list hook option to the qmgr command:

qmgr -c "list hook <hook name>"
AG-340 PBS Professional 2020.1.1 Administrator’s Guide

Provisioning Chapter 7
7.6.3 Printing Provisioning Hook Creation Commands

To print the provisioning hook’s creation commands, use the print hook option to the qmgr command:

qmgr -c "p hook"

#

Create hooks and set their properties.

#

#

Create and define hook my_prov_hook

#

create hook my_prov_hook

set hook my_prov_hook type = site

set hook my_prov_hook enabled = True

set hook my_prov_hook event = provision

set hook my_prov_hook user = pbsadmin

set hook my_prov_hook alarm = 30

set hook my_prov_hook order = 1

import hook my_prov_hook application/x-python base64 -

c2xzbGwK

7.6.4 Viewing Attributes and Resources Affecting
Provisioning

7.6.4.1 Server Attributes

To see the server attributes affecting provisioning, print the server’s information using the qmgr command:

qmgr -c "print server"
PBS Professional 2020.1.1 Administrator’s Guide AG-341

Chapter 7 Provisioning
You will see output similar to the following:

qmgr

Max open servers: 49

Qmgr: p s

#

Create queues and set their attributes.

#

#

Create and define queue workq

#

create queue workq

set queue workq queue_type = Execution

set queue workq enabled = True

set queue workq started = True

#

Set server attributes.

#

set server scheduling = True

set server default_queue = workq

set server log_events = 511

set server mail_from = adm

set server resv_enable = True

set server node_fail_requeue = 310

set server pbs_license_min = 0

set server pbs_license_max = 2147483647

set server pbs_license_linger_time = 31536000

set server license_count = "Avail_Global:0 Avail_Local:256 Used:0 High_Use:0"

set server max_concurrent_provision = 5
AG-342 PBS Professional 2020.1.1 Administrator’s Guide

Provisioning Chapter 7
7.6.4.2 Viewing Vnode Attributes and Resources

To see vnode attributes and resources affecting provisioning, use the -a option to the pbsnodes command:

pbsnodes -a

host1

 Mom = host1

 ntype = PBS

 state = free

 pcpus = 2

 resources_available.aoe = osimage1, osimage2

 resources_available.arch = linux

 resources_available.host = host1

 resources_available.mem = 2056160kb

 resources_available.ncpus = 2

 resources_available.vnode = host1

 resources_assigned.mem = 0kb

 resources_assigned.ncpus = 0

 resources_assigned.vmem = 0kb

 resv_enable = True

 sharing = default_shared

 provision_enable = True

 current_aoe = osimage2

7.7 Requirements and Restrictions

7.7.1 Site Requirements

7.7.1.1 Single-vnode Hosts Only

PBS will provision only single-vnode hosts. Do not attempt to use provisioning on hosts that have more than one vnode.

7.7.1.2 Provisioning Tool Required

For each vnode you wish to provision, there must be a provisioning tool that can be used on that vnode. Examples of
provisioning tools are the following:

• The HPE Performance Cluster Manager (HPCM) cluster management tool

• Dual boot system

• Network-accessible power control units

7.7.1.3 Single Provisioning Hook Allowed

The PBS server allows only one provisioning hook. If you have an existing provisioning hook and you import a provi-
sioning script, that script will become the contents of the hook, whether or not the hook already has a script. The new
script will overwrite the existing provisioning hook script.
PBS Professional 2020.1.1 Administrator’s Guide AG-343

Chapter 7 Provisioning
7.7.1.4 Provisioning Hook Cannot Have Multiple Event Types

The provisioning hook cannot have more than one event type.

7.7.1.5 AOE Names Consistent Across Complex

Make AOE names consistent across the complex. The same AOE should have the same name everywhere.

7.7.2 Usage Requirements

7.7.2.1 Restriction on Concurrent AOEs on Vnode

Only one AOE can be instantiated at a time on a vnode.

Only one kind of aoe resource can be requested in a job. For example, an acceptable job could make the following
request:

-l select=1:ncpus=1:aoe=suse+1:ncpus=2:aoe=suse

7.7.2.2 Vnode Job Restrictions

A vnode with any of the following jobs will not be selected for provisioning:

• One or more running jobs

• A suspended job

• A job being backfilled around

7.7.2.3 Vnode Reservation Restrictions

A vnode will not be selected for provisioning for job MyJob if the vnode has a confirmed reservation, and the start time
of the reservation is before job MyJob will end.

A vnode will not be selected for provisioning for a job in reservation R1 if the vnode has a confirmed reservation R2, and
an occurrence of R1 and an occurrence of R2 overlap in time and share a vnode for which different AOEs are requested
by the two occurrences.

7.7.2.4 Hook Script and AOE Must Be Compatible

The requested AOE must be available to the vnode to be provisioned. The following must be True:

• The AOE must be in the list of available AOEs for the vnode

• Each AOE listed on a vnode must be recognized by the provisioning hook script.

• The vnode must have provisioning enabled

7.7.2.5 Provisioning Hook Must Be Ready

• The provisioning hook must obey the following rules:

• It must exist

• It must have a Python script imported

• It must be enabled

• It must be designed to invoke an external script or command for AOEs that are to be used
AG-344 PBS Professional 2020.1.1 Administrator’s Guide

Provisioning Chapter 7
7.7.2.6 Server Host Cannot Be Provisioned

The server host cannot be provisioned: a MoM can run on the server host, but that MoM’s vnode cannot be provisioned.
The provision_enable vnode attribute, resources_available.aoe, and current_aoe cannot be set on the server host.

7.7.2.7 PBS Attributes Not Available to Provisioning Hook

The provisioning hook cannot operate on PBS attributes except for the following:

• The name of the vnode to be provisioned: pbs.event.vnode

• The AOE to be instantiated: pbs.event.aoe

7.7.2.8 avoid_provision Incompatible with smp_cluster_dist

The avoid_provision provisioning policy is incompatible with the smp_cluster_dist scheduling scheduler configuration
parameter. If a job requests an AOE, the avoid_provision policy overrides the behavior of smp_cluster_dist.

7.8 Defaults and Backward Compatibility

By default, PBS does not provide provisioning. You must configure PBS to provide provisioning.

7.9 Example Scripts

7.9.1 Sample Master Provisioning Hook Script With
Explanation

We show a sample provisioning hook script, and an explanation of what the script does. For readability, the sample script
is a master script calling two subscripts.

This provisioning hook allows two kinds of provisioning request:

• For the application AOE named “App1”, via the script app_prov.sh

The app_prov.sh script does not reboot the vnode

• For other provisioning, via the vendor-provided provisioning shell script vendorprov.sh

The vendorprov.sh script reboots the vnode
PBS Professional 2020.1.1 Administrator’s Guide AG-345

Chapter 7 Provisioning
7.9.1.1 Sample Master Provisioning Hook Script

import pbs (1)

import os (2)

e = pbs.event() (3)

vnode = e.vnode (4)

aoe = e.aoe (5)

if (aoe == "App1"): (6)

appret = os.system(“/var/user/app_prov.sh

 " + vnode + " " + aoe) (7)

if appret != 1: (8)

e.reject(“Provisioning without reboot

 failed”, 210) (9)

else:

e.accept(1) (10)

ret = os.system("/var/vendor/vendorprov.sh

 " + vnode + " " + aoe) (11)

if ret != 0: (12)

e.reject(“Provisioning with reboot

 failed”, 211) (13)

else:

e.accept(0) (14)

7.9.1.2 Explanation of Sample Provisioning Hook Script

• Lines 1 and 2 import the pbs and os modules.

• Line 3 puts the PBS provisioning event into the local variable named “e”.

• Lines 4 and 5 store the target vnode name and the name of the AOE to be instantiated on the target vnode in local
variables.

• Line 6 checks whether provisioning of the application AOE named “App1” is requested.

• Line 7 is where the actual code to do non-rebooting provisioning could go. In this example, we call a subscript,
passing the name of the target vnode and the requested AOE, and storing the return value in “appret”.

The non-rebooting provisioning subscript should return 1 on success.

• Line 8 checks whether non-rebooting provisioning via app_prov.sh succeeded.

• Line 9 returns the error code 210 and an error message to PBS if app_prov.sh failed.

• Line 10 returns 1 via pbs.event.accept(1) if non-rebooting provisioning succeeded.

• Line 11 calls the vendor-supplied script that is responsible for doing rebooting provisioning whenever “App1” is not
the AOE.

The name of the target vnode and the requested AOE are passed to this script.
AG-346 PBS Professional 2020.1.1 Administrator’s Guide

Provisioning Chapter 7
The vendor-supplied script should expect these two arguments. The return value from this script is stored in the
variable named “ret”.

• Line 12 checks whether rebooting provisioning via the vendor-supplied script vendorprov.sh was successful.

• Line 13: If the return value is anything but zero (success), the provisioning hook script passes the error code 211
back to PBS, along with an error message.

• Line 14 returns success to PBS via pbs.event.accept(0) and the master script exits.

7.9.2 Sample Master Provisioning Hook Script Calling
Performance Cluster Manager

The following is a master provisioning hook script that calls HPE Performance Cluster Manager (HPCM):

-*- coding: utf-8 -*-

import pbs

import os

e = pbs.event()

vnode = e.vnode

aoe = e.aoe

if (aoe=="App1"):

ret = os.system("/root/osprov/application.sh " + vnode + " " + aoe)

if ret != 0:

e.reject("Non-reboot provisioning failed",ret)

else:

e.accept(1)

ret = os.system("/root/osprov/sgi_provision.sh " + vnode + " " + aoe)

if ret != 0:

e.reject("Reboot provisioning failed",ret)

else:

e.accept(0)

7.9.3 Sample Script Set

This is a set of example Linux scripts designed to work together. They are the following:

provision_hook.py

This is the script for the provisioning hook. It calls the master provisioning script.

provision_master.py:

This is the master provisioning script. It is responsible for rebooting the machine being provisioned. It calls
update_grub.sh to update the current AOE.

update_grub.sh

This shell script updates the linux grub.conf file and sets the value for current_aoe after the reboot.

The update_grub.sh script must be modified according to the grub configuration of the system in question
before being run.
PBS Professional 2020.1.1 Administrator’s Guide AG-347

Chapter 7 Provisioning
7.9.3.1 Provisioning Hook Script

provision_hook.py:

import pbs

import os

e = pbs.event()

vnode = e.vnode

aoe = e.aoe

#print "vnode:" + vnode

#print "AOE:" + aoe

if (aoe=="App1"):

print "Provisioning an application"

e.accept(1)

ret = os.system("python /root/provision_master.py " + vnode + " " + aoe + " " + "lin")

#print "Python top level script returned " + str(ret)

if ret != 0:

e.reject("Provisioning failed",ret)

else:

e.accept(0)
AG-348 PBS Professional 2020.1.1 Administrator’s Guide

Provisioning Chapter 7
7.9.3.2 Master Provisioning Script

provision_master.py:

#!/usr/bin/python

#--------------------

success : 0

failure : 1

#--------------------

win_or_lin == 1 : windows

win_or_lin == 0 : linux

#--------------------

1 is TRUE

0 is FALSE

#--------------------

import sys

import os

vnode = sys.argv[1]

aoe = sys.argv[2]

win_or_lin = sys.argv[3]

print vnode, aoe

if not aoe.find('win'):

print "aoe is win"

isvnodewin = 1

else:

print "aoe is *nix"

isvnodewin = 0

print "win_or_lin = [", win_or_lin, "]"

if (win_or_lin == "win"):

print "entering window server"

if isvnodewin:

#------------ WINDOWS -> WINDOWS

ret = os.system("pbs-sleep 05")

#------------ WINDOWS -> WINDOWS

else:

#------------ WINDOWS -> LINUX

ret = os.system("pbs-sleep 05")

#------------ WINDOWS -> LINUX
PBS Professional 2020.1.1 Administrator’s Guide AG-349

Chapter 7 Provisioning
ret = os.system("pbs-sleep 45")

print "Pinging machine until it is up..."

timeout = 120

ticks = 0

while 1:

ret = os.system("ping -c 1 -i 5 " + vnode + " -w 10 > /dev/null 2>&1")

if not ret:

print "that machine is now up"

exit(0)

ticks = ticks + 1

print "ticks = ", ticks

if ticks > timeout:

print "exit ticks = ", ticks

print "that machine didn't come up after 2 mins,FAIL"

exit(1)

else:

print "entering linux server"

if isvnodewin:

#------------ LINUX -> WINDOWS

ret = os.system("sleep 05")

#------------ LINUX -> WINDOWS

else:

#------------ LINUX -> LINUX

ret = os.system("scp -o StrictHostKeyChecking=no /root/update_grub.sh " + vnode + ":/root
> /dev/null 2>&1")

if ret != 0:

print "scp failed to copy"

exit(1)

ret = os.system("/usr/bin/ssh -o StrictHostKeyChecking=no " + vnode + " \"/root/
update_grub.sh " + vnode + " " + aoe + " 1 " + " \" > /dev/null 2>&1")

if ret != 0:

print "failed to run script"

exit(1)

ret = os.system("/usr/bin/ssh -o StrictHostKeyChecking=no " + vnode + " \"reboot\"" + " >
/dev/null 2>&1")

if ret != 0:

print "failed to reboot that machine"

exit(1)

#------------ LINUX -> LINUX
AG-350 PBS Professional 2020.1.1 Administrator’s Guide

Provisioning Chapter 7
ret = os.system("sleep 45")

print "Pinging machine until it is up..."

timeout = 120

ticks = 0

while 1:

ret = os.system("ping -c 1 -i 5 " + vnode + " -w 10 > /dev/null 2>&1")

if not ret:

print "that machine is now up"

exit(0)

print "ticks = ", ticks

ticks = ticks + 1

if ticks > timeout:

print "That machine didn't come up after 2 mins. FAIL"

exit(1)
PBS Professional 2020.1.1 Administrator’s Guide AG-351

Chapter 7 Provisioning
7.9.3.3 Grub Update Shell Script

update_grub.sh:

#! /bin/sh

if [$# -lt 2]; then

echo "syntax: $0 <machine ip> <aoe name>"

exit 1

fi

machine=$1

aoe_name=$2

menufile="/boot/grub/grub.conf"

if [! -f "$menufile"]; then

echo "grub.conf file not found. $machine using grub bootloader?"

exit 1

fi

link=`ls -l $menufile | cut -c1`

if ["$link" = "l"]; then

menufile=`ls -l $menufile | awk -F"-> " '{print $2}'`

echo "Found link file, original file is $menufile"

fi

titles=`cat $menufile | grep title | awk -F"title" '{print $2}' | sed 's/^[\t]//g'`

lines=`echo -e "$titles" | wc -l`

found_aoe_index=-1

count=0

while [$count -lt $lines]

do

lineno=`expr $count + 1`

title=`echo -e "$titles" | head -n $lineno | tail -n 1`

if ["$aoe_name" = "$title"]; then

found_aoe_index=$count

fi

count=`expr $count + 1`

done

if [$found_aoe_index = -1]; then

echo "Requested AOE $aoe_name is not found on machine $machine"

exit 2

fi

new_def_line="default=$found_aoe_index"
AG-352 PBS Professional 2020.1.1 Administrator’s Guide

Provisioning Chapter 7
def_line=`cat $menufile | grep "^default="`

echo "new_def_line=$new_def_line"

echo "def_line=$def_line"

echo "menufile=$menufile"

cp $menufile /boot/grub/grub.conf.backup

cat $menufile | sed "s/^$def_line/$new_def_line/g" > grub.out

if [-s grub.out]; then

mv grub.out $menufile

else

exit 1

fi

service pbs stop

exit 0

7.10 Advice and Caveats

7.10.1 Using Provisioning Wisely

It is recommended that when using provisioning, you set PBS up so as to prevent things such as the following:

• User jobs not running because vnodes used in a reservation have been provisioned, and provisioning for the reserva-
tion job will take too long

• Excessive amounts of time being taken up by provisioning from one AOE to another and back again

In order to avoid problems like the above, you can do the following to keep specific AOE requests together:

• For each AOE, associate a set of vnodes with a queue. Use a hook to move jobs into the right queues.

• Create a reservation requesting each AOE, then use a hook to move jobs requesting AOEs into the correct reserva-
tion.
PBS Professional 2020.1.1 Administrator’s Guide AG-353

Chapter 7 Provisioning
7.10.1.1 Preventing Provisioning

You may need to prevent specific users or groups from using provisioning. You can use a job submission, job modifica-
tion, or reservation creation hook to prevent provisioning. For more about hooks, see the PBS Professional Hooks
Guide. The following is an example of a hook script to prevent USER1 from provisioning:

import pbs

import re

#--- deny user access to provisioning

e = pbs.event()

j = e.job #--- Use e.resv to restrict provisioning in reservation

who = e.requestor

unallow_ulist = ["USER1"]

if who not in unallow_ulist

e.accept(0)

#User request AOE in select?

if j.Resource_List["select"] != None:

s = repr(j.Resource_List["select"])

if re.search("aoe=", s) != None:

pbs.logmsg(pbs.LOG_DEBUG, "User %s not allowed to

provision" % (who))

e.reject("User not allowed to provision")

#User request AOE?

if j.Resource_List["aoe"] != None:

pbs.logmsg(pbs.LOG_DEBUG, "User %s not allowed to

provision" % (who))

e.reject("User not allowed to provision")

e.accept(0)

7.10.2 Allow Enough Time in Reservations

If a job is submitted to a reservation with a duration close to the walltime of the job, provisioning could cause the job to
be terminated before it finishes running, or to be prevented from starting. If a reservation is designed to take jobs
requesting an AOE, leave enough extra time in the reservation for provisioning.
AG-354 PBS Professional 2020.1.1 Administrator’s Guide

Provisioning Chapter 7
7.11 Errors and Logging

7.11.1 Errors

7.11.1.1 Errors Resulting in Marking Vnodes Offline

A vnode is marked offline if:

• Provisioning fails for the vnode

• The AOE reported by the vnode does not match the requested AOE after the provisioning script finishes

A vnode is not marked offline if provisioning fails to start due to internal errors in the script.

7.11.1.2 Errors Resulting in Requeueing Job

Before provisioning a vnode with a requested OS, the server checks to see whether MoM’s hook files are synced. If not,
the server creates a timed task to check again. If the server fails to create the timed task, it requeues the job, and logs fol-
lowing error messages at log level 0x0001:

“Resource temporarily unavailable (11) in prov_startjob, Unable to set task for prov_startjob;
requeueing the job”

“Cannot allocate memory (12) in prov_startjob, Unable to set task for prov_startjob; requeuing the
job”

“Cannot allocate memory (12) in check_and_run_jobs, Unable to set task for prov_startjob;
requeueing the job”

7.11.2 Logging

7.11.2.1 Accounting Logs

For each job and reservation, an accounting log entry is made whenever provisioning starts and provisioning ends. Each
such log entry contains a list of the vnodes that were provisioned, the AOE that was provisioned on these vnodes, and the
start and end time of provisioning.

The accounting log entry for the start of provisioning is identified by the header “P”, and the entry for the end of provi-
sioning is identified by the header “p”.

Example:

Printed when job starts provisioning:

“01/15/2009 12:34:15;P;108.mars;user=user1 group=group1 jobname=STDIN queue=workq
prov_vnode=jupiter:aoe=osimg1+venus:aoe=osimg1 provision_event=START start_time=1231928746”

Printed when job stops provisioning:

“01/15/2009 12:34:15;p;108.mars;user=user1 group=group1 jobname=STDIN queue=workq
prov_vnode=jupiter:aoe=osimg1+venus:aoe=osimg1 provision_event=END status=SUCCESS
end_time=1231928812”

Printed when provisioning for job failed:

“01/15/2009 12:34:15;p;108.mars;user=user1 group=group1 jobname=STDIN queue=workq
prov_vnode=jupiter:aoe=osimg1+venus:aoe=osimg1 provision_event=END status=FAILURE
end_time=1231928812”
PBS Professional 2020.1.1 Administrator’s Guide AG-355

Chapter 7 Provisioning
7.11.2.2 Server Logs

7.11.2.2.i Messages Printed at Log Level 0x0080

“vnode <vnode name>: Vnode offlined since it failed provisioning”

“vnode <vnode name>: Vnode offlined since server went down during provisioning”

“Provisioning for Job <job id> succeeded, running job”

"Job failed to start provisioning”

“Provisioning for Job <job id> failed, job held”

“Provisioning for Job <job id> failed, job queued”

7.11.2.2.ii Messages Printed at Log Level 0x0100

“Provisioning of Vnode <vnode name> successful”

“Provisioning of <vnode name> with <AOE name> for <job ID> failed, provisioning exit
status=<number>”

“Provisioning of <vnode name> with <aoe name> for <job id> timed out”

“Provisioning vnode <vnode> with AOE <AOE> started successfully"

“provisioning error: AOE mis-match"

“provisioning error: vnode offline"

7.11.2.2.iii Messages Printed at Log Level 0x0002

“Provisioning hook not found”

7.11.2.2.iv Messages Printed at Log Level 0x0001

“Provisioning script recompilation failed”

“Resource temporarily unavailable (11) in prov_startjob, Unable to set task for prov_startjob;
requeueing the job”

“Cannot allocate memory (12) in prov_startjob, Unable to set task for prov_startjob; requeueing
the job”

“Cannot allocate memory (12) in check_and_run_jobs, Unable to set task for prov_startjob;
requeueing the job”

7.11.2.3 Scheduler Logs

7.11.2.3.i Messages Printed at Log Level 0x0400

Printed when vnode cannot be selected for provisioning because requested AOE is not available on vnode:

“Cannot provision, requested AOE <aoe-name> not available on vnode”

Printed when vnode cannot be selected for provisioning because vnode has running or suspended jobs, or the reservation
or job would conflict with an existing reservation:

“Provision conflict with existing job/reservation”

Printed when vnode cannot be selected for provisioning because provision_enable is unset or set False on vnode:

“Cannot provision, provisioning disabled on vnode”

Printed when job cannot run because server is not configured for provisioning:

“Cannot provision, provisioning disabled on server”

Printed when multiple vnodes are running on the host:

“Cannot provision, host has multiple vnodes”
AG-356 PBS Professional 2020.1.1 Administrator’s Guide

Provisioning Chapter 7
Printed when vnodes are sorted according to avoid_provision policy:

“Re-sorted the nodes on aoe <aoe name>, since aoe was requested”

7.11.2.3.ii Messages Printed at Log Level 0x0100

Printed when a vnode is selected for provisioning by a job:

“Vnode <vnode name> selected for provisioning with <AOE name>”

7.11.3 Error Messages

Printed when vnode is provisioning and current_aoe is set or unset or resources_available.aoe is modified via qmgr:

“Cannot modify attribute while vnode is provisioning”

Printed when qmgr is used to change state of vnode which is currently provisioning:

“Cannot change state of provisioning vnode”

Printed when vnode is deleted via 'qmgr > delete node <name>' while it is currently provisioning:

“Cannot delete vnode if vnode is provisioning”

Printed when provision_enable, current_aoe or resources_available.aoe are set on host running PBS server, sched-
uler, and communication daemons:

“Cannot set provisioning attribute on host running PBS server and scheduler”

Printed when current_aoe is set to an AOE name that is not listed in resources_available.aoe of the vnode:

“Current AOE does not match with resources_available.aoe”

Printed when an event of a hook is set to 'provision' and there exists another hook that has event 'provision':

“Another hook already has event 'provision', only one 'provision' hook allowed”

Printed when qsub has -laoe and -lselect=aoe:

“-lresource= cannot be used with "select" or "place", resource is: aoe”

Job comment printed when job fails to start provisioning:

“job held, provisioning failed to start”

Printed when job is submitted or altered so that it does not meet the requirements that all chunks must request same AOE,
and this AOE must match that of any reservation to which the job is submitted:

“Invalid provisioning request in chunk(s)”
PBS Professional 2020.1.1 Administrator’s Guide AG-357

Chapter 7 Provisioning
AG-358 PBS Professional 2020.1.1 Administrator’s Guide

8

Security

This chapter describes the security features of PBS. These instructions are for the PBS administrator and Manager.

8.1 Configurable Features

This section gives an overview of the configurable security mechanisms provided by PBS, and gives links to information
on how to configure each mechanism.

The following table lists configurable PBS security mechanisms and their configuration procedures.

8.2 User Roles and Required Privilege

8.2.1 Root Privilege

Root privilege is required to perform some operations in PBS involving writing to the server’s private, protected data.
Root privilege is required in order to do the following:

• Create hooks

• Alter MoM and scheduler configuration files

• Set scheduler priority formula

• Run certain commands, including the following:

• pbs_probe

• pbs_mom

• pbs_sched

• pbs_server

• pbsfs

• Use the tracejob command to view accounting log information

Table 8-1: Security Mechanisms and their Configuration Procedures

Security Mechanism Configuration Procedure

Authentication with daemons and users "Authentication for Daemons & Users” on page 378

Encrypting communication "Encrypting PBS Communication” on page 381

Access control for server, queues, reservations "Using Access Control Lists” on page 362

Event logging for server, scheduler, MoMs "Event Logging” on page 536

File copy mechanism "Setting File Transfer Mechanism” on page 549

Levels of privilege (user roles) "User Roles and Required Privilege” on page 359

Restricting access to execution hosts via $restrict_user "Restricting Execution Host Access” on page 385
PBS Professional 2020.1.1 Administrator’s Guide AG-359

Chapter 8 Security
There are some operations that root privilege alone does not allow. These operations require Manager privilege but not
root privilege. Manager privilege, but not root privilege, is required in order to do the following:

• Set attributes

• Create or delete vnodes using the qmgr command

8.2.2 User Roles

PBS allows certain privileges based on what role a person has, and whether that person has root privilege. PBS recog-
nizes only three roles, and all those using PBS must be assigned one of these roles. These roles are Manager, Operator,
and user. Roles are assigned by PBS Managers only. No roles can be added, and roles cannot be modified; the function
of roles is hardcoded in the server.

In addition to these roles, PBS requires a PBS Administrator to perform some downloading, installation, upgrading, con-
figuration, and management functions. PBS does not recognize PBS Administrator as a PBS role; this term is used in
PBS documentation to mean the person who performs these tasks.

PBS roles and PBS Administrators are described in the following sections:

8.2.2.1 User

8.2.2.1.i Definition of User

Users are those who submit jobs to PBS.

Users have the lowest level of privilege. Users are referred to in the PBS documentation as “users”. By default, users
may operate only on their own jobs. They can do the following:

• Submit jobs

• Alter, delete, and hold their own jobs

• Status their own jobs, and those of others if permission has been given via the query_other_jobs server attribute.
The query_other_jobs server attribute controls whether unprivileged users are allowed to select or query the status
of jobs owned by other users.

• List and print some but not all server, queue, vnode, scheduler, and reservation attributes

8.2.2.1.ii Defining List of Users

PBS allows you to define a list of users allowed or denied access to the PBS server, however this is done using the PBS
access control list mechanism. Access control is described in section 8.3, “Using Access Control Lists”, on page 362.

8.2.2.2 Operator

8.2.2.2.i Definition of Operator

A PBS Operator is a person who has an account that has been granted Operator privilege.

Operators have more privilege than users, and less privilege than Managers.

Operators can manage the non-security-related attributes of PBS such as setting and unsetting non-security attributes of
vnodes, queues, and the server. Operators can also set queue ACLs.
AG-360 PBS Professional 2020.1.1 Administrator’s Guide

Security Chapter 8
Operators can do the following:

• All operations that users can perform

• Set non-security-related server, queue, and vnode attributes (Operators are not permitted to set server ACLs)

• Alter some job attributes

• Set or alter most resources on the server, queues, and vnodes

• Rerun, requeue, delete, and hold all jobs

• Run any command to act on a job

8.2.2.2.ii Defining List of Operators

To define the list of Operators at a PBS complex, set the server’s operators attribute to a list of usernames, where each
username should be an Operator. See “Server Attributes” on page 281 of the PBS Professional Reference Guide.

It is important to grant Operator privilege to appropriate persons only, since Operators can control how user jobs run.

8.2.2.3 Manager

8.2.2.3.i Definition of Manager

A Manager is a person who has an account that has been granted PBS Manager privilege.

Managers have more privilege than Operators. Managers can manage the security aspects of PBS such as server ACLs
and assignment of User Roles.

Managers can do the following:

• All operations that Operators can perform

• Create or delete queues or vnodes

• Set all server, queue, and vnode attributes, including server ACLs

8.2.2.3.ii Defining List of Managers

To define the list of Managers at a PBS complex, set the server’s managers attribute to a list of usernames, where each
username should be a Manager. See “Server Attributes” on page 281 of the PBS Professional Reference Guide.

If the server’s managers attribute is not set or is unset, root on the server host is given Manager privilege.

It is important to grant Manager privilege to appropriate persons only, since Managers control much of PBS.

8.2.2.4 PBS Administrator

8.2.2.4.i Definition of PBS Administrator

Linux: person with Manager privilege and root access.

Windows: person with Manager privilege who is a member of the local Administrators group.

A person who administers PBS, performing functions such as downloading, installing, upgrading, configuring, or man-
aging PBS. PBS Administrators perform all the functions requiring root privilege, as described in section 8.2.1, “Root
Privilege”, on page 359.

PBS Administrator is distinguished from “site administrator”, although often these are the same person.
PBS Professional 2020.1.1 Administrator’s Guide AG-361

Chapter 8 Security
8.3 Using Access Control Lists

8.3.1 Access Definitions

In this section we describe the meaning of access for each entity and object where the access of the entity to the object
has an access control mechanism.

8.3.1.1 Access to a PBS Object

Below are the definitions of what access to each of the following PBS objects means:

Access to the server

Being able to run PBS commands to submit jobs and perform operations on them such as altering, selecting, and
querying status. It also means being able to get the status of the server and queues.

Access to a queue

Being able to submit jobs to the queue, move jobs into the queue, being able to perform operations on jobs in the
queue, and being able to get the status of the queue.

Access to a reservation

Being able to place jobs in the reservation, whether by submitting jobs to the reservation or moving jobs into the
reservation. It also means being able to delete the reservation, and being able to operate on the jobs in the reser-
vation.

8.3.1.2 Access by a PBS Entity

Access can be granted at the server, queues, and reservations for each of the following entities:

User access

The specified user is allowed access.

Group access

A user in the specified group is allowed access

Host access

A user is allowed access from the specified host

8.3.2 Requirement for Access

In order to have access to a PBS object such as the server or a queue, a user must pass all enabled access control tests: the
user must be allowed access, the user’s group must be allowed access, and the host where the user is working must be
allowed access.

In some cases, Manager or Operator privilege overrides access controls. For some kinds of access, there are no controls.
See section 8.3.10, “Operations Controlled by ACLs”, on page 374.

8.3.3 Managing Access via Lists

PBS uses access control lists (ACLs) to manage access to the server, queues, and reservations. There is a separate set of
ACLs for the server, each queue, and each reservation. The server enforces the access control policy for User Roles sup-
ported by PBS. The policy is hardcoded within the server. ACLs can specify which entities are allowed access and which
entities are denied access.
AG-362 PBS Professional 2020.1.1 Administrator’s Guide

Security Chapter 8
Each server and queue ACL can be individually enabled or disabled by a Manager. If an ACL is enabled, access is
allowed or denied based on the contents of the ACL. If the ACL is disabled, access is allowed to all. The contents of each
server or queue ACL can be set or altered by a Manager.

Reservation ACLs are enabled only by the reservation creator or the PBS Administrator. The server’s resv_enable
attribute controls whether reservations can be created. When this attribute is set to False, reservations cannot be created.

No default ACLs are shipped.

8.3.4 ACLs

An ACL, or Access Control List, is a list of zero or more entities (users, groups, or hosts from which users or groups may
be attempting to gain access) allowed or denied access to parts of PBS such as the server, queues, or reservations. A
server ACL applies to access to the server, and therefore all of PBS. A queue’s ACL applies only to that particular queue.
A reservation’s ACL applies only to that particular reservation. The server, each queue, and each reservation has its own
set of ACLs.

8.3.4.1 Format of ACLs

Entity access is controlled according to the list of entities allowed or denied access as specified in the object’s
acl_<entity> attribute. The object’s access control attribute contains a list of entity names, where each entity name is
marked with a plus sign (“+”) if the entity is allowed access, and with a minus sign (“-”) if the entity is denied access.
For example, to allow User1@host1.example.com, and deny User2@host1.example.com:

+User1@host1.example.com, -User2@host1.example.com

8.3.4.2 Default ACL Behavior

If an entity name is included without either a plus or a minus sign, it is treated as if it has a plus sign, and allowed access.

If an entity name is not in the list, the default behavior is to deny access to the entity. Therefore, if the list is empty but
enabled because the object’s acl_<entity>_enable attribute is set to True (see section 8.3.5, “Enabling Access Control”,
on page 365), all entities are denied access.

8.3.4.3 Modifying ACL Behavior

You can specify how an ACL treats an unmatched entity by including special flags in the ACL itself. These are the plus
and minus signs.

To allow access for all unmatched entities (the reverse of the default behavior), put a plus sign (“+”) anywhere by itself in
the list. For example:

+User1@host1.example.com, +, -User2@host1.example.com

To deny access for all unmatched entities (the default behavior), put a minus sign (“-”) anywhere by itself in the list. For
example:

+User1@host1.example.com, -, -User2@host1.example.com

If there are entries for both a plus and a minus sign, the last entry in the list (closest to the rightmost side of the list) will
control the behavior of the ACL.
PBS Professional 2020.1.1 Administrator’s Guide AG-363

Chapter 8 Security
8.3.4.4 Contents of User ACLs

User ACLs contain a username and hostname combination.The subject’s username and hostname combination is com-
pared to the entries in the user ACL. Usernames take this form:

User1@host.domain.com

User1@host.subdomain.domain.com

User names can be wildcarded. See section 8.3.4.7, “Wildcards In ACLs”, on page 364.

8.3.4.5 Contents of Group ACLs

Group ACLs contain names based on the user’s groups, as defined by the operating system where the server is executing.
All of the user’s groups are included. The subject's group names on the server are compared to the entries in the Group
ACL. Group names cannot be wildcarded.

8.3.4.6 Contents of Host ACLs

Host ACLs contain fully-qualified hostnames. The subject's host name is compared to the entries in the host ACL. To
find the fully-qualified name of a host, use the pbs_hostn command. See “pbs_hostn” on page 63 of the PBS Profes-
sional Reference Guide.

Hostnames can be wildcarded. See the following section.

8.3.4.7 Wildcards In ACLs

Usernames and hostnames can be wildcarded. The hostname portion of the username is wildcarded exactly the same
way a hostname is wildcarded. The non-hostname portion of a username cannot be wildcarded.

The only character that can be used to wildcard entity names is the asterisk (“*”). Wildcarding must follow these rules:

• The asterisk must be to the right of the at sign (“@”)

• There can be at most one asterisk per entity name

• The asterisk must be the leftmost label after the at sign

The following table shows how hostnames are wildcarded:

Table 8-2: How Hostnames Are Wildcarded

Wildcard Use Meaning

*.test.example.com Any host in the test subdomain in example.com

*.example.com Any host in example.com

*.com Any host in .com

* Any host
AG-364 PBS Professional 2020.1.1 Administrator’s Guide

Security Chapter 8
The following examples show how wildcarding works in host ACLs:

Example 8-1: To limit host access to host myhost.test.example.com only:

myhost.test.example.com

Example 8-2: To limit host access to any host in the test.example.com subdomain:

*.test.example.com

Example 8-3: To limit host access to any host in example.com:

*.example.com

Example 8-4: To allow host access for all hosts:

*

The following examples show how wildcarding works in user ACLs:

Example 8-5: To limit user access to UserA requesting from host myhost.test.example.com only:

UserA@myhost.test.example.com

Example 8-6: To limit user access to UserA on any host in the test.example.com subdomain:

UserA@*.test.example.com

Example 8-7: To limit user access to UserA on any host in example.com:

UserA@*.example.com

Example 8-8: To limit user access to UserA from anywhere:

UserA@*

or

UserA

Listing a username without specifying the host or domain is the equivalent of listing the username followed by “@*”.
This means that

User1

is the same as

User1@*

8.3.4.8 Restrictions on ACL Contents

All access control lists are traversed from left to right, and the first match found is used. It is important to make sure that
entries appear in the correct order.

To single out a few, specify those few first, to the left of the other entries.

Example 8-9: To allow all users in your domain except User1 access, the list should look like this:

-User1@example.com, +*@example.com

Example 8-10: To deny access to all users in your domain except User1, the list should look like this:

+User1@example.com, -*@example.com

8.3.5 Enabling Access Control

Each server and queue ACL is controlled by a Boolean switch whose default value is False, meaning that access control
is turned off. When access control is turned off, all entities have access to the server and to each queue. When access
control is turned on, access is allowed only to those entities specifically granted access.
PBS Professional 2020.1.1 Administrator’s Guide AG-365

Chapter 8 Security
To use access control, first set the contents of the ACL, then enable it by setting its switch to True.

Reservation ACLs are enabled when the reservation creator sets their contents. Reservation ACLs do not have switches.
Reservations use queues, which are regular queues whose ACL values have been copied from the reservation. These
queues are not intended to be operated on directly. See section 8.3.8, “Reservation Access”, on page 371.

8.3.5.1 Table of ACLs and Switches

The following table lists the ACLs and their switches, with defaults, for the server, queues, and reservations.

8.3.6 Creating and Modifying ACLs

Server and queue ACLs follow the same rules for creation and modification. Reservation queue ACLs behave the same
way regular queue ACLs do. Reservation ACLs can only be created and modified by the reservation creator and the
administrator. See section 8.3.8, “Reservation Access”, on page 371.

Table 8-3: ACLs and Their Switches

User
(Default Value)

Group
(Default Value)

Host
(Default Value)

Server Switch acl_user_enable

(False)

None acl_host_enable

(False)

List acl_users

(all users allowed)

None acl_hosts

(all hosts allowed)

Queue Switch acl_user_enable

(False)

acl_group_enable

(False)

acl_host_enable

(False)

List acl_users

(all users allowed)

acl_groups

(all groups allowed)

acl_hosts

(all hosts allowed)

Reservation Switch None None None

List Authorized_Users

(creator only)

Authorized_Groups

(creator’s group only)

Authorized_Hosts

(all hosts allowed)

Reservation
queue

Switch acl_user_enable

(True)

acl_group_enable

(False)

acl_host_enable

(False)

List acl_users

(creator only)

acl_groups

(all groups allowed)

acl_hosts

(all hosts allowed)
AG-366 PBS Professional 2020.1.1 Administrator’s Guide

Security Chapter 8
8.3.6.1 Rules for Creating and Modifying Server and Queue ACLs

• Server and queue ACLs are created and modified using the qmgr command.

• An ACL is a list of entries. When you operate on the list, the first match found, searching from left to right, is used.
If there is more than one match for the entity you wish to control, ensure that the first match gives the behavior you
want.

• When you create or add to an ACL, you can use the + or - operators to specify whether or not an entity is allowed
access. Omitting the operator is equivalent to adding a + operator.

• When you re-create an existing ACL, this is equivalent to unsetting the old ACL and creating a new one.

• When you add to an ACL, the new entry is appended to the end of the ACL, on the right-hand side.

• When you remove an entity from an ACL, you cannot use + or - operators to specify which entity to remove, even if
there are multiple entries for an entity and each entry has a different operator preceding it, for example “-bob,
+bob”.

• When you remove an entity, only the first match found is removed.

8.3.6.2 Examples of Creating and Modifying Server and Queue ACLs

The following examples show the server’s user ACL being set. Queue ACLs work the same way as server ACLs, and the
equivalent qmgr command can be used for queues. So, where we use the following for the server:

Qmgr: set server acl_users ...

the same effect can be achieved at the queue using this:

Qmgr: set queue <queue name> acl_users ...

If the queue name is Q1, the qmgr command looks like this:

Qmgr: set queue Q1 acl_users ...

Example 8-11: To create a server or queue ACL:

Qmgr: set <object> <ACL> = <entity list>

Example:

Qmgr: set server acl_users ="-User1@*.example.com,+User2@*.example.com"

ACL looks like this:

-User1@*.example.com, +User2@*.example.com

Example 8-12: To add to a server or queue ACL:

Qmgr: set <object> <ACL> += <entity list>

Example:

Qmgr: set server acl_users += -User3@*.example.com

ACL looks like this:

-User1@*.example.com, +User2@*.example.com, -User3@example.com

Example 8-13: To remove an entry from an ACL:

Qmgr: set <object> <ACL> -= <entity>

Example:

Qmgr: set server acl_users -= User2@*.example.com
PBS Professional 2020.1.1 Administrator’s Guide AG-367

Chapter 8 Security
ACL looks like this:

-User1@*.example.com, -User3@*.example.com

Example 8-14: To remove two entries for the same entity from an ACL:

Qmgr: set <object> <ACL> -= <entity1, entity1>

Example: If ACL contains +A, +B, -C, -A, +D, +A

Qmgr: set server acl_users -= “A, A”

ACL looks like this:

+B, -C, +D, +A

Example 8-15: To remove multiple entities from an ACL:

Qmgr: set <object> <ACL> -= <entity list>

Example: If ACL contains +B, -C, +D, +A

Qmgr: set server acl_users -= “B, D”

ACL looks like this:

-C, +A

8.3.6.3 Who Can Create, Modify, Enable, or Disable ACLs

The following table summarizes who can create, modify, enable, or disable ACLs and their associated switches:

Table 8-4: Who Can Create, Modify, Enable, Disable ACLs

ACLs and Switches Manager Operator User

Server ACLs and Switches Create Yes No No

Modify Yes No No

Enable Yes No No

Disable Yes No No

Queue ACLs and Switches Create Yes Yes No

Modify Yes Yes No

Enable Yes Yes No

Disable Yes Yes No

Reservation ACLs Create Only if reservation
creator

Only if reservation
creator

When creating reservation

Modify Yes, if administra-
tor

No Yes

Enable Creator and admin-
istrator

No When creating reservation

Disable No No No
AG-368 PBS Professional 2020.1.1 Administrator’s Guide

Security Chapter 8
8.3.6.4 Who Can Operate on Server ACLs

PBS Managers only can create or modify server ACLs and the Boolean switches that enable them.

8.3.6.5 Who Can Operate on Queue ACLs

PBS Managers and Operators, but not users, can create and modify queue ACLs and their Boolean switches.

8.3.6.6 Who Can Operate on Reservation ACLs

When creating a reservation, the reservation creator cannot disable the user ACL, but can choose to enable or disable the
group and host ACLs implicitly via the command line, and can specify the contents of all three ACLs. Reservation ACLs
can be modified via pbs_ralter or disabled.

8.3.6.7 Who Can Operate on Reservation Queue ACLs

Unprivileged users cannot directly create, modify, enable, or disable reservation queue ACLs or the associated switches.
The reservation creator can indirectly create and enable the reservation queue’s ACLs during reservation creation. If a
user wants to modify a reservation queue’s ACLs, they can do so indirectly by deleting the reservation and creating a new
one with the desired ACLs.

PBS Managers and Operators can modify, enable, or disable a reservation queue’s ACLs.

A reservation queue’s user ACL is always enabled unless explicitly disabled after creation by a Manager or Operator.

8.3.7 Server and Queue ACLs

Access control for an entity such as a user, group, or host is enabled by setting the attribute enabling that entity’s ACL to
True. When this attribute is True, entity access is controlled according to the list of entities allowed or denied access as
specified in the ACL for that entity. The default value for each ACL’s switch attribute is False, meaning that entity
access is not controlled.

8.3.7.1 Server ACLs

The server has a host ACL and a user ACL.

Reservation Queue ACLs
and Switches

Create Yes Yes Indirectly when creating reserva-
tion

Modify Yes Yes No

Enable Yes Yes Indirectly when creating reserva-
tion

Disable Yes Yes Group and host ACLs can be indi-
rectly disabled by user during res-
ervation creation.

User ACL cannot be disabled by
user.

Table 8-4: Who Can Create, Modify, Enable, Disable ACLs

ACLs and Switches Manager Operator User
PBS Professional 2020.1.1 Administrator’s Guide AG-369

Chapter 8 Security
Server access is controlled by these attributes:

• User access: acl_user_enable and acl_users

• Host access: acl_host_enable and acl_hosts

8.3.7.2 Queue ACLs

Each queue has three ACLs: a host ACL, a user ACL, and a group ACL.

Queue access is controlled by these attributes:

• User access: acl_user_enable and acl_users

• Group access (queue only): acl_group_enable and acl_groups

• Host access: acl_host_enable and acl_hosts

8.3.7.3 Access to Server for MoMs

You can specify whether all MoMs should have the same privilege when contacting the server as hosts listed in the
acl_hosts server attribute using the acl_host_moms_enable server attribute. If you set this to True, all MoMs are
allowed privileged access to the server, and you don’t need to explicitly add their hosts to the ACL. See “Server
Attributes” on page 281 of the PBS Professional Reference Guide.

8.3.7.4 Examples of Setting Server and Queue Access

To restrict access to the server or queue, first set the contents of the ACL, then enable the ACL by setting its switch to
True.

Example 8-16: To allow server access for all users in your domain except User1, and to allow server access for User2 in
another domain:

Set the server’s acl_users attribute:

Qmgr: set server acl_users = “-User1@example.com, +*@example.com,
+User2@otherdomain.com”

Enable user access control by setting the server’s acl_user_enable attribute to True:

Qmgr: set server acl_user_enable = True

Example 8-17: To require that users of a queue be in Group1 only:

Set the queue’s acl_groups attribute:

Qmgr: set queue Queue1 acl_groups = +Group1

Enable group access control by setting the queue’s acl_group_enable attribute to True:

Qmgr: set queue Queue1 acl_group_enable = True

Example 8-18: To allow access to Queue1 from Host1 only:

Set the queue’s acl_hosts attribute:

Qmgr: set q Queue1 acl_hosts = +Host1@example.com

Enable host access control by setting the queue’s acl_host_enable attribute to True:

Qmgr: set q Queue1 acl_host_enable = True
AG-370 PBS Professional 2020.1.1 Administrator’s Guide

Security Chapter 8
8.3.8 Reservation Access

Advance, job-specific, and standing reservations are intended to be created by job submitters, although managers and
operators can create them as well. Maintenance reservations can be created only by managers and operators. The admin-
istrator controls whether reservations can be created via the server’s resv_enable attribute. When this attribute is set to
True, reservations can be created.

Reservation ACLs allow or deny access based on group names, usernames, and hostnames. Each reservation has its own
access control attributes that can be used to specify which users and groups have access to the reservation, and the hosts
from which these users and groups are allowed access. The creator of the reservation sets the lists of users, groups and
hosts that have access to the reservation (the reservation ACLs). This is done while creating the reservation, using
options to the pbs_rsub command.

When you create a reservation ACL, it is automatically enabled; you do not have to explicitly enable it. The reservation’s
list of authorized users is always enabled during reservation creation. The reservation’s lists of authorized groups and
authorized hosts are only enabled if explicitly set by the reservation creator. PBS checks for membership in authorized
lists only when that ACL is enabled. So for example, if you create a reservation and do not specify a list of authorized
groups, no groups are added to the reservation’s ACL, but you can submit jobs to the reservation because PBS does not
check for group membership.

While you will see that each reservation has its own queue, do not attempt to manipulate reservation queue attributes
directly. You operate on the reservation attributes, and PBS manages the queue’s attributes, making them mirror those of
the reservation. Set or modify reservation attributes using pbs_rsub and pbs_ralter.

8.3.8.1 Meaning of Reservation Access

Access to a reservation via the reservation’s ACLs is required for the following actions:

• Submitting a job into the reservation

• Moving a job into the reservation

A job owner can perform the following actions on their own jobs, regardless of ACLs:

• Delete their job

• Hold their job

• Move their job out of the reservation

For example, if an Operator qmoves User1’s job into a reservation to which User1 is denied access, User1 can still per-
form operations on the job such as deleting or holding the job, and User1 can qmove the job out of the reservation.

8.3.8.2 Reservation Access Attributes

Reservation access is controlled by the following reservation attributes:

• User access: Authorized_Users

• Default: the reservation creator only is allowed access

• This ACL is always enabled

• Group access: Authorized_Groups

• Default: no groups are allowed access

• This ACL is enabled only when you specify a list of groups

• Host access: Authorized_Hosts

• Default: all hosts are allowed access

• This ACL is enabled only when you specify a list of hosts
PBS Professional 2020.1.1 Administrator’s Guide AG-371

Chapter 8 Security
8.3.8.3 Setting and Changing Reservation Access

The reservation creator uses options to the pbs_rsub command to set reservation access attributes:

-U <authorized user list>

Comma-separated list of users who are and are not allowed to submit jobs to this reservation. Sets reservation’s
Authorized_Users attribute to auth user list.

This list becomes the acl_users attribute for the reservation’s queue.

More specific entries should be listed before more general, because the list is read left-to-right, and the first
match determines access. The reservation creator’s username is automatically added to this list, whether or not
the reservation creator specifies this list.

If both the Authorized_Users and Authorized_Groups reservation attributes are set, a user must belong to both
in order to be able to submit jobs to this reservation.

See the Authorized_Users reservation attribute in section 6.8, “Reservation Attributes”, on page 303.

Syntax:

[+|-]<username>[@<hostname>][,[+|-]<username>[@<hostname>]...]
Default: Job owner only

-G <authorized group list>

Comma-separated list of names of groups who can or cannot submit jobs to this reservation. Sets reservation’s
Authorized_Groups attribute to auth group list.

This list becomes the acl_groups list for the reservation’s queue.

More specific entries should be listed before more general, because the list is read left-to-right, and the first
match determines access.

If both the Authorized_Users and Authorized_Groups reservation attributes are set, a user must belong to both
in order to be able to submit jobs to this reservation.

Group names are interpreted in the context of the server host, not the context of the host from which the job is
submitted.

See the Authorized_Groups reservation attribute in section 6.8, “Reservation Attributes”, on page 303.

Syntax:

[+|-]<group name>[,[+|-]<group name> ...]
Default: No groups are authorized to submit jobs

-H <authorized host list>

Comma-separated list of hosts from which jobs can and cannot be submitted to this reservation. This list
becomes the acl_hosts list for the reservation’s queue. More specific entries should be listed before more gen-
eral, because the list is read left-to-right, and the first match determines access. If the reservation creator speci-
fies this list, the creator’s host is not automatically added to the list.

See the Authorized_Hosts reservation attribute in section 6.8, “Reservation Attributes”, on page 303.

Format: [+|-]<hostname>[,[+|-]<hostname> ...]

Default: All hosts are authorized to submit jobs

Use the pbs_ralter command to modify existing advance, job-specific, or standing reservations:
AG-372 PBS Professional 2020.1.1 Administrator’s Guide

Security Chapter 8
-U <authorized user list>

Comma-separated list of users who are and are not allowed to submit jobs to this reservation. Sets reservation’s
Authorized_Users attribute to auth user list.

This list becomes the acl_users attribute for the reservation’s queue.

More specific entries should be listed before more general, because the list is read left-to-right, and the first
match determines access. The reservation creator’s username is automatically added to this list, whether or not
the reservation creator specifies this list.

If both the Authorized_Users and Authorized_Groups reservation attributes are set, a user must belong to both
in order to be able to submit jobs to this reservation.

See the Authorized_Users reservation attribute in section 6.8, “Reservation Attributes”, on page 303.

Syntax:

[+|-]<username>[@<hostname>][,[+|-]<username>[@<hostname>]...]

-G <authorized group list>

Comma-separated list of names of groups who can or cannot submit jobs to this reservation. Sets reservation’s
Authorized_Groups attribute to auth group list.

This list becomes the acl_groups list for the reservation’s queue.

More specific entries should be listed before more general, because the list is read left-to-right, and the first
match determines access.

If both the Authorized_Users and Authorized_Groups reservation attributes are set, a user must belong to both
in order to be able to submit jobs to this reservation.

Group names are interpreted in the context of the server host, not the context of the host from which the job is
submitted.

See the Authorized_Groups reservation attribute in section 6.8, “Reservation Attributes”, on page 303.

Syntax:

[+|-]<group name>[,[+|-]<group name> ...]
Default: no default

8.3.8.3.i Examples of Setting and Changing Reservation Access

Example 8-19: To disallow access for User1 and allow access for all other users at your domain:

Set reservation’s Authorized_Users attribute using the -U option to pbs_rsub:

pbs_rsub ... -U "-User1@example.com, +*@example.com"

Example 8-20: To allow access for Group1 and Group2 only:

Set reservation’s Authorized_Groups attribute using the -G option to pbs_rsub:

pbs_rsub ... -G "+Group1, +Group2"

Note that any users in Group1 and Group2 to whom you wish to grant access must be explicitly granted access in the
Authorized_Users list.

Example 8-21: To allow access from Host1 and Host2 only:

Set reservation’s Authorized_Hosts attribute using the -H option to pbs_rsub:

pbs_rsub ... -H "+Host1.example.com, +Host2.example.com, -*.example.com"

Example 8-22: To allow User2 and User3 access to the the reservation:

Use pbs_ralter -U to add User2 and User3 to the the reservation’s Authorized_Users attribute:

pbs_ralter ... -U "+User2@example.com,+User3@example.com"

Example 8-23: To disallow Group3 access to the the reservation:
PBS Professional 2020.1.1 Administrator’s Guide AG-373

Chapter 8 Security
Use pbs_ralter -G to remove Group3 from the the reservation’s Authorized_Groups attribute:

pbs_ralter ... -G "-Group3@example.com"

8.3.8.4 Reservation Queues

While you will see that each reservation has its own queue, do not attempt to manipulate reservation queue attributes
directly. You operate on the reservation attributes, and PBS manages the queue’s attributes, making them mirror those of
the reservation. Set or modify reservation attributes using pbs_rsub and pbs_ralter.

You can move jobs into or out of reservation queues.

8.3.8.4.i Reservation Queue ACLs

If the group or host reservation ACL is specified by the reservation creator, the associated Boolean switch for the reserva-
tion queue ACL is set to True.

Authorized_Users is always set to the creator and copied to the queue’s acl_users attribute, and acl_user_enable is
always set to True.

If Authorized_Groups is specified by the creator, it is copied to the queue’s acl_groups attribute and acl_group_enable
is set to True. If the reservation creator does not specify a value for Authorized_Groups, nothing is copied to the
queue’s acl_groups, and acl_group_enable remains at its default value of False.

If Authorized_Hosts is specified by the creator, it is copied to the queue’s acl_hosts attribute and acl_host_enable is
set to True. If the reservation creator does not specify a value for Authorized_Hosts, nothing is copied to the queue’s
acl_hosts, and acl_host_enable remains at its default value of False.

The following table shows the relationships between reservation ACLs and reservation queue ACLs:

8.3.9 Scope of Access Control

Queue-level ACLs provide different security functionality from that provided by server-level ACLs. Access to PBS
commands is controlled by server-level ACLs. For example, access to the qstat and qselect operations are con-
trolled only at the server level. For unprivileged users, access to a specific queue is controlled through that queue’s
ACLs.

The users allowed access to a queue or reservation are a subset of the users allowed access to the server. Therefore, if
you wish to allow a user access to a queue, that user must also be allowed access to the server. The hosts from which a
user may run commands at a queue are a subset of the hosts from which a user may run commands at the server. See
“Server Attributes” on page 281 of the PBS Professional Reference Guide, “Queue Attributes” on page 311 of the PBS
Professional Reference Guide, and “Reservation Attributes” on page 303 of the PBS Professional Reference Guide.

8.3.10 Operations Controlled by ACLs

ACLs control some operations in PBS, but not others. Manager and Operator privileges override some ACL restrictions.

Table 8-5: Relationship Between Reservation ACLs and Reservation Queue ACLs

Entity Reservation ACL Reservation Queue ACL Reservation Queue ACL Switch

Users Authorized_Users acl_users acl_user_enable

Groups Authorized_Groups acl_groups acl_group_enable

Hosts Authorized_Hosts acl_hosts acl_host_enable
AG-374 PBS Professional 2020.1.1 Administrator’s Guide

Security Chapter 8
8.3.10.1 Server Operations Controlled by ACLs

8.3.10.1.i Server Host ACL

If it is enabled, the server host ACL is checked for and controls all server operations, and is honored regardless of privi-
lege. Any request coming from a disallowed host is denied.

8.3.10.1.ii Server User ACL

If it is enabled, the server’s user ACL is checked for and controls all server operations, but is overridden by Manager or
Operator privilege. This means that the server’s user ACL applies only to users, not to Managers or Operators. Even if
explicitly denied access in the server’s user ACL, a PBS Manager or Operator is allowed access to the server. Note that
queue access is controlled separately by queue ACLs; even if Managers or Operators are explicitly denied access in the
server’s user ACL, if a queue’s ACLs are not enabled, Managers and Operators have access to the queue. The same is
true for reservations.

8.3.10.2 Queue Operations Controlled by ACLs

If enabled, queue ACLs are applied only when an entity is attempting to enqueue a job. Enqueueing a job can happen in
any of three ways:

• Moving a job into the queue

• Submitting a job to the queue

• Routing a job into the queue

Queue ACLs are not applied for non-enqueueing operations, for example:

• Moving a job out of the queue

• Holding a job

• Deleting a job

• Signaling a job

• Getting job status

8.3.10.2.i Queue Host ACL

If a queue’s host ACL is enabled, it is checked when an entity attempts to enqueue a job. The host ACL is always hon-
ored, regardless of privilege.

8.3.10.2.ii Queue User and Group ACLs

If a queue’s user or group ACL is enabled, it is applied when an entity attempts to enqueue a job. Manager and Operator
privileges override queue user and group ACLs when an entity attempts to move a job into a queue. This means that a
PBS Manager or Operator who is explicitly denied access by the user or group ACL for queue Q1 can still use the qmove
command to move a job into Q1, as long as other ACLs allow the operation (the server’s user and host ACLs must both
allow this).

A queue user or group ACL is applied in the following way:

Table 8-6: How Queue User and Group ACLs Are Applied

Operation Applied to Users Applied to Managers/Operators

Moving a job into the queue Yes No

Submitting a job to the queue Yes Yes

Having a job routed into the queue Yes Yes
PBS Professional 2020.1.1 Administrator’s Guide AG-375

Chapter 8 Security
8.3.10.3 Reservation Operations Controlled by ACLs

Access to a reservation’s queue is controlled through its queue’s ACLs. A reservation’s queue behaves exactly the same
way as a regular queue.

8.3.10.4 Table of Operations Controlled by ACLs and Overrides

The following table lists which operations are and are not controlled by server and queue ACLs, and which controls are
overridden.

8.3.11 Avoiding Problems

8.3.11.1 Using Group Lists

When a user specifies a group list, each and every group in which that user might execute a job must have a group name
and an entry in the groups database, for example, /etc/group.

8.3.12 Flatuid and Access

The server’s flatuid attribute affects both when users can operate on jobs and whether users without accounts on the
server host can submit jobs.

8.3.12.1 How flatuid Controls When Users Can Operate On Jobs

This section describes how the server’s flatuid attribute affects the circumstances under which users can operate on jobs.

Table 8-7: Operations Controlled by ACLs, and ACL Overrides

Operation

Server ACLs Queue ACLs

Host User Host User Group

A
p

p
li
e
d

M
a
n

a
g

e
r

O
v
e
rr

id
e

O
p

e
ra

to
r

O
v
e
rr

id
e

A
p

p
li
e
d

M
a
n

a
g

e
r

O
v
e
rr

id
e

O
p

e
ra

to
r

O
v
e
rr

id
e

A
p

p
li
e
d

M
a
n

a
g

e
r

O
v
e
rr

id
e

O
p

e
ra

to
r

O
v
e
rr

id
e

A
p

p
li
e
d

M
a
n

a
g

e
r

O
v
e
rr

id
e

O
p

e
ra

to
r

O
v
e
rr

id
e

A
p

p
li
e
d

M
a
n

a
g

e
r

O
v
e
rr

id
e

O
p

e
ra

to
r

O
v
e
rr

id
e

Move job into queue Y N N Y Y Y Y N N Y Y Y Y Y Y
Move job out of queue Y N N Y Y Y N - - N - - N - -
Submit job to queue Y N N Y Y Y Y N N Y N N Y N N
Have job routed into queue Y N N Y Y Y Y N N Y N N Y N N
Delete job Y N N Y Y Y N - - N - - N - -
Hold job Y N N Y Y Y N - - N - - N - -
Release job Y N N Y Y Y N - - N - - N - -
Signal job Y N N Y Y Y N - - N - - N - -
Status job Y N N Y Y Y N - - N - - N - -
Status server Y N N Y Y Y N - - N - - N - -
Status queue Y N N Y Y Y N - - N - - N - -
AG-376 PBS Professional 2020.1.1 Administrator’s Guide

Security Chapter 8
This attribute specifies whether, for each user, the username at the submission host must be the same as the one at the
server host. The username at the server host must always be the same as the username at the execution host. When fla-

tuid is set to True, the server assumes that UserA@host1 is the same as UserA@host2. Therefore, if flatuid is True,
UserA@host2 can operate on UserA@host1’s job.

The value of flatuid also affects whether .rhosts and hosts.equiv are checked. If flatuid is True, .rhosts and
hosts.equiv are not queried, and for any users at host2, only UserA is treated as UserA@host1. If flatuid is False,
.rhosts and hosts.equiv are queried.

That is, when flatuid is True, even if UserB@host2 is in UserA@host1's .rhosts, UserB@host2 cannot operate on
UserA's job(s). If flatuid is False, and UserB@host2 is in UserA@host1's .rhosts, UserB@host2 is allowed to operate
on UserA's job(s).

Example:

UserA@host1 has a job

UserB@host2 is in UserA@host1’s .rhosts

a. flatuid = True: UserB@host2 cannot operate on UserA’s job

b. flatuid = False: UserB@host2 can operate on UserA’s job

The following table shows how access is affected by both the value of the server’s flatuid attribute and whether
UserB@host2 is in UserA@host1’s .rhosts:

8.3.12.2 How flatuid Affects Users Without Server Accounts

This section describes how the server’s flatuid attribute affects users who have no account on the server host.

8.3.12.2.i Linux and flatuid

• If flatuid is set to False, users who have no account at the server host cannot submit jobs to PBS.

• If flatuid is set to True, these users can submit jobs. However, the job will only run if it is sent to execution hosts
where the user does have an account. If the job is sent to execution hosts where the user does not have an account,
the job will not run, and the MoM will log an error message.

8.3.12.2.ii Windows and flatuid

Regardless of the value of flatuid , users who have no account at the server host cannot submit jobs to PBS. Users must
have an account at the server, and it must have the same password.

Table 8-8: Effect of flatuid Value on Access

flatuid = True flatuid = False

UserB@host2 in UserA@host1 s .rhosts Yes No Yes No

Is UserA@host1 treated as UserA@host2? Yes Yes No No

Is .rhosts queried? No No Yes Yes

Can UserB operate on UserA’s jobs? No No Yes No
PBS Professional 2020.1.1 Administrator’s Guide AG-377

Chapter 8 Security
8.4 Authentication for Daemons & Users

PBS uses a client-server model for authentication. Note that communication between MoM and comm or PBS server
and comm is initiated by MoM or PBS server, not comm. The following table shows the authentication method used for
each communication pair:

By default, PBS on Linux uses reserved ports for authentication of daemons and users. On Windows, PBS uses pwd.
You can use other methods such as MUNGE. We use MUNGE for mixed-mode operation.

Authentication is independent of encryption. For encryption, see section 8.5, “Encrypting PBS Communication”, on
page 381.

For server-to-scheduler communication, PBS always uses reserved ports for authentication; this is not configurable.

8.4.1 Specifying Allowed Authentication Methods

PBS can use more than one authentication method at the same time. You specify which authentication methods are to be
allowed by listing them in the PBS_SUPPORTED_AUTH_METHODS parameter in pbs.conf on all PBS hosts. If you
leave this field blank, it defaults to “resvport” (reserved ports). If you specify any value, for example “munge”, that is
the only allowed method. So if you want both reserved ports and MUNGE, use “munge,resvport” (without quotes). This
value is used only by the authenticating server, and is ignored by the client.

8.4.1.1 Supported Authentication Methods

You can use any of the following authentication methods/libraries:

MUNGE

resvport (reserved port)

pwd (password, used on Windows)

If you do not configure a method, PBS uses resvport.

8.4.2 Specifying Authentication Method Used by
Authentication Client

To specify the default method to be used by an authentication client at a given host, set the PBS_AUTH_METHOD
parameter in pbs.conf on that host to the desired library/method, for example, “munge”. This parameter is case-insensi-
tive.

Make sure that the authentication method you choose for the authentication client is listed in the
PBS_SUPPORTED_AUTH_METHODS parameter in pbs.conf on the server host. This parameter is also case-
insensitive.

Table 8-9: Authentication Method Selection

Sender Recipient Authentication Method Specified At...

PBS server Comm Server (in this case, PBS server)

MoM Comm Client (in this case, MoM)

Comm A Comm B Client (in this case, comm A)

PBS commands, e.g. qsub, qstat PBS server Client (in this case, the command)
AG-378 PBS Professional 2020.1.1 Administrator’s Guide

Security Chapter 8
The pbs.conf parameter is used only by the authentication client.

To override this value, set the authentication method in the PBS_AUTH_METHOD environment variable. Job submit-
ters can set this in their profiles.

Job submitters can use multiple authentication methods. For example, a job submitter in a mixed Linux-Windows com-
plex can submit a Linux job using MUNGE, then set their authentication method to “pwd” and submit a Windows job.

8.4.3 Authentication via Reserved Ports

PBS commands and daemons can call the pbs_iff command to authenticate a user or daemon. The pbs_iff com-
mand runs as a privileged user, binds to a reserved port, and sends a request from the client to the server.

8.4.4 Authentication via MUNGE

You can use the MUNGE authentication daemon to create and validate credentials within a PBS complex. Using
MUNGE, the hosts in the PBS complex form a security realm and share a cryptographic key. PBS processes can use
MUNGE to authenticate the UID and GID of other processes on hosts in a PBS complex. The client machines in the
complex can create and validate credentials without using root privilege, reserved ports, or methods requiring a specific
platform.

PBS Professional uses the MUNGE authentication service to authenticate the UID and GID of PBS processes, and to cre-
ate and validate credentials. Once MUNGE is integrated, communication for PBS commands and daemons is validated
via MUNGE. All PBS daemons are authenticated via MUNGE when they try to connect to pbs_comm.

The MUNGE key is in /etc/munge/munge.key.

8.4.4.1 Steps to Integrate MUNGE with PBS

1. Download and install a supported version of MUNGE on all machines in the PBS complex This includes server,
execution, and submission hosts. You can get MUNGE either via your Linux distribution package repositories or
from the MUNGE project directly; see https://dun.github.io/munge/.

2. Start MUNGE.

3. Integrate MUNGE with PBS Professional on the PBS server, client, and execution hosts, using either of the follow-
ing methods:

a. Edit the PBS configuration file (/etc/pbs.conf) and add this line:

PBS_AUTH_METHOD=MUNGE

The value specified in the PBS_AUTH_METHOD parameter is case-insensitive.

b. Export the PBS_AUTH_METHOD environment variable:

$ export PBS_AUTH_METHOD=MUNGE

4. Restart the PBS daemons.
PBS Professional 2020.1.1 Administrator’s Guide AG-379

https://dun.github.io/munge/

Chapter 8 Security
8.4.5 Configuring SSSD

We show an example of configuring SSSD on CentOS 7, using the following steps:

1. Install the required packages:

a. Install required packages for sssd:

yum install realmd oddjob oddjob-mkhomedir sssd adcli openldap-clients policycoreutils-python
samba-common samba-common-tools krb5-workstation

b. Check whether libpam is already installed on the system. If not, install libpam.

c. The pam library name might be libpam.so.<version>. In this case, you may have to create a soft link:

ln -s /usr/lib64/libpam.so.0.83.1 /usr/lib64/libpam.so

2. Find out whether we are in a domain:

realm list

3. Discover the Active Directory domain for your Windows hosts:

realm discover adhost.sample.com

sample.com

type: kerberos

realm-name: SAMPLE.COM

domain-name: SAMPLE.com

configured: no

server-software: active-directory

client-software: sssd

required-package: oddjob

required-package: oddjob-mkhomedir

required-package: sssd

required-package: adcli

required-package: samba-common-tools

4. Add the Linux host to Active Directory:

realm join --user=Administrator@sample.com adhost.sample.com

5. If no errors are encountered, users should be able to see the domain information:

realm list

type: kerberos

realm-name: SAMPLE.COM

domain-name: sample.com

configured: kerberos-member

server-software: active-directory

client-software: sssd

required-package: oddjob

required-package: oddjob-mkhomedir

required-package: sssd

required-package: adcli

required-package: samba-common-tools

login-formats: %U@sample.com

login-policy: allow-realm-logins
AG-380 PBS Professional 2020.1.1 Administrator’s Guide

Security Chapter 8
6. Verify that the Kerberos configuration file /etc/krb5.conf and sssd configuration file /etc/sssd/sssd.conf
have the correct domain name specified where required.

7. Set the appropriate permissions for sssd.conf:

chown root:root /etc/sssd/sssd.conf

chmod 0600 /etc/sssd/sssd.conf

restorecon /etc/sssd/sssd.conf

authconfig --enablesssd --enablesssdauth --enablemkhomedir --update

systemctl start sssd

8. In the file /etc/sssd/sssd.conf, set use_fully_qualified_names to False:

use_fully_qualified_names = False

9. Restart the sssd service:

systemctl restart sssd

8.5 Encrypting PBS Communication

PBS can encrypt communication sent via commands and between daemons, providing end-to-end encryption. To
encrypt your PBS communication, provide the encryption mechanism, and set the PBS_ENCRYPT_METHOD param-
eter in pbs.conf on all PBS hosts to the method that clients will use. For end-to-end encryption, set it on all PBS hosts.

You may want to use encryption especially for cloud hosts.

TLS encryption is required on Windows.

8.5.1 Supported Encryption Methods

PBS supports TLS for encryption.

8.5.2 Using Transport Layer Security (TLS) for Client-Server
Communication

You can use transport layer security (TLS) encryption for a PBS complex that has both Windows and Linux execution
hosts, or when you want an extra layer of security. TLS encryption will provide greater security for your client-server
connections when one PBS daemon sends a request to another daemon.

Encryption is independent of authentication. For authentication information, see section 8.4, “Authentication for Dae-
mons & Users”, on page 378.
PBS Professional 2020.1.1 Administrator’s Guide AG-381

Chapter 8 Security
8.5.2.1 Overview of Configuring PBS for TLS Encryption

We walk you through the steps to configure PBS for TLS encryption, and we provide example steps here. To summarize:

1. Get or create a CA certificate (the public certificate)

2. Get or create a self-signed TLS certificate

3. Copy the TLS certificate into the appropriate location

4. Generate a private key

5. Edit pbs.conf and set TLS as your encryption method

6. Restart PBS

For additional information, see https://www.openssl.org/docs/man1.1.1/man1/openssl-ca-html.

8.5.2.2 Example of Configuring PBS for TLS Encryption

The following steps show an example of configuring PBS for TLS encryption.

1. Log in as root or administrator.

Perform all of the following steps as root on Linux or Administrator on Windows.

2. Create a configuration file for a certificate using X509v3 extensions.
AG-382 PBS Professional 2020.1.1 Administrator’s Guide

https://www.openssl.org/docs/man1.1.1/man1/openssl-ca.html

Security Chapter 8
For this step, make sure you choose options and configuration parameters that meet your requirements. See the
OpenSSL documentation for help. In our example, the file is named “my.conf” and the current working directory is
/root/certs. Contents of my.conf:

[cacert]

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always,issuer

basicConstraints = critical, CA:TRUE

keyUsage = critical, digitalSignature, cRLSign, keyCertSign, keyEncipherment

extendedKeyUsage = clientAuth, serverAuth, emailProtection

nsCertType = server, client, email

nsComment = "CA Certificate Generated By OpenSSL for PBSPro"

[usrcert]

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always,issuer:always

basicConstraints = critical, CA:FALSE

keyUsage = critical, nonRepudiation, digitalSignature, keyEncipherment

extendedKeyUsage = clientAuth, serverAuth, emailProtection

nsCertType = server, client, email

nsComment = "User Certificate Generated By OpenSSL for PBSPro"

3. Generate your root certificate authority:

openssl genrsa -out rootca.key.pem 4096

openssl req -new -key rootca.key.pem -out rootca.csr.pem -subj "/O=PBSPro/OU=PBSPro/CN=RootCA/"

openssl x509 -req -signkey ./rootca.key.pem -extfile ./my.conf -extensions cacert -days 12775 -
in rootca.csr.pem -out rootca.cert.pem

4. Generate your intermediate certificate authority:

openssl genrsa -out intca.key.pem 4096

openssl req -new -key intca.key.pem -out intca.csr.pem -subj "/O=PBSPro/OU=PBSPro/CN=IntCA/"

openssl x509 -req -CAkey ./rootca.key.pem -CA ./rootca.cert.pem -CAcreateserial -CAserial ./
serials.txt -extfile ./my.conf -extensions cacert -days 9125 -in intca.csr.pem -out
intca.cert.pem

5. Generate your CA certificate:

cat rootca.cert.pem intca.cert.pem > ca.cert.pem

6. Generate certificates for PBS server and communication daemons:

openssl genrsa -out pbspro.key.pem 2048

openssl req -new -key pbspro.key.pem -out pbspro.csr.pem -subj "/O=PBSPro/OU=PBSPro/CN=PBSProS-
ervices/"

openssl x509 -req -CAkey ./intca.key.pem -CA ./intca.cert.pem -CAcreateserial -CAserial ./seri-
als.txt -extfile ./my.conf -extensions usrcert -days 1825 -in pbspro.csr.pem -out
pbspro.cert.pem

openssl verify -CAfile ca.cert.pem pbspro.cert.pem

7. Edit PBS configuration files:
PBS Professional 2020.1.1 Administrator’s Guide AG-383

Chapter 8 Security
On each PBS host (server, scheduler, MoM, comm, client), edit pbs.conf, and set the
PBS_ENCRYPT_METHOD parameter to “tls” (don’t include the quotes). The PBS_ENCRYPT_METHOD
parameter is case-insensitive.

8. Make it so we can use the value of PBS_HOME in pbs.conf:

source /etc/pbs.conf

9. Create certificate directory:

The PBS server and comms use a certificate key pair stored in a certificate directory.

On each host running a PBS server or comm, create PBS_HOME/certs:

mkdir ${PBS_HOME}/certs

10. Copy files into certificate directory:

a. Copy your pbspro.cert.pem file to ${PBS_HOME}/certs/cert.pem:

cp /root/certs/pbspro.cert.pem ${PBS_HOME}/certs/cert.pem

b. Copy your pbspro.key.pem file to ${PBS_HOME}/certs/key.pem:

cp /root/certs/pbspro.key.pem ${PBS_HOME}/certs/key.pem

11. Set permissions and ownership for certificate directory:

a. Make sure that permissions for the certificate directory and its contents are 0600:

chmod -R 0600 ${PBS_HOME}/certs

b. Make sure the owner is root on Linux or Administrator on Windows:

chown -R root: ${PBS_HOME}/certs

12. Install CA certificate file:

On each host running a PBS server or comm, install the file in /etc/pbs_ca.pem (Linux), or <PBS installation
directory>/pbs_ca.pem (Windows). For example, if PBS is installed on Windows in C:\Program Files
(x86)\PBS, you’d put the file there.

Copy your /root/certs/ca.cert.pem file to /etc/pbs_ca.pem:

cp /root/certs/ca.cert.pem /etc/pbs_ca.pem

13. Set permissions and ownership for CA certificate file:

a. Make sure the permissions for the file are 0644:

chmod -R 0644 /etc/pbs_ca.pem

b. Make sure the owner is root on Linux or Administrator on Windows:

chown -R root: /etc/pbs_ca.pem

14. Restart PBS daemons:

• On every Linux host in the complex:
<path to start/stop script>/pbs restart

or

systemctl start pbs

• On every Windows execution host in the complex:
net stop pbs_mom

net start pbs_mom
AG-384 PBS Professional 2020.1.1 Administrator’s Guide

Security Chapter 8
8.6 Restricting Execution Host Access

You can configure each PBS execution host so that the only users who have access to the machine are those who are run-
ning jobs on the machine. You can specify this by adding the $restrict_user parameter to the MoM configuration file
PBS_HOME/mom_priv/config. This parameter is a Boolean, which if set to True, prevents any user not running a
job from running any process on the machine for more than 10 seconds. The interval between when PBS applies restric-
tions depends upon MoM’s other activities, but can be no more than 10 seconds.

You can specify which users are exempt from this restriction by adding the $restrict_user_exceptions parameter to the
same file. See the description of the parameter in the next section.

You can allow system processes to run by specifying the maximum numeric user ID allowed access to the machine when
not running a job. You do this by adding the $restrict_user_maxsysid parameter to the MoM configuration file. PBS
automatically tries to allow system processes to run: if $restrict_user is enabled and $restrict_user_maxsysid is unset,
PBS looks in /etc/login.defs for SYSTEM_UID_MAX for the value to use. If there is no maximum ID set
there, it looks for SYSTEM_MIN_UID, and uses that value minus 1. Otherwise PBS uses the default value of 999. See
section 14.4.7, “Restricting User Access to Execution Hosts”, on page 546 and “$restrict_user <True | False>” on page
245 of the PBS Professional Reference Guide.

Access to pbs_mom is controlled through a list of hosts specified in the $clienthost parameter in the pbs_mom’s con-
figuration file. By default, only “localhost”, the name returned by gethostname(2), and the host named by
PBS_SERVER from /etc/pbs.conf are allowed. See “MoM Parameters” on page 239 of the PBS Professional Ref-
erence Guide for more information on the configuration file.

8.6.1 MoM Access Configuration Parameters

These are the configuration parameters in PBS_HOME/mom_priv/config that can be set to restrict and specify access
to each execution host. Each execution host has its own configuration file.

$clienthost

List of hosts which are allowed to connect to MoM as long as they are using a privileged port. For example, this
allows the hosts “fred” and “wilma” to connect to MoM:

$clienthost fred

$clienthost wilma

The following hostnames are added to $clienthost automatically: the server, the localhost, and if configured, the
secondary server. The server sends each MoM a list of the hosts in the nodes file, and these are added internally
to $clienthost. None of these hostnames need to be listed in the configuration file.

Two hostnames are always allowed to connect to pbs_mom, “localhost” and the name returned to MoM by
the system call gethostname(). These hostnames do not need to be added to the MoM configuration file.

The hosts listed as “clienthosts” make up a “sisterhood” of machines. Any one of the sisterhood will accept
connections from within the sisterhood. The sisterhood must all use the same port number.

$restrict_user <value>

Controls whether users not submitting jobs have access to this machine. When True, only those users running
jobs are allowed access.

Format: Boolean

Default: off

$restrict_user_exceptions <user_list>

List of users who are exempt from access restrictions applied by $restrict_user. Maximum number of names
in list is 10.

Format: Comma-separated list of usernames; space allowed after comma
PBS Professional 2020.1.1 Administrator’s Guide AG-385

Chapter 8 Security
$restrict_user_maxsysid <value>

Allows system processes to run when $restrict_user is enabled. Any user with a numeric user ID less than or
equal to value is exempt from restrictions applied by $restrict_user.

Format: Integer

Default: 999

8.6.2 Examples of Restricting Access

To restrict user access to those running jobs, add:

$restrict_user True

To specify the users who are allowed access whether or not they are running jobs, add:

$restrict_user_exceptions <user list>

For example:

$restrict_user_exceptions User1, User2

To allow system processes to run, specify the maximum numeric user ID by adding:

$restrict_user_maxsysid <user ID>

For example:

$restrict_user_maxsysid 999

8.7 Access to Schedulers

Access to pbs_sched is not limited other than it must be from a privileged port.

8.8 Changing the PBS Service Account Password

Normally, the password for the PBS service account on Windows should not be changed. But if it is necessary to change
it, perhaps due to a security breach, then do so using the following steps:

1. Change the PBS service account's password on one machine in a command prompt from an admin-type of account
by typing:

Domain environments:

net user <name of PBS service account> * /domain

Non-domain environment:

net user <name of PBS service account> *

2. Provide the Service Control Manager (SCM) with the new password given above. Do this either using the GUI-
based Services application which is one of the Administrative Tools, or by unregistering and re-registering the PBS
services with the password. See “pbs_account” on page 53 of the PBS Professional Reference Guide.

To unregister:

pbs_account --unreg "\Program Files (x86)\PBS\exec\sbin\pbs_mom.exe"

To re-register:

pbs_account --reg "\Program Files (x86)\PBS\exec\sbin\pbs_mom.exe"
AG-386 PBS Professional 2020.1.1 Administrator’s Guide

Security Chapter 8
When re-registering, you can give an additional -p password argument to the pbs_account command, to specify
the password on the command line.

8.9 Paths and Environment Variables

A significant effort has been made to ensure the various PBS components themselves cannot be a target of opportunity in
an attack on the system. The two major parts of this effort are the security of files used by PBS and the security of the
environment. Any file used by PBS, especially files that specify configuration or other programs to be run, must be
secure. The files must be owned by root and in general cannot be writable by anyone other than root.

A corrupted environment is another source of attack on a system. To prevent this type of attack, each component resets its
environment when it starts. If it does not already exist, the environment file is created during the install process. As
built by the install process, it will contain a very basic path and, if found in root’s environment, the following variables:

• TZ

• LANG

• LC_ALL

• LC_COLLATE

• LC_CTYPE

• LC_MONETARY

• LC_NUMERIC

• LC_TIME

The environment file may be edited to include the other variables required on your system.

The entries in the PBS_ENVIRONMENT file can take two possible forms:

variable_name=value

variable_name

In the latter case, the value for the variable is obtained before the environment is reset.

8.9.1 Path Caveats

Note that PATH must be included. This value of PATH will be passed on to batch jobs. To maintain security, it is impor-
tant that PATH be restricted to known, safe directories. Do NOT include “.” in PATH. Another variable which can be
dangerous and should not be set is IFS.

8.10 File and Directory Permissions

Each parent directory above PBS_HOME must be owned by root and writable by root only. All files and directories used
by PBS should be writable by root only. Permissions should allow read access for all files and directories except those
that are private to the daemons. The following should not be writable by any but root:

PBS_HOME/mom_priv

<sched_priv directory>

PBS_HOME/server_priv

The PBS_HOME directory must be readable and writable from server hosts by root (Administrator) on Linux.

On Windows, PBS_HOME must have Full Control permissions for the local "Administrators" group on the local host.
PBS Professional 2020.1.1 Administrator’s Guide AG-387

Chapter 8 Security
PBS checks permissions for certain files and directories. The following error message is printed for certain files and
directories (e.g. /etc/pbs.conf, /var/spool/PBS/mom_priv/config, etc.) if their permissions present a secu-
rity risk:

<command>: Not owner (1) in chk_file_sec, Security violation "<directory>" resolves to
"<directory>"

<command>: Unable to configure temporary directory.

8.11 Root-owned Jobs

The server will reject any job which would execute under the UID of zero unless the owner of the job, typically root, is
listed in the server attribute acl_roots.

In order to submit a job from a root account on the local host, be sure to set acl_roots. For instance, if user foo has root
privilege, you need to set:

Qmgr: set server acl_roots += foo

in order to submit jobs and not get a “bad UID for job execution” message.

Windows Administrators are not considered to have root access, so a Windows Administrator can run a job without being
listed in acl_roots.

8.11.1 Caveats for Root-owned Jobs

Allowing root jobs means that they can run on a configured host under the same account which could also be a privileged
account on that host.

8.12 Passwords

PBS has different password requirements dictated by the Linux and Windows operating systems. Jobs submitted on
Linux systems do not require passwords. Jobs on Windows MoM systems require passwords.

See the PBS Professional 2020.1.1 release notes for a list of supported architectures.

8.12.1 Windows User Passwords

Windows execution host systems require a password for PBS to run a process as the user, so users on these systems must
supply a password. Users cache their passwords via the pbs_login command. Job submitters run the pbs_login com-
mand once per submission host, initially and for each password change.
AG-388 PBS Professional 2020.1.1 Administrator’s Guide

Security Chapter 8
8.12.2 Changing the PBS Service Account Password

Normally, the PBS service account password should not be changed. But if it is necessary to change it perhaps due to a
security breach, then do so using the following steps:

1. Change the PBS service account's password on a machine in a command prompt from an admin-type of account by
typing:
net user <name of PBS service account> * /domain

2. Provide the Service Control Manager (SCM) with the new password specified above. This can be done via the GUI-
based Services application found as one of the Administrative Tools, or by unregistering and re-registering the PBS
MoM with the new password.

pbs_account --unreg "\Program Files (x86)\PBS\exec\sbin\pbs_mom.exe"

pbs_account --reg "\Program Files (x86)\PBS\exec\sbin\pbs_mom.exe"

The register form (last line above) can take an additional argument -p password so that you can specify the pass-
word on the command line directly.

3. Run the pbs_login command:

pbs_login -m <PBS service account password>

4. Restart MoM:

net stop pbs_mom

net start pbs_mom

8.12.2.1 Caveats for Changing Service Account Password

Using pbs_account --unreg and pbs_account--reg stops and restarts MoM, which can kill jobs.

8.13 Windows Firewall

Under Windows, the Windows Firewall may have been turned on by default. If so, it will block incoming network con-
nections to all services including PBS. Therefore after installing PBS Professional, to allow pbs_mom to accept incom-
ing connections:

Access Settings->Control Panel->Security Center->Windows Firewall, and verify that the Windows Firewall has
been set to “ON” to block incoming network connections.

From this panel, you can either turn Windows Firewall “off”, or click on the Exceptions tab and add the following to the
list:

[INSTALL PATH]\exec\sbin\pbs_mom.exe

8.14 Logging Security Events

Each PBS daemon logs security-related events, at event class 32 (0x0020) or at event class 128 (0x0080). For informa-
tion about daemon logfiles, see section 14.3, “Event Logging”, on page 536.
PBS Professional 2020.1.1 Administrator’s Guide AG-389

Chapter 8 Security
8.14.1 Events Logged at Event Class 32 (0x0020)

The following security-related events are logged at decimal event class 32 (0x0020):

• When an execution host has access restrictions in place via the $restrict_user configuration parameter, and MoM
detects that a user who is not exempt from access restriction is running a process on the execution host, MoM kills
that user's processes and writes a log message:
01/16/2006 22:50:16;0002;pbs_mom;Svr;restrict_user;

killed uid 1001 pid 13397(bash) with log event class PBSE_SYSTEM.

See section 8.6, “Restricting Execution Host Access”, on page 385.

• If for some reason the access permissions on the PBS file tree are changed from their default settings, a daemon may
detect this as a security violation, refuse to execute, and write an error message in the corresponding log file. The
following are examples of each daemon’s log entry:
Server@<host>: Permission denied (13) in chk_file_sec, Security violation "/var/spool/pbs/

server_priv/jobs/" resolves to "/var/spool/pbs"

pbs_mom: Permission denied (13) in chk_file_sec, Security violation "/var/spool/pbs/mom_priv/
jobs/" resolves to "/var/spool/pbs"

pbs_sched: Permission denied (13) in chk_file_sec, Security violation "/var/spool/pbs/sched_priv"
resolves to "/var/spool/pbs"

A Manager can run pbs_probe (on Linux) or pbs_mkdirs (on Windows) to check and optionally correct any direc-
tory permission or ownership problems.

• When a user without a password entry (an account) on the server attempts to submit a job, the server logs this event.
The following is an example log entry:
8/21/2009 15:28:30;0080;Server@capella;Req;req_reject;Reject reply code=15023, aux=0, type=1,

from User1@host1.example.com

• If a daemon detects that a file or directory in the PBS hierarchy is a symbolic link pointing to a non-secure location,
this is written to the daemon’s log. The resulting log message is the same as for a permission violation:
Server@<host>: Permission denied (13) in chk_file_sec, Security violation "/var/spool/pbs/

server_priv/jobs/" resolves to "/var/spool/pbs"

pbs_mom: Permission denied (13) in chk_file_sec, Security violation "/var/spool/pbs/mom_priv/
jobs/" resolves to "/var/spool/pbs"

pbs_sched: Permission denied (13) in chk_file_sec, Security violation "/var/spool/pbs/sched_priv"
resolves to "/var/spool/pbs"

• If an $action script is to be executed for a job belonging to a user who does not have an account on an execution
host, the execution host’s MoM logs this event. The following is an example log entry:
08/21/2009 16:06:49;0028;pbs_mom;Job;2.host1;No Password Entry for User User1

• When a job triggers an action script for which the environment cannot be set up, perhaps due to a system error, the
MoM attempting to run the action script logs the event. The log message contains the following:
:<job ID>:failed to setup dependent environment!

• When the scheduler attempts to run a job on an execution host where the job’s owner does not have an account, the
MoM on the execution host logs this event. The following is an example log entry:
08/21/2009 15:51:14;0028;pbs_mom;Job;1.host1;No Password Entry for User User1

• When the scheduler attempts to run a job on an execution host where the job’s owner does not have a home direc-
tory, and when the job’s sandbox attribute is not set to PRIVATE, the execution host’s MoM logs this event. The
log message contains the following:
Access from host not allowed, or unknown host: <numeric IP address>
AG-390 PBS Professional 2020.1.1 Administrator’s Guide

Security Chapter 8
See “pbs_mom” on page 71 of the PBS Professional Reference Guide.

• If an attempt is made to connect to a host in the PBS complex from an unknown host, the PBS daemon logs the
information at both levels 32 and 128 (0x0020 and 0080).

8.14.1.1 Events Logged at Event Class 128 (0x0080)

The following security-related event is logged at event class 128 (0x0080):

• If an attempt is made to connect to a host in the PBS complex from an unknown host, the PBS daemon logs the
information at both levels 32 and 128 (0x0020 and 0080).

• If a user or Operator tries to set an attribute that can be set by Managers only, or attempts to create or delete vnodes:

The qmgr command returns this error message:

qmgr obj=<object> svr=default: Unauthorized Request

qmgr: Error (15007) returned from server

The server logs the following message:

Req;req_reject;Reject reply code=15007, aux=0, type=9, from <username>

• When a user is denied access to the server because of the contents of the acl_users server attribute, the server logs
the following:
Req;req_reject;Reject reply code=15007, aux=0, type=21, from username@host.domain.com

8.14.1.2 Events Logged at Event Class 1

• When an attempt is made to contact MoM from a non-privileged port for a request requiring a privileged port, MoM
logs the following:
pbs_mom;Svr;pbs_mom;Unknown error: 0 (0) in rm_request, bad attempt to connect message refused

from port 61558 addr 127.0.0.1

8.14.1.3 Events Not Logged

The following events are not logged:

• When an attempt is made to connect to a host in the PBS complex from a disallowed host

• When an ACL check denies an entity access to a PBS object

• A user tries to query other users’ jobs when the server’s query_other_jobs attribute is set to False

• When an Operator or Manager overrides the server’s user ACL

8.15 Securing Containers

• Use the security enhancement named “pbs_container”; see section 16.4.4, “Configure Security Enhancement for
Docker”, on page 604.

• Make sure that when you are configuring the container hook, if you whitelist any container arguments in the
container_args_allowed hook configuration parameter, do not whitelist “--group-add”. This would allow job sub-
mitters to add themselves to any groups inside the container. Instead, set the enable_group_add_arg hook param-
eter to True so the hook automatically adds the job owner to groups in the container; these are the groups on the
execution host to which the job owner already belongs. See section 16.4.2, “Configure PBS Container Hook”, on
page 601.
PBS Professional 2020.1.1 Administrator’s Guide AG-391

Chapter 8 Security
AG-392 PBS Professional 2020.1.1 Administrator’s Guide

9

Making Your Site More Robust

This chapter describes how to configure PBS to make your site more robust.

9.1 Robustness

PBS provides the following mechanisms that support site robustness and flexibility:

Failover

The PBS complex can run a backup server. If the primary server fails, the secondary takes over without an
interruption in service.

Checkpoint and Restart

Allows jobs to be checkpointed and restarted. Uses OS-provided or third-party checkpoint/restart facility.

Reservation Fault Tolerance

PBS attempts to ensure that reservations run by finding usable vnodes when reservation vnodes become
unavailable.

Vnode Fault Tolerance for Job Start and Run

PBS lets you allocate extra vnodes at job startup or for the life of the job, to compensate for vnode failure and
allow the job to successfully start or run on the required number of vnodes.

Preventing Communication and Timing Problems

PBS allows setting parameters to prevent problems in communication, timing, and load on vnodes.

Preventing File System Problems

PBS gives you tools to prevent file system problems.

OOM Killer Protection

PBS is installed so that daemons are protected from an OOM killer.

9.2 Failover

9.2.1 Glossary

Primary Server

The PBS Professional server daemon which is running during normal operation.

Secondary Server

The PBS Professional server daemon which takes over when the primary server fails.

Primary Scheduler

The PBS Professional scheduler daemon which is running during normal operation.

Secondary Scheduler

The PBS Professional scheduler daemon which takes over when the primary scheduler is not available.
PBS Professional 2020.1.1 Administrator’s Guide AG-393

Chapter 9 Making Your Site More Robust
Active

A server daemon is active when it is managing user requests and communicating with the scheduler and MoMs.

Idle

A server daemon is idle when it is running, but only accepting handshake messages, not performing workload
management.

9.2.2 How Failover Works

During normal operation, the primary server is active and the secondary server is idle. If the primary server fails for any
reason, the secondary server becomes active and takes over server functions for the complex. No work is lost during the
transition between servers. PBS functions the same during failover as it does during normal operation. The PBS data
service is considered to be part of the PBS server; if it fails, this triggers failover.

9.2.2.1 Primary and Secondary Schedulers

Each server is paired with and uses its own scheduler. If the secondary server becomes active, it starts its own scheduler.

9.2.2.2 Primary and Secondary Data Services

Each server is paired with and uses its own data service. If the secondary server becomes active, it starts its own data ser-
vice.

9.2.2.3 Normal Post-configuration Behavior

After you have configured PBS for failover, and started both servers, the secondary server periodically attempts to con-
nect to the primary server until it succeeds and registers itself with the primary server. The secondary server must be reg-
istered in order to take over upon failure of the primary server.
AG-394 PBS Professional 2020.1.1 Administrator’s Guide

Making Your Site More Robust Chapter 9
9.2.2.4 Behavior During Failover

Figure 9-1:Behavior During Failover
PBS Professional 2020.1.1 Administrator’s Guide AG-395

Chapter 9 Making Your Site More Robust
When both server daemons are running, the primary server sends periodic handshake messages to the secondary. The
primary server also periodically updates the timestamp of the PBS_HOME/server_priv/svrlive file. If the sec-
ondary server stops receiving handshake messages from the primary server, the following happens:

• The secondary server waits for a specified delay period before taking over. This delay is specified using the
pbs_server -F option. The default period is 30 seconds.

• The secondary server reads the timestamp of the PBS_HOME/server_priv/svrlive file and stores it in
memory

• The secondary waits for the specified delay, then checks the time stamp again, and compares it to the timestamp
it stored in memory

• If the timestamp has changed, the secondary server remains idle

• If the timestamp has not changed, the secondary attempts to open a new TCP connection to the primary

• If the secondary server cannot open a TCP connection to the primary, the secondary becomes active

• The secondary server logs a message saying that failover has occurred.

• An email is sent to and from the account defined in the server’s mail_from attribute, saying that failover has
occurred.

• The secondary server starts the secondary scheduler on the secondary server host.

• The secondary server starts the secondary data service on the secondary server host.

• The secondary server notifies all of the MoMs that it is the active server.

• The secondary server begins responding to network connections and accepting requests from client commands such
as qstat and qsub.

9.2.2.5 Delay During Failover Transition

The default delay between when the primary becomes unavailable and the secondary takes over is about 5 minutes. You
can change this using pbs_server -F <seconds>. If you use pbs_server -F -1, the secondary makes only
one attempt to contact the primary, then takes over. We include these instructions in the configuration steps.

9.2.2.6 Behavior When Primary Resumes Control

When the primary server starts back up, it takes control from the secondary server, becoming the active server. The sec-
ondary server becomes idle and resumes listening for the regular handshake messages from the primary server.

The primary server may have been stopped for any of several reasons. The restart method will vary accordingly. If the
host was stopped, the PBS server is restarted automatically when the host is started. If the host is still up but the server
was stopped, restart the server. See “Starting Servers With Failover” on page 163 in the PBS Professional Installation &
Upgrade Guide.

The primary server uses only its own scheduler and data service. When the primary server resumes control, it starts a
scheduler and data service, and stops the secondary scheduler and data service. No data is lost in the transition.

When the primary has taken control, the secondary logs a message saying so:

received takeover message from primary, going inactive

9.2.2.7 Server Name and Job IDs During Failover

The server name and job IDs do not change when the secondary server is active. For example, the primary server is on a
host named PrimaryHost.example.com, and the secondary server is on a host named SecondaryHost.example.com.
When the primary server is active, the server name is PrimaryHost, jobs are given job IDs of the form NNNN.Primary-

Host, and the value of the server_host server attribute is PrimaryHost.example.com. When the secondary server is
active, the server name is still PrimaryHost, jobs are still given job IDs of the form NNNN.PrimaryHost, but the value
of server_host is SecondaryHost.example.com.
AG-396 PBS Professional 2020.1.1 Administrator’s Guide

Making Your Site More Robust Chapter 9
The table below summarizes the server name, value of server_host and the IDs given to jobs, when either the primary or
secondary server is active.

9.2.2.8 Information Used by Primary and Secondary Servers

The primary and secondary servers share a single source for attribute information, so anything set via the qmgr com-
mand need only be set once. PBS_HOME is in a shared location. License information is shared and needs to be set at
only one server.

Each server, execution and client host uses its own pbs.conf file, so these must be set for each host in the complex.

9.2.2.9 Impact on Users

Users may not notice when a failover occurs. When a user uses a PBS command such as qstat, the command tries to
connect to the primary server first. If that fails, the command tries the secondary server. There may be up to a two-
minute delay in server commands while failover is taking place.

If the secondary server responds to the command, the command creates a local file so that this process is not repeated for
every PBS command.

The file is named:

/tmp/.pbsrc.UID

where UID is the user ID.

When this file exists, commands try the secondary server first, eliminating the delay in attempting to connect to the down
server. If a command cannot connect to the secondary server, and can connect to the primary server, the command
removes the file.

The file is removed when the primary server takes over.

9.2.2.10 Determining Which Server Is Active

The server attribute server_host contains the name of the host on which the active server is running. Use the qstat
-Bf command to see the value of server_host.

9.2.2.11 Delay Between Primary Failure and Secondary Becoming

Active

The default delay time from detection of possible primary server failure until the secondary server takes over is 30 sec-
onds. A secondary server on a very reliable network can use a shorter delay. A secondary server on an unreliable net-
work may need to use a longer delay. The delay is specified via the -F option to the pbs_server command.

Table 9-1: Server Name, Job ID and Value of server_host Depending on Which Server
is Active

Active Server

Primary Secondary

Hostname PrimaryHost.example.com SecondaryHost.example.com

Server Name PrimaryHost PrimaryHost

Value of server_host PrimaryHost.example.com SecondaryHost.example.com

Job Name NNNN.PrimaryHost NNNN.PrimaryHost
PBS Professional 2020.1.1 Administrator’s Guide AG-397

Chapter 9 Making Your Site More Robust
9.2.2.12 Communication

If PBS is configured for failover, each server host runs a pbs_comm. Note that communication traffic is handled inde-
pendently of failover behavior. During normal operation, the comm on the primary server host handles communication
traffic, but if that comm becomes unavailable, the comm on the secondary automatically takes over the communication
traffic. You do not need to perform any configuration to get this behavior; the communication daemons are automatically
configured for you. See “Failover and Communication Daemons” on page 52 in the PBS Professional Installation &
Upgrade Guide.

9.2.2.12.i Communication with MoMs

• If a MoM will see different server addresses, add a $clienthost entry to MoM’s configuration file for each possible
server address.

• The secondary server is automatically added to the list of hosts allowed to connect to MoMs, in the $clienthost
MoM configuration parameter.

9.2.3 Windows Locations

PBS is installed on Windows systems in \Program Files (x86)\PBS\.

9.2.4 Prerequisites for Failover

9.2.4.1 Checklist of Prerequisites for Failover

The following table contains a checklist of the prerequisites for failover. Each entry has a link to more detailed informa-
tion about the entry.

Table 9-2: Prerequisites for Failover

Prerequisite Explanation

Identical server hosts See section 9.2.4.2, “Server Host Requirements”, on
page 399

MoMs on server hosts don’t share a mom_priv directory See section 9.2.4.3, “Requirements for MoMs on Server
Hosts”, on page 399

All hosts must be able to communicate over the network See section 9.2.4.4, “Ensuring Communication Between
Hosts”, on page 400

All hosts must be able resolve hostnames of other hosts in
complex

See section 9.2.4.5, “Hostname Resolution”, on page
400

Filesystem must be shared, on a separate host from either
server host, and provide features required for failover; no
root squash on shared filesystem

See section 9.2.4.6, “Shared Filesystem”, on page 400

Administrator must have access to filesystem from both
server hosts

See section 9.2.4.7, “Permission Requirements”, on page
401

Same version of PBS for all components See section 9.2.4.8, “Same PBS Versions Everywhere”,
on page 401

Primary server’s scheduler must be able to run when primary
server runs

See section 9.2.4.9, “Requirement for Scheduler”, on
page 401
AG-398 PBS Professional 2020.1.1 Administrator’s Guide

Making Your Site More Robust Chapter 9
9.2.4.2 Server Host Requirements

The primary and secondary servers must run on two separate host machines. Both host machines must have the same
architecture. They must be binary compatible, including word length, byte order, and padding within structures. There
must be exactly one primary and one secondary server.

On an HPE 8600, use two different service nodes to run the primary and secondary servers.

9.2.4.3 Requirements for MoMs on Server Hosts

You can run a MoM on both the primary and secondary server hosts, but this is not recommended.

If a MoM is to run on both server hosts, the two MoMs must not share the same PBS_HOME/mom_priv directory. In
addition, it is strongly recommended that the following be true:

• The mom_priv directory structure be replicated on a local, non-shared, filesystem. On Windows, MoM already has
a local directory on each server host. On Linux, you must create these.

Replicate the mom_priv and mom_logs directory structures on the primary server host if they don’t exist there
already. You must put these in the same location. Do the following on the primary server host:

scp -r <existing PBS_HOME/mom_priv> <local PBS_HOME/mom_priv>

scp -r <existing PBS_HOME/mom_logs> <local PBS_HOME/mom_logs>

Replicate the mom_priv and mom_logs directory structures on the secondary server host if they don’t exist there
already. You must put these in the same location. Do the following on the secondary server host:

scp -r <existing PBS_HOME/mom_priv> <local PBS_HOME/mom_priv>

scp -r <existing PBS_HOME/mom_logs> <local PBS_HOME/mom_logs>

• Each MoM use its own, local, mom_priv directory structure

The PBS_MOM_HOME entry in pbs.conf specifies the location that contains the mom_priv and mom_logs
directories. If PBS_MOM_HOME is specified in pbs.conf, pbs_mom uses that location instead of PBS_HOME.

To prevent the MoMs from automatically using the same directory, do one of the following:

• Recommended: Specify the separate, local PBS_MOM_HOME entry in each server host’s pbs.conf file
(each pbs_mom will use the location for mom_priv specified in its PBS_MOM_HOME). Give the location of
the local PBS_HOME/mom_priv that you replicated on each host. You can perform this step now, or later,
when editing pbs.conf on each server host, in section 9.2.5.3, “Host Configuration for Failover on Linux”, on
page 405, or section 9.2.5.4, “Host Configuration for Failover on Windows”, on page 409.

• Use the -d option when starting at least one pbs_mom to specify that they use the local, non-default locations
for mom_priv

Data service user account must be the same on both primary
and secondary server hosts

See section 9.2.4.10, “Same Data Service Account on
Both Server Hosts”, on page 401

Data service host must be default See section 9.2.4.11, “Data Service Host Configuration
Requirement”, on page 401

User names must be consistent across primary & secondary
servers hosts

See section 9.2.4.12, “Consistent User Names”, on page
401

The mail_from server attribute specifies an email address
that is monitored. Not required, but recommended.

See section 9.2.4.13, “Monitor Server Mail”, on page
402

Table 9-2: Prerequisites for Failover

Prerequisite Explanation
PBS Professional 2020.1.1 Administrator’s Guide AG-399

Chapter 9 Making Your Site More Robust
9.2.4.4 Ensuring Communication Between Hosts

Both the primary and secondary server hosts must be able to communicate over the network with each other and all exe-
cution hosts.

Beware of dependencies on remote file systems: The $PBS_CONF_FILE environment variable must point to
pbs.conf. PBS depends on the paths in pbs.conf being available when its start/stop script is executed. PBS will
hang if a remote file access hangs, and normal privileges don’t necessarily carry over for access to remote file systems.
For example, a FAT filesystem mounted via NFS won’t support permissions.

9.2.4.5 Hostname Resolution

Hostname resolution must work between each host in the PBS complex. Make sure that all hosts in the complex (the
primary and secondary server hosts, the file server host, and all execution and client hosts) are set up so that they can
resolve the names of all other hosts in the complex. If you are not sure whether hostname resolution is working, run
the pbs_hostn command at each host, testing the hostnames of the other hosts. The pbs_hostn command will
return the canonical hostname of the specified host.

9.2.4.6 Shared Filesystem

The filesystem you use for the machines managed by PBS should be highly reliable. We recommend, in this order, the
following filesystems:

• HA DAS

• DAS, such as xfs or gfs

• HA NFS

• NFS

PBS_HOME is the top directory used by the PBS server. The primary and secondary servers share the same PBS_HOME
directory. The PBS_HOME directory must conform to the following:

• The PBS_HOME directory must be available under the same name to both the primary and secondary server hosts.

• The PBS_HOME directory must be on a file system which meets the following requirements:

• It should reside on a different machine from either of the server hosts.

• It must be shared by the primary and secondary server hosts.

• It must be reliable. The file system must be always available to both the primary and secondary servers. A fail-
ure of the file system will stop PBS from working.

• The file system protocol must provide file locking support.

• The file locking daemons must be running.

• For Linux, the filesystem must support POSIX (Open Group) file semantics.

• It must support concurrent read and write access from two hosts.

• It must support multiple export/mounting.

• No root squash on the shared filesystem.

If your filesystem does not conform to the specifications above, follow the steps in the next sections.

9.2.4.6.i Using NFS Filesystems

When using NFS for PBS_EXEC, NFS must be configured to allow root access and to allow setuid-root programs
to execute from it.

If possible, mount NFS file systems synchronously (without caching) to avoid reliability problems.

NFS filesystems should be hard mounted.
AG-400 PBS Professional 2020.1.1 Administrator’s Guide

Making Your Site More Robust Chapter 9
9.2.4.6.ii Setting Up the Shared Filesystem

You can use NFS or another filesystem protocol to set up the shared filesystem on which PBS_HOME resides. Examples
are Lustre, IBM GPFS, and Red Hat GFS. Make sure your protocol supports:

• Multiple export/mounting

• Simultaneous read/write from two hosts

• File locking support

To set up your file system:

1. Choose a machine for the file server host. This machine must not be either of the server hosts.

2. Make sure the file system is mounted by both the primary and secondary server hosts. For NFS, make sure the file
system is hard mounted by both hosts.

3. Make sure the file system can provide file locking. For NFS, the lock daemon, lockd, must be running.

4. Make sure that PBS_HOME is available under the same name to both the primary and secondary server hosts.

9.2.4.7 Permission Requirements

The PBS_HOME directory must meet the security requirements of PBS. Each parent directory above PBS_HOME must be
owned by root and writable by root only.

The PBS_HOME directory must be readable and writable from both server hosts by the PBS Administrator.

9.2.4.8 Same PBS Versions Everywhere

Both server hosts, all the execution hosts, and all the client hosts must run the same version of PBS Professional.

9.2.4.9 Requirement for Scheduler

The primary scheduler must be able to run whenever the primary server is running, and the secondary scheduler must be
able to run when the secondary server is running. If a server becomes active but cannot use its own scheduler, PBS will
not be able to schedule jobs.

9.2.4.10 Same Data Service Account on Both Server Hosts

The PBS Data service management account must be the same on both server hosts. The UID of the PBS data service
management account must be identical on both the primary and secondary server hosts. We recommend that the PBS
data service management account is called pbsdata.

If you change either data service management account, both must be changed at the same time and both servers must be
restarted. The name of the Data service account must be the same as the data service management account.

9.2.4.11 Data Service Host Configuration Requirement

The DATA_SERVICE_HOST parameter must not be set in pbs.conf. If this parameter is set, failover cannot take
place.

9.2.4.12 Consistent User Names

User names must be consistent across the primary and secondary server hosts. If usernames are not consistent, jobs are
killed.
PBS Professional 2020.1.1 Administrator’s Guide AG-401

Chapter 9 Making Your Site More Robust
9.2.4.13 Monitor Server Mail

Use the qmgr command to set the mail_from server attribute to an address that is monitored regularly:

Qmgr: s server mail_from=<address>

See section 2.2.1, “Configuring Server Mail Address”, on page 19.

9.2.5 Configuring Failover

Figure 9-2:Failover Configuration

9.2.5.1 Overview of Configuring Failover

If PBS is not already installed, install it according to the PBS Professional Installation & Upgrade Guide.

Please make sure that you have satisfied all of the prerequisites under section 9.2.4, “Prerequisites for Failover”, on page
398.

Secondary Server

resource query

Primary Server

MoM

Job Task

MoM

Job Task

MoM

Filesystem

Shared

Job Task

TPP TPP

EXECUTION HOSTS

pbs_comm pbs_comm

TPPTPPTPPTPP TPP TPP TPP TPP

Job Task

MoM

Primary Data ServiceTPP

postgres postgres

TPP

Commands:
qmgr, qsub,

etc.

OS

OS

OS

OS OS

OS

OS

OS

TCP TCP

TCP TCP

FAILOVER SERVER SYSTEM

PRIMARY SERVER HOST SECONDARY SERVER HOSTFILESYSTEM
HOST

Secondary Data Service

MPI MPI MPI

Secondary SchedulerPrimary Scheduler

resource query
MoM dynamic MoM dynamic
AG-402 PBS Professional 2020.1.1 Administrator’s Guide

Making Your Site More Robust Chapter 9
Make a copy of your PBS configuration. Follow the instructions in “Back Everything Up to Transfer Location” on page
97 in the PBS Professional Installation & Upgrade Guide.

The following table contains a guide to the steps in configuring PBS for failover. The table contains a link to the descrip-
tion of each step.

9.2.5.2 Configuring the pbs.conf File for Failover

The $PBS_CONF_FILE environment variable contains the path to the pbs.conf file. Each host in the complex must
have a properly configured /etc/pbs.conf file. This file specifies the hostnames of the primary and secondary serv-
ers, the location of PBS_HOME and PBS_MOM_HOME, and whether to start a server, a scheduler, or a MoM on this host.

Table 9-3: Overview of Configuring Failover

Step Linux Windows

Configure /etc/pbs.conf
on each host in the complex

See section 9.2.5.2, “Configuring the
pbs.conf File for Failover”, on page 403

Configure the primary server See section 9.2.5.3.i, “Configuring
Failover For the Primary Server on
Linux”, on page 405

Configure the secondary server See section 9.2.5.3.ii, “Configuring
Failover For the Secondary Server on
Linux”, on page 407

Recommended: configure STO-
NITH script

See section 9.2.5.3.iii, “Configuring STO-
NITH Script for Use by Secondary
Server”, on page 407

Configure execution and client
hosts

See section 9.2.5.3.iv, “Configuring
Failover For Execution and Client Hosts
on Linux”, on page 408

See section 9.2.5.4.i, “Configuring
Failover for Execution and Client Hosts
on Windows”, on page 409

Configure failover with peer
scheduling

See section 9.2.6.2, “Configuring
Failover to Work With Peer Scheduling”,
on page 409

Configure failover with routing
queues

See section 9.2.6.1, “Configuring
Failover to Work with Routing Queues”,
on page 409

Configure failover with access
control

See section 9.2.6.3, “Configuring
Failover to Work With Access Controls”,
on page 410
PBS Professional 2020.1.1 Administrator’s Guide AG-403

Chapter 9 Making Your Site More Robust
The name used for the server in the PBS_SERVER variable in the pbs.conf file must not be longer than 255 charac-
ters. If the short name for the server resolves to the correct host, you can use this in pbs.conf as the value of
PBS_SERVER. However, if the fully-qualified domain name is required in order to resolve to the correct host, then the
this must be the value of the PBS_SERVER variable.

9.2.5.2.i Editing Configuration Files Under Windows

When you edit any PBS configuration file, make sure that you put a newline at the end of the file. The Notepad applica-
tion does not automatically add a newline at the end of a file; you must explicitly add the newline.

Table 9-4: Parameters in pbs.conf for Failover

Parameters Value Meaning

PBS_EXEC Path Location of PBS bin and sbin directories

PBS_HOME Path Location of PBS working directories in shared filesystem; use spe-
cific path on that host

PBS_MOM_HOME Path Location of mom_priv on each host; overrides PBS_HOME for
mom_priv

PBS_PRIMARY FQDN of hostname Hostname of primary server host.

If you set PBS_LEAF_NAME on the primary server host, make sure
that PBS_PRIMARY matches PBS_LEAF_NAME on the corre-
sponding host. If you do not set PBS_LEAF_NAME on the server
host, make sure that PBS_PRIMARY matches the hostname of the
server host.

PBS_SECONDARY FQDN of hostname Hostname of secondary server host.

If you set PBS_LEAF_NAME on the secondary server host, make
sure that PBS_SECONDARY matches PBS_LEAF_NAME on the
corresponding host. If you do not set PBS_LEAF_NAME on the
server host, make sure that PBS_SECONDARY matches the host-
name of the server host.

PBS_SERVER Hostname Name of primary server host. Cannot be longer than 255 characters.
If the short name of the server host resolves to the correct IP address,
you can use the short name for the value of the PBS_SERVER entry
in pbs.conf. If only the FQDN of the server host resolves to the
correct IP address, you must use the FQDN for the value of
PBS_SERVER.

PBS_START_COMM 0 or 1 Specifies whether a comm is to run on this host

PBS_START_MOM 0 or 1 Specifies whether a MoM is to run on this host

PBS_START_SCHED 0 or 1 Specifies whether scheduler is to run on this host

PBS_START_SERVER 0 or 1 Specifies whether server is to run on this host
AG-404 PBS Professional 2020.1.1 Administrator’s Guide

Making Your Site More Robust Chapter 9
9.2.5.3 Host Configuration for Failover on Linux

• Make sure that you have satisfied all of the prerequisites under section 9.2.4, “Prerequisites for Failover”, on page
398.

• PBS should already be installed in the default location on the primary and secondary server hosts and on the execu-
tion hosts. The client commands should already be installed on the client hosts.

• Make root a Manager on both server hosts:
qmgr -c "set server managers =root@<primary server host>"

qmgr -c "set server managers +=root@<secondary server host>"

• If the primary server and scheduler are running, shut them down. See “qterm” on page 233 of the PBS Professional
Reference Guide.

9.2.5.3.i Configuring Failover For the Primary Server on Linux

1. Make sure that you have satisfied all of the prerequisites under section 9.2.4, “Prerequisites for Failover”, on page
398.

2. Stop PBS on both the primary and secondary server hosts:

On the primary server host:

systemctl stop pbs

or

<path to init.d>/init.d/pbs stop

On the secondary server host:

systemctl stop pbs

or

<path to init.d>/init.d/pbs stop

3. On the primary server host, edit the /etc/pbs.conf file so that it DOES NOT include failover settings. It should
look like this:

PBS_SERVER=<short name for primary host>

PBS_HOME=<shared location of PBS_HOME>

PBS_START_SCHED=1

We recommend not running a MoM on any server host. The following setting in pbs.conf will prevent a MoM
from running:

PBS_START_MOM=0

If you will run a MoM on the server hosts, specify this:

PBS_START_MOM=1

If you will run a MoM on both server hosts, specify PBS_MOM_HOME on this host. The location you specify is the
directory that you replicated in section 9.2.4.3, “Requirements for MoMs on Server Hosts”, on page 399:

PBS_MOM_HOME=<location of local, replicated mom_priv>

4. On the primary server host, start the primary PBS server and scheduler daemons:

systemctl start pbs
PBS Professional 2020.1.1 Administrator’s Guide AG-405

Chapter 9 Making Your Site More Robust
or

<path to init.d>/init.d/pbs start

5. Stop the PBS server on the primary server host:

systemctl stop pbs

or

<path to init.d>/init.d/pbs stop

6. On the primary server host, edit the /etc/pbs.conf file to include the failover settings for PBS_PRIMARY and
PBS_SECONDARY. It should look like this:

PBS_PRIMARY=<primary_host>

PBS_SECONDARY=<secondary_host>

PBS_SERVER=<short name for primary host>

PBS_HOME=<shared location of PBS_HOME>

The primary scheduler will start automatically:

PBS_START_SCHED=1

We recommend not running a MoM on any server host. The following setting in pbs.conf will prevent a MoM
from running:

PBS_START_MOM=0

If you will run a MoM on the server hosts, specify this:

PBS_START_MOM=1

If you will run a MoM on both server hosts, specify PBS_MOM_HOME on this host. The location you specify is the
directory that you replicated in section 9.2.4.3, “Requirements for MoMs on Server Hosts”, on page 399:

PBS_MOM_HOME=<location of local, replicated mom_priv>

If you set PBS_LEAF_NAME on the primary server host, make sure that PBS_PRIMARY matches
PBS_LEAF_NAME on the corresponding host. If you do not set PBS_LEAF_NAME on the server host, make
sure that PBS_PRIMARY matches the hostname of the server host.

If you set PBS_LEAF_NAME on the secondary server host, make sure that PBS_SECONDARY matches
PBS_LEAF_NAME on the corresponding host. If you do not set PBS_LEAF_NAME on the server host, make
sure that PBS_SECONDARY matches the hostname of the server host.

7. Run a comm on the primary server host. Set the following in pbs.conf on the primary server host:

PBS_START_COMM = 1

8. On the primary server host, start the primary PBS server, scheduler, and comm daemons:

systemctl start pbs

or

<path to init.d>/init.d/pbs start
AG-406 PBS Professional 2020.1.1 Administrator’s Guide

Making Your Site More Robust Chapter 9
9.2.5.3.ii Configuring Failover For the Secondary Server on Linux

1. Make sure that you have satisfied all of the prerequisites under section 9.2.4, “Prerequisites for Failover”, on page
398.

2. On the secondary server host, edit the /etc/pbs.conf file to include the following settings:

PBS_PRIMARY=<primary_host>

PBS_SECONDARY=<secondary_host>

PBS_SERVER=<short name for primary host>

PBS_HOME=<shared location of PBS_HOME>

The secondary server will start its own scheduler if it needs to; a scheduler should not automatically start on the sec-
ondary server host. Include the following so that a scheduler does not automatically start on this host:

PBS_START_SCHED=0

We recommend not running a MoM on any server host. The following setting in pbs.conf will prevent a MoM
from running:

PBS_START_MOM=0

If you will run a MoM on the server hosts, specify this:

PBS_START_MOM=1

If you will run a MoM on both server hosts, specify PBS_MOM_HOME on this host. The location you specify is the
directory that you replicated in section 9.2.4.3, “Requirements for MoMs on Server Hosts”, on page 399:

PBS_MOM_HOME=<location of local, replicated mom_priv>

If you set PBS_LEAF_NAME on the primary server host, make sure that PBS_PRIMARY matches
PBS_LEAF_NAME on the corresponding host. If you do not set PBS_LEAF_NAME on the server host, make
sure that PBS_PRIMARY matches the hostname of the server host.

If you set PBS_LEAF_NAME on the secondary server host, make sure that PBS_SECONDARY matches
PBS_LEAF_NAME on the corresponding host. If you do not set PBS_LEAF_NAME on the server host, make
sure that PBS_SECONDARY matches the hostname of the server host.

3. On the secondary server host, to change the delay time between failure of the primary server and activation of the
secondary server from its default of 30 seconds, use the -F <delay> option on the secondary server's command line
in the PBS start script on the secondary server host. Edit the init.d/pbs script so that the server is invoked with
the -F <delay> option:

pbs_server -F <delay>

See “pbs_server” on page 108 of the PBS Professional Reference Guide.

4. Run a comm on the secondary server host. Set the following in pbs.conf on the secondary server host:

PBS_START_COMM = 1

5. On the secondary server host, start the secondary PBS server and comm daemons:

systemctl start pbs

or

<path to init.d>/init.d/pbs start

9.2.5.3.iii Configuring STONITH Script for Use by Secondary Server

We strongly recommend that before the secondary server becomes active, it prevents a race condition between the pri-
mary and secondary data services by calling a script which shuts down the primary server host. This script is called
STONITH, for "shoot the other node in the head". If the script returns failure, the secondary server waits for 10 seconds,
then calls the script again. The secondary server does not become active until the script returns success.
PBS Professional 2020.1.1 Administrator’s Guide AG-407

Chapter 9 Making Your Site More Robust
Requirements for STONITH:

• You must write the STONITH script, and put it in $PBS_HOME/server_priv/stonith.

• Permissions for the script should be 0755.

• The STONITH script takes one argument, which is the hostname of the primary server. This hostname is the same as
what is listed for PBS_PRIMARY in pbs.conf.

• The STONITH script returns zero for success, and non-zero for failure.

Note that you must supply the command used to power down the primary server host.

Example 9-1: Sample STONITH Script

#!/bin/bash

This script powers down the primary server host.

This script runs only on the secondary server host.

PBS_PRIMARY=$1

SECONDARY=`hostname`

POWERDOWN_CMD="<command to power down the primary server host>"

echo "INFO: Secondary starting Stonith script. Secondary server host is ${SECONDARY}."

echo "INFO: This Stonith script will power down the primary server host."

echo "INFO: Primary server host is ${PBS_PRIMARY}."

Power down the primary server host

You can also include a timeout, and check the value of the result.

Example: timeout_result=$({ timeout 10 ${POWERDOWN_CMD} ${PBS_PRIMARY} ; } 2>&1)

${POWERDOWN_CMD} ${PBS_PRIMARY}

if [$? -eq 0] ; then

 echo "INFO: Stonith script succeeded in powering down primary server host ${PBS_PRIMARY}."

 exit 0

else

 echo "ERROR: Stonith script failed to power down primary server host ${PBS_PRIMARY}."

 exit 1

fi

9.2.5.3.iv Configuring Failover For Execution and Client Hosts on Linux

1. Make sure that you have satisfied all of the prerequisites under section 9.2.4, “Prerequisites for Failover”, on page
398.

2. On each execution or client host, configure the /etc/pbs.conf file to include the following parameters:

PBS_PRIMARY=<primary_host>

PBS_SECONDARY=<secondary_host>

PBS_SERVER=<short name for primary host>

PBS_HOME=<location of PBS_HOME>

The pbs.conf files on execution hosts are already configured to start the MoM daemon only. Similarly, the
pbs.conf files on client hosts are already configured to start no daemons.

3. On each execution host, restart the MoM:

systemctl start pbs
AG-408 PBS Professional 2020.1.1 Administrator’s Guide

Making Your Site More Robust Chapter 9
or

<path to init.d>/init.d/pbs start

9.2.5.4 Host Configuration for Failover on Windows

9.2.5.4.i Configuring Failover for Execution and Client Hosts on Windows

1. Make sure that you have satisfied all of the prerequisites under section 9.2.4, “Prerequisites for Failover”, on page
398.

2. On each execution or client host, specify the location of PBS_HOME for the primary server:

pbs-config-add "PBS_HOME=\\<shared filesystem host>\pbs_home"

3. On each execution or client host, specify the primary and secondary server names in the pbs.conf file by running
the following commands:

pbs-config-add "PBS_SERVER=<short name of primary server host>"

pbs-config-add "PBS_PRIMARY=<FQDN of primary server host>"

pbs-config-add "PBS_SECONDARY=<FQDN of secondary server host>"

4. If this is an execution host, restart the MoM:

net start pbs_mom

9.2.6 Configuring Failover with Other PBS Features

9.2.6.1 Configuring Failover to Work with Routing Queues

You must configure failover to work with routing queues which have destinations in another complex. No additional
configuration is required for routing queues which have destinations in the same complex.

For a routing queue in one complex which points to a queue Q1 in another PBS complex that is set up for failover, it is a
good idea to specify both Q1@primary.example.com and Q1@secondary.example.com as destinations.

For example, if a routing queue has a destination queue at another complex’s primary server:

Qmgr: set queue r66 route_destinations=workq@primary.example.com

you need to add the same queue at the other complex’s secondary server:

Qmgr: set queue r66 route_destinations+=workq@secondary.example.com

See section 2.3.6, “Routing Queues”, on page 25.

9.2.6.2 Configuring Failover to Work With Peer Scheduling

For peer queueing where the furnishing complex is set up for failover:

• You must list the furnishing queue at both primary and secondary servers. If the furnishing queue is Q1, the
peer_queue line in the pulling complex’s sched_config file must list Q1@primary.example.com and
Q1@secondary.example.com

For peer queueing where the pulling complex is set up for failover:

• You must add <manager>@primary.example.com and <manager>@secondary.example.com to the list of
managers at the furnishing server.

See section 4.9.31, “Peer Scheduling”, on page 165.
PBS Professional 2020.1.1 Administrator’s Guide AG-409

Chapter 9 Making Your Site More Robust
9.2.6.3 Configuring Failover to Work With Access Controls

If you are using access control on the server (the acl_host_enable server attribute is set to True and the acl_hosts server
attribute is specified), add the secondary server to the host list in acl_hosts:

Qmgr: s server acl_hosts+=<secondary server host>

See section 8.3.4, “ACLs”, on page 363.

9.2.7 Using PBS with Failover Configured

9.2.7.1 Stopping Servers

To stop both servers when the primary server is active, and the secondary server is running and idle, do the following:

qterm -f

To stop the primary server and leave the secondary server idle:

qterm -i

To stop the secondary server only:

qterm -F

9.2.7.2 Starting Servers

After configuring the servers, you can start them in any order.

If you want to start the primary server when the secondary server is the active server, you do not need to stop the second-
ary. When the primary server starts, it informs the secondary that the secondary can become idle.

However, if there is a network outage while the primary starts and the secondary cannot contact it, the secondary will
assume the primary is still down, and remain active, resulting in two active servers. In this case, stop the secondary
server, and restart it when the network is working:

qterm -F

pbs_server

To restart the secondary server while it is the active server:

pbs_server -F -1

The secondary server makes one attempt to contact the primary server, and becomes active immediately if it cannot.

See “pbs_server” on page 108 of the PBS Professional Reference Guide and “qterm” on page 233 of the PBS Profes-
sional Reference Guide.
AG-410 PBS Professional 2020.1.1 Administrator’s Guide

Making Your Site More Robust Chapter 9
9.2.8 Recommendations and Caveats

• Do not start or stop the data service using anything except the pbs_dataservice command. Start or stop the
data service using only the pbs_dataservice command.

• If you do not wish for the secondary server to take over, use the -i option to the qterm command when stopping the
primary server.

• When the primary server is active, and the secondary server is running and idle, the pbs start/stop script stops
the active server, but leaves the idle server running. This means that the idle server becomes the active server.

• PBS_HOME should not be on either server host

• Neither PBS server should be the NFS fileserver

• Each scheduler and data service must be able to run when its server is started, otherwise no jobs will be scheduled;
each server can use only its own scheduler and data service.

• Just because servers are redundant, that doesn't mean that your complex is. Look for single points of failure.

• If the “take over” delay time specified with the pbs_server -F option is too long, there may be a period, up to
that amount of time, when clients cannot connect to either server.

• If the “take over” delay time specified with the pbs_server -F option is too short and there are transient net-
work failures, then the secondary server may attempt to take over while the primary server is still active.

• While the primary server is active and the secondary server is inactive, the secondary server will not respond to any
network connection attempts. Therefore, you cannot status the secondary server to determine whether it is running.

• If the secondary server is running, and the primary server cannot contact the secondary server when the primary
server is restarted, the primary assumes the secondary is not running and takes over. This can result in two servers
running at once.

9.2.9 Troubleshooting Failover

9.2.9.1 PBS Does Not Start

• If you see the following error:
“Failover is configured. Temporarily disable failover before running pbs_ds_password”

This means that PBS was started for the first time with failover configured. PBS cannot be started for the first time
with failover configured. Remove definitions for PBS_PRIMARY and PBS_SECONDARY from pbs.conf on
the primary server host, start PBS, stop PBS, replace the definitions, and start PBS again.

9.2.9.2 Primary and Secondary Servers Both Running

If both servers are running, this may be because the primary server was stopped and then restarted, and while the primary
was stopped, the secondary began to take over. While the secondary server was coming up, it was not able to receive the
message from the primary server indicating that it should go idle, or it couldn’t register with the primary.

To avoid this problem, use the -i option to the qterm command, which tells the secondary server to remain idle.

9.2.9.3 Primary or Secondary Server Fails to Start

It does not matter in which order the primary and secondary servers are started.

If the primary or secondary server fails to start with the error:

another server running
PBS Professional 2020.1.1 Administrator’s Guide AG-411

Chapter 9 Making Your Site More Robust
then check for the following conditions:

1. There may be lock files left in PBS_HOME/server_priv that need to be removed.

The primary and secondary servers use different lock files:

• primary: server.lock

• secondary: server.lock.secondary

2. On Linux, the RPC lockd daemon may not be running. You can manually start this daemon by running as root:

<path to daemon>/rpc.lockd

Check that all daemons required by your NFS are running.

9.2.9.4 Primary Server Periodically Restarting

If the primary server keeps restarting, an unknown secondary server may be contacting it. This can happen when
PBS_PRIMARY and PBS_SECONDARY are missing from pbs.conf, but a secondary server has been started.

9.2.9.5 Cannot Connect to Host

If you see an error message about not being able to connect to server, check the permissions of pbs_iff on the secondary
server. The setuid bit may be wrong (permissions should be -rsxr-xr-x), or it may be on a shared filesystem that disallows
setuid programs from running.

9.3 Checkpoint and Restart

PBS Professional allows you to configure MoM to checkpoint jobs using your scripts and checkpoint tools. In addition,
users may manage their own checkpointing from within their application.

9.3.1 Glossary

Application Checkpoint

The application performs its own checkpointing when it receives the appropriate signal etc.

Checkpoint and Abort, checkpoint_abort

The checkpoint script or tool writes a restart file, then PBS kills and requeues the job. The job uses the restart
file when it resumes execution.

Restart

A job that was stopped after being checkpointed while previously executing is executed again, starting from the
point where it was checkpointed.

Restart File

The job-specific file that is written by the checkpoint script or tool. This file contains any information needed to
restart the job from where it was when it was checkpointed.

Restart Script

The script that MoM runs to restart a job. This script is common to all jobs, and so must use the information in
a job’s restart file to restart the job.

Snapshot Checkpoint

The checkpoint script or tool writes a restart file, and the job continues to execute. The job resumes based on
this restart file if the system experiences a problem during the job’s subsequent execution.
AG-412 PBS Professional 2020.1.1 Administrator’s Guide

Making Your Site More Robust Chapter 9
9.3.2 How Checkpointing Works

When a job is checkpointed, MoM executes a checkpoint script. The checkpoint script saves all of the information nec-
essary to checkpoint the job. If the checkpoint is for a snapshot, the job continues to run. If the job is checkpointed and
aborted, PBS kills and requeues the job after checkpointing it.

When a job is restarted, MoM executes a restart script. The restart script uses the saved information to restore the job.
The restart script also reads the $PBS_NODEFILE. The manner of restarting the job depends on how it was check-
pointed:

• If the job was checkpointed during shutdown, the job becomes eligible to run when PBS is restarted, and will start
from where it was checkpointed.

• If the job was checkpointed by the scheduler because it was preempted, the scheduler briefly applies a hold, but
releases the hold immediately after checkpointing the job, and runs the restart script when the job is scheduled to
run.

• If the job was checkpointed and held via the qhold command, the hold must be released via the qrls command
for the job to be eligible to run. Then when the scheduler next runs the job, the restart script is executed, and the job
runs from where it was checkpointed.

You can configure PBS to requeue jobs that were snapshot checkpointed while they ran, if the epilogue exits with a spe-
cial value. These jobs are then restarted from the restart file. However, if you are running the cgroups hook, any epi-
logue script will not run. The cgroups hook has an execjob_epilogue event which takes precedence over an epilogue
script, so if you are running the cgroups hook, make your epilogue script into an execjob_epilogue hook instead.

You can provide checkpointing for jobs using any combination of scripts that you write and third-party checkpointing
tools such as Meiosys Checkpoint and BLCR (Berkeley Lab Checkpoint/Restart). You can configure PBS to trigger the
scripts or tools, so that the scripts and/or tools create a job’s restart file.

You can configure one behavior for snapshots, and another behavior for checkpoint and abort.

Some applications provide their own checkpointing, which is triggered, for example, when the application receives a sig-
nal or detects a change in a file.

9.3.2.1 Types of Checkpointing

9.3.2.1.i Checkpoint and Abort

Checkpoint and abort is used when a job is checkpointed before being killed. When the job is checkpointed, the follow-
ing takes place:

• MoM runs the checkpoint_abort script; the checkpoint script or tool writes a restart file specific to that job

• The checkpoint_abort script terminates the job

• PBS requeues the job

• If the job was held via the qhold command, PBS applies a hold to the job (puts it in the Held state)

The job resumes execution based on the information in the restart file.

Checkpoint and abort is applied when:

• The qhold command is used on a job

• The server is shut down via qterm -t immediate or qterm -t delay

• The scheduler preempts a job using the checkpoint method
PBS Professional 2020.1.1 Administrator’s Guide AG-413

Chapter 9 Making Your Site More Robust
9.3.2.1.ii Snapshot Checkpoint

Snapshot checkpointing is used for checkpointing a job at regular intervals. The job continues to run. When the job is
checkpointed, the following takes place:

• MoM runs the snapshot checkpoint script; the checkpoint script or tool writes a restart file specific to that job

• The job continues to execute

The job resumes execution based on this restart file if the system crashes or if the epilogue returns -2. See section
9.3.7.3, “Requeueing via Epilogue”, on page 423.

The interval can be specified by the user via qsub -c <checkpoint spec>. You can specify a default interval, in
the checkpoint_min queue attribute, or in the Checkpoint job attribute. See “qsub” on page 213 of the PBS Professional
Reference Guide and “Job Attributes” on page 328 of the PBS Professional Reference Guide.

9.3.2.1.iii Application Checkpoint

Application checkpointing is when an application checkpoints itself. PBS can be used to trigger application checkpoint-
ing, but does not manage the checkpoint files or process. Application checkpointing can be triggered when the applica-
tion receives a signal or detects a change in a file.

9.3.2.2 Events That Trigger Checkpointing

The following table lists the events that can trigger checkpointing, and the kind of checkpointing that is used.

9.3.2.3 Effect of Checkpointing on Jobs

When a job is checkpointed and aborted (requeued), its accumulated queue waiting time depends on how that time is cal-
culated:

• If you are using eligible time, the accumulated waiting time is preserved

• If you are not using eligible time, the accumulated waiting time is lost

The job exit code for being checkpointed and aborted is -12, named JOB_EXEC_CHKP.

Table 9-5: Events Triggering Checkpointing

Event
Type of

Checkpointing
Used

Description

The qhold command is used on a job checkpoint_abort See section 9.3.7.6, “Holding a Job”, on page
424

Server shut down via qterm -t immediate
or qterm -t delay

checkpoint_abort See section 9.3.7.2, “Checkpointing During
Shutdown”, on page 423

Scheduler preempts a job using the checkpoint
method

checkpoint_abort See section 9.3.7.5, “Preemption Using Check-
point”, on page 424

Periodic checkpointing of a job, as specified by
qsub -c <checkpoint spec>, or the
queue’s checkpoint_min attribute

Snapshot See section 9.3.7.1, “Periodic Job Checkpoint-
ing”, on page 423

Periodic checkpoint of an application, where
checkpoint script triggers application checkpoint

Snapshot and appli-
cation checkpoint

See section 9.3.7.7, “Periodic Application
Checkpoint”, on page 425

User sends application checkpoint signal, or user
creates checkpoint trigger file

Application check-
point

See section 9.3.7.8, “Manual Application
Checkpoint”, on page 425
AG-414 PBS Professional 2020.1.1 Administrator’s Guide

Making Your Site More Robust Chapter 9
When a job is restarted, it runs on the same machine as it did when it was checkpointed.

9.3.2.4 Effect of Checkpointing on Job Resources

When a job is checkpointed and aborted, all of its resources are freed.

A snapshot checkpoint does not affect a job’s resources.

9.3.2.5 Restarting a Job

When a job is restarted, MoM runs the restart script specified in the $action restart MoM parameter. This script looks in
the checkpoint directory (see section 9.3.6.5, “Specifying Checkpoint Path”, on page 422) for the restart file for that job.
It uses the information in that file to restart the job.

For a job that was checkpointed and aborted because it was held, the job has had a hold placed on it so that it will not be
eligible for execution until the hold is released. In order for a checkpointed and held job to be eligible for execution, the
hold must be removed using the qrls command. The job’s owner can remove a User hold, but other holds must be
removed by a Manager or Operator. See “qrls” on page 180 of the PBS Professional Reference Guide.

If the job was preempted via checkpointing, the scheduler releases the hold on the job immediately after checkpointing
the job. This will show up in the scheduler’s log file, but the job will not appear to be held because the hold duration is
very short.

A job that was checkpointed and requeued during shutdown is not held. This job is eligible for execution as soon as the
necessary daemons are back up. See section 9.3.7.4, “Checkpointed Jobs and Server Restart”, on page 424.

A job that was snapshot checkpointed and later requeued because the epilogue returned a special exit status is requeued
in the Q state, and is eligible to be restarted when the scheduler selects it for execution.

When a checkpointed and aborted job is restarted, MoM resumes tracking the job. She tracks either the original PID of
the job, or the PID of the restart script, depending on the setting of the $restart_transmogrify MoM parameter. See sec-
tion 9.3.4.3, “Setting $restart_transmogrify MoM Parameter”, on page 418.

9.3.3 Prerequisites for Checkpointing Jobs

The following are the prerequisites for checkpointing jobs:

• The MoM must be configured for checkpointing

• Specified checkpoint directories must correspond to available directories (see section 9.3.6.5, “Specifying
Checkpoint Path”, on page 422)

• Checkpoint and restart MoM configuration parameters must be specified (see section 9.3.4.2, “Specifying
Checkpoint and Restart Parameters”, on page 416)

• A checkpointing script or tool must be available for each type of checkpointing to be used
PBS Professional 2020.1.1 Administrator’s Guide AG-415

Chapter 9 Making Your Site More Robust
9.3.3.1 Restrictions on Checkpointing

• Checkpointing is not supported for job arrays.

• PBS does not directly support OS-level checkpointing.

• You can configure only one snapshot script, so if more than one kind of snapshot checkpointing is required, the
script must distinguish which kind of snapshot to perform.

• You can configure only one checkpoint_abort script, so if more than one kind of checkpoint_abort is required, the
script must also distinguish which kind of checkpoint_abort to perform.

• You can configure only one restart script. The restart script is run once for each of the job’s tasks, so if some restarts
are for application checkpointing, the script must handle those restarts correctly (application restarts may require
only one iteration.)

• A restarted job must run on the same machine where it was running when it was checkpointed.

• Checkpointing cannot be used for interactive jobs. See section 9.3.8.2, “Sockets and Checkpointing”, on page 425.

9.3.4 Configuring Checkpointing

9.3.4.1 Overview of Configuring Checkpointing

You configure checkpointing by editing the MoM configuration file, PBS_HOME/mom_priv/config. You edit MoM
configuration parameters to do the following:

• Specify script paths

• Specify path to checkpoint_abort script, if needed

• Specify path to snapshot script, if needed

• Specify path to restart script

• Set $restart_transmogrify MoM parameter to fit your restart script

• Make the checkpoint path match that specified in the restart script

9.3.4.1.i Editing Configuration Files Under Windows

When you edit any PBS configuration file, make sure that you put a newline at the end of the file. The Notepad applica-
tion does not automatically add a newline at the end of a file; you must explicitly add the newline.

9.3.4.2 Specifying Checkpoint and Restart Parameters

To configure checkpointing, you specify a path to a script that MoM executes when checkpointing is called for. You can
specify a separate path/script for each of checkpoint_abort, snapshot, and restart using the following MoM configuration
parameters:

$action checkpoint timeout !path/script script-args

Specifies snapshot behavior.

$action checkpoint_abort timeout !path/script script-args

Specifies checkpoint_abort behavior.

$action restart timeout !path/script script-args

Specifies restart behavior.

where

$action

Specifies that MoM perform the indicated action.
AG-416 PBS Professional 2020.1.1 Administrator’s Guide

Making Your Site More Robust Chapter 9
checkpoint

MoM executes the script specified in path/script once for each of the job’s tasks when a snapshot is called for.

checkpoint_abort

MoM executes the script specified in path/script once for each of the job’s tasks when a checkpoint_abort is
called for.

restart

MoM executes the script specified in path/script once for each of the job’s tasks when a restart is called for.

timeout

The number of seconds allowed for the script or tool to execute. The value of the $restart_transmogrify MoM
parameter determines whether this limit is applied. Values for $restart_transmogrify, and resulting behavior:

False
If the script/tool does not finish running during this time, it is killed and handled as if it had returned failure.

True
No timeout limit is applied.

path/script

The path to the script, including the name of the script. The path can be absolute or relative. If the path is rela-
tive, it is relative to PBS_HOME/mom_priv.

Examples of absolute paths and script names:

/usr/bin/checkpoint/snapshot

/usr/bin/checkpoint/checkpt-abort

/usr/bin/checkpoint/restart

script-args

These are the arguments to the script, if any.

PBS automatically expands some arguments to checkpoint and restart scripts. The following table lists the argu-
ments that are expanded by PBS:

9.3.4.2.i Examples of Checkpoint and Restart Parameters

The following are examples of snapshot, checkpoint_abort, and restart MoM parameters:

$action checkpoint 60 !/usr/bin/checkpoint/snapshot %jobid %sid %taskid %path

$action checkpoint_abort 60 !/usr/bin/checkpoint/checkpt-abort %jobid %sid %taskid %path

$action restart 30 !/usr/bin/checkpoint/restart %jobid %sid %taskid %path

Table 9-6: Checkpoint Script Arguments Expanded by PBS

Argument Description

%globid Global ID (no longer used)

%jobid Job ID

%sid Session ID

%taskid Task ID

%path File or directory name to contain restart files
PBS Professional 2020.1.1 Administrator’s Guide AG-417

Chapter 9 Making Your Site More Robust
9.3.4.3 Setting $restart_transmogrify MoM Parameter

The $restart_transmogrify MoM parameter controls how MoM runs the restart script, and whether she expects to
resume tracking the job’s original PID or a new PID. When she runs a restart script, MoM forks a child process, which
exec()s the start script. If $restart_transmogrify is True, the start script becomes the top task of the job. If
$restart_transmogrify is False, the start script does not become the top task of the job.

If your restart script preserves the job’s original PID, set $restart_transmogrify to False. This way, the script does not
become the top task of the job, and MoM continues to track the job’s original PID.

If your restart script results in a new PID for the job, set $restart_transmogrify to True. This way, the restart script
becomes the top task of the job, and MoM tracks the PID of the new top process, which is the script.

9.3.5 Parameters and Attributes Affecting Checkpointing

9.3.5.1 MoM Configuration Parameters Affecting Checkpointing

$action checkpoint <timeout> !<script-path> <args>

Checkpoints the job, allowing the job to continue running.

$action checkpoint_abort <timeout> !<script-path> <args>

Checkpoints, kills, and requeues the job.

$action restart <timeout> !<script-path> <args>

Restarts checkpointed job.

The <timeout> is the time allowed for checkpoint or restart script to run.

$checkpoint_path <path>

MoM passes this parameter to the checkpoint and restart scripts. This path can be absolute or relative to
PBS_HOME/mom_priv. Overrides default. Overridden by path specified in the pbs_mom -C option and by
PBS_CHECKPOINT_PATH environment variable.

$restart_background <True|False>

Specifies whether MoM runs the restart script in the background (MoM doesn’t wait) or foreground (MoM
waits). When set to True, MoM runs the restart script in the background.

Automatically set by MoM; Controlled by value of $restart_transmogrify. When $restart_transmogrify is
True, $restart_background is set to False. When $restart_transmogrify is False, $restart_background is set
to True.

Format: Boolean

Default: False

$restart_transmogrify <True|False>

Specifies which PID MoM tracks for a job that has been checkpointed and restarted.

When this parameter is set to True, MoM tracks the PID of the restart script. When this parameter is set to
False, MoM tracks the PID of the original job.

The value of $restart_transmogrify controls the value of $restart_background.

Format: Boolean

Default: False
AG-418 PBS Professional 2020.1.1 Administrator’s Guide

Making Your Site More Robust Chapter 9
9.3.5.2 Options to pbs_mom Affecting Checkpointing

-C checkpoint_directory

Specifies the path to the directory where MoM creates job-specific subdirectories used to hold each job’s restart
files. MoM passes this path to checkpoint and restart scripts. Overrides other checkpoint path specification
methods. Any directory specified with the -C option must be owned, readable, writable, and executable by root
only (rwx,---,---, or 0700), to protect the security of the restart files. See the -d option to pbs_mom.

Format: String

Default: PBS_HOME/checkpoint

9.3.5.3 Job Attribute Affecting Checkpointing

Checkpoint

Determines when the job will be checkpointed. Can take on one of the following values:

c
Checkpoint at intervals, measured in CPU time, set on the job’s execution queue. If there is no interval set
on the queue, the job is not checkpointed.

c=<minutes of CPU time>
Checkpoint at intervals of the specified number of minutes of job CPU time. This value must be greater
than zero. If the interval specified is less than that set on the job’s execution queue, the queue's interval is
used.

Format: Integer

w
Checkpoint at intervals, measured in walltime, set on the job’s execution queue. If there is no interval set at
the queue, the job is not checkpointed.

w=<minutes of walltime>
Checkpoint at intervals of the specified number of minutes of job walltime. This value must be greater than
zero. If the interval specified is less that that set on the execution queue in which the job resides, the queue's
interval is used.

Format: Integer

n
No checkpointing.

s
Checkpoint only when the server is shut down.

u
Unset. Defaults to behavior when interval argument is set to s.

Default: u.

Format: String

9.3.5.4 Queue Attribute Affecting Checkpointing

checkpoint_min

Specifies the minimum number of minutes of CPU time or walltime allowed between checkpoints of a job. If a
user specifies a time less than this value, this value is used instead. The value given in checkpoint_min is used
for both CPU minutes and walltime minutes. See the Checkpoint job attribute.

Format: Integer

Default: None

Python attribute value type: pbs.duration
PBS Professional 2020.1.1 Administrator’s Guide AG-419

Chapter 9 Making Your Site More Robust
9.3.5.5 Environment Variable Affecting Checkpointing

PBS_CHECKPOINT_PATH

MoM passes this path to the checkpoint and restart scripts. Overridden by -C option to pbs_mom; overrides
$checkpoint_path MoM parameter and default. See section 9.3.6.5, “Specifying Checkpoint Path”, on page
422.

PBS_NODEFILE

PBS uses the $PBS_NODEFILE to restart the job. Make sure it is available.

9.3.5.6 The Epilogue

PBS will requeue a job which was snapshot checkpointed, if the epilogue returns the value 2. See section 9.3.7.3,
“Requeueing via Epilogue”, on page 423.

If you are running the cgroups hook, any epilogue script will not run. The cgroups hook has an execjob_epilogue event
which takes precedence over an epilogue script, so if you are running the cgroups hook, make your epilogue script into
an execjob_epilogue hook instead.

9.3.6 Checkpoint and Restart Scripts

The restart script is run by the same MoM that ran the checkpoint script. The checkpoint and restart scripts are run for
each task of the job. When MoM executes a checkpoint or restart script, she forks a child process, which exec()s the
script. The restart script looks for the restart file in the job-specific subdirectory created by MoM, under the specified
path. See section 9.3.6.5, “Specifying Checkpoint Path”, on page 422.

9.3.6.1 Environment Variables for Scripts

PBS sets the following variables in the checkpoint and restart scripts’ environments before running the scripts:

Table 9-7: Checkpoint/Restart Script Environment Variables

Environment Variable Value of Variable

GID Job owner’s group ID

HOME Job owner’s PBS home directory

LOGNAME Job owner’s login name

PBS_JOBCOOKIE 128-bit random number used as token to authenticate job processes

PBS_JOBID The job’s ID

PBS_JOBNAME The job’s name

PBS_MOMPORT Port number on which MoM listens for resource manager requests

PBS_NODEFILE Path and filename of this job’s node file

PBS_NODENUM Index into the node file; index of this vnode; starts at 0

PBS_QUEUE Name of the job’s execution queue

PBS_SID Session ID of task for which script is being called

PBS_TASKNUM Index into task table for this job; index of task for which script is being called

SHELL Job owner’s login shell
AG-420 PBS Professional 2020.1.1 Administrator’s Guide

Making Your Site More Robust Chapter 9
9.3.6.2 The Checkpoint Script

The checkpoint script writes a restart file that is specific to the job being checkpointed. The checkpoint script must save
all of the information needed to restart the job. This is the information that will be used by the restart script to restart the
job. PBS runs the script for each running job task, on each vnode where a task is running.

9.3.6.2.i Requirements for Checkpoint Script

• The first line of the script must specify the shell to be used, for example:
#!/bin/sh

• The script should return the following error codes:

• Zero for success

• Non-zero for failure

• The script should block until the checkpoint process is finished.

• The restart file and its directory should be owned by root, and writable by root only, with permission 0755.

• Under Linux, the checkpoint script should be owned by root, and writable by root only, with permission 0755.

• Under Windows, the checkpoint script must have at least Full Control permission for the local Administrators group.

• The checkpoint script must write the restart file(s) in the location expected by the restart script. You don’t have to
use the %path parameter passed by MoM.

• If the script is for checkpoint-abort, the script must ensure that all processes are killed, whether directly or indirectly,
for example by touching a file. All job processes must exit.

9.3.6.3 The Restart Script

The restart script does only one of the following:

• Reinstates the job’s original PID, so that MoM tracks the original PID

• Becomes the new top process of the job, so that MoM tracks the PID of the script

If $restart_transmogrify is set to True, the restart script becomes the new top task for the job, and MoM begins tracking
its process ID, where she was tracking the job’s original process ID. If $restart_transmogrify is set to False, MoM con-
tinues to track the original job PID.

The restart script can use pbs_attach() to attach job processes to the original job PID, or to the script’s PID. See
“pbs_attach” on page 55 of the PBS Professional Reference Guide.

9.3.6.3.i Caveats for Restart Script

The pbs_attach() command is not supported under Windows.

9.3.6.3.ii Requirements for Restart Script

The restart script must handle everything required to restart the job from the information saved by the checkpoint script.

UID Job owner’s execution ID

USER Job owner’s username

USERPROFILE (Windows only) Job owner’s Windows home directory

USERNAME (Windows only) Job owner’s Windows username

Table 9-7: Checkpoint/Restart Script Environment Variables

Environment Variable Value of Variable
PBS Professional 2020.1.1 Administrator’s Guide AG-421

Chapter 9 Making Your Site More Robust
The restart script must block until the restart process is finished.

Under Linux, the restart script should be owned by root, and writable by root only, with permission 0755.

Under Windows, the restart script must have at least Full Control permission for the local Administrators group.

9.3.6.3.iii Return Values for Restart Script

The restart script must inform PBS of success or failure. It must return one of the following:

• Zero for success

• Non-zero for failure

9.3.6.4 Scripts for Application Checkpointing

If a user’s application can be checkpointed periodically according to walltime or CPU time, you can use the PBS snap-
shot checkpoint facility to trigger snapshot checkpointing by the application.

If a user’s application can be checkpointed, you can use the PBS checkpoint_abort facility before shutting down PBS to
avoid losing intermediate results.

Some applications produce a restart file when they are sent a specific signal, or when a specific file is affected. A check-
point script for this purpose sends the application the correct signal, or makes the correct change to the file.

Some applications only need the checkpoint and restart scripts to be run once each. In this case, the checkpoint and
restart scripts should handle this requirement.

9.3.6.5 Specifying Checkpoint Path

When a job is checkpointed, information about the job is saved into a file. The location for this file can be any directory
accessible to MoM.

The path to the checkpoint directory is composed of two parts. The first part is common to all jobs; this part can speci-
fied. The second part is a job-specific subdirectory, created by MoM for each job, under the common directory. The
job’s restart file is written in this job-specific subdirectory.

The default common directory, PBS_HOME/checkpoint, is provided for convenience.

You can specify the filename and the path for the common directory using any of the following methods. If the first is
specified, PBS uses it. If not, and the second is specified, PBS uses the second, and so on.

• The -C path option to the pbs_mom command

• The PBS_CHECKPOINT_PATH environment variable

• The $checkpoint_path MoM configuration option in PBS_HOME/mom_priv/config

• The default value of PBS_HOME/checkpoint

The job-specific subdirectory is named with the following format:

<job ID>.CK

For example, if you specify /usr/bin/checkpoint for the common directory, and the job’s ID is 1234.host1, the
job’s restart file is written under /usr/bin/checkpoint/1234.host1.CK.

The restart file and its directory should be owned by root, and writable by root only.

9.3.6.5.i Checkpoint Path Caveats

If the checkpoint file is in PBS_HOME/checkpoint/<job ID>.CK/, and MoM thinks that a checkpoint failed (the
checkpoint script returned non-zero), she will remove the checkpoint file. If the checkpoint script puts the checkpoint
file in another location, MoM does not remove the checkpoint file.
AG-422 PBS Professional 2020.1.1 Administrator’s Guide

Making Your Site More Robust Chapter 9
9.3.7 Using Checkpointing

9.3.7.1 Periodic Job Checkpointing

If a job’s Checkpoint attribute is set to c, c=<minutes>, w, or w=<minutes>, the job is periodically checkpointed. The
checkpoint interval is specified either in the job’s Checkpoint attribute or in the queue’s checkpoint_min attribute. See
“Job Attributes” on page 328 of the PBS Professional Reference Guide. The job’s Checkpoint attribute is set using the -c

<interval> option to the qsub command. See “qsub” on page 213 of the PBS Professional Reference Guide.

When this attribute is set, at every <interval> the job is checkpointed and a restart file is written, but the job keeps run-
ning.

9.3.7.2 Checkpointing During Shutdown

The effect on jobs of shutting down PBS depends on the method used to shut PBS down. When a job is checkpointed
during shutdown, MoM runs the checkpoint_abort script, and PBS kills and requeues the job. PBS does not hold the job,
so the job is eligible to be run again as soon as the server starts up.

If you use the qterm command, there are three different suboptions to the -t option to control whether jobs are check-
pointed, requeued, or allowed to continue running.

If you use the PBS start/stop script, the script affects only the host where the script is run. Any jobs running completely
or partly on that host are killed and requeued, but not checkpointed. Any jobs not running on that host are left running.

The effect of each shutdown method is described here:

Any running subjobs of a job array keep running when the server is shut down.

9.3.7.3 Requeueing via Epilogue

You can configure MoM to requeue a failed job that was snapshot checkpointed during its execution. For example, if a
job terminates, but had a hardware failure during execution, PBS can requeue the job, and MoM will run the start script,
which can restart the job from its restart file.

When the job is requeued via the epilogue mechanism, it is in the Q state.

Table 9-8: Effect of Shutdown on Jobs

Shutdown Method Effect on Checkpointable Jobs
Effect on Non-checkpointable

Jobs

qterm -t quick Continue to run Continue to run

qterm -t delay Checkpointed, killed, requeued, held Requeued if rerunnable; continue to run if
not rerunnable

qterm -t immediate Checkpointed, killed, requeued, held Requeued if rerunnable; deleted if not rerun-
nable

systemctl stop pbs

or

init.d/pbs stop

Any jobs running completely or partly on
host where stop script is run are killed and
requeued

Jobs not running on host where stop script is
run are left running

Any jobs running completely or partly on
host where stop script is run are killed and
requeued

Jobs not running on host where stop script is
run are left running
PBS Professional 2020.1.1 Administrator’s Guide AG-423

Chapter 9 Making Your Site More Robust
If you are running the cgroups hook, any epilogue script will not run. The cgroups hook has an execjob_epilogue event
which takes precedence over an epilogue script, so if you are running the cgroups hook, make your epilogue script into
an execjob_epilogue hook instead.

9.3.7.3.i Requirements for Requeueing via Epilogue

The following requirements must be met in order for a job to be requeued via the epilogue mechanism:

• The epilogue must return a value of 2

• The job must have been checkpointed under the control of PBS

• The MoM must be configured with a restart script in the $action restart MoM configuration parameter

• The MoM must be configured to snapshot checkpoint jobs in the $action checkpoint MoM configuration parameter

• The jobs must request checkpointing via their Checkpoint attribute. See section 9.3.7.1, “Periodic Job Checkpoint-
ing”, on page 423

• The epilogue script in PBS_HOME/mom_priv/epilogue must return the following:

• Zero (0) for successful termination (requeue is not required)

• Two (2) for failure (requeue is required)

9.3.7.4 Checkpointed Jobs and Server Restart

When the server is restarted using the pbs_server -t warm command, systemd, or the init.d/pbs start
script, jobs that were checkpointed and aborted upon shutdown are waiting in their queues, and are eligible to be run
according to the scheduler’s algorithm.

When the server is restarted using the pbs_server -t hot command, jobs that were checkpointed and aborted upon
shutdown are immediately rerun, before the scheduler selects which jobs to run.

9.3.7.5 Preemption Using Checkpoint

When a job is preempted via checkpointing, MoM runs the checkpoint_abort script, and PBS kills and requeues the job.
When the scheduler elects to run the job again, the scheduler runs the restart script to restart the job from where it was
checkpointed. For a description of using preemption, see section 4.9.33, “Using Preemption”, on page 180.

9.3.7.6 Holding a Job

When anyone uses the qhold command to hold a checkpointable job, MoM runs the checkpoint_abort script, which
kills all job processes, and PBS requeues, and holds the job.

A job with a hold on it must have the hold released via the qrls command in order to be eligible to run.

The following is the sequence of events when a job is held:

• MoM runs the checkpoint_abort script

• The job’s execution is halted

• The resources assigned to the job are released

• The job is placed in the Held state in the execution queue

• The job’s Hold_Types attribute is set appropriately
AG-424 PBS Professional 2020.1.1 Administrator’s Guide

Making Your Site More Robust Chapter 9
A held job is waiting in its queue. The following is the sequence of events when a held job is restarted:

• The hold is released by means of the qrls command; the job is now in the Queued state

• The job continues to wait in its queue until the scheduler schedules it for execution

• The scheduler selects the job for execution

• The job is sent to its original MoM for execution

• The MoM runs the restart script

9.3.7.6.i Restrictions on Holding a Job

A job in the process of provisioning cannot be held.

The qhold command can be used on jobs and job arrays, but not on subjobs or ranges of subjobs.

If the job cannot be checkpointed and aborted, qhold simply sets the job's Hold_Types attribute. The job continues to
execute.

The checkpoint-abort script must terminate all job processes, or the qhold command will appear to hang.

9.3.7.7 Periodic Application Checkpoint

The snapshot checkpoint script can trigger checkpoint by a job’s application, if the application is written to support
checkpointing itself. Note that an application may be designed to be checkpointed at specific stages in its execution,
rather than at specific points in time. If an application can be usefully checkpointed at specific points in time, then snap-
shot checkpointing may be useful. See section 9.3.7.1, “Periodic Job Checkpointing”, on page 423.

9.3.7.8 Manual Application Checkpoint

When an application is checkpointed manually, the user triggers checkpointing by the application by sending the applica-
tion a specific signal, or by creating a file.

9.3.8 Advice and Caveats

9.3.8.1 PBS_NODEFILE Required

Make sure that the $PBS_NODEFILE is available during restart.

9.3.8.2 Sockets and Checkpointing

Multi-vnode jobs may cause network sockets to be opened between submission and execution hosts, and open sockets
may cause a checkpointing script or tool to fail. The following use sockets:

• An interactive job, i.e. a job submitted using qsub -I, opens unprivileged sockets. qsub binds a socket to a port,
then waits to accept a connection from MoM on that socket. Data from standard in is written to the socket and data
from the socket is written to standard out.

• The pbs_demux process collects stdio streams from all tasks

• The pbsdsh program spawns tasks. The -o option to this command prevents it from waiting for spawned tasks to
finish, so that no socket is left open to the MoM to receive task manager events. When the -o option is used, the
shell must use some other method to wait for the tasks to finish. See “pbsdsh” on page 29 of the PBS Professional
Reference Guide.
PBS Professional 2020.1.1 Administrator’s Guide AG-425

Chapter 9 Making Your Site More Robust
9.3.9 Accounting

If a job is checkpointed and requeued, the exit status passed to the epilogue and recorded in the accounting record is the
following:

-12, meaning that the job was checkpointed and aborted

A checkpoint (“C”) record is written in the accounting log when the job is checkpointed and requeued, as when the
qhold command is used, or the job is checkpointed and aborted.

9.4 Reservation Fault Tolerance

If the vnodes associated with an advance reservation, the soonest occurrence of a standing reservation, or a job-specific
reservation become unavailable, PBS marks the reservation as degraded. If the vnodes are instead taken over by a main-
tenance reservation, PBS marks the reservation as in conflict.

PBS attempts to reconfirm degraded or in-conflict reservations by finding replacements for vnodes that have become
unavailable.

When a reservation is degraded, PBS may still be able to use the unavailable original vnodes, if they become available in
time. When a reservation is in conflict, the vnodes that were taken over by the maintenance reservation are removed
from the reservation; they are no longer in the reservation’s resv_nodes attribute, and PBS looks for other vnodes.

States of available vnodes:

free

busy

job-exclusive

job-sharing

job-busy

States of unavailable vnodes:

down

maintenance

offline

provisioning

stale

state-unknown, down

unresolvable

wait-provisioning

9.4.1 States for Degraded and In-conflict Reservations

A degraded reservation’s state becomes RESV_DEGRADED, abbreviated DG, and its substate becomes
RESV_DEGRADED.

If vnodes associated with an occurrence later than the soonest occurrence of a standing reservation become unavailable,
the reservation stays in state RESV_CONFIRMED, but its substate becomes RESV_DEGRADED.

During the time that a degraded advance or job-specific reservation, or the soonest occurrence of a degraded standing
reservation is running, its state is RESV_RUNNING, and its substate is RESV_DEGRADED.
AG-426 PBS Professional 2020.1.1 Administrator’s Guide

Making Your Site More Robust Chapter 9
An in-conflict reservation’s state becomes RESV_IN_CONFLICT, abbreviated IC, and its substate becomes
RESV_IN_CONFLICT.

For a table of degraded and in-conflict reservation states and substates, see “Degraded Reservation Substates” on page
368 of the PBS Professional Reference Guide. For a table of numeric values for reservation states and substates, see
“Reservation States” on page 367 of the PBS Professional Reference Guide.

9.4.2 Finding Replacement Vnodes for Degraded and In-
conflict Reservations

PBS attempts to reconfirm reservations by finding replacements for vnodes that have become unavailable. If a reserva-
tion is not running, PBS will use any available vnodes. If a reservation is not actively running, PBS waits the time spec-
ified in reserve_retry_time, then starts periodically trying to reconfirm the reservation. If a reservation is actively
running, PBS does not attempt to reconfirm it.

A degraded or in-conflict reservation has a read-only reservation attribute called reserve_retry, whose value is the next
time at which the reservation is due to be reconfirmed.

9.4.2.1 Attributes Affecting Reservation Reconfirmation

reserve_retry_time

Server attribute. The time period between attempts to reconfirm the reservation.

Settable by Manager; readable by all

Format: Integer (seconds)

Values: Must be greater than zero

Default: 600 (10 minutes)

Python attribute value type: int

9.4.3 Allocating New Vnodes

Once new vnodes are allocated for a reservation:

• The reservation has been confirmed

• The state and substate of the reservation are RESV_CONFIRMED

• The reservation’s resv_nodes attribute lists the new vnodes

9.4.4 Restarting the Server

When the server is restarted, reservations are assumed confirmed until associated vnodes are recognized as unavailable.
If any reservations become degraded or in conflict after a server restart, PBS sets the time when the reservation becomes
degraded to the time of the restart. If a vnode is set offline before the restart, it is considered unavailable after the restart,
so all its associated reservations become degraded.
PBS Professional 2020.1.1 Administrator’s Guide AG-427

Chapter 9 Making Your Site More Robust
9.4.5 Logging Degraded or In-conflict Reservation
Information

The server logs a message when a vnode associated with a confirmed reservation becomes unavailable, at event class
0x0100:

An attempt to reconfirm reservation will be made on <ctime timestamp>

The server logs a message for each attempt at reconfirming a reservation, at event class 0x0100:

Next attempt to reconfirm reservation will be made on <ctime timestamp>

The scheduler logs degraded reservations at event class 0x0200:

Reservation is in degraded mode, <x> out of <y> vnodes are unavailable; <list of vnodes down>

9.5 Vnode Fault Tolerance for Job Start and Run

PBS lets you allocate extra vnodes to a job so that the job can successfully start and run even if some vnodes fail. You
can allocate the extra vnodes only for startup, or for the life of the job. Later, for jobs where the extra vnodes are needed
only for reliable startup, you can trim the allocated vnodes back to just what the job will use to run, releasing the
unneeded vnodes for other jobs.

You allocate extra vnodes in a queuejob hook using the pbs.select.increment_chunks() method, and you release
vnodes in an execjob_launch or execjob_prologue hook using the pbs.event().job.release_nodes() method.

We provide an example hook in $PBS_EXEC/unsupported/ReliableJobStartup.py.

9.5.1 Overview of Padding and Trimming Vnode Requests

Here is an overview of the steps for improving job startup and run reliability. We describe each of them in detail in the
next subsections, and we give an example at the end of this section.

• Use a queuejob hook to do the following:

• Save the job’s initial vnode request

• Set the job’s tolerate_node_failures attribute to the desired value

• Pad the job’s vnode request

• Configure primary MoMs to wait for sister MoMs to acknowledge joining job

• Configure primary MoMs to wait for hooks to complete

• Use an execjob_launch or execjob_prologue hook to trim the vnodes not used by the job from the job’s vnode
request

9.5.2 Saving Job Initial Vnode Request

To save the job’s initial resource request so that you know how much to trim later, use a queuejob hook to save it into a
built-in resource such as the site resource (currently, it cannot be a custom resource). Here is a code snippet:

import pbs

e=pbs.event()

j = e.job

e.job.Resource_List["site"] = str(e.job.Resource_List["select"])
AG-428 PBS Professional 2020.1.1 Administrator’s Guide

Making Your Site More Robust Chapter 9
9.5.3 Configuring Primary MoMs to Wait for Sister MoMs

When the primary MoM gets a job whose tolerate_node_failures attribute is set to all or job_start, the primary MoM
can wait to start the job for up to a configured number of seconds if the sister MoMs do not immediately acknowledge
joining the job. This gives the sister MoMs more time to join the job. You configure the number of seconds for the pri-
mary MoM to wait for sister MoMs via the sister_join_job_alarm configuration parameter in MoM’s config file:

$sister_join_job_alarm <number of seconds to wait>

The default value for this parameter is the sum of the values of the alarm attributes of any enabled execjob_begin
hooks. If there are no enabled execjob_begin hooks, the default value is 30 seconds. For example, if there are two
enabled execjob_begin hooks, one with alarm = 30 and one with alarm = 20, the default value of MoM’s
sister_join_job_alarm is 50 seconds.

After all the sister MoMs have joined the job, or MoM has waited for the value of the sister_join_job_alarm parameter,
she starts the job.

9.5.4 Configuring MoMs to Wait for Hooks

When the primary MoM gets a job whose tolerate_node_failures attribute is set to all or job_start, the primary MoM
can wait to start the job (running the job script or executable) for up to a configured number of seconds. During this time,
execjob_prologue hooks can finish and the primary MoM can check for communication problems with sister MoMs.
You configure the number of seconds for the primary MoM to wait for hooks via the job_launch_delay configuration
parameter in MoM’s config file:

$job_launch_delay <number of seconds to wait>

The default value for this parameter is the sum of the values of the alarm attributes of any enabled execjob_prologue
hooks. If there are no enabled execjob_prologue hooks, the default value is 30 seconds. For example, if there are two
enabled execjob_prologue hooks, one with alarm = 30 and one with alarm = 60, the default value of MoM’s
job_launch_delay is 90 seconds.

After all the execjob_prologue hooks have finished, or MoM has waited for the value of the job_launch_delay param-
eter, she starts the job.

9.5.4.1 Caveats for Configuring MoMs to Wait for Hooks

This configuration option is not supported under Windows.

9.5.5 Padding Vnode Request

To add extra vnodes to a job’s vnode request, specify for the job whether you want more vnodes for startup, for the life of
the job, or not at all, and specify how you want to pad the job’s vnode request.
PBS Professional 2020.1.1 Administrator’s Guide AG-429

Chapter 9 Making Your Site More Robust
9.5.5.1 Specifying Whether and When to Pad Vnode Request

To specify whether and when the job gets extra vnodes, set the job’s tolerate_node_failures attribute to one of none,
job_start, or all.

9.5.5.1.i Setting the tolerate_node_failures Job Attribute

You or the job submitter can set the job’s tolerate_node_failures attribute via qsub, qalter, or in a Python hook, for
example a queuejob hook. If set via qalter while the job is already running, the attribute is consulted the next time
the job is rerun.

You can set a value for tolerate_node_failures for all jobs via the server’s default_qsub_arguments attribute.

Examples of setting this attribute:

• Via qsub:
qsub -W tolerate_node_failures="all" <job script>

• Via qalter:
qalter -W tolerate_node_failures="job_start" <job ID>

• Via a hook. The following code snippet shows how to set this attribute:
cat qjob.py

import pbs

e=pbs.event()

e.job.tolerate_node_failures = "all"

9.5.5.2 Specifying How Chunks Are Padded

To specify how you want each chunk padded, use the pbs.select.increment_chunks(<increment specification>)
method. This method increments the job’s chunks according to the rules you give in the increment specification. See
"Method to Increment select Object Chunks" on page 148 in the PBS Professional Hooks Guide.

Table 9-9: Behavior for tolerate_node_failures

Value of tolerate_node_failures Behavior

none or unset No extra vnodes are allocated to the job. Default behavior.

job_start Extra vnodes are allocated only long enough to start the job successfully.

Tolerate vnode failures that occur only during job start, just before execut-
ing the job’s top level shell or executable or any execjob_launch hooks.

Failures tolerated are those such as an assigned sister MoM failing to join
the job and communication errors between MoMs.

all Extra vnodes are allocated for the life of the job.

Tolerate all node failures resulting from communication problems, such as
polling problems, between the primary MoM and the sister MoMs
assigned to the job

Tolerate failures due to rejections from execjob_begin or
execjob_prologue hooks run at sister MoMs.
AG-430 PBS Professional 2020.1.1 Administrator’s Guide

Making Your Site More Robust Chapter 9
9.5.5.2.i Example of Padding Chunks

The following code snippet illustrates padding a job’s vnode request by one extra vnode per chunk:

import pbs

e=pbs.event()

j = e.job

new_select = e.job.Resource_List["select"].increment_chunks(1)

e.job.Resource_List["select"] = new_select

9.5.5.3 Caveats for Padding Vnode Requests

The tolerate_node_failures job attribute is not supported on Cray systems. It is ignored on Cray systems.

9.5.6 Trimming Vnode Request

When you trim a job’s vnode request, you can trim the larger padded amount back to the job’s initial vnode request. To
trim a job’s vnode request, use the pbs.event().job.release_nodes(keep_select) method. This method automatically
selects vnodes that satisfy the new request and are healthy, keeps them in the job’s vnode request, and releases all others.
The method automatically trims out any vnodes in the pbs.event().vnode_list_fail[] list.

You can call pbs.event().job.release_nodes(keep_select = <desired vnodes>) in an execjob_launch or
execjob_prologue hook. Note that despite the method being named “release_nodes”, it keeps the specified vnodes and
releases all other vnodes. You can specify the job’s original vnode request as the vnodes to keep.

The pbs.event().job.release_nodes() method returns a PBS job object which has the updated values for the job’s
exec_vnode and Resource_List attributes.

See "Job Object Method to Release Vnodes" on page 128 in the PBS Professional Hooks Guide.

9.5.6.1 Example of Trimming Job Vnode Request

Here we use an execjob_prologue hook to trim a job’s vnode request:

pj = e.job.release_nodes(keep_select="ncpus=2:mem=2gb+ncpus=2:mem=2gb+ncpus=1:mem=1gb")

if pj != None:

 pbs.logmsg(pbs.LOG_DEBUG, "pj.exec_vnode=%s" % (pj.exec_vnode,))

else: # returned None job object, so we can put a hold on the job and requeue it,
rejecting the hook event

 e.job.Hold_Types = pbs.hold_types("s")

 e.job.rerun()

 e.reject("unsuccessful at LAUNCH")

9.5.6.2 Offlining Vnodes that Have Gone Bad During Start or Run

See "Using List of Failed Vnodes to Offline Vnodes that Have Gone Bad During Start or Run" on page 66 in the PBS
Professional Hooks Guide.

9.5.7 Checking Vnodes and Marking Them as Failed

For each execjob_prologue and execjob_launch event, PBS records the list of vnodes, with their assigned resources,
that are marked as bad by MoM. PBS records this list in the pbs.event().vnode_list_fail[] object. See "The Failed
Vnode List Event Member" on page 115 in the PBS Professional Hooks Guide.
PBS Professional 2020.1.1 Administrator’s Guide AG-431

Chapter 9 Making Your Site More Robust
Any sister vnodes that are able to join the job are considered healthy.

The successful outcome of a join job request may be the result of a check made by a remote execjob_begin hook. After
successfully joining the job, the vnode may further check its status via a remote execjob_prologue hook. A rejection by
the remote execjob_prologue hook causes the primary MoM to treat the sister vnode as a problem vnode, and the sister
vnode is marked as unhealthy.

If there's an execjob_prologue hook in place, the primary MoM tracks vnode hosts that have acknowledged their exe-
cution of the execjob_prologue hook. Then after some job_launch_delay amount of time for job startup, the primary
MoM starts reporting as failed vnodes those which have not given their positive acknowledgement during
execjob_prologue hook execution.

If after some time, a vnode's host comes back with an acknowledgement of successful execjob_prologue hook execu-
tion, the primary MoM adds that host back to the healthy list.

You may want to offline any bad vnodes; see "Offlining Bad Vnodes" on page 66 in the PBS Professional Hooks Guide.

9.5.8 Example of Reliable Job Startup and Run

In order to have a job start reliably, we need these:

• A queuejob hook that does the following:

• Makes the job tolerate vnode failures by setting the tolerate_node_failures job attribute to job_start

• Adds extra chunks to the job's select specification using the pbs.event().job.select.increment_chunks()
method

• Saves the job's original vnode request into a built-in string resource (for example, "site")

• An execjob_launch hook that calls pbs.event().job.release_nodes() to trim the job's vnode request back to the
original.

9.5.8.1 Example Queuejob Hook for Setup and Padding

We will use a queuejob hook called qjob.py in our example. In the queuejob hook:

• Make the job tolerant of failures:
import pbs

e=pbs.event()

j = e.job

j.tolerate_node_failures = job_start

• Save the job’s initial vnode request in the built-in resource named site:
e.job.Resource_List["site"] = str(e.job.Resource_List["select"])

• Add extra chunks to the vnode request:
new_select = e.job.Resource_List["select"].increment_chunks(1)

e.job.Resource_List["select"] = new_select

Instantiate the queuejob hook:

qmgr -c "c h qjob event=queuejob"

qmgr -c "i h qjob application/x-python default qjob.py"
AG-432 PBS Professional 2020.1.1 Administrator’s Guide

Making Your Site More Robust Chapter 9
9.5.8.2 Example Hook for Trimming

We will use an execjob_launch hook named launch.py to trim the job’s padded vnode request back to the original
vnode request. This hook runs before the job executes.

import pbs

e=pbs.event()

if 'PBS_NODEFILE' not in e.env:

e.accept()

j = e.job

pj = j.release_nodes(keep_select=e.job.Resource_List["site"])

if pj is None: # not successful pruning the vnodes

j.rerun() # rerun (requeue) the job

e.reject("something went wrong pruning the job back to its original select request")

Instantiate the execjob_launch hook:

qmgr -c "c h launch event=execjob_launch"

qmgr -c "i h launch application/x-python default launch.py"

9.5.8.3 Example Job

Here is our example job:

% cat jobr.scr

#PBS -l select="ncpus=3:mem=1gb+ncpus=2:mem=2gb+ncpus=1:mem=3gb"

#PBS -l place=scatter:excl

echo $PBS_NODEFILE

cat $PBS_NODEFILE

echo END

echo "HOSTNAME tests"

echo "pbsdsh -n 0 hostname"

pbsdsh -n 0 hostname

echo "pbsdsh -n 1 hostname"

pbsdsh -n 1 hostname

echo "pbsdsh -n 2 hostname"

pbsdsh -n 2 hostname

echo "PBS_NODEFILE tests"

for host in `cat $PBS_NODEFILE`

do

echo "HOST=$host"

echo "pbs_tmrsh $host hostname"

pbs_tmrsh $host hostname

echo "ssh $host pbs_attach -j $PBS_JOBID hostname"

ssh $host pbs_attach -j $PBS_JOBID hostname

done
PBS Professional 2020.1.1 Administrator’s Guide AG-433

Chapter 9 Making Your Site More Robust
9.5.8.4 Example of Job Vnode Assignment Padding and Trimming

When our job first starts, it is assigned 5 vnodes, because its select specification was modified by adding 2 vnodes:

% qstat -f 20

Job Id: 20.mars.example.com

...

exec_host = mars/0*3+jupiter/0*2+saturn/0*2+mercury/0+neptune/0

exec_vnode =
(mars:ncpus=3:mem=1048576kb)+(jupiter:ncpus=2:mem=2097152kb)+(saturn:ncpus=2:mem=2097152kb)+
(mercury:ncpus=1:mem=3145728kb)+(neptune:ncpus=1:mem=3145728kb)

Resource_List.mem = 11gb

Resource_List.ncpus = 9

Resource_List.nodect = 5

Resource_List.place = scatter:excl

Resource_List.select = ncpus=3:mem=1gb+2:ncpus=2:mem=2gb+2:ncpus=1:mem=3gb

Resource_List.site = 1:ncpus=3:mem=1gb+1:ncpus=2:mem=2gb+1:ncpus1:mem=3gb

tolerate_node_failures = job_start

Now jupiter and neptune go down, and just before the job runs its program, the execjob_launch hook executes and
prunes the job's vnode assignment back to the original select request. Now the job has this vnode assignment:

% qstat -f 20

Job Id: 20.mars.example.com

...

exec_host = mars/0*3+saturn/0*2+mercury/0*2

exec_vnode =
(mars:ncpus=3:mem=1048576kb)+(saturn:ncpus=2:mem=2097152kb)+(mercury:ncpus=1:mem=3145728kb)

Resource_List.mem = 6gb

Resource_List.ncpus = 6

Resource_List.nodect = 3

Resource_List.place = scatter:excl

Resource_List.select = 1:ncpus=3:mem=1gb+1:ncpus=2:mem=2gb+1:ncpus1:mem=3gb

Resource_List.site = 1:ncpus=3:mem=1gb+1:ncpus=2:mem=2gb+1:ncpus1:mem=3gb
AG-434 PBS Professional 2020.1.1 Administrator’s Guide

Making Your Site More Robust Chapter 9
A snapshot of the job's output shows the pruned list of vnodes:

/var/spool/PBS/aux/20.mars.example.com <-- updated contents of $PBS_NODEFILE
mars.example.com

saturn.example.com

mercury.example.com

END

HOSTNAME tests

pbsdsh -n 0 hostname

mars.example.com

pbsdsh -n 1 hostname

saturn.example.com

pbsdsh -n 2 hostname

mercury.example.com

PBS_NODEFILE tests

HOST=mars.example.com

pbs_tmrsh mars.example.com hostname

mars.example.com

ssh mars.example.com pbs_attach -j 20.mars.example.com hostname

mars.example.com

HOST=saturn.example.com

pbs_tmrsh saturn.example.com hostname

saturn.example.com

ssh saturn.example.com pbs_attach -j 20.mars.example.com hostname

saturn.example.com

HOST=mercury.example.com

pbs_tmrsh mercury.example.com hostname

mercury.example.com

ssh mercury.example.com pbs_attach -j 20.mars.example.com hostname

mercury.example.com

9.6 Preventing Communication and Timing

Problems

9.6.1 Introduction

PBS communicates with remote execution hosts in order to track their availability and manage the jobs running on them.
PBS is dependent upon your network for this communication. If there are network outages, or if the execution node
becomes too busy for MoM to be able to respond to the server's queries, PBS will not be able to function properly. You
can configure PBS to be better able to withstand these types of communication issues.
PBS Professional 2020.1.1 Administrator’s Guide AG-435

Chapter 9 Making Your Site More Robust
The following attributes and parameters control how PBS handles communication timing:

Table 9-10: Attributes and Parameters For Communication and Timing

Attribute or
Parameter

Description Cross Reference

Server Attributes

job_requeue_timeout Controls how long the process of requeueing a job is
allowed to take

See section 9.6.3, “Setting Job
Requeue Timeout”, on page 439

node_fail_requeue Controls how long the server waits before requeueing
or deleting a job when it loses contact with the MoM
on the job’s primary execution host

See section 9.6.2, “Node Fail Requeue:
Jobs on Failed Vnodes”, on page 437

rpp_max_pkt_check Maximum number of TPP messages processed by the
main server thread per iteration.

Default: 64

See “Communication” on page 45 in
the PBS Professional Installation &
Upgrade Guide

rpp_retry Server attribute.

In a fault-tolerant setup (multiple pbs_comms),
when the first pbs_comm fails partway through a
message, this is number of times TPP tries to use any
other remaining pbs_comms to send the message.

Integer

Valid values: Greater than or equal to zero

Default: 10

Python type: int

See “Communication” on page 45 in
the PBS Professional Installation &
Upgrade Guide

rpp_highwater Server attribute.

This is the maximum number of messages per stream
(meaning the maximum number of messages
between each pair of endpoints).

Integer

Valid values: Greater than or equal to one

Default: 1024

Python type: int

See “Communication” on page 45 in
the PBS Professional Installation &
Upgrade Guide

MoM Configuration Parameters

$max_load Vnode is considered to be busy if it is above this
load.

See section 9.6.5, “Managing Load
Levels on Vnodes”, on page 439

$ideal_load Vnode is considered to be not busy if it is below this
load.

See section 9.6.5, “Managing Load
Levels on Vnodes”, on page 439

$prologalarm Maximum number of seconds the prologue and epi-
logue may run before timing out

See section 9.6.6, “Prologue & Epi-
logue Running Time”, on page 441

Queue Attributes

route_retry_time Interval between retries at routing a job See section 9.6.7, “Time Between
Routing Retries”, on page 442
AG-436 PBS Professional 2020.1.1 Administrator’s Guide

Making Your Site More Robust Chapter 9
See “Robust Communication with TPP” on page 52 in the PBS Professional Installation & Upgrade Guide.

9.6.2 Node Fail Requeue: Jobs on Failed Vnodes

The node_fail_requeue server attribute controls how long the server waits before requeueing or deleting a job when it
loses contact with the MoM on the job’s primary execution host.

9.6.2.1 How Node Fail Requeue Works

You can specify how long the server waits after it loses contact with primary execution before deleting or requeueing her
jobs. This behavior is controlled by the server’s node_fail_requeue attribute.

This attribute’s value is the delay between the time the server determines that the primary execution host MoM cannot be
contacted and the time it requeues the job, and does not include the time it takes to determine that the host is out of con-
tact.

If this attribute is set to a value other than zero, and the server loses contact with an execution host, all jobs for which this
is the primary execution host are requeued or deleted at the same time.

If node_fail_requeue is unset, and the host where primary execution is running fails, the server assumes that the job is
still running until one of the following happens:

• The primary execution host MoM comes back up and tells the server to requeue the job

• The job is manually rerun

9.6.2.2 Effect Of Requeueing On Jobs

When a job is thus requeued, it retains its original place in its execution queue with its former priority. The job is usually
the next job to be considered during scheduling, unless the relative priorities of the jobs in the queue have changed. This
can happen when the job sorting formula assigns higher priority to another job, another higher-priority job is submitted
after the requeued job started, this job’s owner has gone over their fairshare limit, etc.

Any resources that were being used by a job are freed when the job is requeued.

9.6.2.3 The node_fail_requeue Server Attribute

Format: Integer

9.6.2.3.i Allowable Values

The node_fail_requeue attribute can take these values:

Greater than zero

The server waits for the specified number of seconds after losing contact with a primary execution host MoM,
then attempts to contact the primary execution host MoM, and if it cannot, requeues any jobs that can be rerun
and deletes any jobs that cannot be rerun.

Zero

Jobs are not requeued; they are left in the Running state until the execution host MoM is recovered, whether or
not the server has contact with their primary execution host MoM.

Less than zero

The attribute is treated as if it were set to 1, and jobs are deleted or requeued after the server has been out of con-
tact with the primary execution host MoM for 1 second.

Unset

Behaves as if set to the default value of 310.
PBS Professional 2020.1.1 Administrator’s Guide AG-437

Chapter 9 Making Your Site More Robust
9.6.2.3.ii Default Value

The default value for this attribute is 310, meaning that when the server loses contact with an execution host, it waits for
310 seconds after losing contact with the primary execution host MoM before requeueing or deleting jobs.

9.6.2.4 Where node_fail_requeue Applies

The server’s node_fail_requeue attribute applies only in the case where the server loses contact with the primary execu-
tion host MoM.

When the primary execution host MoM loses contact with a sister MoM, the job is immediately deleted or requeued.

9.6.2.5 Jobs Eligible to be Requeued

Jobs are eligible to be requeued if they meet either of the following criteria:

• The job’s Rerunable attribute is set to y

• The job did not begin execution, for example:

• a multi-host job did not start on one or more vnodes

• provisioning failed for the job

Jobs are ineligible to be requeued if their Rerunable attribute is set to n and they have started execution.

See “Job Attributes” on page 328 of the PBS Professional Reference Guide and “Server Attributes” on page 281 of the
PBS Professional Reference Guide.

9.6.2.6 Using node_fail_requeue

The number of seconds selected should be long enough to exceed any transient non-vnode failures, but short enough to
requeue the job in a timely fashion. Transient non-vnode failures can prevent MoM from reporting back to the server
before the server marks the vnode down. These include:

• Network outages

• Vnode is too busy to respond, perhaps due to heavy swapping

Using this feature requires that you take the following into account:

• If the host where the primary execution host MoM is running fails, and node_fail_requeue is unset, the server
assumes that the job is still running until one of the following happens:

• The primary execution host MoM comes back up and tells the server to requeue the job

• The job is manually rerun

If your site has hosts that fail and are not monitored, failed jobs may go unnoticed for a long time.

• If your network has temporary failures, and node_fail_requeue is set to a duration shorter than the outage, jobs will
be unnecessarily requeued. This can be especially annoying when the job has been running for days.
AG-438 PBS Professional 2020.1.1 Administrator’s Guide

Making Your Site More Robust Chapter 9
9.6.2.7 Advice and Caveats

• If your site experiences frequent network failures or your execution hosts are often too busy to respond to the server,
it is recommended that you either set node_fail_requeue to a value greater than the time MoM is unavailable, or set
it to zero. This way jobs won’t be requeued just because the network had a temporary outage or the vnode was too
busy. Choose a value greater than both the longest likely network outage time and the time MoM is unavailable. For
example, one site has set the value to 10 minutes, and another has set it to 15 minutes (900 seconds) to avoid prob-
lems due to swapping.

• The value shown in the server log for the time between losing communication and requeueing a job is sometimes
one or two seconds less than the specified value.

• If the server is restarted when node_fail_requeue is set to a given value, node_fail_requeue retains that value. If
the server is started when node_fail_requeue is unset, node_fail_requeue reverts to its default value.

9.6.3 Setting Job Requeue Timeout

When jobs are preempted via requeueing, the requeue can fail if the job being preempted takes longer than the allowed
timeout. The time for requeueing includes post-processing such as staging files out, deleting files, and changing the job’s
state from R to Q. See section 4.9.33, “Using Preemption”, on page 180. The time allowed for a job to be requeued is
controlled by the job_requeue_timeout server attribute.

You can use qmgr to set the job_requeue_timeout server attribute to a value that works for the jobs at your site. This
attribute is of type Duration, with a minimum allowed value of 1 second and a maximum allowed value of 3 hours. The
default timeout is 45 seconds. See “Server Attributes” on page 281 of the PBS Professional Reference Guide.

9.6.4 Setting MoM Reconnection Timeout

When the primary execution host MoM detects that a sister mom has lost connectivity (e.g. MoM went down or the net-
work is having problems) it waits for a specified amount of time for the sister to reconnect before it gives up and kills the
job. You can configure the time the primary execution host MoM waits by setting MoM’s $max_poll_downtime
parameter in PBS_HOME/mom_priv/config. The default value is five minutes.

9.6.5 Managing Load Levels on Vnodes

An overloaded execution host may end up too busy for MoM to respond to the server’s queries, and causing the server to
mark the MoM as down.

PBS can track the state of each execution host, running new jobs on the host according to whether the host is marked
busy or not.

This behavior is somewhat different from load balancing, described in section 4.9.27, “Using Load Balancing”, on page
156. In load balancing, the scheduler estimates how much load a job would produce, and will not place a job where
doing so would put the load above the limit. When managing load levels on vnodes as described here, the scheduler uses
the state of the vnode to determine whether to place a job on that vnode.

The state of the vnode is set by MoM, according to its load. You can set two load levels using the $max_load and
$ideal_load MoM configuration parameters. When the load goes above $max_load, the vnode is marked as busy.
When the load drops below $ideal_load, the vnode is marked free.
PBS Professional 2020.1.1 Administrator’s Guide AG-439

Chapter 9 Making Your Site More Robust
PBS does not run new jobs on vnodes under the following conditions:

• Vnodes that are marked busy

• Vnodes whose resources, such as ncpus, are already fully allocated

• Vnodes where the load is above $max_load, when load balancing is turned on. See section 4.9.27, “Using Load
Balancing”, on page 156.

• Vnodes where running the job would cause the load to go above $max_load, when load balancing is turned on. See
section 4.9.27, “Using Load Balancing”, on page 156.

The load used by MoM is the following:

• On Linux, it is the raw one-minute averaged “loadave” returned by the operating system

• On Windows, it is based on the processor queue length

The $max_load and $ideal_load MoM configuration parameters are also used for cycle harvesting (see section 4.9.9.6,
“Cycle Harvesting Based on Load Average”, on page 121) and load balancing (see section 4.9.27, “Using Load Balanc-
ing”, on page 156.)

MoM checks the load average on her host every 10 seconds.

When a vnode’s state changes, for example from free to busy, MoM informs the server.

9.6.5.1 Techniques for Managing Load

Whether or not you set $max_load, PBS will not run jobs requesting a total of more than the available number of CPUs,
which is set in resources_available.ncpus. So for example if resources_available.ncpus is set to 4, and a job running on
the vnode has requested 2 CPUs, PBS will not run jobs requesting a total of more than 2 CPUs.

9.6.5.1.i Types of Workload

How you manage load depends on your workload. Some jobs do not lend themselves to sharing CPUs, but some jobs
can share CPUs without being hindered. Most MPI jobs would be hindered if some processes had to wait because others
were slowed by sharing a CPU. If you need a job to have reproducible timing, it cannot share a CPU. Certain single-
vnode jobs that alternate between CPU usage and I/O can share a CPU without being slowed significantly, thereby
increasing throughput.

9.6.5.1.ii How Not To Share CPUs

For vnodes primarily running jobs that would be slowed or invalidated by sharing a CPU, have PBS assign jobs accord-
ing to the number of available CPUs, so that there is no sharing of CPUs. Set resources_available.ncpus to the number
of available CPUs. Do not set $max_load or $ideal_load.

9.6.5.1.iii How To Share CPUs

For vnodes running only jobs that can share CPUs, you can have PBS manage jobs according to the load on the vnodes,
not the number of CPUs. This is called oversubscribing the CPUs. Set resources_available.ncpus to a value greater
than the actual number of CPUs, such as two or three times the actual number. Set $max_load to a reasonable value so
that PBS will run new jobs until $max_load is reached. Set $ideal_load to the minimum load that you want on the
vnode.

9.6.5.1.iv Suspending Jobs on Overloaded Vnodes

You can specify that MoM should suspend jobs when the load goes above $max_load, by adding the suspend argument
to the $max_load parameter. See section , “$max_load <load> [suspend]”, on page 441. In this case, MoM suspends all
jobs on the vnode until the load drops below $ideal_load, then resumes them. This option is useful only when the source
of the load includes work other than PBS jobs. This option is not recommended when the load is due solely to PBS jobs,
because it can lead to the vnode cycling back and forth between being overloaded, being marked busy, suspending all
jobs, being marked free, then starting all jobs, being overloaded, and so on.
AG-440 PBS Professional 2020.1.1 Administrator’s Guide

Making Your Site More Robust Chapter 9
9.6.5.2 Caveats and Recommendations

• It is recommended that the value for $ideal_load be lower than the value for $max_load. The value for $ideal_load
should be low enough that new jobs are not run before existing jobs are done using the vnode’s spare load.

• If you set only one of $max_load and $ideal_load, for example you set $max_load, but not $ideal_load, PBS sets
the other to the same value.

• Do not allow reservations on hosts where $max_load and $ideal_load are configured. Set the resv_enable vnode
attribute on these hosts to False.

• If you are using cycle harvesting via load balancing, be careful with the settings for $ideal_load and $max_load.
You want to make sure that when the workstation owner is using the machine, the load on the machine triggers MoM
to report being busy, and that PBS does not start any new jobs while the user is working. See section 4.9.9.6, “Cycle
Harvesting Based on Load Average”, on page 121.

9.6.5.2.i Allowing Non-job Processes on Execution Host

If you wish to run non-PBS processes on a host, you can prevent PBS from using more than you want on that host. Set
the $ideal_load and $max_load MoM configuration parameters to values that are low enough to allow other processes
to use some of the host.

9.6.5.3 Load Configuration Parameters

$ideal_load <load>

MoM parameter. Defines the load below which the vnode is not considered to be busy. Used with the
$max_load parameter.

Example:

$ideal_load 1.8

Format: Float

No default

$max_load <load> [suspend]

MoM parameter. Defines the load above which the vnode is considered to be busy. Used with the $ideal_load
parameter.

If the optional suspend argument is specified, PBS suspends jobs running on the vnode when the load average
exceeds $max_load, regardless of the source of the load (PBS and/or logged-in users).

Example:

$max_load 3.5

Format: Float

Default: number of CPUs

9.6.6 Prologue & Epilogue Running Time

Each time the scheduler runs a job, it waits for the prologue to finish before it runs another job. In order to prevent a
hung prologue from halting job execution, prologues and epilogues are only allowed to run for a specified amount of
time before PBS kills them. The running time is specified in the $prologalarm MoM configuration parameter. The
default value for this parameter is 30 seconds.
PBS Professional 2020.1.1 Administrator’s Guide AG-441

Chapter 9 Making Your Site More Robust
9.6.6.1 Prologue Timeout Configuration Parameter

$prologalarm <timeout>

Defines the maximum number of seconds the prologue and epilogue may run before timing out.

Example:

$prologalarm 30

Format: Integer

Default: 30

9.6.7 Time Between Routing Retries

If the network is flaky, PBS may not be able to route a job from a routing queue to the destination queue. If all destina-
tion queues for a routing queue are at capacity, a job in a routing queue remains where it is. The time between routing
retries is controlled by the route_retry_time queue attribute.

If the network experiences long outages, you may wish to set the time between retries to a sufficiently long time that PBS
is not wasting cycles attempting to route jobs.

If jobs in a routing queue are not being routed because the destination queues are full, and most jobs are long-running
jobs, you may wish to set the time between retries so that attempts are infrequent. It is recommended that the time
between retries be no longer than the longest time acceptable to have an open slot in an execution queue.

9.6.7.1 Routing Retry Attribute

route_retry_time

Time delay between routing retries. Typically used when the network between servers is down. Used only with
routing queues.

Format: Integer seconds

Default: 30 seconds

Python type: pbs.duration

9.7 Preventing File System Problems

9.7.1 Avoid Filling Location of Temp Files for PBS
Components

When the location used by PBS components to store temporary files becomes full, various failures may result, including
jobs not initializing properly. To help avoid this, you can set the root directory for these files to a location less likely to
fill up. See section 14.8, “Temporary File Location for PBS Components”, on page 557.

In addition, we recommend periodic cleaning of this location.

9.7.2 Avoid Filling Filesystem with Log Files

You must avoid having log files fill up the available space. You may have to rotate and archive log files frequently to
ensure that adequate space remains available. See “Adequate Space for Logfiles” on page 8 in the PBS Professional
Installation & Upgrade Guide.
AG-442 PBS Professional 2020.1.1 Administrator’s Guide

Making Your Site More Robust Chapter 9
9.8 OOM Killer Protection

PBS automatically protects against OOM killers. If the system hosting a PBS daemon or data service runs low on mem-
ory, the system may use an out-of-memory killer (OOM killer) to terminate processes. The PBS daemons and data ser-
vice are protected from being terminated by an OOM killer.
PBS Professional 2020.1.1 Administrator’s Guide AG-443

Chapter 9 Making Your Site More Robust
AG-444 PBS Professional 2020.1.1 Administrator’s Guide

10

Using MPI with PBS

10.1 Integration with MPI

PBS Professional is integrated with several implementations of MPI. When PBS is integrated with an MPI, PBS can
track resource usage, control jobs, clean up job processes, perform accounting for all of the tasks run under the MPI, and
create TMPDIR on each of the job’s hosts.

When PBS is not integrated with an MPI, PBS can track resource usage, clean up processes, and perform accounting only
for processes running on the primary host. This means that accounting and tracking of CPU time and memory aren’t
accurate, and job processes on sister hosts cannot be signaled.

10.2 Prerequisites

Before you integrate an MPI with PBS, the MPI must be working by itself. For example, you must make sure that all
required environment variables are set correctly for the MPI to function.

10.3 Types of Integration

PBS provides support for integration for many MPIs. You can integrate MPIs with PBS using the following methods:

• Intel MPI 4.0.3 on Linux uses pbs_tmrsh when it sees certain environment variables set. No other steps are
required. See section 10.5, “Integrating Intel MPI 4.0.3 On Linux Using Environment Variables”, on page 447.

• Wrapping the MPI with a PBS-supplied script which uses the TM (task manager) interface to manage job processes.
PBS supplies a master script to wrap any of several MPIs. See section 10.10, “Integration by Wrapping”, on page
449

• PBS supplies wrapper scripts for some MPIs, for wrapping those MPIs by hand. See section 10.13, “Integration By
Hand”, on page 454

• For non-integrated MPIs, job scripts can integrate the MPIs on the fly using the pbs_tmrsh command. Note that a
PBS job script that uses mpirun with pbs_tmrsh cannot be used outside of PBS. See section 10.9, “Integration
on the Fly using the pbs_tmrsh Command”, on page 448 and "Integrating an MPI on the Fly", on page 83 of the PBS
Professional User’s Guide.

• Some MPIs can be compiled to use the TM interface. See section 10.8, “Integration Using the TM Interface”, on
page 448

• Some MPIs require users to call pbs_attach See section 10.13.5, “Integrating HPE MPI”, on page 459.

• Altair support can help integrate your MPI with PBS so that the MPI always calls pbs_attach when it calls ssh.
If you would like to use this method, contact Altair support at www.pbsworks.com.
PBS Professional 2020.1.1 Administrator’s Guide AG-445

http://www.pbsworks.com

Chapter 10 Using MPI with PBS
To integrate an MPI with PBS, you use just one of the methods above. The method you choose depends on the MPI. The
following table lists the supported MPIs, how to integrate them, and gives links to the steps involved and any special
notes about that MPI:

Table 10-1: List of Supported MPIs

MPI Name Versions Method Integration Steps
MPI-specific

Notes

HP MPI 1.08.03

2.0.0

Use pbs_mpihp "Steps to Integrate HP MPI or
Platform MPI"

"Integrating HP MPI
and Platform MPI"

Intel MPI 4.0.3 on Linux Set environment vari-
ables

"Integrating Intel MPI 4.0.3 On
Linux Using Environment Vari-
ables"

None

Intel MPI 4.0.3 on Windows Use wrapper script "Integrating Intel MPI 4.0.3 on
Windows Using Wrapper Script"

None

Intel MPI 2.0.022

3

4

Use pbsrun_wrap

(wrapper is depre-
cated)

"Wrapping an MPI Using the
pbsrun_wrap Script"

"Integration by
Wrapping"

LAM MPI 6.5.9

Support is depre-
cated.

Use pbs_mpilam
and pbs_lamboot

"Wrapping LAM MPI 6.5.9" "Integrating LAM
MPI and Open MPI"

LAM MPI 7.0.6

7.1.1

Support for LAM is
deprecated.

Compile with TM "Integration Using the TM Inter-
face"

"Integrating LAM
MPI and Open MPI"

MPICH-P4 1.2.5

1.2.6

1.2.7

Support for all is
deprecated.

Use pbs_mpirun "Steps to Integrate MPICH-P4" "Integrating MPICH-
P4"

MPICH-GM
(MPICH
1.2.6.14b)

Support for wrap-
per is deprecated.

Use pbsrun_wrap "Wrapping an MPI Using the
pbsrun_wrap Script"

"Integration by
Wrapping"

MPICH-MX Support for wrap-
per is deprecated.

Use pbsrun_wrap "Wrapping an MPI Using the
pbsrun_wrap Script"

"Integration by
Wrapping"

MPICH2 1.0.3

1.0.5

1.0.7

on Linux

Use pbsrun_wrap "Wrapping an MPI Using the
pbsrun_wrap Script"

"Integration by
Wrapping"

MPICH2 1.4.1p1 on Windows Use wrapper script "Integrating MPICH2 1.4.1p1 on
Windows Using Wrapper Script"

None
AG-446 PBS Professional 2020.1.1 Administrator’s Guide

Using MPI with PBS Chapter 10
10.4 Transparency to the User

Many MPIs can be integrated with PBS in a way that is transparent to the job submitter. This means that a job submitter
can use the same MPI command line inside and outside of PBS. All of the MPIs listed above can be made to be transpar-
ent.

10.5 Integrating Intel MPI 4.0.3 On Linux Using

Environment Variables

You can allow Intel MPI 4.0.3 to automatically detect when it runs inside a PBS job and use pbs_tmrsh to integrate
with PBS. When it has detected that it is running in a PBS job, it uses the hosts allocated to the job.

On hosts running Intel MPI 4.0.3 that have PBS_EXEC/bin in the default PATH, set the following environment variables
in PBS_HOME/pbs_environment:

I_MPI_HYDRA_BOOTSTRAP=rsh

I_MPI_HYDRA_BOOTSTRAP_EXEC=pbs_tmrsh

On hosts running Intel MPI 4.0.3 that do not have PBS_EXEC/bin in their default PATH, use the full path to
pbs_tmrsh. For example:

I_MPI_HYDRA_BOOTSTRAP_EXEC=/opt/pbs/bin/pbs_tmrsh

The default process manager for Intel MPI 4.0.3 is Hydra.

10.5.1 Restrictions for Intel MPI 4.0.3

The unwrapped version of Intel MPI 4.0.3 mpirun on Linux does not support MPD.

MVAPICH 1.2

Support for wrap-
per is deprecated.

Use pbsrun_wrap "Wrapping an MPI Using the
pbsrun_wrap Script"

"Integration by
Wrapping"

 MVAPICH2 1.8 Use pbsrun_wrap "Wrapping an MPI Using the
pbsrun_wrap Script"

"Integration by
Wrapping"

Open MPI 1.4.x Compile with TM "Integration Using the TM Inter-
face"

"Integrating LAM
MPI and Open MPI"

Platform MPI 8.0 Use pbs_mpihp "Steps to Integrate HP MPI or
Platform MPI"

"Integrating HP MPI
and Platform MPI"

HPE MPI Any Optional: Use
mpiexec, or users
put pbs_attach in
mpirun command
line

"Steps to Integrate HPE MPI" "Integrating HPE
MPI"

Table 10-1: List of Supported MPIs

MPI Name Versions Method Integration Steps
MPI-specific

Notes
PBS Professional 2020.1.1 Administrator’s Guide AG-447

Chapter 10 Using MPI with PBS
10.6 Integrating Intel MPI 4.0.3 on Windows Using

Wrapper Script

This version of PBS provides a wrapper script for Intel MPI 4.0.3 on Windows. The wrapper script is named
pbs_intelmpi_mpirun.bat, and it is located in $PBS_EXEC\bin. This script uses pbs_attach to attach MPI tasks to a
PBS job. You do not need to take any steps to integrate Intel MPI on Windows; job submitters must call the wrapper
script inside their job scripts.

10.7 Integrating MPICH2 1.4.1p1 on Windows Using

Wrapper Script

This version of PBS provides a wrapper script for MPICH2 1.4.1p1 on Windows. The wrapper script is named
pbs_mpich2_mpirun.bat, and it is located in $PBS_EXEC\bin. This script uses pbs_attach to attach MPI tasks to a
PBS job. You do not need to take any steps to integrate Intel MPI on Windows; job submitters must call the wrapper
script inside their job scripts.

10.8 Integration Using the TM Interface

PBS provides an API to the PBS task manager, or TM, interface. You can configure an MPI to use the PBS TM interface
directly.

When a job process is started on a sister host using the TM interface, the sister host’s MoM starts the process and the pri-
mary host’s MoM has access to job process information.

An MPI that we know can be compiled with the TM interface is Open MPI.

10.9 Integration on the Fly using the pbs_tmrsh
Command

If using a non-integrated MPI, job submitters can integrate an MPI on the fly by using the pbs_tmrsh command. This
command emulates rsh, but uses the TM interface to talk directly to pbs_mom on sister hosts. The pbs_tmrsh com-
mand informs the primary and sister MoMs about job processes on sister hosts. PBS can track resource usage for all job
processes.

Job submitters use this command by setting the appropriate environment variable to pbs_tmrsh. For example, to inte-
grate MPICH, set P4_RSHCOMMAND to pbs_tmrsh. For details, see "Integrating an MPI on the Fly", on page 83 of
the PBS Professional User’s Guide.
AG-448 PBS Professional 2020.1.1 Administrator’s Guide

Using MPI with PBS Chapter 10
The following figure illustrates how a the pbs_tmrsh command can be used to integrate an MPI on the fly:

Figure 10-1: PBS knows about processes on vnodes 2 and 3, because pbs_tmrsh talks directly to

pbs_mom, and pbs_mom starts the processes on vnodes 2 and 3

10.9.1 Caveats for the pbs_tmrsh Command

• This command cannot be used outside of a PBS job; if used outside a PBS job, this command will fail.

• The pbs_tmrsh command does not perform exactly like rsh. For example, you cannot pipe output from
pbs_tmrsh; this will fail.

10.10 Integration by Wrapping

Wrapping an MPI means replacing its mpirun or mpiexec with a script which calls the original executable and, indi-
rectly, pbs_attach. Job processes are started by rsh or ssh, but the pbs_attach command informs the primary
and sister MoMs about the processes, so that PBS has control of the job processes. See “pbs_attach” on page 55 of the
PBS Professional Reference Guide.

PBS provides a master script called pbsrun_wrap that you use to wrap many MPIs. PBS supplies special wrapper
scripts so that you can wrap other MPIs by hand.
PBS Professional 2020.1.1 Administrator’s Guide AG-449

Chapter 10 Using MPI with PBS
The following figure shows how a wrapped mpirun call works:

Figure 10-2:The job script calls the link that has the name of the original mpirun

10.10.1 Wrap the Correct Instance

When you wrap an MPI, make sure that you are wrapping the first instance of the name found in the user's search path.
This is the one returned by the ‘which' command on Linux.

For example, on our example system my_mpi is installed as follows:

rwxrwxrwx 1 root system 31 Apr 18 19:21 /usr/bin/my_mpi -> /usr/my_mpi_dir/bin/my_mpi

And 'which' returns the following:

bash-2.05b# which my_mpi

/usr/bin/my_mpi

Here, you must wrap the link, not the binary.

Figure 10-3: The job script calls the link that has the name of the original mpirun
AG-450 PBS Professional 2020.1.1 Administrator’s Guide

Using MPI with PBS Chapter 10
10.11 Wrapping an MPI Using the pbsrun_wrap

Script

The master script is the pbsrun_wrap command, which takes two arguments: the mpirun to be wrapped, and a PBS-
supplied wrapper. The pbsrun_wrap command neatly wraps the original mpirun so that everything is transparent
for the job submitter. See “pbsrun_wrap” on page 51 of the PBS Professional Reference Guide, and “pbsrun” on page 40
of the PBS Professional Reference Guide.

The pbsrun_wrap command does the following:

• Renames the original, named mpirun.<flavor>, to mpirun.<flavor>.actual

• Instantiates the wrapper as pbsrun.<flavor>

• Creates a link named mpirun.<flavor> that calls pbsrun.<flavor>

• Creates a link so that pbsrun.<flavor> calls mpirun.<flavor>.actual

10.11.1 Passing Arguments

Any mpirun version/flavor that can be wrapped has an initialization script ending in ".init", found in $PBS_EXEC/
lib/MPI:

$PBS_EXEC/lib/MPI/pbsrun.<mpirun version/flavor>.init

When executed inside a PBS job, the pbsrun.<flavor> script calls a version-specific initialization script which sets
variables to control how the pbsrun.<flavor> script uses options passed to it. For example, pbsrun.<flavor>
calls $PBS_EXEC/lib/MPI/pbsrun.<flavor>.init to manage the arguments passed to it. You can modify the
.init scripts to specify which arguments should be retained, ignored, or transformed.

When the mpirun wrapper script is run inside a PBS job, then it translates any mpirun call of the form:

mpirun [options] <executable> [args]

into

mpirun [options] pbs_attach [special_option_to_pbs_attach] <executable> [args]

where [special options] refers to any option needed by pbs_attach to do its job (e.g. -j $PBS_JOBID).

See “Options” on page 41 of the PBS Professional Reference Guide for a description of how to customize the initializa-
tion scripts.

10.11.2 Restricting MPI Use to PBS Jobs

You can specify that a wrapped MPI can be used only inside of PBS, by using the -s option to the pbsrun_wrap com-
mand. This sets the strict_pbs option in the initialization script (e.g. pbsrun.ch_gm.init, etc...) to 1 from the
default of 0. This means that the mpirun being wrapped by pbsrun will be executed only when it is called inside a
PBS environment. Otherwise, the user gets the following error:

Not running under PBS

exiting since strict_pbs is enabled; execute only in PBS

By default, when the wrapper script is executed outside of PBS, a warning is issued about "not running under PBS", but
it proceeds as if the actual program had been called in standalone fashion.
PBS Professional 2020.1.1 Administrator’s Guide AG-451

Chapter 10 Using MPI with PBS
10.11.3 Format of pbsrun_wrap Command

The pbsrun_wrap command has this format:

pbsrun_wrap [-s] <path_to_actual_mpirun> pbsrun.<keyword>

Make sure that you wrap the correct instance of the mpirun. If a user’s job script would call a link, wrap the link. See
section 10.10.1, “Wrap the Correct Instance”, on page 450.

10.11.4 Actions During Wrapping

The pbsrun_wrap script instantiates the pbsrun wrapper script as pbsrun.<mpirun version/flavor> in
the same directory where pbsrun is located, and sets up the link to the actual mpirun call via the symbolic link:

$PBS_EXEC/lib/MPI/pbsrun.<mpirun version/flavor>.link

For example, running:

pbsrun_wrap /opt/mpich-gm/bin/mpirun.ch_gm pbsrun.ch_gm

causes the following actions:

• Save original mpirun.ch_gm script:
mv /opt/mpich-gm/bin/mpirun.ch_gm /opt/mpich-gm/bin/mpirun.ch_gm.actual

• Instantiate pbsrun wrapper script as pbsrun.ch_gm:
cp $PBS_EXEC/bin/pbsrun $PBS_EXEC/bin/pbsrun.ch_gm

• Link mpirun.ch_gm to actually call pbsrun.ch_gm:
ln -s $PBS_EXEC/bin/pbsrun.ch_gm /opt/mpich-gm/bin/mpirun.ch_gm

• Create a link so that pbsrun.ch_gm calls mpirun.ch_gm.actual:
ln -s /opt/mpich-gm/bin/mpirun.ch_gm.actual $PBS_EXEC/lib/MPI/pbsrun.ch_gm.link

10.11.5 Requirements

The mpirun being wrapped must be installed and working on all the vnodes in the PBS cluster.

10.11.6 Caveats and Restrictions

• For MPIs that are wrapped using pbsrun_wrap, the maximum number of ranks that can be launched in a job is the
number of entries in the $PBS_NODEFILE.

• MVAPICH2 must use the “mpd” process manager if it is to be integrated with PBS. During the configuration step
when you build MVAPICH2, set the “process manager” setting to mpd, as follows:
--with-pm=mpd

Other process managers such as "hydra" and "gforker" may not work correctly with PBS.

• If you wrap a version of Intel MPI mpirun less than 4.0.3, Hydra is not supported.

• Wrapping Intel MPI is deprecated.
AG-452 PBS Professional 2020.1.1 Administrator’s Guide

Using MPI with PBS Chapter 10
10.11.7 Links to Wrapper Script Information

The following table lists the links to the description of each wrapper script used by pbsrun_wrap:

10.11.8 Wrapping Multiple MPIs with the Same Name

You may want more than one MPI environment with the same name, for example a 32-bit and a 64-bit version of
MPICH2.

1. Create two new MPICH2 initialization scripts by copying that for MPICH2:
cd $PBS_EXEC/lib/MPI

cp pbsrun.mpich2.init.in pbsrun.mpich2_32.init.in

cp pbsrun.mpich2.init.in pbsrun.mpich2_64.init.in

2. Then wrap them:

pbsrun_wrap <path to 32-bit MPICH2>/bin/mpirun pbsrun.mpich2_32

pbsrun_wrap <path to 64-bit MPICH2>/bin/mpirun pbsrun.mpich2_64

Calls to <path to 32-bit MPICH2>/bin/mpirun will invoke /usr/pbs/bin/pbsrun.mpich2_32. The
64-bit version is invoked with calls to <path to 64-bit MPICH2>/bin/mpirun.

10.11.9 See Also

See “pbsrun” on page 40 of the PBS Professional Reference Guide for a description of the pbsrun script. See
“pbsrun_wrap” on page 51 of the PBS Professional Reference Guide for a description of the master wrapping script.

Table 10-2: Links to Wrapper Descriptions

MPI Wrapper Link to Description

MPICH2 See “MPICH2 mpirun: pbsrun.mpich2” on page 46 of the PBS Professional Reference
Guide.

MPICH-GM with MPD

Wrapper is deprecated.

“MPICH-GM mpirun (mpirun.mpd) with MPD: pbsrun.gm_mpd” on page 44 of the
PBS Professional Reference Guide.

MPICH-GM with rsh/ssh

Wrapper is deprecated.

“MPICH-GM mpirun (mpirun.ch_gm) with rsh/ssh: pbsrun.ch_gm” on page 43 of the
PBS Professional Reference Guide.

MPICH-MX with MPD

Wrapper is deprecated.

“MPICH-MX mpirun (mpirun.mpd) with MPD: pbsrun.mx_mpd” on page 45 of the
PBS Professional Reference Guide.

MPICH-MX with rsh/ssh

Wrapper is deprecated.

“MPICH-MX mpirun (mpirun.ch_mx) with rsh/ssh: pbsrun.ch_mx” on page 44 of the
PBS Professional Reference Guide

MVAPICH

Wrapper is deprecated.

“MVAPICH1 mpirun: pbsrun.mvapich1” on page 48 of the PBS Professional Refer-
ence Guide.

MVAPICH2 “MVAPICH2 mpiexec: pbsrun.mvapich2” on page 49 of the PBS Professional Refer-
ence Guide.

Intel MPI “Intel MPI mpirun: pbsrun.intelmpi” on page 47 of the PBS Professional Reference
Guide.
PBS Professional 2020.1.1 Administrator’s Guide AG-453

Chapter 10 Using MPI with PBS
10.12 Unwrapping MPIs Using the pbsrun_unwrap

Script

You can also use the matching pbsrun_unwrap command to unwrap the MPIs you wrapped using pbsrun_wrap.

For example, you can unwrap the two MPICH2 MPIs from 10.11.8 above:

pbsrun_unwrap pbsrun.mpich2_32

pbsrun_unwrap pbsrun.mpich2_64

See “pbsrun_unwrap” on page 50 of the PBS Professional Reference Guide.

10.13 Integration By Hand

For MPIs that must be wrapped by hand, PBS supplies wrapper scripts which call the original and use pbs_attach to
give MoM control of jobs.

Wrapping an MPI by hand yields the same result as wrapping using pbsrun_wrap, but you must perform the steps by
hand.

Wrapping by hand involves the following steps (which are the same steps taken by pbsrun_wrap):

• You rename the original MPI command

• You create a link whose name is the same as the original MPI command; this link calls the wrapper script

• You edit the wrapper script to call the original MPI command

• You make sure that the link to the wrapper script(s) is available to each user’s PATH.

The following table lists MPIs, their wrapper scripts, and a link to instructions:

10.13.1 Integrating HP MPI and Platform MPI

PBS supplies a wrapper script for HP MPI and Platform MPI called pbs_mpihp. The pbs_mpihp script allows PBS
to clean up job processes, track and limit job resource usage, and perform accounting for all job processes.

You can make pbs_mpihp transparent to users; see the instructions that follow.

Table 10-3: Scripts for Wrapping MPIs by Hand

MPI Name Script Name Link to Instructions

HP MPI pbs_mpihp section 10.13.1, “Integrating HP MPI and Platform MPI”, on page 454

LAM MPI 6.5.9

Deprecated.

pbs_mpilam section 10.13.3, “Integrating LAM MPI and Open MPI”, on page 455

MPICH

Wrapper is depre-
cated.

pbs_mpirun section 10.13.4, “Integrating MPICH-P4”, on page 457

Platform MPI pbs_mpihp section 10.13.1, “Integrating HP MPI and Platform MPI”, on page 454

HPE MPI mpiexec section 10.13.5, “Integrating HPE MPI”, on page 459
AG-454 PBS Professional 2020.1.1 Administrator’s Guide

Using MPI with PBS Chapter 10
10.13.2 Steps to Integrate HP MPI or Platform MPI

Make sure that you wrap the correct instance of the MPI. If a user’s job script would call a link, wrap the link. See sec-
tion 10.10.1, “Wrap the Correct Instance”, on page 450.

The pbs_mpirun command looks for a link with the name PBS_EXEC/etc/pbs_mpihp that points to the HP
mpirun. The pbs_mpihp command follows this link to HP’s mpirun. Therefore, the wrapping instructions are dif-
ferent from the usual. See “pbs_mpihp” on page 76 of the PBS Professional Reference Guide for more information on
pbs_mpihp.

1. Rename HP’s mpirun:
cd <MPI installation location>/bin

mv mpirun mpirun.hp

2. Link the user-callable mpirun to pbs_mpihp:

cd <MPI installation location>/bin

ln -s $PBS_EXEC/bin/pbs_mpihp mpirun

3. Create a link to mpirun.hp from PBS_EXEC/etc/pbs_mpihp. pbs_mpihp will call the real HP mpirun:

cd $PBS_EXEC/etc

ln -s <MPI installation location>/bin/mpirun.hp pbs_mpihp

10.13.2.1 Setting Up rsh and ssh Commands

When wrapping HP MPI with pbs_mpihp, note that rsh is the default used to start the mpids. If you wish to use ssh
or something else, be sure to set the following or its equivalent in $PBS_HOME/pbs_environment:

PBS_RSHCOMMAND=ssh

10.13.2.2 Restrictions and Caveats for HP MPI and Platform MPI

• The pbs_mpihp script can be used only on HP-UX and Linux.

• The HP mpirun or mpiexec must be in the job submitter’s PATH.

• The version of the HP mpirun or mpiexec must be HPMPI or Platform.

• Under the wrapped HP MPI, the job’s working directory is changed to the user’s home directory.

10.13.3 Integrating LAM MPI and Open MPI

The 7.x LAM MPI and all Open MPI versions allow you to compile the MPI with the PBS TM interface. We recommend
compiling 7.x LAM MPI and all Open MPI versions with the TM module. You can either compile the later LAM with
TM or wrap it, but not both. (You can wrap the newer versions if you want, but compiling yields better results.)

All versions of LAM MPI and Open MPI can be transparent to the job submitter.

The 6.5.9 version of LAM MPI requires wrapping for integration.

Support for LAM MPI is deprecated.

10.13.3.1 Compiling LAM MPI 7.x/Open MPI with the TM Module

To integrate 7.x LAM MPI with PBS, compile it with the --with-boot-tm=/usr/pbs option. Next, check
laminfo to confirm that the the SSI line that says tm is there.

If the TM interface library is in the standard location, PBS_EXEC/lib/, Open MPI will find it and use it. You need to
explicitly configure with TM only if it’s in a non-standard location.
PBS Professional 2020.1.1 Administrator’s Guide AG-455

Chapter 10 Using MPI with PBS
To integrate Open MPI with PBS, configure Open MPI with the --with-tm command-line option to the configure
script. For example:

./configure --prefix=/opt/openmpi/1.4.4 --with-tm=${PBS_EXEC}

make

make install

After you compile LAM MPI or Open MPI on one host, make it available on every execution host that will use it, by
means of shared file systems or local copies.

For the Open MPI website information on compiling with the TM option, see:

http://www.open-mpi.org/faq/?category=building#build-rte-tm

10.13.3.2 Wrapping LAM MPI 6.5.9

PBS provides wrapper scripts so that you can integrate LAM MPI 6.5.9 with PBS by hand. The pbs_mpilam script is
used in place of mpirun, and the pbs_lamboot script replaces lamboot. The pbs_lamboot and pbs_mpilam
scripts allow PBS to clean up job processes, track and limit job resource usage, and perform accounting for all job pro-
cesses. You make LAM calls transparent to the user by allowing them to use unchanged lamboot and lamhalt calls
in their scripts.

The PBS command pbs_lamboot replaces the standard lamboot command in a PBS LAM MPI job, for starting
LAM software on each of the PBS execution hosts. Usage is the same as for LAM lamboot. All arguments except for
bhost are passed directly to lamboot. PBS will issue a warning saying that the bhost argument is ignored by PBS
since input is taken automatically from $PBS_NODEFILE. The pbs_lamboot command can be instructed to boot the
hosts using the tm module by setting the LAM_MPI_SSI_boot environment variable to tm, or by passing an argument to
pbs_lamboot that contains “-ssi boot tm”. In this case, the pbs_lamboot program does not redundantly con-
sult the $PBS_NODEFILE.

The PBS command pbs_mpilam replaces the standard mpirun command in a PBS LAM MPI job, for executing pro-
grams. It attaches the user’s processes to the PBS job. This allows PBS to collect accounting information, and to man-
age the processes. Usage is the same as for LAM mpirun. All options are passed directly to mpirun. If the where
argument is not specified, pbs_mpilam will try to run the user’s program on all available CPUs using the C keyword.

Make sure that you wrap the correct instance of the MPI. If a user’s job script would call a link, wrap the link. See sec-
tion 10.10.1, “Wrap the Correct Instance”, on page 450.

• You wrap LAM lamboot using pbs_lamboot.

a. Install LAM MPI into /usr/local/lam-6.5.9.

b. Rename LAM lamboot to lamboot.lam:

mv /usr/local/lam-6.5.9/bin/lamboot /user/local/lam-6.5.9/bin/lamboot.lam

c. Edit pbs_lamboot to change “lamboot” call to “lamboot.lam”:

d. Create a link for pbs_lamboot named lamboot:

cd /usr/local/lam-6.5.9/bin

ln -s PBS_EXEC/bin/pbs_lamboot lamboot
AG-456 PBS Professional 2020.1.1 Administrator’s Guide

Using MPI with PBS Chapter 10
At this point, using “lamboot” will actually invoke pbs_lamboot.

• You wrap LAM mpirun using the pbs_mpilam script.

a. Install LAM MPI into /usr/local/lam-6.5.9.

b. Rename LAM mpirun to mpirun.lam:

mv /usr/local/lam-6.5.9/bin/mpirun /user/local/lam-6.5.9/bin/mpirun.lam

c. Edit pbs_mpilam to change “mpirun” call to “mpirun.lam”

d. Create a link for pbs_mpilam named mpirun:

cd /usr/local/lam-6.5.9/bin

ln -s PBS_EXEC/bin/pbs_mpilam mpirun

For more information on pbs_lamboot and pbs_mpilam, see “pbs_lamboot” on page 68 of the PBS Professional
Reference Guide and “pbs_mpilam” on page 78 of the PBS Professional Reference Guide.

10.13.3.3 Setting up rsh and ssh Commands

If you intend to use ssh, you should set either LAMRSH or LAM_SSI_rsh_agent to the value "ssh -x", except under
SuSE Linux, where it should be ssh -n .

10.13.3.4 Setting up Environment Variables

Set the LAM_MPI_SSI_boot environment variable to tm so that pbs_lamboot boots the hosts from the tm module.

10.13.3.5 Verifying Use of TM Interface

To see whether your Open MPI installation has been configured to use the TM interface:

% ompi_info | grep tm

MCA ras: tm (MCA v2.0, API v2.0, Component v1.3)

MCA plm: tm (MCA v2.0, API v2.0, Component v1.3)

10.13.3.6 See Also

See www.lam-mpi.org for more information about LAM MPI.

See http://www.open-mpi.org/faq/?category=building#build-rte-tm for information about building
Open MPI with the TM option.

10.13.4 Integrating MPICH-P4

Wrapper is deprecated. PBS supplies a wrapper script called pbs_mpirun for integrating MPICH-P4 with PBS by
hand. The pbs_mpirun script allows PBS to clean up job processes, track and limit job resource usage, and perform
accounting for all job processes.

You can make pbs_mpirun transparent to job submitters. See the following steps.

10.13.4.1 Restrictions

• The pbs_mpirun command can be used only with MPICH using P4 on Linux.

• User names must be identical across hosts.
PBS Professional 2020.1.1 Administrator’s Guide AG-457

Chapter 10 Using MPI with PBS
10.13.4.2 Options for pbs_mpirun

The usage for pbs_mpirun is the same as mpirun except for the listed options. All other options are passed directly
to mpirun:

-machinefile

The value for this option is generated by pbs_mpirun. The value used for the -machinefile option is a
temporary file created from the PBS_NODEFILE in the format expected by mpirun.

If the -machinefile option is specified on the command line, a warning is output saying "Warning,
-machinefile value replaced by PBS".

-np

The default value for the -np option is the number of entries in PBS_NODEFILE.

10.13.4.3 Steps to Integrate MPICH-P4

To make pbs_mpirun transparent to the user, replace standard mpirun with pbs_mpirun. Make sure that you
wrap the correct instance of the MPI. If a user’s job script would call a link, wrap the link. See section 10.10.1, “Wrap
the Correct Instance”, on page 450.

• Install MPICH-P4 into <path to mpirun>

• Rename mpirun to mpirun.std:
mv <path to mpirun>/mpirun <path to mpirun>/mpirun.std

• Create link called mpirun in <path to mpirun> that points to pbs_mpirun
ln -s <path to pbs_mpirun>/pbs_mpirun mpirun

• Edit pbs_mpirun to change the call to mpirun so that it calls mpirun.std

At this point, using mpirun actually invokes pbs_mpirun.

10.13.4.4 Setting Up Environment Variables and Paths

• For pbs_mpirun to function correctly for users who require the use of ssh instead of rsh, you can do one of the
following:

• Set PBS_RSHCOMMAND in the login environment

• Set P4_RSHCOMMAND externally to the login environment, then have job submitters pass the value to PBS
via qsub(1)'s -v or -V arguments:

qsub -vP4_RSHCOMMAND=ssh ...

or

qsub -V ...

• Set P4_RSHCOMMAND in the pbs_environment file in PBS_HOME and then advise users to not set
P4_RSHCOMMAND in the login environment

• Make sure that PATH on remote machines contains PBS_EXEC/bin. Remote machines must all have
pbs_attach in the PATH.

• The PBS_RSHCOMMAND environment variable should not be set by the user.

• When using SuSE Linux, use “ssh -n” in place of “ssh”.
AG-458 PBS Professional 2020.1.1 Administrator’s Guide

Using MPI with PBS Chapter 10
10.13.5 Integrating HPE MPI

PBS supplies its own mpiexec on machines running supported versions of HPE MPI, in order to provide a standard
interface for use by job submitters. This mpiexec calls the standard HPE mpirun. If users call this mpiexec, PBS
will manage, track, and cleanly terminate multi-host MPI jobs.

If job submitters call HPE MPI directly, they must use pbs_attach in their job scripts in order to give PBS the same
control over jobs; see the HPE documentation.

MPI jobs can be launched across multiple machines. PBS users can run an MPI job within a specific partition.

When job submitters use mpiexec in their job scripts, HPE MPI is transparent. Jobs run normally whether the PBS-
supplied mpiexec is called inside or outside of PBS.

10.13.5.1 Supported Platforms

The PBS-supplied mpiexec runs on machines running supported versions of HPE MPI.

10.13.5.2 Steps to Integrate HPE MPI

Make sure that the PBS-supplied mpiexec is in each user’s PATH.

10.13.5.3 Invoking HPE MPI

PBS uses the MPI-2 industry standard mpiexec interface to launch MPI jobs within PBS. If executed on a non-HPE
system, PBS's mpiexec will assume it was invoked by mistake. In this case it will use the value of PATH (outside of
PBS) or PBS_O_PATH (inside PBS) to search for the correct mpiexec and if one is found, exec it.

10.13.5.4 Using HPE MPI Over InfiniBand

To use InfiniBand, set the MPI_USE_IB environment variable to 1.

10.13.5.5 Using CSA with HPE MPI

PBS support for CSA on HPE systems is no longer available. The CSA functionality for HPE systems has been
removed from PBS.

10.13.5.6 Prerequisites

• In order to run single-host or multi-host jobs, the HPE Array Services must be correctly configured. An Array Ser-
vices daemon (arrayd) must run on each host that will run MPI processes. For a single-host environment,
arrayd only needs to be installed and activated. However, for a multi-host environment where applications will
run across hosts, the hosts must be properly configured to be an array.

• HPE systems communicating via HPE's Array Services must all use the same version of the sgi-mpt and sgi-
arraysvcs packages. HPE systems communicating via HPE's Array Services must have been configured to inter-
operate with each other using the default array. See HPE’s array_services(5) man page.

• “rpm -qi sgi-arraysvcs” should report the same value for Version on all systems.

• “rpm -qi sgi-mpt” should report the same value for Version on all systems.

• “chkconfig array” must return “on” for all systems

• /usr/lib/array/arrayd.conf must contain an array definition that includes all systems.

• /usr/lib/array/arrayd.auth must be configured to allow remote access:

The “AUTHENTICATION NOREMOTE” directive must be commented out or removed
PBS Professional 2020.1.1 Administrator’s Guide AG-459

Chapter 10 Using MPI with PBS
Either “AUTHENTICATION NONE” should be enabled or keys should be added to enable the SIMPLE authentica-
tion method.

• If any changes have been made to the arrayd configuration files (arrayd.auth or arrayd.conf), the array
service must be restarted.

• rsh(1) must work between the systems.

• PBS uses HPE's mpirun(1) command to launch MPI jobs. HPE’s mpirun must be in the standard location.

• The location of pbs_attach(8B) on each vnode of a multi-vnode MPI job must be the same as it is on the pri-
mary execution host vnode.

10.13.5.7 Environment Variables

• If the PBS_MPI_DEBUG environment variable's value has a nonzero length, PBS will write debugging information
to standard output.

• The PBS_ENVIRONMENT environment variable is used to determine whether mpiexec is being called from
within a PBS job.

• If it was invoked by mistake, the PBS mpiexec uses the value of PBS_O_PATH to search for the correct
mpiexec.

• To use InfiniBand, set the MPI_USE_IB environment variable to 1.

10.14 How Processes are Started Using MPI and PBS

10.14.1 Starting Processes under Non-integrated MPIs

The following figure illustrates how processes are started on sister vnodes when using a non-integrated MPI:

Figure 10-4:PBS does not know about the processes on vnodes 2 and 3, because those processes were

generated outside of the scope of PBS.
AG-460 PBS Professional 2020.1.1 Administrator’s Guide

Using MPI with PBS Chapter 10
10.14.2 Starting Processes under Wrapped MPIs

The following figure illustrates how processes are started on sister vnodes when using a wrapped MPI:

Figure 10-5: PBS knows about processes on vnodes 2 and 3, because pbs_attach tells those MoMs

which processes belong to which jobs
PBS Professional 2020.1.1 Administrator’s Guide AG-461

Chapter 10 Using MPI with PBS
10.14.3 Starting Processes Under MPIs Employing the TM
Interface

The following figure illustrates how processes are started on sister vnodes when using an MPI that employs the TM inter-
face:

10.15 Limit Enforcement with MPI

PBS can enforce the following for a job using MPI:

• Per-process limits via setrlimit(2) on sister vnodes

• The setrlimit process limit can be enforced only when using an MPI that employs the TM interface
directly, which is Open MPI only (and LAM MPI, which is deprecated)

• Limits set via MoM parameters, e.g. cpuburst and cpuaverage, on sister vnodes

• PBS can enforce these limits using any integrated MPI

• Job-wide limits such as cput, mem

• PBS can enforce job-wide limits using any integrated MPI

Once a process is started, process limits cannot be changed.

Figure 10-6: PBS knows about processes on vnodes 2 and 3, because the TM interface talks directly to

pbs_mom, and pbs_mom starts the processes on vnodes 2 and 3
AG-462 PBS Professional 2020.1.1 Administrator’s Guide

Using MPI with PBS Chapter 10
10.16 Restrictions and Caveats for MPI Integration

• Be sure to wrap the correct instance of the MPI. See section 10.10.1, “Wrap the Correct Instance”, on page 450

• Some applications write scratch files to a temporary location in tmpdir. The location of tmpdir is host-depen-
dent. If you are using an MPI that is not integrated with the PBS TM interface, and your application needs scratch
space, the location of tmpdir for the job should be consistent across execution hosts. You can specify the root for
tmpdir in the MoM’s $tmpdir configuration parameter. PBS sets the job’s TMPDIR environment variable to the
temporary directory it creates for the job.
PBS Professional 2020.1.1 Administrator’s Guide AG-463

Chapter 10 Using MPI with PBS
AG-464 PBS Professional 2020.1.1 Administrator’s Guide

11

Configuring PBS for Cray

11.1 Support for Shasta

PBS runs on Shasta exactly as it does on standard Linux machines. The only information in this chapter that applies to
Shasta is contained within this section (Section 11.1, "Support for Shasta"). Each compute node behaves like a standard
Linux machine, and runs one MoM. By default, each compute node is represented by one vnode. When you create
vnodes on Shasta, use the host shortname as the vnode name.

11.1.1 Shasta Is Different from XC

If you are used to PBS on Cray XC machines, working with Shasta is different. Configuring PBS on Shasta is the same
as on a standard Linux machine. You can ignore all of the Cray XC instructions in the rest of this chapter. For example:

• Batch mode and state do not apply

• Special Cray built-in resources do not apply to Shasta

• You don’t need to set vntype

• You don’t need node_fail_requeue to be zero

• The PBS_alps_inventory_check hook is not used for Shasta

• You don’t need vnode_pool

• Hyperthreads are the same as on a standard Linux machine

11.1.1.1 Not Supported on Shasta

• Suspend/resume is not supported on Shasta

• Power awareness is not supported on Shasta

11.1.2 Hook for PBS on Shasta

On Shasta, PBS uses a built-in hook called PBS_cray_atom, which runs for execjob_begin and execjob_end events.
The hook notifies the Cray when each job starts, and when each job should be deleted. This hook should be enabled by
default, but we recommend making sure that it is.

If the hook alarms while running for the execjob_begin event (POST and DELETE), the vnode(s) where the hook was
running are marked offline.

If the hook alarms while running for the execjob_end event (DELETE), the hook rejects the action. The default timeout
for this hook is 300 seconds.
PBS Professional 2020.1.1 Administrator’s Guide AG-465

Chapter 11 Configuring PBS for Cray
11.1.2.1 Shasta Hook Configuration File

The configuration file for the PBS_cray_atom hook is formatted as a JSON object. Here is the default configuration
file:

{

"post_timeout": 30,

"delete_timeout": 30,

"unix_socket_file": "/var/run/jacsd/jacsd.sock"

}

11.1.2.1.i Configuration File Parameters

"post_timeout"

Time limit for POST requests.

Units: seconds

Format: float

Default: 30 seconds

"delete_timeout"

Time limit for DELETE requests.

Units: seconds

Format: float

Default: 30 seconds

"unix_socket_file"

Path to the UNIX socket file to be used for authentication.

Format: string

Default: "/var/run/jacsd/jacsd.sock"

11.1.3 Responding to Node Health

On Shasta, Cray tasks take care of marking nodes unavailable or available. If Cray tasks decide that node health is not
acceptable, Cray tasks will bring down the PBS MoM on that node. After you restore the node to usability, you must
restart the MoM. If there are running jobs, use the pbs_mom -p option in order to preserve and track running jobs. See
“Impact of Stop-Restart on Running Linux Jobs” on page 169 in the PBS Professional Installation & Upgrade Guide.

11.2 Configuring PBS for Cray XC Series

PBS provides features designed to support the Cray XC series. The rest of the chapter describes the special behavior of
PBS on Cray XC systems only.
AG-466 PBS Professional 2020.1.1 Administrator’s Guide

Configuring PBS for Cray Chapter 11
11.3 Introduction to PBS on Cray XC

PBS provides support for Cray XC systems by providing the following:

• PBS automatically defines vnodes for Cray XC compute nodes

• PBS automatically sets resources and attributes for vnodes representing Cray XC nodes

• PBS automatically creates custom resources that correspond to Cray XC resources

• Cray XC users can submit jobs through PBS using the PBS select and place statements.

11.4 Relationship of PBS Vnodes to Cray XC Nodes

PBS represents each login node as a vnode. A compute node is represented as a single vnode. A PBS MoM runs on each
login node; this MoM manages the vnodes representing the compute nodes associated with the login node. On systems
with multiple login nodes, each MoM on each login node manages every compute node. When this is the case, each
compute node is reported by more than one login node. The Mom attribute of a vnode representing a compute node con-
tains the hostname of each login node reporting the compute node. Each hostname is the FQDN or the short name of the
reporting login node, depending on whatever is returned by the DNS.

11.4.1 How PBS Handles Changes in Cray XC Inventory

11.4.1.1 Reporting Changes in Vnode List in Cray XC

If a previously-reported vnode is no longer reported when the vnode list is created, because it is no longer available in
the vnode definition file and the inventory, it is missing from the vnode list. The server marks missing vnodes as stale.

PBS provides a Boolean MoM configuration option that allows you to specify whether MoM tells the server that a vnode
is missing. When the $vnodedef_additive MoM configuration option in PBS_HOME/mom_priv/config is True,
MoM does not tell the server that any vnodes are missing. This means that the server does not mark missing vnodes as
stale. When $vnodedef_additive is False, MoM tells the server that vnodes are missing, and the server marks the miss-
ing vnodes as stale. The default value for $vnodedef_additive for a MoM managing a Cray XC is False. The default
value for other systems is True.

When a compute node goes down and the ALPS inventory no longer reports it, the vnode is marked stale once PBS que-
ries for the inventory. If you bring the compute node back up, you can HUP the MoM in order to make the vnode usable
by PBS. Alternatively, if PBS fails to make a Cray XC reservation, MoM will re-read the inventory and re-create the
vnode list. A vnode is marked stale when any of the MoMs that reported the vnode stop reporting it.

The state of a vnode representing a compute node that is managed by more than one login node is not changed by a MoM
going down, unless all of its MoMs are down. A vnode representing a compute node is marked down when all of the
MoMs that manage the vnode are down.

11.4.1.2 When MoMs Report Conflicting Information in Cray XC

When more than one MoM reports information about a vnode, and the information conflicts, PBS uses the most recent
information.

11.4.1.3 Vnode Resources on Stale Vnodes in Cray XC

If the ALPS inventory no longer reports information for a vnode, and the vnode is not defined in a vnode definition file,
all resource and attribute information for that vnode is removed or set to zero, and the vnode is marked stale.
PBS Professional 2020.1.1 Administrator’s Guide AG-467

Chapter 11 Configuring PBS for Cray
If the ALPS inventory no longer reports information for a vnode, but the vnode is defined in a vnode definition file, the
vnode’s attributes and resources retain their settings and the vnode is not marked stale.

11.4.1.4 Periodically Re-reading ALPS Inventory in Cray XC

PBS comes shipped with a built-in hook that periodically checks to see whether the inventory is consistent across ALPS
and PBS. If it is not, it HUPs a MoM on a login node so that PBS has a current copy of the ALPS inventory. This hook is
named PBS_alps_inventory_check. By default, this hook runs every 300 seconds; you can change the frequency by
setting the hook’s freq attribute:

#qmgr -c "set pbshook <hook name> freq=<new frequency>"

11.5 Requirements for Cray XC

• For a compute node to be managed by the PBS MoM, the node must be in batch mode, and in state UP.

11.6 Restrictions for Cray XC

• A Cray XC compute node cannot be used by more than one application at the same time.

• PBS does not report cput or mem for jobs running on a Cray XC compute node.

11.7 Resources, Parameters, etc. for Cray XC

PBS provides built-in and custom resources for the Cray XC. PBS also provides some built-in resources for all plat-
forms, but these resources have specific uses on the Cray XC.

11.7.1 Resources for Cray XC

accelerator

accelerator_memory

accelerator_model

energy

eoe

naccelerators

PBScrayhost

PBScraylabel_<label name>

PBScraynid

PBScrayorder

vntype

See “Resources Built Into PBS” on page 265 of the PBS Professional Reference Guide.
AG-468 PBS Professional 2020.1.1 Administrator’s Guide

Configuring PBS for Cray Chapter 11
11.7.2 Scheduler Attributes for Cray XC

do_not_span_psets

only_explicit_psets

11.7.3 MoM Configuration Options for Cray XC

$alps_client

$alps_release_jitter

$alps_release_timeout <timeout>

$alps_release_wait_time

pbs_accounting_workload_mgmt <value>

$vnodedef_additive

11.8 Automatic Configuration for Cray XC

11.8.1 Vnode List Creation for Cray XC

You must create a vnode for each login node, but PBS automatically creates the vnodes representing compute nodes.
PBS creates a list of vnodes by reading the Cray XC inventory and any vnode definition files. PBS automatically creates
one vnode to represent each Cray XC compute node. All NUMA nodes in a compute node are represented by the same
vnode. PBS does this automatically when any of the following happens:

• Startup of the MoM

• The MoM is HUPed

• PBS queries the Cray XC for the inventory (e.g., when PBS fails to confirm a Cray XC reservation)

• PBS times out on trying to release an ALPS request.

11.8.2 Automatic Vnode Attribute and Resource Settings for
Cray XC

PBS automatically sets the values of certain vnode attributes and resources. Vnode attribute and resource settings are
derived from values returned in the inventory, according to the following rules:

resources_available.accelerator

Set to True when this vnode’s host has at least one accelerator in state UP.

resources_available.accelerator_memory

Set to the value of basil_accelerator_gpu.memory.

resources_available.accelerator_model

Set to the value of basil_accelerator_gpu.family.

resources_available.naccelerators

Number of Accelerator entries for the host that are in state UP.

resources_available.host

Values of node’s mpp_host and node_id are concatenated.
PBS Professional 2020.1.1 Administrator’s Guide AG-469

Chapter 11 Configuring PBS for Cray
Format: <mpp_host>_<node_id>

Example: Given a compute node where mpp_host = examplehost and node_id = 8,
resources_available.host is set to examplehost_8.

resources_available.PBScrayhost

On CLE 3.0 and higher, set to value of mpp_host

resources_available.PBScraylabel_<label name>

For the label on a compute node, PBS creates a custom Boolean resource, and sets it to True on the vnode rep-
resenting that compute node. The format for the name of this resource is PBScraylabel_<label>. For example,
if the label is Blue, then the name of the Boolean resource is PBScraylabel_Blue.

resources_available.PBScraynid

The value of PBScraynid is set to the value of node_id for this compute node.

resources_available.PBScrayorder

Set to the position in the Cray XC node list of the associated node. If this vnode’s associated node was nth in
the node list, the value of PBScrayorder is n.

resources_available.PBScrayseg

Not used.

resources_available.vntype

On compute nodes, set to cray_compute

On internal login nodes, set to cray_login

Mom vnode attribute

This is the canonical hostname of the login node where MoM runs.

Name of vnode
Value of node’s mpp_host and node_id are concatenated.

Format: <mpp_host>_<node_id>

Example: Given node_id = 8 and mpp_host = examplehost, the vnode name is examplehost_8.

sharing vnode attribute

Set to force_exclhost

11.8.3 Automatic MoM Parameter Settings for Cray XC

$alps_release_jitter <maximum jitter>

Cray XC only. PBS sends requests to ALPS to release a finished job at intervals specified by the sum of
$alps_release_wait_time and a randomly generated value between zero and maximum jitter, in seconds.

Format: Float

Default: 0.12 seconds

$alps_release_timeout <timeout>

Specifies the amount of time that PBS tries to release an ALPS request before giving up. We recommend that
the value for this parameter be greater than the value for suspectbegin.

Format: Seconds, specified as positive integer.

Default: 600 (10 minutes)
AG-470 PBS Professional 2020.1.1 Administrator’s Guide

Configuring PBS for Cray Chapter 11
$alps_release_wait_time <wait time>

Cray XC only. PBS sends requests to ALPS to release a finished job at intervals specified by the sum of wait
time and a randomly generated value between zero and the maximum specified in $alps_release_jitter, in sec-
onds.

Format: Float

Default: 0.4 seconds

$vnodedef_additive MoM configuration option

PBS automatically sets the value of the $vnodedef_additive MoM configuration option to False on any MoM
on a login node. See section 11.7.3, “MoM Configuration Options for Cray XC”, on page 469.

11.8.4 Default Scheduler Attribute Settings for Cray XC

do_not_span_psets

This attribute is set to False by default. See section 11.7.2, “Scheduler Attributes for Cray XC”, on page 469.

11.9 Recommended Manual Configuration for Cray

XC

11.9.1 Configuring Vnode Names on Cray XC

You can use the PBS_MOM_NODE_NAME configuration parameter in /etc/pbs.conf to tell MoM what name was
used to create the vnode at the server.

11.9.1.1 Requirements for PBS_MOM_NODE_NAME on Cray XC

You can use any resolvable host name for a vnode name when you create a vnode at the server, if you use the
PBS_MOM_NODE_NAME configuration parameter to tell MoM about the name that was used to create the vnode at
the server.

MoM accepts only a PBS_MOM_NODE_NAME that is known to the resolver of the "hosts" map; for example, it
appears somewhere in /etc/hosts on the execution host, is mentioned in an NIS map, or is a name known to DNS serv-
ers, possibly after adding a domain to the search list. If the name cannot be resolved, MoM will refuse to start.

You cannot use dots in PBS_MOM_NODE_NAME.

11.9.1.2 When to Use PBS_MOM_NODE_NAME on Cray XC

You may need to use a name for your parent vnode that is different from the output of the hostname command, for rea-
sons such as the following:

• You want vnodes named after their function in the complex, not an accidental hostname that may refer to physical
placement of the node. Frequently when that hardware host is not booted, another node with another official host-
name needs to assume those functions

• The hostname is maintained by a cluster manager but is a private name that may be unknown to the PBS server or
other execution nodes, while the alias is actually a globally valid name

• Name resolution is inconsistent on the complex, i.e. the same name refers to different IP addresses on different hosts
in the cluster, or the canonicalized name is different on different hosts
PBS Professional 2020.1.1 Administrator’s Guide AG-471

Chapter 11 Configuring PBS for Cray
The name you specify in PBS_MOM_NODE_NAME can then be used consistently on the server, in Version 2 configu-
ration files, and in hooks, regardless of the event type; pbs.get_local_nodename() in hooks will return this name,
which always matches the name of the parent vnode of the execution host.

Note that it is possible, in some clusters, for PBS_LEAF_NAME and PBS_MOM_NODE_NAME to be associated
with different interfaces and IP addresses on the execution host.

11.9.1.3 Avoid Problems with Vnode Naming on Cray XC

If you use a name different from the output of the hostname command to create a vnode, and you don’t specify it in
PBS_MOM_NODE_NAME, this can create problems when Version 2 configuration files or execution event hooks are
used.

• Version 2 configuration files need to use the MoM parent vnode name to change attributes of the parent vnode, but
the server knows the parent vnode by another name

• When an exechost_startup or exechost_periodic hook operates on the vnode_list[], the vnode_list[] will con-
tain the vnode named after its local hostname and not the name used on the server to create the vnode, and the
vnode_list[] (with its different naming) will be propagated to the server

Both these problems may render the original vnode created on the server stale (and replaced by a vnode created using
MoM's view of the parent vnode name), which also means that resources set using qmgr on the server will be lost, since
they will be set on the stale vnode and not on the vnode MoM created to replace it.

Hooks will face additional problems:

• Vnode naming in pbs.event().vnode_list[] will be inconsistent in different hook events, since a vnode_list[] cre-
ated locally by MoM will use different naming from that for a vnode_list[] created through the job's exec_vnode
and exec_host attributes (which are set by the scheduler and the server)

• In exechost_startup and exechost_periodic hooks, the vnode_list[] does not contain a full representation of the
vnode on the server, since not all attributes and resources are propagated; it will be impossible to correctly fetch the
missing resources by querying the server, since the vnode will be called differently in pbs.event().vnode_list[] and
pbs.server().vnodes

• It will be very hard to determine which portion of a job's exec_vnode attribute corresponds to the local host in
hooks, since pbs.get_local_nodename() will return the node's hostname and exec_vnode will use the vnode
name used on the server

11.9.2 Set Scheduling Parameters for Cray XC

• If your server/scheduler runs on a non-CLE machine, add the vntype resource to the “resources:” line in
<sched_priv directory>/sched_config. If your server/scheduler runs on a CLE machine, this happens
automatically.

• We recommend that you add the naccelerators resource to the “resources:” line in <sched_priv direc-
tory>/sched_config.

• If you want the scheduler to honor the following resources, add them as well:

PBScrayhost

PBScraynid

accelerator_memory

accelerator_model

• Do not add the following resources to the “resources:” line:

PBScrayorder

nchunk
AG-472 PBS Professional 2020.1.1 Administrator’s Guide

Configuring PBS for Cray Chapter 11
11.9.2.1 Caveats for Replacing Resources Used for Gating for Cray

XC

• There is no support for resources_min.nchunk and resources_max.nchunk. If set, their behavior is undefined.

• If you wish to set resources_min.mpiprocs or resources_max.mpiprocs, you must make sure that mpiprocs can
be counted for each job chunk. If the job did not request mpiprocs with each chunk, the job must inherit mpiprocs
= 1 for each chunk.

Set default_chunk.mpiprocs to 1 on the server:

Qmgr: s s default_chunk.mpiprocs = 1

11.9.3 Keeping Jobs Within One Host for Cray XC

To prevent jobs from being scheduled across multiple Cray XC hosts, you must limit jobs to a single value for PBScray-

host. Do the following:

• Set node_group_enable to True:
Qmgr: s s node_group_enable=True

• Set node_group_key to PBScrayhost:
Qmgr: s s node_group_key=PBScrayhost

• Set do_not_span_psets to True

Qmgr: set sched <scheduler name> do_not_span_psets=true

If a job requests more resources than can be supplied from a single host, and the job does not specify a value for
PBScrayhost, the job is scheduled across multiple Cray XC systems. To prevent this from happening, you can set the
do_not_span_psets scheduler attribute to True, and add PBSCrayhost to node_group_key. See section 11.7.2,
“Scheduler Attributes for Cray XC”, on page 469.

11.9.4 Allowing Scheduling on Nearby Vnodes on Cray XC

To help the scheduler place each job requiring more than one vnode on vnodes that are close to each other, make the
scheduler sort the vnodes based on their values for PBScrayorder. The vnodes will be listed in the order that their nodes
are listed in the Cray XC inventory. To do this, specify the following in <sched_priv directory>/config:

node_sort_key: “PBScrayorder LOW”

11.9.5 Allowing Users to Request Useful Groups of Nodes on
Cray XC

Job submitters can use select and place to request the groups of vnodes they want. However, you must provide the tools.
Users may need to group their nodes by the certain criteria, for example:

• Certain nodes are fast nodes

• Certain nodes share a required or useful characteristic

• Some combination of nodes gives the best performance for an application
PBS Professional 2020.1.1 Administrator’s Guide AG-473

Chapter 11 Configuring PBS for Cray
For these cases, you can do either of the following:

• Create custom resources, and set them on each vnode so that the important characteristics of the vnode can be
requested. For example, if a vnode is fast, create a custom string resource called “speed” and set it to fast on that
vnode.

• Label each node with its important characteristics. For example, if a node is both fast and best for App1, give it two
labels, fast, and BestForApp1. PBS creates custom Boolean resources called PBScraylabel_<label name> and
sets them to True on the appropriate vnodes.

11.9.6 Allowing Users to Request Login Node Groups on Cray
XC

If users need to request groups of both esLogin nodes and internal login nodes, do the following:

1. Create a new string value for the vntype resource, for example cray_compile.

2. Use qmgr to set the value for vntype on the vnodes representing esLogin nodes:

qmgr -c “set node esLogin resources_available.vntype+=”cray_compile”

3. Use qmgr to add cray_compile to the vnodes representing internal login nodes. (resources_available.vntype is
automatically set to cray_login.)

qmgr -c “set node internal_Login resources_available.vntype +=”cray_compile””

If you use pbsnodes -av to check resources_available.vntype for internal_Login, it now looks like this:

resources_available.vntype=cray_login,cray_compile

11.9.7 Set ALPS Reservation Release Timeout on Cray XC

The $alps_release_timeout <timeout> parameter specifies the amount of time that PBS tries to release an ALPS reser-
vation before giving up. After this amount of time has passed, PBS stops trying to release the ALPS reservation, the job
exits, and the job’s resources are released. PBS sends a HUP to the MoM so that she rereads the ALPS inventory to get
the current available ALPS resources.

You can set the amount of time that PBS waits between sending release requests to ALPS via the
$alps_release_wait_time <wait time> and $alps_release_jitter <maximum jitter> MoM parameters. PBS gener-
ates a random value between zero and the value of $alps_release_jitter, and adds it to the value of
$alps_release_wait_time, to determine how long to wait from one request to the next.

We recommend that you set the value for the $alps_release_timeout MoM parameter to a value greater than the value of
the suspectbegin Cray XC node health variable. You want to allow the Cray XC node health check to reach its timeout
before PBS gives up on trying to release the reservation.

The default for $alps_release_timeout is 600 seconds.

11.9.8 Enable Local Copy on Cray XC

If your site has disabled the use of remote operation functions ("r" commands) and output cannot be returned for jobs
running on compute nodes, enable the use of the cp command by adding $usecp to the $PBS_HOME/mom_priv/
config file on each login node.
AG-474 PBS Professional 2020.1.1 Administrator’s Guide

Configuring PBS for Cray Chapter 11
11.9.9 Prevent Jobs from Being Requeued on Cray XC

We recommend setting the node_fail_requeue server attribute to 0 (zero) for Cray X* series machines. Why? There
are three main cases where node_fail_requeue comes into play:

• Network failure between server and primary execution host MoM

This is what node_fail_requeue >0 helps with the most, since both the MoM and job processes are still running, so
it acts as a buffer to allow the network failure to correct itself before action is taken on the job.

• Primary pbs_mom process crashes

With node_fail_requeue set to a value >0, job processes on the Cray XC execution hosts continue to run and the
ALPS reservation for the requeued job persists. This leads to PBS getting out of sync with ALPS (ALPS would not
free the reservation that the requeued job was using), but PBS sees the resources as free since the job was requeued.
The ALPS/PBS sync issue is handled properly by the remaining MoMs re-reading the ALPS inventory and seeing
that these resources are unavailable. So we wind up wasting resources in this case. It is possible that the task com-
pleting on the Cray XC compute nodes from the original requeued job would still be of value to the job submitter.

• Primary pbs_mom host failure (e.g., someone tripped over the power cord)

With node_fail_requeue set to a value >0, job processes continue to run on the Cray XC compute nodes under
ALPS, though the running job script disappears upon job requeue. We run into the same case as when pbs_mom
crashes.

In summary, with node_fail_requeue set to 0 on a Cray XC, the first case is still handled properly since jobs are not
requeued due to a temporary network outage between the server and MoM on the login node. The second and third cases
do not result in having the computation tasks running on two sets of Cray XC compute nodes (since PBS can’t clean
them up without the MoM that crashed). This is probably what you want.

For these jobs anything that the job was supposed to do after the aprun command in the job script does not occur, but
the results from the number crunching would still be available.

11.10 Improving Server/MoM Inventory Performance

for Cray XC

You can use the vnode attribute named vnode_pool to reduce the communication traffic between server and MoMs.

The vnode_pool attribute allows just one MoM, instead of all, to report inventory upon startup. This allows faster star-
tup and less network communication between the server and the non-reporting MoMs. You use the attribute to tell PBS
which MoMs report the same set of vnodes. PBS sees all login nodes with the same setting for vnode_pool as being part
of the same Cray XC. Set this attribute to a different value for each Cray XC.

The type is int, and the Python type is int. The default value is zero, i.e. disabled. To enable the feature, set the attribute
to any value greater than zero.

The vnode_pool vnode attribute can be set for each login node on a Cray XC running a MoM reporting the compute
node inventory for the same Cray XC system. If you set this attribute for one of the MoMs reporting the same inventory,
you must set it for all. Set the attribute to the same value on each of these nodes.

If one of the inventory-reporting MoMs goes down, PBS chooses another to report the inventory.

11.10.1 Setting the vnode_pool Attribute on Cray XC

• The vnode_pool attribute can be set only by a PBS Manager, and only in a vnode creation command. Format:

Qmgr: create node <parent vnode name> vnode_pool=<value>
PBS Professional 2020.1.1 Administrator’s Guide AG-475

Chapter 11 Configuring PBS for Cray
For example, if you have four login nodes running MoMs reporting the same compute node inventory, set
vnode_pool at each of those vnodes to 1.

• This attribute cannot be set or altered once the vnode is created; the attribute must be set during vnode creation.

• Do not define this attribute in a vnode definition file. To do so will give unspecified results.

• Do not attempt to set this attribute on a non-Cray machine. Setting the attribute on a non-Cray is unsupported and
will result in undefined behavior.

11.10.2 Logging for Cray XC

11.10.2.1 MoM Log Messages Related to vnode_pool on Cray XC

• Recorded when a non-inventory-reporting MoM in a vnode pool is sent a Hello message by the Server:
"Hello (no inventory required) from server at <server address>"

Log level: PBSEVENT_SYSTEM

11.10.2.2 Server Log Messages Related to vnode_pool on Cray XC

• Recorded when a node is created or being recovered from the database and the specified vnode_pool value is nega-
tive or equal to zero:
"invalid vnode_pool provided"

Log level: PBSEVENT_ADMIN

• Recorded when an attempt is made to set or alter vnode_pool on an existing node:
"Unsupported actions for vnode_pool"

Log level: PBSEVENT_ADMIN

• Recorded when a MoM is first reporting her nodes to the server, and the vnode_pool appears in a vnode definition
file:
"Error <error code> setting attribute vnode_pool in update for vnode <name>"

Log level: PBSEVENT_SYSTEM

• Recorded when a MoM sends either an IS_UPDATE or IS_UPDATE2 message to the Server and the sending:
pbs_mom is in a vnode pool
"POOL: IS_UPDATE<x> received"

Log level: PBSEVENT_DEBUG4

• Recorded when an update of the database failed when updating the Mom attribute of a vnode:
"write_single_node_mom_attr, Failed to update 'Mom' attribute"

Log level: PBSEVENT_ERROR

• Recorded when the inventory-reporting MoM is set, including each time the inventory-reporting MoM changes:
"Setting inventory_mom for vnode_pool <x> to <Mom name>"

Log level: PBSEVENT_DEBUG

• Recorded when a MoM is added to a vnode pool:
"Mom <Mom name> added to vnode_pool <x>"

Log level: PBSEVENT_DEBUG3

• Recorded when a node is created or being recovered from the database:
"vnode_pool value is <x>"
AG-476 PBS Professional 2020.1.1 Administrator’s Guide

Configuring PBS for Cray Chapter 11
Log level: PBSEVENT_DEBUG3

• Recorded during MoM creation when a MoM is being added to a vnode pool:
"POOL: cross linking <x> vnodes from <mom>"

Log level: PBSEVENT_DEBUG4

11.11 Synchronizing PBS with ALPS Inventory on

Cray XC

PBS comes shipped with a built-in periodic hook that regularly checks to see whether PBS is in sync with the ALPS
inventory. If it is not, it HUPs the MoM on the first login node so that PBS has a current copy of the ALPS inventory.

By default, the hook is enabled on Cray X* series machines, and disabled on all other platforms. The hook runs as
Administrator.

This hook is named PBS_alps_inventory_check.

By default, this hook runs every 300 seconds; you can change the frequency by setting the hook’s freq attribute:

#qmgr -c "set pbshook PBS_alps_inventory_check freq=<new frequency>”

The timeout for the hook is 90 seconds.

The hook distinguishes multiple Cray XCs associated with a single PBS server by means of the PBScrayhost resource.
Each MoM that runs the inventory hook (there will be as many of these MoMs as there are discrete Cray XC systems)
will only attempt to inventory its own nodes.

The hook handles the case where there are nodes other than cray_login and cray_compute nodes on a server. It also
allows a site to set the vntype resource on these nodes to some other string besides "cray_compute" or "cray_login". If
the hook is running on such a node, it knows that it cannot process the inventory.

The hook ignores "offline" nodes for inventory purposes. If a cray_login node is "offline", it will be ineligible to be the
MoM that runs the inventory hook. If a cray_compute node is "offline", then it may be either present or absent in the
ALPS inventory without causing a SIGHUP and inventory reread. This allows a site to offline a compute node in PBS to
prevent it from being scheduled without having to disable it in ALPS.

11.11.1 Prerequisites for Cray XC

The hook requires that the name of the cray_login parent vnode resolves to one of the addresses of the node it's running
on.

11.12 Support for Xeon Phi on Cray XC

11.12.1 Creating Xeon Phi Vnodes on Cray XC

PBS Professional 2020.1.1 supports Xeon Phi nodes on the Cray XC running CLE 6.0. PBS automatically creates one
vnode per Xeon Phi node, and assigns that Xeon Phi node to that vnode. PBS queries the Cray XC for information about
the Xeon Phi nodes and automatically sets the following values for the vnode:

• The current_aoe attribute

• The hbmem resource

• The vntype resource to cray_compute
PBS Professional 2020.1.1 Administrator’s Guide AG-477

Chapter 11 Configuring PBS for Cray
11.12.1.1 PBS Vnodes and Segments or NUMA Nodes on Cray XC

Regardless of the number of segments or NUMA nodes per Xeon Phi node, PBS creates one vnode per Xeon Phi node.

11.12.1.2 Indicating Current AOE on Cray XC

PBS indicates the current AOE for each vnode by setting the value of the current_aoe attribute to the concatenated
returned values of numa_cfg and hbm_cache_pct. So for example if numa_cfg is a2a and hbm_cache_pct is 0, the
value of current_aoe is a2a_0. PBS queries BASIL for values for numa_cfg and hbm_cache_pct.

Valid values for numa_cfg: a2a, snc2, snc4, hemi, quad

Valid values for hbm_cache_pct: 0, 25, 50, 100

11.12.1.3 Indicating High-bandwidth Memory on Cray XC

This version of PBS automatically sets the value of resources_available.hbmem to the value of hbm_size_mb
returned by BASIL.

11.12.1.4 Validating Xeon Phi Model in Request on Cray XC

You can use a queuejob hook to validate the Xeon Phi model a user requests for a job.

A Xeon Phi model has acceptable values with either of the following:

• No AOE is requested

• Valid values for 'numa_cfg' and 'hbm_cache_pct
AG-478 PBS Professional 2020.1.1 Administrator’s Guide

Configuring PBS for Cray Chapter 11
11.12.1.4.i Example queuejob Hook for Validating Xeon Phi Models on Cray XC

import pbs

e = pbs.event()

j = e.job

try:

 knl_model = j.Resource_List['aoe']

 if knl_model is None:

 res_spec = j.Resource_List['select']

 if res_spec is not None:

 for s in str(res_spec).split('+')[0].split(':'):

 if s[:4] == 'aoe=':

 knl_model = s.partition('=')[2]

 break

 if knl_model is None:

 e.accept()

 else

 pbs.logmsg(pbs.LOG_DEBUG, "Job requested knl_model '%s'" % str(knl_model))

 numa_cfg = str(knl_model).split('_')[0]

 hbm_cache_pct = str(knl_model).split('_')[1]

 if num_cfg not in [‘a2a’, ‘snc2’, ‘snc4’, ‘hemi’, ‘quad’] or hbm_cache_pct not in [‘0’,
‘25’, ‘50’, ‘100’]:

 e.reject(“Invalid knl_model requested '%s'" % str(knl_model))

except SystemExit:

 pass

except:

 e.reject("%s hook failed with %s. Please contact Admin" % (e.hook_name, sys.exc_info()[:2]))

11.12.2 Configuring Xeon Phi Vnodes on Cray XC

11.12.2.1 Configuration Instructions on Cray XC

You must set the value of resources_available.aoe for each Xeon Phi vnode. You can use the “admin helper” script in
Chapter 11, "Using Xeon Phi Configuration Script on Cray XC", on page 479.

In order to use the Xeon Phi AOE, you need to set capmc permissions and make sure that capmc initialization suc-
ceeded. Contact Cray for this information.

We recommend setting the scheduler’s provision_policy configuration parameter to avoid_provision because provi-
sioning a new memory model is time-consuming.

11.12.2.2 Using Xeon Phi Configuration Script on Cray XC

We’ve included below an example of an “admin helper” configuration script called pbs_config_knl_nodes.py that sets
resources_available.aoe on each Xeon Phi vnode.
PBS Professional 2020.1.1 Administrator’s Guide AG-479

Chapter 11 Configuring PBS for Cray
We recommend that you do the following:

1. Edit the configuration script so that the server name is correct

2. Run the script at the server host

The script produces a list of qmgr commands.

3. Feed the output of the script into qmgr
AG-480 PBS Professional 2020.1.1 Administrator’s Guide

Configuring PBS for Cray Chapter 11
11.12.2.3 Xeon Phi Configuration Script Contents for Cray XC

The Xeon Phi configuration script is called pbs_config_knl_nodes.py. Here are the contents:

import json

import xml.etree.ElementTree as ET

import os

import sys

import subprocess

from string import join

import socket

server_name = socket.gethostname()

server_name = 'perch'

capmc_dir = '/opt/cray/capmc/default/bin'

apbasil_dir = '/opt/cray/alps/6.1.3-43.3/bin'

basil_req = '<BasilRequest protocol="1.7" method="QUERY" type="SYSTEM"></BasilRequest>'

basil_req_file = '/tmp/pbs_system_query.xml'

cmd1 = ['capmc', 'get_numa_capabilities']

cmd2 = ['capmc', 'get_mcdram_capabilities']

cmd3 = ['apbasil']

Generate list from numbers

def generate_number_list(number_str):

 tmp_list = number_str.split(',')

 num_list = []

 for item in tmp_list:

 tmp_val = None

 if '-' in item:

 try:

 lower,upper = item.split('-')

 tmp_val = range(int(lower),int(upper)+1)

num_list += tmp_val

 except ValueError:

 print "Invalid string: ", item

 except:

 print "Something was not right with: ", item

 else:

 try:

 tmp_val = int(item)

num_list.append(tmp_val)

 except NameError:

 print "Invalid integer: ", item

 except:

 print "Something was not right with: ", item

PBS Professional 2020.1.1 Administrator’s Guide AG-481

Chapter 11 Configuring PBS for Cray
 # Return the list of numbers list

 return num_list

Add capmc_dir to path

os.environ['PATH'] = capmc_dir + ":" + apbasil_dir + ":" + os.environ['PATH']

capmc commands to configure the knl nodes

tmp_file = open(basil_req_file, 'w')

tmp_file.write(basil_req)

tmp_file.close()

identify the available numa settings

numa_cap = {}

process = subprocess.Popen(cmd1,stdout=subprocess.PIPE,stderr=subprocess.PIPE)

output,err = process.communicate()

knl_numa= json.loads(output)

for item in knl_numa['nids']:

 numa_cap[item['nid']] = item['numa_cfg']

identify the available mcdram settings

mcdram_cap = {}

process = subprocess.Popen(cmd2,stdout=subprocess.PIPE,stderr=subprocess.PIPE)

output,err = process.communicate()

knl_mcdram = json.loads(output)

for item in knl_mcdram['nids']:

 mcdram_cap[item['nid']] = item['mcdram_cfg']

identify the current node settings for mcdram and numa cfg

tmp_file = open(basil_req_file)

process = subprocess.Popen(cmd3,stdin=tmp_file,stdout=subprocess.PIPE,stderr=subprocess.PIPE)

output,err = process.communicate()

tmp_file.close()

root = ET.fromstring(output)

node_sets = {}

set_cnt = 0

for child in root.iter('Nodes'):

 nodes = generate_number_list(child.text.strip())

 node_sets[set_cnt] = {}

 node_sets[set_cnt]['attribs'] = child.attrib

 node_sets[set_cnt]['nids'] = nodes

 set_cnt += 1
AG-482 PBS Professional 2020.1.1 Administrator’s Guide

Configuring PBS for Cray Chapter 11
Loop through the node sets and identify which ones are knls

key_list = []

for key in node_sets:

 if 'attribs' in node_sets[key]:

 if node_sets[key]['attribs']['numa_cfg'] == "":

 key_list.append(key)

for key in key_list:

 node_sets.pop(key, None)

#print "-" * 80

for key in node_sets:

 #print key, node_sets[key]['nids']

 current_model = node_sets[key]['attribs']['numa_cfg']

 current_state = node_sets[key]['attribs']['hbm_cache_pct']

 current_aoe = current_model + "_" + current_state

 # Loop through the nodes that have Xeon Phis and setup them up for provisioning in PBS

 for nid in node_sets[key]['nids']:

 aoe_list = []

 models = ''

 states = ''

 if nid in numa_cap:

 models = numa_cap[nid].split(',')

 if nid in mcdram_cap:

 states = mcdram_cap[nid].split(',')

 for model in models:

 for state in states:

 try:

 int(state)

 aoe_list.append("%s_%s" % (model,state))

 except:

 pass

 print "set node %s_%d_0 resources_available.aoe='%s'" % (server_name, nid,
join(aoe_list,','))

 print "set node %s_%d_0 provision_enable = True" % (server_name, nid)
PBS Professional 2020.1.1 Administrator’s Guide AG-483

Chapter 11 Configuring PBS for Cray
11.13 Using Hyperthreading on Cray XC

PBS supports hyperthreading on Cray X* series systems using ALPS. On a Cray X* series system using ALPS, PBS
assigns values to vnode resources according to the inventory returned from ALPS. PBS sets
resources_available.ncpus to the number of compute unit elements returned in the XML inventory. This allows PBS
to make ALPS reservations for the compute units of a node, and get all of the hyperthreads associated with those compute
units.

For a job to use hyperthreading, the job submitter puts a request for hyperthreading in the aprun call in the job script.

You can help job submitters use hyperthreaded vnodes by labeling them with a custom resource.

You can opt to limit the value reported for ncpus to cores only, not hyperthreads, when using cgroups. See Chapter 15,
"Configuring and Using PBS with Cgroups", on page 561.

11.13.1 References for Hyperthreading on Cray XC

Check the Cray Programming Environment User Guide for Cray’s advice on using CPUs and compute units.

11.14 Viewing Cray XC Information

11.14.1 Listing Vnodes on Cray XC

Each vnode appears only once in the output of any command that lists all vnodes, such as pbs_statnode(), pbsn-
odes -av, or qmgr -c “list nodes @default”.

11.14.2 Contents of Vnode Mom Attribute on Cray XC

When multiple login nodes are defined, each vnode representing a compute node lists every reporting login node in its
Mom attribute. The Mom attribute lists multiple fully-qualified host names in a comma-separated list format.

For example, MoM1 reports compute nodes with node_id 1 through 4, and MoM2 reports compute nodes with node_id
3 through 6. In this case, the vnodes representing compute nodes with node_id 1 and 2 list MoM1 in the Mom attribute,
vnodes representing compute nodes with node_id 3 and 4 list MoM1 and MoM2 in the Mom attribute, and vnodes repre-
senting compute nodes with node_id 5 and 6 list MoM2 in the Mom attribute.

11.14.3 Viewing Vnode Information on Cray XC

Each vnode’s jobs attribute lists the jobs that have processes executing on that vnode. Jobs launched from an internal
login node, requesting a vntype of cray_compute only, are not listed in the internal login node’s vnode’s jobs attribute.
Jobs that are actually running on a login node, which requested a vntype of cray_login, do appear in the login node’s
vnode’s jobs attribute.

You can view vnode attributes using the pbsnodes -av command.

If esLogin and internal login nodes are grouped by adding a string such as cray_compile to the vntype resource, the
pbs_rstat -F command shows the following:

resources_available.vntype=cray_login,cray_compile
AG-484 PBS Professional 2020.1.1 Administrator’s Guide

Configuring PBS for Cray Chapter 11
11.14.4 Effect on Jobs of Stopping and Starting Vnodes on
Cray XC

If a job is launched from a login node, and the MoM goes down, the impact on the job depends on the command-line
options specified when the MoM is restarted.

If a job is launched from a login node, and the login node goes down, the job does not continue to run.

If there are multiple login nodes, and one login node or its MoM goes down, jobs that were launched from other login
nodes are not affected.

11.14.5 Resource Accounting on Cray XC

On CLE 5.2, Comprehensive System Accounting (CSA) runs on the compute nodes, under the control of the Cray XC
system. PBS performs resource accounting on the login nodes, under the control of their MoMs.

11.14.5.1 Using Comprehensive System Accounting on Cray XC

If CSA is enabled, PBS can request the kernel to write user job accounting data to accounting records. These records can
then be used to produce reports for the user.

If PBS finds the CSA shared object libraries, and CSA is enabled, PBS can cause a workload management record to be
written for each job. If MoM is configured for CSA support, MoM can issue CSA workload management record
requests to the kernel. The kernel writes workload management accounting records associated with the PBS job to the
system-wide process accounting file. The default for this file is /var/csa/day/pacct.

11.14.5.2 CSA Configuration Parameter on Cray XC

pbs_accounting_workload_mgmt <value>

MoM configuration parameter. Controls whether CSA accounting is enabled. The name does not start with a
dollar sign. If set to “1”, “on”, or “true”, CSA accounting is enabled. If set to “0”, “off”, or “false”, CSA
accounting is disabled. Values are case-insensitive. Default: “true”; enabled.

11.14.5.3 Requirements for CSA on Cray XC

PBS supports CSA on Cray XC machines running CLE 5.2. CSA requires CSA support Linux kernel modules.

On the supported platforms, the PBS MoM is CSA-enabled. If CSA workload management and user job accounting are
available, PBS can use them.

11.14.5.4 Configuring MoM for CSA on Cray XC

CSA support is specified in the pbs_accounting_workload_mgmt line in MoM’s Version 1 configuration file.
CSA support is enabled by default; you must explicitly disable it if you want it disabled. If the
pbs_accounting_workload_mgmt line is absent, CSA is still enabled.

To disable CSA support, modify $PBS_HOME/mom_priv/config, by setting
pbs_accounting_workload_mgmt to false, off, or 0.

To enable CSA support, either remove the pbs_accounting_workload_mgmt line, or set it to true, on, or 1.

After modifying the MoM config file, either restart pbs_mom or send it SIGHUP.
PBS Professional 2020.1.1 Administrator’s Guide AG-485

Chapter 11 Configuring PBS for Cray
11.14.5.5 Enabling Kernel CSA Support on Cray XC

In order for CSA user job accounting and workload management accounting requests to be acted on by the kernel, you
need to make sure that the parameters CSA_START and WKMG_START in the /etc/csa.conf configuration file
are set to "on" and that the system reflects this. You can check this by running the command:

csaswitch -c status

To set CSA_START to on , use the command:

csaswitch -c on -n csa

To set WKMG_START to on , use:

csaswitch -c on -n wkmg

Alternatively, you can use the CSA startup script /etc/init.d/csa with the desired argument (on/off); see the sys-
tem's man page for csaswitch and how it is used in the /etc/init.d/csa startup script.

11.15 Resource Restrictions and Deprecations for

Cray XC

The mpp* resources are removed.

The following are not supported, and if set, behavior is undefined.

resources_min.nchunk

resources_max.nchunk.

11.16 Caveats and Advice for Cray XC

11.16.1 Processes Not Suspended on Cray XC

On CLE 5.2UP03, if you are using preemption via suspend/resume, you may see that after a SWITCH request, ALPS
continues to start new applications, so that the system is never ready for PBS to suspend job processes. The system can
go from RUNNING to EMPTY to RUNNING.

11.16.2 Creating MoM Directories on Cray XC

If you start PBS with PBS_START_MOM = 0 for the first time, PBS does not create MoM directories on that host. If
you want to use the machine as an execution host (running a MoM on it), set PBS_START_MOM = 1, run
pbs_habitat, then start MoM.
AG-486 PBS Professional 2020.1.1 Administrator’s Guide

Configuring PBS for Cray Chapter 11
11.16.3 Error Messages in MoM Logs on Cray XC

There are two circumstances where you may see error messages in the MoM logs:

1. The first circumstance is benign. PBS is trying to release a reservation, and PBS gets acknowledgement when ALPS
stops recognizing the reservation. ALPS has canceled the reservation that PBS was trying to cancel. We get the fol-
lowing message:
"ALPS error: apsched: No entry for resId <reservation ID>"

2. In the second circumstance, a node is busy or unavailable, resulting in these messages:

"Node;BASIL;ERROR: ALPS error: apsched: resource temporarily unavailable"

"Node;alps_request_parent;TRANSIENT BASIL error from BACKEND: ERROR: ALPS error: apsched:
resource temporarily unavailable"

"Transient MPP reservation error on create."

When PBS is trying to make a reservation on a node that has become unavailable, this is benign. MoM will update
her vnode information and be able to run jobs.

Very rarely, these messages can be seen when there is a problem that requires action, for example, when Node
Health Checker takes longer than the value of $alps_release_timeout. In this case, set the value of
$alps_release_timeout to be greater than the time Node Health Checker requires. Unless you are seeing held jobs,
this is probably not what is happening.

11.16.4 Configure Cray XC MoMs According to Rules

Because the vnode sharing attribute must be set using the pbs_mom -s insert command, it is not recommended to
set the sharing attribute on a Cray XC vnode.

11.16.5 Suspending and Resuming Jobs on Cray XC

On Cray X* series systems, PBS can suspend one or more jobs in order to run a higher priority job.

11.16.5.1 Caveats and Restrictions

• Suspend and resume are supported on Cray XC systems with an Aries interconnect and newer Cray X* series sys-
tems

• Suspend and resume are not supported on Cray XC systems with a Gemini interconnect

• On Cray X* series systems, the suspended low priority job and the high priority job must fit into the Cray compute
node’s memory

• Cray X* series systems can have a maximum number of co-resident jobs on a compute node. See the Cray docu-
mentation for more details.

• On a Cray X* series system, a job that requests exclusive access (i.e. -lplace=excl) to a node cannot be suspended.

11.16.5.2 Default Behavior on Cray XC

The restrict_res_to_release_on_suspend server attribute is set to ncpus by default on Cray X* series systems. This
attribute is set in the pbs_habitat script which runs when PBS is started for the first time after an install or upgrade.

During suspension of a job PBS releases only ncpus on Cray XC machines.
PBS Professional 2020.1.1 Administrator’s Guide AG-487

Chapter 11 Configuring PBS for Cray
11.16.5.3 Configuring Suspend and Resume on Cray XC

On Cray X* series systems, PBS issues a request to ALPS to switch an ALPS reservation IN for resume or OUT for sus-
pend.

In order to use suspend and resume on a Cray X* series, you must modify ALPS configuration files. Please refer to
Cray's System Administration Guide for more details about using suspend and resume on Cray X* series.

You can update the restrict_res_to_release_on_suspend server attribute and add more resources to it. We do not rec-
ommend removing ncpus from the list of resource names on Cray X* series systems. See section 5.9.6.2, “Job Suspen-
sion and Resource Usage”, on page 250.

11.16.5.4 Errors on Cray XC

If ALPS fails to switch a reservation from suspend to resume or resume to suspend, PBS returns the error code 15222 via
the pbs_sigjob() IFL call. The qsig command prints the following error message when ALPS fails to switch a res-
ervation:

"qsig: Switching ALPS reservation failed <job id>"

11.16.6 Vnode Definition Files Not Recommended on Cray XC

Using vnode definition files on a Cray XC is not recommended. Use qmgr where possible instead.

Any attribute and resource settings for a specific vnode in a vnode definition file cause PBS to believe that that vnode is
still usable. If PBS reads the Cray XC inventory, and a vnode is not listed in the inventory, but it is listed in a vnode def-
inition file, the vnode is not marked as stale. This will cause a problem when the scheduler tries to schedule jobs onto
this vnode.

If you create a vnode definition file for a vnode that has more than one MoM, you must make sure that the files are con-
sistent on all of the MoMs that manage the vnode.

Settings in a vnode definition file override those from inventory. Settings in qmgr override both vnode definition files
and inventory. Be careful not to overwrite information from the inventory when creating a vnode definition file. For
example, if the vntype resource for a vnode is set to cray_login when PBS reads the inventory, and it is set to
cray_compile in a vnode definition file, the value for vntype becomes cray_compile only.

11.16.7 Use Correct Name When Creating Vnode on Cray XC

When creating a vnode to represent a login node, use the short name returned by the gethostname command on the
login node. For example, if gethostname returns HostA, do the following:

Qmgr: create node HostA

If you create a vnode with a different name from the short name returned by gethostname, the following happens:

• MoM creates a vnode whose name is the short name returned by gethostname

• The vnode you created is not recognized by MoM, and is marked stale

Do not use the IP address for the vnode name.

11.16.8 Deleting Vnodes on Cray XC

You can delete a parent vnode only if no other vnodes list this vnode in their Mom attributes. In order to delete a parent
vnode which is listed in another vnode’s Mom attribute, you must first delete the vnode with this vnode in its Mom
attribute.
AG-488 PBS Professional 2020.1.1 Administrator’s Guide

Configuring PBS for Cray Chapter 11
After removing a vnode that is managed by more than one MoM, you must HUP all of the managing MoMs, otherwise
the vnode is not marked stale by the server.

11.16.9 Do Not Make Vnode Definitions Additive on Cray XC

On a Cray XC MoM, the $vnodedef_additive parameter in PBS_HOME/mom_priv/config is set to False or 0 by
default. Do not unset or change the setting of the $vnodedef_additive parameter.

11.16.10 Do Not Use configrm on Cray XC

It is not recommended to use the configrm pbs_tclsh call.

11.16.11 Using Gating Values As Defaults on Cray XC

For most resources, if the job does not request the resource, and no server or queue defaults are set, the job inherits the
maximum gating value for the resource. If this is set at the queue, the queue value of resources_max.<resource name>
is used. If this is set only at the server, the job inherits the value set at the server.

11.16.12 Marking Cray XC Vnodes Offline

You can use the qmgr command to individually mark each vnode representing a compute node offline. This is indepen-
dent of the vnodes representing login nodes.

11.16.13 Do Not Use PBS-reserved Resource Names on Cray XC

Do not create resources with names that could be used by PBS to create a Cray XC resource equivalent. For example, do
not create a resource with the name PBScraylabel_small.

11.16.14 Fewer Chunks for Shorter Scheduling Cycle on Cray
XC

The more chunks in each translated job request, the longer the scheduling cycle takes. Jobs that request a value for
ncpus effectively direct PBS to use the size of ncpus as the value for ncpus for each chunk, thus dividing the number of
chunks by ncpus.

Example 11-1: Comparison of larger vs. smaller chunk size and the effect on scheduling time:

Submit job with chunk size 1 and 8544 chunks:

qsub -lselect=8544:ncpus=1 job

Job’s Resource_List:

Resource_List.ncpus = 8544

Resource_List.place = free

Resource_List.select = 8544:vntype=cray_compute

Submit_arguments = -lselect=8544:ncpus=1 job
PBS Professional 2020.1.1 Administrator’s Guide AG-489

Chapter 11 Configuring PBS for Cray
Scheduling took 6 seconds:

12/05/2011 16:46:10;0080;pbs_sched;Job;23.example;Considering job to run

12/05/2011 16:46:16;0040;pbs_sched;Job;23.example;Job run

To speed up scheduling, you may want to write a submission hook that assigns each job a value for ncpus. We recom-
mend that this value be the value for ncpus for a vnode or for a compute node.

11.16.14.1 Caveats

If you are on a heterogeneous system, forcing ncpus to be set for all requests can cause jobs to wait for particular vnodes
and their associated resources, where these jobs would have been able to run across many different-sized vnodes.

Instead, you can use a job submission hook that rejects jobs that don’t request values for ncpus.

11.16.15 No cput or mem for Compute Node Jobs on Cray XC

PBS does not report cput or mem for jobs running on a Cray XC compute node.

11.16.16 Set PATH Correctly on Cray XC

PATH must be included in the pbs_environment file. The PATH value is passed on to batch jobs. To maintain security, it
is important that PATH be restricted to known, safe directories. Do not include "." in PATH.

11.17 Errors and Logging on Cray XC

11.17.1 Creating Custom Resources on Cray XC

When a custom resource is created for a Cray XC vnode, the server logs a message containing the resource name and
type, and the vnode name. This is logged at event class 0x080.

If a custom resource can't be created, the following error message is printed in the server log:

error: resource <name> for vnode <name> cannot be defined

11.17.2 Job Requests More Than Available on Cray XC

If do_not_span_psets is set to True, and a job requests more resources than are available in one placement set, the fol-
lowing happens:

• The job's comment is set to the following:
“Not Running: can't fit in the largest placement set, and can't span placement sets”

• The following message is printed to the scheduler’s log:
“Can't fit in the largest placement set, and can't span placement sets”
AG-490 PBS Professional 2020.1.1 Administrator’s Guide

Configuring PBS for Cray Chapter 11
11.17.3 Invalid Cray XC Requests

It is possible to create a select and place statement that meets the requirements of PBS but not of the Cray XC. The Cray
XC width and depth values cannot be calculated from ncpus and mpiprocs values. For example, if ncpus is 2 and
mpiprocs is 4, the depth value is calculated by dividing ncpus by mpiprocs, and is one-half. This is not a valid depth
value for Cray XC. When a select statement does not meet Cray XC requirements, and the Cray XC reservation fails, the
following error message is printed in MoM’s log, at log level 0x080:

Fatal MPP reservation error preparing request

11.17.4 Unequal ompthreads and ncpus on Cray XC

If the value of ompthreads does not match the value of ncpus when PBS is constructing exec_vnode for a job, the fol-
lowing is printed in the MoM log, at event class 0x080:

“ompthreads <value> does not match ncpus <value>”
PBS Professional 2020.1.1 Administrator’s Guide AG-491

Chapter 11 Configuring PBS for Cray
AG-492 PBS Professional 2020.1.1 Administrator’s Guide

12

Support for HPE

12.1 Briefly, How PBS Manages Cpusets

As of version 2020.1, PBS uses the standard MoM on HPE machines, and uses the cgroups hook to manage cpusets on
HPE machines. See Chapter 15, "Configuring and Using PBS with Cgroups", on page 561.

PBS automatically examines the topology of the machine, and creates child vnodes to represent subsets of the machine.
PBS also organizes the machine’s vnodes into placement sets. When PBS runs a job on an HPE execution host, the
cgroups hook creates the cpuset in which the job runs, and destroys the cpuset after the job is finished.

12.2 Cpusets and Vnodes

The PBS MoM represents a machine as a set of vnodes. Each vnode is visible via commands such as pbsnodes. Each
vnode must have its own logical memory pool, so you get one vnode per logical memory pool. All of the vnodes on one
multi-vnode host are managed by one instance of pbs_mom.

A cpuset is a group of CPUs and memory nodes around which an inescapable wall has been placed. The OS manages a
cpuset so that processes executing within the cpuset are typically confined to use only the resources defined by the
cpuset.

12.3 Requirements for Managing Cpusets

If you want PBS to manage the cpusets on a machine:

• Use the cgroups hook

• You must use a supported version of HPE MPI

• You use the PBS start/stop script to start MoM instead of pbs_mom

12.4 Where to Use Cpusets

Use PBS to manage your cpusets wherever you want jobs to be fenced into their own CPUs and memory. This can also
be useful on other machines, such as the HPE 8600, depending on the individual machine.

12.5 Settings for sharing Attribute

The cgroups hook sets the sharing attribute for each vnode as follows:

• On MC990X and Superdome Flex, the hook sets the sharing attribute for the parent vnode to default_shared

• On MC990X and Superdome Flex, the hook sets the sharing attribute for all other vnodes to default_shared

• On 8600, the hook sets the sharing attribute for each vnode to default_shared
PBS Professional 2020.1.1 Administrator’s Guide AG-493

Chapter 12 Support for HPE
12.5.1 Creating Vnodes

We recommend using the cgroups hook to manage the machine and create any child vnodes. If you use the cgroups
hook, do not create vnodes via a Version 2 configuration file. However, if you are not using the cgroups hook, you can
create your vnode definitions by hand. You can have MoM create any child vnodes via a Version 2 configuration file.
See section 3.3, “Creating Vnodes”, on page 38.

12.5.1.1 Caveats for Creating Vnodes

Do not attempt to create more than one vnode per logical memory pool. Your jobs will not run correctly.

12.5.2 Configuring Vnodes

If necessary, you can modify child vnodes created by the hook, by using an exechost_startup hook or via a Version 2
configuration file. See section 3.4, “Configuring Vnodes”, on page 41.

12.6 Comprehensive System Accounting

PBS support for CSA on HPE systems is no longer available. The CSA functionality for HPE systems has been
removed from PBS.
AG-494 PBS Professional 2020.1.1 Administrator’s Guide

13

Managing Jobs

13.1 Routing Jobs

You can route jobs to various places and by various criteria. You can reject submission of jobs that request too much of a
given resource. You can force jobs into the correct queues. You can have all jobs submitted to a routing queue, then
route them to the correct execution queues. You can use peer scheduling to have jobs executed at other PBS complexes.
You can use hooks to move jobs. For information on routing jobs, see section 4.9.39, “Routing Jobs”, on page 205.

13.2 Limiting Number of Jobs Considered in

Scheduling Cycle

If you limit the number of jobs in execution queues, you can speed up the scheduling cycle. You can set an individual
limit on the number of jobs in each queue, or a limit at the server, and you can apply these limits to generic and individual
users, groups, and projects, and to overall usage. You specify this limit by setting the queued_jobs_threshold queue or
server attribute. See section 5.15.1.9, “How to Set Limits at Server and Queues”, on page 296.

If you set a limit on the number of jobs that can be queued in execution queues, we recommend that you have users sub-
mit jobs to a routing queue only, and route jobs to the execution queue as space becomes available. See section 4.9.39,
“Routing Jobs”, on page 205.

13.3 Allocating Resources to Jobs

You can make sure that jobs request or inherit any resources required to manage those jobs. If a job does not request a
resource, you can make sure that the resource is allocated to the job anyway.

In order for limits to be effective, each job must request each limited resource. For a complete description of how limits
work, see section 5.15, “Managing Resource Usage”, on page 287.

You can create custom resources specifically to allocate them to jobs. These resources can be visible, alterable, and
requestable by users, or invisible, unalterable, and unrequestable, or visible but unalterable and unrequestable. For
instructions on creating invisible or unrequestable resources, see section 5.14.2.3.vi, “Resource Permission Flags”, on
page 260.

You can alter a job’s resource request using the following methods:

• You can set defaults for resources at the server or at each queue. This way, you can have jobs inherit specific values
for the resources by routing them to special queues, where they inherit the defaults. For how jobs inherit resources,
see section 5.9.4, “Allocating Default Resources to Jobs”, on page 247. For how to specify default resources, see
section 5.9.3, “Specifying Job Default Resources”, on page 245.
PBS Professional 2020.1.1 Administrator’s Guide AG-495

Chapter 13 Managing Jobs
For how resource defaults change when a job is moved, see section 5.9.4.3, “Moving Jobs Between Queues or Serv-
ers Changes Defaults”, on page 248.

• You can use a hook to assign a specific resource value to a job, if a job requests the wrong value for a resource. For
how to use a hook to assign a resource to a job, see the PBS Professional Hooks Guide. For examples of using hooks
to assign resources to jobs, see PBS Professional Plugins (Hooks) Guide.

• You can use the qalter command to change a job’s resource request. For how to use the qalter command, see
“qalter” on page 127 of the PBS Professional Reference Guide.

• You can set default arguments the qsub command via the default_qsub_arguments server attribute. For how to
use default arguments to qsub, see “Server Attributes” on page 281 of the PBS Professional Reference Guide.

13.3.1 Viewing Resources Allocated to a Job

13.3.1.1 The exec_vnode Attribute

The exec_vnode attribute displayed via qstat shows the resources allocated from each vnode for the job.

The exec_vnode line looks like:

exec_vnode = (<vnode name>:ncpus=W:mem=X)+(<vnode name>:ncpus=Y:mem=Z)

For example, a job requesting

-l select=2:ncpus=1:mem=1gb+1:ncpus=4:mem=2gb

gets an exec_vnode of

exec_vnode = (VNA:ncpus=1:mem=1gb)+(VNB:ncpus=1:mem=1gb) +(VNC:ncpus=4:mem=2gb)

Note that the vnodes and resources required to satisfy a chunk are grouped by parentheses. In the example above, if two
vnodes on a single host were required to satisfy the last chunk, the exec_vnode might be:

exec_vnode = (VNA:ncpus=1:mem=1gb)+(VNB:ncpus=1:mem=1gb)
+(VNC1:ncpus=2:mem=1gb+VNC2:ncpus=2:mem=1gb)

Note also that if a vnode is allocated to a job because the job requests an arrangement of exclhost, only the vnode name
appears in the chunk. For example, if a job requesting

-l select 2:ncpus=4 -l place = exclhost

is placed on a host with 4 vnodes, each with 4 CPUs, the exec_vnode attribute looks like this:

exec_vnode = (VN0:ncpus=4)+(VN1:ncpus=4)+(VN2)+(VN3)

13.3.1.2 The schedselect Attribute

The resources allocated from a vnode are only those specified in the job’s schedselect attribute. This job attribute is cre-
ated internally by starting with the select specification and applying any server and queue default_chunk resource
defaults that are missing from the select statement. The schedselect job attribute contains only vnode-level resources.
The exec_vnode job attribute shows which resources are allocated from which vnodes. See “Job Attributes” on page
328 of the PBS Professional Reference Guide.

13.3.1.3 Resources for Requeued Jobs

When a job is requeued due to an error in the prologue or initialization, the job’s exec_host and exec_vnode attributes
are cleared. The only exception is when the job is checkpointed and must be rerun on the exact same system. In this
case, the exec_host and exec_vnode attributes are preserved.
AG-496 PBS Professional 2020.1.1 Administrator’s Guide

Managing Jobs Chapter 13
13.4 Grouping Jobs By Project

13.4.1 PBS Projects

In PBS, a project is a way to organize jobs independently of users and groups. A project is a tag that identifies a set of
jobs. Each job’s project attribute specifies the job’s project. Each job can be a member of up to one project.

Projects are not tied to users or groups. One user or group may run jobs in more than one project. For example, user Bob
runs JobA in ProjectA and JobB in ProjectB. User Bill runs JobC in ProjectA. User Tom runs JobD in ProjectB. Bob
and Tom are in Group1, and Bill is in Group2.

13.4.2 Assigning Projects to Jobs

A job’s project can be set in the following ways:

• At submission, using the qsub -P option; see “qsub” on page 213 of the PBS Professional Reference Guide

• After submission, via the qalter -P option; see “qalter” on page 127 of the PBS Professional Reference Guide

• Via a hook; see the PBS Professional Hooks Guide

13.4.3 Managing Resource Use by Project

PBS can apply limits to the amount of resources used by jobs in projects, or the number of queued and running jobs
belonging to projects. See section 5.15.1, “Managing Resource Usage By Users, Groups, and Projects, at Server &
Queues”, on page 287.

13.4.4 Managing Jobs by Project

You can arrange for the jobs belonging to a project to run on designated hardware; see section 4.4.4, “Allocating
Resources by User, Project or Group”, on page 80. You can also run jobs belonging to a project in designated time slots;
see section 4.4.6, “Scheduling Jobs into Time Slots”, on page 84. For more information on routing by project, see section
4.9.39, “Routing Jobs”, on page 205.

13.4.5 Viewing Project Information

Each job’s project, if any, is specified in its project attribute. To see the value of this attribute, use the qstat -f
option. See “qstat” on page 197 of the PBS Professional Reference Guide.

13.4.6 Selecting Jobs by Project

You can select jobs according to their project using the qselect -P option. See “qselect” on page 186 of the PBS Pro-
fessional Reference Guide.

13.4.7 Default Project Value

The default value for a job’s project attribute is “_pbs_project_default”. Any job submitted without a specified value
for the project attribute is given the default value. If you explicitly set the value to “_pbs_project_default”, the server
prints a warning message saying that the value has been set to the default. If you unset the value of the attribute in a
hook, the value becomes the default value. Using qalter -P ““ sets the value to the default.
PBS Professional 2020.1.1 Administrator’s Guide AG-497

Chapter 13 Managing Jobs
13.4.8 Error Messages

When a job would exceed a limit by running, the job’s comment field is set to an error message. See “Run Limit Error
Messages” on page 387 of the PBS Professional Reference Guide.

13.5 Job Prologue and Epilogue

As of 2020.1, the prologue and epilogue are deprecated.

You can run a site-supplied script or program before and/or after each job runs. This allows initialization or cleanup of
resources, such as temporary directories or scratch files. The script or program that runs before the job is the prologue;
the one that runs after the job is the epilogue.

The primary purpose of the prologue is to provide a site with some means of performing checks prior to starting a job.
The epilogue can be used to requeue a checkpointed job. See section 9.3.7.3, “Requeueing via Epilogue”, on page 423.

If you have any execjob_prologue hooks, they supersede the prologue, and run when the prologue would run, and if
you have any execjob_epilogue hooks, they supersede the epilogue, and run when the epilogue would run.

If you are running the cgroups hook, any epilogue script will not run. The cgroups hook has an execjob_epilogue event
which takes precedence over an epilogue script, so if you are running the cgroups hook, make your epilogue script into
an execjob_epilogue hook instead.

You can run a shell script as your prologue or epilogue, or you can use an execjob_prologue and/or execjob_epilogue
hook to do the work. If you already have a shell script prologue and/or epilogue, you can run each via an appropriate
execjob_prologue or execjob_epilogue hook. We show how to do this in section 13.5.2, “Using Hooks for Prologue
and Epilogue”, on page 502.

13.5.1 Using Shell Scripts for Prologue and Epilogue

Only one prologue and one epilogue may be used per PBS server. The same prologue and/or epilogue runs for every job
in the complex.

Each script may be either a shell script or an executable object file.

13.5.1.1 When Shell Prologue and Epilogue Run

The prologue runs before the job is executed. The epilogue runs after the job terminates, including normal termination,
job deletion while running, error exit, or even if pbs_mom detects an error and cannot completely start the job. If the job
is deleted while it is queued, then neither the prologue nor the epilogue is run. If the job is discarded while running, for
example when the server loses contact with the MoM, the epilogue does not run.

If a prologue or epilogue script is not present, MoM continues in a normal manner.

13.5.1.2 Where Shell Prologue and Epilogue Run

When multiple vnodes are allocated to a job, these scripts are run only by the MoM on the primary execution host.

The prologue runs with its current working directory set to PBS_HOME/mom_priv, regardless of the setting of SAND-

BOX.

The epilogue runs with its current working directory set to the job's staging and execution directory. This is also where
the job shell script is run.
AG-498 PBS Professional 2020.1.1 Administrator’s Guide

Managing Jobs Chapter 13
13.5.1.3 Shell Prologue and Epilogue Location

Both the prologue and the epilogue must reside in the PBS_HOME/mom_priv directory.

13.5.1.4 Shell Prologue and Epilogue Requirements

 In order to be run, the script must adhere to the following rules:

• The script must be in the PBS_HOME/mom_priv directory

• The prologue must have the exact name “prologue” under Linux, or “prologue.bat” under Windows

• The epilogue must have the exact name “epilogue” under Linux, or “epilogue.bat” under Windows

• The script must be written to exit with one of the zero or positive exit values listed in section 13.5.1.12, “Shell Pro-
logue and Epilogue Exit Codes”, on page 501. The negative values are set by MoM

• Under Linux, the script must be owned by root, be readable and executable by root, and cannot be writable by any-
one but root

• Under Windows, the script’s permissions must give “Full Access” to the local Administrators group on the local
computer

13.5.1.5 Shell Prologue and Epilogue Environment Variables

The prologue and epilogue run with the following set in their environment:

• The contents of the pbs_environment file

• The PBS_JOBDIR environment variable

TMPDIR is not set in the prologue environment or the epilogue environment.

13.5.1.6 Shell Prologue and Epilogue Permissions

Both the prologue and epilogue are run under root on Linux, or under an Admin-type account on Windows, and neither is
included in the job session.

13.5.1.7 Shell Prologue and Epilogue Arguments

The prologue is called with the following arguments:

Table 13-1: Arguments to Prologue

Argument Description

argv[1] Job ID

argv[2] User name under which the job executes

argv[3] Group name under which the job executes
PBS Professional 2020.1.1 Administrator’s Guide AG-499

Chapter 13 Managing Jobs
The epilogue is called with the following arguments:

13.5.1.8 Shell Epilogue Argument Caveats

Under Windows and with some Linux shells, accessing argv[10] in the epilogue requires a shift in positional parameters.
To do this, the script must do the following:

1. Call the arguments with indices 0 through 9

2. Perform a shift /8

3. Access the last argument using %9%

For example:

cat epilogue

> #!/bin/bash

>

> echo "argv[0] = $0" > /tmp/epiargs

> echo "argv[1] = $1" >> /tmp/epiargs

> echo "argv[2] = $2" >> /tmp/epiargs

> echo "argv[3] = $3" >> /tmp/epiargs

> echo "argv[4] = $4" >> /tmp/epiargs

> echo "argv[5] = $5" >> /tmp/epiargs

> echo "argv[6] = $6" >> /tmp/epiargs

> echo "argv[7] = $7" >> /tmp/epiargs

> echo "argv[8] = $8" >> /tmp/epiargs

> echo "argv[9] = $9" >> /tmp/epiargs

> shift

> echo "argv[10] = $9" >> /tmp/epiargs

13.5.1.9 Standard Input to Shell Prologue and Epilogue

Both scripts have standard input connected to a system-dependent file. The default for this file is /dev/null.

Table 13-2: Arguments to Epilogue

Argument Description

argv[1] Job ID

argv[2] User name under which the job executes

argv[3] Group name under which the job executes

argv[4] Job name

argv[5] Session ID

argv[6] Requested built-in resources (job’s Resource_List)

argv[7] List of resources used (job’s resources_used) gathered from the primary execution host only

argv[8] Name of the queue in which the job resides

argv[9] Account string, if one exists

argv[10] Exit status of the job
AG-500 PBS Professional 2020.1.1 Administrator’s Guide

Managing Jobs Chapter 13
13.5.1.10 Standard Output and Error for Shell Prologue and Epilogue

The standard output and standard error of the scripts are connected to the files which contain the standard output and
error of the job. There is one exception: if a job is an interactive PBS job, the standard output and error of the epilogue is
pointed to /dev/null because the pseudo-terminal connection used was released by the system when the job termi-
nated.

13.5.1.11 Shell Prologue and Epilogue Timeout

When the scheduler runs a job, it waits until the prologue has ended. To prevent an error condition within the prologue or
epilogue from delaying PBS, MoM places an alarm around the script’s/program’s execution. The default value is 30 sec-

onds. If the alarm timeout is reached before the script has terminated, MoM will kill the script. The alarm value can be
changed via the $prologalarm MoM configuration parameter. See section 9.6.6, “Prologue & Epilogue Running Time”,
on page 441.

13.5.1.12 Shell Prologue and Epilogue Exit Codes

Normally, the prologue and epilogue programs should exit with a zero exit status. The prologue and epilogue should be
written to exit with one of the zero or positive values listed here. When there is a problem with the script, MoM sets the
exit value to one of the negative values. Exit status values and their impact on the job are listed in the following table:

MoM records in her log any case of a non-zero prologue or epilogue exit code, at event class 0x0001.

Table 13-3: Prologue and Epilogue Exit Codes

Exit
Code

Meaning Prologue Epilogue

-4 The script timed out (took too long). The job will be requeued. Ignored

-3 The wait(2) call waiting for the script to
exit returned with an error.

The job will be requeued Ignored

-2 The input file to be passed to the script could
not be opened.

The job will be requeued. Ignored

-1 The script has a permission error, is not owned
by root, and/or is writable by others than root.

The job will be requeued. Ignored

0 The script was successful. The job will run. Ignored

1 The script returned an exit value of 1. The job will be aborted. Ignored

>1 The script returned a value greater than one. The job will be requeued. Ignored

2 The script returned a value of 2. The job will be requeued. If the job was checkpointed under
the control of PBS, the job is
requeued.
PBS Professional 2020.1.1 Administrator’s Guide AG-501

Chapter 13 Managing Jobs
13.5.1.13 Shell Prologue and Epilogue Limitations and Caveats

• Consider having your epilogue write a lock file so that it can detect whether it is being run more than once for a job.

• You must exercise great caution in setting up the prologue to prevent jobs from being flushed from the system.

• Interactive-batch jobs cannot be requeued if the epilogue exits with a non-zero status. When this happens, these jobs
are aborted.

• The prologue and epilogue cannot be used to modify the job environment or to change limits on the job.

• If any execjob_prologue hooks exist, they are run, and the prologue is not run.

• If any execjob_epilogue hooks exist, they are run, and the epilogue is not run.

• If you are running the cgroups hook, any epilogue script will not run. The cgroups hook has an execjob_epilogue
event which takes precedence over an epilogue script, so if you are running the cgroups hook, make your epilogue
script into an execjob_epilogue hook instead.

13.5.2 Using Hooks for Prologue and Epilogue

You can run execjob_prologue and execjob_epilogue hooks to do whatever setup and cleanup you need before and
after jobs run. Note that these hooks supersede the shell prologue and epilogue and prevent them from running. See
"execjob_prologue: Event Just Before Execution of Top-level Job Process" on page 97 in the PBS Professional Hooks
Guide, and "execjob_epilogue: Event Just After Killing Job Tasks" on page 104 in the PBS Professional Hooks Guide.

However, you can run your shell prologue and epilogue using execjob_prologue and execjob_epilogue hooks, and we
provide an example hook called run_pelog_shell.py. The hook is included in $PBS_EXEC/unsupported. as
run_pelog_shell.py, along with its configuration file, run_pelog_shell.ini. You can see the contents at
"execjob_prologue and execjob_epilogue Hook Examples" on page 266 in the PBS Professional Hooks Guide.

You can use this hook when the execjob_prologue and execjob_epilogue events are used in other hooks, such as the
cgroups hook, and you still want to run the classic prologue and epilogue scripts we describe in section section 13.5.1,
“Using Shell Scripts for Prologue and Epilogue”, on page 498. Additionally, the hook introduces parallel prologue and
epilogue shell scripts.

On the primary execution host (the first host listed in PBS_NODEFILE), the standard naming convention of ‘prologue’
and ‘epilogue’ apply. Parallel prologues and epilogues use the naming conventions ‘pprologue’ and ‘pepilogue’, respec-
tively, but run only on the secondary execution hosts. On Windows, parallel prologues and epilogues expect a ‘.bat’
extension, which results in ‘pprologue.bat’ and ‘pepilogue.bat’. This hook does the normal checks PBS does to start a
prologue, such as permissions, etc., for UNIX. This hook also allows you to use a parallel prologue/epilogue (pprologue/
pepilogue).

Parallel prologues will not run until a task associated with the job (i.e. via pbs_attach, pbs_tmrsh) begins on the
secondary execution hosts. Parallel epilogues run only if the prologue ran successfully on the primary execution host.
Only the primary execution host will have a value for resources_used in epilogue argument $7.

We assume the same requirements as listed for prologues/epilogues for running all types of prologue and epilogue shell
scripts in section 13.5.1.4, “Shell Prologue and Epilogue Requirements”, on page 499.

By default, parallel prologue/epilogue is set to False. To enable parallel behavior, edit the configuration file and set
ENABLE_PARALLEL to True.

The hook kills the prologue/epilogue 5 seconds before the hook_alarm timeout. At this point the job is requeued/deleted
depending on the value of DEFAULT_ACTION. The hook_alarm time defaults to 30 seconds, giving the prologue/epi-
logue approximately 25 seconds to complete.

13.5.2.1 Installing Prologue and Epilogue Hooks

You could create a single hook that runs on both the execjob_prologue and the execjob_epilogue events, but to ensure
execution order we separate them into the individual events by creating two separate hooks that use the same hook script.
AG-502 PBS Professional 2020.1.1 Administrator’s Guide

Managing Jobs Chapter 13
Edit run_pelog_shell.ini to make configuration changes, then create and import the hook as we show here.

As root, run the following:

qmgr << EOF

create hook run_prologue_shell

set hook run_prologue_shell event = execjob_prologue

set hook run_prologue_shell enabled = true

set hook run_prologue_shell order = 1

set hook run_prologue_shell alarm = 35

import hook run_prologue_shell application/x-python default run_pelog_shell.py

import hook run_prologue_shell application/x-config default run_pelog_shell.ini

create hook run_epilogue_shell

set hook run_epilogue_shell event = execjob_epilogue

set hook run_epilogue_shell enabled = true

set hook run_epilogue_shell order = 999

set hook run_prologue_shell alarm = 35

import hook run_epilogue_shell application/x-python default run_pelog_shell.py

import hook run_epilogue_shell application/x-config default run_pelog_shell.ini

EOF

Any further configuration changes to run_pelog_shell.ini require re-importing the file to both hooks:

qmgr << EOF

import hook run_prologue_shell application/x-config default run_pelog_shell.ini

import hook run_epilogue_shell application/x-config default run_pelog_shell.ini

EOF

RERUN=14

DELETE=6

DEBUG=False

We show the defaults for the following constants in run_pelog_shell.ini. We show the contents of the file in
"execjob_prologue and execjob_epilogue Hook Examples" on page 266 in the PBS Professional Hooks Guide. You can
set them to match site preferences:

ENABLE_PARALLEL=False

VERBOSE_USER_OUTPUT=False

DEFAULT_ACTION=RERUN

TORQUE_COMPAT=False

13.6 Linux Shell Invocation

When PBS starts a job, it invokes the user’s login shell, unless the user submitted the job with the -S option. PBS passes
the job script, which is a shell script, to the login process.

PBS passes the name of the job script to the shell program. This is equivalent to typing the script name as a command to
an interactive shell. Since this is the only line passed to the script, standard input will be empty to any commands. This
approach offers both advantages and disadvantages:
PBS Professional 2020.1.1 Administrator’s Guide AG-503

Chapter 13 Managing Jobs
13.6.1 Advantages

• Any command which reads from standard input without redirection will get an EOF.

• The shell syntax can vary from script to script. It does not have to match the syntax for the user’s login shell. The
first line of the script, even before any #PBS directives, should be

#!/shell

where shell is the full path to the shell of choice, /bin/sh, /bin/csh, ...

The login shell will interpret the #! line and invoke that shell to process the script.

13.6.2 Disadvantages

• An extra shell process is run to process the job script.

• If the script does start with a #! line, the wrong shell may be used to interpret the script and thus produce errors.

• If a non-standard shell is used via the -S option, it will not receive the script, but its name, on its standard input.

13.7 When Job Attributes are Set

The attributes of a job are set at various points in the life of the job. For a description of each job attribute, see “Job
Attributes” on page 328 of the PBS Professional Reference Guide.

13.7.1 Job Attributes Set By qsub Command

Before the job is passed to the server, the qsub command sets these job attributes, in this order:

1. Attributes specified as options on the command line

2. Attributes specified in #PBS directives within the job script

3. Job attributes specified in the default_qsub_arguments server attribute

4. If the following job attributes have not already been set, they are set as follows:

• Job_Name: set to the file name of the job script, or to "STDIN" if the script is entered via standard input

• Checkpoint: set to "u" for unspecified.

• Hold_Types: set to "n"

• Join_Path: set to "n"

• Keep_Files: set to "n"

• Mail_Points: set to "a" for abort

• Priority: set to 0 (zero)

• Rerunnable: set to True

• run_count: can be set by job submitter

• Variable_List: the qsub command sets the following variables and appends them to the existing value of
Variable_List: PBS_O_HOME, PBS_O_LANG, PBS_O_LOGNAME, PBS_O_PATH, PBS_O_MAIL,
PBS_O_SHELL, PBS_O_WORKDIR, PBS_O_TZ, and PBS_O_SYSTEM

• Submit_arguments: set to any submission arguments on the command line
AG-504 PBS Professional 2020.1.1 Administrator’s Guide

Managing Jobs Chapter 13
13.7.2 Job Attributes Set at Server

When the job is passed from the qsub command to the server, the raw job information is available to any job submission
hooks, which can alter the information. Once the job is at the server, the server sets the following attributes:

• Job_Owner: set to <username>@<submission host name>

• Variable_List: the following are added to the job’s Variable_List attribute: PBS_O_QUEUE, PBS_O_HOST

• Output_Path: if not yet specified, the Output_Path attribute is set

• Error_Path: if not yet specified, the Error_Path attribute is set

• Rerunable: if the job is interactive, the Rerunable attribute is set to False

• run_count: incremented each time job is run

• project: if unset, the project attribute is set to "_pbs_project_default".

• Read-only attributes: the server sets the job’s read-only attributes; see “Job Attributes” on page 328 of the PBS Pro-
fessional Reference Guide

• Resource_List: adjusted to include inherited resources specified in the queue and server Resources_Default
attributes, if those resources are not yet in the list

• Comment set when job is sent for execution or rejected; see section 13.7.3.1, “Comment Set When Running Job”, on
page 505

13.7.3 Attributes Changed by Operations on Jobs

13.7.3.1 Comment Set When Running Job

Before the server sends the job to an execution host, the server sets the job’s comment to “Job was sent for execution at
<time> on <execvnode>”.

After the server gets a confirmation from the MoM, the server updates the job’s comment to “Job run at <time> on
<execvnode>”.

If the MoM rejects the job, the server changes the job comment to “Not Running: PBS Error: Execution server rejected
request”.

13.7.3.2 Attributes Changed When Moving Job

If you move a job to a different queue or server, any default resources from the current queue or server are removed, and
new defaults are inherited. See section 5.9.4.3, “Moving Jobs Between Queues or Servers Changes Defaults”, on page
248. For information on the qmove command, see “qmove” on page 172 of the PBS Professional Reference Guide.

13.7.3.3 Attributes Changed When Altering Job

When the qalter command is used to alter a job, the changes to the job are changes to the equivalent job attributes.
See “qalter” on page 127 of the PBS Professional Reference Guide.

13.7.3.4 Attributes Changed When Requeueing or Rerunning a Job

When a job is requeued or rerun, its exec_vnode and/or exec_host attributes may be changed. The job may end up run-
ning on different vnodes. See “qrerun” on page 178 of the PBS Professional Reference Guide.

Each time a job is run, its run_count attribute is incremented by the server.
PBS Professional 2020.1.1 Administrator’s Guide AG-505

Chapter 13 Managing Jobs
13.7.3.5 Attributes Changed by Holding or Releasing a Job

When a job is held using the qhold command, or released using the qrls command:

• The Hold_Types attribute reflects the change

• The job_state attribute may be changed

See “Job Attributes” on page 328 of the PBS Professional Reference Guide and “qhold” on page 147 of the PBS Profes-
sional Reference Guide.

13.7.3.6 Attributes Changed by Suspending or Resuming a Job

When a job is suspended or resumed using the qsig command, the job’s job_state attribute reflects the change in state.
See “qsig” on page 192 of the PBS Professional Reference Guide.

13.8 Job Termination

A job can be terminated for the following reasons:

• You or the submitter can use qdel to kill the job

• The job can be preempted and requeued

• The job can go over a limit and be killed

• The job is submitted to a routing queue, and can never be routed (accepted by a destination queue)

• The server is restarted and the job cannot be recovered

• The job specifies a dependency that fails or is terminated

• The job is killed by a signal

13.8.1 Normal Job Termination

When there is no $action terminate script and a running job is terminated, via the qdel <job ID> command, because
of a server shutdown, or because the job has exceeded a limit, PBS waits for a configurable amount of time between
sending a SIGTERM and a SIGKILL signal to the job. The amount of time is specified in the kill_delay queue attribute.
The default value for this attribute is 10 seconds. PBS takes the following steps.

For a single-vnode job:

1. PBS sends the job a SIGTERM

2. PBS waits for the amount of time specified in the kill_delay queue attribute

3. PBS sends the job a SIGKILL

For a multi-vnode job:

1. The primary execution host MoM sends a SIGTERM to all processes on the primary execution host

2. If any of the processes of the top task of the job are still running, PBS waits a minimum of kill_delay seconds

3. The primary execution host MoM sends a SIGKILL to all remaining job processes on the primary execution host

4. The subordinate MoMs send a SIGKILL to all their processes belonging to this job
AG-506 PBS Professional 2020.1.1 Administrator’s Guide

Managing Jobs Chapter 13
13.8.2 Using the qdel Command to Terminate a Job

You can delete a job using the qdel command. See “qdel” on page 140 of the PBS Professional Reference Guide.

qdel <job ID>

If there is an $action terminate script, it is used to terminate the job.

If there is no $action terminate script, the SIGTERM-delay-SIGKILL sequence described in section 13.8.1,
“Normal Job Termination”, on page 506 is used to terminate the job.

This command does not terminate provisioning jobs.

qdel -Wforce <job ID>

If MoM is reachable, MoM sends the job a SIGKILL signal, and files are staged out. If MoM is unreachable, the
server discards the job. The job may or may not continue to run on the execution host(s).

This command terminates provisioning jobs.

13.8.3 Killing Job Processes

If you need to kill job processes, you can use the printjob command to find the job’s session ID, and then kill those
processes. See “printjob” on page 125 of the PBS Professional Reference Guide.

13.8.4 Hooks and Job Termination

If you qdel a job, any execjob_preterm hooks run on all the hosts allocated to a job. On the primary execution host, the
hook executes when the job receives a signal from the server for the job to terminate. On a sister host, this hook executes
when the sister receives a request from the primary execution host MoM to terminate the job, just before the sister signals
the task on this host to terminate.

The execjob_preterm hook does not run for any other job termination. For example, it does not run on a qrerun or
when a job goes over its limit.

See "execjob_preterm: Event Just Before Killing Job Tasks" on page 103 in the PBS Professional Hooks Guide.

13.8.5 Configuring Site-specific Job Termination

The default behavior of PBS is for MoM to terminate a job under the following circumstances:

• The job's usage of a resource exceeds the limit requested

• The job is deleted by the server on shutdown

• The job is deleted via the qdel command

MoM normally uses SIGTERM, waits for the amount of time specified in the queue’s kill_delay attribute, then issues a
SIGKILL. See section 13.8, “Job Termination”, on page 506.

You may want PBS to run your own job termination script in place of the normal action. The termination script is run in
place of a SIGTERM. The termination script runs only on the primary execution host. After the top job process is termi-
nated, a KILL signal is sent to any other job processes running on other hosts.

You can define the desired termination behavior by specifying the script you want to run in the $action terminate param-
eter in the Version 1 configuration file. The $action terminate parameter takes this form:

$action terminate <timeout> ! <path to script> [args]

Where
PBS Professional 2020.1.1 Administrator’s Guide AG-507

Chapter 13 Managing Jobs
<timeout> is the time, in seconds, allowed for the script to complete. A value of zero (0) indicates infinite time is
allowed for the script to run.

<path to script> is the path to the script. If it is a relative path, it is evaluated relative to the PBS_HOME/mom_priv
directory.

<args> are optional arguments to the script. Values for <args> may be any string not starting with a percent sign (“%”).

Arguments with a percent sign, making up any of the following keywords, are replaced by MoM with the corresponding
value:

13.8.5.1 Requirements for Termination Script

The script should exit with a value of zero when the job is terminated successfully. If the script exits successfully (with
a zero exit status and before the time-out period), PBS does not send any signals or attempt to terminate the job. It is the
responsibility of the termination script in this situation to ensure that the job has been terminated.

The script should exit with a non-zero value if the job was not successfully terminated. If the script exits with a non-zero
exit status, the job is sent SIGKILL by PBS.

If the script does not complete in the time-out period, it is aborted and the job is sent SIGKILL.

13.8.5.2 Examples of Configuring Termination

Linux:

Example 13-1: To use a 60-second timeout, run PBS_HOME/mom_priv/endjob.sh, and pass the job’s session ID,
user ID, and PBS jobs ID to the script:

$action terminate 60 !endjob.sh %sid %uid %jobid

Example 13-2: To use an infinite timeout, run the system kill command with the signal 13, and pass the job’s session
ID:

$action terminate 0 !/bin/kill -13 %sid

Windows:

Example 13-3: To use a 60-second timeout, run endjob.bat, and pass the job’s session ID, user ID, and PBS jobs ID
to the script:

$action terminate 60 !endjob.bat %sid %uid %jobid

Example 13-4: To use an infinite timeout, run the pbskill command, and pass the job’s session ID:

$action terminate 0 !”C:/Program Files/PBS Pro/exec/bin/pbskill” %sid

Table 13-4: $action terminate Keywords

Keyword Value Used by MoM

%jobid Job ID

%sid Session ID of task (job)

%uid Execution UID of job

%gid Execution GID of job

%login Login name associated with UID

%owner Job owner in form name@host

%auxid Auxiliary ID (system-dependent)
AG-508 PBS Professional 2020.1.1 Administrator’s Guide

Managing Jobs Chapter 13
13.8.5.3 Caveats and Restrictions on Termination

Under Windows, <path to script> must have a “.bat” suffix since it will be executed under the Windows command
prompt cmd.exe. If the <path to script> specifies a full path, be sure to include the drive letter so that PBS can locate
the file. For example, C:\winnt\temp\terminate.bat. The script must be writable by no one but an Administra-
tor-type account.

13.8.6 Killing Jobs with a Signal

You or the job owner can kill a job by sending a kill signal to a job via qsig.

If a job is terminated via a signal while it is in the process of being sent to the execution host, the following happens:

• PBS writes a server log message:
Job;<job ID>;Terminated on signal <signal number>

• The job is requeued

• If qrun is used to run the job, qrun does not set the job’s comment

13.9 Job Exit Status Codes

The exit status of a job may fall in one of three ranges, listed in the following table:

The exit status of jobs is recorded in the PBS server logs and the accounting logs.

Table 13-5: Job Exit Status Ranges

Exit Status
Range

Reason Description

X < 0 The job could not be executed See Table 13-6, “Job Exit Codes,” on page 510

0 <=X < 128 Exit value of shell or top pro-
cess

This is the exit value of the top process in the job, typically the
shell. This may be the exit value of the last command executed in
the shell or the .logout script if the user has such a script (csh).

The exit status of an interactive job is always recorded as 0 (zero),
regardless of the actual exit status.

X >=128 Job was killed with a signal This means the job was killed with a signal. The signal is given by
X modulo 128 (or 256). For example an exit value of 137 means the
job's top process was killed with signal 9 (137 % 128 = 9).

The exit status values greater than 128 (or 256) indicate which sig-
nal killed the job. Depending on the system, values greater than 128
(or on some systems 256; see wait(2) or waitpid(2) for more
information), are the value of the signal that killed the job.

To interpret (or “decode”) the signal contained in the exit status
value, subtract the base value from the exit status. For example, if a
job had an exit status of 143, that indicates the job was killed via a
SIGTERM (e.g. 143 - 128 = 15, signal 15 is SIGTERM). See the
kill(1) manual page for a mapping of signal numbers to signal
name on your operating system.
PBS Professional 2020.1.1 Administrator’s Guide AG-509

Chapter 13 Managing Jobs
Negative exit status indicates that the job could not be executed. Negative exit values are listed in the table below:

13.9.1 Job Exit Status Between 0 and 128 (or 256)

This is the exit value of the top process in the job, typically the shell. This may be the exit value of the last command
executed in the shell or the .logout script if the user has such a script (csh).

13.9.2 Job Exit Status >= 128 (or 256)

This means the job was killed with a signal. The signal is given by X modulo 128 (or 256). For example an exit value of
137 means the job's top process was killed with signal 9 (137 % 128 = 9).

Table 13-6: Job Exit Codes

Exit
Code

Name Description

 0 JOB_EXEC_OK Job execution was successful

-1 JOB_EXEC_FAIL1 Job execution failed, before files, no retry

-2 JOB_EXEC_FAIL2 Job execution failed, after files, no retry

-3 JOB_EXEC_RETRY Job execution failed, do retry

-4 JOB_EXEC_INITABT Job aborted on MoM initialization

-5 JOB_EXEC_INITRST Job aborted on MoM initialization, checkpoint, no migrate

-6 JOB_EXEC_INITRMG Job aborted on MoM initialization, checkpoint, ok migrate

-7 JOB_EXEC_BADRESRT Job restart failed

-10 JOB_EXEC_FAILUID Invalid UID/GID for job

-11 JOB_EXEC_RERUN Job was rerun

-12 JOB_EXEC_CHKP Job was checkpointed and killed

-13 JOB_EXEC_FAIL_PASSWORD Job failed due to a bad password

-14 JOB_EXEC_RERUN_

ON_SIS_FAIL

Job was requeued (if rerunnable) or deleted (if not) due to a
communication failure between the primary execution host
MoM and a Sister

-15 JOB_EXEC_QUERST Requeue job for restart from checkpoint

-16 JOB_EXEC_FAILHOOK_RERUN Job execution failed due to hook rejection; requeue for later
retry

-17 JOB_EXEC_FAILHOOK_DELETE Job execution failed due to hook rejection; delete the job at end

-18 JOB_EXEC_HOOK_RERUN A hook requested for job to be requeued

-19 JOB_EXEC_HOOK_DELETE A hook requested for job to be deleted

-20 JOB_EXEC_RERUN_MS_FAIL Job requeued because server couldn’t contact the primary exe-
cution host MoM
AG-510 PBS Professional 2020.1.1 Administrator’s Guide

Managing Jobs Chapter 13
The exit status values greater than 128 (or 256) indicate which signal killed the job. Depending on the system, values
greater than 128 (or on some systems 256; see wait(2) or waitpid(2) for more information), are the value of the
signal that killed the job.

To interpret (or “decode”) the signal contained in the exit status value, subtract the base value from the exit status. For
example, if a job had an exit status of 143, that indicates the job was killed via a SIGTERM (e.g. 143 - 128 = 15, signal
15 is SIGTERM). See the kill(1) manual page for a mapping of signal numbers to signal name on your operating sys-
tem.

13.9.3 Logging Job Exit Status

The exit status of jobs is recorded in the PBS server logs and the accounting logs.

13.9.4 Exit Status of Interactive Jobs

The exit status of an interactive job is always recorded as 0 (zero), regardless of the actual exit status.

13.10 Rerunning or Requeueing a Job

You can re-run a job using the qrerun command. To re-run a job means to kill it, and requeue it in the execution queue
from which it was run. See “qrerun” on page 178 of the PBS Professional Reference Guide.

13.10.1 Requeueing a Job on a Dead Node

Before you requeue a job on a node you know to be dead, use qmgr to mark the node as Down. When the node is
marked Down, qrerun the job.

13.10.2 Output from a Re-run Job

When you re-run a job, the job’s existing standard output and error files are copied back to the server host and stored in
PBS_HOME/spool. They are then sent with the job to MoM when the job is again run. The output of a job that is re-
run is appended to the output from prior runs of the same job.

13.10.3 Caveats for qrerun

• Jobs lose their queue wait time when they are requeued, including when they are checkpointed or requeued during
preemption.

13.10.4 Requeueing Caveats

• When requeueing a job fails, for example because the queue does not exist, the job is deleted.

• If a job’s run_count attribute is already at the limit (20), and you requeue the job, the job will be held the next time
the scheduler tries to run it.
PBS Professional 2020.1.1 Administrator’s Guide AG-511

Chapter 13 Managing Jobs
13.10.5 Caveats for Jobs Started by PBS

PBS attempts to run a job a certain number of times before placing a hold on the job. You cannot prevent a job from
being held after this number of attempts. You must explicitly release the hold.

13.11 Job IDs

13.11.1 Format of Job IDs

Job Identifier

<sequence number>[.<server name>][@<server>]

Job Array Identifier

Job array identifiers are a sequence number followed by square brackets:

<sequence number>[][.<server name>][@<server>]
Example:

1234[]
Note that some shells require that you enclose a job array ID in double quotes.

13.11.2 Range of IDs

The largest allowed value for a job ID or job array ID is set in the max_job_sequence_id server attribute. Minimum
allowed is 9999999. Maximum allowed is 999999999999. After this has been reached, job IDs start again at zero.

13.11.3 Job IDs and Moving Jobs

If a job is qmoved from one server to another, the job’s ID does not change.

13.11.4 Job IDs and Requeueing and Checkpoint/Restart

If a job is requeued without being checkpointed, or checkpointed and requeued, it keeps its original job ID.

13.12 Where to Find Job Information

Information about jobs is found in PBS_HOME/server_priv/jobs and PBS_HOME/mom_priv/jobs.

13.12.1 Deleted Jobs

If PBS tries to requeue a job and cannot, for example when the queue doesn’t exist, the job is deleted.

13.12.2 Failed Jobs

Once a job has experienced a certain number of failures, PBS holds the job.
AG-512 PBS Professional 2020.1.1 Administrator’s Guide

Managing Jobs Chapter 13
13.12.3 Job Information When Server is Down

When the PBS server is down, you can use the pbs_dataservice command to start the PBS data service by hand,
and then run the printjob command at the server host. See “pbs_dataservice” on page 60 of the PBS Professional
Reference Guide and “printjob” on page 125 of the PBS Professional Reference Guide.

13.12.4 Job Information on Execution Host

You can use the printjob command to look at job information on the execution host. See “printjob” on page 125 of
the PBS Professional Reference Guide.

13.13 Job Directories

PBS jobs use two kinds of directories. The first is the job’s staging and execution directory. Files are staged into and out
of this directory, and this is the directory where the job script executes.

The second is the job’s temporary directory, where the job can create scratch files if necessary. The root of this directory
is specified in the $tmpdir MoM configuration parameter. PBS creates the temporary directory, then sets the TMPDIR
job environment variable to the path of the temporary directory. The job can then use this environment variable. See sec-
tion 13.14.3, “Creation of TMPDIR”, on page 516.

13.13.1 Staging and Execution Directories for Job

A job’s staging and execution directory is the directory to which input files are staged, and from which output files are
staged. It is also the current working directory for the job script, for tasks started via the pbs_tm() API, and for the
epilogue.

Each PBS user may submit several jobs at once. Each job may need to have data files staged in or out. Each execution
host needs a staging and execution directory for jobs. PBS can provide a job-specific staging and execution directory on
each execution host for each job. The job’s sandbox attribute controls whether PBS creates a staging and execution
directory for each job, or uses the user’s home directory for staging and execution.

PBS stages files to and from the primary execution host only. If the execution hosts use a shared file system, the staging
and execution directory is available everywhere the job needs it.

When a job uses a job-specific staging and execution directory created by PBS, PBS does not require the job’s owner to
have a home directory on the execution host(s), as long as each MoM’s $jobdir_root configuration option is set, and is set
to something other than the user’s home directory.

Staging is specified via the job’s stagein and stageout attributes. The format is the following:

execution_path@[storage_host:]storage_path

The execution_path is the path to the staging and execution directory. On stagein, storage_path is the path where the
input files normally reside, and on stageout, storage_path is the path where output files will end up.

13.13.1.1 The sandbox Job Attribute

If the job’s sandbox attribute is set to PRIVATE, PBS creates a job-specific staging and execution directory for that job.
If sandbox is unset, or is set to HOME, PBS uses the user’s home directory as the job’s staging and execution directory.
Using the server’s default_qsub_arguments attribute, you can specify the default for the sandbox attribute for all
jobs. By default, the sandbox attribute is not set.
PBS Professional 2020.1.1 Administrator’s Guide AG-513

Chapter 13 Managing Jobs
The user can set the sandbox attribute via qsub, for example:

qsub -Wsandbox=PRIVATE

The -Wsandbox option to qsub overrides default_qsub_arguments. The job’s sandbox attribute cannot be altered
while the job is executing.

13.13.1.2 Options, Attributes and Environment Variables Affecting

Staging

The environment variable PBS_JOBDIR is set to the pathname of the staging and execution directory on the primary
execution host. PBS_JOBDIR is added to the job script process, any job tasks created by the pbs_tm() API, the pro-
logue and epilogue, and the MoM $action scripts.

The job’s jobdir attribute is read-only, and is also set to the pathname of the staging and execution directory on the pri-
mary execution host. The jobdir attribute can be viewed using the -f option to qstat.

The following table lists the options, attributes, etc., affecting staging:

Table 13-7: Effect of Job sandbox Attribute on Location of Staging and Execution
Directory

Job s sandbox
attribute

Effect

not set Job’s staging and execution directory is the user’s home directory

HOME Job’s staging and execution directory is the user’s home directory

PRIVATE Job’s staging and execution directory is created under the directory specified in MoM
$jobdir_root configuration option. If $jobdir_root is unset, the staging and execution directory is
created under the user’s home directory.

Table 13-8: Options, Attributes, Environment Variables, etc., Affecting Staging

Option, Attribute,
Environment Variable,

etc.
Effect

MoM’s $jobdir_root option Directory under which PBS creates job-specific staging and execution directories.
Defaults to user’s home directory if unset. If $jobdir_root is unset, the user’s home
directory must exist. If $jobdir_root does not exist when MoM starts, MoM will
abort. If $jobdir_root does not exist when MoM tries to run a job, MoM will kill
the job. Permissions on the directory specified in this option must be 1777.

MoM’s $usecp option Tells MoM where to look for files in a shared file system; also tells MoM that she
can use the local copy agent for these files.

Job’s sandbox attribute Determines which directory PBS uses for the job's staging and execution. If value
is PRIVATE, PBS uses a job-specific directory it creates under the location speci-
fied in the MoM $jobdir_root configuration option. If value is HOME or is unset,
PBS uses the user's home directory for staging and execution. User-settable per-
job via qsub -W or through a PBS directive. See the pbs_mom.8B man page.

Job’s stagein attribute Sets list of files or directories to be staged in. User-settable per job via qsub -W.

Job’s stageout attribute Sets list of files or directories to be staged out. User-settable per job via qsub -W.
AG-514 PBS Professional 2020.1.1 Administrator’s Guide

Managing Jobs Chapter 13
13.13.1.3 Getting Information About the Job Staging and Execution

Directory

The job’s jobdir attribute is viewable via qstat or the equivalent API while a job is executing. The value of jobdir is not
retained if a job is rerun; it is undefined whether jobdir is visible or not when the job is not executing.

13.13.1.4 Example of Setting Location for Creation of Staging and

Execution Directories

To make it so that jobs with sandbox=PRIVATE have their staging and execution directories created under /scratch,
as /scratch/<job-specific_dir_name>, put the following line in MoM’s configuration file:

$jobdir_root /scratch

13.13.1.5 Staging and Execution Directory Caveats

If the user home directory is NFS mounted, and you want to use sandbox=PRIVATE, then root must be allowed write
privilege on the NFS filesystem on which the users' home directories reside.

The directory specified in MoM’s $jobdir_root parameter must have permissions set to 1777.

Job’s jobdir attribute Set to pathname of staging and execution directory on primary execution host.
Read-only; viewable via

qstat -f.

Job’s Keep_Files attribute Determines whether output and/or error files remain on execution host. User-setta-
ble per job via qsub -k or through a PBS directive. If the Keep_Files attribute
is set to o and/or e (output and/or error files remain in the staging and execution
directory) and the job’s sandbox attribute is set to PRIVATE, standard out and/or
error files are removed when the staging directory is removed at job end along
with its contents.

Job’s PBS_JOBDIR environ-
ment variable

Set to pathname of staging and execution directory on primary execution host.
Added to environments of job script process, pbs_tm job tasks, prologue and epi-
logue, and MoM $action scripts.

Job’s TMPDIR environment vari-
able

Location of job-specific scratch directory.

PBS_RCP string in pbs.conf Location of rcp command

PBS_SCP string in pbs.conf Location of scp command; setting this parameter causes PBS to first try scp
rather than rcp for file transport.

Server’s
default_qsub_arguments
attribute

Can contain a default for job’s sandbox (and other) attributes.

Table 13-8: Options, Attributes, Environment Variables, etc., Affecting Staging

Option, Attribute,
Environment Variable,

etc.
Effect
PBS Professional 2020.1.1 Administrator’s Guide AG-515

Chapter 13 Managing Jobs
13.14 The Job Lifecycle

13.14.1 Sequence of Events for Start of Job

This is the order in which events take place on an execution host at the start of a job:

1. Application licenses are checked out

2. Any job-specific staging and execution directories are created:

• PBS_JOBDIR and job’s jobdir attribute are set to pathname of staging and execution directory

• Files are staged in

3. TMPDIR is created

4. The job’s cpusets are created

5. The prologue is executed

6. The job script is executed

13.14.2 Sequence of Events for End of Job

This is the order in which events generally take place at the end of a job:

7. The job script finishes

8. The epilogue is run

9. The obit is sent to the server

10. Any specified file staging out takes place, including stdout and stderr

11. Files staged in or out are removed

12. Any job-specific staging and execution directories are removed

13. Job files are deleted

14. Application licenses are returned to pool

15. The job’s cpusets are destroyed

13.14.3 Creation of TMPDIR

For each host allocated to the job, PBS creates a job-specific temporary scratch directory for this job. The root of TMP-

DIR is set by MoM to the value of MoM’s $tmpdir configuration option. PBS sets TMPDIR to the pathname of the job-
specific temporary scratch directory. This directory is for the use of the job, not PBS. This directory and its contents are
removed when the job is finished.

The recommended TMPDIR configuration is to have a separate, local directory on each host. If the temporary scratch
directory cannot be created, the job is killed.
AG-516 PBS Professional 2020.1.1 Administrator’s Guide

Managing Jobs Chapter 13
13.14.4 Choice of Staging and Execution Directories

If the job’s sandbox attribute is set to PRIVATE, PBS creates job-specific staging and execution directories for the job.
If the job’s sandbox attribute is set to HOME, or is unset, PBS uses the user’s home directory for staging and execution.
The staging and execution directory may be shared (e.g., cross-mounted) among all the hosts allocated to the job, or each
host may use a separate directory. This is true whether or not the directory is the user’s home directory.

13.14.4.1 Choosing Job-specific Staging and Execution Directories

When PBS creates a job-specific staging and execution directory, it does so under the directory specified in the MoM
configuration option $jobdir_root. If the $jobdir_root option is not set, job-specific staging and execution directories are
created under the user’s home directory.

If the staging and execution directory is accessible on all of the job’s execution hosts, these hosts will log the following
message at the 0x0400 event class:

“the staging and execution directory <full path> already exists”.

If the staging and execution directory is not cross-mounted so that it is accessible on all the job's execution hosts, each
secondary host also creates a directory using the same base name as was used on the primary host.

If the staging and execution directory cannot be created the job is aborted. The following error message is logged at
0x0001 event class:

“unable to create the job directory <full path>”.

When PBS creates a directory, the following message is logged at 0x0008 event class:

“created the job directory <full path>”

13.14.4.1.i Job-specific Staging and Execution Directory Caveats

• You should not depend on any particular naming scheme for the new directories that PBS creates for staging and
execution. The pathname to each directory on each node may be different, since each depends on the corresponding
MoM's $jobdir_root.

• The permissions for the directory specified in $jobdir_root must be 1777.

13.14.4.2 Choosing User Home Directory as Staging and Execution

Directory

If the job’s sandbox attribute is unset or is set to HOME, PBS uses the user’s home directory for the job’s staging and
execution directory.

The user must have a home directory on each execution host. The absence of the user's home directory is an error and
causes the job to be aborted.

13.14.5 Setting PBS_JOBDIR and jobdir Job Attribute

PBS sets PBS_JOBDIR and the job’s jobdir attribute to the pathname of the staging and execution directory.

13.14.6 Staging Files Into Staging and Execution Directories

PBS evaluates execution_path and storage_path relative to the staging and execution directory given in
PBS_JOBDIR, whether this directory is the user’s home directory or a job-specific directory created by PBS. PBS
stages files to the primary execution host only. Staging is done as the job owner.
PBS Professional 2020.1.1 Administrator’s Guide AG-517

Chapter 13 Managing Jobs
PBS uses local file transfer mechanisms where possible. For remote file transfers, PBS uses the mechanism you specify.
See section 14.6, “Setting File Transfer Mechanism”, on page 549.

13.14.7 Running the Prologue

The MoM’s prologue is run on the primary host as root, with the current working directory set to PBS_HOME/
mom_priv and with PBS_JOBDIR set in its environment.

13.14.8 Job Execution

PBS runs the job script on the primary host as the user. PBS also runs any tasks created by the job via the pbs_tm()
API as the user. The job script and tasks are executed with their current working directory set to the job's staging and
execution directory, and with PBS_JOBDIR and TMPDIR set in their environment. The job attribute jobdir is set to the
pathname of the staging and execution directory on the primary host.

13.14.9 Standard Out, Standard Error and TMPDIRs

The job's stdout and stderr files are created directly in the job's staging and execution directory on the primary exe-
cution host.

13.14.9.1 Output and Error with Job-specific Staging and Execution

Directories

If the qsub -k option is used, the stdout and stderr files will not be automatically copied out of the staging and
execution directory at job end; they will be deleted when the directory is automatically removed.

13.14.9.2 Output and Error with User Home Directory as Staging and

Execution Directory

If the -k option to qsub is used, standard out and/or standard error files are retained on the primary execution host
instead of being returned to the submission host, and are not deleted after job end.

13.14.10 Running the Epilogue

PBS runs MoM's epilogue script on the primary host as root. The epilogue is executed with its current working directory
set to the job's staging and execution directory, and with PBS_JOBDIR set in its environment.

13.14.11 Staging Files Out and Removing Execution Directory

When PBS stages files out, it evaluates execution_path and storage_path relative to PBS_JOBDIR. Files that
cannot be staged out are saved in PBS_HOME/undelivered. PBS stages files out from the primary execution host
only. Staging is done as the job owner.

PBS uses local file transfer mechanisms where possible. For remote file transfers, PBS uses the mechanism you specify.
See section 14.6, “Setting File Transfer Mechanism”, on page 549.

When the job is done, PBS writes the final job accounting record and purges job information from the server’s database.
AG-518 PBS Professional 2020.1.1 Administrator’s Guide

Managing Jobs Chapter 13
13.14.11.1 Staging Out with Job-specific Staging and Execution

Directories

If PBS created job-specific staging and execution directories for the job, it cleans up at the end of the job. If no errors are
encountered during stageout and all stageouts are successful, the staging and execution directory and all of its contents
are removed, on all execution hosts.

Files to be staged out are deleted all together, only after successful stageout of all files. If any errors are encountered dur-
ing stageout, no files are deleted on the primary execution host, and the execution directory is not removed.

If PBS created job-specific staging and execution directories on secondary execution hosts, those directories and their
contents are removed at the end of the job, regardless of stageout errors.

13.14.11.2 Staging Out with User Home Directory as Staging and

Execution Directory

Files that are successfully staged out are deleted immediately, without regard to files that were not successfully staged
out.

13.14.12 Removing TMPDIRs

PBS removes all TMPDIRs, along with their contents.

13.15 Managing Job History

13.15.1 Introduction

PBS Professional can provide job history information, including what the submission parameters were, whether the job
started execution, whether execution succeeded, whether staging out of results succeeded, and which resources were
used.

PBS can keep job history for jobs which have finished execution, were deleted, or were moved to another server.

You can configure whether PBS preserves job history, and for how long, by setting values for the job_history_enable
and job_history_duration server attributes.

13.15.2 Definitions

Moved jobs

Jobs which were moved to another server

Finished jobs

Jobs whose execution is done, for any reason:

• Jobs which finished execution successfully and exited

• Jobs terminated by PBS while running

• Jobs whose execution failed because of system or network failure

• Jobs which were deleted before they could start execution
PBS Professional 2020.1.1 Administrator’s Guide AG-519

Chapter 13 Managing Jobs
History jobs

Jobs which will no longer execute at this server:

• Moved jobs

• Finished jobs

13.15.3 Job History Information Preserved by PBS

PBS can keep all job attribute information, including the following kinds of job history information:

• Submission parameters

• Whether the job started execution

• Whether execution succeeded

• Whether staging out of results succeeded

• Which resources were used

PBS keeps job history for the following jobs:

• Jobs that are running at another server

• Jobs that have finished execution

• Jobs that were deleted

• Jobs that were moved to another server

13.15.4 Period When PBS Preserves Job History

PBS preserves history for the specified history duration beginning from the time a job finishes or is deleted.

After the duration has expired, PBS deletes the job history information and it is no longer available.

13.15.5 Configuring Job History Management

To configure job history, you enable it and you set the job history duration. You configure PBS to manage job history
using the following server attributes:

job_history_enable

Enables or disables job history management. Setting this attribute to True enables job history management.

Format: Boolean.

Default: False

job_history_duration

Specifies the length of time that PBS will keep each job’s history.

Format: duration: [[hours:]minutes:]seconds[.milliseconds]

Default: Two weeks (336:00:00)

13.15.5.1 Enabling Job History

To enable job history management, set the server’s job_history_enable attribute to True:

Qmgr: set server job_history_enable=True
AG-520 PBS Professional 2020.1.1 Administrator’s Guide

Managing Jobs Chapter 13
13.15.5.2 Setting Job History Duration

To set the length of time that job history is preserved, set the server’s job_history_duration attribute to the desired dura-
tion:

Qmgr: set server job_history_duration=<duration>

If the job history duration is set to zero, no history is preserved.

If job history is enabled and job history duration is unset, job history information is kept for the default 2 weeks.

13.15.6 Changing Job History Settings

13.15.6.1 Disabling Job History

If job history is being preserved, and you unset the job_history_enable server attribute, PBS deletes all job history infor-
mation. This information is no longer available.

13.15.6.2 Enabling Job History

If job history is not being preserved, and you set the job_history_enable server attribute, PBS begins preserving job his-
tory information for any jobs that are queued or running.

13.15.6.3 Modifying Job History Duration

Every job’s history duration is set to the current value of the job_history_duration server attribute.

Example 13-5: Reducing job history duration:

The value of job_history_duration was “00:10:00” when a job finished execution. After 2 minutes, you change the
duration to “00:06:00”. This job’s history is kept for a total of 6 minutes.

Example 13-6: Increasing job history duration:

The value of job_history_duration was “00:10:00” when a job finished execution. After 8 minutes you change the
duration to “00:30:00”. This job’s history is kept for a total of 30 minutes.

Example 13-7: Increasing job history duration:

The value of job_history_duration was “00:10:00” when a job finished execution. After 11 minutes you change the
duration to “00:30:00”. This job’s history is kept for a total of 10 minutes. The job’s history is deleted after it is kept
for 10 minutes.

13.15.7 Backward Compatibility

To have PBS behave as it did before the job history management feature was introduced, disable job history manage-
ment. Do one of the following:

• Set the server’s job_history_enable attribute to False:
Qmgr: set server job_history_enable=False

• Unset the server’s job_history_enable attribute:
Qmgr: unset server job_history_enable

• Set the value of the server’s job_history_duration attribute to zero, by doing one of the following:
Qmgr: set server job_history_duration=0
Qmgr: set server job_history_duration=00:00
Qmgr: set server job_history_duration=00:00:00
PBS Professional 2020.1.1 Administrator’s Guide AG-521

Chapter 13 Managing Jobs
13.15.8 Logging Moved Jobs

Jobs can be moved to another server for one of the following reasons:

• Moved for peer scheduling

• Moved via the qmove command

• Job was submitted to a routing queue, then routed to a destination queue at another server

When a job is moved, the server logs the event in the server log and the accounting log. The server log messages are
logged at log level 0x0008.

Format for the server log file:

7/08/2008 16:17:38;0008;Server@serverhost1;Job; 97.serverhost1.domain.com;Job moved to
destination: workq@serverhost2

Format for the accounting log entry:

7/08/2008 16:17:38;M;97.serverhost1.domain.com;destination=workq@serverhost2

Record type: M (moved job)

13.15.9 Deleting Moved Jobs and Job Histories

You can use the qdel -x option to delete job histories. This option also deletes any specified jobs that are queued, run-
ning, held, suspended, finished, or moved. When you use this, you are deleting the job and its history in one step. If you
use the qdel command without the -x option, you delete the job, but not the job history, and you cannot delete a moved
or finished job. See “qdel” on page 140 of the PBS Professional Reference Guide.

13.15.10 Job History Caveats

• Enabling job history requires additional memory for the server. When the server is keeping job history, it needs 8kb-
12kb of memory per job, instead of the 5kb it needs without job history. Make sure you have enough memory: mul-
tiply the number of jobs being tracked by this much memory. For example, if you are starting 100 jobs per day, and
tracking history for two weeks, you’re tracking 1400 jobs at a time. On average, this will require 14.3M of memory.

• If the server is shut down abruptly, there is no loss of job information. However, the server will require longer to
start up when keeping job history, because it must read in more information.

13.16 Environment Variables

The settings in $PBS_HOME/pbs_environment are available to user job scripts. You must HUP the MoM if you
change the file. This file is useful for setting environment variables for mpirun etc. For a list of environment variables
used by PBS, see “PBS Environment Variables” on page 399 of the PBS Professional Reference Guide.

13.17 Adjusting Job Running Time

13.17.1 Shrink-to-fit Jobs

PBS allows you or the job submitter to adjust the running time of a job to fit into an available scheduling slot. The job’s
minimum and maximum running time are specified in the min_walltime and max_walltime resources. PBS chooses the
actual walltime. Any job that requests min_walltime is a shrink-to-fit job.
AG-522 PBS Professional 2020.1.1 Administrator’s Guide

Managing Jobs Chapter 13
For a complete description of using shrink-to-fit jobs, see section 4.9.42, “Using Shrink-to-fit Jobs”, on page 210.

13.18 Managing Number of Run Attempts

PBS has a built-in limit of 21 for the number of times the server can try to run a job or subjob. When the job or subjob
goes over this limit, it gets a System hold. The number of tries is recorded in the job or subjob’s run_count attribute.
The run_count attribute starts at zero, and the job or subjob is held when run_count goes above 20. When a subjob’s
run_count attribute goes above 20, it and its parent job array get a System hold. You can use qrls on the parent array
to release the parent array and indirectly release the subjobs. See “qrls” on page 180 of the PBS Professional Reference
Guide.

Job submitters can set a non-negative value for run_count on job submission, and can use qalter to raise the value of
run_count. A PBS Manager or Operator can use qalter to raise or lower the value of run_count.

13.19 Managing Amount of Memory for Job Scripts

By default, starting with version 13.1, PBS limits the size of any single job script to 100MB. You can set a different limit
using the jobscript_max_size server attribute. The format for this attribute is size, and the units default to bytes. You
can specify the units. For example:

Qmgr: set server jobscript_max_size = 10mb

Job script size affects server memory footprint. If a job submitter wants to use a really big script, they can put it in shared
storage and call it from a short script, or they can run a small job script that stages in the big script, then calls it.

13.20 Allowing Interactive Jobs on Windows

1. Make sure that file and printer sharing is enabled. This is off by default.

2. Make sure that the ephemeral port range in your firewall is open on both the submission and execution hosts. Check
your OS documentation for the correct range.

3. Make sure that IPC$ share is enabled. You should be able to run the following command from the submission host:

 net use \\<execution_host>\IPC$

The output should look like this:

> net use \\myhost\IPC$

c:\Users\pbsuser>net use \\myhost\IPC$

Local name

Remote name \\myhost\IPC$

Resource type IPC

Status Disconnected

Opens 0

Connections 1

The command completed successfully.
PBS Professional 2020.1.1 Administrator’s Guide AG-523

Chapter 13 Managing Jobs
13.20.1 Configuring PBS for Remote Viewer on Windows

Job submitters can run interactive GUI jobs so that the GUI is connected to the primary execution host for the job. The
job submitter runs a GUI application over a remote viewer. On Windows, PBS supports any remote viewer, such as
Remote Desktop or X.

You can specify the remote viewer that PBS will use by setting a pbs.conf parameter on each submission host. See sec-
tion 13.20.2, “Specifying Remote Viewer at Submission Hosts”, on page 524.

On an execution host that will launch a GUI application for an interactive job, MoM must run in a LocalSystem account.
See section 13.20.3, “Configuring MoM to Run in LocalSystem Account on Windows”, on page 524.

A password is usually required when a Remote Desktop client tries to connect to an execution host. However you can
configure Single Sign-on for Remote Desktop using the current login at the client host. See section 13.20.4, “Configur-
ing Single Sign-on for Remote Desktop on Windows”, on page 525.

13.20.2 Specifying Remote Viewer at Submission Hosts

You can specify which remote viewer PBS should use when a job submitter runs a GUI job remotely. On each submis-
sion host, set the PBS_CONF_REMOTE_VIEWER parameter in pbs.conf to point to the remote viewer you want, or
to a script that launches the desired remote viewer. If this parameter is unset, PBS uses the native Windows Remote
Desktop client as the remote viewer. The line in pbs.conf should have this form:

PBS_CONF_REMOTE_VIEWER = <remote viewer client>

Example 13-8: Using the remote desktop client as the remote viewer:

PBS_CONF_REMOTE_VIEWER=mstsc /v

Example 13-9: Using the VNC viewer client as the remote viewer:

PBS_CONF_REMOTE_VIEWER=vncviewer.exe

Example 13-10: Launching a remote viewer via a script:

PBS_CONF_REMOTE_VIEWER=launch_remote_viewer.bat

13.20.3 Configuring MoM to Run in LocalSystem Account on
Windows

On an execution host that will launch a GUI application for an interactive job, MoM must run in a LocalSystem account.
To run MoM in a LocalSystem account, take the following steps:

1. Log in as administrator

2. Open services.msc

3. Right-click on the pbs_mom service and open “properties”

4. In the “Log on” tab, select “Local System Account”

5. Check “Allow service to interact with desktop”

6. Click OK
AG-524 PBS Professional 2020.1.1 Administrator’s Guide

Managing Jobs Chapter 13
13.20.4 Configuring Single Sign-on for Remote Desktop on
Windows

13.20.4.1 Configuring Submission Hosts for Single Sign-on

You can configure single sign-on using domain or local group policy. Follow these steps:

1. Log on to your local machine as an administrator

2. Start the Group Policy Editor:

gpedit.msc

3. Navigate to "Computer Configuration\Administrative Templates\System\Credentials Delegation"

4. Double-click the "Allow Delegating Default Credentials" policy

5. Enable the policy

6. Click on the "Show" button to get to the list of servers

7. Add "TERMSRV/<server name>" to the server list.

8. You can add any number of server names to the list. A server name can be a hostname or an IP address. You can use
one wildcard (*) per name. To store credentials for everything, use just a wildcard.

9. Confirm your changes by clicking on the "OK" button until you get back to the main Group Policy Object Editor
dialog.

10. Repeat steps 3 through 7 for the following policies:

a. “Allow Delegating Default Credentials with NTLM-only Server Authentication”

b. “Allow Delegating Saved Credentials with NTLM-only Server Authentication”

c. “Allow Delegating Saved Credentials”

11. In the Group Policy editor, navigate to Computer Configuration -> Administrative Templates -> Windows
Components -> Remote Desktop Services -> Remote Desktop Connection Client

12. For the entry labeled “Do not allow passwords to be saved”, change to Disabled

13. Force the policy to be refreshed immediately on the local machine. Run the following at a command prompt:

gpupdate /force

13.20.4.2 Configuring Execution Hosts for Single Sign-on

The PBS execution host is the Remote Desktop server.

If the execution host is a Windows server, for example Windows Server 2008 R2, follow these steps:

1. Start Server Manager

2. Expand Roles->Remote Desktop Services and select RD Session Host Configuration

3. In the right pane in Connections, right-click RDP-TCP Connection Name and choose Properties

4. On the Log on Settings tab make sure "Always prompt for password" is unchecked

5. On the General tab choose the Security layer: Negotiate or SSL (TLS 1.0)

6. Click OK
PBS Professional 2020.1.1 Administrator’s Guide AG-525

Chapter 13 Managing Jobs
If the execution host is not a Windows server, follow these steps:

1. Open the Group Policy Editor:
gpedit.msc

2. Navigate to Computer Configuration->Administrative Templates->Windows Components->Remote Desk-

top Services->Remote Desktop Session Host->Security

3. Set “Always prompt for password upon connection” to "Disabled"

13.21 Releasing Unneeded Vnodes from Jobs

If you want to prevent unnecessary resource usage, you can release unneeded hosts or vnodes from jobs. You can use the
pbs_release_nodes command or the release_nodes_on_stageout job attribute:

• You can use the pbs_release_nodes command at the command line, or submitters can use it or in their job
scripts to release vnodes when the command is issued. You can use this command to release specific vnodes that are
not on the primary execution host, or all vnodes that are not on the primary execution host. You can also use it to
release all hosts or vnodes except for what you specify, which can be either a count of hosts to keep, or a select spec-
ification describing the vnodes to keep. You cannot use the command to release vnodes on the primary execution
host. See “pbs_release_nodes” on page 92 of the PBS Professional Reference Guide.

• You can set the job’s release_nodes_on_stageout attribute to True so that PBS releases all of the job’s vnodes
that are not on the primary execution host when stageout begins. You must set the job’s stageout attribute as well.
See “Job Attributes” on page 328 of the PBS Professional Reference Guide.

• You can use the default_qsub_arguments server attribute to specify that all jobs are submitted with
release_nodes_on_stageout set by default.

For details, see "Releasing Unneeded Vnodes from Your Job", on page 128 of the PBS Professional User’s Guide.

13.21.1 Caveats and Restrictions for Releasing Vnodes

• The job must specify a stageout parameter in order to release vnodes on stageout. If the job does not specify stage-
out, release_nodes_on_stageout has no effect.

• You can release only vnodes that are not on the primary execution host. You cannot release vnodes on the primary
execution host.

• The job must be running (in the R state).

• The pbs_release_nodes command is not supported on vnodes tied to Cray X* series systems (vnodes whose
vntype has the "cray_" prefix).

• If cgroups support is enabled, and pbs_release_nodes is called to release some but not all the vnodes managed
by a MoM, resources on those vnodes are released.

• If a vnode on a multi-vnode host is assigned exclusively to a job, and the vnode is released, the job will show that the
vnode is released, but the vnode will still show as assigned to the job in pbsnodes -av until the other vnodes on
that host have been released. If a vnode on a multi-vnode machine is not assigned exclusively to a job, and the
vnode is released, it shows as released whether or not the other vnodes on that host are released.

• If you specify release of a vnode on which a job process is running, that process is terminated when the vnode is
released.
AG-526 PBS Professional 2020.1.1 Administrator’s Guide

Managing Jobs Chapter 13
13.22 Tolerating Vnode Faults

PBS lets you allocate extra vnodes to a job so that the job can successfully start and run even if some vnodes fail. See
section 9.5, “Vnode Fault Tolerance for Job Start and Run”, on page 428.

13.23 Managing Job Array Size

Consider setting a limit on the size of job arrays, either at the server, via the server max_array_size attribute, or at each
queue, via the server max_array_size attribute.

13.24 Recommendations

We recommend that as much as possible, you avoid huge numbers of jobs and subjobs. We recommend consolidating
jobs where possible.
PBS Professional 2020.1.1 Administrator’s Guide AG-527

Chapter 13 Managing Jobs
AG-528 PBS Professional 2020.1.1 Administrator’s Guide

14

Administration

This chapter covers information on the maintenance and administration of PBS, and is intended for the PBS administra-
tor. Topics covered include starting and stopping PBS, event logging, and accounting.

14.1 The PBS Configuration File

During the installation of PBS Professional, the installation script creates a configuration file named pbs.conf. This
configuration file controls which daemons are to run on the local system, the directory tree location, and various runtime
configuration options. Each host in a complex should have its own pbs.conf file.

14.1.1 Location of Configuration File

The configuration file is located in one of the following:

Linux:

/etc/pbs.conf

Windows:

[PBS Destination Folder]\pbs.conf

where [PBS Destination Folder] is the path specified when PBS is installed on the Windows platform, for exam-
ple:

C:\Program Files\PBS\pbs.conf

or

C:\Program Files (x86)\PBS\pbs.conf

You can set the value of PBS_CONF_FILE in your environment in order to specify an alternate location for pbs.conf.

14.1.2 Format of Configuration File

Each line in the /etc/pbs.conf file gives a value for one parameter, or is a comment, or is blank. The order of the ele-
ments is not important.

14.1.2.1 Specifying Parameters

When you specify a parameter value, do not include any spaces in the line. Format for specifying a parameter value:

<parameter>=<value>

For example, to specify a value for PBS_START_MOM on the local host:

PBS_START_MOM=1
PBS Professional 2020.1.1 Administrator’s Guide AG-529

Chapter 14 Administration
14.1.2.2 Comment Lines in Configuration File

You can comment out lines you are not using. Precede a comment with the hashmark (“#”). For example:

#This is a comment line

14.1.3 Example of Configuration File

The following is an example of a pbs.conf file for a host which is to run the server, the scheduler, and a MoM. The
server runs on the host named Host1.ExampleDomain.

PBS_EXEC=/opt/pbs/M.N.P.S

PBS_HOME=/var/spool/PBS

PBS_START_SERVER=1

PBS_START_MOM=1

PBS_START_SCHED=1

PBS_SERVER=Host1.ExampleDomain

14.1.4 Contents of Configuration File

The /etc/pbs.conf file contains configuration parameters for PBS. The following table describes the parameters you
can use in the pbs.conf configuration file:

Table 14-1: Parameters in pbs.conf

Parameter Description

PBS_AUTH_METHOD Specifies default authentication method and library to be used by PBS.
Used only at authenticating client. Case-insensitive.

Default value: resvport

To use MUNGE, set to munge

PBS_BATCH_SERVICE_PORT Port on which server listens. Default: 15001

PBS_BATCH_SERVICE_PORT_DIS DIS port on which server listens.

PBS_COMM_LOG_EVENTS Communication daemon log mask. Default: 511

PBS_COMM_ROUTERS Tells a pbs_comm the location of the other pbs_comms.

PBS_COMM_THREADS Number of threads for communication daemon.

PBS_CONF_REMOTE_VIEWER Specifies remote viewer client.

If not specified, PBS uses native Remote Desktop client for remote
viewer.

Set on submission host(s).

Supported on Windows only.

PBS_CORE_LIMIT Limit on corefile size for PBS daemons. Can be set to an integer num-
ber of bytes or to the string "unlimited". If unset, core file size limit is
inherited from the shell environment.

PBS_DATA_SERVICE_PORT Used to specify non-default port for connecting to data service. Default:
15007
AG-530 PBS Professional 2020.1.1 Administrator’s Guide

Administration Chapter 14
PBS_ENCRYPT_METHOD Specifies method and library for encrypting and decrypting data in cli-
ent-server communication. Used only at authentication client side.
Case-insensitive.

To use TLS encryption in client-server communication, set this parame-
ter to tls.

No default; if this is not set, PBS does not encrypt or decrypt data.

PBS_ENVIRONMENT Location of pbs_environment file.

PBS_EXEC Location of PBS bin and sbin directories.

PBS_HOME Location of PBS working directories.

PBS_LEAF_NAME Tells endpoint what hostname to use for network.

The value does not include a port, since that is usually set by the dae-
mon.

By default, the name of the endpoint’s host is the hostname of the
machine. You can set the name where an endpoint runs. This is useful
when you have multiple networks configured, and you want PBS to use
a particular network.

The server only queries for the canonicalized address of the MoM host,
unless you let it know via the Mom attribute; if you have set
PBS_LEAF_NAME in /etc/pbs.conf to something else, make sure
you set the Mom attribute at vnode creation.

TPP internally resolves the name to a set of IP addresses, so you do not
affect how pbs_comm works.

PBS_LEAF_ROUTERS Location of endpoint’s pbs_comm daemon(s).

PBS_LOCALLOG=<value> Enables logging to local PBS log files. Valid values:

0: no local logging

1: local logging enabled

Only available when using syslog.

PBS_LOG_HIGHRES_TIMESTAMP Controls whether daemons on this host log timestamps in microseconds.

Default timestamp log format is HH:MM:SS. With microsecond log-
ging, format is HH:MM:SS:XXXXXX.

Does not affect accounting log. Not applicable when using syslog.

Overridden by environment variable of the same name.

Valid values: 0, 1. Default: 0 (no microsecond logging)

PBS_LR_SAVE_PATH Path where Undo Live Recorder stores daemon execution recordings.
Default: $PBS_HOME/spool. See "Sending Daemon Execution Record-
ings to Altair" on page 643 in the PBS Professional Administrator’s
Guide

Table 14-1: Parameters in pbs.conf

Parameter Description
PBS Professional 2020.1.1 Administrator’s Guide AG-531

Chapter 14 Administration
PBS_MAIL_HOST_NAME Used in addressing mail regarding jobs and reservations that is sent to
users specified in a job or reservation’s Mail_Users attribute.

Optional. If specified, must be a fully qualified domain name. Cannot
contain a colon (“:”). For how this is used in email address, see section
2.2.2, “Specifying Mail Delivery Domain”, on page 20.

PBS_MANAGER_SERVICE_PORT Port on which MoM listens. Default: 15003

PBS_MOM_HOME Location of MoM working directories.

PBS_MOM_NODE_NAME Name that MoM should use for parent vnode, and if they exist, child
vnodes. If this is not set, MoM defaults to using the non-canonicalized
hostname returned by gethostname().

If you use the IP address for a vnode name, set PBS_MOM_NODE_NAME=<IP
address> in pbs.conf on the execution host.

Dots are not allowed in this parameter unless they are part of an IP
address.

PBS_MOM_SERVICE_PORT Port on which MoM listens. Default: 15002

PBS_OUTPUT_HOST_NAME Host to which all job standard output and standard error are delivered.
If specified in pbs.conf on a job submission host, the value of
PBS_OUTPUT_HOST_NAME is used in the host portion of the job’s
Output_Path and Error_Path attributes. If the job submitter does not
specify paths for standard output and standard error, the current working
directory for the qsub command is used, and the value of
PBS_OUTPUT_HOST_NAME is appended after an at sign (“@”). If
the job submitter specifies only a file path for standard output and stan-
dard error, the value of PBS_OUTPUT_HOST_NAME is appended
after an at sign (“@”). If the job submitter specifies paths for standard
output and standard error that include host names, the specified paths
are used.

Optional. If specified, must be a fully qualified domain name. Cannot
contain a colon (“:”). See "Delivering Output and Error Files" on page
60 in the PBS Professional Administrator’s Guide.

PBS_PRIMARY Hostname of primary server. Used only for failover configuration.
Overrides PBS_SERVER_HOST_NAME.

If you set PBS_LEAF_NAME on the primary server host, make sure
that PBS_PRIMARY matches PBS_LEAF_NAME on the correspond-
ing host. If you do not set PBS_LEAF_NAME on the server host,
make sure that PBS_PRIMARY matches the hostname of the server
host.

PBS_RCP Location of rcp command if rcp is used.

PBS_SCHEDULER_SERVICE_PORT Port on which default scheduler listens. Default value: 15004

Table 14-1: Parameters in pbs.conf

Parameter Description
AG-532 PBS Professional 2020.1.1 Administrator’s Guide

Administration Chapter 14
PBS_SCHED_THREADS Maximum number of scheduler threads. By default, scheduler starts a
number of threads that is half the number of cores (or hyperthreads, if
applicable) on its host. Scheduler automatically caps number of threads
at the number of cores (or hyperthreads if applicable), regardless of
value of this variable.

Overridden by pbs_sched -t option and
PBS_SCHED_THREADS environment variable.

PBS_SCP Location of scp command if scp is used; setting this parameter causes
PBS to first try scp rather than rcp for file transport.

PBS_SECONDARY Hostname of secondary server. Used only for failover configuration.
Overrides PBS_SERVER_HOST_NAME.

If you set PBS_LEAF_NAME on the secondary server host, make sure
that PBS_SECONDARY matches PBS_LEAF_NAME on the corre-
sponding host. If you do not set PBS_LEAF_NAME on the server
host, make sure that PBS_SECONDARY matches the hostname of the
server host.

PBS_SERVER Hostname of host running the server. Cannot be longer than 255 charac-
ters. If the short name of the server host resolves to the correct IP
address, you can use the short name for the value of the PBS_SERVER
entry in pbs.conf. If only the FQDN of the server host resolves to the
correct IP address, you must use the FQDN for the value of
PBS_SERVER.

Overridden by PBS_SERVER_HOST_NAME and PBS_PRIMARY.

PBS_SERVER_HOST_NAME The FQDN of the server host. Used by clients to contact server. Over-
ridden by PBS_PRIMARY and PBS_SECONDARY failover parame-
ters. Overrides PBS_SERVER parameter. Optional. If specified, must
be a fully qualified domain name. Cannot contain a colon (“:”). See
"Contacting the Server" on page 60 in the PBS Professional Administra-
tor’s Guide.

PBS_START_COMM Set this to 1 if a communication daemon is to run on this host.

PBS_START_MOM Default is 0. Set this to 1 if a MoM is to run on this host.

PBS_START_SCHED Deprecated. Set this to 1 if default scheduler is to run on this host.
Overridden by scheduler’s scheduling attribute.

PBS_START_SERVER Set this to 1 if server is to run on this host.

PBS_SUPPORTED_AUTH_METHODS Specifies supported authentication methods for client-server communi-
cation. Used by authenticating server (PBS server, scheduler, MoM, or
comm); ignored at client. Case-insensitive.

If this parameter is set, PBS accepts only the methods listed.

Format: comma-separated list of authentication methods.

Default value: resvport

Example: munge,GSS

Table 14-1: Parameters in pbs.conf

Parameter Description
PBS Professional 2020.1.1 Administrator’s Guide AG-533

Chapter 14 Administration
For information on how to use the pbs.conf file when configuring PBS for failover, see section 9.2.5.2, “Configuring the
pbs.conf File for Failover”, on page 403.

14.1.5 Configuration File Caveats and Recommendations

• Each parameter in pbs.conf can also be expressed as an environment variable.

• Environment variables override pbs.conf parameter settings.

• When you change a setting in a pbs.conf file, you must restart the daemon that reads the file.

• If you specify a location for PBS_HOME in the shell environment, make sure that this agrees with that specified in
pbs.conf.

• Do not change a hostname without updating the corresponding Version 2 configuration file.

• Use a name for the server in the PBS_SERVER variable in the pbs.conf file that is not longer than 255 charac-
ters. If the short name for the server resolves to the correct host, you can use this in pbs.conf as the value of
PBS_SERVER. However, if the fully-qualified domain name is required in order to resolve to the correct host, then
this must be the value of the PBS_SERVER variable.

• If you set PBS_LEAF_NAME on a primary or secondary server host, make sure that PBS_PRIMARY and
PBS_SECONDARY match PBS_LEAF_NAME on the corresponding host. If you do not set
PBS_LEAF_NAME on a server host, make sure that PBS_PRIMARY and PBS_SECONDARY match the host-
names of the server hosts.

• The server only queries for the canonicalized address of the MoM host, unless you let it know via the Mom attribute;
if you have set PBS_LEAF_NAME in /etc/pbs.conf to something else, make sure you set the Mom attribute at
vnode creation.

• Do not include shell-style comments in the configuration file.

• When you edit any PBS configuration file, make sure that you put a newline at the end of the file. The Notepad
application does not automatically add a newline at the end of a file; you must explicitly add the newline.

PBS_SYSLOG=<value> Controls use of syslog facility under which the entries are logged.

Valid values:

0: no syslogging

1: logged via LOG_DAEMON facility

2: logged via LOG_LOCAL0 facility

3: logged via LOG_LOCAL1 facility

...

9: logged via LOG_LOCAL7 facility

PBS_SYSLOGSEVR=<value> Filters syslog messages by severity. Valid values:

0: only LOG_EMERG messages are logged

1: messages up to LOG_ALERT are logged

...

7: messages up to LOG_DEBUG are logged

PBS_TMPDIR Location of temporary files/directories used by PBS components.

Table 14-1: Parameters in pbs.conf

Parameter Description
AG-534 PBS Professional 2020.1.1 Administrator’s Guide

Administration Chapter 14
14.2 Environment Variables

PBS sets environment variables for different purposes: some variables are used by the daemons, commands, and jobs,
and some environment variables are set individually for each job. Each parameter in pbs.conf can also be expressed as
an environment variable. Environment variables override pbs.conf parameters.

14.2.1 Environment Variables For Daemons, Commands, and
Jobs

The PBS installer creates an environment file called pbs_environment. This file is used by the daemons, com-
mands, and jobs:

• Each PBS daemon initializes its environment using this environment file

• Several commands use environment variables to determine things like the name of the default server. The environ-
ment file is useful for setting environment variables for mpirun, etc.

• Jobs inherit the contents of this environment file before they acquire settings from .profile and .login files.
Job scripts can use the environment variables set in the job’s environment.

You can edit the environment file.

14.2.1.1 Contents of Environment File

When this file is created, it contains the following:

TZ=<local timezone, e.g. US/Pacific>

PATH=/bin:/usr/bin

For a list of PBS environment variables, see “PBS Environment Variables” on page 399 of the PBS Professional Refer-
ence Guide.

To support X forwarding, edit MoM’s PATH variable to include the directory containing the xauth utility.

14.2.1.2 Location of Environment File

The PBS environment file is located here:

PBS_HOME/pbs_environment

14.2.1.3 Environment File Requirements

You must restart each daemon after making any changes to the environment file.

14.2.1.4 Editing Configuration Files Under Windows

When you edit any PBS configuration file, make sure that you put a newline at the end of the file. The Notepad applica-
tion does not automatically add a newline at the end of a file; you must explicitly add the newline.

14.2.2 Job-specific Environment Variables

For each job, the qsub command creates environment variables beginning with PBS_O_, and puts them in the job’s
environment. They are not written to pbs_environment. The server sets some of these environment variables if the
qsub command does not set them.
PBS Professional 2020.1.1 Administrator’s Guide AG-535

Chapter 14 Administration
For each job, the MoM on the primary execution host creates a file of the hosts to be used by the job. The node file is put
in the job’s environment, but the host list is not written to pbs_environment. The location of the node file is specified
in the PBS_NODEFILE environment variable, which is set for the job only. See "The Job Node File", on page 77 of the
PBS Professional User’s Guide.

Some environment variables are set by commands. The PBS mpiexec script sets PBS_CPUSET_DEDICATED.

For a list of environment variables used and set by the qsub command, see “Environment Variables” on page 230 of the
PBS Professional Reference Guide.

14.3 Event Logging

PBS provides event logging for the server, the scheduler, the communication daemon, and each MoM. You can use log-
files to monitor activity in the PBS complex.

14.3.1 PBS Events

The amount and type of output in the PBS event logfiles depends on the specified log filters for each component. Each
PBS daemon can be directed to record only messages pertaining to certain levels of importance, called log levels. The
specified log levels are logically “or-ed” to produce a mask representing the events to be logged by the daemon. The
hexadecimal value for each log level is shown in Table 14-2, “PBS Events and Log Levels,” on page 537. When events
appear in the log file, they are tagged with their hexadecimal value, without a preceding “0x”.

14.3.2 Event Logfiles

Each PBS daemon writes a separate event logfile. Each multisched writes its own logfile. By default, each daemon
writes a file that has the current date as its name in the PBS_HOME/<component>_logs directory. The location of
the logfile can be overridden with the -L option to each daemon’s command. For example, to override the server’s log-
file location:

pbs_server -L <new path>

Whenever a new log file is opened, the daemon logs PBS_LEAF_NAME, PBS_MOM_NODE_NAME, and the host-
name. The daemon also logs all network interfaces, listing each interface and all of the hostnames associated with that
interface. In addition, it logs the PBS version and the build information.

Each daemon closes the day’s log file and opens a new log file on the first message written after midnight. If no messages
are written, the old log file stays open. Each daemon closes and reopens the same logfile when the daemon receives a
SIGHUP.

Each daemon writes its version and build information to its event logfile each time it is started or restarted, and also when
the logfile is automatically rotated out. The version and build information appear in individual records. These records
contain the following substrings:

pbs_version = <PBSPro_stringX.stringY.stringZ.5-digit seq>

build = <status line from config.status, etc>

Example:

pbs_version = PBSPro_9.2.0.63106

build = '--set-cflags=-g -O0' --enable-security=KCRYPT ...

If the daemon cannot write to its log file, it writes the error message to the console. Some errors that appear before the
daemon has backgrounded itself may appear on standard error.

The maximum number of characters in the message portion of a log entry is 4096.
AG-536 PBS Professional 2020.1.1 Administrator’s Guide

Administration Chapter 14
14.3.3 Log Levels

PBS allows specification of the types of events that are logged for each daemon. Each type of log event has a different
log level. All daemons use the same log level for the same type of event.

The following table lists the log level for each type of event.

14.3.3.1 Specifying Log Levels

Each daemon uses an integer representation of a bit string to specify its log levels. The bit string can be decimal (or
hexadecimal, for the MoM). Each daemon’s log levels are specified in a a bit string that includes the events to be logged.
You can specify each multisched’s log levels individually.

For example, if you want the server to log all events except those at event classes 512, 1024, and 2048 (hex 0x0200,
0x0400, and 0x0800), you would use a log level of 511. This is 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1. If you want
to log events at event classes 1, 2, and 16, you would set the log level to 19.

The following table shows the log event parameter for each daemon:

Table 14-2: PBS Events and Log Levels

Name Decimal Hex Event Description

PBSEVENT_ERROR 1 0x0001 Internal PBS errors

PBSEVENT_SYSTEM 2 0x0002 System (OS) errors, such as malloc failure

PBSEVENT_ADMIN 4 0x0004 Administrator-controlled events, such as changing queue
attributes

PBSEVENT_JOB 8 0x0008 Job related events, e.g. submitted, ran, deleted

PBSEVENT_JOB_USAGE 16 0x0010 Job resource usage

PBSEVENT_SECURITY 32 0x0020 Security related events

PBSEVENT_SCHED 64 0x0040 When the scheduler was called and why

PBSEVENT_DEBUG 128 0x0080 Common debug messages

PBSEVENT_DEBUG2 256 0x0100 Debug event class 2

PBSEVENT_RESV 512 0x0200 Reservation-related messages

PBSEVENT_DEBUG3 1024 0x0400 Debug event class 3. Debug messages rarer than event class 2.

PBSEVENT_DEBUG4 2048 0x0800 Debug event class 4. Limit-related messages.

Table 14-3: Daemon Log Event Specification Parameters

PBS
Parameter/
Attribute

Reference
How to Make Parameter

Take Effect

Server log_events
attribute

“Server Attributes” on page 281 of the PBS Profes-
sional Reference Guide

Takes effect immediately with
qmgr
PBS Professional 2020.1.1 Administrator’s Guide AG-537

Chapter 14 Administration
When reading the PBS event logfiles, you may see messages of the form “Type 19 request received from PBS_Server...”.
These “type codes” correspond to different PBS batch requests. See “Request Codes” on page 395 of the PBS Profes-
sional Reference Guide.

14.3.3.1.i Specifying Server Log Events

You can specify the server’s log events by setting the server’s log_events attribute. The attribute is an integer represen-
tation of a bit string, where the integer includes all events to be logged. To set the value, use the qmgr command:

Qmgr: set server log_events = <value>

The new value takes effect immediately.

For example, to log only debug event class 3 (1024, or 0x0400) and internal PBS errors (1, or 0x0001), set the value to
1025 (1024 +1, or 0x0401). To include all events, set the value to 4095 or -1. The default value for this attribute is 511.
It can be set by Operators and Managers only. See “Server Attributes” on page 281 of the PBS Professional Reference
Guide.

You can set the server’s log level when you start the server using pbs_server -e <log level>. Note that you
can specify a hexadecimal value this way, but not via the server’s log_events attribute. When you use the -e <log
level> option to pbs_server, that sets the server’s log_events attribute to the corresponding integer value.

14.3.3.1.ii Specifying MoM Log Events

Each MoM’s log events are specified in the $logevent parameter in that MoM’s configuration file PBS_HOME/
mom_priv/config. The parameter is an integer representation of a bit string, where the integer includes all events to
be logged. For example, to log only debug event class 3 (1024, or 0x0400) and internal PBS errors (1, or 0x0001), set the
value to 1025 (1024 +1, or 0x0401). To set the value, add the $logevent line in PBS_HOME/mom_priv/config, then
HUP the MoM. To include all events, set the value to 4095 (0xffffffff). The default value used by MoM is 975 (0x03cf).
This parameter can be set by root only. See section 3.2, “Contents of MoM Configuration File”, on page 240.

14.3.3.1.iii Specifying Scheduler Log Events

You can specify log events for the scheduler and for each multisched by setting each scheduler’s log_events attribute.
The attribute is an integer representation of a bit string, where the integer includes all events to be logged. To set the
value, use the qmgr command:

Qmgr: set sched <scheduler name> log_events = <value>

The new value takes effect immediately.

For example, to log only debug event class 3 (1024, or 0x0400) and internal PBS errors (1, or 0x0001), set the value to
1025 (1024 +1, or 0x0401). To include all events, set the value to 4095 or -1. The default value for this attribute is 767.
It can be set by Operators and Managers only. See “Scheduler Attributes” on page 298 of the PBS Professional Refer-
ence Guide.

MoM $logevent
parameter

“Contents of MoM Configuration File” on page
240 of the PBS Professional Reference Guide

Requires SIGHUP to MoM

Scheduler log_events
attribute

“Configuration Parameters” on page 250 of the
PBS Professional Reference Guide

Takes effect immediately with
qmgr

communi-
cation

PBS_COMM_

LOG_EVENT

S parameter in
pbs.conf

“Daemon Log Mask” on page 46 in the PBS Pro-
fessional Installation & Upgrade Guide

Restart the communication dae-
mon

Table 14-3: Daemon Log Event Specification Parameters

PBS
Parameter/
Attribute

Reference
How to Make Parameter

Take Effect
AG-538 PBS Professional 2020.1.1 Administrator’s Guide

Administration Chapter 14
14.3.3.1.iv Specifying Communication Daemon Log Events

The communication daemon’s log events are specified in the PBS_COMM_LOG_EVENTS parameter in /etc/
pbs.conf. This parameter is an integer representation of a bit string, where the integer includes all events to be logged.
HUP the daemon after you set the parameter.

For example, to log only debug event class 3 (1024, or 0x0400) and internal PBS errors (1, or 0x0001), set the value to
1025 (1024 +1, or 0x0401). To include all events, set the value to 2047 (or -1). The default value for this attribute is 511
(0x1ff). See “Logging and Errors with TPP” on page 54 in the PBS Professional Installation & Upgrade Guide and
"Contents of Configuration File” on page 530.

14.3.4 Event Logfile Format and Contents

14.3.4.1 Event Logfile Format

Each component event logfile is a text file with each entry terminated by a new line. The format of an entry is:

<logfile date and time>;<event code>;<server name>;<object type>;<object name>;<message>

• The logfile date and time field is a date and time stamp in the format:

mm/dd/yyyy hh:mm:ss[.xxxxxx]
PBS Professional 2020.1.1 Administrator’s Guide AG-539

Chapter 14 Administration
If microsecond logging is enabled, microseconds are logged using the .xxxxxx portion. Microseconds may be pre-
ceded by zeroes. Microsecond logging is controlled per host via the PBS_LOG_HIGHRES_TIMESTAMP configu-
ration parameter or environment variable.

• The event code is a bitmask for the type of event which triggered the event logging. It corresponds to the bit position,
0 to n, of each log event in the event mask of the PBS component writing the event record. See section 14.3.1, “PBS
Events”, on page 536 for a description of the event mask.

• The server name is the name of the server which logged the message. This is recorded in case a site wishes to merge
and sort the various logs in a single file.

• The object type is the type of object which the message is about. All messages are associated with an object type.
The following lists each possible object type:

• The object name is the name of the specific object.

• The message field is the text of the log message.

14.3.4.2 Scheduler Commands

These commands tell a scheduler why a scheduling cycle is being started. These commands appear in the server’s log-
file. Each has a decimal value, shown below. The following table shows commands from the server to a scheduler.

Table 14-4: List of Event Logfile Object Types

Object Type Usage

Svr for server

Que for queue

Job for job

Req for request

Fil for file

Act for accounting string

Node for vnode or host

Resv for reservation

Sched for scheduler

Table 14-5: Commands from Server to Scheduler

Value Event Description

1 New job enqueued

2 Job terminated

3 Scheduler time interval reached

4 Cycle again after scheduling one job

5 Scheduling command from operator or manager

7 Configure

8 Quit (qterm -s)
AG-540 PBS Professional 2020.1.1 Administrator’s Guide

Administration Chapter 14
14.3.5 Logging Job Usage

PBS can log per-vnode cputime usage. The primary execution host MoM logs cputime in the format “hh:mm:ss” for
each vnode of a multi-vnode job. The log level of these messages is 0x0100.

Under Linux, to append job usage to standard output for an interactive job, use a shell script for the epilogue which con-
tains the following:

#!/bin/sh

tracejob -sl $1 | grep 'cput'

This behavior is not available under Windows.

14.3.6 Managing Log Files

14.3.6.1 Disk Space for Log Files

It is important not to run out of disk space for logging. You should periodically check the available disk space, and check
the size of the log files PBS is writing, so that you know how fast you are using up disk space. Make sure that you
always have more than enough disk space available for log files.

14.3.6.2 Dividing Up Log Files

You may wish to divide a day’s logging up into more than one file. You may want to create a logfile that contains only
the entries of interest. You can specify a file for a daemon’s event log. See section 14.3.6.3, “Specifying Log File Path”,
on page 542. The next sections describe how to break up your log files.

14.3.6.2.i Dividing Log Files on Linux

On Linux systems, all daemons close and reopen the same named log file when they are sent a SIGHUP. The process
identifier (PID) of each daemon is available in its lock file in its home directory. You can move the current log file to a
new name and send SIGHUP to restart the file using the following commands:

cd $PBS_HOME/<daemon>_logs

mv <current log file> <archived log file>

kill -HUP 'cat ../<daemon>_priv/<daemon>.lock'

9 Ruleset changed

10 Schedule first

11 A reservation’s start time has been reached

12 Schedule a job (qrun command has been given)

13 Stopped queue is started

14 Job moved into local queue (queue at this server)

15 eligible_time_enable is turned on

16 PBS attempting to reconfirm degraded reservation

Table 14-5: Commands from Server to Scheduler

Value Event Description
PBS Professional 2020.1.1 Administrator’s Guide AG-541

Chapter 14 Administration
14.3.6.2.ii Dividing Log Files on Windows

On Windows systems, you can rotate the event log files by stopping the service for which you want to rotate the logfile,
moving the file, and then restarting that service. For example:

cd "%PBS_HOME%\mom_logs"

net stop pbs_mom

move <current log file> <archived log file>
net start pbs_mom

14.3.6.3 Specifying Log File Path

You may wish to specify an event logfile path that is different from the default path. Each daemon has an option to spec-
ify a different path for the daemon’s event logfile. This option is the -L logfile option, and it is the same for all daemons.
For example, to start the scheduler so that it logs events in /scratch/my_sched_log:

pbs_sched -L /scratch/my_sched_log

See the pbs_server(8B), pbs_sched(8B), and pbs_mom(8B) manual pages.

14.3.7 Extracting Logged Information

You can use the tracejob command to extract information from log files, such as why a job is not running or when a
job was queued. The tracejob command can read both event logs and accounting logs. See the tracejob(8B)
manual page.

14.3.8 Using the Linux syslog Facility

Each PBS component logs various event classes of information about events in its own log file. While having the advan-
tage of a concise location for the information from each component, the disadvantage is that in a complex, the logged
information is scattered across each execution host. The Linux syslog facility can be useful.
AG-542 PBS Professional 2020.1.1 Administrator’s Guide

Administration Chapter 14
If your site uses the syslog subsystem, PBS may be configured to make full use of it. The following entries in
pbs.conf control the use of syslog by the PBS components:

14.3.8.1 Caveats

• PBS_SYSLOGSEVR is used in addition to PBS's log_events mask which controls the class of events (job, vnode,
...) that are logged.

• If you use syslog, you cannot have daemons log events at microsecond resolution.

14.4 Managing Machines

14.4.1 Offlining Hosts and Vnodes

For using hooks to offline vnodes, see "Offlining Bad Vnodes" on page 66 in the PBS Professional Hooks Guide.

To offline an entire host, use the pbsnodes command. Use the name of the parent vnode, which is usually the name of
the host:

pbsnodes -o <name of parent vnode>

All vnodes on this host are offlined.

To offline a single vnode, use the qmgr command, with the name of the vnode:

qmgr -c "set node foo[3] state=offline"

Table 14-6: Entries in pbs.conf for Using Syslog

Entry Description

PBS_LOCALLOG=x Enables logging to local PBS log files. Only possible when logging via syslog feature is
enabled.

0 = no local logging

1 = local logging enabled

PBS_SYSLOG=x Controls the use of syslog and syslog facility under which the entries are logged. If x is:

0 - no syslogging

1 - logged via LOG_DAEMON facility

2 - logged via LOG_LOCAL0 facility

3 - logged via LOG_LOCAL1 facility

 ...

9 - logged via LOG_LOCAL7 facility

PBS_SYSLOGSEVR=y Controls the severity level of messages that are logged; see /usr/include/sys/sys-
log.h. If y is:

0 - only LOG_EMERG messages are logged

1 - messages up to LOG_ALERT are logged

 ...

7 - messages up to LOG_DEBUG are logged
PBS Professional 2020.1.1 Administrator’s Guide AG-543

Chapter 14 Administration
14.4.1.1 Caveats of Offlining

If you set a vnode with no running jobs offline, the server will not attempt to communicate with the vnode. Therefore,
the server will not notice that the vnode is up until you clear the offline state. For example, a vnode that is both down
and offline will not be marked up by the server until you clear the offline state.

14.4.2 Performing Maintenance on Powered-up Vnodes

14.4.2.1 Reserving Vnodes for Maintenance

You can create maintenance reservations using pbs_rsub --hosts <host list>. Maintenance reservations are
designed to make the specified hosts available for the specified amount of time, regardless of what else is happening:

• You can create a maintenance reservation that includes or is made up of vnodes that are down or offline.

• Maintenance reservations ignore the value of a vnode’s resv_enable attribute.

• PBS immediately confirms any maintenance reservation.

• Maintenance reservations take precedence over other reservations; if you create a maintenance reservation that over-
laps an advance or standing job reservation, the overlapping vnodes become unavailable to the job reservation, and
the job reservation is in conflict with the maintenance reservation. PBS looks for replacement vnodes; see "Reserva-
tion Fault Tolerance" on page 426 in the PBS Professional Administrator’s Guide.

PBS will not start any new jobs on vnodes overlapping or in a maintenance reservation. However, jobs that were already
running on overlapping vnodes continue to run; you can let them run or requeue them.

You cannot specify place or select for a maintenance reservation; these are created by PBS:

• PBS creates the reservation’s placement specification so that hosts are assigned exclusively to the reservation. The
placement specification is always the following:

-lplace=exclhost
• PBS sets the reservation’s resv_nodes attribute value so that all CPUs on the reserved hosts are assigned to the

maintenance reservation. The select specification is always the following:

-lselect=host=<host1>:ncpus=<number of CPUs at host1>+host=<host2>:ncpus=<number of CPUs at
host2>+...

Maintenance reservations are prefixed with M. A maintenance reservation ID has the format:

M<sequence number>.<server name>

You cannot create a recurring maintenance reservation.

Creating a maintenance reservation does not trigger a scheduling cycle.

You must have manager or operator privilege to create a maintenance reservation.

14.4.2.2 Putting Vnodes into Maintenance State

You may want to perform maintenance on a vnode while it is powered up, but you don’t want job processes running on it.
You can suspend a job on a vnode and put the vnode into a maintenance state, where the scheduler will not start any
new jobs on the vnode, using qsig -s admin-suspend <job ID>. You must suspend each job on the vnode; if
you suspend only one, the rest will keep running. When you admin-suspend a job, all of the job’s vnodes are put into
the maintenance state, the job goes into the S state, and the job’s processes are suspended.

Once the maintenance is finished, you can resume the admin-suspended jobs using qsig -s admin-resume
<job ID>. The admin-resume signal directly resumes the job, without waiting for the scheduler. Once all of the
vnode’s jobs are admin-resumed, the vnode leaves the maintenance state.
AG-544 PBS Professional 2020.1.1 Administrator’s Guide

Administration Chapter 14
You can see the list of jobs that were running on a vnode then admin-suspended in the maintenance_jobs vnode
attribute. This attribute is a list of job IDs, and is readable only by managers.

14.4.2.2.i Resource Release on Suspension

When you admin-suspend a job, resources are released according to how you have configured the
restrict_res_to_release_on_suspend server attribute; see section 5.9.6.2, “Job Suspension and Resource Usage”, on
page 250. However, no new jobs will run while the job is suspended.

14.4.2.2.ii Caveats for admin-suspend and admin-resume

• We recommend that before you admin-suspend any job, you disable scheduling and wait for the current scheduling
cycle to finish. The scheduler queries vnode state only at the beginning of the scheduling cycle. If a vnode goes into
the maintenance state after the start of the cycle, the scheduler could still schedule jobs onto that vnode.

• The suspend and resume signals are not interchangeable with the admin-suspend and admin-resume signals.
For example, if a job is suspended via normal the suspend signal (qsig -s suspend <job ID>), it cannot be
resumed with the admin-resume signal.

Similarly, if a job is suspended with the admin-suspend signal, it cannot be resumed with the resume signal.
Either request will be rejected with the following message:

"Job can not be resumed with the requested resume signal"

• If there are multiple jobs on a vnode, we recommend using either suspend and admin-suspend, but not both. If
you have a suspended job on a vnode that was in the maintenance state but is no longer, the scheduler could run
jobs on the resources owned by the suspended job.

• If you want to perform maintenance on a vnode that has no jobs running on it, we recommend putting the vnode into
the offline state before performing the maintenance.

• Any reservations on vnodes in the maintenance state are marked degraded. PBS searches for alternate vnodes for
those reservations.

• Any vnode which had only admin-suspended subjobs will stay in the maintenance state after a server restart.

14.4.3 Changing Hostnames or IP Addresses

• Do not change a hostname without updating the corresponding Version 2 configuration file.

• Do not change the IP address or hostname of a machine in the complex while PBS is running. Stop PBS (server,
scheduler, and MoMs), change the IP address, and restart PBS.

To change a hostname or IP address:

1. Make sure no jobs are running

2. Stop all PBS daemons

3. Make a backup of PBS_HOME

4. Change the hostname or IP address

5. If you are using the IP address as a vnode name, update PBS_MOM_NODE_NAME in pbs.conf on the execution
host to the new IP address.

6. Restart all PBS daemons

7. If a host has a corresponding Version 2 configuration file, make sure that it is consistent with the new hostname

8. If you are running nscd, restart nscd on all hosts
PBS Professional 2020.1.1 Administrator’s Guide AG-545

Chapter 14 Administration
14.4.4 Discovering Last Reboot Time of Server

Under Linux, you can find the timestamp of the most recent time PBS started up in /var/tmp/pbs_boot_check.

The permission of this file is set to 0644; only the PBS init script should modify this file. Do not modify this file. If you
do so, you violate the configuration requirements of PBS.

This file is not available under Windows.

14.4.5 Changing Network Configuration

If you change any network configuration, restart the PBS daemons.

14.4.6 Replacing or Reimaging Nodes

When PBS_HOME is removed on a node by reimaging, etc., make sure that the server knows that there are no legitimate
jobs on the node. Send each job qsig -s SIGNULL after the node is up again, which causes the server to contact the
MoM and discover that any jobs are gone as far as MoM is concerned. The server then requeues and reruns any of
MoM’s gone jobs. Otherwise zombie jobs will ensure that no new jobs are scheduled to the node even after it's been
reimaged.

MoM depends on its PBS_HOME to know which jobs are gone. When a node goes down on PBS complexes with either
diskless nodes or nodes with integrated disk drives, sometimes the cluster manager will reimage the node before the com-
plex reintegrates the node. In that case, PBS_HOME is gone, so MoM no longer knows about any jobs she was managing.
The server will never get any updates or obits for those jobs, so they'll stay in state R.

If the reimaging process is longer than node_fail_requeue, the server will requeue the jobs, but your complex may use
node_fail_requeue set to 0 for very good reasons, for example if there are Cray or HPE NUMA machines in the com-
plex.

14.4.7 Restricting User Access to Execution Hosts

PBS provides a facility to prevent users who are not running PBS jobs from using machines controlled by PBS. You can
turn this feature on by using the $restrict_user MoM directive. This directive can be fine-tuned by using the
$restrict_user_exceptions and $restrict_user_maxsysid MoM directives. This feature can be set up host by host.

• A user requesting exclusive access to a set of hosts (via place=excl) can be guaranteed that no other user will be
able to use the hosts assigned to his job, and PBS will not assign any unallocated resources on the vnode to another
job.

• A user requesting non-exclusive access to a set of hosts can be guaranteed that no non-PBS users are allowed access
to the hosts.

• A privileged user can be allowed access to the complex such that they can log into a host without having a job active.

• An abusive user can be denied access to the complex hosts.

The administrator can find out when users try to access hosts without going through PBS. The administrator can ensure
that application performance is consistent on a complex controlled by PBS. PBS will also be able to clean up any job
processes remaining after a job finishes running.
AG-546 PBS Professional 2020.1.1 Administrator’s Guide

Administration Chapter 14
For a vnode with access restriction turned on:

• Any user not running a job who logs in or otherwise starts a process on that vnode will have his processes termi-
nated.

• A user who has logged into a vnode where he owns a job will have his login terminated when the job is finished.

• When MoM detects that a user that is not exempt from access restriction is using the system, that user's processes are
killed and a log message is output:
01/16/2006 22:50:16;0002;pbs_mom;Svr;restrict_user;

killed uid 1001 pid 13397(bash) with log event class PBSE_SYSTEM.

You can set up a list of users who are exempted from the restriction via the $restrict_user_exceptions directive. This
list can contain up to 10 usernames.

Example 14-1: Turn access restriction on for a given node:

$restrict_user True

Example 14-2: Limit the users affected to those with a user ID greater than 500:

$restrict_user_maxsysid 500

Example 14-3: Exempt specific users from the restriction:

$restrict_user_exceptions userA, userB, userC

Note that a user who has a job running on a particular host will be able to log into that host.

14.4.7.1 Windows Restriction

The user access restriction feature is not supported on Windows.

14.5 Managing the Data Service

14.5.1 PBS Monitors Data Service

PBS monitors its connection to the data service. If the connection is broken (for example, because the data service is
down), PBS tries to reestablish the connection. If necessary, PBS restarts the data service.

If failover is configured, and PBS cannot reestablish a connection, PBS quits.

If failover is not configured, PBS attempts to reestablish the connection until it succeeds.

When the server is stopped, it stops the data service.

14.5.2 Data Service Accounts

On Linux, PBS uses a PBS data service management account and an internal data service account. They are described
here: “Create PBS Data Service Management Account” on page 23 in the PBS Professional Installation & Upgrade
Guide.

14.5.3 Data Service Account Password

The default password for the internal data service account is a random password that is generated at installation, and
which is known only to the PBS server.
PBS Professional 2020.1.1 Administrator’s Guide AG-547

Chapter 14 Administration
14.5.3.1 Setting Data Service Account Name and Password

Changing the password is necessary only if you want to manually log into the database to check data or change some-
thing. Otherwise it is not necessary.

Use the pbs_ds_password command to change the password of the data service internal user account (not the PBS
data service management account).

You can change the user account and/or password for the data service account using the pbs_ds_password com-
mand. Use this command if you need to change the user account or update the password for the data service account.
You must be root or administrator to run the pbs_ds_password command. See “pbs_ds_password” on page 61 of the
PBS Professional Reference Guide.

To change the data service account name:

pbs_ds_password -C <new user account>

To change the data service account password:

pbs_ds_password

14.5.3.2 Caveats

• When you specify a new name for the data service account, there must already be a data service management
account with that name

• The account name cannot be changed while the data service is running.

• Do not delete PBS_HOME/server_priv/db_password. Doing so will prevent the pbs_ds_password com-
mand from being able to function.

• Do not change the data service password using any method other than the pbs_ds_password command.

• If you change the data service account after installing PBS, and then you want to upgrade PBS, you must change it
back in order to perform the upgrade. After the upgrade, you can change it again. This is covered in the upgrading
instructions.

• If you type in a password, make sure it does not contain restricted characters. The pbs_ds_password command
generates passwords containing the following characters:

0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!@#$%^&*()_+

When creating a password manually, do not use \ (backslash) or ‘ (backquote). This can prevent certain commands
such as pbs_server, pbs_ds_password, and printjob from functioning properly, as they rely on connect-
ing to the database. The format is also described in "PBS Password” on page 357.

14.5.4 Starting and Stopping the Data Service

PBS automatically starts and stops the data service. However, you can start, stop, or check the status of the PBS data ser-
vice using the pbs_dataservice command. See “pbs_dataservice” on page 60 of the PBS Professional Reference
Guide.

To start the data service:

pbs_dataservice start

To stop the data service:

pbs_dataservice stop

To get the status of the data service:

pbs_dataservice status
AG-548 PBS Professional 2020.1.1 Administrator’s Guide

Administration Chapter 14
14.5.4.1 Caveats for Starting and Stopping Data Service

• Do not start or stop the data service using anything except the pbs_dataservice command. Start or stop the
data service using only the pbs_dataservice command.

• The data service cannot be stopped while the PBS server is running.

14.5.5 Changing Data Service Port

You can change the port that the data service listens on by changing the setting of the PBS_DATA_SERVICE_PORT
entry in pbs.conf.

14.5.5.1 Caveats

• The PBS daemons must not be running when the port is changed.

• The data service must not be running when the port is changed.

14.5.6 File Ownership

The files under PBS_HOME/datastore are owned by the data service user account.

14.6 Setting File Transfer Mechanism

14.6.1 File Transfer in PBS

If PBS finds scp in the system PATH at install time, it sets the PBS_SCP parameter in pbs.conf to the path to scp.

MoM does the work of transferring files, using the mechanism you specify. MoM transfers files when she stages them in
or out for a job, and when she delivers output and error files. MoM always tries to determine whether the source and des-
tination for a file transfer are both local. If they are, she uses the local copy mechanism (/bin/cp on Linux, and
xcopy on Windows). You can use the $usecp MoM configuration parameter to tell MoM which local directories are
mapped to mounted directories, so that she can use the local copy mechanism.

For remote copying, PBS uses scp or rcp. In most installations, PBS is configured to use scp by default; at installa-
tion PBS looks for scp in the system PATH, and if it finds scp in the system PATH, PBS sets PBS_SCP in pbs.conf.
You can configure PBS to use rcp for remote copying. You can also tell PBS to use any script or command for remote
file transfer, such as rsync, gsiftp, etc.; see section 14.6.3.3, “Configuring MoM to Use Different Flags, a Script, or
a Different Command”, on page 553.

PBS ships with a version of rcp called pbs_rcp. On Windows, PBS uses this version by default.

PBS does not impose limitations on the size of files being transferred. Any limitations are caused by the commands
themselves. The pbs_rcp command should be as fast as other implementations of rcp.

14.6.1.1 Configuration Parameters Affecting File Transfer

You configure MoM’s file transfer mechanisms using the following:

• Local copy: the $usecp MoM configuration parameter

• Remote copy: the PBS_SCP and PBS_RCP entries in pbs.conf
PBS Professional 2020.1.1 Administrator’s Guide AG-549

Chapter 14 Administration
14.6.1.2 How MoM Chooses File Transfer Method

If MoM knows that she is performing a local file transfer, she uses her local copy mechanism.

If MoM is transferring a remote file, she chooses according to the following:

• If PBS finds scp in the system PATH at install time, it sets the PBS_SCP parameter in pbs.conf to the path to
scp.

• If a command is specified in PBS_SCP, MoM uses the command specified in PBS_SCP.

• If a command is specified in PBS_RCP, and PBS_SCP is not defined, MoM uses the command specified in
PBS_RCP.

• If no pbs.conf parameters are defined, MoM uses pbs_rcp.

14.6.1.2.i When Multiple Attempts Are Required

If necessary, MoM tries to transfer a file multiple times, with an increasing delay between each attempt:

• If MoM is using her local copy mechanism, she tries it up to four times

• If MoM is using the entry in PBS_SCP:

• She first tries this, and if it fails, she tries rcp, pbs_rcp, or the entry in PBS_RCP if it is configured

• She repeats this sequence four times

• If MoM is using rcp, pbs_rcp, or the entry in PBS_RCP, she tries it up to four times

14.6.1.3 Options Passed to File Transfer Commands

14.6.1.3.i Options Passed on Linux

MoM automatically uses these options on Linux:

14.6.1.3.ii Options Passed on Windows

MoM automatically uses these options on Windows:

Table 14-7: File Transfer Mechanism Options on Linux

Distance Mechanism Options

Remote PBS_RCP entry, rcp, or pbs_rcp -rp

Remote PBS_SCP entry -Brvp

Local /bin/cp -rp

Table 14-8: File Transfer Mechanism Options on Windows

Distance Mechanism Options

Remote PBS_RCP entry, rcp, or pbs_rcp -E -r

Remote PBS_SCP entry -Brv

Local xcopy /e/i/q/y
AG-550 PBS Professional 2020.1.1 Administrator’s Guide

Administration Chapter 14
14.6.2 Configuring MoM for Local Copy

MoM uses her local copy mechanism whenever she knows she will perform a local copy. To tell her which directories
can be treated as local, specify the mappings between local and mounted directories in MoM’s $usecp configuration
parameter.

14.6.2.1 Configuring the $usecp MoM Parameter

This tells MoM where to look for files in a shared file system, so that she can use the local copy agent for these files.
This is useful when you have common mount points across execution hosts.

Format:

$usecp <hostname>:<source directory> <destination directory>

You can use a wildcard (“*”) as the first element only, to replace hostname.

MoM uses a local copy mechanism to transfer files when staging or delivering output, under the following circum-
stances:

• The destination is a network mounted file system

• The source and destination are both on the local host

• The source directory can be replaced with the destination directory on hostname

You can map multiple directories. Use one line per mapping.

You must HUP MoM after making this change.

14.6.2.1.i Linux and $usecp

MoM uses /bin/cp for the local copy mechanism on Linux.

Format:

$usecp <hostname>:<source directory> <destination directory>

Use trailing slashes on both the source and destination directories.

Example 14-4: Configuring $usecp on Linux:

$usecp *:/home/ /home/

$usecp *.example.com:/home/ /home/

$usecp *:/home/user/ /home/user/

$usecp *:/data/ /data/

$usecp HostA:/users/work/myproj/ /sharedwork/proj_results/

14.6.2.1.ii Windows and $usecp

MoM uses xcopy for the local copy mechanism on Windows.

Format:

$usecp <host name>:<drive name>:<directory> <drive name>:<directory>

When a network location is mapped to a local drive, you can cover all host names and case-sensitivity using entries sim-
ilar to these:

$usecp *:Q: Q:

$usecp *:q: q:

Using this mapping, when MoM sees files with this format:

<hostname>:Q:<file path>
PBS Professional 2020.1.1 Administrator’s Guide AG-551

Chapter 14 Administration
or

<hostname>:q:<file path>

she passes them to the copy command with this format:

Q:<file path>

or

q:<file path>

Example 14-5: Mapping locations with different directory names:

$usecp HostB:C:/xxxxx C:/yyyyy

14.6.3 Configuring MoM for Remote Copy

14.6.3.1 Configuring MoM to use scp or PBS_SCP Entry

By default MoM uses scp for remote copying, if the scp command is in the system PATH when PBS is installed. If you
want MoM to use scp for remote copying on Windows or if PBS_SCP was not set in pbs.conf by default on Linux,
follow the steps below.

1. Make sure that scp and ssh are installed on each host involved in the file transfer.

2. If you use plain scp without a wrapper script, MoM calls it with the -B option, which requires passwordless authen-
tication. If you have not done so, set up passwordless authentication on all machines involved in file transfer. See
section 14.6.7.1, “Enabling Passwordless Authentication”, on page 555.

3. To use scp on Windows, set up passwordless authentication on all machines involved in file transfer. See section
14.6.7.1, “Enabling Passwordless Authentication”, on page 555.

4. Set PBS_SCP to the absolute path to scp.

5. If the MoM is already running, restart the MoM.

The PBS_SCP pbs.conf entry is the absolute path to a command or script used for remote transfer. When PBS_SCP
is defined, this entry overrides PBS_RCP, and MoM tries PBS_SCP first for remote transfers.

MoM calls the command this way:

$PBS_SCP -Brvp <path to source> <username>@<destination>.<host>:<path to destination>

You cannot specify options inside the PBS_SCP entry.

14.6.3.2 Configuring MoM to use rcp, pbs_rcp or PBS_RCP Entry

If you want MoM to use rcp, you will need to remove PBS_SCP from the pbs.conf file and restart MoM.

If you want MoM to use a different rcp, or another mechanism such as a script:

1. Make sure that rcp and rsh are installed on each host involved in the file transfer.

2. Specify the absolute path to the command or script in the PBS_RCP entry in pbs.conf.

3. If MoM is running, restart MoM.

The PBS_RCP pbs.conf entry is the absolute path to a command or script used for remote transfer. If MoM is unable
to copy using the PBS_SCP entry, she uses the entry in PBS_RCP as an alternate method.

MoM calls the command this way:

$PBS_RCP -rp <path to source> <username>@<destination>.<host>:<path to destination>

You cannot specify options inside the PBS_RCP entry.
AG-552 PBS Professional 2020.1.1 Administrator’s Guide

Administration Chapter 14
14.6.3.3 Configuring MoM to Use Different Flags, a Script, or a

Different Command

If you want MoM to use different flags to rcp or scp, or a different command, or your own script, for remote file trans-
fer:

1. If needed, write a script that does what you need

2. Specify the path to the command or script in PBS_SCP in pbs.conf

3. If the MoM is already running, restart the MoM.

When MoM calls PBS_SCP, she calls it with the -Brvp (Linux) or -Brv (Windows) flags. This means that when you
are writing a script, the arguments being passed to the script are:

$1-Brvp or -Brv

$2path to source

$3path to destination

You choose which arguments the script passes to the command inside the script. If you are using a different command,
make sure that you pass the correct flags to it.

Example 14-6: Pass desired options to scp by writing a wrapper script for scp that contains the desired options, and
pointing PBS_SCP to the wrapper script. In this case, we don’t use the default -Brvp, which is passed to the script
as $1. The script does not pass $1 to scp; instead, it specifies -Br. We do pass in the source and destination as $2
and $3.

In pbs.conf:

PBS_SCP=/usr/bin/scp_pbs

In /usr/bin/scp_pbs:

#!/bin/sh

/usr/bin/scp -Br $2 $3

Example 14-7: Use rsync by writing a wrapper script that passes all arguments except for the first (-Brvp) to rsync,
and pointing PBS_SCP to the wrapper script. In this case, the script passes all but the first argument to rsync as
$*. We get rid of the first argument using the shift command.

In pbs.conf:

PBS_SCP=/usr/bin/rsync_pbs

In /usr/bin/rsync_pbs:

#!/bin/sh

shift

/usr/bin/rsync -avz -e ssh $*

For remote copying, MoM tries the PBS_SCP entry in pbs.conf first. If you configure both PBS_RCP and
PBS_SCP with scripts or commands, put the script or command that you want MoM to try first in PBS_SCP.

14.6.4 Allowing Direct Write of Standard Output and Error to /
dev/null

Standard output and standard error are normally written to a location such as /var/spool, then copied to their final loca-
tion. To avoid creating these files at all, and to avoid copying them, you need two things:

In MoM’s version 1 configuration file, add this:

$usecp $<MoM hostname>:/dev/null /dev/null
PBS Professional 2020.1.1 Administrator’s Guide AG-553

Chapter 14 Administration
Job submitters can use direct write to send them to /dev/null:

qsub -koed -o /dev/null -e /dev/null

14.6.5 Troubleshooting File Transfer

14.6.5.1 Problems with rcp

When using rcp, the copy of output or staged files can fail for the following reasons:

• The user lacks authorization to access the specified system

• Under Linux, if the user’s .cshrc prints any characters to standard output, e.g. contains an echo command, the
copy will fail

You may encounter a strange hang in stageout, with jobs stuck in the E state for a long time. This can happen because
rcp may be trying to connect to a port that’s already in use. If your standard copy mechanism is scp, and you don’t
want to let PBS fall back on pbs_rcp, do one of the following:

• You can move pbs_rcp

• If you specify PBS_SCP, set PBS_RCP to /bin/false in pbs.conf

• If you are using CM/PAS and specify PBS_SCP in /etc/conf, put the PBS_SCP line after the PBS_RCP line

14.6.5.2 Problems with Directory Access

Local and remote delivery of output may fail for the following additional reasons:

• A directory in the specified destination path does not exist

• A directory in the specified destination path is not searchable by the user

• The target directory is not writable by the user

14.6.6 Advice on Improving File Transfer Performance

14.6.6.1 Avoiding Server Host Overload

Avoid staging files from the server host, unless you can isolate the daemons from the effects of CPU and memory usage
by scp/ssh, by using a mechanism such as cpusets. Consider the impact from a large job array that causes many files to
be staged from the server host. Instead, use a shared filesystem. See section 14.6.6.2, “Avoiding Remote Transfers in
Large Complexes”, on page 554.

14.6.6.2 Avoiding Remote Transfers in Large Complexes

If you are running a very large HPC complex, consider using MoM’s $usecp directive to avoid rcp and scp transfers.
Instead, have your users place input files on a shared filesystem before submitting jobs, write their output to the shared
filesystem, and keep as much as possible out of stdout and stderr.

14.6.6.3 Improving Performance for ssh

If network bandwidth is a limiting factor, you can use compression to improve performance. However, if CPU usage
and/or memory are limiting factors, do not use compression, because compression also requires CPU and memory.

You can use compression ciphers that minimize the CPU and memory load required, for example arcfour or blow-
fish-cbc:

ciphers arcfour,blowfish-cbc
AG-554 PBS Professional 2020.1.1 Administrator’s Guide

Administration Chapter 14
14.6.6.4 Improving Performance when Staging Similar Files

If you are staging in many similar files, for example, for job arrays, you can use rsync in a wrapper script. Follow the
instructions in section 14.6.3.3, “Configuring MoM to Use Different Flags, a Script, or a Different Command”, on page
553.

14.6.6.5 Avoiding Limits on ssh Connections

To prevent scp requests being denied when using ssh, you can set higher limits on incoming ssh connections. By
default ssh is configured to treat more than 10 incoming connections (plus 10 in the authentication phase) as a denial-of-
service attack, even on machines that could service many more requests.

Set higher limits in /etc/ssh/sshd_config for servers that are meant to service a lot of incoming openSSH ses-
sions, but only on machines that have enough CPU and memory to service all of the requests.

See the MaxSessions and MaxStartups parameters in the man page for sshd_config. You can make these at least as
large as the number of hosts in the cluster plus 10, assuming that any MoM only has one scp session open at any one
time.

14.6.6.6 Alternatives to Changing ssh Limits

To avoid having to change limits on incoming ssh connections, you can do the following:

• Use a mounted directory and employ $usecp MoM parameters. See section 14.6.6.2, “Avoiding Remote Transfers
in Large Complexes”, on page 554.

• Use compression to service more requests with the same amount of hardware resources. See section 14.6.6.3,
“Improving Performance for ssh”, on page 554.

14.6.6.7 Getting Around Bandwidth Limits

If you have bandwidth limits, you can use a command such as gsiftp, which allows you to specify the bandwidth you
want to use for file transfer. Follow the instructions in section 14.6.3.3, “Configuring MoM to Use Different Flags, a
Script, or a Different Command”, on page 553.

14.6.7 General Advice on File Transfer

14.6.7.1 Enabling Passwordless Authentication

You must enable passwordless authentication so that job files can be staged in and out. You must also choose and set a
file transfer mechanism such as rcp or scp for remote file copying. Before you set up the remote file copy mechanism,
enable passwordless authentication for it.

Enable passwordless authentication for each machine in the complex, and for any machine from which or to which files
will be transferred.

You can use any authentication method you want, such as a shosts.equiv file, an authorized keys file, or .rhosts
authentication. You can choose a cipher and use encryption; balance the CPU time required by encryption with the CPU
time required by MoMs and job tasks.

PBS requires that rsh/rcp and/or ssh/scp works between each pair of hosts where files will be transferred. Test
whether you have succeeded by logging in as root, and using your chosen file transfer mechanism to copy a file between
machines.
PBS Professional 2020.1.1 Administrator’s Guide AG-555

Chapter 14 Administration
14.6.7.2 Using scp for Security

Unless your complex is a closed system, we recommend using scp instead of rcp, because scp is more secure.

14.6.7.3 Avoiding Asynchronous Writes to NFS

Asynchronous writes to an NFS server can cause reliability problems. If using an NFS file system, mount the NFS file
system synchronously (without caching.)

14.6.7.4 Returning Output on Cray

If your site has disabled the use of remote operation functions ("r" commands) and output cannot be returned for jobs
running on compute nodes, enable the use of the cp command by adding $usecp to the $PBS_HOME/mom_priv/
config file on each login node. See section 14.6.2, “Configuring MoM for Local Copy”, on page 551.

14.6.7.5 Editing the pbs.conf File Under Windows

You can edit the pbs.conf file by calling the PBS program named “pbs-config-add”. For example, on Windows
systems:

\Program Files (x86)\PBS\exec\bin\pbs-config-add "PBS_SCP=\winnt\scp.exe"

Do not edit pbs.conf directly; this could reset the permission on the file, which could prevent other users from running
PBS.

14.6.7.6 The pbs_rcp Command

14.6.7.6.i Exit Values for pbs_rcp

The pbs_rcp command exits with a non-zero exit status for any error. This tells MoM whether or not the file was deliv-
ered.

14.6.7.7 Caveats

• Output is not delivered if the path specified by PBS_SCP or PBS_RCP in pbs.conf is incorrect.

• When a job is rerun, its stdout and stderr files are sent to the server and stored in PBS_HOME/spool. When
the job is sent out for execution again, its stdout and stderr are sent with it. The copy mechanism used for these
file transfers is internal to PBS; you cannot alter it or manage it in any way.
AG-556 PBS Professional 2020.1.1 Administrator’s Guide

Administration Chapter 14
14.7 Some Performance Tips

14.7.1 Improving Scheduling Performance

• The scheduler can run asynchronously, so it doesn’t wait for each job to be accepted by MoM, which means it also
doesn’t wait for an execjob_begin hook to finish. For short jobs, this can give you better scheduling performance.
The scheduler runs asynchronously by default when the complex is using TPP mode, and can run asynchronously
only when the complex is using TPP mode. To run the scheduler asynchronously, set the throughput_mode sched-
uler attribute to True. For details on TPP mode, see “Communication” on page 45 in the PBS Professional Installa-
tion & Upgrade Guide; for job throughput, see section 4.5.7.1, “Improving Throughput of Jobs”, on page 97.

• If you limit the number of jobs queued in execution queues, you can speed up the scheduling cycle. See section
4.5.7.2, “Limiting Number of Jobs Queued in Execution Queues”, on page 98.

• Avoid using dynamic resources where possible; see section 5.4.4, “Static vs. Dynamic Resources”, on page 234

• We give advice on minimizing the impact hooks can have on scheduling in "Scheduling Impact of Hooks" on page
72 in the PBS Professional Hooks Guide.

14.7.2 Improving Communication Performance

• We give recommendations for improving communication daemon performance in “Recommendations for Maximiz-
ing Communication Performance” on page 51 in the PBS Professional Installation & Upgrade Guide.

• You can use placement sets to keep job processes topologically close to one another; see section 4.9.32, “Placement
Sets”, on page 168.

• See our recommendations on file transfer performance improvement in section 14.6.6, “Advice on Improving File
Transfer Performance”, on page 554.

14.7.3 Improving Hook Speed

• See our hook performance recommendations in "Performance Considerations" on page 73 in the PBS Professional
Hooks Guide.

14.8 Temporary File Location for PBS Components

You can configure where all PBS components put their temporary files and directories on each system. You may want to
avoid using the usual temporary file locations of /tmp and /var/tmp, because users tend to fill these up.

14.8.1 Default Location for Temporary Files

By default, on Linux platforms, PBS components put their temporary files and directories in /var/tmp. PBS uses this
location because it is persistent across restarts or crashes, allowing diagnosis of a problem, whereas the contents of /tmp
may be lost.

On Windows, the default location is C:\WINNT\TEMP if it is present, or C:\WINDOWS\TEMP.
PBS Professional 2020.1.1 Administrator’s Guide AG-557

Chapter 14 Administration
14.8.2 Configuring Temporary File Location for PBS
Components

You configure the location of temporary files and directories for PBS components by setting the value of the
PBS_TMPDIR configuration parameter in the /etc/pbs.conf file on each system. Set this parameter to the direc-
tory to be used for storing temporary files and directories by all PBS components on that system.

After you set the location of temporary files and directories, restart all PBS components:

<path to init.d>/init.d/pbs restart

The location for temporary files and directories for PBS components is determined by the following settings, in order of
decreasing precedence:

1. $tmpdir in mom_priv/config (affects pbs_mom only, not other components)

2. PBS_TMPDIR (for Linux) or TMP (for Windows) environment variable

3. PBS_TMPDIR in PBS configuration file

4. If none of the preceding settings are present, PBS uses default values:

• /var/tmp (for Linux)

• C:\WINNT\TEMP or C:\WINDOWS\TEMP (for Windows)

14.8.3 Requirements

• The specified directory must exist.

 If the configured temporary file location does not exist, PBS prints the following error message:

<command>: No such file or directory (2) in chk_file_sec, Security violation "<directory>"
resolves to "<directory>"

<command>: Unable to configure temporary directory.

• The directory must be globally readable and writable.

• On Linux systems, the directory must have the sticky bit set in the file permissions.

• The directory must not present a security risk:

• All parent directories of the configured temporary directory must be owned by a UID less than 11 and a GID
less than 10.

• If the assigned owner has write permission, the UID must be 10 or less.

• If the assigned group has write permission, the GID must be 9 or less.

• Each parent directory must not be writable by “other”.

If a PBS component detects a security risk for a file or directory, it prints the following messages and exits:

<command>: Not owner (1) in chk_file_sec, Security violation "<directory>" resolves to
"<directory>"

<command>: Unable to configure temporary directory.
AG-558 PBS Professional 2020.1.1 Administrator’s Guide

Administration Chapter 14
14.8.4 Advice and Recommendations for Temporary File
Location

• Make sure that the location you choose for temporary files is cleaned periodically.

• In the past, some PBS components defaulted to /tmp for storing temporary files. All components now default to /
var/tmp, which is most likely a persistent storage location. You should take this into account and adjust the clean-
ing of /var/tmp accordingly.

• If a PBS component prints a security error message and exits, fix the security problem and restart the component.

14.9 Administration Caveats

14.9.1 General Caveats

Do not manually delete files in PBS private directories.

14.9.2 Windows Caveats

When you edit any PBS configuration file, make sure that you put a newline at the end of the file. The Notepad applica-
tion does not automatically add a newline at the end of a file; you must explicitly add the newline.

14.10 Support for Globus

Globus can still send jobs to PBS, but PBS no longer supports sending jobs to Globus.

14.11 Support for Hyperthreading

On Linux machines that have Hyper-Threading Technology, PBS can end up reporting and using the number of logical
processors, instead of the number of physical CPUs, as the value for resources_available.ncpus.

PBS does not control how CPUs are allocated to processes within a job. That is handled by the OS kernel.

14.11.1 Linux Machines with HTT

On Linux, PBS uses the number of CPUs shown in /proc/cpuinfo. If the CPUs are hyper-threaded and hyper-
threading is enabled, the number of virtual and physical CPUs is different.

14.11.2 Windows Machines with HTT

On Windows, PBS calls the CPUCount Windows function, which reports whether hyper-threading is enabled. If hyper-
threading is enabled, MoM uses the number of physical CPUs. If hyper-threading is not enabled, MoM uses the number
of CPUs reported by the OS. MoM logs whether or not hyper-threading is enabled.
PBS Professional 2020.1.1 Administrator’s Guide AG-559

Chapter 14 Administration
14.11.3 Using Number of Physical CPUs

If you do not wish to use hyper-threading, you can configure PBS to use the number of physical CPUs. Do this by setting
resources_available.ncpus to the number of physical cpus:

Qmgr: set node <vnode name> resources_available.ncpus=<number of physical CPUs>

14.11.4 Hyperthreading Caveats

On a cpusetted system, NEVER change the value for resources_available.ncpus, resources_available.vmem, or
resources_available.mem.

14.12 How To...

14.12.1 How to Drain Jobs

You can drain jobs from the entire complex by setting up dedicated time. Do not allow jobs in the dedicated time queue.
See section 4.9.10, “Dedicated Time”, on page 125.

You can drain jobs from a specific set of vnodes by creating a reservation that blocks out those vnodes for the desired
amount of time. See section 4.9.37, “Reservations”, on page 197.

14.12.2 How to Find Out Which Daemons Should Be Running

On the host in question, look in /etc/pbs.conf, or the location pointed to in the PBS_CONF_FILE environment vari-
able. Check the settings that specify whether each daemon should run. 1 means the daemon should run.

PBS_START_MOM

PBS_START_COMM

PBS_START_SERVER

PBS_START_SCHED
AG-560 PBS Professional 2020.1.1 Administrator’s Guide

15

Configuring and Using PBS

with Cgroups

15.1 Chapter Contents

15.1 Chapter Contents . AG-559
15.2 Introduction to Cgroups. AG-559
15.3 Why Use Cgroups? . AG-560

15.3.1 What PBS Can Do With Cgroups. AG-560
15.3.2 Examples of Using Cgroups . AG-561

15.4 How PBS Uses Cgroups . AG-561
15.4.1 Vnode Creation via Cgroups Hook . AG-561
15.4.2 Job Life Cycle with Cgroups . AG-561
15.4.3 Cgroup Subsystems . AG-562

15.5 Configuring Cgroups. AG-563
15.5.1 Prerequisites for Cgroups Hook . AG-563
15.5.2 Enabling and Tuning Hook According to Host and/or Vnode Type . AG-564
15.5.3 Cgroups Hook Configuration Parameters. AG-567
15.5.4 Finish Up . AG-587
15.5.5 Managing GPUs or Xeon Phi via Cgroups. AG-588

15.6 Configuring MPI for Cgroups . AG-591
15.6.1 Steps to Integrate MPI with PBS via ssh . AG-593

15.7 Managing Jobs with Cgroups . AG-594
15.7.1 Requesting Memory . AG-594
15.7.2 Limit Enforcement . AG-594
15.7.3 Examples of Requesting Cores and Hyperthreads . AG-594
15.7.4 Spawning Job Processes . AG-594

15.8 Caveats and Errors. AG-595
15.8.1 Interactions Between Suspend/resume and the cpuset Subsystem. AG-595
15.8.2 Caveats for Shrinking a Job on a Host . AG-595
15.8.3 Caveats for Using CUDA. AG-595
15.8.4 Do Not Change ncpus When cpuset Subsystem is Enabled. AG-595
15.8.5 Cgroups Hook Prevents Epilogue from Running . AG-595
15.8.6 Errors . AG-596

15.2 Introduction to Cgroups

The term cgroup (pronounced see-group, short for control groups) refers to a Linux kernel feature that was introduced in
version 2.6.24.
PBS Professional 2020.1.1 Administrator’s Guide AG-561

Chapter 15 Configuring and Using PBS with Cgroups
A cgroup may be used to manage access to system resources and to account for resource usage. The root cgroup is the
ancestor of all cgroups and provides access to all system resources. When a cgroup is created, it inherits the configuration
of its parent. When a process assigned to a cgroup creates a child process, the child is automatically assigned to its par-
ent’s cgroup.

Once created, a cgroup may be configured to restrict access to a subset of its parent’s resources. These restrictions may
include such things as memory, NUMA nodes, and devices. These different resource classes are grouped into categories
referred to as cgroup subsystems. When processes are assigned to a cgroup, the kernel enforces all configured restric-
tions.

In Cgroups v1, supported by this cgroups hook, the kernel supports a number of cgroup subsystems. A cgroup subsystem
is a kernel component that modifies the behavior of the processes in a cgroup. Subsystems are sometimes also known as
cgroup resource controllers or cgroup controllers. We describe PBS support for cgroup subsystems in this chapter.

PBS provides a hook that allows you to take advantage of cgroups. When the cgroups hook is enabled, it runs on every
node assigned to the job. When a job is started, the hook creates a set of directories for the configured subsystems based
on the resource requirements of the job and then places the job process within the cgroup.

While the job is running, the kernel, not PBS, enforces resource restrictions, based on the cgroup settings written by the
hook earlier. The cgroups hook can be configured to periodically poll the job’s cgroup and update resource usage. When
the job finishes, the hook writes final resource usage to the job’s resources_used attribute, and removes the cgroup
directories it created to house the job.

15.3 Why Use Cgroups?

Without cgroups, Linux can define sets of processes as related, but cannot define a set of loosely coupled processes as a
single entity. Without cgroups, PBS uses Linux sessions to track job processes, but less accurately than with cgroups.
Linux sessions impose the following limitations:

• Restrictions on how processes have to be related: sessions must encompass a parent process and nothing else but its
progeny; it is impossible to merge a job session and another session created by for example sshd. However, PBS
can manage more than one session per host.

• Inability to set resource usage restrictions for the entire set of processes belonging to a job; while you can set per-
process limits on memory or CPU time, you cannot limit a session or a group of sessions belonging to a job

• Inability to make job sessions be inescapable containers: the setsid call or command will make processes leave
the current session and create their own unrelated session; users and applications can use it without restriction.

With cgroups, all of these issues can be avoided:

• Since cgroups offer a well-established and general way of grouping processes together, cgroup controllers can
implement precise resource usage accounting, resource usage limits, and process control for the entire cgroup. The
cgroup also persists until it is explicitly destroyed, allowing some resource usage counters in a cgroup to outlive the
processes that were members of the cgroup.

• Root can add processes to a cgroup regardless of the relationship between the processes, so a daemon can force pro-
cesses spawned by OS services to join an existing cgroup. A process or thread spawned by a process appears at first
in the cgroup of the parent process, and a non-root process cannot use any library call to escape the cgroup unless
another cgroup grants that process permission to change cgroups.
AG-562 PBS Professional 2020.1.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 15
15.3.1 What PBS Can Do With Cgroups

• More correctly identify which processes are part of a PBS job, even when libraries mislead PBS by creating pro-
cesses that move into their own sessions that are not registered with PBS.

• Make processes spawned through external systemd daemons, including ssh, fully join a job

• Prevent job processes from using more resources than specified; for example disallow bursting above limits set
according to the resources requested by the job when it was submitted

• Keep job processes within defined memory and CPU boundaries, ensuring there is minimal interference between
jobs sharing a host, in order to provide consistent job run times.

• More accurately track and account for resource usage, even at the end of the job, when the job processes have exited
and can no longer be investigated

• Enable or disable access to devices

• Ensure jobs leave enough resources for OS processes, to avoid disrupting OS services and turning nodes into "black
hole nodes” that will no longer correctly run jobs

In addition to leveraging the kernel’s cgroups support, the cgroups hook can also optionally discover the hardware con-
figuration of a host and create child vnodes that reflect the hardware configuration, for example a number of CPU sockets
with locally attached memory and GPU device.

This allows configuring the server and scheduler for optimal job performance. This functionality is an extension of the
functionality formerly supported by the cpuset MoM (since the cpuset controller is now just one of the cgroup controllers
in the kernel).

15.3.2 Examples of Using Cgroups

• Limit all of a job’s processes to 6 CPUs and 6GB of RAM on vnode A

• Ensure that if two MPI jobs share a host, they do not pin processes to the same CPUs

• Limit access to GPU devices to only those assigned to the job by the cgroups hook

• Partition a host into a number of socket-aligned vnodes for optimal placement of jobs

• Pair processor, memory, and coprocessors like Xeon Phi and GPUs for optimal job placement

15.4 How PBS Uses Cgroups

15.4.1 Vnode Creation via Cgroups Hook

The hook creates a child vnode for each NUMA node on a host when all of the following conditions are true:

• The hook is enabled on the host

• At least one subsystem is enabled on the host

• The vnode_per_numa_node parameter is set to true

• The hook finds a NUMA node on the host

For example, if the host named “myhost” has one NUMA node, you end up with two vnodes to represent the host: the
parent vnode, named “myhost”, and a vnode to represent the NUMA node, named “myhost[0]”.
PBS Professional 2020.1.1 Administrator’s Guide AG-563

Chapter 15 Configuring and Using PBS with Cgroups
15.4.1.1 Caveats for Vnode Creation

• Make sure that you run the cgroups hook only after you have created the parent vnode.

• If the cgroups hook creates vnodes for a host, do not use any other method to create child vnodes for that host. For
example, do not create special vnodes for GPUs.

15.4.2 Job Life Cycle with Cgroups

15.4.2.1 Running Single-host Jobs with Cgroups

When PBS runs a single-host job, the following happens:

1. PBS creates a cgroup on the host assigned to the job for each enabled subsystem. PBS assigns resources (CPUs,
memory, and optionally co-processors such as GPUs or Xeon Phis) to the job on the host. It sets the required limits
on resource usage in the cgroups created.

2. PBS places the top job process in each created cgroup. Cgroup semantics then automatically ensure that the progeny
of the top job process is also confined to the correct cgroups.

3. The cgroup periodic hook collects resource usage information about the cgroups and hands it over to MoM; MoM
uses these values when it reports job resource usage to the server to set the resources_used attribute.

4. When the job has finished, the cgroups hook reports CPU and memory usage to MoM and cleans up the cgroups.

15.4.2.2 Running Multi-host Jobs with Cgroups

When PBS runs a multi-host job, the following happens:

1. PBS creates a cgroup on each host assigned to the job. PBS assigns resources to the job and sets the required cgroup
limits.

2. PBS places the top job process in the cgroup on the first node (the primary execution host). Any child processes that
the job spawns on the primary execution host remain in the cgroup, even if they use calls to change Linux session.

3. The job creates processes on the remote hosts. If PBS integration of multihost applications has been done correctly,
those processes will either:

• Be created as children of MoM through a call to the TM API tm_spawn call (possibly indirectly through the
use of pbs_tmrsh)

• Be spawned by an external service and then registered as part of the job through a call to tm_attach (possibly
indirectly through the use of pbs_attach)

In both cases, the cgroups hook migrates the processes into the correct cgroups; the kernel then ensures their prog-
eny remain in the cgroups.

4. On each host, the cgroup periodic hook collects usage information about the cgroups and hands it over to MoM; the
primary execution host MoM periodically queries the resource usage on sister nodes, sums the contributions of all
the nodes, and reports it to the server, which publishes it in the resources_used attribute.

5. When the job has finished, on each host, the cgroups hook reports final CPU and memory usage to the local MoM
and cleans up the job cgroups. The primary execution host MoM collects resource usage information from all nodes,
sums it across nodes, and sends it to the server, which makes a final update of the resources_used attribute .

15.4.3 Cgroup Subsystems

The cgroups hook can manage the subsystems listed in "Subsystems Managed by the Cgroups Hook” on page 565.
AG-564 PBS Professional 2020.1.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 15
For other subsystems, listed in "Subsystems Used by Other Software” on page 565, the hook can only create and destroy
per-job cgroups and move job processes into those cgroups; apart from that, it does not manage any values in those
cgroups. Some of these subsystems are used by other software.

15.4.3.1 Cgroup Subsystems Managed by the Cgroups Hook

The cgroups hook can manage the following subsystems:

15.4.3.2 Cgroup Subsystems Not Managed by Cgroups Hook

When subsystems not managed by the cgroups hook are enabled, the cgroups hook only creates per-job cgroup directo-
ries, ensures job processes are moved into them, and deletes the per-job cgroup when the job ends. Managing any param-
eters is left to other hooks or software.

If you run another hook, for example the container hook, that expects per-job cgroups to have been created by the
cgroups hook for a set of subsystems, make sure you enable these subsystems on the host.

The cgroups hook can create and destroy cgroups for, and move processes into, the following subsystems:

Table 15-1: Subsystems Managed by the Cgroups Hook

Subsystem Functionality Used by Cgroups Hook

cpu Set quota for CPU usage and/or set CPU usage shares for each job, to allow the Linux CFS
scheduler to implement fair sharing

See section 15.5.3.7, “cpu Subsystem”, on page 577.

cpuacct Monitor CPU resource usage

See section 15.5.3.5, “cpuacct Subsystem”, on page 574.

cpuset Allocate and restrict jobs to specific CPU and optionally NUMA memory domains

See section 15.5.3.6, “cpuset Subsystem”, on page 575.

devices Restrict job access to only specific character and block devices.

See section 15.5.3.8, “devices Subsystem”, on page 579.

memory Set kernel-enforced per-job limits for memory usage; monitor memory usage.

See section 15.5.3.9, “memory Subsystem”, on page 581.

memsw Set kernel-enforced per-job limits for swap usage; monitor swap usage.

See section 15.5.3.10, “memsw Subsystem”, on page 584.

hugetlb Set kernel-enforced per-job limits for huge pages usage; monitor huge pages usage.

See section 15.5.3.11, “hugetlb Subsystem”, on page 586.

Table 15-2: Subsystems Used by Other Software

Subsystem Functionality Used by Other Software

freezer Can be used to suspend entire job

blkio Can track and limit usage and bandwidth to specific disk block devices

pids Can be used to track and limit number of processes in a job
PBS Professional 2020.1.1 Administrator’s Guide AG-565

Chapter 15 Configuring and Using PBS with Cgroups
15.5 Configuring Cgroups

You manage the behavior of the cgroups hook across your complex by setting parameters in the cgroups hook configura-
tion file.

15.5.1 Prerequisites for Cgroups Hook

15.5.1.1 Ensure that Cgroups are Available

Many Linux distributions have cgroups available by default; for others you may need to install and enable cgroups. We
provide some tips here for making sure that cgroups are available on your system:

• Verify that you have cgroups configured on your system:
cat/proc/mounts|grep cgroup

You should see cpuset, cpuacct, memory, etc. enabled.

Each subsystem that will be enabled on the host by the configuration file should be listed (except memsw; see
below).

If you do not have cgroups available, install them.

You may need to set your kernel flags so that they enable cgroup support.

• A cgroup subsystem may be disabled at boot time. To check for this, look for “cgroup_disable” entries in /proc/
cmdline and take appropriate actions to remove it from the kernel command line parameters.

• The memsw subsystem is not a separate controller but an option of the memory controller that is present or absent
depending on the kernel options at boot time.

If you plan to enable the memsw subsystem, to verify whether swap accounting and limits are available:

cat /proc/mounts | grep cgroup | grep memory | awk ‘BEGIN {FS=” “} {print $2}’ | head -n 1 | xargs
--replace=dir ls dir/memory.memsw.usage_in_bytes

If this lists a file, then memory plus swap accounting is turned on. If instead, ls reports it cannot access the file, then
kernel support for it is disabled; in some kernels it is disabled by default.

If memsw support is disabled, either add “swapaccount=1” to the kernel command line parameters to enable it and
reboot the node, or ensure that the memsw section of the configuration file is disabled for the host.

• Make sure that cgroups will survive a reboot. Test whether cgroups survive by rebooting the host, then look to see
whether cgroups are available. If they are not available, refer to the documentation for your Linux distribution.

15.5.1.2 Ensure that PBS Is Already Installed and Started

Make sure that PBS is installed and started.

net_cls Can be used to tag network packets sent by the job with a job-specific class identifier that can be
used in e.g. firewall configuration

net_prio Can be used to dynamically set the priority of network traffic generated by each job

perf_events Allow the perf tool to monitor a PBS Professional job as a group

Table 15-2: Subsystems Used by Other Software

Subsystem Functionality Used by Other Software
AG-566 PBS Professional 2020.1.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 15
15.5.2 Enabling and Tuning Hook According to Host and/or
Vnode Type

You can use just one configuration file across a complex containing hosts with different configurations. You can enable
the hook for a specific subset of the hosts in your complex. You can also tune the hook by enabling each subsystem inde-
pendently according to host. For example if you have some hosts with swap, and some without, and some hosts with
GPUs and some without, you can enable the memsw subsystem only for the hosts that have swap, and enable the
devices subsystem only for the hosts that have GPUs.

You can similarly tune the hook for any parameter that takes true and false. So for example you can tune the soft_limit
parameter in the memory subsystem so that soft_limit evaluates to true for certain hosts.

15.5.2.1 Vnode Types for Cgroups Hook

You can label each host to reflect its characteristics, then use the label when specifying which hosts are included in a sub-
set. The labeling mechanism is a single string, in a file on MoM’s host in PBS_HOME/vntype. We refer to this string as a
“vnode type”, and the hook stores the value of the string in the variable “vntype”. You can define any vnode type you
need. Write your vntypes using only alphanumerical characters and the delimiters “.”, “-” and “_”.

15.5.2.1.i Vnode Type File and vntype Resource

The resources_available.vntype vnode resource and the vntype file contents are related but different tools. Do not try
to set the vntype file contents by changing resources_available.vntype for the vnode (this will not work). If you want
the value of resources_available.vntype for the vnode to reflect the contents of the vntype file on the execution host,
you can propagate the file string to the resource by setting the propagate_vntype_to_server parameter in the hook’s
configuration file to True.

15.5.2.2 Tuning Where Hook, Subsystems, and Parameters are

Enabled

For each of the true/false parameters, and for the swappiness parameter, you can specify whether a host or vnode type
is in, or not in, the list for which the parameter evaluates to true. A list is one or more comma-separated host or vnode
names, specified using one of these:

“vntype in:”

“vntype not in:”

“host in:”

“host not in:”

Whitespace around the entries is ignored. You can use hostnames or vntypes, or Python fnmatch sequences, which
allows “*” or “?” wildcards. Do not use commas inside an entry.

Example 15-1: If you have four vntypes “compute_swap”, “compute_noswap”, “gpu_swap”, “gpu_noswap”, you can
set the swappiness parameter for the memory subsystem using

“swappiness” : “vntype in: *_swap”

and set the vnode_per_numa_node parameter in the main section using:

 “vnode_per_numa_node” : “vntype in: gpu_*”
PBS Professional 2020.1.1 Administrator’s Guide AG-567

Chapter 15 Configuring and Using PBS with Cgroups
15.5.2.2.i Enabling the Hook and Subsystems

For the hook and each subsystem, the enabled parameter can be modified using the exclude_vntypes, exclude_hosts,
include_hosts, and run_only_on_hosts parameters. In the following hierarchy, each parameter modifies the previous
parameters. Always specify these parameters in this order in the configuration file:

1. enabled

2. exclude_hosts

3. exclude_vntypes

4. include_hosts

5. run_only_on_hosts

15.5.2.2.ii exclude_vntypes

Modifies the enabled parameter. JSON list of patterns for vntypes to exclude from enabled group. For example, to
include all hosts except those without cgroups (marked with “no_cgroup” in their vntype):

“enabled” : true,

“exclude_vntypes”: [“*no_cgroup*”]

This is equivalent to:

“enabled” : “vntype not in: *no_cgroup*”

15.5.2.2.iii exclude_hosts

Modifies the enabled parameter. List of hosts to exclude from membership group. For example, to enable all hosts with
GPUs (marked with “gpu” in their vntype), except for the hosts marked for testing:

“enabled” : “vntype in: gpu”

“exclude_hosts” : [“gpu_test*”]

15.5.2.2.iv include_hosts

Modifies and overrides the enabled, exclude_vntypes, and exclude_hosts parameters. List of hosts to include in
membership group, despite having been among those excluded. For example, to include two “thin” hosts in the cpuset
subsystem list, despite the fact that they did not qualify to be enabled in the “fat” group:

“cpuset” : {

“enabled” : “vntype in: fat”

“include_hosts” : [“test_cpuset_thin01”, “test_cpuset_thin02”]

This is equivalent to:

“cpuset” : {

“enabled” : “vntype not in: thin”

“include_hosts” : [“test_cpuset_thin01”, “test_cpuset_thin02”]

15.5.2.2.v run_only_on_hosts

Modifies the enabled, exclude_vntypes, exclude_hosts, and include_hosts parameters. Provides additional restric-
tion on hosts otherwise qualified for inclusion in membership list. Any host included must pass all membership tests.
For example, to include only hosts that are both “willing” and among the list of “able01”, “able02”, and “able03”:

“enabled” : “vntype in: willing”

“run_only_on_hosts” : [“able01”, “able02”, “able03”]
AG-568 PBS Professional 2020.1.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 15
15.5.2.2.vi Hook and Subsystem Enablement Tuning Parameters

The following parameters let you tune whether the hook and each subsystem is enabled on any host and/or vntype. You
can set each parameter in this table for the entire hook and for each subsystem individually. Here we show the defaults in
the configuration file, and in the code, as they apply to whether the hook itself is enabled. We do not list the defaults for
each subsystem; they may be different.

15.5.3 Cgroups Hook Configuration Parameters

The cgroups hook configuration file contains parameters that the hook uses as guides for its behavior, and parameters
that the hook uses when it sets values in the cgroups directories. For any parameter that is unset in the configuration file,
the cgroups hook uses defaults built into the hook. This file must conform to JSON syntax.

The cgroups hook configuration file is named pbs_cgroups.json before it is imported as the hook configuration file.
After the file is imported as the hook configuration file, PBS names it pbs_cgroups.CF.

Table 15-3: Cgroups Hook Global and Subsystem Membership Configuration
Parameters

Parameter
Name

Default Value:
Configuration

File

Default
Value:
Hook

Description

enabled true True When true, the cgroups hook is enabled on the host.

Can be modified using the exclude_vntypes, exclude_hosts,
include_hosts, and run_only_on_hosts parameters.

See section 15.5.2, “Enabling and Tuning Hook According to
Host and/or Vnode Type”, on page 567.

exclude_hosts [] [] Modifies the enabled parameter.

If not empty, specifies a list of hosts where the hook should be
disabled.

See section 15.5.2.2.iii, “exclude_hosts”, on page 568

exclude_vntypes [no_cgroups] [] Modifies the enabled parameter.

Specifies a list of vnode types for which the cgroups hook
should be disabled.

See section 15.5.2.2.ii, “exclude_vntypes”, on page 568

include_hosts Modifies the enabled and exclude_hosts parameters.

If not empty, specifies a list of hosts where the hook should be
enabled despite earlier exclusion.

See section 15.5.2.2.iv, “include_hosts”, on page 568

run_only_on_hosts [] [] Overrides the enabled, exclude_hosts, exclude_vntypes,
and include_hosts parameters.

If not empty, specifies a list of hosts limiting the hosts for
which the cgroups hook should be enabled to the matching
hosts.

See section 15.5.2.2.v, “run_only_on_hosts”, on page 568
PBS Professional 2020.1.1 Administrator’s Guide AG-569

Chapter 15 Configuring and Using PBS with Cgroups
15.5.3.1 Global Parameters for Cgroups Hook

Here are the cgroups hook configuration parameters, except for the membership tuning parameters described above.
Please note that some parameters may be different from those shown here:

Table 15-4: Cgroups Hook Configuration File Global Parameters

Parameter Name

Default
Value:
Config

File

Default
Value:
Hook

Description

enabled true True When true, the cgroups hook is enabled on the host.

Can be modified using the exclude_vntypes,
exclude_hosts, include_hosts, and run_only_on_hosts
parameters. See section 15.5.2, “Enabling and Tuning
Hook According to Host and/or Vnode Type”, on page 567.

cgroup_lock_file "/var/spool/

pbs/

mom_priv/

cgroups.lock"

This file ensures that only one hook event can manipulate
the cgroups at any one time. The filesystem on which this
file resides must support file locking.

cgroup_prefix pbs_jobs pbs_jobs The parent directory under each cgroup subsystem where
job cgroups are created. If the memory subsystem is
located at /sys/fs/cgroup/memory, the memory cgroup for
job 1.foo is found in the /sys/fs/cgroup/memory/
pbs_jobs.service/jobid/1.foo directory.

kill_timeout 10 10 Specifies the maximum number of seconds the cgroups
hook spends attempting to kill job processes before destroy-
ing cgroups

server_timeout 15 15 Specifies the maximum number of seconds the cgroups
hook spends attempting to fetch node comments from the
server

nvidia-smi /usr/bin/

nvidia-smi

The location of the nvidia-smi command on nodes sup-
porting NVIDIA GPU devices.

See section 15.5.5, “Managing GPUs or Xeon Phi via
Cgroups”, on page 590.

online_offlined_nodes true false When enabled, if the periodic hook manages to confirm
there are no orphan groups, it will online vnodes again if it
can confirm they were earlier offlined by the cgroups hook.

See section 15.5.3.4, “Automatic Onlining of Fixed
Vnodes”, on page 574.

periodic_resc_update true false When this parameter is set to true, the hook periodically
posts updates of the job’s resource usage on this host to
MoM. When this parameter is set to false, the usage is only
sent to MoM when the job ends
AG-570 PBS Professional 2020.1.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 15
We show a sample file in section 15.5.3.12, “Sample Cgroups Hook Configuration File”, on page 588. You can also
export and look at the installed PBS cgroups hook configuration file:

qmgr -c “export hook pbs_cgroups application/x-config default” >pbs_cgroups.json

You can edit this file and change its parameters, then read it back in:

qmgr -c “import hook pbs_cgroups application/x-config default pbs_cgroups.json”

Note that if your configuration file is incomplete or not present, hook behavior may differ from what is expected.

15.5.3.2 Setting vnode_per_numa_node

When this is false, all resources of the host are presented to the server as a single vnode (the parent vnode). In a large
complex, minimizing the number of vnodes makes it faster for the scheduler to select nodes for jobs, and if large parallel
jobs span a set of small hosts used exclusively by one job at a time, there is little advantage in making subdivisions of the
host visible to the server and scheduler.

use_hyperthreads false false When set to true, all CPU threads are made available to
jobs. When false, only the first hyperthread of each core is
made visible to jobs.

See section 15.5.3.3, “Configuring Hyperthreading Sup-
port”, on page 572.

ncpus_are_cores false false When true, resources_available.ncpus of a vnode is the
number of cores, and the hook assigns all threads of each
core to a job.

When false, resources_available.ncpus is the number of
CPU threads available to jobs, and the hook assigns individ-
ual CPU threads to jobs.

See section 15.5.3.3, “Configuring Hyperthreading Sup-
port”, on page 572.

vnode_per_numa_node false false When set to true, each NUMA node is represented by a sep-
arate vnode, and the host is managed by a resourceless par-
ent vnode.

When set to false, the entire host is represented by a single
vnode.

See section 15.5.3.2, “Setting vnode_per_numa_node”, on
page 571.

propagate_vntype_to_s

erver

true When set to true, the contents of the vntype file on the local
host are propagated to the resources_available.vntype
vnode resource.

When set to false, the vntype file contents are not propa-
gated to the vnode resources_available.vntype resource.

See section 15.5.2.1.i, “Vnode Type File and vntype
Resource”, on page 567.

Table 15-4: Cgroups Hook Configuration File Global Parameters

Parameter Name

Default
Value:
Config

File

Default
Value:
Hook

Description
PBS Professional 2020.1.1 Administrator’s Guide AG-571

Chapter 15 Configuring and Using PBS with Cgroups
However, on clusters where execution hosts run more than one job at a time, you can take advantage of hosts made up of
a number of separate NUMA nodes. (A NUMA node is a set of CPUs with uniform access speed and latency to a set of
local memory and PCIe resources. Usually a NUMA node maps to a socket in a multi-socket computer, but some proces-
sors integrate more than one NUMA node on a single socket. On both AMD and Intel processors, the number of NUMA
nodes per socket also depends on BIOS configuration, which allows tuning the size of a NUMA node to the workload.
The cgroups hook does not decide how many NUMA nodes there are; it relies on the Linux kernel’s view of the NUMA
nodes on a host.)

When this parameter is true, the scheduler is able to improve application performance in these ways:

• Run small jobs only on single-NUMA-node vnodes

• Give parallel applications smaller than a host exclusive use of their NUMA nodes

• Run jobs that request GPUs on vnodes where the CPUs are on the socket directly connected to the GPU’s PCIe bus

When vnode_per_numa_node is true, the host is presented to the server as a parent vnode that has no resources, plus
a number of child vnodes that are aligned to NUMA nodes and hold specific CPU, memory, and coprocessor resources
such as GPUs or Intel Xeon Phi processors.

The scheduler can still spread a single chunk across several vnodes on the same host. To ensure that a job is placed on
only one NUMA node, use -lplace=group=vnode. You can also group using custom resources that identify larger sets of
well-connected vnodes.

The main drawback to enabling vnode_per_numa_node is the increase in the number of vnodes in a cluster, which
may slow down the scheduler, and make the output of pbsnodes larger and more difficult to interpret. A second drawback
is that certain classes of jobs will no longer fit in one vnode, making it more complex to ensure they are still placed in a
well-connected set of vnodes.

15.5.3.3 Configuring Hyperthreading Support

Hyperthreading can increase the throughput for some applications; it can also allow the operating system to retain access
to some idle CPU threads even when PBS jobs use every core. If you disable hyperthreading in the BIOS, the kernel
must share the only visible thread in each core with PBS jobs. On the other hand,

• Hyperthreading makes it more complicated to run applications that get no performance benefits from it, especially
on clusters where some nodes are hyperthread-enabled and others are not

• On a host that runs more than one job, for parallel applications, hyperthreading that is not tightly managed can have
severe negative impacts on performance if the threads of a single core are running processes from unrelated applica-
tions

This is why the cgroups hook supports three different models of hyperthreading support:

No hyperthreads behavior

use_hyperthreads disabled

In this model PBS makes only the first thread of each core visible to PBS jobs, so if your workload cannot leverage
hyperthreading well, you don’t need to disable hyperthreading in the BIOS. The other CPU threads are still usable
by the operating system, which means throughput is better than if hyperthreading support is disabled in the BIOS.

The value of resources_available.ncpus reflects the number of cores associated with a vnode, minus the cores
whose threads have been marked as reserved by using exclude_cpus in the cpuset section of the configuration file.

This model is different from “Assign whole cores to jobs” behavior only when the cpuset subsystem is enabled.

Default behavior

use_hyperthreads enabled and ncpus_are_cores disabled

This mode mimics the behavior you would get without the cgroups hook, as well as the behavior of the former
cpuset MoM.
AG-572 PBS Professional 2020.1.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 15
The value of resources_available.ncpus reflects the number of CPU threads available on a vnode. For applica-
tions to request all threads of N cores, they must request 2*N ncpus on 2-way hyperthreaded hosts, or N ncpus on
hosts where hyperthreading is disabled. The cgroups hook tries to allocate those threads from the minimum number
of cores.

The main use case of this mode is a workload consisting of many single-threaded jobs for which running one job per
thread rather than one job per core improves throughput. For example, on a host with a total of 24 2-way hyper-
threaded cores, you can run 48 unrelated jobs instead of 24. The 48 jobs will run slower than if you ran only 24, but
the total throughput might still be greater than if you had run 24 jobs.

Assign whole cores to jobs behavior

use_hyperthreads enabled and ncpus_are_cores enabled

In this model, hyperthreads are exposed to applications within a job, but one CPU of ncpus maps to all the threads
of a single core. The cgroups hook assigns each CPU core exclusively to one job, but within a job the processes see
all CPU threads of the assigned cores and can either choose to ignore hyperthreading or leverage it.

This is the easiest model to use when you do not need to map more than one job on a single core to increase through-
put.

The value of resources_available.ncpus reflects the number of cores associated with a vnode, minus the cores
whose threads have been marked as reserved by using exclude_cpus in the cpuset section of the configuration file.

This model is often preferred.

This model is different from “No hyperthreads” behavior only when the cpuset subsystem is enabled.

15.5.3.3.i Mixing Hyperthreading Models in a Complex

If you have a mixed workload or complex where you want to run some high-throughput single-threaded jobs, and some
that take advantage of hyperthreading:

• You can tune your hook configuration file in order to partition your complex, where:

• Some hosts are configured with ncpus_are_cores disabled, to run high-throughput single-threaded workloads

• Other hosts are configured with ncpus_are_cores enabled

• You can allow jobs to request hyperthreaded hosts based on whether or not ncpus_are_cores is enabled

You can include hyperthreading information in each host’s vnode type string in its vntype file, so that the cgroups hook
parameters use_hyperthreads and ncpus_are_cores evaluate correctly to true or false for each host. You can set a
resource on each host to indicate how hyperthreads are handled on that host, so that jobs can request the hyperthreading
they want. You can also use this resource to associate hosts with queues, so that job submitters can specify a queue
instead of requesting a resource. The string in the vntype file is probably going to be used for multiple characteristics
such as GPUs, swap, etc., so you probably don’t want to propagate it to resources_available.vntype.

Example 15-2: You use the custom resource ht to indicate whether and what kind of hyperthreads are available, and you
use “ht” or “nohyper” in the vntype file to indicate whether hyperthreads exist. You can associate queues with hosts
according to host configuration. If you have some hosts with hyperthreading and some without, some hosts with all
threads of a core assigned to one job and some hosts without, and some hosts with GPUs and some without, you
might end up with the following:

Table 15-5: Example of Mixing Hyperthreading Models

Host use_hyperthreads ncpus_are_cores vntype file resources_available.ht queue name

hosta true true gpu_ht ht_by_core ht_core_q

hostb true true compute_ht ht_by_core ht_core_q

hoste true false gpu_ht ht_by_thread ht_thread_q
PBS Professional 2020.1.1 Administrator’s Guide AG-573

Chapter 15 Configuring and Using PBS with Cgroups
In our example, none of the job submitters care about whether their jobs run on hosts with GPUs; the GPU machines
are here just to illustrate how you might use the vntype file string for more than one aspect of a host.

Jobs that want hyperthreads and want all of the threads for each core can request “ht=ht_by_core” in the select state-
ment, or they can request or be routed to the queue named “ ht_core_q”.

Single-threaded jobs that are I/O bound and don’t mind sharing a core can request “ht=ht_by_thread”, or they can
request or be routed to the queue named “ht_thread_q”.

Single-threaded jobs that want non-hyperthreaded cores can request “ht=core”, or they can request or be routed to
the queue named “core_q”.

15.5.3.4 Automatic Onlining of Fixed Vnodes

When cleaning up a job, if the cgroups hook fails to kill all processes within a cgroup, it cannot destroy the job’s cgroups.
If that happens, it offlines the vnodes on the host to prevent the scheduler from sending new jobs to the vnodes; since
resources_assigned is no longer accurate for the vnodes, the cgroups hook might reject the jobs. The cgroups hook
then periodically attempts to clean up these orphaned cgroups.

When the online_offlined_nodes parameter is enabled, the hook automatically onlines the vnodes once no more
orphaned cgroups exist, if the node comment confirms that the cgroups hook offlined the vnodes. When this parameter is
disabled, it leaves the node offline; you can manually online vnodes again later after confirming the host is healthy.

15.5.3.5 cpuacct Subsystem

The cpuacct subsystem enables per-job CPU time accounting, through per-cgroup usage counters provided by the ker-
nel. Advantages:

• The kernel maintains per-cgroup usage counters, so MoM doesn’t have to sum the usage of each job process

• MPI libraries or applications that use setsid to detach processes from existing sessions do not cause inaccurate
resource usage accounting, since the processes are still seen as part of the job

• A session spawning a child session that registers itself to PBS (not necessary with cgroups) does not cause some
CPU time to be counted twice incorrectly at the end of the job

• Usage accounting does not rely on MoM polling, and usage accumulated after the last poll cycle is still counted.
(When the cpuacct subsystem is not used, CPU time for tm_attached processes is counted only until the last
MoM poll cycle)

• Short MoM polling cycles are not required for accurate accounting at the end of the job

By default this subsystem is enabled. You can tune the parameters that modify whether this subsystem is enabled; the
parameters, but not their defaults, are listed in section 15.5.2.2.vi, “Hook and Subsystem Enablement Tuning Parame-
ters”, on page 569.

hostf true false compute_ht ht_by_thread ht_thread_q

hostc false true gpu_nohyper core core_q

hostd false true compute_nohyper core core_q

hostg false false gpu_nohyper core core_q

hosth false false compute_nohyper core core_q

Table 15-5: Example of Mixing Hyperthreading Models

Host use_hyperthreads ncpus_are_cores vntype file resources_available.ht queue name
AG-574 PBS Professional 2020.1.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 15
15.5.3.6 cpuset Subsystem

The cpuset subsystem restricts jobs to specific CPUs and optionally memory sockets allocated to them by the hook.

 Advantages:

• Libraries know which set of CPUs are available for process pinning, so when a vnode is shared between multiple
jobs, libraries don’t try to pin more than one job to the same CPUs. For example, if you have two 4-CPU jobs and an
8-CPU vnode, they won’t both try to pin themselves on CPUs 0, 1, 2, and 3.

• Strict job isolation is enforced; it is impossible for a job to steal CPU resources from another job on the same host,
since the Linux scheduler will only run processes on the designated CPUs. If a job requests N CPUs and then creates
N*2 processes, the job’s processes will compete with each other for CPU resources, instead of disturbing other jobs.

• Since job processes are restricted to specific CPUs and not left to wander over the entire host, the default “first touch
node local” memory allocation policy can minimize memory latency; for jobs that do not span NUMA nodes, pin-
ning processes to CPUs to avoid non-local memory accesses is no longer even necessary.

Disadvantages: if you want to overcommit CPU resources, for example by setting resources_available.ncpus to 128
on a host that has 64 CPU threads, you cannot use the cpuset subsystem.

Note that there can be a problem when using the cpuset subsystem and preemption via suspend and resume. See section
15.8.1, “Interactions Between Suspend/resume and the cpuset Subsystem”, on page 597.

By default this subsystem is enabled. You can tune the parameters that modify whether this subsystem is enabled; the
parameters, but not their defaults, are listed in section 15.5.2.2.vi, “Hook and Subsystem Enablement Tuning Parame-
ters”, on page 569.

15.5.3.6.i Using Memory Fences for Job Memory Requests

You can set memory fences around jobs by setting the mem_fences parameter to true. When true, the cgroups hook
sets the cpuset.mems to only the NUMA nodes assigned to the job, preventing jobs from using memory from other
NUMA nodes. When false, cpuset.mems encompasses all NUMA nodes present on the host. This parameter is true
by default.

Using job memory fences maximizes application performance, and mimics the behavior of the former cpuset MoM most
closely.

Recommendations when using memory fences for job requests:

• Precisely match job chunk specifications to vnodes, and/or run only a combination of jobs that use -
lplace=group=vnode for small jobs and -lplace=excl for larger jobs. Do not allow the scheduler to split chunks
across several vnodes. If a job requests -lncpus=1:mem=2GB and the ncpus are allocated on vnode node[0] but the
memory is partially allocated on vnode node[1], memory fences are not going to enforce node local memory alloca-
tions. Memory fences can cause jobs to fail if some jobs straddle vnodes and share vnodes with jobs entirely con-
fined to one vnode. For example, if job B is allocated 1GB of memory on node node[0] and 63GB of memory on
node[1], the kernel may let the job allocate 64GB on node[0] instead, causing memory allocations for jobs confined
to node[0] to fail through no fault of their own.

• When erecting memory fences and using huge pages, install utilities to ensure the correct amount of huge pages are
present on NUMA nodes allocated to jobs; if the huge pages still available are on the wrong nodes, jobs may fail.

Without memory fences, processes in a cpuset still have a strong preference to allocate memory on the NUMA node of
the first process to access the memory, unless memory on that NUMA node is depleted, when the kernel will satisfy
requests using memory on other NUMA nodes.

Disabling memory fences is the safest option to ensure that jobs do not fail because they cannot request enough memory.
This can happen when another job, possibly one using more than one vnode, grabs the memory first.

The drawback of not having memory fences is that when unanticipated off-node allocations do happen, a job will not fail
but will silently use remote memory and run slower; you may prefer these jobs to fail, so that you can address the root
cause rather than just run jobs too slowly, especially for large parallel jobs that should never cause such off-node alloca-
tions.
PBS Professional 2020.1.1 Administrator’s Guide AG-575

Chapter 15 Configuring and Using PBS with Cgroups
If you wish to rely on first touch local node memory placement to work most of the time and would rather see jobs still
run rather than fail when remote memory allocations become inevitable, disable memory fences.

Recommendations when not using memory fences for job requests:

• If you disable memory fences, you must appropriately set kernel tunables governing how the OS uses memory for
caching files; see section 15.5.3.6.iii, “Memory Spreading for OS File Caching”, on page 576.

• When using large memory pages (see section 15.5.3.11, “hugetlb Subsystem”, on page 586) you must ensure that
enough large pages are always available on the NUMA nodes where they are needed to ensure best performance.

15.5.3.6.ii Using Memory Fences for OS File Caching

Pages allocated by the kernel to cache files accessed by processes have their own fences, controlled by the
mem_hardwall parameter. In theory, placing these on remote NUMA nodes has less deleterious effects, both because
memory latency to these pages is less important, and also because a job on foreign NUMA nodes can in theory reuse
these pages fairly easily, since the kernel can discard the cached contents of the file to mark the memory free again (but
possibly only after writing out dirty cache to disk, which may take a while).

By default mem_hardwall is set to false, which allows the operating system the freedom to use memory on all nodes to
cache files for any process. If you want to isolate jobs to get more repeatable performance, you can enable the
mem_hardwall parameter, so that a cgroup can cache files using pages on only the NUMA nodes assigned to it.

15.5.3.6.iii Memory Spreading for OS File Caching

By default memory_spread_page is disabled for a cpuset, which means that file cache allocated for a process in the
cgroup will preferentially be allocated on the NUMA node where the process that causes the file to be cached is currently
running. This minimizes I/O latency to the buffer cache, but may create hotspots on certain NUMA nodes where file
cache is concentrated, reducing the free memory immediately available for application memory allocations. If the kernel
cannot reuse the file cache rapidly enough, the concentration of file cache may cause memory to be allocated off-node,
which can slow application performance.

You can enable the memory_spread_page parameter to reduce file cache hotspots by spreading file cache allocation
across the NUMA nodes that can be used by the cgroup. This may cause a slight increase in latency for accessing cached
files.

To control whether pages are spread only on the NUMA nodes assigned to the job, or on the entire host, use the
mem_hardwall parameter. Set this to true to spread pages only on the NUMA nodes assigned to the job.

15.5.3.6.iv Allowing Zero CPU Jobs

Some job submitters may want to run “weightless” jobs that consume few CPU resources; these jobs are assigned zero
CPUs. The cpuset subsystem allows these jobs to run in the parent cpuset that has access to all CPUs and memories.
However, these processes break down the barriers that otherwise ensure jobs are isolated from other jobs, so you may
want to disable support for these by setting the allow_zero_cpus parameter in the cpuset subsystem to false.

If you want to allow zero-CPU jobs while ensuring that they don’t take up too much of your resources, enable the cpu
subsystem.

15.5.3.6.v Excluding CPUs

You can exclude CPUs so that they are not used by jobs by listing them in the exclude_cpus parameter. If the cpuset
subsystem is enabled, the CPUs you specify in exclude_cpus are not assigned to jobs. Note, however, that if the
cpuset subsystem is disabled, CPUs are still excluded from jobs, but only by reducing the count of CPUs available; you
cannot control which CPUs are excluded.
AG-576 PBS Professional 2020.1.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 15
15.5.3.6.vi cpuset Subsystem Configuration Parameters

15.5.3.7 cpu Subsystem

The cpu subsystem is an alternative way to control which processes get access to CPU resources. It cannot isolate jobs

Table 15-6: cpuset Subsystem Configuration Parameters

Parameter
Name

Default
Value:
Config

File

Default
Value:
Hook

Description

enabled true false When set to true, the hook creates a cpuset for each job, taking into
account the number of ncpus and mem resources assigned by the sched-
uler to this host’s vnodes.

When set to false, the kernel is free to schedule processes and allocate
memory based on the system configured policies.

See section 15.5.2, “Enabling and Tuning Hook According to Host and/or
Vnode Type”, on page 567.

exclude_cpus [] [] Specifies CPU thread IDs not to be assigned to jobs

Format: JSON list

Default: Empty list, no CPU thread IDs excluded

See section 15.5.3.6.v, “Excluding CPUs”, on page 576

mem_fences true true When true, the cgroups hook sets the cpuset.mems to only the NUMA
nodes assigned to the job, preventing other NUMA nodes from satisfying
memory requests from the job.

When false, cpuset.mems encompasses all NUMA nodes present on
the host.

See section 15.5.3.6.i, “Using Memory Fences for Job Memory
Requests”, on page 575

mem_hardwall false false Specifies whether kernel allocations for file caching should be restricted
to the memory nodes in the cpuset. By default, all NUMA nodes can be
used for caching files accessed by job processes. When set to true, the
buffer cache for this job will be constrained to the NUMA nodes listed in
cpuset.mems for the job.

See section 15.5.3.6.ii, “Using Memory Fences for OS File Caching”, on
page 576

memory_spread_

page

false false Specifies whether file system buffers should be spread evenly across the
memory nodes allocated to the cpuset. By default, no attempt is made to
spread memory pages for these buffers evenly, and buffers are placed on
the same node on which the process that created them is running.

See section 15.5.3.6.iii, “Memory Spreading for OS File Caching”, on
page 576

allow_zero_cpus true Specifies whether zero CPU jobs should be allowed to run or refused
when the cpuset subsystem is enabled.

See section 15.5.3.6.iv, “Allowing Zero CPU Jobs”, on page 576
PBS Professional 2020.1.1 Administrator’s Guide AG-577

Chapter 15 Configuring and Using PBS with Cgroups
with the precision of the cpuset subsystem, but you can use it in some specific circumstances:

• When you use the cpuset subsystem while allowing zero CPU jobs, but want to ensure that the Linux scheduler
favors the jobs requesting one or more CPUs.

• When one of the features you use in PBS does not interoperate well with cpusets, for example when using suspend/
resume when both the high-priority workload and the low-priority workload might have jobs that share vnodes. See
section 15.8.1, “Interactions Between Suspend/resume and the cpuset Subsystem”, on page 597.

• When you want to overcommit CPU resources (impossible if the CPUs are assigned to jobs via the cpuset sub-
system) but still want jobs to get access to CPU resources according to the ncpus requested.

The cpu subsystem implements two different mechanisms:

• Linux scheduler fair sharing, where different shares are assigned to cgroups, according to requested ncpus. If there
are CPU resource conflicts, the Linux scheduler favors cgroups that have used less than their allotted share

• Hard quotas that can be enforced if too much CPU usage is detected.

By default this subsystem is disabled. You can tune the parameters that modify whether this subsystem is enabled; the
parameters, but not their defaults, are listed in section 15.5.2.2.vi, “Hook and Subsystem Enablement Tuning Parame-
ters”, on page 569.

15.5.3.7.i cpu Subsystem Caveats

• The cpu subsystem controls are often imprecise when hyperthreading is enabled, since the Linux kernel CFS sched-
uler sees each CPU thread as 100% of a CPU, regardless of how slow or fast it runs (which depends on usage of the
other threads of the core). When ncpus_are_cores is enabled, quotas are multiplied by the number of threads per
core, which can be misleading.

• There is no strict isolation between jobs; the Linux scheduler enforces a quota only on the set of processes, not indi-
vidual processes. Linux fair sharing is not as efficient as cpusets in isolating jobs from rogue jobs. The cpu sub-
system will slow down the rogue job, but since throttling may be uneven, a rogue process may still interfere with
other jobs; if the hapless victims belong to a parallel application, that whole application may be affected, including
its processes on CPUs where there is no conflict, since these will be forced to wait for the application process that
was slowed down.
AG-578 PBS Professional 2020.1.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 15
15.5.3.7.ii cpu Subsystem Configuration Parameters

15.5.3.8 devices Subsystem

The devices subsystem is used to grant or restrict access to devices on the system, restricting the job to use specific
devices, including GPU and Intel Xeon Phi (“MIC”) devices assigned to the job. If MICs and/or GPUs are available in
the complex and the devices subsystem is enabled, the PBS cgroups hook creates the nmics and/or ngpus resources if
they are not already present.

Table 15-7: cpu Subsystem Configuration Parameters

Parameter Name

Default
Value:
Config

File

Default
Value:
Hook

Description

enabled false When set to true, the hook creates a cpu subsystem directory
for each job, and assigns a number of shares and optionally a
quota based on ncpus.

When set to false, no per-job cgroup is created for this sub-
system.

See section 15.5.2, “Enabling and Tuning Hook According to
Host and/or Vnode Type”, on page 567.

cfs_period_us 100000 Time in microseconds between periodic checks by the Linux
scheduler to compute usage and check quotas. Lowering this
makes computation more precise and throttles rogues faster, but
uses more OS scheduler overhead, with less CPU resources left
for jobs.

cfs_quota_fudge_factor 1.03 Sets quota slightly above theoretically valid value.

Setting a CPU usage quota to 100% of a CPU still throttles
applications, due to rounding errors.

The default is appropriate for the default cfs_period_us, but
should be raised if cfs_period_us is lowered.

enforce_per_period_quotas false Specifies whether hard quotas are set.

When false, only shares are set, and a job can use more CPU
resources than it requested provided other jobs leave CPU
resources idle.

When true, hard CPU usage quotas are set

zero_cpus_shares_fraction 0.002 Specifies fraction of shares allotted for a CPU to a “zero-CPU”
job.

The default, 0.002, is the minimum allowed by the kernel, and
ensures that such a job gets CPU resources only if they are left
idle by other jobs.

zero_cpus_quota_fraction 0.2 Specifies fraction of a CPU allotted to a “zero-CPU” job before
it is throttled by its hard quota.

Default fraction: one-fifth of a CPU
PBS Professional 2020.1.1 Administrator’s Guide AG-579

Chapter 15 Configuring and Using PBS with Cgroups
Since detecting the GPU and/or MIC resources assigned to existing jobs relies on the devices cgroups for these jobs,
enable this subsystem if you want the cgroups hook to manage GPU and/or MIC assignments.

For examples of how to use this subsystem, see section 15.5.5, “Managing GPUs or Xeon Phi via Cgroups”, on page 590.

By default this subsystem is disabled. You can tune the parameters that modify whether this subsystem is enabled; the
parameters, but not their defaults, are listed in section 15.5.2.2.vi, “Hook and Subsystem Enablement Tuning Parame-
ters”, on page 569.

15.5.3.8.i Allowing Access to Devices

The allow parameter specifies how access to devices will be controlled. The list consists of entries in one of the follow-
ing formats:

• A single string entry, used verbatim. For example:

• “b *:* rwm” allows full access (read, write, and mknod) to all block devices

• “c *:* rwm” allows full access to all character devices

• A list containing two strings. For example:

• [“mic/scif”,”rwm”] looks for the major and minor number of the mic/scif device and allows full access.

• If ls /dev/mic reported

“crw-rw-rw- 1 root root 244, 1 Mar 30 14:50 scif”

then the line added to the allow file looks like

“c 244:1rwm”

• A list containing three strings. For example:

• [“nvidiactl”,”rwm”, “*”] looks for the major number of the nvidiactl device and allows full access to all devices
with that major number.

• If ls /dev/nvidiactl reported

“crw-rw-rw- 1 root root 284, 1 Mar 30 14:50 nvidiactl”

then the line added to the allow file looks like

“c 284:* rwm”
AG-580 PBS Professional 2020.1.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 15
15.5.3.8.ii devices Subsystem Configuration Parameters

15.5.3.9 memory Subsystem

The memory subsystem allows you to monitor and limit the amount of physical memory used by all of the processes of
a job on a host.

By default this subsystem is enabled. You can tune the parameters that modify whether this subsystem is enabled; the
parameters, but not their defaults, are listed in section 15.5.2.2.vi, “Hook and Subsystem Enablement Tuning Parame-
ters”, on page 569.

Advantages to enabling the memory subsystem:

• With cgroups, jobs and operating systems are protected from any attempt by a job to use too much memory. Without
cgroups, enforcing memory limits relies on monitoring and after-the-fact interventions to kill processes; MoM may
not be able to act in time to protect the health of the host from being compromised through excessive memory usage.

• Accurate monitoring and records of memory usage. Without cgroups, memory usage such as
resources_used.mem, which is supposed to capture peak usage, relies instead on periodic polling, which can miss
the high-water mark.

• The accuracy of memory usage monitoring is unaffected by processes that leave the Linux sessions registered as part
of the job; without cgroups, this behavior breaks memory usage accounting when using some precompiled MPI
libraries.

• Because memory usage reporting does not depend on polling, MoM can be configured to poll less often, which
reduces the load on the PBS datastore.

• Jobs are prevented from rampantly filling host memory with kernel-allocated file cache. Instead, because kernel-
allocated file cache for job file access is considered job memory, when the job hits its memory limit, job memory
requests are fulfilled by reclaiming file cache allocated by the job earlier, or even by temporarily moving some of the
job to swap until this can be done. If necessary, job processes will hang until memory can be allocated without
crossing the memory usage limit.

• Recommended: you can reserve enough memory for the operating system and the file cache required for OS services
to run well. If you do this, jobs are prevented from starving operating system services of memory resources.

Table 15-8: devices Subsystem Configuration Parameters

Parameter
Name

Default
Value:
Config

File

Default
Value:
Hook

Description

enabled false false When set to true, the hook configures the devices subsystem based on
the number of nmics and ngpus requested by the job. Refer to the
allow parameter for additional information. When set to false, no
cgroup is created for the devices subsystem.

allow [

“b *:* rwm”,
“c *:* rwm”

]

[] Specifies how access to devices will be controlled. The list consists of
entries in one of the following formats:

• A single string entry, used verbatim. Example: “b *:* rwm”

• A list containing two strings. Example: [“mic/scif”,”rwm”]

• A list containing three strings. Example: [“nvidiactl”,”rwm”, “*”]

See section 15.5.3.8.i, “Allowing Access to Devices”, on page 580
PBS Professional 2020.1.1 Administrator’s Guide AG-581

Chapter 15 Configuring and Using PBS with Cgroups
15.5.3.9.i Reserving Memory

If you want to reserve memory so that it is not assigned to jobs, you can set a percent of physical memory using
reserve_percent, and add a fixed amount to that using reserve_amount. The reserve_amount parameter sets a spe-
cific amount of available physical memory that is not to be assigned to jobs.

Reserving memory decreases the amount of resources_available.mem that MoM advertises to the server as being
available for each vnode, as well as the amount of memory the cgroups hook is willing to assign to jobs.

For most HPC compute nodes with a minimum of 32GB, we recommend at least 2GB of memory for the operating sys-
tem. Since there is no minimum amount of memory specified for a MoM host, the defaults are conservative, but the
default value is too small for most clusters.

15.5.3.9.ii Effect of Cgroups Hook on the mem Resource

The cgroups hook changes how much memory must be requested for job I/O and accounted in resources_used.mem.

Without the cgroups hook, file content cached in memory need not be included in a job’s memory request, and is not
accounted for in resources_used.mem. With the cgroups hook, reported memory usage reported includes memory for
cached files accessed by the job.

Jobs requesting memory can use that amount both for physical memory and for caching. For example, when using the
cgroups hook, a job that requests 20GB and uses 16GB but reads a 50GB file can hold only 4GB of the file in cache at a
time. So if a job requires 32GB of application memory but also requires 5GB of private file cache to perform adequately,
then it needs to request 37GB.

Memory is accounted accurately with cgroups. For jobs with multiple processes all accessing the same memory, without
the cgroups hook the amount of memory reported as used is multiplied by the number of processes, but with the cgroups
hook, the memory is only counted once. However, memory usage includes file cache placed into memory by job I/O, but
not file cache merely accessed by the job but placed into memory earlier by unrelated processes.

It may be necessary to use other tools to determine application usage not involving file cache instead of
resources_used.mem.

Applications using direct I/O to filesystems, meaning they bypass the buffer cache, are unaffected; these jobs do not see
a change in resources_used.mem with and without cgroups.

15.5.3.9.iii Assigning a Default Amount of Memory to Jobs

The default parameter is the amount of memory assigned to the job if it doesn’t request any memory. Because the sched-
uler does not know about this allocation, do not make this overly large, otherwise the cgroups hook may reject jobs
because there isn’t enough available memory. Instead, set large defaults for job memory resource requests
(Resource_List.mem, default_chunk.mem, etc.) via a queuejob hook or defaults at the server or queue.

This value is not communicated to the server or scheduler; setting this value has no effect on the job’s resource request.

15.5.3.9.iv Managing Use of Swap by Jobs

If your execution nodes have no swap or if you do not want your jobs to be able to swap to disk, set the swappiness
parameter to 0 or false. In this case you can disable the memsw subsystem.

When this is zero or false, if a job cannot have its memory requests satisfied by claiming free physical memory or
reclaiming memory from the page cache, then the Out of Memory killer will step in and kill job processes instead of
allowing swap usage.

If you want your jobs to swap only when it is necessary to avoid job failure, and not to proactively move infrequently-
used job pages to swap, set the swappiness parameter to 1 or true.

You can use the membership tuning tools described in section 15.5.2, “Enabling and Tuning Hook According to Host
and/or Vnode Type”, on page 567 to specify swappiness for hosts or vnodes.
AG-582 PBS Professional 2020.1.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 15
Not recommended for HPC workloads: if you set this parameter to larger values such as 60, the kernel will move infre-
quently-accessed user pages in order to free memory for file caching. We recommend using larger values only if you
have at least as much swap as there is physical memory not assigned to jobs in the memsw subsystem. You can either
not enable the memsw subsystem, or enable it but ensure there is enough swap and set reserve_amount in the memsw
section to at least the physical memory of the host.

15.5.3.9.v Setting Memory Soft Limits

You can limit whether PBS imposes hard memory limits on job processes.

If you set the soft_limit parameter to false, PBS uses hard memory limits which prevent the processes from ever exceed-
ing their requested memory usage. If a job accesses more memory than it has requested, some of the job’s memory is
moved to swap or the job is killed.

If you set this parameter to true, PBS uses soft memory limits; the memory requested by the job is set as a hint to the ker-
nel as to what usage is expected, but no hard limit is enforced; when the kernel experiences memory shortage it uses the
limits to select the cgroups from which memory is moved to swap.

15.5.3.9.vi Setting Aside Memory for Kernel Drivers

Some kernel drivers (notably, GPFS or Lustre filesystem) may lower the memory available on the host or NUMA nodes
by a small number of MB, typically 32MB or 64MB, after MoM has started.

This may reduce the amount of memory actually available at a vnode to less than the amount the scheduler thinks is
available, and if jobs requiring the full amount are scheduled on that vnode, the hook will reject those jobs.

To compensate, you can hide some memory from the server. You set vnode_hidden_mb to for example “32” or “64”.

The amount listed in the vnode_hidden_mb parameter lowers the memory advertised to the server when the
exechost_startup hook is run, but not the memory that the cgroups hook itself is willing to assign to jobs.
PBS Professional 2020.1.1 Administrator’s Guide AG-583

Chapter 15 Configuring and Using PBS with Cgroups
15.5.3.9.vii memory Subsystem Configuration Parameters

15.5.3.10 memsw Subsystem

Table 15-9: memory Subsystem Configuration Parameters

Parameter
Name

Default
Value:
Config

File

Default
Value:
Hook

Description

enabled true false Boolean. When True, enables the memory subsystem.

See section 15.5.2, “Enabling and Tuning Hook According to Host and/
or Vnode Type”, on page 567.

default 256MB 0MB Amount of memory assigned to the job if it doesn’t request any mem-
ory. Recommendation: keep this small. See section 15.5.3.9.iii,
“Assigning a Default Amount of Memory to Jobs”, on page 582.

swappiness 1 Sets the memory.swappiness value for the cgroup.

When set to false or 0, jobs are not allowed to use swap.

When set to true or 1, kernel is allowed to only swap if absolutely
required.

When set to larger values, kernel is allowed to proactively swap. Not
recommended for HPC workloads.

See section 15.5.3.9.iv, “Managing Use of Swap by Jobs”, on page 582.

reserve_amount 64MB 0MB A specific amount of available physical memory that is not to be
assigned to jobs.

The actual amount of memory reserved is reserve_amount plus the
amount specified by reserve_percent.

See section 15.5.3.9.i, “Reserving Memory”, on page 582.

reserve_percent 0 0 The percentage of available physical memory that is not to be assigned
to jobs.

The actual amount of memory reserved is reserve_amount plus the
amount specified by reserve_percent.

See section 15.5.3.9.i, “Reserving Memory”, on page 582.

soft_limit false false When set to false, PBS uses hard memory limits which prevent the pro-
cesses from ever exceeding their requested memory usage.

When set to true, PBS uses soft memory limits; the memory requested
by the job is set as a hint to the kernel as to what usage is expected, but
no hard limit is enforced.

See section 15.5.3.9.v, “Setting Memory Soft Limits”, on page 583.

vnode_hidden_mb 1 Amount of memory per vnode to hide from the server but keep avail-
able to the hook, to compensate for memory reduction by kernel driv-
ers.

See section 15.5.3.9.vi, “Setting Aside Memory for Kernel Drivers”, on
page 583.
AG-584 PBS Professional 2020.1.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 15
The memsw subsystem allows you to monitor and limit swap used by all of the job processes on a host. This subsystem
restricts a job to a specific amount of memory + swap. If a job exceeds the limit, processes associated with that job are
killed.

By default this subsystem is disabled. You can tune the parameters that modify whether this subsystem is enabled; the
parameters, but not their defaults, are listed in section 15.5.2.2.vi, “Hook and Subsystem Enablement Tuning Parame-
ters”, on page 569.

15.5.3.10.i Reserving Swap

If you want to reserve swap so that it is not assigned to jobs, you can set a percent of swap using reserve_percent, and
add a fixed amount to that using reserve_amount. The reserve_amount parameter sets a specific amount of swap that
is not to be assigned to jobs.

Reserving swap decreases the amount of resources_available.vmem that MoM advertises to the server as being avail-
able for each vnode, as well as the amount of vmem the cgroups hook is willing to assign to jobs.

15.5.3.10.ii memsw Subsystem Configuration Parameters

15.5.3.10.iii Scheduling on the vmem Resource

To allow the scheduler to take resources_available.vmem and resources_assigned.vmem on nodes and vmem
requested by jobs into account when deciding where and when to schedule jobs, list “vmem” on the “resources:” line in
$PBS_HOME/sched_priv/sched_config.

Table 15-10: memsw Subsystem Configuration Parameters

Parameter
Name

Default
Value:
Config

File

Default
Value:
Hook

Description

enabled false Boolean.

When true, enables the memsw subsystem.

When false, the subsystem is disabled, and jobs reaching their memory
limit are allowed to use swap in an unrestrained fashion (unless mem-

ory.swappiness was set to 0) until resources are depleted.

See section 15.5.2, “Enabling and Tuning Hook According to Host and/
or Vnode Type”, on page 567.

default 256MB 0 Specifies the amount of memory + swap assigned to the job if it doesn’t
request any memory.

This value is not communicated to the server or scheduler; setting this
value has no effect on the job’s resource request.

reserve_amount 64MB 0MB An amount of available swap that is not to be assigned to jobs.

The amount reserved is the amount determined by reserve_percent
plus reserve_amount.

See section 15.5.3.10.i, “Reserving Swap”, on page 585.

reserve_percent 0 0 Percentage of available swap that is not to be assigned to jobs.

The amount reserved is the amount determined by reserve_percent
plus reserve_amount.

See section 15.5.3.10.i, “Reserving Swap”, on page 585.
PBS Professional 2020.1.1 Administrator’s Guide AG-585

Chapter 15 Configuring and Using PBS with Cgroups
15.5.3.10.iv Effect of memsw Subsystem on the vmem Resource

Enabling the memsw subsystem changes how much vmem must be requested and how vmem is accounted in
resources_used.vmem. The value of resources_available.vmem at a host or vnode reflects the disk swap that can
be assigned to jobs. If there is more than one vnode per NUMA node, swap resources are split equally over the number
of NUMA nodes reported.

If this subsystem is enabled, requesting the vmem resource sets a limit for the job’s memory plus swap usage. For exam-
ple, a job requesting -lselect=1:ncpus=16:mem=8GB:vmem=64GB is allowed to use 8GB in physical memory plus
56GB of memory resident in swap.

The value of resources_used.vmem reflects the job’s memory plus swap usage across all nodes.

The way physical memory is accounted changes with the cgroups hook; see section 15.5.3.9.ii, “Effect of Cgroups Hook
on the mem Resource”, on page 582.

15.5.3.10.v Caveat for Enabling memsw Subsystem

The cgroups hook prevents a job from using more physical memory than it has requested, which means that a swap short-
age cannot always be made up with physical memory.

If the memory and memsw subsystems are enabled, a job can fall into a trap where the scheduler thinks there is enough
swap at a host or vnode, but there is not. The reason is that there is no separate resource for swap;
resources_available.vmem is the sum of physical memory plus swap.

For example, suppose a node has 64GB of physical memory and 2GB of swap. With no memory reservations in the
cgroups hook configuration file, resources_available.mem is approximately 64GB and resources_available.vmem
is approximately 66GB.

If you submit a job with -lselect=1:mem=2GB:vmem=10GB, the scheduler sees enough available vmem and enough
available mem on the node. But when the job runs, if it does indeed use 10GB of memory, it will fail. The memory
cgroup will limit the job memory resident in physical memory to 2GB, but there is only 2GB of swap, so even though
there is enough memory plus swap, the job will not be able to use 8GB of swap to make up the remainder of the 10GB.

The hook will try to catch one common case: if the explicitly requested vmem is larger than the requested mem, then
nodes without any swap will refuse to run the job; the cgroups hook will reject the request to run the job. Administrators
and job submitters must ensure that such jobs do not land on nodes without swap, for example by using resources to tag
nodes accordingly and setting the proper requests based on those tags.

To avoid the problem of running out of swap when enabling both memory and memsw:

• Set reserve_amount in the memsw section to a value that is equal to resources_available.mem for the host; this
makes any job specification safe, but requires that swap resources are larger than the physical memory on the host.

• Do not use jobs that leave a lot of physical memory on the host unrequested if Resource_List.vmem >
Resource_List.mem: only use jobs like that when the physical memory cannot fit the job, to use swap as extra
memory. This will drastically reduce the amount of swap you need to reserve as not visible to jobs in the configura-
tion file.

• Write an exechost_startup hook, or a script running on the server and using qmgr, that initializes a
resources_available.swap based on the difference between resources_available.vmem and
resources_available.mem. Use a queuejob hook that sets requested swap in all chunks requested to the value of
(vmem requested - mem requested), if applicable, and make the scheduler honor the swap resource by adding it to
the resources: line in sched_config. This removes the need to reserve a lot of swap space as invisible to PBS.

15.5.3.11 hugetlb Subsystem

The hugetlb subsystem lets you manage the amount of huge page memory used in a cgroup.

While this subsystem imposes limits on the huge pages that can be used by a job, it does not create huge pages on the dif-
ferent NUMA nodes. That must be done separately, so that the cgroups hook exechost_startup portion can report huge
pages available on the different nodes.
AG-586 PBS Professional 2020.1.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 15
You can control how many huge pages you want on a set of nodes dynamically:

numactl -m <node list> echo X >/proc/sys/vm/nr_hugepages_mempolicy.

You can see the number of huge pages currently available here:

/sys/devices/system/node/node[0-9]*/hugepages/

The free_hugepages and surplus_hugepages pseudofiles are read-only.

Writing to nr_hugepages tells the system to adjust the number of persistent huge pages on the NUMA node, but if exist-
ing memory that is free is too fragmented, it may have to repurpose buffer cache pages for it (which may take time if the
pages are dirty and need to be pushed to the filesystem) or even move existing used memory to swap.

By default this subsystem is disabled. You can tune the parameters that modify whether this subsystem is enabled; the
parameters, but not their defaults, are listed in section 15.5.2.2.vi, “Hook and Subsystem Enablement Tuning Parame-
ters”, on page 569.

15.5.3.11.i Reserving Huge Page Memory

If you want to reserve huge page memory (hpmem) so that it is not assigned to jobs, you can set a percent of huge page
memory using reserve_percent, and add a fixed amount to that using reserve_amount. The reserve_amount
parameter sets a specific amount of huge page memory that is not to be assigned to jobs.

Reserving huge page memory decreases the amount that MoM advertises to the server as being available for each node,
as well as the amount that the cgroups hook is willing to assign to jobs.

15.5.3.11.ii Caveat for hugetlb Subsystem

When a job spans more than one vnode, it may split its allocation of huge page memory across NUMA nodes differently
from how PBS assigned the memory. This can lead to other jobs on those NUMA nodes not having enough huge page
memory.

You can:

• Use utilities to check whether huge pages are available on the correct NUMA nodes just before you launch applica-
tions

• Use a memory-fences-safe workload

• Disable memory fences to allow huge pages to be allocated off-node
PBS Professional 2020.1.1 Administrator’s Guide AG-587

Chapter 15 Configuring and Using PBS with Cgroups
15.5.3.11.iii hugetlb Subsystem Configuration Parameters

15.5.3.12 Sample Cgroups Hook Configuration File

Here we show a sample cgroups hook configuration file similar to the default configuration file:

{

“enabled” : ”vntype not in: no_cgroups”,

“cgroup_prefix” : ”pbs_jobs”,

“periodic_resc_update” : true,

“vnode_per_numa_node”: : false,

“online_offlined_nodes” : true,

“use_hyperthreads” : true,

“ncpus_are_cores” : true,

“cgroup”:{

“cpuacct”:{

“enabled” : true

},

“cpuset”:{

“enabled” : true,

“exclude_cpus” : [0,8],

“mem_fences” : true,

Table 15-11: hugetlb Subsystem Configuration Parameters

Parameter
Name

Default
Value:
Config

File

Default
Value:
Hook

Description

default 0MB The amount of huge page memory assigned to the cgroup when the job
does not request hpmem.

enabled false When set to true, the hook registers a limit that restricts the amount of
hugepage memory processes may access.

When set to false, no limit is registered.

See section 15.5.2, “Enabling and Tuning Hook According to Host and/or
Vnode Type”, on page 567.

reserve_amount 0MB An amount of available huge page memory (hpmem) that is not to be
assigned to jobs.

The amount reserved is the amount determined by reserve_percent plus
reserve_amount.

See section 15.5.3.11.i, “Reserving Huge Page Memory”, on page 587.

reserve_percent 0 The percentage of available huge page memory (hpmem) that is not to be
assigned to jobs.

The amount reserved is the amount determined by reserve_percent plus
reserve_amount.

See section 15.5.3.11.i, “Reserving Huge Page Memory”, on page 587
AG-588 PBS Professional 2020.1.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 15
“mem_hardwall” : false,

“memory_spread_page” : true

},

“devices”:{

“enabled” : false,

“allow”:[

“b*:*rwm”,

“c*:*rwm”

]

}

“memory”:{

“enabled” : true,

“soft_limit” : false,

“default” : ”256MB”,

“reserve_percent” : ”0”,

“reserve_amount” : ”3GB”

},

“memsw”:{

“enabled” : false,

“default” : ”256MB”,

“reserve_percent” : ”0”,

 “reserve_amount” : ”1GB”

},

“hugetlb”:{

“enabled” : false,

“default” : ”0MB”,

“reserve_percent” : ”0”,

“reserve_amount” : ”0MB”

}

}

}

15.5.4 Finish Up

15.5.4.1 Enable cgroups hook

The cgroups hook and its default configuration file are already imported. You must enable the cgroups hook as root:

1. 1. Log in as root

2. 2. Enable the cgroups hook on the server host:

Qmgr: set hook pbs_cgroups enabled = true

15.5.4.2 HUP or Restart MoM

HUP or restart each MoM:

kill -HUP <MoM PID>
PBS Professional 2020.1.1 Administrator’s Guide AG-589

Chapter 15 Configuring and Using PBS with Cgroups
or

<path to PBS start/stop script>/pbs restart

or

systemctl restart pbs

15.5.4.3 Enable Use of Resources by the Scheduler

Modify the resources: line in <sched_priv directory>/sched_config:

• The nmics and ngpus resources are automatically created, but you have to add them to the resources: line in
<sched_priv directory>/sched_config.

• If you have configured huge page memory, and it is enabled in the cgroups hook, PBS creates the hpmem resource,
but you need to add it to the resources: line in <sched_priv directory>/sched_config.

• If you have configured the memsw subsystem, add “vmem” to the resources: line in <sched_priv directory>/
sched_config.

Set resource flags:

• If the cgroups hook creates the nmics and ngpus resources, you may need to set their flags.You also need to set the
flags for the vmem and hpmem resources. Set the flags for the nmics, ngpus, vmem, and hpmem resources to
“nh”:
Qmgr: set resource nmics,ngpus,vmem,hpmem flag=nh

15.5.5 Managing GPUs or Xeon Phi via Cgroups

Integration with Linux cgroups allows PBS to automatically detect and configure GPUs and Xeon Phi processors. Since
some of the details are different, we will proceed by describing the case with GPUs.

15.5.5.1 Managing GPUs via Cgroups

PBS can restrict jobs to specific allocated GPUs. If you set vnode_per_numa_node to true in the cgroups hook con-
figuration file, PBS takes advantage of topology and associates GPUs with the closest memory and CPUs in the system.

If GPUs are available in the complex and the devices subsystem is enabled, the PBS cgroups hook creates the ngpus
resource if it is not already present, and discovers and sets values for it.

15.5.5.1.i Configuration Steps

Here we summarize the configuration steps that allow the cgroups hook to manage your GPUs.

• Modify the resources: line in <sched_priv directory>/sched_config.
AG-590 PBS Professional 2020.1.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 15
The ngpus resource is automatically created, but you have to add it to the resources: line in <sched_priv direc-
tory>/sched_config.

• Set the flags for the ngpus resource to “nh”:
Qmgr: set resource ngpus flag=nh

• Export the installed PBS cgroups hook configuration file:
qmgr -c “export hook pbs_cgroups application/x-config default” >pbs_cgroups.json

• Edit this file and change its parameters:

• If nvidia-smi is someplace other than /usr/bin/nvidia-smi, add the nvidia-smi global parameter with the
absolute path to nvidia-smi. Be sure to add the comma to the end of the line. For example:

"nvidia-smi" : "/usr/bin/nvidia/nvidia-smi",

• Add the "nvidiactl" value to the allow parameter of the devices subsystem section. Be sure to add the comma
to the end of the previous line:

"c : rwm",

["nvidiactl", "rwm", "*"]

• Make sure that the vnode_per_numa_node global parameter is set to true

• Enable the devices subsystem (it is disabled by default); see section 15.5.3.8, “devices Subsystem”, on page
579

"enabled" : true,

• Enable the cpuset subsystem (it is enabled by default); see section 15.5.3.6, “cpuset Subsystem”, on page 575

"enabled" : true,

• Read the configuration file back in:
qmgr -c “import hook pbs_cgroups application/x-config default pbs_cgroups.json”

• HUP or restart each MoM:
kill -HUP <MoM PID>

or

<path to PBS start/stop script>/pbs restart

or

systemctl restart pbs

If device isolation is not enabled for GPUs, the hook assigns devices to jobs, and sets the CUDA_VISIBLE_DEVICES
environment variable for processes created as children of MoM according to the devices assigned to the job on the host
on which the process runs.

15.5.5.1.ii Isolating NVIDIA GPUs

For NVIDIA GPU isolation to work, you need to restrict access to only those devices assigned to the job. In the “allow”
subsection of the devices section of the configuration file, do not use the broad “c *:* rwm”.

Make sure that the “allow” section excludes read and write access for the 195 major number (“c 195:* m”), which is
what all NVIDIA devices use. Preserve mknod (“m”) access, since other software such as the container hook may need
“m” access.

You also need to include [“nvidia-uvm”, “rwm”], since it is part of how the driver determines isolation, and possibly
other global NVIDIA devices used by NVIDIA tools. You may also have to add other devices, such as those required for
MPI library access to Infiniband devices.

The cgroups hook assigns the correct NVIDIA GPUs when a job requests ngpus.
PBS Professional 2020.1.1 Administrator’s Guide AG-591

Chapter 15 Configuring and Using PBS with Cgroups
Here is an example of the devices section of the cgroups hook configuration file, configured to allow NVIDIA GPU iso-
lation:

“devices”:{

“enabled” : true,

“allow” :

[

“b *:* m”,

“c *:* m”,

“c 195:* m”,

“c 136:* rwm”,

[“infiniband/rdma_cm”, ”rwm”],

[“fuse”, ”rwm”],

[“net/tun”, ”rwm”],

[“tty”, ”rwm”],

[“ptmx”, ”rwm”],

[“console”, ”rwm”],

[“null”, ”rwm”],

[“zero”, ”rwm”],

[“full”, ”rwm”],

[“random”, ”rwm”],

[“urandom”, ”rwm”],

[“cpu/0/cpuid”, ”rwm”, ”*”],

[“nvidia-modeset”, “rwm”],

[“nvidia-uvm”, “rwm”],

[“nvidia-uvm-tools”, “rwm”],

[“nvidiactl”, ”rwm”]

]

},

Here we detail the 136 device:

root@myhost:~# ls -l /dev/pts

crw------- 1 altair tty 136, 0 Jul 22 20:38 0

c--------- 1 root root 5, 2 Jul 22 19:18 ptmx

Here we detail the 195 devices:

root@myhost:~# ls -l /dev/nvidia*

crw-rw-rw- 1 root root 195, 0 Jul 22 19:18 /dev/nvidia0

crw-rw-rw- 1 root root 195, 1 Jul 22 19:18 /dev/nvidia1

crw-rw-rw- 1 root root 195, 2 Jul 22 19:18 /dev/nvidia2

crw-rw-rw- 1 root root 195, 3 Jul 22 19:18 /dev/nvidia3

crw-rw-rw- 1 root root 195, 255 Jul 22 19:18 /dev/nvidiactl

crw-rw-rw- 1 root root 195, 254 Jul 22 19:35 /dev/nvidia-modeset

crw-rw-rw- 1 root root 238, 0 Jul 22 19:35 /dev/nvidia-uvm

crw-rw-rw- 1 root root 238, 1 Jul 22 19:35 /dev/nvidia-uvm-tools

15.5.5.1.iii Using GPUs with MPI Not Integrated with PBS

If a job spawns remote processes without using an MPI that uses tm_spawn, CUDA_VISIBLE_DEVICES is not set to
the correct devices for that host.
AG-592 PBS Professional 2020.1.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 15
Job processes that are not descendants of a MoM do not have CUDA_VISIBLE_DEVICES in their environment, but
they can still read the correct value of CUDA_VISIBLE_DEVICES from a file located at $PBS_HOME/aux/
$PBS_JOBID.env (or $PBS_MOM_HOME/aux/$PBS_JOBID.env if $PBS_MOM_HOME is defined), in the same directory that usu-
ally houses the $PBS_NODEFILE files for jobs. Initialize PBS_HOME or PBS_MOM_HOME by sourcing /etc/
pbs.conf.

Note that you can refer to the file as $PBS_NODEFILE.env only on the primary execution host. For other hosts, the file is
at $PBS_JOBID.env.

Example 15-3: Env file with devices:

 In our example, PBS_HOME is /var/spool/mypbs, so the env file is in /var/spool/mypbs/aux/.

qsub -I -lselect=1:ngpus=1:ncpus=1

qsub: waiting for job 332.svr to start

qsub: job 332.svr ready

echo $PBS_NODEFILE.env

/var/spool/mypbs/aux/332.tc72.env

cat $PBS_NODEFILE.env

CUDA_VISIBLE_DEVICES=GPU-232cc436-c5b4-6bd9-c5bc-6820334123d7

CUDA_DEVICE_ORDER=PCI_BUS_ID

If PBS_MOM_HOME is not defined, you can source /etc/pbs.conf, so that $PBS_HOME/aux/$PBS_JOBID.env is
the file to read. If PBS_MOM_HOME is defined, use that.

. /etc/pbs.conf

echo $PBS_HOME/aux/$PBS_JOBID.env

/var/spool/mypbs/aux/332.tc72.env

cat $PBS_HOME/aux/$PBS_JOBID.env

CUDA_VISIBLE_DEVICES=GPU-232cc436-c5b4-6bd9-c5bc-6820334123d7

CUDA_DEVICE_ORDER=PCI_BUS_ID

If you don’t want to have to read a file, make sure your remote processes are spawned, not attached using pbs_attach.

15.5.5.2 Environment Variables for CUDA and Xeon Phi

When you run with Xeon Phi co-processors, PBS sets the OFFLOAD_DEVICES environment variable during job ini-
tialization, for each process that is a child of MoM.

When you use CUDA devices, PBS sets the CUDA_VISIBLE_DEVICES environment variable for each process that is
a child of MoM.

15.6 Configuring MPI for Cgroups

In order to capture job processes and put their PIDs in cgroups, PBS needs the MPI to tell it about those processes. An
MPI that is integrated with PBS does this. You need to make sure that your MPI is integrated with PBS. If you are
already using an MPI that is integrated with PBS, you do not need to perform this step. OpenMPI, MVAPICH2, and
MPICH behave well if they have been compiled with support for the TM API and linked with the PBS libraries. Intel
MPI also behaves well if it has been integrated with PBS.

However, if your MPI uses ssh and is not integrated with PBS, you can use pbs_attach to capture processes started
with ssh. In section 10.1, “Integration with MPI”, on page 445, we describe integrating MPIs with PBS. If your MPI is
not integrated with PBS, cgroups cannot help you manage spawned processes.
PBS Professional 2020.1.1 Administrator’s Guide AG-593

Chapter 15 Configuring and Using PBS with Cgroups
If your MPI is not integrated with PBS, you might notice that jobs are running significantly slower, or jobs are crashing
with errors such as “Unable to set CPU”, or “Unable to join process”; the MPI may be trying to pin all processes to CPU
0 or crashing.

Wrapping ssh is sufficient for all precompiled MPIs to work.
AG-594 PBS Professional 2020.1.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 15
15.6.1 Steps to Integrate MPI with PBS via ssh

The following is a helpful example of integrating MPI with PBS via ssh:

• On each host in the PBS complex, edit /etc/ssh/ssh_config:

• Add the following as the last SendEnv line, after the other SendEnv lines:

SendEnv PBS_JOBID

• On each execution host in the PBS complex, edit /etc/ssh/sshd_config:

• Add the following as the last AcceptEnv line, after the other AcceptEnv lines:

AcceptEnv PBS_JOBID

• On each host in the PBS complex, restart sshd:
/etc/init.d/sshd restart

• On each host in the PBS complex, edit /etc/ssh/sshrc to include the following lines:
#!/bin/sh

if read proto cookie && [-n "$DISPLAY"]; then

 if [`echo $DISPLAY | cut -c1-10` = 'localhost:']; then

 # X11UseLocalhost=yes

 echo add unix:`echo $DISPLAY |

 cut -c11-` $proto $cookie

 else

 # X11UseLocalhost=no

 echo add $DISPLAY $proto $cookie

 fi | xauth -q -

fi

string=$*

Make sure the following points to your $PBS_EXEC/bin

pbs_bin="/opt/pbs/bin"

attach_cmd="pbs_attach"

#echo "PBS_JOBID: $PBS_JOBID"

#echo "$*"

if [-n "$PBS_JOBID"]; then

 # Check to see whether the command is already calling pbs_attach

 if ["${string/$attach_cmd}" = "$string"] ; then

 echo "Attaching $PPID to $PBS_JOBID"

 $pbs_bin/$attach_cmd -j $PBS_JOBID -p $PPID 2> /dev/null

 exit 0

 fi

fi

• Test to ensure that it works as expected and PBS can capture PIDs:

a. Make sure cgroups are enabled

b. Submit an interactive PBS job

c. ssh into a host belonging to the job and verify that the job process PID was added to the tasks file for the
desired subsystem, e.g. cpuacct/pbspro/<job ID>/tasks
PBS Professional 2020.1.1 Administrator’s Guide AG-595

Chapter 15 Configuring and Using PBS with Cgroups
15.7 Managing Jobs with Cgroups

15.7.1 Requesting Memory

The default amount of memory assigned by cgroups to jobs that do not request it is 256MB. If this value does not work
for your site, either change the default value if you need to only slightly more, or assign a default value using a queuejob
hook or a server default. See section 15.5.3.9.iii, “Assigning a Default Amount of Memory to Jobs”, on page 582.

15.7.2 Limit Enforcement

When a job is killed due to hitting a cgroup limit, you will see something like the following in the job’s stdout:

mpirun noticed that process rank 0 with PID 115249 on node node0042 exited on signal 9 (Killed).

The hook will also attempt to find OOM killer messages in the kernel dmesg buffer. If it finds them it prints more spe-
cific errors in the MoM log, and in the job’s stderr, if the cgroup limit violation occurs on the first node.

The messages will contain either “Cgroup memory limit exceeded” or “Cgroup memsw limit exceeded” and will attempt
to print the corresponding kernel dmesg buffer messages (if found), which usually identify the process that was killed.

15.7.3 Examples of Requesting Cores and Hyperthreads

Assume we have 2-way hyperthreaded processors.

When hyperthreading is enabled on a system and ncpus_are_cores is disabled, each core is associated with two
threads. In this case, if a job submitter wants all threads of a hyperthreaded core, they should request ncpus in multiples
of 2.

When hyperthreading is not enabled, or if it is and ncpus_are_cores is enabled, a job submitter should request just the
number of cores

For example, a job submitter requests the following on a cluster with 2-way hyperthreaded CPUs on all nodes:

-lselect=1:ncpus=2

Result:

• If hyperthreading is not enabled, this nets two cores. If the cpuset subsystem is enabled, only the first thread of
each core is visible in the job cpuset.

• If hyperthreading is enabled and ncpus_are_cores is enabled, this also nets two cores, with a total of four threads
visible in the job’s cpuset.

• If hyperthreading is enabled and ncpus_are_cores is disabled, this nets two threads, with an attempt to assign the
two threads from a single core; this may not succeed if other jobs on the vnode have requested odd numbers of
ncpus.

15.7.4 Spawning Job Processes

When a job process is spawned using tm_spawn, the execjob_launch cgroups hook runs. The execjob_launch hook
can set environment variables correctly and set per-process limits for the processes.

When a job process is spawned outside of PBS and pbs_attach is used to make the process join the job, the
execjob_attach cgroups hook runs, but it is unable to set the environment for the job or set per-process limits for the
process.
AG-596 PBS Professional 2020.1.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 15
15.8 Caveats and Errors

15.8.1 Interactions Between Suspend/resume and the cpuset
Subsystem

The cgroups hook is in general compatible with suspend/resume. But when using preemption via suspend and resume,
unless vnodes are allocated exclusively to jobs in the class of preempting jobs, the class of preempted jobs, or both, since
the scheduler is unaware of the CPU assignments made by MoM, it is possible for the scheduler to resume a low-priority
job even though the job’s cpuset still overlaps with that of a running high priority job.

To avoid this, use any of these methods:

• Disable the cpuset subsystem, and use only the cpu controller to limit excessive CPU resource usage by jobs. The
lack of CPU isolation may still cause the jobs to interfere on some workloads.

Also, not using the cpuset subsystem may require you to disable process pinning in your applications to share a
vnode between more than one job, to allow the Linux CFS scheduler to move processes to CPU threads that are free.

• Ensure that each job in either the preempting workload or the preempted workload has exclusive access to all vnodes
it uses.

• Use one of the recent hook events triggered on job resumption to either reject resumption of a job when a conflict is
detected, or to migrate the cpusets to CPUs no longer assigned to active jobs. If migrating the cpuset, take a lock on
the cgroups lock file.

15.8.2 Caveats for Shrinking a Job on a Host

If the cpuset subsystem is enabled, ensure that if the cgroups hook helps to shrink a job, no processes are running on the
host.

15.8.3 Caveats for Using CUDA

To use CUDA version earlier than 7.0, you must allow access to all devices. Otherwise, the NVIDIA commands will
fail. With CUDA 7.0 or greater, you do not need to allow access to all devices.

15.8.4 Do Not Change ncpus When cpuset Subsystem is
Enabled

Do not change the value of the ncpus resource from that reported by MoM if the cpuset subsystem is enabled. Other-
wise the cgroups hook will attempt to use CPUs that don’t exist, and jobs will fail.

15.8.5 Cgroups Hook Prevents Epilogue from Running

If you are running the cgroups hook, any epilogue script will not run. The cgroups hook has an execjob_epilogue event
which takes precedence over an epilogue script, so if you are running the cgroups hook, make your epilogue script into
an execjob_epilogue hook instead. See section 13.5.2, “Using Hooks for Prologue and Epilogue”, on page 502.
PBS Professional 2020.1.1 Administrator’s Guide AG-597

Chapter 15 Configuring and Using PBS with Cgroups
15.8.6 Errors

When a job is trying to access a Xeon Phi device on a vnode, but the device is not accessible by the job cgroup, you will
see the following error in the job error output:

Error getting SCIF driver version
AG-598 PBS Professional 2020.1.1 Administrator’s Guide

16

Using PBS with Containers

16.1 Introduction

PBS supplies a built-in hook that runs jobs and applications inside containers. The hook launches separate container(s)
for each job, and runs the job with the same submission or job script commands and environment as it would have out-
side the container(s). The same job environment variables are exported inside the container(s), and file staging and job
output and error files are handled the same way as outside a container.

The PBS container(s) use cgroups to constrain the resources that the job can use, track resource usage, and pin and isolate
resources. The PBS container(s) use the cgroups hook to assign GPUs correctly; see Chapter 15, "Configuring and Using
PBS with Cgroups", on page 561.

When the job finishes, PBS removes the container(s).

Job submitters can specify the job container image by requesting it or setting the CONTAINER_IMAGE environment
variable to the name of the container in which the job should run. A container request in the container_image resource
overrides the CONTAINER_IMAGE environment variable. The PBS container hook looks for a container request and
monitors job submissions for this environment variable, launches the appropriate container, and starts the job in the con-
tainer. Users can run multi-vnode, multi-host, and interactive jobs in containers, and PBS tracks resource usage for these
jobs.

Jobs are matched to hosts running container daemons via a custom string array resource, which indicates which container
engines are available on each host. You create this resource. You tell the container hook which engines are available on
each host by setting the container_resource_name parameter in the hook’s configuration file to the name of the cus-
tom string array resource. The default for the container_resource_name parameter is “container_engine”, so we rec-
ommend using that name when you create the resource.

You can whitelist specific additional arguments to the container engine by listing them in the container_args_allowed
container hook parameter. Job submitters can then specify any of these whitelisted arguments in the
PBS_CONTAINER_ARGS environment variable.

You can configure the container hook so that it automatically adds job owners to additional groups inside Docker con-
tainers. The hook finds the groups on the execution host where the job owner is already a member, and adds the job
owner to these groups inside the container. To do this, set the enable_group_add_arg container hook parameter to
True. This feature applies only to Docker; Singularity users are automatically added to all groups inside containers.
Note that for security, we recommend that you never whitelist the --group-add container argument in the
container_args_allowed hook configuration parameter.

16.1.1 Container Engines Used by PBS

A PBS server can create Docker and Singularity containers. Each job can specify which container engine to use, but can
use only one container engine. You specify the default container engine by setting the
container_resource_default_value parameter in the container hook’s configuration file to either “docker” or “singu-
larity”. In addition, a user can always run a single-node job in a single Singularity container by prepending their scripts,
executables, or commands with the Singularity binary.
PBS Professional 2020.1.1 Administrator’s Guide AG-599

Chapter 16 Using PBS with Containers
16.1.1.1 Using nvidia-docker

PBS can invoke nvidia-docker if the nvidia-docker-cmd line in the hook’s configuration file points to the location
of the nvidia-docker command, and the job requests ngpus inside its select statement.

16.1.1.2 Caching Singularity Images

When an image is downloaded from the container hub, it is saved in <user home>/.singularity/cache.

16.1.2 Container Ports

For single-vnode jobs in Docker containers, job submitters can request ports for applications. The container hook maps
requested ports to available ports on the host and returns the mapping. You can define which port ranges are available for
containers. The job submitter requests ports by listing comma-separated port numbers in the container_ports job
resource. Lists of port numbers must be enclosed in single quotes. The hook sets the job’s
resources_used.container_ports value to comma-separated <container port>:<host port> pairs. For example, a job
can request -l container_ports=”’2324,8989’”, and the hook sets the job’s resources_used.container_ports to
2324:8080,8989:32771.

16.2 The PBS Container Hook

PBS has a built-in container hook named “PBS_hpc_container” which does several useful things:

• The PBS_hpc_container hook can create Docker and Singularity containers, and it can invoke nvidia-
docker if it is configured and the job requests ngpus inside the select statement.

• The hook runs for the following events, with these actions:

• At a queuejob event, the hook adds the name and desired value of the string array resource listing container
engines to the job’s select statement, if the job does not already specify it. This allows the scheduler to match
the job to a host running the selected container daemon.

• At an execjob_launch event, the hook launches the job inside the selected container

• The hook starts a container instance from the requested image, and sets up the job’s environment. The image is
specified via -lcontainer_image=<container image> or in the job’s CONTAINER_IMAGE environment vari-
able. The hook uses the requested container engine, or if the job does not request a container engine, the hook uses
the default set in the container_resource_default_value parameter in the hook’s configuration file.

• The name of the container is the job ID.

• If the job is interactive, the hook runs the job in the container in interactive mode.

• If the job has multiple chunks that are scheduled to run on a single host:

With Docker, the hook runs all of the job’s child processes in one container on that host.

With Singularity, the hook runs each child process in its own container.

• If the job runs on multiple hosts, the hook ensures that containers created on sister MoMs are network linked to
the container running on the primary execution host.

• The hook updates the resources used by the job, and removes the job’s container.

• The hook cleans up any orphaned containers left behind by previous jobs on the host.

• The hook can automatically add the job owner to groups in the container; these are the groups on the execution host
to which the job owner already belongs.
AG-600 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS with Containers Chapter 16
16.3 Prerequisites

The required container daemon(s) must be running on all hosts where users will run jobs in containers.

16.4 Configuring PBS for Containers

16.4.1 Create Container Resources

1. For the container image name, create a custom string resource named “container_image”:
Qmgr: create resource container_image type=string,flag=m

2. For the container port number, create a custom string array resource named “container_ports”:

Qmgr: create resource container_ports type=string_array,flag=m

3. Create the custom string array resource that will list the container engines available on each host. We recommend
naming it “container_engine”:

qmgr -c "create resource container_engine type=string_array,flag=mh"

4. Set the value of this resource on each host to the list of available container engines:

qmgr -c "s n node1 resources_available.container_engine=<list of container engines>"

For example, if you have Docker on node1, and you have both Docker and Singularity on node2:

qmgr -c "s n node1 resources_available.container_engine=docker"

qmgr -c "s n node2 resources_available.container_engine=docker"

qmgr -c "s n node2 resources_available.container_engine += singularity"

5. Add the container_engine resource to the resources: line in PBS_HOME/<sched_priv directory>/sched_config.

6. HUP the scheduler:

kill -HUP <scheduler PID>

16.4.2 Configure PBS Container Hook

The container hook’s configuration file allows parameters that are specific to each container engine.
PBS Professional 2020.1.1 Administrator’s Guide AG-601

Chapter 16 Using PBS with Containers
16.4.2.1 Default Configuration File

{

"container_resource_name": "container_engine",

"container_resource_default_value": "docker",

"mount_paths": ["/etc/passwd", "/etc/group"],

"docker":{

"container_cmd": "/usr/bin/docker",

"nvidia_docker_cmd": "/bin/nvidia-docker",

"remove_env_keys": [],

"port_ranges": [],

"container_args_allowed": [],

"enable_group_add_arg": false

},

"singularity":{

"container_cmd": "/usr/local/bin/singularity",

"container_image_source": "",

"container_args_allowed": []

}

}

The following table shows the parameters:

Table 16-1: PBS Container Hook Configuration File Parameters

Parameter Name Default Value Description

container_args_allo

wed

[] Whitelist of arguments that job submitters are allowed to pass to
container engine via the PBS_CONTAINER_ARGS environ-
ment variable.

Do not whitelist --env, --entrypoint, --group-add

container_cmd /usr/bin/docker Path to container command. Can be “/usr/bin/docker” or “/usr/
local/bin/singularity”

container_image_so

urce

[] Singularity only. Can be path to existing container image, or
URI of container hub. Optional; job submitters can specify path
to image.

Example: For an image with the path /home/user1/
singularity_images/centos_latest.sif, set
container_image_source to [/home/user1/

singularity_images/]

Example Singularity hub: [“shub://”]

Example Docker hub where Singularity can fetch an image and
convert it to SIF: [“docker://”]

container_resource_

default_value

docker Default container engine

container_resource_

name

container_engine Name of resource that lists available container engines on each
host.
AG-602 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS with Containers Chapter 16
To configure your PBS container hook, export the configuration file, edit it, and re-import it.

1. Export the PBS container hook’s configuration file:
#qmgr -c "export pbshook PBS_hpc_container application/x-config default" > container_config.json

2. Set global parameters in the PBS container hook configuration file to match your site. The configuration file must
conform to JSON syntax.

• Set the container_cmd parameter to the path of the container command

• Set the container_resource_name parameter to the name of the resource that lists available container engines,
if you used a name other than “container_engine”

• Set the container_resource_default_value parameter to the default container engine, if you want it to be dif-
ferent from “docker”

• Optionally set the container_image_source parameter

• Optionally set mount_paths

• If using nvidia-docker, set nvidia_docker_cmd

• If using Docker, set port_ranges to ranges of allowed ports on hosts

• Optionally set remove_env_keys

• Optionally set container_args_allowed to a whitelist of arguments that job submitters can pass to the con-
tainer engine via the PBS_CONTAINER_ARGS environment variable.

• Do not include “--entrypoint”; entry points are not supported

• Do not include “--env”; this is not supported

• Do not include “--group-add”; this poses security risks

• Optionally set enable_group_add_arg to True so that the hook automatically adds the job owner to groups in
the container; these are the groups on the execution host to which the job owner already belongs.

3. For local users and local groups, include /etc/passwd and /etc/group in mount paths so the image has the host
operating system users and groups defined.

4. To configure PBS to use nvidia-docker, make sure it is available in the path specified in the nvidia-docker-
cmd line in the hook configuration file.

enable_group_add_

arg

false The hook automatically adds the job owner to groups in the con-
tainer; these are the groups on the execution host to which the
job owner already belongs.

Applies to Docker only; Singularity automatically adds job own-
ers to all groups.

mount_paths [/etc/passwd , /etc/

group]

Additional paths to mount into container at creation time, for
example [“/opt/mpich”]

nvidia_docker_cmd /bin/nvidia-docker Path to nvidia-docker command

port_ranges [] Docker only. Comma-separated ranges of ports, for example
[“2001-9999”,“3500-4500”,“7600-9500”]

remove_env_keys [] Docker only. List of environment variables not to export to job
container

Table 16-1: PBS Container Hook Configuration File Parameters

Parameter Name Default Value Description
PBS Professional 2020.1.1 Administrator’s Guide AG-603

Chapter 16 Using PBS with Containers
We show a sample configuration file here:

{

"container_resource_name": "container_engine",

"container_resource_default_value": "docker",

"mount_paths": ["/etc/passwd", "/etc/group"],

"docker":{

"container_cmd": "/usr/bin/docker",

"nvidia_docker_cmd": "/bin/nvidia-docker",

"remove_env_keys": ["LS_COLORS", "MY_JUNK_VAR"]],

"port_ranges": ["9090-12000"],

"container_args_allowed": ["--shm-size"],

"enable_group_add_arg": false

},

"singularity":{

"container_cmd": "/usr/local/bin/singularity",

"container_image_source": "",

"container_args_allowed": ["--ipc"]

}

}

5. Re-import the PBS container hook’s configuration file:

#qmgr -c "import pbshook PBS_hpc_container application/x-config default container_config.json"

16.4.3 Install and Start Container Engines

Install and start Docker and/or Singularity on all hosts where you want to use them. Make sure that users are not part of
any Docker groups. Consult documentation for your OS, Docker, and Singularity.

16.4.4 Configure Security Enhancement for Docker

We see a security shortcoming in Docker in the case where multiple users are on the same host, where users can see into
each others’ containers. We have implemented a security enhancement for this. We allow the job to run inside the con-
tainer, but we don’t add job submitters to the Docker group, and we don’t allow job submitters to connect to the Docker
container.

Our security enhancement for Docker integration allows jobs to run inside the container, but prevents job submitters
from connecting to the Docker container. We use pbs_container to accomplish this.

Make PBS_EXEC/sbin/pbs_container a part of the Docker group. Set its SGID permissions:

chgrp docker PBS_EXEC/sbin/pbs_container

chmod 2755 PBS_EXEC/sbin/pbs_container
AG-604 PBS Professional 2020.1.1 Administrator’s Guide

Using PBS with Containers Chapter 16
16.5 Caveats and Restrictions

• To run a shell in a container using anything besides the user’s default, the job submitter must specify the shell using
the -S option to qsub.

• Job submitters cannot use old-style resource requests such as -lncpus with containers.

• Any entry point in a container is disabled. If job submitters want to run an entry point command, they must include
the complete command with its arguments on the command line.

• Make sure that when you are configuring the container hook, if you whitelist any container arguments in the
container_args_allowed hook configuration parameter, do not whitelist “--group-add”. This would allow job sub-
mitters to add themselves to any groups inside the container. Instead, set the enable_group_add_arg hook param-
eter to True so the hook automatically adds the job owner to groups in the container; these are the groups on the
execution host to which the job owner already belongs. See

16.6 Errors and Logging

Container creation errors are logged in the MoM log files. You can use tracejob to display these errors.
PBS Professional 2020.1.1 Administrator’s Guide AG-605

Chapter 16 Using PBS with Containers
AG-606 PBS Professional 2020.1.1 Administrator’s Guide

17

Accounting

17.1 The Accounting Log File

The PBS server automatically maintains an accounting log file on the server host only.

17.1.1 Name and Location of Accounting Log File

Accounting log files are written on the server host only.

The accounting log filename defaults to PBS_HOME/server_priv/accounting/ccyymmdd where ccyymmdd is
the date.

You can place the accounting log files elsewhere by specifying the -A option on the pbs_server command line.

The argument to the -A option is the absolute path to the file to be written. If you specify a null string, the accounting log
is not opened and no accounting records are recorded. For example, the following produces no accounting log:

pbs_server -A ""

17.1.2 Managing the Accounting Log File

If you use the default filename including the date, the server closes the file and opens a new file every day on the first
write to the file after midnight.

If you use either the default file or a file named with the -A option, the server closes the accounting log upon daemon/ser-
vice shutdown .and reopens it upon daemon/service startup.

The server closes and reopens the account log file when it receives a SIGHUP signal. This allows you to rename the old
log and start recording again on an empty file. For example, if the current date is February 9, 2015 the server will be writ-
ing in the file 20150209. The following actions cause the current accounting file to be renamed feb9 and the server to
close the file and start writing a new 20150209.

cd $PBS_HOME/server_priv/accounting

mv 20150209 feb9

kill -HUP <server PID>

17.1.3 Permissions for Accounting Log

The PBS_HOME/server_priv/accounting directory is owned by root, and has the following permissions:

drwxr-xr-x
PBS Professional 2020.1.1 Administrator’s Guide AG-607

Chapter 17 Accounting
17.2 Viewing Accounting Information

To see accounting information, you can do any of the following:

• Use the tracejob command to print out all accounting information for a job

• Use the pbs-report command to generate reports of accounting statistics from accounting files

• Use the PBS Works front-end tool called PBS Analytics

• Look at the accounting files using your favorite editor or viewer

17.2.1 Using the tracejob Command

You can use the tracejob command to extract the accounting log messages for a specific job and print the messages in
chronological order. The tracejob command looks at all log files, so if you want to see accounting information only,
use the -l, -m, and -s options to filter out scheduler, MoM, and server log messages. You can use tracejob to see
information about a job that is running or has finished. For accounting information, use the tracejob command at the
server host.

tracejob <job ID>

See “tracejob” on page 235 of the PBS Professional Reference Guide for details about using the tracejob command.

17.2.1.1 Permissions for the tracejob Command

Root privilege is required when using tracejob to see accounting information.

17.3 Format of Accounting Log Messages

The PBS accounting log is a text file with each entry terminated by a newline. There is no limit to the size of an entry.

17.3.1 Log Entry Format

The format of a message is:

<logfile date and time>;<record type>;<ID string>;<message text>

where

logfile date and time

Date and time stamp in the format:
AG-608 PBS Professional 2020.1.1 Administrator’s Guide

Accounting Chapter 17
mm/dd/yyyy hh:mm:ss

record type

A single character indicating the type of record

ID string

The job or reservation identifier

message text

Message text format is blank-separated keyword=value fields.

Message text is ASCII text.

Content depends on the record type.

There is no dependable ordering of the content of each message.

There is no limit to the size of an entry.

17.3.2 Space Characters in String Entries

String entries in the accounting log may contain spaces. Under Linux, you must enclose any strings containing spaces
with quotes.

Example 17-1: If the value of the Account_Name attribute is “Power Users”, the accounting entry should look like
this, either because you added the quotes or PBS did:

user=pbstest group=None account=”Power Users”

17.3.2.1 Replacing Space Characters in String Entries

You can specify a replacement for the space character in any accounting string via the -s option to the pbs_server
command by doing the following:

1. Bring up the Services dialog box

2. Select PBS_SERVER

3. Stop the server

4. In the start parameters, use the -s option to specify the replacement

5. Start the server

Example 17-2: To replace space characters with “%20”, bring up the server with “-s %20”.

In this example, PBS replaces space characters in string entries with “%20”:

user=pbstest group=None account=Power%20Users

If the first character of the replacement string argument to the -s option appears in the data string itself, PBS replaces that
character with its hex representation prefixed by %.

Example 17-3: Given a percent sign in one of our string entries:

account=Po%wer Users

Since % appears in the data string and our replacement string is “%20”, PBS replaces % with its hex representation
(%25):

account=”Po%25wer%20Users”
PBS Professional 2020.1.1 Administrator’s Guide AG-609

Chapter 17 Accounting
17.4 Types of Accounting Log Records

Accounting records for job arrays and subjobs are the same as for jobs, except that subjobs do not have Q (job entered
queue) records. PBS writes different types of accounting records for different events. We list the record types, and
describe the triggering event and the contents for each record type.

A

Job was aborted by the server. The message text contains the explanation for why the job was aborted.

a

Job was altered via qalter or a server hook. The message text is a list of <job attrribute>=<new value> pairs, sepa-
rated by spaces. This record shows only changes to a job attribute made via qalter or a server hook. This record does
not show changes made by the server, a scheduler, or when MoM changes resources_used.

B

Reservation record, written at the beginning of a reservation period, for all types of reservations. This record is written
when the start time of a confirmed reservation is reached. Possible information includes the following:

C

Job was checkpointed and requeued. Not written for a snapshot checkpoint, where the job continues to run.

When a job is checkpointed and requeued, PBS writes a C record in the accounting log. The C record contains the job’s
exit status. If a job is checkpointed and requeued, the exit status recorded in the accounting record is -12.

The C record is written for the following:

• Using the qhold command

• Checkpointing and aborting a job

Table 17-1: B Record: Reservation Information

Entry Explanation

Authorized_Groups= <groups> Groups who are and are not authorized to submit jobs to the reservation.

Authorized_Hosts= <hosts> Hosts from which jobs may and may not be submitted to the reservation.

Authorized_Users = <users> Users who are and are not authorized to submit jobs to the reservation.

ctime= <creation time> Timestamp; time at which the reservation was created, in seconds since the
epoch.

duration = <reservation duration> The duration specified or computed for the reservation, in seconds.

end= <end of period> Time at which the reservation period is to end, in seconds since the epoch.

name= <reservation name> Reservation name, if reservation creator supplied a name string for the reserva-
tion.

nodes= <vnodes> Contents of resv_nodes reservation attribute

owner= <reservation owner> Name of party who submitted the reservation request.

queue= <queue name> Name of the reservation queue.

Resource_List= <requested

resources>

List of resources requested by the reservation. Resources are listed individually
, for example: Resource_List.ncpus = 16 Resource_List.mem =
1048676kb

start= <start of period> Time at which the reservation period is to start, in seconds since the epoch.
AG-610 PBS Professional 2020.1.1 Administrator’s Guide

Accounting Chapter 17
c

After vnode release, the c record shows job information for the upcoming phase. See also the u record, which shows the
phase that just finished, and the e record, which shows the final phase. The c record’s message text field contains the fol-
lowing:

Table 17-2: c Record: Upcoming Phase, After Vnode Release

Entry Explanation

ctime=<creation time> Timestamp; time at which the job was created, in seconds since the epoch.

etime=<time when job became

eligible to run>

Timestamp; time in seconds since epoch when job became eligible to run, i.e. was
enqueued in an execution queue and was in the “Q” state. Reset when a job moves
queues, or is held then released. Not affected by qaltering.

exec_host=<list of hosts and

resources>

List of job hosts with host-level, consumable resources allocated from each host.
Format: exec_host=<host A>/<index>*<CPUs> [+<host B>/<index> *
<CPUs>] where index is task slot number starting at 0, on that host, and CPUs is
the number of CPUs assigned to the job, 1 if omitted.

exec_vnode=<vnode_list> List of job vnodes with vnode-level, consumable resources from each vnode. For-
mat: (<vnode A>:<resource name>=<resource amount>:...)+(<vnode
B>:<resource name>=<resource amount>:...)

resource amount is the amount of that resource allocated from that vnode.

Parentheses may be missing if the exec_vnode string was entered without them
while executing qrun -H.

group= <group name> Group name under which the job will execute.

jobname= <job name> Name of the job.

project= <project name> Job’s project name at the start of the job.

qtime=<time> Timestamp; the time that the job entered the current queue, in seconds since epoch.

queue=<queue name> The name of the queue in which the job resides.

resources_used.<resource

name> = <resource value>

List of resources used by the job. Written only when the server can contact the pri-
mary execution host MoM, as in when the job is qrerun, and only in the case
where the job did start running.

Resource_List.<resource

name>= <resource value>

List of resources requested by the job. Resources are listed individually, for exam-
ple:

Resource_List.ncpus =16

Resource_List.mem =1048676kb

run_count=<count> The number of times the job has been executed.

session=<job session ID> Session number of job.

start=<start time> Time when job execution started, in seconds since epoch.

user=<username> The user name under which the job will execute.
PBS Professional 2020.1.1 Administrator’s Guide AG-611

Chapter 17 Accounting
D

Job or subjob was deleted by request. If a running job is discarded by PBS, PBS writes a D record, but not an E record.
The message text contains requestor=<username>@<hostname> to identify who deleted the job. The D record is written
for the following actions:

E

Job or subjob ended (terminated execution). If a running job is discarded by PBS, PBS writes a D record, but not an E
record. The end-of-job accounting record is not written until all of the job’s resources are freed. The E record is written
for the following actions:

• When a job array finishes (all subjobs are in the X state). For example, [1] and [2] finish, but we delete [3] while it's
running, so the job array [] gets an E record.

• After a multi-node job is discarded (deleted) after nodes go down and node_fail_requeue is triggered

• When MoM sends an obit to the server

The E record can include the following:

Table 17-3: D Record Triggers

Action Result

qdel a non-running job Write record immediately

qdel -W force a job Kill job, then write record after job is deleted

qdel -W force a provisioning job Kill job, then write record after job is deleted

qdel a running job Kill job, then write record when MoM gets back to us

qrerun a job Kill job, then write record after job is requeued

qdel a subjob Kill subjob, then write record after subjob is deleted

PBS discards a running job, for example due to
hardware failure, and node_fail_requeue is
triggered

Write record and requeue job

Table 17-4: E Record: Job End

Entry Explanation

account= <account name> Written if job has a value for its Account_Name attribute

accounting_id= <JID value> CSA JID, job container ID; value of job’s accounting_id attribute

alt_id= <alternate job ID> Optional alternate job identifier.

array_indices=<array indices> Array indices job array was submitted with, if this is a job array. Not reported for
subjobs.

ctime= <creation time> Timestamp; time at which the job was created, in seconds since the epoch.

eligible_time= <eligible time> Amount of time job has waited while blocked on resources, in seconds.

end= <job end time> Time in seconds since epoch when this accounting record was written. Includes
time to stage out files, delete files, and free job resources. The time for these
actions is not included in the walltime recorded for the job.
AG-612 PBS Professional 2020.1.1 Administrator’s Guide

Accounting Chapter 17
etime= <time when job became

eligible to run>

Timestamp; time in seconds since epoch when job became eligible to run, i.e. was
enqueued in an execution queue and was in the “Q” state. Reset when a job
moves queues, or is held then released. Not affected by qaltering.

exec_host= <list of hosts and

resources>

List of job hosts with host-level, consumable resources allocated from each host.
Format: exec_host=<host A>/<index>*<CPUs> [+<host B>/<index> *
<CPUs>] where index is task slot number starting at 0, on that host, and CPUs is
the number of CPUs assigned to the job, 1 if omitted.

exec_vnode= <vnodes> List of job vnodes with vnode-level, consumable resources from each vnode. For-
mat: (<vnode A>:<resource name>=<resource amount>:...)+(<vnode
B>:<resource name>=<resource amount>:...)

resource amount is the amount of that resource allocated from that vnode.

Parentheses may be missing if the exec_vnode string was entered without them
while executing qrun -H.

Exit_status= <exit status> The exit status of the job or subjob. See "Job Exit Status Codes" on page 509 in
the PBS Professional Administrator’s Guide and "Job Array Exit Status", on page
156 of the PBS Professional User’s Guide.

The exit status of an interactive job is always recorded as 0 (zero), regardless of
the actual exit status.

group= <group name> Group name under which the job executed. This is the job’s egroup attribute.

jobname= <job name> Name of the job

pcap_accelerator Power cap for an accelerator. Corresponds to Cray capmc set_power_cap --accel
setting.

pcap_node Power cap for a node. Corresponds to Cray capmc set_power_cap --node setting.

pgov Cray ALPS reservation setting for CPU throttling corresponding to p-governor.

project= <project name> Job’s project name when this record is written

qtime=<time> Timestamp; the time that the job entered the current queue, in seconds since epoch.

queue= <queue name> Name of the queue from which the job executed

resources_used.<resource

name>= <resource value>

Resources used by the job as reported by MoM. Typically includes ncpus, mem,

vmem, cput, walltime, cpupercent. walltime does not include suspended time.
Some resources get special reporting; see section 17.6.2.2, “Reporting Resources
Used by Job”, on page 632.

Resource_List.<resource

name>= <resource value>

List of resources requested by the job. Resources are listed individually, for
example: Resource_List.ncpus =16 Resource_List.mem
=1048676kb

resvID=<reservation ID> ID of reservation job is in, if any

resvname=<reservation name> Name of reservation job is in, if any

run_count=<count> The number of times the job has been executed.

Table 17-4: E Record: Job End

Entry Explanation
PBS Professional 2020.1.1 Administrator’s Guide AG-613

Chapter 17 Accounting
e

For a job whose vnodes were released, the e record shows information for the final phase of the job, after vnodes were
released. See also the c record, which shows info for an upcoming phase, and the u record, which shows info for the just-
finished phase. The e record’s message text field contains the following:

session=<session ID> Session number of job.

start=<start time> Time when job execution started, in seconds since epoch.

user=<user name> The user name under which the job executed. This is the job’s euser attribute.

Table 17-5: e Record: Final Phase After Vnode Release

Entry Explanation

ctime=<creation time> Timestamp; time at which the job was created, in seconds since the epoch.

etime=<time when job became

eligible to run>

Timestamp; time in seconds since epoch when job became eligible to run, i.e. was
enqueued in an execution queue and was in the “Q” state. Reset when a job moves
queues, or is held then released. Not affected by qaltering.

exec_host=<list of hosts and

resources>

List of job hosts with host-level, consumable resources allocated from each host.
Format: exec_host=<host A>/<index>*<CPUs> [+<host B>/<index> *
<CPUs>] where index is task slot number starting at 0, on that host, and CPUs is
the number of CPUs assigned to the job, 1 if omitted.

exec_vnode=<vnode_list> List of job vnodes with vnode-level, consumable resources from each vnode. For-
mat: (<vnode A>:<resource name>=<resource amount>:...)+(<vnode
B>:<resource name>=<resource amount>:...)

resource amount is the amount of that resource allocated from that vnode.

Parentheses may be missing if the exec_vnode string was entered without them
while executing qrun -H.

group= <group name> Group name under which the job will execute.

jobname= <job name> Name of the job.

project= <project name> Job’s project name at the start of the job.

qtime=<time> Timestamp; the time that the job entered the current queue, in seconds since epoch.

queue=<queue name> The name of the queue in which the job resides.

resources_used.<resource

name> = <resource value>

List of resources used by the job. Written only when the server can contact the pri-
mary execution host MoM, as in when the job is qrerun, and only in the case
where the job did start running.

Resource_List.<resource

name>= <resource value>

List of resources requested by the job. Resources are listed individually, for exam-
ple:

Resource_List.ncpus =16

Resource_List.mem =1048676kb

run_count=<count> The number of times the job has been executed.

Table 17-4: E Record: Job End

Entry Explanation
AG-614 PBS Professional 2020.1.1 Administrator’s Guide

Accounting Chapter 17
K

Reservation deleted at request of scheduler or server. The message text field contains requestor=Server@<hostname>
or requestor=Scheduler@<hostname> to identify who deleted the resource reservation.

k

Reservation terminated by owner issuing a pbs_rdel command. Written for all types of reservations. The message text
field contains requestor=<username>@<hostname> to identify who deleted the reservation.

L

Information about node or socket licenses. Written when the server periodically reports license information from the
license server. This line in the log has the following fields:

<Log date>; <record type>; <keyword>; <specification for license>; <hour>; <day>; <month>; <max>

The following table describes each field:

M

Job move record. When a job or job array is moved to another server, PBS writes an M record containing the date, time,
record type, job ID, and destination.

Example of an accounting log entry:

7/08/2008 16:17:38; M; 97.serverhost1.domain.com; destination=workq@serverhost2

When a job array has been moved from one server to another, the subjob accounting records are split between the two
servers.

session=<job session ID> Session number of job.

start=<start time> Time when job execution started, in seconds since epoch.

user=<username> The user name under which the job will execute.

Table 17-6: Licensing Information in Accounting Log

Field Description

Log date Date of event

record type Indicates license info

keyword license

specification for license Indicates that this is license info

hour Number of licenses used in the last hour

day Number of licenses used in the last day

month Number of licenses used in the last month

max Maximum number of licenses ever used. Not dependent on server
restarts.

Table 17-5: e Record: Final Phase After Vnode Release

Entry Explanation
PBS Professional 2020.1.1 Administrator’s Guide AG-615

Chapter 17 Accounting
Jobs can be moved to another server for one of the following reasons:

• Moved for peer scheduling

• Moved via the qmove command

• Job was submitted to a routing queue, then routed to a destination queue at another server

P

Provisioning starts for job or reservation.

Format: <Date and time>;<record type>;<job or reservation ID>; <message text>, where message text contains:

• User name

• Group name

• Job or reservation name

• Queue

• List of vnodes that were provisioned, with the AOE that was provisioned

• Provision event (START)

• Start time in seconds since epoch

Example:

“01/15/2009 12:34:15;P;108.mars;user=user1 group=group1 jobname=STDIN queue=workq
prov_vnode=jupiter:aoe=osimg1+venus:aoe=osimg1 provision_event=START start_time=1231928746”

p

Provisioning ends for job or reservation. Provisioning can end due to either a successful finish or failure to provision.
Format: <Date and time>;<record type>;<job or reservation ID>; <message text>, where message text contains:

• User name

• Group name

• Job or reservation name

• Queue

• List of vnodes that were provisioned, with the AOE that was provisioned

• Provision event (END)

• Provision status (SUCCESS or FAILURE)

• End time in seconds since epoch

Example printed when job stops provisioning:

“01/15/2009 12:34:15;p;108.mars;user=user1 group=group1 jobname=STDIN queue=workq
prov_vnode=jupiter:aoe=osimg1+venus:aoe=osimg1 provision_event=END status=SUCCESS
end_time=1231928812”

Example printed when provisioning for job failed:

“01/15/2009 12:34:15;p;108.mars;user=user1 group=group1 jobname=STDIN queue=workq
prov_vnode=jupiter:aoe=osimg1+venus:aoe=osimg1 provision_event=END status=FAILURE
end_time=1231928812”

Q

Job entered a queue. Not written for subjobs. PBS writes a new Q record each time the job is routed or moved to a new
queue or to the same queue.
AG-616 PBS Professional 2020.1.1 Administrator’s Guide

Accounting Chapter 17
The Q record can include the following:

R

Job information written when job is rerun via qrerun or node_fail_requeue action, or when MoM is restarted without
the -p or -r options. Not written when job fails to start because the prologue rejects the job. Possible information
includes:

Table 17-7: Q Record: Job Queued

Entry Explanation

account= <account name> Written if job has a value for its Account_Name attribute

accounting_id= <JID value> CSA JID, job container ID; value of job’s accounting_id attribute

array_indices=<array indices> Array indices job array was submitted with, if this is a job array. Not reported for
subjobs.

ctime= <creation time> Timestamp; time at which the job was created, in seconds since the epoch.

depend=<dependencies> The job’s dependencies, if any

etime= <time when job became

eligible to run>

Timestamp; time in seconds since epoch when job became eligible to run, i.e. was
enqueued in an execution queue and was in the “Q” state. Reset when a job
moves queues, or is held then released. Not affected by qaltering.

group= <group name> Group name under which the job executed. This is the job’s egroup attribute.

jobname= <job name> Name of the job

pcap_accelerator Power cap for an accelerator. Corresponds to Cray capmc set_power_cap --accel
setting.

pcap_node Power cap for a node. Corresponds to Cray capmc set_power_cap --node setting.

pgov Cray ALPS reservation setting for CPU throttling corresponding to p-governor.

project= <project name> Job’s project name when this record is written

qtime=<time> Timestamp; the time that the job entered the current queue, in seconds since epoch.

queue= <queue name> Name of the queue from which the job executed

Resource_List.<resource

name>= <resource value>

List of resources requested by the job. Resources are listed individually, for
example: Resource_List.ncpus =16 Resource_List.mem
=1048676kb

resvID=<reservation ID> ID of reservation job is in, if any

resvname=<reservation name> Name of reservation job is in, if any

user=<user name> The user name under which the job executed. This is the job’s euser attribute.

Table 17-8: R Record: Job Rerun

Entry Explanation

account= <account name> Written if job has an “account name” string

accounting_id= <JID value> CSA JID, job container ID

alt_id= <alternate job ID> Optional alternate job identifier.
PBS Professional 2020.1.1 Administrator’s Guide AG-617

Chapter 17 Accounting
r

Job has been resumed. Format:

ctime= <creation time> Timestamp; time at which the job was created, in seconds since the epoch.

eligible_time= <eligible time> Amount of time job has waited while blocked on resources, starting at creation time,
in seconds.

end= <time> Time in seconds since epoch when this accounting record was written. Includes
time to delete files and free resources.

etime= <time job became eli-

gible to run>

Timestamp; time in seconds since epoch when job most recently became eligible to
run, i.e. was enqueued in an execution queue and was in the “Q” state. Reset when a
job moves queues, or when a job is held then released. Not affected by qaltering.

exec_host= <list of hosts and

resources>

List of job hosts with host-level, consumable resources allocated from each host.
Format: exec_host=<host A>/<index>*<CPUs> [+<host B>/<index> * <CPUs>]
where index is task slot number starting at 0, on that host, and CPUs is the number of
CPUs assigned to the job, 1 if omitted.

exec_vnode= <vnode_list> List of job vnodes with vnode-level, consumable resources from each vnode. For-
mat: (<vnode A>:<resource name>=<resource amount>:...)+(<vnode
B>:<resource name>=<resource amount>:...)

resource amount is the amount of that resource allocated from that vnode.

Parentheses may be missing if the exec_vnode string was entered without them
while executing qrun -H.

Exit_status= <exit status> The exit status of the previous start of the job. See "Job Exit Status Codes" on page
509 in the PBS Professional Administrator’s Guide.

The exit status of an interactive job is always recorded as 0 (zero), regardless of the
actual exit status.

group=<group name> The group name under which the job executed.

jobname=<job name> The name of the job.

project=<project name> The job’s project name.

qtime=<time job was

queued>

Timestamp; the time that the job entered the current queue, in seconds since epoch.

queue=<queue name> The name of the queue in which the job is queued.

Resource_List.<resource

name>= <resource value>

List of resources requested by the job. Resources are listed individually, for exam-
ple: Resource_List.ncpus =16 Resource_List.mem =1048676kb

resources_used.<resource

name> = <resource value>

List of resources used by the job. Written only when the server can contact the pri-
mary execution host MoM, as in when the job is qrerun, and only in the case
where the job did start running.

run_count=<count> The number of times the job has been executed.

session=<session ID> Session ID of job.

start=<start time> Time when job execution started most recently, in seconds since epoch.

user=<user name> The user name under which the job executed.

Table 17-8: R Record: Job Rerun

Entry Explanation
AG-618 PBS Professional 2020.1.1 Administrator’s Guide

Accounting Chapter 17
<logfile date and time>;<record type>;<job ID string>;

S

Job execution started. The message text field contains the following:

Table 17-9: S Record: Job Start

Entry Explanation

accounting_id= <accounting

string>

An identifier that is associated with system-generated accounting data. In the case
where accounting is CSA, accounting string is a job container identifier or JID cre-
ated for the PBS job.

array_indices=<array indices> Array indices job array was submitted with, if this is a job array. Not reported for
subjobs.

ctime= <creation time> Timestamp; time at which the job was created, in seconds since the epoch.

etime= <time when job

became eligible to run>

Timestamp; time in seconds since epoch when job became eligible to run, i.e. was
enqueued in an execution queue and was in the “Q” state. Reset when a job moves
queues, or is held then released. Not affected by qaltering.

exec_host= <list of hosts and

resources>

List of job hosts with host-level, consumable resources allocated from each host.
Format: exec_host=<host A>/<index>*<CPUs> [+<host B>/<index> *
<CPUs>] where index is task slot number starting at 0, on that host, and CPUs is
the number of CPUs assigned to the job, 1 if omitted.

group= <group name> Group name under which the job will execute.

jobname= <job name> Name of the job.

pcap_accelerator Power cap for an accelerator. Corresponds to Cray capmc set_power_cap --accel
setting.

pcap_node Power cap for a node. Corresponds to Cray capmc set_power_cap --node setting.

pgov Cray ALPS reservation setting for CPU throttling corresponding to p-governor.

project= <project name> Job’s project name at the start of the job.

qtime= <time> Timestamp; the time that the job entered the current queue, in seconds since epoch.

queue= <queue name> The name of the queue in which the job resides.

resources_assigned.<resource

name>= <resource value>

Not a job attribute; simply a label for reporting job resource assignment. One
resource per entry.

Includes all allocated consumable resources. Consumable resources include
ncpus, mem and vmem by default, and any custom resource defined with the -n
or -f flags. A resource is not listed if the job does not request it directly or inherit it
by default from queue or server settings.

Actual amount of each resource assigned to the job by PBS. For example, if a job
requests one CPU on a multi-vnode machine that has four CPUs per blade/vnode
and that vnode is allocated exclusively to the job, even though the job requested
one CPU, it is assigned all 4 CPUs.

Resource_List.<resource

name>= <resource value>

List of resources requested by the job. Resources are listed individually, for exam-
ple:

Resource_List.ncpus =16

Resource_List.mem =1048676kb
PBS Professional 2020.1.1 Administrator’s Guide AG-619

Chapter 17 Accounting
s

A job’s vnode request was trimmed via release_nodes() in an execjob_prologue or execjob_launch hook. The job’s
tolerate_node_failures attribute must be set to all or job_start. The s record shows the new trimmed vnode request.
Format: <date> <time>;s;<job ID>;user=<job owner> group=<group> project=<project> jobname=<job name>
queue=<queue name> ctime=<ctime> qtime=<qtime> etime=<etime> start=<start time> exec_host=<exec_host>
exec_vnode=<exec_vnode> Resource_List.<resource>=<value>
Resource_List.<resource>=<value>...Resource_List.<resource>=<value>

T

Job was restarted from a checkpoint file.

U

Unconfirmed advance, standing, job-specific ASAP, or maintenance reservation requested.

• For an advance, job-specific ASAP, or maintenance reservation, the message text field has this format:

U:<reservation ID> requestor=<username>@<hostname>
• For a standing reservation, the message text field has this format:

U:<reservation ID>;requestor=<username>@<hostname> recurrence_rule=<recurrence rule> timezone=<time-
zone>

Example: "U;S56.exampleserver;requestor=pbsuser@exampleserver recurrence_rule=FREQ=HOURLY;COUNT=2
timezone=Asia/Kolkata".

u

After vnode release, the u record shows job information for the phase that just finished. See also the c record, which
shows the upcoming phase, and the e record, which shows the final phase. The u record’s message text field contains the
following:

resvID=<reservation ID> ID of reservation job is in, if any

resvname=<reservation name> Name of reservation job is in, if any

session= <job session ID> Session number of job.

start=<start time> Time when job execution started, in seconds since epoch.

user= <username> The user name under which the job will execute.

Table 17-10: u Record: Phase Just Finished, After Vnode Release

Entry Explanation

ctime=<creation time> Timestamp; time at which the job was created, in seconds since the epoch.

etime=<time when job became

eligible to run>

Timestamp; time in seconds since epoch when job became eligible to run, i.e. was
enqueued in an execution queue and was in the “Q” state. Reset when a job moves
queues, or is held then released. Not affected by qaltering.

exec_host=<list of hosts and

resources>

List of job hosts with host-level, consumable resources allocated from each host.
Format: exec_host=<host A>/<index>*<CPUs> [+<host B>/<index> *
<CPUs>] where index is task slot number starting at 0, on that host, and CPUs is
the number of CPUs assigned to the job, 1 if omitted.

Table 17-9: S Record: Job Start

Entry Explanation
AG-620 PBS Professional 2020.1.1 Administrator’s Guide

Accounting Chapter 17
Y

Reservation confirmed by the scheduler or altered. Written for all types of reservations.

• Advance, job-specific, or maintenance reservations:

When an advance, job-specific, or maintenance reservation is confirmed for the first time, the Y record has this for-
mat:

Y; <reservation ID> requestor=<requestor>@<server> start=<requested start time> end=<requested end
time> vnodes=(<allotted vnodes>)

Example: "Y; R123.server requestor=Scheduler@svr start=1497264531 end=1497264651 nodes=(node1:ncpus=3)"

The Y record is written when an advance, job-specific, or maintenance reservation alter request is confirmed. The Y
record has the same format as for the first time the reservation is confirmed, but the requested field(s) are updated
with new value(s):

Y; <reservation ID> requestor=<requestor>@<server> start=<(new/original) start time> end=<(new/origi-
nal) end time> nodes=(<allotted vnodes>)

Example: "Y; R123.server requestor=root@hostname start=1497264471 end=1497264651 nodes=(node1:ncpus=3)"

• Standing reservations:

When a standing reservation is confirmed for the first time, the Y record has this format:

exec_vnode=<vnode_list> List of job vnodes with vnode-level, consumable resources from each vnode. For-
mat: (<vnode A>:<resource name>=<resource amount>:...)+(<vnode
B>:<resource name>=<resource amount>:...)

resource amount is the amount of that resource allocated from that vnode.

Parentheses may be missing if the exec_vnode string was entered without them
while executing qrun -H.

group= <group name> Group name under which the job will execute.

jobname= <job name> Name of the job.

project= <project name> Job’s project name at the start of the job.

qtime=<time> Timestamp; the time that the job entered the current queue, in seconds since epoch.

queue=<queue name> The name of the queue in which the job resides.

resources_used.<resource

name> = <resource value>

List of resources used by the job. Written only when the server can contact the pri-
mary execution host MoM, as in when the job is qrerun, and only in the case
where the job did start running.

Resource_List.<resource

name>= <resource value>

List of resources requested by the job. Resources are listed individually, for exam-
ple:

Resource_List.ncpus =16

Resource_List.mem =1048676kb

run_count=<count> The number of times the job has been executed.

session=<job session ID> Session number of job.

start=<start time> Time when job execution started, in seconds since epoch.

user=<username> The user name under which the job will execute.

Table 17-10: u Record: Phase Just Finished, After Vnode Release

Entry Explanation
PBS Professional 2020.1.1 Administrator’s Guide AG-621

Chapter 17 Accounting
Y; <reservation ID> requestor=<requestor>@<server> start=<requested start time> end=<requested end
time> nodes=(<allotted vnodes>) count=<count>

The nodes field is specific to the first occurrence.

Example: "Y; R123.server requestor=Scheduler@svr start=1497264531 end=1497264651 nodes=(node1:ncpus=3)
count=3"

The Y record is written when a standing reservation alter request is confirmed. The Y record has the same format as
as for the first time a standing reservation is confirmed, but the requested field(s) are updated with the new value(s),
and the index of the next occurrence is appended. The nodes field is specific to the occurrence altered:

Y; <reservation ID> requestor=<requestor>@<server> start=<(new/original) start time> end=<(new/origi-
nal) end time> nodes=(<allotted vnodes>) count=<count> index=<index of the altered occurrence>

Example: "Y; R123.server requestor=root@hostname start=1497264471 end=1497264651 nodes=(node1:ncpus=3)
count=3 index=1"

The allotted vnodes is the value of the resv_nodes reservation attribute.

The count is the value of the reserve_count reservation attribute.

z

Job has been suspended. The message string contains the following:

• Values for the job’s resources_used attribute

• Values for the job’s resources_released attribute. This attribute is populated only when the server’s
restrict_res_to_release_on_suspend attribute is set; see section 5.9.6.2, “Job Suspension and Resource Usage”,
on page 250.

17.4.1 Accounting Records for Job Arrays

Accounting records for job arrays and subjobs are the same as for jobs, except that subjobs do not have Q (job entered
queue) records.

When a job array has been moved from one server to another, the subjob accounting records are split between the two
servers.

When a job array goes from Queued to Begin state, we write one S for the whole job array.

The E record is written when a job array finishes. For example, [1] and [2] finish, but we delete [3] while it's running, so
the job array gets an E record.

A job array is finished when all subjobs are in the X state.
AG-622 PBS Professional 2020.1.1 Administrator’s Guide

Accounting Chapter 17
17.5 Timeline for Accounting Messages

17.5.1 Timeline for Job Accounting Messages

The following is a timeline that shows when job and job array attributes and resources are recorded, and when they are
written:

Table 17-11: Timeline for Job Accounting Messages

Job/Job Array Lifecycle Accounting Record

Job is queued Q

Job is moved M

Application licenses are checked out

Any required job-specific staging and execution directories are created

PBS_JOBDIR and job’s jobdir attribute are set to pathname of staging and execution
directory

If necessary, MoM creates job execution directory

MoM creates temporary directory

Files are staged in

Just after job is sent to MoM S

T

primary execution host MoM tells sister MoMs they will run job task(s)

MoM sets TMPDIR, JOBDIR, and other environment variables in job’s environment

MoM performs hardware-dependent setup: The job’s cpusets are created, ALPS reserva-
tions are created

The job script starts

MoM runs user program

Job starts an MPI process on sister vnode

Job is suspended z

Job is resumed r

The job script finishes

The obit is sent to the server E, e

Any specified file staging out takes place, including stdout and stderr

Files staged in or out are deleted

Any job-specific staging and execution directories are removed

The job’s cpusets are destroyed

Job files are deleted E

Application licenses are returned to pool
PBS Professional 2020.1.1 Administrator’s Guide AG-623

Chapter 17 Accounting
17.5.2 Where Job Attributes are Recorded

Some accounting entries for job attributes have different names from their attributes. The following table shows the
record(s) in which each job attribute is recorded and the entry name:

Job is aborted by server A

Job is checkpointed and held C

Job is deleted D

Periodic license information L

Job is rerun via qrerun or node_fail_requeue R

Job is restarted from a checkpoint file T

qdel a subjob D

qrerun a job D

qdel a provisioning job with force D

qdel any job with force D

qdel a running job: kill job, then write record when MoM gets back to us D

qdel a non-running job: write record now D

Job array finishes E

After a job is discarded after nodes go down on multi-vnode job E

Job vnodes are released c, u

Table 17-12: Job Attributes in Accounting Records

Job Attribute Record Accounting Entry Name

accounting_id E, Q, R, S accounting_id

Account_Name E, Q, R account

accrue_type

alt_id E, R alt_id

argument_list

array

array_id

array_index

array_indices_remaining

array_indices_submitted E, Q, S array_indices

array_state_count

Table 17-11: Timeline for Job Accounting Messages

Job/Job Array Lifecycle Accounting Record
AG-624 PBS Professional 2020.1.1 Administrator’s Guide

Accounting Chapter 17
block

Checkpoint

comment

create_resv_from_job

ctime c, E, e, Q, R, S, u ctime

depend Q depend

egroup c, E, e, Q, R, S, u group

eligible_time E, R eligible_time

Error_Path

estimated

etime c, E, e, Q, R, S, u etime

euser c, E, e, Q, R, S, u user

executable

Execution_Time

exec_host c, E, e, R, S, u exec_host

exec_vnode c, E, e, R, u exec_vnode

Exit_status E, R Exit_status

forward_x11_cookie

forward_x11_port

group_list

hashname

Hold_Types

interactive

jobdir

Job_Name c, E, e, Q, R, S, u jobname

Job_Owner

job_state

Join_Path

Keep_Files

Mail_Points

Mail_Users

mtime

no_stdio_sockets

Table 17-12: Job Attributes in Accounting Records

Job Attribute Record Accounting Entry Name
PBS Professional 2020.1.1 Administrator’s Guide AG-625

Chapter 17 Accounting
Output_Path

pcap_accelerator E, Q, S

pcap_node E, Q, S

pgov E, Q, S

Priority

project c, E, e, Q, R, S, u project

pset

pstate

qtime c, E, e, Q, R, S, u qtime

queue c, E, e, Q, R, S, u queue

queue_rank

queue_type

release_nodes_on_stageout

Remove_Files

Rerunable

resources_released z resources_released

resources_used c, E, e, R, u, z resources_used

Resource_List c, E, e, Q, R, S, u Resource_List

resource_released_list

run_count c, E, e, R, u run_count

run_version

sandbox

schedselect

sched_hint

server

session_id c, E, e, R, S, u session

Shell_Path_List

stagein

stageout

Stageout_status

stime c, E, e, R, S, u start

Submit_arguments

substate

Table 17-12: Job Attributes in Accounting Records

Job Attribute Record Accounting Entry Name
AG-626 PBS Professional 2020.1.1 Administrator’s Guide

Accounting Chapter 17
17.5.3 Timeline for Reservation Accounting Messages

The following table shows the timeline for when reservation accounting messages are recorded:

17.5.4 Where Reservation Attributes and Info are Recorded

Some accounting entries for reservation attributes have names that are different from their attributes. The following table
shows the record(s) in which each reservation attribute is recorded and the entry name:

sw_index

tolerate_node_failures

topjob_ineligible

umask

User_List

Variable_List

Table 17-13: Timeline for Reservation Accounting Messages

Reservation Lifecycle Accounting Record

Unconfirmed reservation is created U

Reservation is confirmed Y

Reservation period begins B, Y

Provisioning for reservation begins P

Provisioning for reservation ends p

Reservation period ends F, Y

Reservation is altered Y

Reservation is deleted by scheduler or server K

Reservation is deleted by user via pbs_rdel k

Table 17-14: Reservation Attributes/Info in Accounting Records

Reservation Attribute/Info Record Accounting Entry Name

Account_Name

Authorized_Groups B Authorized_Groups

Authorized_Hosts B Authorized_Hosts

Authorized_Users B Authorized_Users

ctime B ctime

Table 17-12: Job Attributes in Accounting Records

Job Attribute Record Accounting Entry Name
PBS Professional 2020.1.1 Administrator’s Guide AG-627

Chapter 17 Accounting
delete_idle_time

group_list

hashname

interactive

Mail_Points

Mail_Users

mtime

Priority

queue B queue

reservation requestor K, k, U, Y requestor

reserve_count Y

reserve_duration B duration

reserve_end B, Y end

reserve_ID Q resvID

reserve_index

reserve_job

Reserve_Name B,

Q

name

resvname

Reserve_Owner B owner

reserve_retry

reserve_rrule U (standing reservations) recurrence_rule

reserve_start B, Y start

reserve_state

reserve_substate

reserve_type

Resource_List B Resource_List

resv_nodes B, Y nodes

server

timezone U (standing reservation) timezone

User_List

Variable_List

Table 17-14: Reservation Attributes/Info in Accounting Records

Reservation Attribute/Info Record Accounting Entry Name
AG-628 PBS Professional 2020.1.1 Administrator’s Guide

Accounting Chapter 17
17.5.4.1 Jobs in Reservations

• The job’s queue is recorded in its c, E, e, Q, R, S, and u records.

• The job’s reservation name and reservation ID are written in its E, Q, and S records.

17.5.5 How MoM Polling Affects Accounting

MoM periodically polls for usage by the jobs running on her host, collects the results, and reports this to the server. When
a job exits, she polls again to get the final tally of usage for that job.

Example 17-4: MoM polls the running jobs at times T1, T2, T4, T8, T16, T24, and so on.

The output shown by a qstat during the window of time between T8 and T16 shows the resource usage up to T8.

If the qstat is done at T17, the output shows usage up through T16. If the job ends at T20, the accounting log (and
the final log message, and the email to the user if "qsub -me" was used in job submission) contains usage through
T20.

The final report does not include the epilogue. The time required for the epilogue is treated as system overhead.

If a job ends between MoM poll cycles, resources_used.<resource name> numbers will be slightly lower than they
are in reality. For long-running jobs, the error percentage will be minor.

See section 3.1.2, “Configuring MoM Polling Cycle”, on page 34 for details about MoM’s polling cycle.

17.6 Resource Accounting

Job resources are recorded in the Q (job queued; Resource_List only), S (job start), R (job rerun), E (job end), c
(upcoming phase when job vnodes are released), u (just-finished phase when job vnodes are released), s (vnodes
trimmed), e (usage during post-release phase), and z (job suspension) records.

Reservation resources are recorded in the B (reservation start) record.

17.6.1 Accounting Log Resource Entry Formats

When reporting resources in the accounting B, c, E, e, R, S, or u records, there is one entry per resource. Each resource
is reported on a separate line.

Values for requested resources are written in the same units as those in the resource requests. Values for
resources_used and resources_assigned are written in kb. A suffix is always written unless the quantity is measured
in bytes.
PBS Professional 2020.1.1 Administrator’s Guide AG-629

Chapter 17 Accounting
17.6.2 Job Resource Accounting

The following table shows which job and reservation resources are recorded in the accounting log, and lists the records
where they are recorded:

Table 17-15: Job Resources in Accounting Log

Resources Record Description

Resource_List c

E

e

Q

R

S

u

List of resources requested by the job. Resources are listed individually,
for example:

Resource_List.ncpus =16
Resource_List.mem =1048676kb

resources_assigned S Not a job attribute; simply a label for reporting job resource assignment.
One resource per entry.

Includes all allocated consumable resources. Consumable resources
include ncpus, mem and vmem by default, and any custom resource
defined with the -n or -f flags. A resource is not listed if the job does not
request it directly or inherit it by default from queue or server settings.

Actual amount of each resource assigned to the job by PBS. For example,
if a job requests one CPU on a multi-vnode machine that has four CPUs
per blade/vnode and that vnode is allocated exclusively to the job, even
though the job requested one CPU, it is assigned all 4 CPUs.

resources_released z Listed by vnode, consumable resources that were released when the job
was suspended.

Populated only when restrict_res_to_release_on_suspend server
attribute is set. Set by server.
AG-630 PBS Professional 2020.1.1 Administrator’s Guide

Accounting Chapter 17
17.6.2.0.i Accounting Log Entries for min_walltime and max_walltime

The Resource_List job attribute contains values for min_walltime and max_walltime. For example, if the following
job is submitted:

qsub -l min_walltime="00:01:00",max_walltime="05:00:00" -l select=2:ncpus=1 job.sh

This is the resulting accounting record:

…S…….. Resource_List.max_walltime=05:00:00 Resource_List.min_walltime=00:01:00
Resource_List.ncpus=2 Resource_List.nodect=2 Resource_List.place=pack
Resource_List.select=2:ncpus=1 Resource_List.walltime=00:06:18 resources_assigned.ncpus=2

…R…….. Resource_List.max_walltime=05:00:00 Resource_List.min_walltime=00:01:00
Resource_List.ncpus=2 Resource_List.nodect=2 Resource_List.place=pack
Resource_List.select=2:ncpus=1 Resource_List.walltime=00:06:18

…E……. Resource_List.max_walltime=05:00:00 Resource_List.min_walltime=00:01:00
Resource_List.ncpus=2 Resource_List.nodect=2 Resource_List.place=pack
Resource_List.select=2:ncpus=1 Resource_List.walltime=00:06:18…….

17.6.2.1 Reporting Resources Assigned to Job

The value reported in the resources_assigned accounting entry is the amount assigned to a job or that a job prevents
other jobs from using, which is different from the amount the job requested or used. For example, if a job requests one
CPU on a multi-vnode machine that has four CPUs per blade/vnode and that vnode is allocated exclusively to the job,
even though the job requested one CPU, it is assigned all 4 CPUs. In this example, resources_assigned reports 4
CPUs, and resources_used reports 1 CPU.

The resources_assigned accounting entry is reported in the S record.

resources_used c

E

e

R (when qrerun)

u

z

Resources used by the job as reported by MoM. Typically includes
ncpus, mem, vmem, cput, walltime, cpupercent. walltime does not
include suspended time.

exec_host c

E

e

R

S

u

List of job hosts with host-level, consumable resources allocated from
each host. Format: exec_host=<host A>/<index>*<CPUs> [+<host
B>/<index> * <CPUs>] where index is task slot number starting at 0, on
that host, and CPUs is the number of CPUs assigned to the job, 1 if omit-
ted.

exec_vnode c

E

e

R

u

List of job vnodes with vnode-level, consumable resources from each
vnode. Format: (<vnode A>:<resource name>=<resource
amount>:...)+(<vnode B>:<resource name>=<resource amount>:...)

resource amount is the amount of that resource allocated from that vnode.

Table 17-15: Job Resources in Accounting Log

Resources Record Description
PBS Professional 2020.1.1 Administrator’s Guide AG-631

Chapter 17 Accounting
17.6.2.2 Reporting Resources Used by Job

Consumable job resources actually used by the job are recorded in the job’s resources_used attribute. Values for
resources_used are reported in the c, E, e, u, and z records, and the R record if the job is rerun, but not when the server
loses contact with the primary execution host MoM.

You can use hooks to set values for a job’s resources_used attribute for custom resources. These custom resources will
appear in the accounting log, along with custom resources that are created or set in hooks. Other custom resources will
not appear in the accounting log. See "Setting Job Resources in Hooks" on page 49 in the PBS Professional Hooks
Guide.

PBS reports resources_used values for string resources that are created or set in a hook as JSON strings in the E
record.

• If MoM returns a JSON object (a Python dictionary), PBS reports it in the E record in single quotes:
resources_used.<resource_name> = '{ <MoM JSON item value>, <MoM JSON item value>, <MoM JSON item

value>, ..}

Example: MoM returns { "a":1, "b":2, "c":1,"d": 4} for resources_used.foo_str. We get:

resources_used.foo_str='{"a": 1, "b": 2, "c":1,"d": 4}'

• If MoM returns a value that is not a JSON object, it is reported verbatim in the E record.

Example: MoM returns "hello" for resources_used.foo_str. We get:

resources_used.foo_str="hello"

17.6.2.3 Freeing Resources

The resources allocated to a job from vnodes are not released until all of those resources have been freed by all MoMs
running the job. The end of job accounting record is not written until all of the resources have been freed. The end entry
in the job E record includes the time to stage out files, delete files, and free the resources. This does not change the
recorded walltime for the job.

17.6.2.4 Releasing Vnodes

When a job’s vnodes are released via pbs_release_nodes, PBS writes the c and u records, and at the end of the job,
PBS writes the e record.

If cgroups support is enabled, and pbs_release_nodes is called to release some but not all the vnodes managed by
a MoM, resources on those vnodes are released.
AG-632 PBS Professional 2020.1.1 Administrator’s Guide

Accounting Chapter 17
17.6.3 Reservation Resource Accounting

The following table shows which reservation resources are recorded in the accounting log, and lists the records where
they are recorded:

17.6.4 Platform-specific Resource Accounting Tools

17.6.4.1 Resource Accounting on Cray

Jobs that request only compute nodes are not assigned resources from login nodes. PBS accounting logs do not show any
login node resources being used by these jobs.

Jobs that request login nodes are assigned resources from login nodes, and those resources appear in the PBS accounting
logs for these jobs.

PBS performs resource accounting on the login nodes, under the control of their MoMs.

17.6.4.1.i Using Cray Resource Utilization Reporting

You can use Cray’s Resource Utilization Reporting (RUR) to collect statistics on how compute nodes are used, and then
use an execjob_epilogue hook to set custom resource values for each job. These custom resources are recorded in the
job’s E record. You can get more information on Cray’s RUR at http://docs.cray.com. See document S-2393-51.

17.6.4.1.ii Using Comprehensive System Accounting

PBS supports Comprehensive System Accounting (CSA) on Cray machines running CLE 5.2. CSA runs on the compute
nodes, under the control of the Cray system.

If CSA is enabled, PBS can request the kernel to write user job accounting data to accounting records. These records can
then be used to produce reports for the user.

If PBS finds the CSA shared object libraries, and CSA is enabled, PBS can cause a workload management record to be
written for each job. If MoM is configured for CSA support, MoM can issue CSA workload management record
requests to the kernel. The kernel writes workload management accounting records associated with the PBS job to the
system-wide process accounting file. The default for this file is /var/csa/day/pacct.

17.6.4.1.iii CSA Configuration Parameter

pbs_accounting_workload_mgmt <value>
MoM configuration parameter. Controls whether CSA accounting is enabled. The name does not start with a
dollar sign. If set to “1”, “on”, or “true”, CSA accounting is enabled. If set to “0”, “off”, or “false”, CSA
accounting is disabled. Values are case-insensitive. Default: “true”; enabled.

Table 17-16: Reservation Resources in Accounting Log

Resources Record Description

exec_host B List of vnodes allocated to the reservation

Resource_List B List of resources requested by the reservation. Resources are listed individually as,
for example:

Resource_List.ncpus = 16

Resource_List.mem = 1048676kb

resv_nodes B Contents of resv_nodes reservation attribute
PBS Professional 2020.1.1 Administrator’s Guide AG-633

http://docs.cray.com

Chapter 17 Accounting
17.6.4.1.iv Requirements for CSA

CSA requires CLE 5.2.

CSA requires CSA support Linux kernel modules.

On the supported platforms, the PBS MoM is CSA-enabled. If CSA workload management and user job accounting are
available, PBS can use them.

17.6.4.1.v Configuring MoM for CSA

CSA support is specified in the pbs_accounting_workload_mgmt line in MoM’s Version 1 configuration file.
CSA support is enabled by default; you must explicitly disable it if you want it disabled. If the
pbs_accounting_workload_mgmt line is absent, CSA is still enabled.

To disable CSA support, modify $PBS_HOME/mom_priv/config, by setting
pbs_accounting_workload_mgmt to false, off, or 0.

To enable CSA support, either remove the pbs_accounting_workload_mgmt line, or set it to true, on, or 1.

After modifying the MoM config file, either restart pbs_mom or send it SIGHUP.

17.6.4.1.vi Enabling Kernel CSA Support

In order for CSA user job accounting and workload management accounting requests to be acted on by the kernel, you
need to make sure that the parameters CSA_START and WKMG_START in the /etc/csa.conf configuration file
are set to "on" and that the system reflects this. You can check this by running the command:

csaswitch -c status

To set CSA_START to on , use the command:

csaswitch -c on -n csa

To set WKMG_START to on , use:

csaswitch -c on -n wkmg

Alternatively, you can use the CSA startup script /etc/init.d/csa with the desired argument (on/off); see the sys-
tem's man page for csaswitch and how it is used in the /etc/init.d/csa startup script.

17.6.5 Changing Resource Values Reported in Accounting
Logs

You can use an execution hook to set a value for resources_used, and this value is then recorded in the accounting log.
Bear in mind that by the time an execjob_end hook runs, it’s too late to change the accounting log; it’s already written.

17.7 Options, Attributes, and Parameters Affecting

Accounting

17.7.1 Options to pbs_server Command

-A <accounting file>

Specifies an absolute path name for the file to use as the accounting file. If not specified, the file is named for
the current date in the PBS_HOME/server_priv/accounting directory.

Format: String
AG-634 PBS Professional 2020.1.1 Administrator’s Guide

Accounting Chapter 17
17.7.2 Options to qsub Command

-A <accounting string>

Accounting string associated with the job. Used for labeling accounting data and/or fairshare. Sets job’s
Account_Name attribute to <accounting string>.

Format: String

-W release_nodes_on_stageout=<value>

When set to True, all of the job’s vnodes are released when stageout begins.

Cannot be used with vnodes tied to Cray X* series systems.

When the cgroups hook is enabled and this is used with some but not all vnodes from one MoM, resources on
those vnodes that are part of a cgroup are not released until the entire cgroup is released.

The job’s stageout attribute must be set for the release_nodes_on_stageout attribute to take effect.

17.7.3 Options to qalter Command

-A <new accounting string>

Replaces the accounting string associated with the job. Used for labeling accounting data and/or fairshare. Sets
job’s Account_Name attribute to <new accounting string>. This attribute cannot be altered once the job has
begun execution.

Format: String

-W release_nodes_on_stageout=<value>

When set to True, all of the job’s vnodes are released when stageout begins.

Cannot be used with vnodes tied to Cray X* series systems.

When cgroups is enabled and this is used with some but not all vnodes from one MoM, resources on those
vnodes that are part of a cgroup are not released until the entire cgroup is released.

The job’s stageout attribute must be set for the release_nodes_on_stageout attribute to take effect.

17.7.4 Job Attributes

Account_Name

PBS jobs have an attribute called Account_Name. You can use it however you want; PBS does not interpret it.

PBS does not use this accounting string by default. However, you can tell PBS to use the job’s accounting string
as the owner of the job for fairshare purposes. See section 4.9.19, “Using Fairshare”, on page 138. PBS accepts
the string passed by the shell as is.

Any character is allowed if the string is enclosed in single or double quotes. When you specify this string on the
command line to a PBS utility or in a directive in a PBS job script, escape any embedded white space by enclos-
ing the string in quotes.

You can set the initial value of a job’s Account_Name attribute via the -A <account string> option to
qsub. You can change the value of a job’s Account_Name attribute via the -A <new account string>
option to qalter.

Can be read and set by user, Operator, Manager.

Format: String that can contain any character

Default value: none.

Python attribute value type: str
PBS Professional 2020.1.1 Administrator’s Guide AG-635

Chapter 17 Accounting
accounting_id

Accounting ID for tracking accounting data not produced by PBS. May be used for a CSA job ID or job con-
tainer ID.

Can be read by User, Operator, Manager.

No default value.

Format: String

Python attribute value type: str

alt_id

For a few systems, the session ID is insufficient to track which processes belong to the job. Where a different
identifier is required, it is recorded in this attribute. If set, it is recorded in the end-of-job accounting record.
May contain white spaces.

On Windows, holds PBS home directory.

Can be read by User, Operator, Manager.

No default value.

Format: String

Python attribute value type: str

release_nodes_on_stageout

When set to True, all of the job’s vnodes are released when stageout begins.

Cannot be used with vnodes tied to Cray X* series systems.

When the cgroups hook is enabled and this is used with some but not all vnodes from one MoM, resources on
those vnodes that are part of a cgroup are not released until the entire cgroup is released.

17.7.5 MoM Parameters

$logevent <mask>

Sets the mask that determines which event types are logged by pbs_mom. To include all debug events, use
0xffffffff. See “Log Levels” on page 537 of the PBS Professional Reference Guide.

17.7.5.1 Cray-only MoM Initialization Values

pbs_accounting_workload_mgmt <value>
Controls whether CSA accounting is enabled. Name does not start with dollar sign. If set to “1”, “on”, or
“true”, CSA accounting is enabled. If set to “0”, “off”, or “false”, accounting is disabled.

Default: “true”; enabled.

17.8 Accounting Caveats and Advice

If you use the cgroups hook to manage subsystems and create child vnodes, you get accurate accounting. If not, accuracy
depends on whether or not your MPI is integrated with PBS.

17.8.1 Integrate MPIs for Accurate Accounting

PBS Professional is integrated with several implementations of MPI. When PBS is integrated with an MPI, PBS can
track resource usage, control jobs, clean up job processes, and perform accounting for all of the tasks run under the MPI.
AG-636 PBS Professional 2020.1.1 Administrator’s Guide

Accounting Chapter 17
When PBS is not integrated with an MPI, PBS can track resource usage, clean up processes, and perform accounting only
for processes running on the primary host. This means that accounting and tracking of CPU time and memory aren’t
accurate, and job processes on sister hosts cannot be signaled.

Follow the steps in section 10.1, “Integration with MPI”, on page 445.

17.8.2 MPI Integration under Windows

Under Windows, some MPIs such as MPICH are not integrated with PBS. With non-integrated MPIs, PBS is limited to
tracking resources, signaling jobs, and performing accounting only for job processes on the primary vnode.

17.8.3 Using Hooks for Accounting

17.8.3.1 Use Hooks to Record Job Information

For each job, you can use execjob_prologue, execjob_epilogue, or exechost_periodic hooks to set
resources_used values for custom resources, which are then recorded in the job’s E record.

17.8.3.2 Use Hooks to Manage Job Accounting String

You can use a hook to assign the correct value for each job’s Account_Name attribute. This can be useful both for your
accounting records and if you use the job’s Account_Name attribute as the job’s owner for fairshare. See the PBS Pro-
fessional Hooks Guide and section 4.9.19, “Using Fairshare”, on page 138.
PBS Professional 2020.1.1 Administrator’s Guide AG-637

Chapter 17 Accounting
AG-638 PBS Professional 2020.1.1 Administrator’s Guide

18

Mixed Linux-Windows

Operation

18.1 Introduction to Mixed Linux-Windows

Operation

You can add Windows execution and client hosts to a Linux PBS complex, creating a mixed-mode complex. These Win-
dows hosts must be in an Active Directory domain. Linux systems must use MUNGE rather than reserved-port authenti-
cation, and Windows users must be active directory users. Communication should be encrypted using TLS for improved
security. The server needs to authenticate both Linux and Windows users. We describe how to set up a mixed-mode
complex in this section.

On Windows, MoM automatically sets resources_available.arch to “windows” for the local vnode. Users submitting
Windows jobs can request Windows hosts by specifying “windows” for the arch resource. For example:

qsub -lselect=1:arch=windows ...

Users submitting Windows jobs must cache their passwords at each execution and client host before submitting jobs, and
each time their password changes. Job submitters use the pbs_login command to cache their passwords.

18.1.1 Caveats for Mixed Linux-Windows Operation

• You cannot submit a Linux job from a Windows client

• Group limits are not enforced for Windows jobs; for example, “set queue max_queued_res.ncpus = [g:<group
name> = <limit>]” has no effect

18.2 Configuration

1. Start with a normal working Linux PBS complex. See the PBS Professional Installation & Upgrade Guide.

18.2.1 Configure Authentication

1. Configure MUNGE authentication for Linux clients and pwd for Windows clients.

The default reserved-port (resvport) method is not secure for mixed-mode operation, because Windows does not
have a concept of reserved ports. Follow the instructions in section 8.4, “Authentication for Daemons & Users”, on
page 378. After you have integrated MUNGE, put this in the server’s /etc/pbs.conf file:

PBS_SUPPORTED_AUTH_METHODS=munge, pwd

2. Restart the PBS daemons. On each Linux host:

systemctl restart pbs
PBS Professional 2020.1.1 Administrator’s Guide AG-639

Chapter 18 Mixed Linux-Windows Operation
or

<path to start/stop script> pbs restart

3. Make sure that you can submit jobs and that hooks work.

18.2.2 Windows Hosts and Users in Active Directory Domain

1. Make sure the new Windows execution and client hosts are part of the same Windows Active Directory domain.

2. Make sure that Active Directory Authentication works: verify that the users added to the AD domain can log in to all
the Windows hosts.

18.2.3 Allow Linux Authentication of Windows Active Domain
Users

You can use various methods to allow Linux hosts to authenticate Windows Active Domain users. We show an example
using SSSD here.

1. On the Linux host running the server, and any hosts running extra comms, configure sssd so that the users of the
Windows domain can log in to the Linux host on which pbs_server and sssd run. For an example, see section
8.4.5, “Configuring SSSD”, on page 380. For information on configuring sssd, see https://access.redhat.com/doc-
umentation/en-us/red_hat_enterprise_linux/7/html-single/windows_integration_guide/index#sssd-ad-proc and
https://access.redhat.com/articles/3023951.

If you want the Linux host to automatically create a home directory for an Active Directory user if that home direc-
tory does not exist at login, you may have to set SELinux to permissive mode. This is optional.

2. Verify that sssd is correctly configured.

a. Run the following commands:

id <username>

su - <username>

<password>

b. As a Windows domain user, ssh to the Linux host running sssd

18.2.4 Configure User Authorization

We recommend setting flatuid to False for the PBS complex, so that users need a .rhosts file to enable authorization.
For example, to configure the .rhosts file so that user User1 can submit jobs from submission host Winclient1, make
sure that there is a file named .rhosts in User1’s home directory on the server host, and that this file contains the follow-
ing entry:

Winclient1 User1
AG-640 PBS Professional 2020.1.1 Administrator’s Guide

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/windows_integration_guide/index#sssd-ad-proc
https://access.redhat.com/articles/3023951
https://access.redhat.com/articles/3023951

Mixed Linux-Windows Operation Chapter 18
18.2.5 Install PBS on Windows Hosts

1. Install MoMs on your Windows execution hosts, and install the PBS client commands on your Windows client hosts.
See section 3.7, “Installing PBS on Windows Hosts”, on page 37.

2. Configure the remote file copy mechanism to be used by Windows execution hosts:

• If you will use scp for your remote file copy mechanism, configure passwordless ssh; see section 14.6.7.1,
“Enabling Passwordless Authentication”, on page 555.

• If you will use the $usecp MoM parameter to specify your remote file copy mechanism, you do not need to
configure passwordless ssh, unless it is required by the MPI implementation you are using.

3. Create the parent vnode for each Windows host; see section 3.3.3, “Creating the Parent Vnode”, on page 40:

qmgr -c "create node <name of parent vnode>"

18.2.6 Set Up TLS Encryption

Configure TLS encryption for daemon-daemon communication. For Windows authentication to work securely, we
strongly recommend using TLS encryption in the complex. To set up TLS encryption, we need a CA certificate and TLS
certificate key pair generated from any system with openssl set up. We will use the same key pair on all the server and
comm hosts. For an example of how to configure PBS for TLS encryption, see section 8.5.2.2, “Example of Configuring
PBS for TLS Encryption”, on page 382.

18.3 Troubleshooting Mixed Linux-Windows

Complex

• Job comment contains “failed to Impersonate Logged On User on <hostname>:job has bad password”

The user might not be allowed to log on locally according to the local or global policy settings; MoM is unable to
impersonate the job submitter in order to run the job. Check the Windows policy settings; make sure the user is
allowed to log in to the execution host.

• Failed to send auth request
auth: error returned: 15029

auth: Failed to send auth request

No support for requested service.

cannot connect to server pbsserver3 (errno=15029)

Check whether the server’s PBS_SUPPORTED_AUTH_METHOD parameter includes pwd; add it if not. Restart
the server and try again.

• User not known to the underlying authentication module
auth: error returned: 15019

auth: PAM authentication failed for testuser2 with error: User not known to the underlying
authentication module
PBS Professional 2020.1.1 Administrator’s Guide AG-641

Chapter 18 Mixed Linux-Windows Operation
When this error occurs despite testuser2 existing and giving the correct password, it may be due to SSSD settings.
One reason could be that ‘use_fully_qualified_domain’ is True in the SSSD settings. Change that to False and ver-
ify that the user can log in from the server using the following commands, in our example:

id username:

[pbsadmin@pbsserver3 ~]$ id testuser4

uid=775213102(testuser4) gid=775200513(domain users) groups=775200513(domain users)

su - username:

[pbsadmin@pbsserver3 ~]$ su - testuser2

Password:

Last login: Mon Apr 20 13:40:32 UTC 2020 on pts/1

[testuser2@pbsserver3 ~]$

• Windows MoM fails to register

After installing pbs_mom on Windows and executing win_postinstall.py, even though the postinstall script
completes successfully, the server still shows state of the new Windows vnode as “state-unknown, down”. In the
comm logs there are repeated messages of authentication failure for the service account.

Check for and delete a stale password file named “.pbs_cred.CR” from the home directory of the PBS service
account used to run the Windows MoM.

• Vnode does not go to free state, and the following error message appears in the server logs
init_pam;libpam.so not found

validate_auth_data;Failed to initialize the library

tcp_pre_process;Failed to initialize the library

wait_request;process socket failed

Check whether the pam library is installed. If it is installed, make sure that the PATH variable points to the location
where the library is installed. The library name might be libpam.so.*. In this case, create a soft link to the library as
shown in the example below:

ln -s /usr/lib64/libpam.so.0.83.1 /usr/lib64/libpam.so

• Files fail to stage out using scp.exe from C:\Windows\System32\OpenSSH

With OpenSSH (scp.exe) installed in the C:\Windows\System32 folder, stage out failures are observed as shown:

12/27/2019 00:25:58;0100;PBS_stage_file;Job;11.mixlin;User pbsuser passworded

12/27/2019 00:25:58;0080;PBS_stage_file;Job;sys_copy;CreateProcessAsUser(928, C:/Windows/
System32/OpenSSH-Win64/scp.exe -Brv \PROGRA~2\PBS\home\spool\11.mixlin.OU “pbsuser@mixlin:/
home/pbsuser/STDIN.o11”) under acct pbsuser wdir=C:\Users\pbsuser\Documents\PBS Pro}}

12/27/2019 00:25:58;0080;PBS_stage_file;Fil;sys_copy;command: C:/Windows/System32/OpenSSH-Win64/
scp.exe -Brv C:/PROGRA~2/PBS/home/spool/11.mixlin.OU pbsuser@mixlin:/home/pbsuser/STDIN.o11
status=10002, try=1

This is caused by Windows WOW64 filesystem redirection, since PBS is a 32-bit application. See Microsoft article
https://docs.microsoft.com/en-us/windows/win32/winprog64/file-system-redirector.

Replace “Sysetm32” with “Sysnative” in the PBS_SCP parameter in pbs.conf and restart the PBS_MOM service.
You do not need to move or reinstall OpenSSH from C:\Windows\System32 path.
AG-642 PBS Professional 2020.1.1 Administrator’s Guide

https://docs.microsoft.com/en-us/windows/win32/winprog64/file-system-redirector

https://docs.microsoft.com/en-us/windows/win32/winprog64/file-system-redirector

19

Problem Solving

Additional information is always available online at the PBS website, www.pbsworks.com. The last section in this chap-
ter tells you how to get additional assistance from the PBS Support staff.

19.1 Debugging Tools

19.1.1 Debugging Commands

The following commands will provide helpful debugging information: qstat, tracejob, qmgr, and pbsnodes.

19.1.2 Setting Corefile Size

To set the size of the core file for a PBS daemon, you can set PBS_CORE_LIMIT in pbs.conf. Set this on the
machine where the daemon runs. This can be set to an integer number of bytes or to the string "unlimited". If this is
unset, the limit is inherited from the shell environment, which you can check via uname -c.

19.1.3 Using the debuginfo RPM Package

PBS is shipped with debuginfo package(s). When you unzip the PBS product download package the debuginfo pack-
age(s) can be found alongside the other PBS packages containing the server etc.

Normally, you do not need to install any debuginfo package(s). You only need to install the debuginfo package(s) when
the support team recommends doing so to aid in diagnosing a problem. The contents of the debuginfo package files are
automatically installed in the default location for your Linux distribution, typically under /usr/lib/debug and /usr/
src/debug.

The debuginfo package(s) names are platform-dependent. When you install a debuginfo package, nothing additional is
installed in PBS_HOME or PBS_EXEC.

19.1.4 Sending Daemon Execution Recordings to Altair

Altair support can analyze recordings of daemon execution in order to diagnose a problem. If support asks you to create
recordings, you can use Undo Live Recorder to capture execution recordings of the server, scheduler(s), MoM(s), or
comm(s), then send them to Altair support.

To trigger a daemon to begin or end recording, send it a SIGUSR1:

kill SIGUSR1 <daemon PID>

The scheduler starts or stops recording only when a scheduling cycle is triggered.

Each daemon writes its recordings in the directory specified in the PBS_LR_SAVE_PATH parameter in its /etc/
pbs.conf file. This path defaults to $PBS_HOME/spool, which is created automatically at install time. You can specify
the directory where each daemon writes its recordings; if you change the value of PBS_LR_SAVE_PATH, you need to
HUP the daemon so that it rereads its configuration file, and creates the new directory.

The filename for each recording is <daemon name>_<yymmddHHMM>.undo
PBS Professional 2020.1.1 Administrator’s Guide AG-643

https://undo.io/solutions/products/live-recorder/

Chapter 19 Problem Solving
For example, on November 28, 2020, at 8:14 a.m., a server named Server@examplehost will write a record named
“Server@examplehost_202011280814.undo”.

When a daemon starts or stops a recording, it writes a log message at log level LOG_INFO. The message contains the
date and time, the daemon name, whether the recording was started or stopped, and the filename of the recording.

Contact information is available at www.altair.com and in "Technical Support” on page iii.

19.1.4.1 Caveats and Restrictions

Using Undo Live Recorder is supported on Linux on x86_64 platforms only.

19.1.5 Finding PBS Version Information

Use the qstat command to find out what version of PBS Professional you have.

qstat -fB

In addition, each PBS command will print its version information if given the --version option. This option cannot
be used with other options.

19.1.6 Troubleshooting and Hooks

PBS is shipped with tools for debugging hooks. See "Debugging Hooks", on page 159 of the PBS Professional Hooks
Guide.

You may wish to disable hook execution in order to debug PBS issues. To verify whether hooks are part of the problem,
disable each hook by setting its enabled attribute to False.

19.2 Security and Permissions Problems

19.2.1 Directory Permission Problems

If for some reason the access permissions on the PBS file tree are changed from their default settings, a component of the
PBS system may detect this as a security violation, and refuse to execute. If this is the case, an error message to this effect
will be written to the corresponding log file. You can run the pbs_probe command to check (and optionally correct)
any directory permission (or ownership) problems. See “pbs_probe” on page 81 of the PBS Professional Reference
Guide for details on usage of the pbs_probe command.

19.2.1.1 Correcting Permissions Problems on Linux

You can use the pbs_probe command to detect and repair file and directory permissions problems. You can run
pbs_probe in report mode or fix mode; in report mode, it reports the errors found; in fix mode, it attempts to fix
detected problems, and reports any problems it could not fix.

To fix permissions errors, log into the host you wish to check, and run the following command:

pbs_probe -f

See the pbs_probe(8B) manual page.
AG-644 PBS Professional 2020.1.1 Administrator’s Guide

https://www.altair.com

Problem Solving Chapter 19
19.2.1.2 Correcting Permissions Problems on Windows

You can use the pbs_mkdirs command to correct file and directory permissions problems on Windows. The com-
mand checks and if necessary repairs the permissions of configuration files such as pbs_environment and
mom_priv/config. You should run the pbs_mkdirs command only while the PBS MoMs are stopped.

To repair permissions on an execution host, log into the host and run the following commands:

net stop pbs_mom

pbs_mkdirs mom

net start pbs_mom

19.3 Troubleshooting Jobs

19.3.1 Job Held Due to Invalid Password

If a job fails to run due to an invalid password, then the job is held with hold type p (bad password), its comment field
updated with why it failed, and an email is sent to the owner for remedy action. Root or administrator can release the
hold via qrls. See “qhold” on page 147 of the PBS Professional Reference Guide and “qrls” on page 180 of the PBS Pro-
fessional Reference Guide.

19.3.2 Requeueing a Job Stuck on a Down Vnode

PBS Professional will detect if a vnode fails when a job is running on it, and will automatically requeue and schedule the
job to run elsewhere. If the user marked the job as “not rerunnable” (i.e. via the qsub -r n option), then the job will be
deleted rather than requeued. If the affected vnode is on the primary execution host, the requeue will occur quickly. If it
is another vnode in the set assigned to the job, it could take a few minutes before PBS takes action to requeue or delete
the job. However, if the auto-requeue feature is not enabled, or if you wish to act immediately, you can manually force
the requeueing and/or rerunning of the job. See section 9.6.2, “Node Fail Requeue: Jobs on Failed Vnodes”, on page
437.

If you wish to have PBS simply remove the job from the system, use the “-Wforce” option to qdel:

qdel -Wforce <job ID>
If instead you want PBS to requeue the job, and have it immediately eligible to run again, use the “-Wforce” option to
qrerun

qrerun -Wforce <job ID>
See "Job Input & Output Files", on page 31 of the PBS Professional User’s Guide.

19.3.3 Job Cannot be Executed

If a user receives a mail message containing a job ID and the line “Job cannot be executed”, the job was aborted by MoM
when she tried to place it into execution. The complete reason can be found in one of two places, MoM’s log file or the
standard error file of the user’s job. If the second line of the message is “See Administrator for help”, then MoM aborted
the job before the job’s files were set up. The reason will be noted in MoM’s log. Typical reasons are a bad user/group
account, checkpoint/restart file, or a system error. If the second line of the message is “See job standard error file”, then
MoM had created the job’s file and additional messages were written to standard error. This is typically the result of a bad
resource request.
PBS Professional 2020.1.1 Administrator’s Guide AG-645

Chapter 19 Problem Solving
19.3.4 Running Jobs with No Active Processes

On very rare occasions, PBS may be in a situation where a job is in the Running state but has no active processes. This
should never happen as the death of the job’s shell should trigger MoM to notify the server that the job exited and end-of-
job processing should begin. If this situation is noted, PBS offers a way out. Use the qsig command to send SIGNULL,
signal 0, to the job. If MoM finds there are no processes then she will force the job into the exiting state. See “qsig” on
page 192 of the PBS Professional Reference Guide.

19.3.5 Jobs that Can Never Run

If backfilling is being used, the scheduler looks at the job being backfilled around and determines whether that job can
never run.

If backfilling is being used, the scheduler determines whether that job can or cannot run now, and if it can't run now,
whether it can ever run. If the job can never run, the scheduler logs a message saying so.

The scheduler only considers the job being backfilled around. That is the only job for which it will log a message saying
the job can never run.

This means that a job that can never run will sit in the queue until it becomes the most deserving job. Whenever this job
is considered for having small jobs backfilled around it, the error message “resource request is impossible to solve: job
will never run” is printed in the scheduler’s log file. If backfilling is not being used, this message will not appear.

If backfilling is not being used, the scheduler determines only whether that job can or cannot run now. The scheduler
won't determine if a job will ever run or not.

19.3.6 Job Comments for Problem Jobs

PBS can detect when a job cannot run with the current unused resources and when a job will never be able to run with all
of the configured resources. PBS can set the job’s comment attribute to reflect why the job is not running.

If the job’s comment starts with “Can never run”, the job will never be able to run with the resources that are currently
configured. This can happen when:

• A job requests more of a consumable resource than is available on the entire complex

• A job requests a non-consumable resource that is not available on the complex

For example, if there are 128 total CPUs in the complex, and the job requests 256 CPUs, the job’s comment will start
with this message.

If the job’s comment starts with “Not running”, the job cannot run with the resources that are currently available. For
example, if a job requests 8 CPUs and the complex has 16 CPUs but 12 are in use, the job’s comment will start with this
message.

You may see the following comments. R is for “Requested”, A is for “Available”, and T is for “Total”:

“Not enough free nodes available”

“Not enough total nodes available”

“Job will never run with the resources currently configured in the complex”

“Insufficient amount of server resource <resource name> (R | A | T | <requested value>
!=<available values for requested resource>)

“Insufficient amount of queue resource <resource name> (R | A | T | <requested value> !=<available
values for requested resource>)

“Error in calculation of start time of top job”

“Can't find start time estimate”
AG-646 PBS Professional 2020.1.1 Administrator’s Guide

Problem Solving Chapter 19
The “Can Never Run” prefix may be seen with the following messages:

“Insufficient amount of resource <resource name> (R | A | T | <requested value> !=<available
values for requested resource>)”

“Insufficient amount of Server resource <resource name> (R | A | T | <requested value>
!=<available values for requested resource>)”

“Insufficient amount of Queue resource <resource name> (R | A | T | <requested value> !=<available
values for requested resource>)”

“Not enough total nodes available”

“can't fit in the largest placement set, and can't span psets”

19.3.7 Bad UID for Job Execution

For a job to be accepted by the PBS server, the user at the submitting host must pass an ruserok() test.

From the RCMD(3) man page:

The iruserok() and ruserok() functions take a remote host's IP address or name, respectively, two user names
and a flag indicating whether the local user's name is that of the superuser. Then, if the user is NOT the superuser, it
checks the /etc/hosts.equiv file. If that lookup is not done, or is unsuccessful, the .rhosts in the local user's home
directory is checked to see if the request for service is allowed.

If this file does not exist, is not a regular file, is owned by anyone other than the user or the superuser, or is writable by
anyone other than the owner, the check automatically fails. Zero is returned if the machine name is listed in the
hosts.equiv file, or the host and remote user name are found in the .rhosts file; otherwise iruserok() and ruserok()
return -1. If the local domain (as obtained from gethostname(2)) is the same as the remote domain, only the
machine name need be specified.

If the server attribute flatuid is set to true, this test is skipped and the job is accepted based on the submitting users name
alone (with obvious security implications).

You can run the following command:

Qmgr: set server flatuid=true

Flatuid or not, to run as a user other than the job owner (the submitter) you must have authorization to do so. Otherwise,
any user could run a job as any other user. You authorize for userA to run a job as userB the same way you authorize
userA@host1 to run a job as userA on host2 when flatuid is Not SET, i.e. see .ruserok() and .rhosts.

Here is a test program to see if ruserok passes for a given user and host. There are two use cases:

• User submitting job from remote host to server getting unexpected "Bad UID" message. That is, user doesn't have
access when he thinks he should.

• User(s) can delete, etc other user(s) jobs. That is, one user is able to act as what he thinks is a different user, server
sees them as being equivalent.

Build this with "cc ruserok.c -o ruserok"

Usage (run on the PBS server system):

ruserok remote_host remote_user1 local_user2
PBS Professional 2020.1.1 Administrator’s Guide AG-647

Chapter 19 Problem Solving
where:

remote_host: the host from which the job is being submitted, or where the PBS client command is issued

remote_user1: the username of the user submitting the job, or issuing the client command

loca_user2: the username of the user remote_user1 is trying to submit the job as, or owner of the job that
remote_user1 is trying to act on with the client command

#include <errno.h>

#include <stdio.h>

#include <unistd.h>

int main(int argc, char *argv[])

{

int rc;

char hn[257];

if (argc != 4)

{ fprintf(stderr, "Usage: %s remote_host remote_user1 local_user2\n", argv[0]); return 1;
}

if (gethostname(hn, 256) < 0)

{ perror("unable to get hostname"); return 2; }

hn[256] = '\0';

printf("on local host %s, from remote host %s\n", hn, argv[1]);

rc = ruserok(argv[1], 0, argv[2], argv[3]);

if (rc == 0)

printf("remote user %s is allowed access as local user %s\n", argv[2], argv[3]);

else

printf("remote user %s is denied access as local user %s\n", argv[2], argv[3]);

return 0;

}

19.3.8 Windows: Bad UID for Job Execution

If, when attempting to submit a job to a remote server, qsub reports:

BAD uid for job execution

Then you need to add an entry in the remote system's .rhosts or hosts.equiv pointing to your Windows machine.
Be sure to put in all hostnames that resolve to your machine. See section 2.3.6, “User Authorization Under Windows”,
on page 15.

If remote account maps to an Administrator-type account, then you need to set up a .rhosts entry, and the remote
server must carry the account on its acl_roots list.

19.3.9 New Jobs Not Running

If PBS loses contact with the Altair License Server, any jobs currently running will not be interrupted or killed. The PBS
server will continually attempt to reconnect to the license server, and re-license the assigned vnodes once the contact to
the license server is restored.

No new jobs will run if PBS server loses contact with the ALM license server.
AG-648 PBS Professional 2020.1.1 Administrator’s Guide

Problem Solving Chapter 19
19.3.10 Job Stuck in Exiting State

A job can be stuck in the Exiting state if the user submits the job from a directory where the user does not have write
access. You can forcefully delete the job:

19.3.10.1 qdel -Wforce <job ID>

19.4 Troubleshooting Daemons

19.4.1 Server Host Bogs Down After Startup

If the server host becomes unresponsive a short time after startup, the server may be trying to contact the wrong license
server.

19.4.1.1 Symptoms

15 seconds to one or two minutes after you start the PBS server, the system becomes unresponsive.

19.4.1.2 Problem

The problem may be caused by the pbs_license_info server attribute pointing to an old FLEX license server. This
attribute should point to the new ALM license server. See the PBS Works Licensing Guide.

19.4.1.3 Treatment

On some Linux systems, the effects of memory starvation on subsequent responsiveness may be long-lasting. Therefore,
instead of merely killing and restarting the PBS server, we recommend rebooting the machine.

Take the following steps:

1. Reboot the machine into single-user mode.

2. Determine the correct value for pbs_license_info and set the PBS_LICENSE_INFO entry in pbs.conf to this
value.

3. Reboot, or change runlevel to multi-user.

4. Using qmgr, set the pbs_license_info server attribute to the correct value:

qmgr -c "set server pbs_license_info = <port>@<license server hostname>"

qmgr -c "set server scheduling= true"

5. Stop the PBS server process.

6. Continue normally.

19.4.2 Server Does Not Start

The server may not start due to problems with the data service. Call PBS technical support; see "Technical Support” on
page iii. For more on the PBS data service, see “pbs_dataservice” on page 60 of the PBS Professional Reference Guide.
PBS Professional 2020.1.1 Administrator’s Guide AG-649

Chapter 19 Problem Solving
19.4.3 Primary Server Periodically Restarting

If the primary server keeps restarting, an unknown secondary server may be contacting it. This can happen when
PBS_PRIMARY and PBS_SECONDARY are missing from pbs.conf, but a secondary server has been started.

19.4.4 PBS Data Service Does Not Start

• You may need to create the data service management account. This must be creating before installing PBS. See
“Create PBS Data Service Management Account” on page 23 in the PBS Professional Installation & Upgrade Guide.

• If you see an error message saying “PBS data service is running on another host - cannot start”, there may be a prob-
lem with the lock file in $PBS_HOME/dataservice/pbs_dblock:

• Problem during failover between two hosts, where the primary host still has a lock on the file

• Ungraceful shutdown, where the primary host has an incorrectly, still-locked, lock file; look at the primary
server host.

• File system issues that interfere with the locking, unlocking, and/or access, of the lock file.

19.4.5 Server Dies Inexplicably

Check the data service. When the data service dies, the server automatically goes down too.

19.4.6 Data Service Running When PBS Server is Down

You can use the pbs_dataservice command to stop the data service. See “pbs_dataservice” on page 60 of the PBS
Professional Reference Guide.

19.4.7 Scheduler Cannot Reliably Contact Server

If you see a series of 15031 errors, this can happen when PBS_PRIMARY and PBS_SECONDARY are missing from
pbs.conf, but a secondary server has been started.

19.4.8 PBS Daemon Will Not Start

If the PBS server, MoM, or scheduler fails to start up, it may be refusing to start because it has detected permissions
problems in its directories or on one or more of its configuration files, such as pbs_environment or mom_priv/
config.

19.4.9 Troubleshooting Windows Daemon Problems

19.4.9.1 Windows: MoMs Do Not Start

• In the case where the PBS daemons, the Active Directory database, and the domain controller are all on the same
host, some PBS MoMs may not start up immediately. If the Active Directory services are not running when the PBS
MoMs are started, the MoMs won’t be able to talk to the domain controller. This can prevent the PBS MoMs from
starting. As a workaround, wait until the host is completely up, then retry starting the failing MoM.
AG-650 PBS Professional 2020.1.1 Administrator’s Guide

Problem Solving Chapter 19
Example:

net start pbs_mom

• In a domained environment, if the PBS service account is a member of any group besides “Domain Users”, the
install program will fail to add the PBS service account to the local Administrators group on the install host. Make
sure that the PBS service account is a member of only one group, “Domain Users” in a domained environment.

• If the MoM fails to start up because of permission problems on some of its configuration files like
pbs_environment or mom_priv/config, then correct the permission by running:
pbs_mkdirs mom

19.5 Troubleshooting Vnodes

19.5.1 Vnodes Down

The PBS server determines the state of hosts (up or down), by communicating with MoM on the host. The state of
vnodes may be listed by two commands: qmgr and pbsnodes

Qmgr: list node @active

pbsnodes -a

Node jupiter state = state-unknown, down

A vnode in PBS may be marked “down” in one of two substates. For example, the state above of vnode “jupiter” shows
that the server has not had contact with MoM since the server came up. Check to see if a MoM is running on the vnode.
If there is a MoM and if the MoM was just started, the server may have attempted to poll her before she was up. The
server should see her during the next polling cycle in 10 minutes. If the vnode is still marked “state-unknown, down”
after 10+ minutes, either the vnode name specified in the server’s node file does not map to the real network hostname or
there is a network problem between the server host and the vnode.

If the vnode is listed as:

pbsnodes -a

Node jupiter state = down

then the server has been able to ping MoM on the vnode in the past, but she has not responded recently. The server will
send a “ping” PBS message to every free vnode each ping cycle, 10 minutes. If a vnode does not acknowledge the ping
before the next cycle, the server will mark the vnode down.

19.5.2 Bad Vnode on Startup

If, when the server starts up, one or more vnodes cannot be resolved, the server marks the bad vnode(s) in state “state-

unknown, down”.

19.6 Troubleshooting Client Commands

19.6.1 Windows: Client Commands Slow

PBS caches the IP address of the local host, and uses this to communicate between the daemons. If the cached IP address
is invalidated, PBS can become slow. In both scenarios, jobs must be killed and restarted.
PBS Professional 2020.1.1 Administrator’s Guide AG-651

Chapter 19 Problem Solving
19.6.1.1 Scenario: Wireless Router, DHCP Enabled

The system is connected to a wireless router that has DHCP enabled. DHCP returned a new IP address for the server
short name, but DNS is resolving the server full name to a different IP address.

The IP address and server full name have become invalid due to the new DHCP address. PBS has cached the IP address
of the server full name.

Therefore, the PBS server times out when trying to connect to the scheduler and local MoM using the previously cached
IP address. This makes PBS slow.

Symptom:

1. PBS is slow.

a. Server logs show "Could not contact scheduler".

b. pbsnodes -a shows that the local node is down.

2. First IP addresses returned below don't match:

cmd.admin> pbs_hostn -v <server_short_name>

cmd.admin> pbs_hostn -v <server_full_name>

Workaround: cache the correct new IP address of the local server host.

1. Add the address returned by pbs_hostn -v <server_short_name> (normally the DHCP address) to
%WINDIR%\system32\drivers\etc\hosts file as follows:
<DHCP address> <server_full_name> <server_short_name>

2. Restart the MoM:

cmd.admin> net stop pbs_mom

cmd.admin> net start pbs_mom

19.6.2 Windows: qstat Errors

If the qstat command produces an error such as:

illegally formed job identifier.

This means that the DNS lookup is not working properly, or reverse lookup is failing. Use the following command to ver-
ify DNS reverse lookup is working

pbs_hostn -v hostname

If however, qstat reports “No Permission”, then check pbs.conf, and look for the entry “PBS_EXEC”. qstat (in
fact all the PBS commands) will execute the command “PBS_EXEC\sbin\pbs_iff” to do its authentication. Ensure
that the path specified in pbs.conf is correct.

19.6.3 Clients Unable to Contact Server

If a client command (such as qstat or qmgr) is unable to connect to a server there are several possibilities to check. If
the error return is 15034, “No server to connect to”, check (1) that there is indeed a server running and (2) that the default
server information is set correctly. The client commands will attempt to connect to the server specified on the command
line if given, or if not given, the server specified by SERVER_NAME in pbs.conf.

If the error return is 15007, “No permission”, check for (2) as above. Also check that the executable pbs_iff is
located in the search path for the client and that it is setuid root. Additionally, try running pbs_iff by typing:

pbs_iff -t server_host 15001
AG-652 PBS Professional 2020.1.1 Administrator’s Guide

Problem Solving Chapter 19
Where server_host is the name of the host on which the server is running and 15001 is the port to which the server
is listening (if started with a different port number, use that number instead of 15001). Check for an error message and/
or a non-zero exit status. If pbs_iff exits with a non-zero status, either the server is not running or was installed with a
different encryption system than was pbs_iff.

19.7 Troubleshooting PBS Licenses

19.7.1 Wrong License Server: Out of Memory

If you run out of memory shortly after startup, the server may be looking for the wrong license server. See section
19.4.1, “Server Host Bogs Down After Startup”, on page 649.

19.7.2 Unable to Connect to License Server

If PBS cannot contact the license server, the server will log a message:

“Unable to connect to license server at pbs_license_info=...”

If the license server location is incorrectly initialized (e.g. if the host name or port number is incorrect), PBS may not be
able to pinpoint the misconfiguration as the cause of the failure to reach a license server.

If PBS cannot detect a license server host and port when it starts up, the server logs an error message:

“Did not find a license server host and port (pbs_license_info=<X>). No external license server
will be contacted”

19.7.3 Insufficient Minimum Licenses

If the PBS server cannot get the number of licenses specified in pbs_license_min from the license server, the server will
log a message:

"checked-out only <X> CPU licenses instead of pbs_license_min=<Y> from license server at host <H>,
port <P>. Will try to get more later."

19.7.4 Wrong Type of License

If the PBS server encounters a proprietary license key that is of the wrong type, the server will log the following mes-
sage:

“license key #1 is invalid: invalid type or version".

19.8 Crash Recovery

PBS daemons could terminate unexpectedly either because the host machine stops running or because the daemon itself
stops running. The daemon may be killed by mistake, or may (rarely) crash. The server may terminate if the filesystem
runs out of space.

19.8.1 Recovery When Host Machine Stops

If the host machine stops running, no special steps are required, since PBS will be started when the machine starts.
PBS Professional 2020.1.1 Administrator’s Guide AG-653

Chapter 19 Problem Solving
19.8.1.1 Execution Host Stops

If the host machine is an execution host, any jobs that were running on that host were terminated when the machine
stopped, and when MoM is restarted, she will report to the server that those jobs are dead, and begin normal activity. The
server will automatically restart any jobs that can be restarted.

Shutting down one host of a multi-host job will cause that job to be killed. The job will have to be rerun; restarting the
MoM on the stopped host with the -p option will not help the job. See “pbs_mom” on page 71 of the PBS Professional
Reference Guide.

19.8.1.2 Server/scheduler/communication Host Stops

If the host machine is the server/scheduler/communication host, no data is lost and no jobs are lost, because the server
writes everything to disk. The server is restarted automatically upon machine startup.

The scheduler is started automatically upon machine startup. The scheduler starts fresh each cycle, so it does not lose
data.

19.8.2 Recovery When Daemon Stops

For more detailed information on starting and stopping PBS, see “Starting & Stopping PBS on Linux” on page 159 in the
PBS Professional Installation & Upgrade Guide.

19.9 Other Troubleshooting

19.9.1 Problem With Dynamic Resource

If you need to debug a dynamic resource being supplied by an external script, it may help to follow these steps:

1. Set the scheduler’s log_events parameter to 4095 (everything is logged)
qmgr -c "set sched <scheduler name> log_events = 4095"

2. Send a SIGHUP to the scheduler (pbs_sched)

3. The scheduler log will contain the value the scheduler reads from the external script

19.9.2 Cannot Create Formula or Hook

You must run qmgr at the server host when operating on the server’s job_sort_formula attribute or on hooks. For exam-
ple, attempting to create the formula at another host will result in the following error:

qmgr obj= svr=default: Unauthorized Request job_sort_formula
AG-654 PBS Professional 2020.1.1 Administrator’s Guide

Problem Solving Chapter 19
19.9.3 Windows: PBS Cannot Locate Configuration File

If PBS is installed on a hard drive other than C:, it may not be able to locate the pbs.conf global configuration file. If
this is the case, PBS will report the following message:

E:\Program Files\PBS\exec\bin>qstat -

pbsconf error: pbs conf variables not found:

PBS_HOME PBS_EXEC

No such file or directory

qstat: cannot connect to server UNKNOWN (errno=0)

To correct this problem, set PBS_CONF_FILE to point pbs.conf to the right path. Normally, during PBS Windows
installation, this would be set in system autoexec.bat which will be read after the Windows system has been
restarted. Thus, after PBS Windows installation completes, be sure to reboot the Windows system in order for this vari-
able to be read correctly.

19.9.4 Filesystem Runs Out of Space

If your filesystem has run out of space, the server may experience errors or may crash. If the server is still running, you
need only to free up enough space. If the server has crashed, you must restart it. See “Server: Starting, Stopping,
Restarting” on page 163 in the PBS Professional Installation & Upgrade Guide.

19.9.5 Unrecognized Timezone Variable

Problem: you see this message:

pbs_rsub: Bad time specification(s)

Reason: The time zone is not specified correctly in PBS_TZID. On later Linux updates, the system's zoneinfo files may
have some countries represented under different names from those in previous releases. For example, Asia/Calcutta has
been replaced by Asia/Kolkata.

In order to create reservations, the PBS server must recognized the PBS_TZID environment variable at the submission
host. The appropriate zone location for the submission host can be obtained from the machine on which the PBS Profes-
sional server is installed.

• On Linux platforms, either use the tzselect command, if it is available, or look in the underlying operating sys-
tem's zone.tab timezone location file, which may be found under /usr/share/zoneinfo/zone.tab.
While the PBS server is running and can contact the execution machine, use the Linux tzselect utility to deter-
mine the value for PBS_TZID.

• On all other platforms, look in the list of libical supported zoneinfo locations available under $PBS_EXEC/lib/
ical/zoneinfo/zones.tab.

19.10 Getting Help

If the material in the PBS manuals is unable to help you solve a particular problem, you may need to contact the PBS
Support Team for assistance. The PBS Professional support team can be reached directly via email and phone; contact
information is on the inside front cover of each manual.
PBS Professional 2020.1.1 Administrator’s Guide AG-655

Chapter 19 Problem Solving
AG-656 PBS Professional 2020.1.1 Administrator’s Guide

Index

$alps_release_jitter AG-468
$alps_release_wait_time AG-469
$logevent MoM parameter AG-536
$restrict_user AG-384
$restrict_user_exceptions AG-384
$restrict_user_maxsysid AG-384
.rhosts AG-375

A
accelerator AG-466
accelerator_memory AG-466
accelerator_model AG-466
access

by group AG-362
by user AG-362

effect of flatuid AG-375
control lists AG-362
from host AG-362
to a queue AG-362
to a reservation AG-362
to server AG-362

accounting
account AG-608, AG-613
alt_id AG-608, AG-613
authorized_hosts AG-606
authorized_users AG-606
ctime AG-606, AG-607, AG-608, AG-610, AG-613,

AG-614, AG-615, AG-616
duration AG-606
end AG-606, AG-608, AG-614
etime AG-607, AG-609, AG-610, AG-613, AG-614,

AG-615, AG-616
Exit_status AG-609, AG-614
group AG-607, AG-609, AG-610, AG-613, AG-614,

AG-615, AG-617
jobname AG-607, AG-609, AG-613, AG-614,

AG-615, AG-617
name AG-606
owner AG-606
qtime AG-607, AG-609, AG-610, AG-613, AG-614,

AG-615, AG-617
queue AG-606, AG-607, AG-609, AG-610, AG-613,

AG-614, AG-615, AG-617
Resource_List AG-606, AG-607, AG-609, AG-610,

AG-613, AG-614, AG-615, AG-617
session AG-607, AG-610, AG-611, AG-614,

AG-616, AG-617
start AG-606, AG-607, AG-610, AG-611, AG-614,

AG-616, AG-617
user AG-607, AG-610, AG-611, AG-613, AG-614,

AG-616, AG-617
accounting_id AG-608, AG-613
acl_group_enable

queue attribute AG-370
acl_groups

queue attribute AG-370
acl_host_enable

queue attribute AG-370
server attribute AG-370

acl_hosts
queue attribute AG-370
server attribute AG-370

acl_roots AG-387
acl_user_enable

queue attribute AG-370
server attribute AG-370

acl_users
queue attribute AG-370
server attribute AG-370

ACLs AG-362
default behavior AG-363
format AG-363
group AG-364
host AG-364
matching entry AG-365
modifying behavior AG-363
overrides AG-375
removing entity AG-367
rules for creating AG-367
user AG-364
who can create AG-368

activate a power profile AG-319
advance reservation AG-198, AG-606
aggressive_provision AG-329
AOE AG-327
aoe resource

defining AG-336
application license

floating AG-276
definition AG-231

floating externally-managed AG-276
PBS Professional 2020.1 Administrator’s Guide AG-657

Index
application licenses AG-274
floating license PBS-managed AG-277
license units and features AG-275
overview AG-257
per-host node-locked example AG-279
types AG-274

ASAP reservation AG-198
Authorized_Groups reservation attribute AG-371
Authorized_Hosts reservation attribute AG-371
Authorized_Users reservation attribute AG-371
average CPU usage enforcement AG-307
average_cpufactor AG-307
average_percent_over AG-307
average_trialperiod AG-307
avoid_provision AG-329

B
backfill_prime AG-195
basic fairshare AG-139
batch requests AG-536
Boolean

format AG-237
borrowing vnode AG-230, AG-271
built-in resource AG-231

C
checkpoint AG-606, AG-641

preemption via AG-188
chunk AG-231
clienthost AG-384
configuration

server AG-19
consumable resource AG-231
CPU AG-231
cpuaverage AG-307
cput AG-141
cray_compute AG-475
creating queues AG-22
creation of provisioning hooks AG-338
csaswitch AG-484, AG-630
current_aoe AG-336
current_eoe AG-322
custom resource AG-231

custom resources
application licenses AG-274

floating managed by PBS AG-277
overview AG-257
per-host node-locked AG-279
types AG-274

how to use AG-255
scratch space

overview AG-257
static host-level AG-270
static server-level AG-268

cycle harvesting
ideal_load AG-123
max_load AG-123

D
deactivate a power profile AG-319
debuginfo AG-639
decay AG-142
dedicated time AG-125
defining aoe resource AG-336
defining provisioning policy AG-339
defining resources

multi-vnode machines AG-272
degraded reservation AG-198
department AG-139
DIS AG-528
DNS AG-648
do_not_span_psets AG-467
dynamic fit AG-169
dynamic resource scripts/programs AG-265

E
egroup AG-139

euser AG-139
eligible wait time AG-126
eligible_time AG-127, AG-129, AG-608, AG-614
energy AG-322
eoe AG-315, AG-322
euser AG-139
exec_host AG-606
exiting AG-127
express_queue AG-184

F
fair_share

scheduler parameter AG-138
fairshare AG-138, AG-184
fairshare entities AG-139
fairshare ID AG-140
fairshare_perc AG-151
files

pbs.conf AG-648
AG-658 PBS Professional 2020.1 Administrator’s Guide

Index
finished jobs AG-517
flatuid server attribute AG-375
float

format AG-237
floating license

definition AG-231
example AG-276
example of externally-managed AG-276

format
Boolean AG-237
float AG-237
size AG-238
string resource value AG-238, AG-243
string_array AG-238, AG-244

G
gethostname AG-384
global resource AG-231
Globus AG-19
group

access AG-362
ACLs AG-364
limit AG-231, AG-289

generic AG-289
individual AG-289

H
hbm_cache_pct AG-476
hbmem AG-475
help, getting AG-651
high-bandwidth memory AG-476
history jobs AG-518
hooks

creation of provisioning AG-338
provisioning AG-327

host
access AG-362
ACLs AG-364

hosts.equiv AG-375
HUP MoMs AG-475
hyperthreading AG-482

I
ideal_load

cycle harvesting AG-123
indirect resource AG-231, AG-271
ineligible_time AG-127
InfiniBand AG-458
initial_time AG-127
instance AG-198
instance of a standing reservation AG-198

J
job history AG-517

changing settings AG-519
configuring AG-518
enabling AG-518
setting duration AG-519

job that can never run AG-642
job-specific ASAP reservation AG-198
job-specific now reservation AG-198
job-specific reservation AG-198
job-specific start reservation AG-198

L
last_state_change_time

vnode attribute AG-323
last_used_time

vnode attribute AG-323
license

application
floating AG-276

floating
definition AG-231

limit AG-232, AG-288
attributes AG-294
cput AG-305
file size AG-305
generic group limit AG-231, AG-289
generic project limit AG-289
generic user limit AG-231, AG-289
group limit AG-231, AG-289
individual group limit AG-232, AG-289
individual project limit AG-289
individual user limit AG-232, AG-289
overall AG-232, AG-289
pcput AG-305
pmem AG-305
project limit AG-289
pvmem AG-305
user limit AG-232, AG-289
walltime AG-305

limits
generic and individual AG-292
group AG-287
overall limits AG-292
project AG-287
resource usage AG-287
scope AG-290
setting limits AG-296
user AG-287

load_balancing AG-121
local resource AG-232
PBS Professional 2020.1 Administrator’s Guide AG-659

Index
log events
MoM AG-536
scheduler AG-536
server AG-536

log levels AG-535
log_events

server attribute AG-536

M
maintenance reservation AG-198
Manager

privilege AG-361
managers server attribute AG-361
managing vnode AG-232, AG-271
master provisioning script AG-327, AG-337
master script AG-327, AG-337
matching ACL entry AG-365
max_concurrent_provision AG-339
max_group_res AG-303
max_group_run AG-303
max_group_run_soft AG-303
max_load

cycle harvesting AG-123
max_queuable AG-303
max_queued AG-295
max_queued_res AG-295
max_run AG-294
max_run_res AG-295
max_run_res_soft AG-295
max_run_soft AG-294
max_running AG-303
max_user_res AG-303
max_user_res_soft AG-303
max_user_run AG-303
max_user_run_soft AG-303
max_walltime AG-215
memory

high-bandwidth AG-476
memory-only vnode AG-232
min_walltime AG-215
minimizing power cycles AG-320
MoM

log events AG-536
MPI_USE_IB AG-458
mpiexec AG-457
multihost placement sets AG-170
MUNGE AG-378

N
naccelerators AG-466
natural vnode AG-38
node_idle_limit

server attribute AG-323

nodes
NUMA AG-476
Xeon Phi AG-475

non-consumable resource AG-232
nonprimetime_prefix AG-195
normal_jobs AG-184
NUMA nodes AG-476
numa_cfg AG-476

O
Operator

privilege AG-360
operators server attribute AG-361
opt_backfill_fuzzy AG-109
output plugin AG-318
overall limit AG-232, AG-289

P
password

invalid AG-641
pbs.conf AG-319, AG-648
pbs_accounting_workload_mgmt AG-483, AG-629
PBS_AUTH_METHOD AG-528
PBS_BATCH_SERVICE_PORT AG-528
PBS_BATCH_SERVICE_PORT_DIS AG-528
PBS_COMM_LOG_EVENTS AG-528
PBS_COMM_ROUTERS AG-528
PBS_COMM_THREADS AG-528
PBS_CONF_REMOTE_VIEWER AG-528
PBS_CONF_SYSLOG AG-532, AG-541
PBS_CONF_SYSLOGSEVR AG-532, AG-541
PBS_CORE_LIMIT AG-528
PBS_DATA_SERVICE_PORT AG-528
PBS_ENCRYPT_METHOD AG-529
PBS_ENVIRONMENT AG-529
PBS_EXEC AG-402, AG-529
PBS_HOME AG-402, AG-529
pbs_iff AG-648
PBS_LEAF_NAME AG-529
PBS_LEAF_ROUTERS AG-529
PBS_LOCALLOG AG-529, AG-541
PBS_MAIL_HOST_NAME AG-21, AG-529
PBS_MANAGER_SERVICE_PORT AG-529
pbs_mkdirs AG-641
PBS_MOM_HOME AG-402, AG-529
PBS_MOM_NODE_NAME AG-469, AG-530
PBS_MOM_SERVICE_PORT AG-530
PBS_MPI_DEBUG AG-458
PBS_OUTPUT_HOST_NAME AG-530
PBS_PRIMARY AG-402, AG-530
pbs_probe AG-640
PBS_RCP AG-530
pbs_rsub AG-371
AG-660 PBS Professional 2020.1 Administrator’s Guide

Index
PBS_SCHED_THREADS AG-530
PBS_SCHEDULER_SERVICE_PORT AG-530
PBS_SCP AG-530
PBS_SECONDARY AG-402, AG-531
PBS_SERVER AG-402, AG-531
PBS_SERVER_HOST_NAME AG-531
PBS_START_COMM AG-531
PBS_START_MOM AG-402, AG-531
PBS_START_SCHED AG-402, AG-531
PBS_START_SERVER AG-402, AG-531
PBS_SUPPORTED_AUTH_METHODS AG-531
PBS_TMPDIR AG-532
pbs-alps-inventory-check hook AG-475
PBScrayhost AG-240, AG-466
PBScraylabel AG-466
PBScraylabel_ AG-240
PBScraynid AG-240, AG-466
PBScrayorder AG-240, AG-466
pbsfs AG-142
pcap_accelerator AG-324, AG-609, AG-613, AG-615
pcap_node AG-324, AG-609, AG-613, AG-615
pgov AG-324, AG-609, AG-613, AG-615
p-governor AG-317, AG-324
placement

task AG-169
placement pool AG-169
placement set AG-169
placement sets

multihost AG-170
policy

defining provisioning AG-339
power cycles

minimizing AG-320
power profile

activate AG-319
deactivate AG-319

power profiles AG-315
power_off_iteration

server attribute AG-324
power_provisioning AG-322

server attribute AG-322, AG-324
vnode attribute AG-324

poweroff_eligible AG-324
preempt_order AG-180
preempt_prio AG-181
preempt_queue_prio AG-181
preempt_sort AG-181
preemption AG-180
preemption via checkpoint AG-188
preemptive scheduling AG-180
preemptive_sched AG-180
primary server AG-530
prime_spill AG-196
primetime_prefix AG-195

privilege
Manager AG-361
Operator AG-360
user AG-360

project AG-289, AG-607, AG-609, AG-610, AG-613,
AG-614, AG-615, AG-617

project limit AG-289
generic AG-289
individual AG-289

project limits AG-287
prologue AG-319
provision_policy AG-329
provisioning

creation of hooks AG-338
defining policy AG-339
hooks AG-327
master script AG-337

writing AG-337
overview AG-328
policy AG-329
rebooting AG-328
reservations AG-331
vnode selection AG-329
vnode states AG-332

pstate AG-323

Q
qdel AG-641
qmgr AG-19, AG-648
qrerun AG-641
qstat AG-648
qsub AG-641
queue AG-30

access to a AG-362
ACL AG-363
attribute

acl_group_enable AG-370
acl_groups AG-370
acl_host_enable AG-370
acl_hosts AG-370
acl_user_enable AG-370
acl_users AG-370

reservation AG-372
queue_softlimits AG-184
queued jobs AG-289
queued_jobs_threshold AG-295
queued_jobs_threshold_res AG-295
queues

creating AG-22

R
rcp AG-530
PBS Professional 2020.1 Administrator’s Guide AG-661

Index
rebooting
provisioning AG-328

reservation AG-606
access to a AG-362
ACL AG-363
advance AG-198
ASAP AG-198
attribute

Authorized_Groups AG-371
Authorized_Hosts AG-371
Authorized_Users AG-371

control of creation AG-363
degraded AG-198
instance AG-198
job-specific AG-198

ASAP AG-198
now AG-198
start AG-198

maintenance AG-198
now AG-198
queue AG-372
reservation ID AG-199
soonest occurrence AG-198
standing AG-198

instance AG-198
soonest occurrence AG-198

reservations AG-197
provisioning AG-331

resource AG-232
built-in AG-231
consumable AG-231
custom AG-231
indirect AG-231, AG-271
non-consumable AG-232
shared AG-232, AG-271

resource limits AG-287
resource usage limits AG-287
Resource_List AG-606, AG-607, AG-609, AG-610,

AG-613, AG-614, AG-615, AG-617
Resource_List.eoe AG-322
resources

unset AG-161
resources_assigned AG-615
resources_available.eoe AG-322
resources_used.energy AG-319, AG-322
restrict_user AG-384
restrict_user_exceptions AG-384
restrict_user_maxsysid AG-385
resv_enable AG-371
resv_enable server attribute AG-363
roles AG-359
RPM

debuginfo AG-639
run_count AG-607, AG-610, AG-617

run_time AG-127
RUR AG-318

S
sched_preempt_enforce_resumption AG-182
scheduler

log events AG-536
scp AG-530
scratch space AG-257

dynamic
host-level AG-274
server-level AG-273

static
host-level AG-274
server-level AG-274

script
master provisioning AG-337
writing provisioning AG-337

secondary server AG-531
server

access to AG-362
ACL AG-363
attribute

acl_host_enable AG-370
acl_hosts AG-370
acl_user_enable AG-370
acl_users AG-370
flatuid AG-375
log_events AG-536
managers AG-361
operators AG-361
resv_enable AG-363

log events AG-536
parameters AG-18
primary AG-530
recording configuration AG-19
secondary AG-531

server attributes
node_idle_limit AG-323
power_off_iteration AG-324
power_provisioning AG-322

server_softlimits AG-184
set_power_cap AG-324
setting limits AG-296
shared resource AG-232, AG-271
shares AG-139
size

format AG-238
sleep

vnode state AG-324
soonest occurrence AG-198
sort key AG-145
sshd AG-593
AG-662 PBS Professional 2020.1 Administrator’s Guide

Index
standing reservation AG-198
start reservation AG-198
starving_jobs AG-184
states

vnodes and provisioning AG-332
static fit AG-169
strict_ordering and backfilling AG-224
string AG-243
string resource value

format AG-238, AG-243
string_array AG-244

format AG-238, AG-244
support team AG-651
syslog AG-540

T
task placement AG-169
type codes AG-536

U
unknown node AG-139
unknown_shares AG-138
unset resources AG-161
usage limits AG-287
user

access AG-362
ACLs AG-364
privilege AG-360
roles AG-359

user limit AG-232, AG-289
generic AG-289
individual AG-289

user limits AG-287

V
version information AG-640
virtual nodes AG-37
vnode AG-37

borrowing AG-230, AG-271
managing AG-232, AG-271
memory-only AG-232
natural AG-38
selection for provisioning AG-329
states and provisioning AG-332

vnode attributes
last_state_change_time AG-323
last_used_time AG-323

vnode_pool AG-473
vnodedef_additive AG-467

W
Windows

password AG-641
writing provisioning script AG-337

X
X forwarding AG-533
xauth AG-533
Xeon Phi nodes AG-475
PBS Professional 2020.1 Administrator’s Guide AG-663

Index
AG-664 PBS Professional 2020.1 Administrator’s Guide

Altair®

PBS Professional®

2020.1.1

Hooks Guide

You are reading the Altair PBS Professional 2020.1.1

Hooks Guide (HG)

Updated 9/30/20

Copyright © 2003-2020 Altair Engineering, Inc. All rights reserved.

ALTAIR ENGINEERING INC. Proprietary and Confidential. Contains Trade Secret Information. Not for use or disclo-
sure outside of Licensee’s organization. The software and information contained herein may only be used internally and
are provided on a non-exclusive, non-transferable basis. Licensee may not sublicense, sell, lend, assign, rent, distribute,
publicly display or publicly perform the software or other information provided herein, nor is Licensee permitted to
decompile, reverse engineer, or disassemble the software. Usage of the software and other information provided by Altair
(or its resellers) is only as explicitly stated in the applicable end user license agreement between Altair and Licensee. In
the absence of such agreement, the Altair standard end user license agreement terms shall govern.

Use of Altair’s trademarks, including but not limited to “PBS™”, “PBS Professional®”, and “PBS Pro™”, “PBS
Works™”, “PBS Control™”, “PBS Access™”, “PBS Analytics™”, “PBScloud.io™”, and Altair’s logos is subject to
Altair's trademark licensing policies. For additional information, please contact Legal@altair.com and use the wording
“PBS Trademarks” in the subject line.

For a copy of the end user license agreement(s), log in to https://secure.altair.com/UserArea/agreement.html or contact
the Altair Legal Department. For information on the terms and conditions governing third party codes included in the
Altair Software, please see the Release Notes.

This document is proprietary information of Altair Engineering, Inc.

Contact Us

For the most recent information, go to the PBS Works website, www.pbsworks.com, select "My PBS", and log in with
your site ID and password.

Altair

Altair Engineering, Inc., 1820 E. Big Beaver Road, Troy, MI 48083-2031 USA www.pbsworks.com

Sales

pbssales@altair.com 248.614.2400

Please send any questions or suggestions for improvements to agu@altair.com.

https://secure.altair.com/UserArea/agreement.html
http://www.pbsworks.com
http://www.pbsworks.com

Technical Support

Need technical support? We are available from 8am to 5pm local times:

Location Telephone e-mail

Australia +1 800 174 396 anz-pbssupport@india.altair.com

China +86 (0)21 6117 1666 pbs@altair.com.cn

France +33 (0)1 4133 0992 pbssupport@europe.altair.com

Germany +49 (0)7031 6208 22 pbssupport@europe.altair.com

India +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

Italy +39 800 905595 pbssupport@europe.altair.com

Japan +81 3 6225 5821 pbs@altairjp.co.jp

Korea +82 70 4050 9200 support@altair.co.kr

Malaysia +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

North America +1 248 614 2425 pbssupport@altair.com

Russia +49 7031 6208 22 pbssupport@europe.altair.com

Scandinavia +46 (0)46 460 2828 pbssupport@europe.altair.com

Singapore +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

South Africa +27 21 831 1500 pbssupport@europe.altair.com

South America +55 11 3884 0414 br_support@altair.com

UK +44 (0)1926 468 600 pbssupport@europe.altair.com

Contents

1 New Hook Features 1
1.1 New Features in PBS 2020.1 . 1

1.2 Changes in Previous Releases . 1

1.3 Deprecations and Removals . 3

2 Introduction to Hooks 5
2.1 Introduction to Hooks . 5

2.2 Glossary . 5

2.3 Prerequisites and Requirements for Hooks. 7

2.4 Uses for Hooks . 7

3 Quick Start with Hooks 11
3.1 Simple How-to for Writing Hooks . 11

3.2 Writing Hooks: Basic Hook Structure . 11

3.3 Example of Simple Hook. 12

3.4 Importing Hook Configuration File. 13

3.5 Creating and Importing Your Hook . 13

3.6 Setting Attributes for Your Hook . 13

4 Hook Basics 15
4.1 Hook Basics . 15

4.2 Viewing Hook Information . 22

4.3 Restarting the Python Interpreter . 23

4.4 Attributes and Parameters Affecting Hooks . 24

4.5 Python Modules and PBS . 24

4.6 See Also . 26

5 Creating and Configuring Hooks 29
5.1 Creating and Configuring Hooks . 29

5.2 Writing Hook Scripts to Operate on PBS Elements. 40

5.3 Advice and Caveats for Writing Hooks . 68
PBS Professional 2020.1 Hooks Guide HG-v

Contents
6 Hook Objects and Methods 75
6.1 The pbs Module. 76

6.2 PBS Interface Objects . 76

6.3 Event Objects . 87

6.4 Server Objects. 118

6.5 Queue Objects . 121

6.6 Job Objects . 122

6.7 The exec_vnode Object . 129

6.8 Chunk Objects. 131

6.9 Reservation Objects . 131

6.10 Vnode Objects. 133

6.11 Configuration File Objects . 135

6.12 Constant Objects. 140

6.13 Object Members and Methods . 140

7 Built-in Hooks 155
7.1 Managing Built-in Hooks . 155

7.2 Prerequisites . 155

7.3 Allowed Operations . 155

7.4 Viewing Built-in Hooks. 155

7.5 Setting Attributes of Built-in Hooks . 156

7.6 Editing and Importing Configuration Files for Built-in Hooks. 156

7.7 Restrictions . 156

7.8 Replacing a Built-in Hook with Your Own Hook . 156

7.9 Errors and Logging when Operating on Built-in Hooks . 157

8 Debugging Hooks 159
8.1 The pbs_python Hook Debugging Tool . 159

8.2 Files for Debugging . 159

8.3 Steps to Debug a Hook Using pbs_python . 165

8.4 Caveats and Restrictions for pbs_python . 165

8.5 Examples of Using pbs_python to Debug Hooks. 166

8.6 Using Log Messages to Debug Hook Scripts . 174

8.7 Checking Hook Syntax using Python . 174

8.8 Examples of Debugging Files . 174

8.9 Interactive Debugging using pbs_python . 221

8.10 Error Reporting and Logging. 221

9 Hook Examples 231

Index 289
HG-vi PBS Professional 2020.1 Hooks Guide

1

New Hook Features

This chapter briefly lists new features by release, with the most recent listed first. This chapter also lists deprecated ele-
ments, such as options, keywords, etc.

The Release Notes included with this release of PBS Professional list all new features in this version of PBS Professional,
and any warnings or caveats. Be sure to review the Release Notes, as they may contain information that was not available
when this book was written.

1.1 New Features in PBS 2020.1.1

Improved Cgroups Hook

The cgroups hook is improved for 2020.1. See "Configuring and Using PBS with Cgroups" on page 561 in the PBS Pro-
fessional Administrator’s Guide.

Faster Read of Custom Job Resources by Execution Hooks

You can specify which custom job resources are cached at MoMs so that execution hooks can read them faster. See
"Allowing Execution Hooks to Read Custom Job Resources Faster" on page 261 in the PBS Professional Administrator’s
Guide.

New Post-suspend and Pre-resume Hooks

PBS has two new hook events for just after suspending a job and just before resuming it. See section 6.3.1, “Event
Types”, on page 87.

Python Version Changed to 3.6

PBS 19.4.1 uses Python version 3.6.

1.2 Changes in Previous Releases

Hooks Support Reliable Job Startup and Run (19.2)

Hooks have been enhanced to allow you to provide jobs with extra vnodes in case of vnode failure. See "Vnode Fault
Tolerance for Job Start and Run" on page 428 in the PBS Professional Administrator’s Guide.

New Reservation End Hook (19.2)

You can create hooks for the end of a reservation. See "resv_end: Event when Reservation Ends" on page 90 in the PBS
Professional Hooks Guide.

Python Version Changed to 2.7.1 (18.2.3)

PBS 18.2.3 uses Python 2.7.1. The use of Python 2.5.1 is deprecated.

Periodic Server Hook (18.2.3)

PBS has a periodic hook that runs at the server. See section 6.3.1.7, “periodic: Periodic Event at Server Host”, on page
95.
PBS Professional 2020.1.1 Hooks Guide HG-1

Chapter 1 New Hook Features
Hook to Run Job Start Time Estimator (18.2.3)

PBS has a built-in hook named PBS_est that can run the job start time estimator. See "Estimating Job Start Time" on
page 131 in the PBS Professional Administrator’s Guide.

Configurable Python Interpreter Restarts (18.2.3)

You can configure how often you want the Python interpreter to restart. See section 4.3, “Restarting the Python Inter-
preter”, on page 23.

PBS Can Report Custom Resources Set in Hooks (18.2.3)

MoM can accumulate and report custom resources that are set in a hook. See section 5.2.4.12, “Setting Job Resources in
Hooks”, on page 49.

The execjob_prologue Hook Runs on All Sister MoMs (18.2.3)

The execjob_prologue hook runs on all sister MoMs. See section 6.3.1.9, “execjob_prologue: Event Just Before Exe-
cution of Top-level Job Process”, on page 97.

New Hook Events (13.0)

PBS provides three new hook events:

• An execjob_launch hook runs just before MoM runs the user’s program

• An execjob_attach hook runs when pbs_attach is called

• An exechost_startup hook runs when MoM starts up or is HUPed

See section 4.1.2, “When Hooks Run”, on page 15, section 6.3.1.10, “execjob_launch: Event when Execution Host
Receives Job”, on page 98, section 6.3.1.11, “execjob_attach: Event when pbs_attach() runs”, on page 100, and section
6.3.1.17, “exechost_startup: Event When Execution Host Starts Up”, on page 106.

Configuration Files for Hooks (13.0)

You can use configuration files with hooks. See section 5.1.6, “Using Hook Configuration Files”, on page 32.

Configuring Vnodes in Hooks (13.0)

You can use hooks to configure vnode attributes and resources. See section 5.2.4.11, “Setting and Unsetting Vnode
Resources and Attributes”, on page 48.

Adding Custom Resources in Hooks (13.0)

You can use hooks to add custom non-consumable host-level resources. See section 5.2.7, “Adding Custom Non-con-
sumable Host-level Resources”, on page 64.

Node Health Hook Features (13.0)

PBS has node health checking features for hooks. You can offline and clear vnodes, and restart the scheduling cycle. See
section 5.2.12.4, “Offlining and Clearing Vnodes Using the fail_action Hook Attribute”, on page 66 and section 5.2.6,
“Restarting Scheduler Cycle After Hook Failure”, on page 63.

Hook Debugging Enhancements (13.0)

You can get hooks to produce debugging information, and then read that information in while debugging hooks. See
Chapter 8, "Debugging Hooks", on page 159.

Managing Built-in Hooks (13.0)

You can enable and disable built-in hooks. See Chapter 7, "Built-in Hooks", on page 155.

Scheduler Does not Trigger modifyjob Hooks (13.0)

The scheduler does not trigger modifyjob hooks. See Chapter 5, "Creating and Configuring Hooks", on page 29.

runjob Hook can Modify Job Attributes (12.2)

The runjob hook can modify a job’s attributes and resources. See section 5.2.4, “Using Attributes and Resources in
Hooks”, on page 44.
HG-2 PBS Professional 2020.1.1 Hooks Guide

New Hook Features Chapter 1
Execution Event and Periodic Hooks (12.0)

You can write hooks that run at the execution host when the job reaches the execution host, when the job starts, ends, is
killed, and is cleaned up. You can also write hooks that run periodically on all execution hosts. See Chapter 5, "Creating
and Configuring Hooks", on page 29.

Vnode Access for Hooks (11.0)

Hooks have access to vnode attributes and resources. See Chapter 5, "Creating and Configuring Hooks", on page 29.

Provisioning (10.2)

PBS provides automatic provisioning of an OS or application on vnodes that are configured to be provisioned. When a
job requires an OS that is available but not running, or an application that is not installed, PBS provisions the vnode with
that OS or application. See Chapter 7, "Provisioning", on page 327.

New Hook Type (10.2)

PBS has a new hook type which can be triggered when a job is to be run. See "Creating and Configuring Hooks” on
page 29.

Hooks (10.0)

Hooks are custom executables that can be run at specific points in the execution of PBS. They accept, reject, or modify
the upcoming action. This provides job filtering, patches or workarounds, and extends the capabilities of PBS, without
the need to modify source code. See Chapter 5, "Creating and Configuring Hooks", on page 29.

1.3 Deprecations and Removals

The use of Python 2.x is deprecated. PBS now uses Python 3.6. (19.4.1)
PBS Professional 2020.1.1 Hooks Guide HG-3

Chapter 1 New Hook Features
HG-4 PBS Professional 2020.1.1 Hooks Guide

2

Introduction to Hooks

Hooks are custom executables that can be run at specific points in the execution of PBS. They accept, reject, or modify
the upcoming action. This provides job filtering, patches, MoM startup checks, workarounds, etc., and extends the capa-
bilities of PBS, without the need to modify source code.

This chapter describes how hooks can be used, how they work, the interface to hooks provided by the pbs module, how
to create and deploy hooks, and how to get information about hooks.

Please read the entire chapter, and the “Special Notes (Hooks)” section of the release notes, before writing any hooks.

2.1 Introduction to Hooks

A hook is a block of Python code that PBS executes at certain events, for example, when a job is queued. As long as the
Python code conforms to the rules we describe, you can have it do whatever you want. Each hook can accept (allow) or
reject (prevent) the action that triggers it. The hook can modify the input parameters given for the action. The hook can
also make calls to functions external to PBS. The hook can use a configuration file that you provide. PBS provides an
interface for use in hooks. This interface allows hooks to read and/or modify things such as job, server, vnode, and queue
attributes, and the event that triggered the hook.

2.1.1 Built-in Hooks

Some functions of standard PBS are accomplished through built-in hooks. We use the keyword pbshook with these
hooks. These hooks are not designed to be altered, so they have some restrictions placed on them. See Chapter 7, "Built-
in Hooks", on page 155.

2.2 Glossary

Accept an action

The hook allows the action to take place.

Action

A PBS operation or state transition. Also called an event. For a list of events, see section 6.3.1, “Event
Types”, on page 87.

Built-in hook

A hook that is supplied as part of PBS. These hooks cannot be created or deleted by administrators.

Creating a hook

When you “create a hook” using qmgr, you’re telling PBS that you want it to make you an empty hook object
that has no characteristics other than a name.

Event

A PBS operation or state transition. Also called action. For a list of events, see section 6.3.1, “Event Types”,
on page 87.
PBS Professional 2020.1.1 Hooks Guide HG-5

Chapter 2 Introduction to Hooks
Execution event hook, MoM hook

A hook that runs at an execution host. These hooks run after a job is received by MoM. Execution event hooks
have names prefixed with “execjob_”.

Failure action

The action taken when a hook fails to execute. Specified in the fail_action hook attribute. See section 5.1.9.2,
“Using the fail_action Hook Attribute”, on page 37.

Hook configuration file

Configuration file specific to a particular hook. See section 5.1.6, “Using Hook Configuration Files”, on page
32.

Importing a hook

When you “import a hook” using qmgr, you’re telling PBS which Python script to run when the hook is trig-
gered.

Importing a hook configuration file

When you “import a hook configuration file” using qmgr, you’re telling PBS which file should be stored as the
configuration file for the specified hook.

MoM hook, execution event hook

A hook that runs at an execution host. These hooks run after a job is received by MoM. Execution event hooks
have names prefixed with “execjob_”

Non-job event hook

A hook that is not directly related to a specific job. Non-job event hooks are periodic hooks, startup hooks, pro-
visioning hooks, and reservation creation hooks.

pbshook

PBS keyword for a built-in hook.

pbs module

The pbs module provides an interface to PBS and the hook environment. The interface is made up of Python
objects, object members, and methods. You can operate on these objects using Python code.

Pre-execution event hook, server hook

A hook that runs at the PBS server. A server hook runs before the job is sent to MoM. These hooks do not run
on execution hosts. Pre-execution event hooks are for job submission, moving a job, altering a job, or just
before sending a job to an execution host.

Reject an action

The hook prevents the action from taking place. For example, if a runjob hook rejects a job, the job is
requeued.

Server hook, pre-execution event hook

A hook that runs at the PBS server. A server hook runs before the job is sent to MoM. These hooks do not run
on execution hosts. Pre-execution event hooks are for job submission, moving a job, altering a job, or just
before sending a job to an execution host.
HG-6 PBS Professional 2020.1.1 Hooks Guide

Introduction to Hooks Chapter 2
2.3 Prerequisites and Requirements for Hooks

• To create a hook under Linux, you must be logged into the primary or secondary server host as root. You must cre-
ate any hooks at the primary or secondary server host.

• When creating hooks, make sure that each execution host where execution or periodic hooks should run has the
$reject_root_scripts MoM parameter set to False. The default for this parameter is False.

• In order for execution event hooks to function, either the query_other_jobs server attribute must be set to True, or
root at every execution host must be added to the managers list (root@hostname must be added to the managers
server attribute). If you have any hooks running with user set to pbsuser, you will have to set query_other_jobs
to True (you probably don’t want to add pbsuser to managers).

A normal, non-privileged, user cannot circumvent, disable, add, delete, or modify hooks or the environment in which the
hooks are run.

2.4 Uses for Hooks

2.4.1 Routing Jobs

• Route jobs into specific queues or between queues:

• Automatically route interactive jobs into a particular execution queue

• Move a job to another queue; for example, if project allocation is used up, move job to “background” queue

• Reject job submissions that do not specify a valid queue, printing an error message explaining the problem

• Enable project-based ACLs for queues to make sure the appropriate job runs in the correct queue
PBS Professional 2020.1.1 Hooks Guide HG-7

Chapter 2 Introduction to Hooks
2.4.2 Managing Resource Requests and Usage

• Reject improperly specified jobs:

• Reject jobs which do not specify walltime

• Reject jobs that request a number of processors that is not a multiple of 8

• Reject jobs requesting a specific queue, but not requesting memory

• Reject jobs whose processors per node is not specified or is not numeric

• Modify job resource requests:

• Apply default memory limit to jobs that request a specific queue

• Check on requested CPU and memory and modify these or supply them if missing

• Adjust for the fact that users ask for 2GB on a machine that has 2GB physical memory, but only 1.8 GB avail-
able memory, by changing the memory request to 1.8GB

• Reject parallel jobs for some queues.

• Set default properties, for example, if “myri” is not set, set it to “False” to ensure Myrinet is used only for Myrinet
jobs.

• Convert from ALPS-specific resource request strings into PBS-specific job requirements.

• Automatically translate old syntax to new syntax.

• Compensate for dissimilar system capabilities; for example, allow users to use more CPUs only if they use old, slow
machines.

• Limit reservations submitted by users to a maximum amount of resources and walltime, but do not limit reservations
submitted by PBS administrators.

• Define resources and set values.

2.4.3 Ensuring that Jobs Run Properly

• Make sure that jobs, or all jobs in a queue, request exclusive access (-l place=excl).

• Reject multi-host jobs, restricting each job to a single machine.

• Put a hold on the job if there isn't enough scratch space when the job is submitted.

• Reject jobs that could cause problems, based on the user and type of job that have caused previous problems. For
example, if Bill's Abaqus jobs crash the system, reject new Abaqus jobs from Bill.

• Validate an input deck before the job is submitted.

• Modify a job’s dependency list when the job is rejected.

• Modify a job’s list of environment variables before it gets to the execution host(s).

2.4.4 Managing Job Output

• Manage where output goes by modifying a job’s output path with the job’s ID.

2.4.5 Controlling Interactive Jobs

• Control interactive job submission; for example, enable or disable interactive jobs at the server or queue level
HG-8 PBS Professional 2020.1.1 Hooks Guide

Introduction to Hooks Chapter 2
2.4.6 Helping Schedule Jobs

• Increase the priority of an array job once the first subjob runs, by modifying the value of a job resource used in the
job sorting formula

• Change scheduling according to user and job:

• Set initial user-dependent coefficients for the scheduling formula. For example, set values of custom resources
based on job attributes and user

• Set whether or not the job is rerunnable, based on user

• Calculate CPH (CPH == total ncpus * walltime in hours) and set a custom CPH job resource to the value

• Set initial priorities for jobs

• Periodically run the job start time estimator named pbs_est at the server. See “Estimating Job Start Time” on
page 131 of the PBS Professional Administrator’s Guide.

2.4.7 Communicating Information to Users

• Report useful error messages back to the user, e.g., "You do not have sufficient walltime left to run your
job for 1:00:00. Your walltime balance is 00:30:00.”

2.4.8 Managing User Activity

• Reject jobs from blacklisted users

• Prevent users from using qalter to change their jobs in any way, allowing only administrators to qalter jobs

• Prevent users from bypassing controls: disallow a job being submitted to queueA in a held state and then being
moved to queueB where the job would not have passed hook checks for queueB initially. For example, if a queue-

job hook disallows interactive jobs for queueB, the administrator also needs to ensure that an interactive job is not
initially submitted to queueA and later moved to queueB

• Prevent users from overriding node_group_key with qsub -lplace = group = X, or with qalter

• Restrict the ability to submit a reservation to PBS administrators only

2.4.9 Enabling Accounting and Validation

• Make sure correct project designation is used: if no project or account string is found, look up username in database
to find appropriate project to use and add it as project or account string before submission

• Submit job to correct queue based on project: check for project number and submit job to queues based on project
type, e.g. project number 1234 jobs get submitted into “challenge” queue; similarly for “standard” queue, etc

• Validate project before the job executes; if validation fails, do not start job, and print error message. Validation can
be based on project name, or for example requested resources, such as CPU hours

2.4.10 Allocation Management

• You can use a job submission (queuejob) hook to check whether an entity has enough resources allocated to accept
the job.

• You can use a hook that runs just before the job is sent to the execution host (runjob) to perform allocation manage-
ment tasks such as deducting requested amounts of resources from an entity’s allocation.

• You can use a hook that runs after a job finishes (execjob_epilogue) to perform final allocation management tasks
such as allocation reconciliation.
PBS Professional 2020.1.1 Hooks Guide HG-9

Chapter 2 Introduction to Hooks
2.4.11 Managing Job Execution

Hooks that run periodically at execution hosts can do the following:

• Modify job environment variables

• Check vnode health

• Report I/O wait time

• Report memory usage integral (MB*time used)

• Report energy usage to run a given job, if you have power sensors on vnodes

• Report actual usage of accelerator hardware (FPGAs, GPUs, etc)

• Interrogate HW performance counters so that you can flag codes that are not running efficiently (e.g. FLOPS < 5%
of peak FLOPS)

• Record how much disk space a job has accumulated in PBS_JOBDIR

• Record power usage, energy usage, and disk space usage

Hooks that run just before the user’s program executes can do the following:

• Change the job shell or executable

• Change the job shell or executable arguments

• Change the job’s environment variables

2.4.12 Configuring Vnodes

Hooks that run when an execution host starts can do the following:

• Configure vnodes on the local host

• Create custom resources for vnodes

• Offline vnodes that are not ready for use

• Return vnodes to use that have been offlined

2.4.13 Provisioning Vnodes

• Provision a vnode with a new AOE. See Chapter 7, "Provisioning", on page 327.

2.4.14 Accepting or Rejecting Job Task Attachment

• Allow or disallow action when MoM is about to attach a process for a job
HG-10 PBS Professional 2020.1.1 Hooks Guide

3

Quick Start with Hooks

3.1 Simple How-to for Writing Hooks

We will go into the details of what goes into a hook later in the chapter, but here we show the basics of how to create a
hook. Steps for creating a hook:

1. Log into the server host as root

2. Write the hook script

3. Create an empty hook via qmgr

4. Set the attributes of the hook so that it triggers when you want, etc

5. If the hook will use a configuration file:

a. Write the hook configuration file

b. Import the hook configuration file

6. Import the hook script into the empty hook. You do not need to restart the MoM, unless it's an exechost_startup
hook. Since exechost_startup hooks run only when MoM starts up or is HUPed, if you want the hook to run now,
restart or kill -HUP the MoM.

3.2 Writing Hooks: Basic Hook Structure

• Import the pbs and sys modules:
import pbs

import sys

• Use the try... except construction, where you test for conditions in the try block, and accept or reject the event:
try:

…

except:

Consider either rerunning the job or deleting the job inside the except: block.

• Treat the SystemExit exception as a normal occurrence, and pass if it occurs:
except SystemExit:

pass

• Reject the event, or rerun or delete the job, if any other exception occurs:
except:

pbs.event().reject("%s hook failed with %s")

• If the requestor is the scheduler, and where appropriate, the server or MoM, allow the action to take place:
if pbs.event().requestor in ["PBS_Server", "Scheduler", "pbs_mom"]:

pbs.event().accept()
PBS Professional 2020.1.1 Hooks Guide HG-11

Chapter 3 Quick Start with Hooks
The following code fragment is a basic hook skeleton:

import pbs

import sys

e=pbs.event()

j=e.job

try:

if e.requestor in ["Scheduler"]:

e.accept()

…

except SystemExit:

pass

except:

j.rerun()

e.reject("%s hook failed with %s. Please contact Admin" % (e.hook_name, sys.exc_info()[:2]))

3.3 Example of Simple Hook

Example 3-1: Set job priority

Set a job’s priority

import pbs

import sys

e = pbs.event()

try:

Get the hook event information and parameters

This will be for the 'modifyjob' event type.

Ignore requests from scheduler or server

if e.requestor in ["PBS_Server", "Scheduler"]:

e.accept()

Get the information for the job being queued

j = e.job

Set the job’s priority

j.Priority = 7

accept the event

e.accept()

except SystemExit:

pass

except:

e.reject("Failed to set job priority")
HG-12 PBS Professional 2020.1.1 Hooks Guide

Quick Start with Hooks Chapter 3
3.4 Importing Hook Configuration File

If you want your hook to use a configuration file, you can import the configuration file. A configuration file is not
required.

Syntax for importing a configuration file:

Qmgr: import hook <hook_name> application/x-config <content-encoding>
<input_config_file>

Here, <content-encoding> can be “default” (7-bit) or “base64”.

See section 5.1.6, “Using Hook Configuration Files”, on page 32.

3.5 Creating and Importing Your Hook

When you “create a hook” using qmgr, you’re telling PBS that you want it to make you an empty hook object that has no
characteristics other than a name. When you “import a hook” using qmgr, you’re telling PBS which Python script to run
when the hook is triggered.

Syntax for creating a hook:

Qmgr: create hook <hook name>

Simple syntax for importing a hook:

Qmgr: import hook <hook name> application/x-python <content-encoding> <input_file>

This uses the script named <input_file> as the contents of your hook.

• The <input_file> must be encoded with <content-encoding>.

• The allowed values for <content-encoding> are “default” (7 bit) and “base64”.

• <input_file> must be locally accessible to both qmgr and the batch server.

• A relative path in <input_file> is relative to the directory where qmgr was executed.

• If your hook already has a content script, then that is overwritten by this import call.

• If the name of <input_file> contains spaces, <input file> must be quoted.

3.6 Setting Attributes for Your Hook

Hooks have attributes that control their behavior, such as which events trigger the hook, the time to allow the hook to
execute, etc. The only attribute you must set for a simple hook is the event(s) that will trigger the hook. Choose your
hook type according to the event you want, by looking in Table 5-1, “Hook Trigger Events,” on page 31.

Syntax for setting the hook event(s):

Qmgr: set hook <hook name> event = <event name>
Qmgr: set hook <hook name> event = “<event name>, <event name>”

For more details on setting hook trigger events, see section 5.1.5, “Setting Hook Trigger Events”, on page 31.

You can set the rest of the hook’s attributes if you wish. To set a hook attribute:

Qmgr: set hook <hook name> <attribute> = <value>

For a list of all the hook attributes, see section 5.1.9.3, “List of Hook Attributes”, on page 37.
PBS Professional 2020.1.1 Hooks Guide HG-13

Chapter 3 Quick Start with Hooks
HG-14 PBS Professional 2020.1.1 Hooks Guide

4

Hook Basics

4.1 Hook Basics

4.1.1 Accepting or Rejecting Actions

Hooks accept (allow) or reject (prevent) actions, modify input parameters, modify job attributes, environment variables,
programs, program arguments, and change internal or external values.

Each action can have zero or more hooks. Each hook must either accept or reject its action. All of an action’s hooks are
run when that action is to be performed. For PBS to perform an action, all hooks enabled for that action must accept the
action. If any hook rejects the action, the action is not performed by PBS. If a hook script doesn’t call accept() or
reject(), and it doesn’t encounter an exception, PBS behaves as if the hook accepts the action. An action is always
accepted, unless:

• pbs.event().reject() is called

• An unhandled exception is encountered

• The hook alarm has been triggered due to hook timeout being reached

When PBS executes the hooks for an action, it stops processing hooks at the first hook that rejects the action.

4.1.1.1 Examples of Accepting and Rejecting Actions

Example 4-1: Accepting an action: In this example, userA submits a job to queue Queue1, and the job submission action
has two hooks: hook1 disallows jobs submitted by UserB, and hook2 disallows jobs being submitted directly to
Queue2. Both hook1 and hook2 accept userA’s job submission to Queue1, so the submission goes ahead.

Example 4-2: Rejecting an action: In this example, userA uses the qmove command to try to move jobA from Queue1
to Queue2. The job move action has two hooks: hook3 disallows jobs being moved into Queue2, and hook4 disal-
lows userB moving jobs out of Queue1. In this example, hook3 rejects the action, so the move operation is disal-
lowed, even though hook4 would have accepted the action.

4.1.2 When Hooks Run

Each type of event has a corresponding type of hook. The following are the events where you can run hooks, with the
hook type:

4.1.2.1 Job-related Hooks that Run Before Execution

Hooks that run before a job is received by an execution host (pre-execution event hooks):

queuejob: Queueing a job

modifyjob: Modifying a job, except when scheduler makes the modification (can also run after job is received by
execution host)

movejob: Moving a job

runjob: Just before a job is sent to an execution host
PBS Professional 2020.1.1 Hooks Guide HG-15

Chapter 4 Hook Basics
4.1.2.2 Job-related Hooks that Run at Execution Host

Hooks that run after a job is received by an execution host (execution event hooks):

execjob_begin: When a job is received by an execution host, after stagein

execjob_prologue: Just before starting a job’s shell

execjob_launch: Just before starting the user’s program

execjob_attach: When running pbs_attach()

execjob_preterm: Just before killing a job

execjob_epilogue: Just after executing or killing a job, but before job is cleaned up

execjob_end: Just after cleaning a job up

execjob_postsuspend: Just after suspending a job

execjob_preresume: Just before resuming a job
HG-16 PBS Professional 2020.1.1 Hooks Guide

Hook Basics Chapter 4
Figure 4-1:Simplified view of trigger timing for job-related hooks
PBS Professional 2020.1.1 Hooks Guide HG-17

Chapter 4 Hook Basics
4.1.2.3 Non-job-related Hooks

Hooks that are not directly related to a specific job (non-job event hooks):

resvsub: Submitting a PBS reservation

resv_end: When a PBS reservation ends

provision: Provisioning a vnode

exechost_periodic: Periodically on all execution hosts

exechost_startup: When an execution host is started or receives a HUP

periodic: periodically at the server

Figure 4-2:Simplified view of trigger timing for non-job-related hooks

4.1.2.4 Each Triggering Event Runs One Hook Instance

Each time an event triggers a hook, the hook runs for that instance of the event. If you have written a hook that runs at
job submission, this hook will run for each job that is submitted to this server. Each MoM runs one copy of each of her
execution hooks per job. Execution hooks run one per job at the MoM, not one per vnode. For a job that runs on four
vnodes of a multi-vnoded machine where all the vnodes are managed by one MoM, where you have written one execu-
tion hook, only one instance of the hook runs for that job.

Each time a job goes through a triggering event, PBS runs any relevant hooks. This means that if you run a job, that trig-
gers a runjob hook. If the job is killed and requeued and runs again, the runjob hook runs again.

If the scheduler modifies a job, any modifyjob hooks are not triggered.

When you are using peer scheduling, and a job is pulled from one complex to another, the pulling complex applies its
hooks as if the job had been submitted locally, and the furnishing complex applies its movejob hooks. Figure 4-3 shows
an example of the hooks that are triggered when a job is moved from a complex containing a movejob hook to a complex
containing a queuejob hook.
HG-18 PBS Professional 2020.1.1 Hooks Guide

Hook Basics Chapter 4
Figure 4-3:Hooks that run when job is moved

4.1.2.5 Execution Event Hook Triggers in Lifecycle of Job

The hooks triggered for an MPI job depend on whether MPI processes are spawned using the PBS TM interface via
tm_spawn(), or are spawned using pbs_attach(). When a process is spawned using tm_spawn(), MoM starts
the process. When a process uses pbs_attach(), pbs_attach() starts the process and informs MoM of the pro-
cess ID.

The following shows where execution event hooks are triggered in the lifecycle of a normal, successful job. We show
the timing for hooks on the primary execution host, on a sister vnode where a process is spawned using tm_spawn(),
and on a sister vnode where a process is spawned using pbs_attach().

Table 4-1: Execution Event Hook Timing

Job Lifecycle

Hooks Are Triggered

Primary
Execution Host

Sister
(tm_spawn)

Sister
(pbs_attach)

Application licenses are checked out

Any required job-specific staging and
execution directories are created

PBS_JOBDIR and job’s jobdir attribute
are set to pathname of staging and execu-
tion directory

Files are staged in

execjob_begin execjob_begin execjob_begin

Job is sent to MoM

execjob_prologue

If there is no
execjob_prologue
hook, the prologue
script runs

Server writes accounting log “S” record

Primary execution host tells sister MoMs
they will run job task(s)
PBS Professional 2020.1.1 Hooks Guide HG-19

Chapter 4 Hook Basics
If necessary, MoM creates work directory

MoM creates temporary directory for job

MoM sets TMPDIR, JOBDIR, and other
environment variables in job’s environ-
ment

MoM performs hardware-dependent
setup: The job’s cpusets are created,
ALPS reservations are created

execjob_launch

The job script starts

Job starts an MPI process on sister vnode

execjob_prologue execjob_prologue

execjob_launch, for
all tasks on this sister

execjob_attach, for all
tasks on this sister

Job is suspended

execjob_postsuspend execjob_postsuspend execjob_postsuspend

execjob_preresume

execjob_preresume

(if successful on pri-
mary MoM)

execjob_preresume

(if successful on pri-
mary MoM)

Job is resumed

The job script finishes

execjob_epilogue

If there is no
execjob_epilogue
hook, the epilogue
script runs

execjob_epilogue execjob_epilogue

The obit is sent to the server

Server writes accounting log “E” record

Any specified file staging out takes
place, including stdout and stderr

Files staged in or out are deleted

Any job-specific staging and execution
directories are removed

Table 4-1: Execution Event Hook Timing

Job Lifecycle

Hooks Are Triggered

Primary
Execution Host

Sister
(tm_spawn)

Sister
(pbs_attach)
HG-20 PBS Professional 2020.1.1 Hooks Guide

Hook Basics Chapter 4
4.1.3 Account Under Which Hooks Run

A hook runs as the administrator or as the job owner, depending on the value of the hook’s user attribute. If this is set to
pbsadmin, the hook runs as the Administrator. If this is set to pbsuser, the hook runs as the job owner.

4.1.4 Where Hooks Run

Pre-execution event, periodic, provision, and reservation hooks run on the primary server host, or the secondary server
host during failover. For most Linux systems, execution event, startup, and exechost_periodic hooks run on the execu-
tion host(s). However, on Cray, execution event, startup, and exechost_periodic hooks run on the host(s) where MoM
runs.

4.1.5 Permissions and Location for Hook Creation and
Modification

Hooks can be created or modified only by the administrator, and only at the hosts on which the primary and secondary
servers run.

4.1.6 Failover

The secondary server uses the same filesystem as the primary server. Any hooks created are stored in the same place and
are accessible by both servers, whether the primary or the secondary server is running.

When the secondary server takes over for the primary server after the primary's host has gone down or becomes inacces-
sible, any hooks created at the primary server continue to function under the secondary server.

If the you create a new hook while the secondary server has control, that hook will persist once the primary server takes
over: if the primary server comes back up and takes over, hooks created while the secondary server had control continue
to function.

The job’s cpusets are destroyed

Job files are deleted

execjob_end execjob_end execjob_end

Application licenses are returned to pool

Table 4-1: Execution Event Hook Timing

Job Lifecycle

Hooks Are Triggered

Primary
Execution Host

Sister
(tm_spawn)

Sister
(pbs_attach)
PBS Professional 2020.1.1 Hooks Guide HG-21

Chapter 4 Hook Basics
4.1.7 What Hooks Cannot Access or Do

• Hooks cannot read or modify anything not presented in the PBS hook interface

• Hooks cannot modify the server or any queues

• Pre-execution event hooks cannot read or set vnode attributes or resources, except that the runjob hook can set the
state attribute for any vnode to be used by the job

• Hooks do not have access to other servers besides the default server:

• Hooks cannot change the destination server to a non-default server

• Hooks can allow a job submission or a qmove to a non-default server, and can change the destination server
from a remote server to the default server

• Hooks cannot directly print to stdout or stderr or read from stdin.

• movejob hooks do not run on pbs_rsub -Wqmove=<job ID>

4.1.8 What Hooks Should Not Do

• Hooks should not edit configuration files directly, meaning hooks should not edit the following:

PBS_HOME/sched_priv/sched_config

PBS_HOME/sched_priv/fairshare

PBS_HOME/sched_priv/dedicated

PBS_HOME/sched_priv/holidays

/etc/pbs.conf

PBS_HOME/server_priv/resourcedef

PBS_HOME/mom_priv/config

• Hooks should not execute PBS commands

4.2 Viewing Hook Information

4.2.1 Listing Hooks

To list one hook and its attributes on the current server:

Qmgr: list hook <hook name>

To list all hooks and their attributes on the current server:

Qmgr: list hook

4.2.2 Viewing Hook Contents

To view the contents of a hook, export the hook’s contents:

qmgr -c "export hook <hook_name> <content-type> <content-encoding>" > [<output_file>]

You cannot export the contents of a built-in hook.
HG-22 PBS Professional 2020.1.1 Hooks Guide

Hook Basics Chapter 4
4.2.3 Printing Hook Creation Commands

To view the commands to create one hook, including any configuration file:

Qmgr: print hook <hook name>

To view the commands to create all the hooks on the default server, including their configuration files:

Qmgr: print hook

or

qmgr -c "print hook"

For example, to see the commands used to create hook1 and hook2:

qmgr -c "print hook"

create hook hook1

import hook hook1 application/x-python base64 - cHJpbnQgImhlbGxvLCB3b3JsZCIK

set hook hook1 event=movejob

set hook hook1 alarm=10

set hook hook1 order=5

create hook hook2

import hook hook2 application/x-python base64 - servaJLSDFSESF

set hook hook2 event=queuejob

set hook hook2 alarm=15

set hook hook2 order=60

…

4.2.4 Re-creating Hooks

To re-create a hook, including its configuration file, you feed qmgr hook descriptions back into qmgr. These hook
descriptions are the same information that qmgr prints out. To print out the statements needed to recreate a hook, use the
print hook or print hook <hook name> qmgr commands.

For example, to save information for hook1 and hook2:

qmgr -c "print hook" > hookInfo

To re-create hook1 and hook2, with their configuration files:

qmgr < hookInfo

4.3 Restarting the Python Interpreter

PBS keeps track of the number of hooks serviced, the number of objects created, and the time since the Python inter-
preter was last restarted. You can set a limit for the number of hooks created in the python_restart_max_hooks server
attribute, a limit for the number of objects created in the python_restart_max_objects server attribute, and a limit for
the minimum time interval at which to restart the Python interpreter in the python_restart_min_interval server
attribute.
PBS Professional 2020.1.1 Hooks Guide HG-23

Chapter 4 Hook Basics
python_restart_max_hooks

The maximum number of hooks to be serviced before the Python interpreter is restarted. If this number is
exceeded, and the time limit set in python_restart_min_interval has elapsed, the Python interpreter is
restarted.

Type: integer

Default: 100

Python type: int

python_restart_max_objects

The maximum number of objects to be created before the Python interpreter is restarted. If this number is
exceeded, and the time limit set in python_restart_min_interval has elapsed, the Python interpreter is
restarted.

Type: integer

Default: 1000

Python type: int

python_restart_min_interval

The minimum time interval before the Python interpreter is restarted. If this interval has elapsed, and either the
maximum number of hooks to be serviced (set in python_restart_max_hooks) has been exceeded or the max-
imum number of objects to be created (set in python_restart_max_objects) has been exceeded, the Python
interpreter is restarted.

Type: integer seconds or [[HH:]MM:]SS

Default: 30

Python type: pbs.duration

4.4 Attributes and Parameters Affecting Hooks

• Each hook’s attributes affect the behavior of that hook. Hook attributes are listed in “Hook Attributes” on page 349
of the PBS Professional Reference Guide.

• The $reject_root_scripts MoM parameter controls whether MoM accepts new hook scripts.

• The server attributes that control when the Python interpreter is restarted are listed in Chapter 4, "Restarting the
Python Interpreter", on page 23.

4.5 Python Modules and PBS

When you run a hook inside pbs_python, the hook has access to modules here:

• In PBS_EXEC/python

• In PBS_EXEC/lib/python/altair

Your hook can use other modules if you specify them in the hook.
HG-24 PBS Professional 2020.1.1 Hooks Guide

Hook Basics Chapter 4
The PBS_EXEC/python modules are in the following directories:

PBS_EXEC/python/lib/python36.zip

PBS_EXEC/python/lib/python3.6

PBS_EXEC/python/lib/python3.6/plat-linux2

PBS_EXEC/python/lib/python3.6/lib-tk

PBS_EXEC/python/lib/python3.6/lib-dynload

PBS_EXEC/python/lib/python3.6/site-packages

4.5.1 Python Module Caveats

In order to use PBS_EXEC/python/lib/python3.6/site-packages, you must first call the following:

import site

4.5.2 Modifying Python Modules

If you need to use other modules, we recommend that you put the modules in a different directory from PBS_EXEC/lib/
python.

To use other modules besides the ones in PBS_EXEC/lib/python, specify the path in the hook.

If you are adding modules that are not in PBS_EXEC/lib/python, you can do this:

import sys

if '/usr/lib64/python3.6' not in sys.path:

sys.path.append('/usr/lib64/python3.6')

import pbs

If you need to include user-defined paths ahead of the default modules, you can do the following. For example, if you put
a module in /usr/lib64/python3.6, in /usr/local/lib64/python3.6, and in /usr/local/lib64/custom/python and
you want to load them before the PBS-provided modules, add them to your hook this way:

import sys

my_paths = ['/usr/lib64/python3.6',

'/usr/local/lib64/python3.6',

'/usr/local/lib64/custom/python']

for my_path in my_paths:

if my_path not in sys.path:

sys.path.insert(0, my_path)

import pbs

4.5.2.1 Caveats for Modifying Python Modules

If you change a Python module in a pre-execution event hook (queuejob, movejob, modifyjob, runjob), you must restart
the server in order to use the new module, because "import" is cached.
PBS Professional 2020.1.1 Hooks Guide HG-25

Chapter 4 Hook Basics
4.5.3 List of Modules in pbs_python

The following are the modules that are available via PBS_EXEC/lib/python:

4.6 See Also

For a description of the PBS hook APIs, see the PBS Professional Programmer’s Guide. Each PBS object’s attribute’s
Python type is listed in its description in “Attributes” on page 277 of the PBS Professional Reference Guide. For exam-
ple, “Server Attributes” on page 281 of the PBS Professional Reference Guide lists the Python type for the
job_sort_formula server attribute.

The following man pages and equivalent sections contain useful information:

Table 4-2: Modules in pbs_python

Module Name

cElementTree handler pulldom stringprep

collections handlers pydoc symbol

config itertools re time

copy linecache repr token

copy_reg math saxutils tokenize

cStringIO md5 select types

datetime minicompat sre UserDict

dis minidom sre_compile UserList

domreg NodeFilter sre_constants UserString

ElementInclude opcode sre_parse uuid

ElementPath operator stat xmlbuilder

ElementTree os statvfs xmlreader

expat parser string zipfile

expatbuilder pkgutil StringIO _exceptions

expatreader posixpath stringold _socket

Table 4-3: See Also

Man Page Guide Section

pbs_module(7B) section 9.3.1, “The pbs Module”, on page 110 of the PBS Professional Programmers
Guide

 pbs_stathook(3B) section 9.4.2, “The pbs_stathook() API”, on page 116 of the PBS Professional Pro-
grammers Guide

pbs_hook_attributes(7B) “Hook Attributes” on page 349 of the PBS Professional Reference Guide

pbs_job_attributes(7B) “Job Attributes” on page 328 of the PBS Professional Reference Guide
HG-26 PBS Professional 2020.1.1 Hooks Guide

Hook Basics Chapter 4
pbs_server_attributes(7B) “Server Attributes” on page 281 of the PBS Professional Reference Guide

pbs_queue_attributes(7B) “Queue Attributes” on page 311 of the PBS Professional Reference Guide

pbs_node_attributes(7B) “Vnode Attributes” on page 320 of the PBS Professional Reference Guide

qmgr(1B) “qmgr” on page 149 of the PBS Professional Reference Guide

qsub(1B) “qsub” on page 213 of the PBS Professional Reference Guide

qmove(1B) “qmove” on page 172 of the PBS Professional Reference Guide

qalter(1B) “qalter” on page 127 of the PBS Professional Reference Guide

pbs_rsub(1B) “pbs_rsub” on page 96 of the PBS Professional Reference Guide

pbs_manager(3B) "pbs_manager” on page 41 of the PBS Professional Programmers Guide

Table 4-3: See Also

Man Page Guide Section
PBS Professional 2020.1.1 Hooks Guide HG-27

Chapter 4 Hook Basics
HG-28 PBS Professional 2020.1.1 Hooks Guide

5

Creating and Configuring

Hooks

5.1 Creating and Configuring Hooks

In this chapter we describe how to create and configure site-defined hooks. For information about operating on built-in
hooks, see Chapter 7, "Built-in Hooks", on page 155.

5.1.1 Introduction to Creating and Configuring Hooks

Hooks can only be created, run, or modified by the Administrator, and only on the host(s) on which the primary or sec-
ondary server runs.

You create hooks using the qmgr command to create, delete, import, or export the hook. The qmgr command operates
on the hook object.

Syntax for operating on hooks:

qmgr -c "<command> hook <hook name> [<arguments to command>]"

where

command is create, delete, set, unset, list, print, import, export

5.1.1.1 Hook Name Restrictions

• Each hook must have a unique name.

• The name must be alphanumeric, and start with an alphabetic character.

• The name must not begin with “PBS”.

• The name of a hook can be a legal PBS object name, such as the name of a queue.

• Hook names are case-sensitive.
PBS Professional 2020.1.1 Hooks Guide HG-29

Chapter 5 Creating and Configuring Hooks
5.1.2 Overview of Creating and Configuring a Hook

The following is an overview of the steps to create a hook. Each step is described in the following sections. You must be
logged into the primary or secondary server host as root.

1. Use the create hook qmgr command to create an empty hook with the name you specify

2. Import the contents of a hook script into the hook

3. Set the hook’s trigger event

4. If the hook will use a configuration file, write and import the configuration file

5. Set the hook’s order of execution, if there is another hook for the same event

6. Optionally, set the hook’s timeout

7. Make sure that the $reject_root_scripts MoM configuration parameter is set to False on all execution hosts where
you want hooks to run. The default for this parameter is False.

You do not need to restart the MoM.

5.1.2.1 Example of Creating and Configuring a Hook

Create the hook:

Qmgr: create hook hook1

Import the hook script named hook1_script.py into the hook:

Qmgr: import hook hook1 application/x-python default /hooks/hook1_script.py

Make hook1 a queuejob hook:

Qmgr: set hook hook1 event = queuejob

Make this the second queuejob hook:

Qmgr: set hook hook1 order = 2

Set the hook to time out after 60 seconds:

Qmgr: set hook hook1 alarm = 60

Look at the $reject_root_scripts MoM configuration parameter where you want the hook to run, and make sure it is set
to False.

5.1.3 Creating Empty Hooks

To create a hook, use the create hook command in qmgr to create an empty hook with the name you specify:

The create hook qmgr command creates an empty hook.

Syntax for creating a hook:

Qmgr: create hook <hook name>

5.1.3.1 Example of Creating an Empty Hook

To create the hook named “hook1”, specify a filename, for example “/hooks/hook1.py”, that is locally accessible to
qmgr and the PBS server:

Qmgr: create hook hook1
HG-30 PBS Professional 2020.1.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
5.1.4 Deleting Hooks

To delete a hook, you use the delete hook command in qmgr.

Syntax for deleting a hook:

Qmgr: delete hook <hook name>

5.1.4.1 Example of Deleting a Hook

To delete hook hook1:

Qmgr: delete hook hook1

5.1.5 Setting Hook Trigger Events

To set the events that will cause a hook to be triggered, use the set hook <hook name> event command in
qmgr. You can add triggering events to a hook.

To set one event:

Qmgr: set hook <hook name> event = <event name>

Designate triggers for a hook by setting <event name> to one of the following events:

Table 5-1: Hook Trigger Events

Action (Event) Event Name

Accepting job into queue queuejob

Modifying job, except when scheduler makes modification modifyjob

Moving job movejob

Before a job is sent to an execution host runjob

Periodically on server host periodic

When a job is received by an execution host, after stagein execjob_begin

When pbs_attach() is called execjob_attach

Just before executing a job’s top shell execjob_prologue

Just before executing the user’s program execjob_launch

Just after suspending a job execjob_postsuspend

Just before resuming a job execjob_preresume

Just after executing or killing a job, but before job is cleaned up execjob_epilogue

Just before killing a job execjob_preterm

Just after cleaning up a job that has finished or been killed execjob_end

When an execution host starts up or receives a HUP exechost_startup

Periodically on all execution hosts exechost_periodic
PBS Professional 2020.1.1 Hooks Guide HG-31

Chapter 5 Creating and Configuring Hooks
To add an event:

Qmgr: set hook <hook name> event += <event name>

For a detailed description of each event, see section 6.3.1, “Event Types”, on page 87.

5.1.5.1 Example of Setting Hook Trigger Events

To set an event that will cause hook “UserFilter” to be triggered:

Qmgr: set hook UserFilter event = queuejob

Add another event:

Qmgr: set hook UserFilter event += modifyjob

Set two events at once:

Qmgr: set hook UserFilter event = "queuejob, modifyjob"

You must enclose the value in double quotes if it contains a comma.

5.1.6 Using Hook Configuration Files

You can customize the behavior of a hook by providing a configuration file for the hook. You write the hook so that it
reads and acts on its configuration file. Hooks are not required to use configuration files. A configuration file can con-
tain whatever information is useful to the hook. A configuration file is just a file of whatever information you want; the
way the hook reads and uses the contents of a configuration file is up to you. The hook itself processes the configuration
file.

5.1.6.1 Format of Configuration File

PBS supports several file formats for configuration files. The format of the file is specified in its suffix. Formats can be
specified in any of the following ways:

• .ini

• .json

• .txt (generic, no special format)

• .xml

• No suffix: treat the input file as if it is a .txt file

• The dash (-) symbol: configuration file content will be taken from STDIN. The content is treated as if it is a .txt file.

For example, to import a configuration file in .json format:

qmgr -c "import hook <hook_name> application/x-config default input_file.json"

Provisioning a vnode provision

Submitting reservation resvsub

When reservation ends resv_end

Table 5-1: Hook Trigger Events

Action (Event) Event Name
HG-32 PBS Professional 2020.1.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
5.1.6.2 Importing Configuration File

To provide a configuration file for a hook, you import the configuration file into the hook. The import command is the
same as for a hook, except that you set <content-type> to “application/x-config”. Syntax for importing a configuration
file:

Qmgr: import hook <hook_name> application/x-config <content-encoding>
<input_config_file>

or

qmgr -c "import hook <hook_name> application/x-config <content-encoding> <input_config_file>”

where <content-encoding> is “default” (7-bit) or “base64”.

This uses the contents of <input_config_file> or stdin (-) as the contents of configuration file for hook <hook_name>.

• The <input_config_file> or stdin (-) data must have a format <content-type> and must be encoded with <content-
encoding>.

• The allowed values for <content-encoding> are “default” (7bit) and “base64”.

• If the source of input is stdin (-) and <content-encoding> is “default”, then qmgr expects the input data to be ter-
minated by EOF.

• If the source of input is stdin (-) and <content-encoding> is “base64”, then qmgr expects input data to be termi-
nated by a blank line.

• <input_config_file> must be locally accessible to both qmgr and the requested batch server.

• A relative path <input_config_file> is relative to the directory where qmgr was executed.

• If a hook already has a configuration file, then that is overwritten by this import call.

• If <input_config_file> name contains spaces, <input_config_file> must be quoted.

• There is no restriction on the size of the hook configuration file.

5.1.6.2.i Examples of Importing Configuration Files

Importing a Python configuration file:

qmgr -c 'import hook hook1 application/x-config default hello.py'

Importing a JSON configuration file:

qmgr -c 'import hook hook1 application/x-config default hello.json'

5.1.6.3 Exporting Configuration Files

To edit or display the content of a hook configuration file associated with the hook named <hook_name>, export the con-
figuration file. Use the export command:

qmgr -c "export hook <hook_name> application/x-config default" > <output file>
PBS Professional 2020.1.1 Hooks Guide HG-33

Chapter 5 Creating and Configuring Hooks
5.1.6.4 How Hooks Find Configuration Files

There are two ways to retrieve a configuration file in a hook.

• PBS puts the configuration file in a location that can be read by the hook, and sets the
PBS_HOOK_CONFIG_FILE environment variable to that path. Your hook script can use this path:
import os

import ConfigParser

if "PBS_HOOK_CONFIG_FILE" in os.environ:

config_file = os.environ[“PBS_HOOK_CONFIG_FILE”]

config = ConfigParser.RawConfigParser()

config.read(os.environ[“PBS_HOOK_CONFIG_FILE")

• Your hook can use the pbs.hook_config_filename variable, which contains the path to the configuration file. See
"pbs.hook_config_filename” on page 135.

If there is no configuration file, this variable returns None.

5.1.6.5 Changing a Hook Configuration File

To replace the content of a hook configuration file, export the file, edit it, and issue another “import” hook command
with updated <input_config_file> content.

5.1.6.6 Validation and Errors

• PBS pre-validates <input_config_file> according to its file format, and returns an error in qmgr's STDERR if valida-
tion fails. For example:
qmgr -c "import hook submit application/x-config default file.json"

"Failed to validate config file, hook 'submit' config file not overwritten"

• If the input configuration file given is of unrecognized suffix, the following message is returned in qmgr's STDERR.
"<input-file> contains an invalid suffix, should be one of: .json .py .txt .xml .ini"

• If you import a configuration file and PBS cannot open the file because it is non-existent, has permission problems,
or has another system-related error, the following error message is printed in STDERR:
"qmgr: hook error: failed to open <filename> - <error message>"

• If you attempt to export a hook configuration file, but the file is unwriteable due to ownership or permission prob-
lems, the following error message is printed to STDERR:
"qmgr: hook error: <output_file> permission denied"

5.1.7 Importing Hooks

To import a hook, you import the contents of a hook script into the hook. You must specify a filename that is locally
accessible to qmgr and the PBS server.

Syntax for importing a hook:

Qmgr: import hook <hook_name> <content-type> <content-encoding> {<input_file>|-}
HG-34 PBS Professional 2020.1.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
This uses the contents of <input_file> or stdin (-) as the contents of hook <hook_name>.

• The <input_file> or stdin (-) data must have a format <content-type> and must be encoded with <content-encod-
ing>.

• For script files, the only <content-type> currently supported is “application/x-python”.

• The allowed values for <content-encoding> are “default” (7 bit) and “base64”.

• If the source of input is stdin (-) and <content-encoding> is “default”, then qmgr expects the input data to be ter-
minated by EOF.

• If the source of input is stdin (-) and <content-encoding> is “base64”, then qmgr expects input data to be termi-
nated by a blank line.

• <input_file> must be locally accessible to both qmgr and the requested batch server.

• A relative path in <input_file> is relative to the directory where qmgr was executed.

• If a hook already has a content script, then that is overwritten by this import call.

• If the name of <input_file> contains spaces, <input file> must be quoted.

• There is no restriction on the size of the hook script.

5.1.7.1 Examples of Importing Hooks

Example 5-1: Given a Python script in ASCII text file "hello.py", this makes its contents into the script contents of
hook1:

#cat hello.py

import pbs

pbs.event().job.comment="Hello, world"

qmgr -c 'import hook hook1 application/x-python default hello.py'

Example 5-2: Given a base64-encoded file "hello.py.b64", qmgr unencodes the file's contents, and then makes this
script the contents of hook1:

cat hello.py.b64

cHJpbnQgImhlbGxvLCB3b3JsZCIK

qmgr -c 'import hook hook1 application/x-python base64 hello.py.b64'

Example 5-3: Read stdin for text containing data until EOF, and make this into the script contents of hook1:

qmgr -c 'import hook hook1 application/x-python default -'

import pbs

pbs.event().job.comment="Hello from stdin"

Ctrl-D

Example 5-4: Read stdin for a base64-encoded string of data terminated by a blank line. PBS unencodes the data and
makes this script the contents of hook1.

qmgr -c 'import hook hook1 application/x-python base64 -'

cHJpbnQgImhlbGxvLCB3b3JsZCIK

Ctrl-D

5.1.8 Exporting Hooks

Syntax for exporting a hook:

qmgr -c "export hook <hook_name> <content-type> <content-encoding>" > <output_file>
PBS Professional 2020.1.1 Hooks Guide HG-35

Chapter 5 Creating and Configuring Hooks
This dumps the script contents of hook <hook_name> into <output_file>, or stdout if <output_file> is not specified.

• The resulting <output_file> or stdout data is of <content-type> and <content-encoding>.

• The only <content-type> currently supported for scripts is “application/x-python”.

• The allowed values for <content-encoding> are “default” (7bit) and “base64”.

• <output_file> must be a path that can be created by qmgr.

• Any relative path in <output_file> is relative to the directory where qmgr was executed.

• If <output_file> already exists it is overwritten. If PBS is unable to overwrite the file due to ownership or permis-
sion problems, then an error message is displayed in stderr.

• If the <output_file> name contains spaces, <output file> must be enclosed in quotes.

5.1.8.1 Examples of Exporting Hooks

Example 5-5: Dumps hook1's script contents directly into the file "hello.py.out":

qmgr -c "export hook hook1 application/x-python default" > hello.py
cat hello.py

import pbs

pbs.event().job.comment="Hello, world"

Example 5-6: To dump the script contents of a hook 'hook1' into a file in “\My Hooks\hook1.py”:

qmgr -c "export hook hook1 application/x-python default" > "\My Hooks\hook1.py"

Example 5-7: Dump hook1's script contents base64-encoded into a file called "hello.py.b64":

qmgr -c "export hook hook1 application/x-python base64" > hello.py.b64

cat hello.py.b64

cHJpbnQgImhlbGxvLCB3b3JsZCIK

Example 5-8: Dump hook1's script contents directly to stdout:

qmgr -c "export hook hook1 application/x-python default"

import pbs

pbs.event().job.comment="Hello, world"

Example 5-9: Dump hook1's script contents base64-encoded into stdout:

qmgr -c "export hook hook1 application/x-python base64"

 cHJpbnQgImhlbGxvLCB3b3JsZCIK

5.1.9 Setting and Unsetting Hook Attributes

You configure a hook using the qmgr command to set or unset its attributes. An unset hook attribute takes the default
value for that attribute.

Hook attributes can be viewed via qmgr:

Qmgr: list hook <hook name>

To set a hook attribute:

Qmgr: set hook <hook name> <attribute> = <value>

To unset a hook attribute:

Qmgr: unset hook <hook name> <attribute>
HG-36 PBS Professional 2020.1.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
For example, to unset hook1’s alarm attribute, causing its value to revert to its default value:

Qmgr: unset hook hook1 alarm

This causes hook1's alarm to revert to the default of 30 seconds.

5.1.9.1 Caveats for Setting Hook Attributes

You cannot set the type attribute for a built-in hook.

5.1.9.2 Using the fail_action Hook Attribute

The fail_action hook attribute is a string_array and can take on multiple values:

None

No action is taken.

offline_vnodes

After unsuccessful hook execution, offlines the vnodes managed by the MoM executing the hook. Can be set
for execjob_begin, execjob_prologue, and exechost_startup hooks only.

clear_vnodes_upon_recovery

After successful hook execution, clears vnodes previously offlined via offline_vnodes fail action. Can be set
for exechost_startup hooks only.

scheduler_restart_cycle

After unsuccessful hook execution, restarts scheduling cycle. Can be set for execjob_begin and
execjob_prologue hooks only.

Default value: “None”

If you specify offlining or clearing vnodes in addition to restarting the scheduler, the scheduler restart happens last. The
order of the values is not important.

To set the attribute:

qmgr -c "set hook <hook_name> fail_action = <fail_action value>"

qmgr -c "set hook <hook_name> fail_action = '<fail_action value>,<fail_action value>'"

To add a value to the list of values:

qmgr -c "set hook <hook_name> fail_action += <fail_action value>"

To remove a value from the list of values:

qmgr -c "set hook <hook_name> fail_action -= <fail_action value>"

To find out what the values are:

qmgr -c "list hook <hook_name> fail_action"

<hook_name>

fail_action = <fail_action value>

To unset the attribute:

qmgr -c "unset hook <hook_name> fail_action"

See section 5.2.12.4, “Offlining and Clearing Vnodes Using the fail_action Hook Attribute”, on page 66 and section
5.2.6, “Restarting Scheduler Cycle After Hook Failure”, on page 63.

5.1.9.3 List of Hook Attributes

Hook attributes are listed in “Hook Attributes” on page 349 of the PBS Professional Reference Guide.
PBS Professional 2020.1.1 Hooks Guide HG-37

Chapter 5 Creating and Configuring Hooks
5.1.10 Enabling and Disabling Hooks

A hook is either enabled, and will run when its action happens, or is disabled, and will not run. Hooks are enabled by
default.

Syntax to enable a hook:

Qmgr: set hook <hook name> enabled=True

Syntax to disable a hook:

Qmgr: set hook <hook name> enabled=False

5.1.10.1 Example of Enabling and Disabling Hooks

To enable hook1:

Qmgr: set hook hook1 enabled=True

To disable hook1:

Qmgr: set hook hook1 enabled=False

5.1.11 Setting the Relative Order of Hook Execution

When there are multiple hooks of the same type for one action, you may wish to specify the order in which these hooks
are run. The order in which the hooks for an action are run is determined by each hook’s order attribute. Hooks with a
lower value for order will run before hooks with a higher value. To set the relative order in which the hooks for an action
will be run, set each hook’s order attribute.

Syntax:

Qmgr: set hook <hook name> order=<ordering>

<ordering> is an integer. Hooks with lower values for <ordering> run before those with higher values; a hook with
order=1 runs before a hook with order=2.

Valid values for order:

• Built-in hooks can be from -1000 to 2000

• Site hooks can be from 1 to 1000

The order in which hooks of the same type for unrelated actions execute is undefined. For example, there are two
queuejob hooks, Hook1 and Hook2, and userA submits jobA and userB submits jobB. While Hook1 always runs before
Hook2 for the same job, the order of execution is undefined for different jobs. So the order could be:

Hook1 (jobB)

Hook1 (jobA)

Hook2 (jobA)

Hook2 (jobB)

5.1.11.1 Example of Setting Relative Order of Hook Execution

To set hookA to run first and hookB to run second:

Qmgr: set hook hookA order=2
Qmgr: set hook hookB order=5
HG-38 PBS Professional 2020.1.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
5.1.11.2 Caveats for Setting Relative Order of Hooks

The order attribute is ignored for exechost_periodic and periodic hooks.

5.1.12 Setting Hook Timeout

You may wish to specify how long PBS should wait for a hook to run. Execution for each hook times out after the num-
ber of seconds specified in the hook’s alarm attribute. If the hook does not run in the specified time, PBS aborts the hook
and rejects the hook’s action.

Syntax:

Qmgr: set hook <hook name> alarm=<timeout>

<timeout> is the number of seconds PBS will allow the hook to run.

When a hook timeout is triggered, the hook script gets a Python KeyboardInterrupt from the PBS server. The server
logs show:

06/17/2008 17:57:16;0001;Server@host2;Svr;Server@host2;PBS server internal error (15011) in
Python script received a KeyboardInterrupt, <type 'exceptions.KeyboardInterrupt'>

5.1.12.1 Example of Setting Hook Timeout

To set the number of seconds that PBS will wait for hook hook1 to execute before aborting the hook and reject the action:

Qmgr: set hook hook1 alarm=20

5.1.13 Setting Hook Interval (Frequency)

You can specify the interval at which a periodic hook runs. You can do this only for hooks whose event type is
exechost_periodic or periodic.

Syntax:

Qmgr: set hook <hook name> freq=<interval>

<interval> is the number of seconds elapsed between calls to this hook.

5.1.13.1 Example of Setting Hook Interval (Frequency)

To set the number of seconds between calls to an exechost_periodic or periodic hook:

Qmgr: set hook hook1 freq=200

5.1.14 Setting Hook User Account

You can specify the account under which a hook runs.

Syntax:

Qmgr: set hook <hook name> user=<pbsadmin | pbsuser>

pbsadmin specifies that the hook runs as root or as administrator.

pbsuser specifies that the hook runs as the job owner.

You can specify that a hook runs as the job owner only for execjob_prologue, execjob_epilogue, and execjob_preterm
hooks.

If you do not set the account, it defaults to pbsadmin.
PBS Professional 2020.1.1 Hooks Guide HG-39

Chapter 5 Creating and Configuring Hooks
5.1.14.1 Example of Setting Hook User Account

To set the account under which a hook runs:

Qmgr: set hook hook1 user=pbsuser

5.2 Writing Hook Scripts to Operate on PBS

Elements

5.2.1 How We Define and Refer to Objects and Methods

5.2.1.1 Scope of Object or Method

When we define an object or method, we show the scope of the object or method. For example, the scope of a job is the
pbs module, so we call it a pbs.job, and a server has the same scope, so it is a pbs.server. Similarly, the logjobmsg()
method has module-wide scope, and is defined as pbs.logjobmsg().

However, the scope of a job ID object is the job, not the module, so it is defined as a pbs.job.id, and the scope of the job’s
is_checkpointed() method is the job, so it is defined as pbs.job.is_checkpointed().

5.2.1.2 Referring to Objects

In a hook, you refer to the triggering event using pbs.event(). In a hook that is triggered by a job-related event, such as
a movejob or execjob_begin hook, the event has an associated pbs.job object representing the job that triggered the
event, and you refer to it using pbs.event().job. You can refer to members of that job object using pbs.event().job.<mem-
ber>. For example, to refer to the ID of the job associated with the event, you use pbs.event().job.id. To use the
is_checkpointed() method on the job associated with the event, you use pbs.event().job.is_checkpointed(). You can use
shortcuts:

e = pbs.event()

j = e.job

c = j.is_checkpointed()

5.2.1.3 How to Retrieve Objects: Event vs. Server

Each event has access to specific objects, listed in Table 6-3, “Using Event Object Members in Events,” on page 108.
You can manipulate many of these objects through the event. To retrieve the job that triggered an event, you refer to it
this way: pbs.event().job.

The server has read access to all objects in the pbs module. You refer to these objects through the server. For example,
to retrieve a job whose ID is “1234” through the server, you use pbs.server().job(“1234”). You cannot manipulate an
object that is retrieved through the server.

5.2.1.3.i Retrieving Jobs

The way you retrieve a job determines how much access you have to that job. You can retrieve a job either through the
event, via pbs.event().job, or through the server, via pbs.server().job().

If you retrieve a job through an event, the event gives you the job itself, represented as an object. You can see and alter
some job attributes for an event-retrieved job object. To get the job object representing the job associated with the cur-
rent event, on which you can operate, use pbs.event().job. We show which hooks can see and set each job attribute in
Table 5-6, “Job Attributes Readable & Settable via Events,” on page 55.
HG-40 PBS Professional 2020.1.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
However, if you retrieve a job through the server, the server gives you an instantiated job object that contains a copy of
the job. You cannot set any job attributes for a server-retrieved job object, and trying to operate on a server-retrieved
copy of the job causes an exception. In order to get read-only information about a particular job with ID <id>, use
pbs.server().job('<job ID>'). This returns a read-only copy of the job.

You can see all of the attributes for a server-retrieved job object, except in a queuejob hook. In a queuejob hook, the
event gives you the job as it exists before the server sees it, but the server cannot retrieve it, because the job has not yet
made it to the server.

5.2.1.3.ii Retrieving Vnodes

Vnode objects behave like job objects. If you retrieve a vnode object through an event, via pbs.event().vnode_list[], you
can see some of the vnode’s attributes, and set vnode attributes. We show which hooks can see and set each vnode
attribute in Table 5-7, “Vnode Attributes Readable & Settable via Events,” on page 57.

If you retrieve a vnode object through the server, via pbs.server().vnode(), you have a copy of the vnode, and you can
see all of the vnode’s attributes, but you cannot set any of them.

5.2.1.3.iii Retrieving Queues

You can retrieve queues through the server only, using pbs.server().queue(“<queue name>”), or using
pbs.server().queues(). You cannot make any changes to queue objects in hooks. These are read-only.

You can change a job’s destination queue, but only to a queue at the local server. Hooks have access only to the local
server. Hooks can allow a job submission to a remote server, but they cannot specify a remote server. See section
5.3.9.1, “Local Server Only”, on page 72. Hooks can specify the destination queue at a local server for a queuejob or
movejob event, whether the original destination queue was at the local server or a remote server.

To specify a destination queue at the local server:

pbs.event().job.queue = pbs.server().queue("<local_queue>")

Do not specify a queue at a remote server in a hook script.

5.2.1.3.iv Retrieving Reservations

In order to get information about a reservation being created in a resvsub event, use pbs.event().resv. pbs.server() can-
not return information about the reservation, because the reservation has not yet been created.

5.2.2 Recommended Hook Script Structure

5.2.2.1 Catch Exceptions

Your hook script should catch all exceptions except for SystemExit. We recommend that you catch exceptions via try...

except and accompany them with a call to pbs.event().reject().

It is helpful if it displays a useful error message in the stderr of the command triggering the hook. The error message
should show the type of the error and should describe the error.
PBS Professional 2020.1.1 Hooks Guide HG-41

Chapter 5 Creating and Configuring Hooks
Here is the recommended script structure:

import pbs

import sys

try:

…

except SystemExit:

pass

except:

pbs.event().job.rerun()

pbs.event().reject("%s hook failed with %s. Please contact \

Admin" % (pbs.event().hook_name, sys.exc_info()[:2]))

5.2.2.1.i Example of Catching Exceptions

This example shows how a coding error in the hook is caught with the except statement, and an appropriate error mes-
sage is generated. In line 7, the statement k=5/0 generates a divide-by-zero error. The hook script is designed to reject
interactive jobs that are submitted to queue “nointer”.

import pbs

import sys

try:

batchq = "nointer"

e = pbs.event()

j = e.job

k = 5/0

if j.queue and j.queue.name == batchq and j.interactive:

e.reject("Can't submit an interactive job in '%s' queue" %

(batchq))

except SystemExit:

pass

except:

e.reject("%s hook failed with %s. Please contact Admin" % (e.hook_name, sys.exc_info()[:2]))

The hook is triggered:

% qsub job.scr

qsub: c1 hhook failed with (<class 'ZeroDivisionError'>, ZeroDivisionError('division by zero',)).
Please contact Admin
HG-42 PBS Professional 2020.1.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
5.2.2.1.ii Table of Exceptions

The following exceptions may be raised when using the pbs.* objects:

5.2.3 Hook Alarm Calls and Unhandled Exceptions

• An execjob_begin or exechost_startup hook can cause a failure action to take place when the hook script fails
due to an alarm call or an unhandled exception. Otherwise, the following happens:

Table 5-2: Exceptions Raised When Using pbs.* Objects

Object Exception

pbs.BadAttributeValueError Raised when setting member value of a pbs.* object to an invalid value.

pbs.BadAttributeValueTypeError Raised when setting member value of a pbs.* object to an invalid type.

pbs.BadResourceValueError Raised when setting resource value of a pbs.* object to an invalid value.

pbs.BadResourceValueTypeError Raised when setting resource value of a pbs.* object to an invalid type.

pbs.EventIncompatibleError Raised when referencing a nonexistent member in pbs.event.

Example: calling pbs.event().resv for pbs.event().type of pbs.QUEUEJOB

pbs.UnsetAttributeNameError Raised when referencing a non-existent member name of a pbs.* object.

pbs.UnsetResourceNameError Raised when referencing a non-existent resource name of a pbs.* object.

SystemExit 1. Raised when pbs.event().reject() terminates hook execution.

2. Raised when pbs.event().accept() terminates hook execution.
PBS Professional 2020.1.1 Hooks Guide HG-43

Chapter 5 Creating and Configuring Hooks
If a pre-execution event or execution event hook encounters an unhandled exception:

• PBS rejects the corresponding action. The command that initiates the action results in the following message in
stderr:

“<command_name>: request rejected as filter hook <hook_name> encountered an exception. Please
inform Admin”

• The following message appears in the appropriate PBS daemon log, logged under PBSEVENT_DEBUG2 event
class:

“<request type> hook <hook_name> encountered an exception, request rejected”

• The job is left unmodified.

• If an exechost_startup hook script encounters an unexpected error causing an unhandled exception, vnode changes
do not take effect, but MoM continues to run, and the following message appears at level PBSEVENT_DEBUG2
in mom_logs:
“exechost_startup hook <hook_name> encountered an exception, request rejected”

• The following statements will cause an unhandled exception if they appear in a hook script as is:

• ZeroDivisionError exception raised:

val = 5/0

• BadAttributeValueError exception raised; pbs.hold_types and strings don't mix:

pbs.event().job.Hold_Types = “z”

• EventIncompatibleError exception raised for the following runjob event; runjob event has job attribute, not
resv attribute:

r = pbs.event().resv

• You can use execjob_begin and exechost_startup hooks to offline vnodes when those hooks encounter alarm
calls or unhandled exceptions. See “Offlining and Clearing Vnodes Using the fail_action Hook Attribute” on page
66 of the PBS Professional Reference Guide. You can then clear the offline state from those vnodes later when an
exechost_startup hook runs successfully.

• You can use an execjob_begin hook restart the scheduler cycle when the hook encounters an alarm call or unhan-
dled exception. See “Restarting Scheduler Cycle After Hook Failure” on page 63 of the PBS Professional Reference
Guide.

For a list of exceptions, see Table 5.2.2.1.ii, “Table of Exceptions,” on page 43.

5.2.4 Using Attributes and Resources in Hooks

5.2.4.1 Using Built-in vs. Custom Resources in Hooks

Hooks have more access to built-in resources than they do to custom resources. All hooks can read built-in resources.
All event hooks that run at the server can read all custom resources via pbs.event(), as well as via pbs.server(). How-
ever, hooks that run at the execution host can read custom resources only via pbs.server(). So for example if a job
requests a custom resource, a runjob hook can read the resource, but an exechost_begin hook cannot.

5.2.4.2 Creating and Setting Custom Resources in Hooks

You can create a custom resource only in an exechost_startup hook. You can set a custom resource in a hook that runs
at the server or using an exechost_startup hook. To create and set a custom resource in a vnode’s
resources_available attribute via an exechost_startup hook:

qmgr -c "create hook start event=exechost_startup"

qmgr -c "import hook start application/x-python default start.py"

qmgr -c "export hook start application/x-python default"
HG-44 PBS Professional 2020.1.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
Hook script:

import pbs

e=pbs.event()

localnode=pbs.get_local_nodename()

e.vnode_list[localnode].resources_available['foo_i'] = 7

e.vnode_list[localnode].resources_available['foo_f'] = 5.0

e.vnode_list[localnode].resources_available['foo_str'] = "seventyseven"

Note that while an exechost_startup hook cannot read an existing custom resource, it can create and set a new one.

When you create a custom job resource in an exechost_startup hook, the m flag is set by default. See "Allowing Exe-
cution Hooks to Read Custom Job Resources Faster" on page 261 in the PBS Professional Administrator’s Guide.

5.2.4.3 Determining Whether to Use Creation Method to Set Attribute

or Resource

The way you set an attribute or resource depends on the type of the attribute or resource:

• If the attribute or resource is a string (str), an integer (int), a Boolean (bool), a long (long), or a floating point (float),
you can set it directly:

pbs.event().job.<attribute name> = <attribute value>
pbs.event().job.Resource_List[“<resource name>”]=<resource value>

For example:

jobA = pbs.event().job

jobA.Account_Name = “AccountA”

jobA.Priority = 100

• However, if the attribute or resource is any other type, you must use the corresponding creation method to instantiate
an object of the correct type with the desired value as a formatted input string, then assign the object to the job. For
example:
pbs.event().job.Hold_Types = pbs.hold_types(“uo”)

For creation methods, see section 6.13.3, “PBS Types and Their Methods”, on page 143.

5.2.4.3.i Caveat for Objects Requiring Creation Method

You can operate on these objects only as if they are strings. Use repr() on the object to get its full string representa-
tion. You can then manipulate this representation using the built-in methods for Python 'str'.

5.2.4.3.ii Python Types not Requiring Creation Method

The following Python types do not require you to use an explicit creation method:

bool

float

int

str

5.2.4.4 How to Unset an Attribute or Resource

To unset an attribute or resource, set <attribute value> to None:

pbs.event().job.<attribute name> = None
PBS Professional 2020.1.1 Hooks Guide HG-45

Chapter 5 Creating and Configuring Hooks
When you unset an attribute or resource, it takes its default value.

5.2.4.4.i How to Unset an Attribute or Resource Requiring Creation Method

You can unset a job attribute or resource that has a creation method by setting it to None.

Example:

pbs.event().job.Hold_Types = None

5.2.4.5 Using Attributes in Hooks: Reading vs. Setting

All hooks can read, but not set, all job, vnode, server, queue, and reservation attributes via pbs.server().job(),
pbs.server().vnode(), pbs.server().queue(), etc.

We list which job attributes can be read or set when the job is retrieved through an event in Table 5-6, “Job Attributes
Readable & Settable via Events,” on page 55.

We list which vnode attributes can be read or set when the vnode is retrieved through an event in Table 5-7, “Vnode
Attributes Readable & Settable via Events,” on page 57.

We list which reservation attributes can be read or set when the reservation is retrieved through an event in Table 5-8,
“Reservation Attributes Readable & Settable in resvsub and resv_end Hooks,” on page 59.

No hooks can see or set any scheduler attributes.

The job, vnode, or reservation object’s attributes appear to the hook as they would be after the event, not before it, for all
hooks except runjob hooks.

5.2.4.6 Setting Time Attributes

For the job attributes Execution_Time, ctime, etime, mtime, qtime, and stime, the pbs.job object expects or shows the
number of seconds since Epoch. The only one of these that can be set is Execution_Time.

For the reservation attributes reserve_start, reserve_end, and ctime, the pbs.resv object expects and shows the number
of seconds since Epoch. The ctime attribute cannot be set.

If you wish to set the value for Execution_Time, reserve_start, or reserve_end using the [[CCYY]MMDDhhmm[.ss]
format, or to see the value of any of the time attributes in the ASCII time format, load the Python time module and use
the functions time.mktime([CCYY, MM, DD, hh, mm, ss, -1, -1, -1]) and time.ctime().

Example:

import time

job.Execution_Time = time.mktime([07, 11, 28, 14, 10, 15, -1, -1, -1])

time.ctime(job.Execution_Time)

'Wed Nov 28 14:10:15 2007'

If reserve_duration is unset or set to None, the reservation’s duration is taken from the walltime resource attribute asso-
ciated with the reservation request. If reserve_duration and walltime are both specified, meaning not set to None,
reserve_duration will take precedence.
HG-46 PBS Professional 2020.1.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
5.2.4.7 Special Characters in Variable_List Job Attribute

When special characters are used in Variable_List job attributes, they must be escaped. For this attribute, special charac-
ters are comma (,), single quote (‘), double quote (“), and backslash (\). PBS requires each of these to be escaped with a
backslash. However, Python requires that double quotes and backslashes also be escaped with a backslash. If the special
character inside a string is a single quote, you must enclose the string in double quotes. If the special character inside the
string is a double quote, you must enclose the string in single quotes. The following rules show how to use special char-
acters in a Variable_List attribute when writing a Python script:

For example, if the path is:

“\Documents and Settings\pbstest\bin:\windows\system32”

This is how the path shows up in a script:

job.Variable_List[“PATH”] = “\\Documents and Settings\\pbstest\\bin:\\windows\\system32”

5.2.4.8 Using string_array Attributes and Resources

5.2.4.8.i Handling Literal Values and Special Characters in string_array Format

In order to capture a literal value or special characters in a string_array attribute or resource, enclose the entire string
array in single quotes.

For an attribute or resource whose type is string_array and whose value contains one or more commas (“,”), the whole
string must be enclosed in single quotes, outside of its double quotes. For example:

If our string array has a single element consisting of “glad, elated”:

job.Resource_List["test_string_array"] = '"glad, elated"'

If our string array has two elements, where one is “glad, elated” and the other is “happy”:

job.Resource_List["test_string_array"] = ‘"glad, elated",“happy”’

5.2.4.9 Using Resources in Hooks: Reading vs. Setting

All hooks can read, but not set, all job, vnode, server, queue, and reservation resources via pbs.server().job(),
pbs.server().vnode(), pbs.server().queue(), etc.

The resources that can be read or set via pbs.event() vary by hook:

We list the job resources that can be read and set via an event in each kind of hook in Table 5-9, “Built-in Job Resources
Readable & Settable by Hooks via Events,” on page 60.

We list the vnode resources that can be read and set via an event in each kind of hook in Table 5-10, “Vnode Resources
Readable & Settable by Hooks via Events,” on page 61.

Table 5-3: How to Use Special Characters in Python Scripts

Character Example Value How Value is Represented in Python Script

, (comma) a,b “a\\,b” or ‘a\\,b’

' (single quote) c’d “c\\’d”

" (double quote) f"g"h 'f\\\"g\\\"h'

\ (backslash) \home\dir\files “\\home\\dir\\files” or ‘\\home\\dir\\files’
PBS Professional 2020.1.1 Hooks Guide HG-47

Chapter 5 Creating and Configuring Hooks
We give an overview of the resources that can be read and set by each hook in Table 5-4, “Overview of Resources Read-
able & Settable by Hooks via Pre-execution and Provision Events,” on page 52 and Table 5-5, “Overview of Resources
Readable & Settable by Hooks via execjob_ and exechost_ Events,” on page 52. In these tables, if we say that a hook
can read or set a group of resources, for example the server’s resources_available attribute, that means that the hook can
read or set all of the resources for that group.

5.2.4.10 Reading Resources in Hooks

PBS resources are represented as objects of type pbs.pbs_resource, where the resource names are the keys. This type
is described in section 6.13.3.19, “Method to Create or Set Resource List”, on page 147. Built-in resources are listed in
“List of Built-in Resources” on page 259 of the PBS Professional Reference Guide.

You can read a resource through objects such as the server, the event that triggered the hook, or the vnode to which a
resource belongs. For example:

pbs.server().resources_available[“<resource name>”]

pbs.event().job.Resource_List[“<resource name>”]

pbs.event().vnode_list[<vnode name>].resources_available[“ncpus”]

The resource name must be in quotes.

Example: Get the number of CPUs in a job’s Resource_List attribute:

ncpus=pbs.event().job.Resource_List[“ncpus”]

5.2.4.10.i Converting walltime to Seconds

If you want to see a job’s walltime in seconds:

int(pbs.event().job.Resource_List["walltime"])

For example:

pbs.logmsg(pbs.LOG_DEBUG, "walltime=%d" % (int(pbs.event().job.Resource_List["walltime"])))

If walltime is "00:30:15", this results in the following:

walltime=1815

5.2.4.11 Setting and Unsetting Vnode Resources and Attributes

You can set and unset vnode resources and attributes using the vnode_list[] object in an exechost_startup or
exechost_periodic hook. Any changes made this way are merged with those defined in a Version 2 vnode configuration
file.

To set the attributes and resources for a particular vnode:

pbs.event().vnode_list[<vnode name>].<attribute> = <value>

pbs.event().vnode_list[“<vnode name>”].resources_available[“<resource name>”] = <resource value>

Resource names and string values must be quoted.

Some examples:

pbs.event().vnode_list[“V2”].pcpus = 5

pbs.event().vnode_list[“V2”].resources_available[“ncpus”] = 3

pbs.event().vnode_list[“V2”].resources_available.[“mem”] = pbs.size(“100gb”)

pbs.event().vnode_list[“V2”].arch = “linux”

pbs.event().vnode_list[“V2”].state = pbs.ND_OFFLINE

pbs.event().vnode_list[“V2”].sharing = pbs.ND_FORCE_EXCL
HG-48 PBS Professional 2020.1.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
To unset a resource value, specify “None” as its value:

pbs.event().vnode_list[<vnode_name>].resources_available[<res>] = None

pbs.event().vnode_list[<vnode_name>].<attribute> = None

5.2.4.12 Setting Job Resources in Hooks

You can set a job’s Resource_List in pre-execution event hooks listed in Table 5-9, “Built-in Job Resources Readable &
Settable by Hooks via Events,” on page 60.

You can use an execution event hook (execjob_prologue, execjob_epilogue, and exechost_periodic) to set the value
of a job’s resources_used for host-level resources. The values of these resources are then reported in the job’s
resources_used attribute. For multi-vnode jobs, numeric values are summed and string resources are aggregated on a
per-MoM basis.

5.2.4.12.i Steps for Setting Job Resources in Hooks

You can set values for a job’s Resource_List or resources_used attributes as follows:

pbs.event().job.Resource_List[“<resource name>”] = <resource value>

pbs.event().job.resources_used[“<resource name>”] = <resource value>

For example:

pbs.event().job.Resource_List[“mem”] = 8gb

5.2.4.12.ii String Resource Format for Python

Each string value returned by a MoM is a JSON object (a Python dictionary), which is an unordered set of key-value
pairs, where each object begins with a left curly brace (“{”), and ends with a right curly brace (“}”). Each key is fol-
lowed by a colon (“:”), and the key-value pairs are separated using a comma (“,”). The key is enclosed in double quotes
(allowing backslash escapes).

5.2.4.12.iii Setting String Job Resources in Hooks

When all values are in JSON format, the resulting string resource value is a union of all dictionary items, shown in
qstat -f output and accounting logs as:

resources_used.<resource_name> = {<MoMA_JSON_item_value>, <MoMB_JSON_item_value>,
<MoMC_JSON_item_value>, ..}

Example 5-10: If MoMA returns '{ "a":1, "b":2 }', MoMB returns '{ "c":1 }', and MoMC returns '{"d":4}' for
resources_used.foo_str. We see the following:

resources_used.foo_str='{"a": 1, "b": 2, "c":1,"d": 4}'

If two or more values have the same value for the key, only one of them is retained, depending on Python's operation of
merging dictionary items. We recommend that hook writers make the keys unique; you can do this by using the value
returned by pbs.get_local_nodename() as part of the key.

When at least one of the values obtained from a sister MoM is not of JSON format, the string cannot be accumulated, and
resources_used remains unset. PBS writes an error message in the MoM logs as follows:

"Job <jobid> resources_used.<string_resource> cannot be accumulated: value <input value> from MoM
<hostname> not JSON-format: <exception_error_message>."
PBS Professional 2020.1.1 Hooks Guide HG-49

Chapter 5 Creating and Configuring Hooks
5.2.4.12.iv Example of Setting Resources in Hooks

Example 5-11: Using an epilogue hook that runs on all the MoMs, we set different resources_used values depending
on whether the hook executes on the primary execution host or a sister MoM:

#: qmgr -c "list hook epi"

Hook epi

type = site

enabled = true

event = execjob_epilogue

user = pbsadmin

alarm = 30

order = 1

debug = false

fail_action = none

qmgr -c "e h epi application/x-python default"

import pbs

e=pbs.event()

pbs.logmsg(pbs.LOG_DEBUG, "executed epilogue hook")

if e.job.in_ms_mom(): #set in MS mom

 e.job.resources_used["vmem"] = pbs.size("9gb")

 e.job.resources_used["foo_i"] = 9

 e.job.resources_used["foo_f"] = 0.09

 e.job.resources_used["foo_str"] = '{"nine":9}'

 e.job.resources_used["cput"] = 10

 e.job.resources_used["foo_assn2"] = '{"vn1":1,"vn2":2,"vn3":3}'

else: # set in sister mom

 e.job.resources_used["vmem"] = pbs.size("10gb")

 e.job.resources_used["foo_i"] = 10

 e.job.resources_used["foo_f"] = 0.10

 e.job.resources_used["foo_str"] = '{"ten":10}'

 e.job.resources_used["cput"] = 20

 e.job.resources_used["foo_assn2"] = '{"vn4":4,"vn5":5,"vn6":6}'

Using two execution hosts, submit the following job:

% cat job.scr2

PBS -l select=2:ncpus=1

pbsdsh -n 1 hostname

sleep 300

% qsub job.scr2

102.corretja
HG-50 PBS Professional 2020.1.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
When the job completes, we can see values for resources_used. With server job_history_enabled=True, we can
check the values in a finished job. Values in bold show resources accumulated from both MoMs:

% qstat -x -f 102

...

resources_used.cpupercent = 0

resources_used.cput = 00:00:30

resources_used.vmem = 19gb

resources_used.foo_f = 0.19

resources_used.foo_i = 19

resources_used.foo_str = '{"nine": 9, "ten": 10}'

resources_used.foo_assn2='{"vn1": 1, "vn2": 2 ,"vn3": 3 ,"vn4": 4, "vn5": 5, "vn6": 6}'

resources_used.mem = 0kb

resources_used.ncpus = 2

resources_used.walltime = 00:00:05

The accounting logs show the same values:

8/03/2016 18:28:13;E;102.corretja;user=alfie group=users project=_pbs_project_default
jobname=job.scr2 queue=workq ctime=1470263288 qtime=1470263288 etime=1470263288
start=1470263288 exec_host=corretja/0+nadal/0 exec_vnode=(corretja:ncpus=1)+(nadal:ncpus=1)
Resource_List.ncpus=2 Resource_List.nodect=2 Resource_List.place=free
Resource_List.select=2:ncpus=1 session=16986 end=1470263293 Exit_status=143
resources_used.cpupercent=0 resources_used.cput=00:00:30 resources_used.vmem=19gb
resources_used.foo_f=0.19 resources_used.foo_i=19 resources_used.foo_str='{"nine": 9, "ten":
10}' resources_used.foo_assn2='{"vn1": 1, "vn2": 2 ,"vn3": 3 ,"vn4": 4, "vn5": 5, "vn6": 6}'
resources_used.mem=0kb resources_used.ncpus=2 resources_used.walltime=00:00:05 run_count=1

5.2.4.12.v Setting Built-in Job Resource in Hook Prevents MoM from Updating
Resource

If you use a hook to set the value of a built-in host-level resource for a specific job, MoM no longer updates the value of
the resource for that job; she leaves that to you. You can get MoM to resume updating the resource for that job only by
changing the hook so that it doesn’t set the resource, and restarting the job.

Under Linux, job resources_used that MoM does not modify if they’ve been set in a hook are cput, walltime, mem,
vmem, ncpus, and cpupercent.

Under Windows, job resources_used that MoM does not modify if they’ve been set in a hook are cput, walltime, mem,
and ncpus.
PBS Professional 2020.1.1 Hooks Guide HG-51

Chapter 5 Creating and Configuring Hooks
5.2.4.13 Overview of Readable & Settable Resources

Here we list an overview of which resources can be read or set in hooks. An “r” indicates read, an “s” indicates set, and
an “o” indicates that this resource can be set but the action has no effect. See Table 4-1, “Execution Event Hook Tim-
ing,” on page 19 for more information about why some operations have no effect. The following table shows which
resource categories are readable or settable in pre-execution and provision hooks:

The following table lists an overview of which resources can be read or set in execjob and exechost hooks.

Table 5-4: Overview of Resources Readable & Settable by Hooks via Pre-execution
and Provision Events

Resource Category

q
u

e
u

e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

m
o

v
e
jo

b

ru
n

jo
b

re
s
v
s
u

b

re
s
v
_
e
n

d

p
ro

v
is

io
n

Job Resource_List (Varies; see Table 5-9) r, s r, s r Table 5-9 --- --- ---
Job resources_used o r r r r --- ---
Vnode resources_available --- --- --- --- --- --- ---
Vnode resources_assigned r r r r r --- r
Server resources_available r r r r r r r
Server resources_assigned r r r r r r r
Server resources_default r r r r r r r
Server resources_max r r r r r r r
Queue resources_available r r r r r r r
Queue resources_assigned r r r r r r r
Queue resources_default r r r r r r r
Queue resources_max r r r r r r r
Queue resources_min r r r r r r r
Reservation Resource_List r r r r r, s r ---

Table 5-5: Overview of Resources Readable & Settable by Hooks via execjob_ and
exechost_ Events

Resource Category

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
e
n

d

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic

Job Resource_List (except for custom resources) r r r r r r r r r r r
Job resources_used r, s r r, s r, s r r r r, s r, s r r, s
Vnode resources_available r, s r r, s r r r r r, s r, s r, s r, s
Vnode resources_assigned r r r r r r r r r r r
Server resources_available r r r r r r r r r r r
Server resources_assigned r r r r r r r r r r r
Server resources_default r r r r r r r r r r r
HG-52 PBS Professional 2020.1.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
5.2.4.14 Caveats for Setting and Unsetting Attributes and Resources

5.2.4.14.i When to Change Reservation Attributes

The only time that a reservation’s attributes can be altered is during the creation of that reservation in a resvsub hook.

5.2.4.14.ii Caution About Unsetting Reservation walltime Resource

The walltime resource is used to determine the reservation’s reserve_duration parameter when the reservation’s
reserve_duration attribute is not set or is set to None. If a resvsub hook attempts to unset the walltime parameter, for
example:

pbs.event().resv.Resource_List["walltime"] = None

This will result in the following error:

% pbs_rsub -R 1800 -l ncpus=1

pbs_rsub: Bad time specification(s)

5.2.4.14.iii Changing Job Attributes for a Running Job

When a job is running, only the cput and walltime attributes can be modified. Attempting to change any other attributes
for a running job will cause the corresponding qalter action to be rejected. For example, if the job is running, this line
in a hook will cause qalter to be rejected:

pbs.event().job.Resource_List["mem"] = pbs.size("10mb")

To avoid having the qalter action rejected, check to see whether the job is running, and follow up accordingly. For
example:

e = pbs.event()

if e.job.job_state in [pbs.JOB_STATE_RUNNING, pbs.JOB_STATE_EXITING, pbs.JOB_STATE_TRANSIT]:

e.accept()

5.2.4.14.iv Do Not Unset Array Job Indices

Do not unset pbs.event().job.array_indices_submitted for an array job in a modifyjob hook. For example:

pbs.event().job.array_indices_submitted = None

Server resources_max r r r r r r r r r r r
Queue resources_available r r r r r r r r r r r
Queue resources_assigned r r r r r r r r r r r
Queue resources_default r r r r r r r r r r r
Queue resources_max r r r r r r r r r r r
Queue resources_min r r r r r r r r r r r
Reservation Resource_List r r r r r r r r r r r

Table 5-5: Overview of Resources Readable & Settable by Hooks via execjob_ and
exechost_ Events

Resource Category

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
e
n

d

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic
PBS Professional 2020.1.1 Hooks Guide HG-53

Chapter 5 Creating and Configuring Hooks
If the hook script is executed for a job array, the qalter request will fail with the message:

Cannot modify attribute while job running <job array ID>

5.2.4.14.v Do Not Create Job or Reservation Variable List

Hooks are not allowed to create job or reservation Variable_List attributes. Hooks can modify the existing Variable_List
job attribute which is supplied by PBS, by modifying values in the list. The following are disallowed in a hook:

pbs.event().job.Variable_List = dict()

pbs.event().resv.Variable_List = dict()

These calls will cause the following exception:

04/07/2008 11:22:14;0001;Server@host2;Svr;Server@host2;PBS server internal error (15011) in Error
evaluating Python script, attribute 'Variable_List' cannot be directly set.

To modify the Variable_List attribute:

pbs.event().job.Variable_List["SIMULATE"] = "HOOK1"

5.2.4.14.vi Changing Vnode state Attribute

A vnode's state can be set within a runjob hook only if the runjob hook execution concludes with a pbs.event().reject()
call. This means that if a statement that sets a vnode’s state appears in a runjob hook script, it takes effect only if the fol-
lowing is the last line to be executed:

pbs.event().reject()

To set a vnode's state, the syntax is one of the following:

pbs.vnode.state = <vnode state constant>

pbs.vnode.state += <vnode state constant>

pbs.vnode.state -= <vnode state constant>

where <vnode state constant> is one of the constant objects listed in section 6.10.4, “Vnode State Constant Objects”, on
page 135.

Examples of changing a vnode’s state attribute:

• To offline a vnode:
pbs.vnode.state = pbs.ND_OFFLINE

• To add another value to the list of vnode states:
pbs.vnode.state += pbs.ND_DOWN

• To remove a value from the list of vnode states:
pbs.vnode.state -= pbs.ND_OFFLINE

When a vnode’s state attribute has no states set, the vnode’s state is equivalent to free. This means that you can remove
all values, and the vnode will become free.

When a vnode’s state is successfully set, the following message is displayed and logged at event class 0x0004:

Node;<vnode-name>;attributes set: state - <vnode state constant> by <hook_name>

You can set a vnode’s state attribute in any execution hook and in a periodic hook, and changes to vnode attributes take
effect whether the execution hook or periodic hook calls accept() or reject().

5.2.4.14.vii Attribute Change Failure is Silent

If you attempt to change the value for an attribute in an unsupported way, PBS does not warn you that your attempt
failed.
HG-54 PBS Professional 2020.1.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
5.2.4.14.viii Lengthened walltime Can Interfere with Reservations

If a hook lengthens the walltime of a running job, you run the risk that the new walltime will interfere with existing res-
ervations etc.

5.2.4.14.ix Setting Vnode Resources in Hooks Overwrites Previous Value

When you set resources_available for a vnode, inside or outside of a hook, you are overwriting the previous value.
There is no way in a hook to know whether a value was set inside or outside a hook (for example, using qmgr or a vnode
definition file). There is no way to prevent a value set inside a hook from being modified outside of the hook.

5.2.4.14.x Changing Resources in Accounting Logs

If you use a non-execjob_end execution hook to set a value for resources_used, the new value for resources_used
appears in the accounting logs.

5.2.4.14.xi When Setting Resources Has No Effect

• If you use an execjob_end execution hook to set a value for resources_used, it has no effect, because MoM has
already sent the final values for resources_used to the server.

• You cannot use a hook to set a server-level resource. PBS ignores these actions in a hook.

• You cannot use the qmgr command to set resources_used for a job.

5.2.4.15 Table: Reading & Setting Job Attributes in Hooks

The following table lists the job attributes that can be read or set when the job is retrieved via an event. An “r” indicates
read, an “s” indicates set, and an “o” indicates that this attribute can be set but the action has no effect. See Table 4-1,
“Execution Event Hook Timing,” on page 19 for more information about why some operations have no effect.

Table 5-6: Job Attributes Readable & Settable via Events

Job Attribute

q
u

e
u

e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

m
o

v
e
jo

b

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

re
s
v
s
u

b

re
s
v
_
e
n

d

p
e
ri

o
d

ic

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
e
n

d

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic
accounting_id --- r r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
Account_Name r, s r, s r r r --- --- --- r r r r r r r r r --- r
accrue_type --- r r r r --- --- --- r r r r r r r r r --- r
alt_id --- r r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
argument_list --- --- r r r --- --- --- r r r r r r r r r --- r
array --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
array_id --- r r r r --- --- --- r r r r r r r r r --- r
array_index --- r r r r --- --- --- r r r r r r r r r --- r
array_indices_remaining --- r r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
array_indices_submitted r, s --- r --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
array_state_count --- r r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
block --- r, s r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
Checkpoint r, s r, s r r r --- --- --- r r r r r r r r r --- r
comment --- --- r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
create_resv_from_job r, s r, s r, s r, s r, s r, s r, s r, s r, s r, s r, s r, s r, s r, s r, s r, s r, s r, s r, s
PBS Professional 2020.1.1 Hooks Guide HG-55

Chapter 5 Creating and Configuring Hooks
ctime --- r r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
depend r, s r, s r r, s r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
egroup --- r r r r --- --- --- r r r r r r r r r --- r
eligible_time --- r, s r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
Error_Path r, s r, s r r, s r, s --- --- --- r r r r r r r r r --- r
estimated --- r r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
etime --- r r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
euser --- r r r r --- --- --- r r r r r r r r r --- r
Executable r, s --- r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
Execution_Time r, s r, s r r, s r --- --- --- r, s r r, s r, s r r r r, s r, s --- r, s
exec_host --- --- r --- --- --- --- --- r r r r r r r r r --- r
exec_vnode --- --- r r r --- --- --- r r r r r r r r r --- r
Exit_status --- r r r r --- --- --- --- r --- --- r r r r --- --- ---
group_list r, s r, s r r r --- --- --- r r r r r r r r r --- r
hashname --- r r r r --- --- --- r r r r r r r r r --- r
Hold_Types r, s r, s r r, s r --- --- --- r, s r r, s r, s r r r r, s r, s --- r, s
interactive r, s r, o r r r --- --- --- r r r r r r r r r --- r
jobdir --- r r --- --- --- --- --- --- --- --- --- --- --- --- r --- --- ---
Job_Name r, s r, s r r r --- --- --- r r r r r r r r r --- r
Job_Owner --- r r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
job_state --- r r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
Join_Path r, s r, s r r r --- --- --- r r r r r r r r r --- r
Keep_Files r, s r, s r r r --- --- --- r r r r r r r r r --- r
Mail_Points r, s r, s r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
Mail_Users r, s r, s r r r --- --- --- r r r r r r r r r --- r
mtime --- r r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
no_stdio_sockets --- --- r r r --- --- --- r r r r r r r r r --- r
Output_Path r, s r, s r r, s r, s --- --- --- r r r r r r r r r --- r
Priority r, s r, s r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
project r, s r, s r r, s r --- --- --- r r r r r r r r r --- r
pset --- --- r r r --- --- --- r r r r r r r r r --- r
qtime --- r r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
queue r, s r r, s r r --- --- --- r r r r r r r r r --- r
queue_rank --- r r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
queue_type --- r r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
release_nodes_on_stage

out

r, s r, s --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Rerunable r, s r, s r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
resources_released r r r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
resources_released_list r r r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
resources_used --- r r r r --- --- --- r, s r r, s r, s r r r r, s r, s r, s r, s

Table 5-6: Job Attributes Readable & Settable via Events

Job Attribute

q
u

e
u

e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

m
o

v
e
jo

b

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

re
s
v
s
u

b

re
s
v
_
e
n

d

p
e
ri

o
d

ic

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
e
n

d

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic
HG-56 PBS Professional 2020.1.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
5.2.4.16 Table: Reading & Setting Vnode Attributes in Hooks

The following table shows the vnode attributes that can be read or set when the vnode object is retrieved via an event.
An “r” indicates read, an “s” indicates set, and an “o” indicates that this attribute can be set but the action has no effect.
See Table 4-1, “Execution Event Hook Timing,” on page 19 for more information about why some operations have no
effect.

Resource_List (with
restrictions; see Table 5-9)

r, s r, s r r, s r, s --- --- --- r r r r r r r r r --- r

run_count r, s r, s r r r --- --- --- r, s r r, s r, s r r r r, s r, s --- r, s
run_version --- r r r r --- --- --- r r r r r r r r r --- r
sandbox r, s r, s r r r --- --- --- r r r r r r r r r --- r
schedselect --- r r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
sched_hint --- --- r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
server --- r r r r --- --- --- r r r r r r r r r --- r
session_id --- --- --- --- --- --- --- --- --- --- --- --- r r r r r --- ---
Shell_Path_List r, s r, s r r r --- --- --- r r r r r r r r r --- r
stagein r, s r, s r r r --- --- --- r r r r r r r r r --- r
stageout r, s r, s r r r --- --- --- r r r r r r r r r --- r
Stageout_status --- r r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
stime --- r r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
Submit_arguments --- --- r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
substate --- r r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
sw_index --- r r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
umask r, s r, s r r r --- --- --- r r r r r r r r r --- r
User_List r, s r, s r r r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
Variable_List r, s r, s r r, s r, s --- --- --- r, s r r r r r r r r --- r, s

Table 5-7: Vnode Attributes Readable & Settable via Events

Vnode Attribute

q
u

e
u

e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

m
o

v
e
jo

b

ru
n

jo
b

re
s
v
s
u

b

re
s
v
_
e
n

d

p
e
ri

o
d

ic

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
e
n

d

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic

p
ro

v
is

io
n

comment r, s r, s --- --- --- --- --- r, s r r, s r, s r r r, s r, s r, s r, s r, s ---
current_aoe --- --- --- --- --- --- --- r, s r r, s r, s r r r, s r, s r, s r, s r, s ---
hpcbp_enable --- --- --- --- --- --- --- r, s r r, s r, s r r r, s r, s r, s r, s r, s ---

Table 5-6: Job Attributes Readable & Settable via Events

Job Attribute

q
u

e
u

e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

m
o

v
e
jo

b

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

re
s
v
s
u

b

re
s
v
_
e
n

d

p
e
ri

o
d

ic

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
e
n

d

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic
PBS Professional 2020.1.1 Hooks Guide HG-57

Chapter 5 Creating and Configuring Hooks
hpcbp_stage_protoc

ol

--- --- --- --- --- --- --- r, s r r, s r, s r r r, s r, s r, s r, s r, s ---

hpcbp_user_name --- --- --- --- --- --- --- r, s r r, s r, s r r r, s r, s r, s r, s r, s ---
hpcbp_webservice_

address

--- --- --- --- --- --- --- r, s r r, s r, s r r r, s r, s r, s r, s r, s ---

in_multivnode_host --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
jobs --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
license --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
license_info --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
Mom --- --- --- --- --- --- --- r, s r r, s r, s r r r, s r, s r, s r, s r, s ---
name --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
no_multinode_jobs --- --- --- --- --- --- --- r, s r r, s r, s r r r, s r, s r, s r, s r, s ---
ntype --- --- --- --- --- --- --- r, s r r, s r, s r r r, s r, s r, s r, s r, s ---
pbs_version --- --- --- --- --- --- --- r r r r r r r r r r r ---
pcpus --- --- --- --- --- --- --- r r r r r r r r r r r ---
pnames --- --- --- --- --- --- --- r, s r r, s r, s r r r, s r, s r, s r, s r, s ---
Port --- --- --- --- --- --- --- r, s r r, s r, s r r r, s r, s r, s r, s r, s ---
Priority --- --- --- --- --- --- --- r, s r r, s r, s r r r, s r, s r, s r, s r, s ---
provision_enable --- --- --- --- --- --- --- r, s r r, s r, s r r r, s r, s r, s r, s r, s ---
queue --- --- --- --- --- --- --- r, s r r, s r, s r r r, s r, s r, s r, s r, s ---
resources_assigned --- --- --- --- --- --- --- r r r r r r r r r r r ---
resources_available --- --- --- --- --- --- --- r, s r r, s r, s r r r, s r, s r, s r, s r, s ---
resv --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
resv_enable --- --- --- --- --- --- --- r, s r r, s r, s r r r, s r, s r, s r, s r, s ---
sharing --- --- --- --- --- --- --- r, s r r, s r, s r r r, s r, s r, s r, s r, s ---
state --- --- --- r, s --- --- --- r, s r r, s r, s r r r, s r, s r, s r, s r, s ---
topology_info --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- r r ---

Table 5-7: Vnode Attributes Readable & Settable via Events

Vnode Attribute
q

u
e
u

e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

m
o

v
e
jo

b

ru
n

jo
b

re
s
v
s
u

b

re
s
v
_
e
n

d

p
e
ri

o
d

ic

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
e
n

d

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic

p
ro

v
is

io
n

HG-58 PBS Professional 2020.1.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
5.2.4.17 Table: Reading & Setting Reservation Attributes in resvsub

and resv_end Hooks

Reservation attributes can be read and set through an event only in resvsub and resv_end hooks. No other hooks can
read or set reservation attributes through an event. All hooks can read, but not set, all reservation attributes by retrieving
the reservation object through the server, using pbs.server().resv(). The following table shows the reservation attributes
that can be read or set when the reservation object is retrieved via an event, in a resvsub or resv_end hook:

Table 5-8: Reservation Attributes Readable & Settable in resvsub and resv_end
Hooks

Reservation Attribute resvsub resv_end

Account_Name r r

Authorized_Groups r, s r

Authorized_Hosts r, s r

Authorized_Users r, s r

ctime r r

group_list r, s r

hashname r r

interactive r, s r

Mail_Points r, s r

Mail_Users r, s r

mtime r r

Priority r r

queue r r

reserve_count r r

reserve_duration r, s r

reserve_end r, s r

reserve_ID r r

reserve_index r r

reserve_job r r

Reserve_Name r, s r

Reserve_Owner r r

reserve_retry r r

reserve_rrule r, s r

reserve_start r, s r

reserve_state r r

reserve_substate r r

reserve_type r r
PBS Professional 2020.1.1 Hooks Guide HG-59

Chapter 5 Creating and Configuring Hooks
5.2.4.18 Table: Reading & Setting Built-in Job Resources in Hooks

The following table shows the built-in members of the job’s Resource_List attribute that can be read or set in each type
of hook, when retrieving the object through an event.

An “r” indicates read, an “s” indicates set, and an “o” indicates that this resource can be set but the action has no effect.
See Table 4-1, “Execution Event Hook Timing,” on page 19 for more information about why some operations have no
effect. For more about custom resources, see section 5.2.4.1, “Using Built-in vs. Custom Resources in Hooks”, on page
44.

Resource_List r, s r

resv_nodes r r

server r, s r

User_List r r

Variable_List r, s r

Table 5-9: Built-in Job Resources Readable & Settable by Hooks via Events

Resource in
Resource_List

q
u

e
u

e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

m
o

v
e
jo

b

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

p
e
ri

o
d

ic

re
s
v
s
u

b

re
s
v
_
e
n

d

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
e
n

d

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic

p
ro

v
is

io
n

accelerator r, s r, s r r, s r --- --- --- r r r r r r r r r --- r ---
accelerator_memory r, s r, s r r, s r --- --- --- r r r r r r r r r --- r ---
accelerator_model r, s r, s r r, s r --- --- --- r r r r r r r r r --- r ---
aoe r, s r, s r r, s r --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
arch r, s r, s r r, s r, s --- --- --- r r r r r r r r r --- r ---
cput r, s r, s r r, s r, s --- --- --- r r r r r r r r r --- r ---
exec_vnode r, s r, s r r, s r, s --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
file r, s r, s r r, s r, s --- --- --- r r r r r r r r r --- r ---
host r, s r, s r r, s r --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
max_walltime r, s r, s r r, s r, s --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
mem r, s r, s r r, s r --- --- --- r r r r r r r r r --- r ---
min_walltime r, s r, s r r, s r, s --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
mpiprocs r, s r, s r r, s r --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
naccelerators r, s r, s r r, s r, s --- --- --- r r r r r r r r r --- r ---
nchunk r, s r, s r r, s r --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
ncpus r, s r, s r r, s r --- --- --- r r r r r r r r r --- r ---
nice r, s r, s r r, s r, s --- --- --- r r r r r r r r r --- r ---
nodect r, s r, s r r r --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
nodes r, s r, s r r, s r --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
ompthreads r, s r, s r r, s r --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Table 5-8: Reservation Attributes Readable & Settable in resvsub and resv_end
Hooks

Reservation Attribute resvsub resv_end
HG-60 PBS Professional 2020.1.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
5.2.4.19 Table: Reading & Setting Vnode Resources in Hooks

The following table shows the built-in members of the vnode’s resources_available attribute that can be read or set in
each type of hook, when retrieving the object through an event. An “r” indicates read, an “s” indicates set, and an “o”
indicates that this resource can be set but the action has no effect. See Table 4-1, “Execution Event Hook Timing,” on
page 19 for more information about why some operations have no effect.

pcput r, s r, s r r, s r, s --- --- --- r r r r r r r r r --- r ---
pmem r, s r, s r r, s r, s --- --- --- r r r r r r r r r --- r ---
pvmem r, s r, s r r, s r, s --- --- --- r r r r r r r r r --- r ---
site r, s r, s r r, s r, s --- --- --- r r r r r r r r r --- r ---
software r, s r, s r r, s r, s --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
soft_walltime r, s r, s r r, s r, s --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
start_time r, s r, s r r, s r, s --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
vmem r, s r, s r r, s r --- --- --- r r r r r r r r r --- r ---
vnode r, s r, s r r, s r, s --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
vntype r, s r, s r r, s r --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
walltime r, s r, s r r, s r, s --- --- --- r r r r r r r r r --- r ---
PBScrayhost ---
PBScraylabel_<label

name>

--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

PBScraynid ---
PBScrayorder ---
PBScrayseg ---

Table 5-10: Vnode Resources Readable & Settable by Hooks via Events

Resource in
resources_available

q
u

e
u

e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

m
o

v
e
jo

b

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

p
e
ri

o
d

ic

re
s
v
s
u

b

re
s
v
_
e
n

d

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
e
n

d

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic

p
ro

v
is

io
n

accelerator --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
accelerator_memory --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
accelerator_model --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
aoe --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
arch --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
cput --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---

Table 5-9: Built-in Job Resources Readable & Settable by Hooks via Events

Resource in
Resource_List

q
u

e
u

e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

m
o

v
e
jo

b

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

p
e
ri

o
d

ic

re
s
v
s
u

b

re
s
v
_
e
n

d

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
e
n

d

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic

p
ro

v
is

io
n

PBS Professional 2020.1.1 Hooks Guide HG-61

Chapter 5 Creating and Configuring Hooks
exec_vnode --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
file --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
host --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
max_walltime --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
mem --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
min_walltime --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
mpiprocs --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
naccelerators --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
nchunk --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
ncpus --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
nice --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
nodect --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
nodes --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
ompthreads --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
pcput --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
pmem --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
pvmem --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
site --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
software --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
start_time --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
vmem --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
vnode --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
vntype --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
walltime --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
PBScrayhost --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
PBScraylabel_<label

name>

--- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---

PBScraynid --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
PBScrayorder --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---
PBScrayseg --- --- --- --- --- --- --- --- r r r r r r r r r r, s r, s ---

Table 5-10: Vnode Resources Readable & Settable by Hooks via Events

Resource in
resources_available

q
u

e
u

e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

m
o

v
e
jo

b

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

p
e
ri

o
d

ic

re
s
v
s
u

b

re
s
v
_
e
n

d

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
e
n

d

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic

p
ro

v
is

io
n

HG-62 PBS Professional 2020.1.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
5.2.5 Using select and place in Hooks

All hooks can read, but not set, a job’s select and place statements via pbs.server().job(), pbs.server().vnode(),
pbs.server().queue(), etc. The following table shows the type of hook that can read or set a job’s select and place state-
ments, when retrieving the object through an event. An “r” indicates read, an “s” indicates set. See Table 4-1, “Execu-
tion Event Hook Timing,” on page 19 for more information about why some operations have no effect.

5.2.5.1 How to Set select and place in Hooks

You must use the associated creation method to instantiate an object of the correct type with the desired value, then
assign the object to the job. Syntax:

job.Resource_List[“place”] = pbs.place("[arrangement]:[sharing]:[group]")

job.Resource_List[“select”] = pbs.select("[N:]res=val[:res=val][+[N:]res=val[:res=val] ...]")

Example 5-12: Set a job’s select and place directives:

jobB = pbs.event().job

jobB.Resource_List["place"] = pbs.place("pack:exclhost")

jobB.Resource_List["select"] = pbs.select("2:mem=2gb:ncpus=1+6:mem=8gb:ncpus=16")

See "pbs.select()” on page 148 and "pbs.place()” on page 147.

For modifying a job’s select statement when allowing jobs access to extra vnodes, see section 6.13.3.24, “Method to
Increment select Object Chunks”, on page 148 and section 6.6.4.4, “Job Object Method to Release Vnodes”, on page
128. For more about making jobs more reliable, see “Vnode Fault Tolerance for Job Start and Run” on page 428 of the
PBS Professional Administrator’s Guide.

5.2.5.2 Caveats for Using select and place in Hooks

You may want to check resource requests for a queuejob hook If a user submits a job using old -lnodes or -lncpus
syntax, this is translated to a select statement, but only after a queuejob hook has run.

5.2.6 Restarting Scheduler Cycle After Hook Failure

You can restart the scheduler after an execjob_begin hook fails due to an alarm call or unhandled exception, or when
the hook fails due to an internal error such as a full disk or not enough memory on the host, for example, a malloc()
error. To restart the scheduler after failure of an execjob_begin hook, set the value of an execjob_begin or
execjob_prologue hook’s fail_action attribute to include “scheduler_restart_cycle”.

qmgr -c "set hook <hook_name> fail_action += scheduler_restart_cycle"

See section 5.1.9.2, “Using the fail_action Hook Attribute”, on page 37.

Table 5-11: Hooks that Can Read & Set Job select and place Statements via Events

Select or Place

q
u

e
u

e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

m
o

v
e
jo

b

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

p
e
ri

o
d

ic

re
s
v
s
u

b

re
s
v
_
e
n

d

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
e
n

d

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic

p
ro

v
is

io
n

Job place statement r, s r, s r r, s r --- --- --- --- --- r r r r r --- --- ---
Job select statement r, s r, s r r, s r --- --- --- --- --- r, s r, s r r r --- --- ---
PBS Professional 2020.1.1 Hooks Guide HG-63

Chapter 5 Creating and Configuring Hooks
5.2.7 Adding Custom Non-consumable Host-level
Resources

You can add new custom host-level, non-consumable resources and set their values in resources_available for a vnode
by using vnode_list[]in an exechost_startup hook. Any changes made this way are merged with those defined in a
Version 2 vnode configuration file. Upon startup, MoM reads configuration files before executing the
exechost_startup hook.

To add a new custom host-level resource, and set its value:

v = pbs.event().vnode_list[<vnode name>]

v.resources_available[<new_resource>] = <value>

The type of the resource is inferred from the value assigned to the resource. Python types map to PBS types as shown in
the following table:

You must also make the resource usable by the scheduler: see section 5.14.2.6, “Allowing Jobs to Use a Resource”, on
page 265.

To delete a custom resource created in a hook, use qmgr. See section 5.14.2.4.iii, “Deleting Custom Resources”, on
page 263.

Example 5-13: Adding custom resources:

If you have these instructions in a hook:

vn.resources_available["fab_int"] = 9

vn.resources_available["fab_str"] = "happy"

vn.resources_available["fab_bool"] = False

vn.resources_available["fab_size"] = pbs.size("7mb")

vn.resources_available["fab_time"] = pbs.duration("00:30:00")

vn.resources_available["fab_float"] = 7.0

This is equivalent to the following qmgr commands:

qmgr -c "create resource fab_int type=long,flag=h"

qmgr -c "create resource fab_str type=string,flag=h"

qmgr -c "create resource fab_bool type=boolean,flag=h"

qmgr -c "create resource fab_size type=size,flag=h"

qmgr -c "create resource fab_time type=long,flag=h"

qmgr -c "create resource fab_float type=float,flag=h"

Table 5-12: Resource Types when Adding via vnode_list

Python Type Type

int Long

str String

bool Boolean

pbs.size Size

pbs.duration Long

float Float

Any Python type without an explicit match String
HG-64 PBS Professional 2020.1.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
5.2.8 Printing And Logging Messages

Hooks can log a custom string in the local daemon’s log, at message log event class pbs.LOG_DEBUG (0x0004). This
is done using the pbs.logjobmsg(job ID, message) facility. See "pbs.logjobmsg()” on page 151.

Hooks can specify a message for use when the corresponding action is rejected. This message is printed to stderr by the
command that triggered the event, and is printed in the daemon’s log. This is done using the pbs.event().reject(<mes-

sage>) function. See "pbs.event().reject()” on page 116 for information on how to specify a rejection message.

Hooks cannot directly print to stdout or stderr, or read from stdin. See section 5.3.8.1, “Avoid Hook File I/O”, on
page 71, and section 8.10.2.8, “Hooks Attempting I/O”, on page 225.

5.2.9 Capturing Return Code

To capture an application’s return code, you capture the return code in Python and then return it from the hook. You can
use the Python subprocess module. Here is an example snippet:

import sys

if “<path to subprocess module>” not in sys.path:

sys.path.append(“<path to subprocess module>”)

import subprocess

try:

retcode = subprocess.call("mycommand myarg", shell=True)

except OSError:

retcode = -1

return retcode

5.2.10 When You Need Persistent Data

If you need your data to be persistent, your hook(s) must be able to save and retrieve the information. Hooks are state-
less, and each invocation of a hook has no knowledge of prior state of jobs, vnodes, etc. If you want to retain state across
invocations of a hook, you can have the hook write what you need to a well-known location such as PBS_HOME. When the
hook is invoked, it can read in the data, and before the hook exits, it can update the data. You can use whatever format
you like for the data.

5.2.11 Setting Up Job Environment on Sisters

If you need to set up the job’s environment on sister MoMs, use an execjob_begin hook. This hook can set up the
desired environment on sister MoMs so that the job can use the new environment.

If job tasks are spawned on sister MoMs via a tightly-integrated MPI that uses tm_spawn(), any execjob_prologue
and execjob_launch hooks run on the sister MoMs. However, if job tasks are started using pbs_attach(),
execjob_attach and execjob_prologue (on the first task attached) hooks run on sister MoMs instead. For a detailed
description of the order in which hooks run on the primary and secondary execution hosts, see Table 4-1, “Execution
Event Hook Timing,” on page 19.

The old-style prologue runs only on the primary execution host; you cannot use it to set up the environment on sister
MoMs.

All job tasks running on vnodes managed by the same MoM get the same environment.
PBS Professional 2020.1.1 Hooks Guide HG-65

Chapter 5 Creating and Configuring Hooks
5.2.12 Offlining Bad Vnodes

5.2.12.1 General Method for Offlining Bad Vnodes

If you need to offline a bad vnode where a hook is running:

this_vnode = pbs.event()vnode_list[pbs.get_local_nodename()]

this_vnode.state = pbs.ND_OFFLINE

this_vnode.comment = "offlining this vnode"

5.2.12.2 Offlining Vnodes Associated with an Event

For example, in a job-related event, you can offline the vnodes and reject the job:

for v in pbs.event().vnode_list.keys():

pbs.event().vnode_list[v].state = pbs.ND_OFFLINE

pbs.event().vnode_list[v].comment = "Offlining this vnode"

pbs.event().reject("Job tried to run on bad vnodes")

5.2.12.3 Using List of Failed Vnodes to Offline Vnodes that Have Gone

Bad During Start or Run

For each execjob_prologue and execjob_launch event, PBS records the list of vnodes, with their assigned resources,
that are marked as bad by MoM. This list can include those vnodes from sister MoMs that failed to join the job, that
rejected an execjob_begin hook or execjob_prologue hook request, or that encountered a communication error while
the primary MoM was polling the sister MoM host. PBS records this list in the pbs.event().vnode_list_fail[] hook
parameter. This parameter is a dict (dictionary of pbs.vnode objects keyed by vnode name).

You can use a hook to walk through this list and offline the bad vnodes. Here is a code snippet:

for vn in e.vnode_list_fail:

 v = e.vnode_list_fail[vn]

 pbs.logmsg(pbs.LOG_DEBUG, "offlining %s" % (vn,))

 v.state = pbs.ND_OFFLINE

5.2.12.4 Offlining and Clearing Vnodes Using the fail_action Hook

Attribute

The way this works is that when a vnode fails a health check in an execjob_begin hook, it is offlined via
“offline_vnodes”. Once the vnode is offlined, no other jobs are sent to the vnode, so no other execjob_begin hooks will
run until the vnode is cleared. You then use “clear_vnodes_upon_recovery” in an exechost_startup hook which runs
when the MoM starts up or is HUPed.

5.2.12.4.i Offlining Vnodes Using the fail_action Hook Attribute

You can offline vnodes when an execjob_prologue, execjob_begin or exechost_startup hook fails due to an alarm
call or unhandled exception, or when the hook fails due to an internal error such as a full disk or not enough memory on
the host, for example, a malloc() error.

To offline vnodes upon failure, set the value of the hook’s fail_action attribute to include “offline_vnodes”. This marks
the vnodes managed by the hook’s MoM as offline.

qmgr -c "set hook <hook_name> fail_action += offline_vnodes"
HG-66 PBS Professional 2020.1.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
When a vnode is offlined using the fail_action attribute, the vnode’s comment attribute is set to an explanation:

“offlined by hook <hook_name> due to hook error”

See section 5.1.9.2, “Using the fail_action Hook Attribute”, on page 37.

5.2.12.4.ii Clearing Vnodes Using the fail_action Hook Attribute

When an exechost_startup hook runs successfully and does not encounter any uncaught exception or alarm timeout,
you can clear the offline state from vnodes that were previously marked offline via fail_action.

To clear the offline state from vnodes that were previously offlined via the offline_vnodes fail_action attribute, set the
value of the exechost_startup hook’s fail_action attribute to include “clear_vnodes_upon_recovery”. This clears
the offline state from the vnodes managed by the hook’s MoM.

qmgr -c "set hook <hook_name> fail_action += clear_vnodes_upon_recovery"

If you have fixed your execjob_begin script, and want to send jobs again to the vnodes managed by the MoM where the
script runs, clear the offline states and comments from the vnodes managed by that MoM:

• Clear the offline state:
pbsnodes -r <MoM host>

• Clear the comment:
qmgr -c "u n <vn1>,<vn2>,... comment"

Or for long lists of vnodes:

qmgr -c "unset node `pbsnodes -vl | awk '{if(NR == 1) {printf "%s", $1} else {printf ",%s",
$1}}'` comment"

You can write an exechost_periodic hook that monitors the states of the vnodes, so that when it finds offlined vnodes
with vnode comment messages matching “offlined by hook…”, the hook clears the comment and offline states.

See section 5.1.9.2, “Using the fail_action Hook Attribute”, on page 37.
PBS Professional 2020.1.1 Hooks Guide HG-67

Chapter 5 Creating and Configuring Hooks
5.3 Advice and Caveats for Writing Hooks

5.3.1 Rules for Hook Access and Behavior

The following are rules and recommendations for writing hooks:

• When modifying hooks or their configuration files, do not edit the .CF or .PY files directly. You might think this is
a shortcut; it’s not. Changes to execution hooks will not be propagated to the MoMs.

• Use only the documented interfaces. Hooks which access PBS information or modify PBS in any way except
through these interfaces are erroneous and unsupported.

• Do not attempt to manipulate the hook stored by PBS, except as specified in Chapter 7, "Built-in Hooks", on page
155.

• Don’t delete attributes.

• Don’t change environment variables set by PBS. See “Environment Variables” on page 230 of the PBS Professional
Reference Guide for a list of these environment variables.

• Do not try to access the following (a well-written, portable hook will not depend on any of the following informa-
tion):

• Server configuration information: qmgr, resourcedef and pbs.conf

• Scheduling information: qmgr, sched_config, fairshare, dedicated, holidays

• Do not write hooks that depend on the behavior of other hooks.

• Do not make assumptions about the value of PATH; use “import sys” and modify sys.path

• Do not make assumptions about the value of the current working directory.

• For information about umask, see“qalter” on page 127 of the PBS Professional Reference Guide, “qsub” on page
213 of the PBS Professional Reference Guide, and “Job Attributes” on page 328 of the PBS Professional Reference
Guide.

• Do not depend on order of execution of unrelated hooks. For example, do not depend on one job submission’s
queuejob hooks running entirely before another job submission’s queuejob hooks. It is not guaranteed that all of
one job’s hooks will finish before another job’s hooks start.

• The Resource_List attribute, like others, is a pbs.pbs_resource. These objects support a restricted set of opera-
tions. They can reference values by index. Other features, such as has_key(), are not available. See section
6.13.3.19, “Method to Create or Set Resource List”, on page 147.

• Hooks which execute PBS commands are erroneous and unsupported. The behavior of executing PBS commands
inside a hook is undefined (and is likely to cause the hook to hang).

5.3.2 Check for Parameter Validity

To make hook scripts more robust, check first for the validity of the event parameters before using them, by comparing
against None:

if pbs.event().job != None:

If pbs.event().job_o != None:

If pbs.event().src_queue != None:

If pbs.event().resv != None:

If pbs.event().vnode != None:

If pbs.event().aoe != None:
HG-68 PBS Professional 2020.1.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
5.3.2.1 Resource Requests and queuejob Hooks

You may want to check resource requests for a queuejob hook If a user submits a job using old -lnodes or -lncpus
syntax, this is translated to a select statement, but only after a queuejob hook has run.

5.3.2.2 Example of Checking Validity

% cat t2245.ty

import pbs

e = pbs.event()

if e.type == pbs.QUEUEJOB && (e.job == None):

e.reject("Event Job parameter is unset!")

elif e.type == pbs.MODIFYJOB && ((e.job == None) || (e.job_o == None)):

e.reject("Event Job or Job_o parameter is unset!")

elif e.type == pbs.RESVSUB && (e.resv == None):

e.reject("Event Resv parameter is unset!")

elif e.type == pbs.RUNJOB && (e.job == None):

e.reject("Event Job parameter is unset!")

5.3.3 Make Changes Only On Acceptance

We recommend that your hook does not make changes unless the hook accepts its event. You do not want to have to back
changes out upon a reject().

5.3.4 Offline Vnodes when exechost_startup Hook Rejects

We recommend that before calling pbs.event().reject() in an exechost_startup hook, you set the vnodes managed by
the local MoM offline with an accompanying comment. This stops jobs from being sent to the affected vnodes. For
example:

vnlist = pbs.event().vnode_list

for v in vnlist.keys():

vnlist[v].state = pbs.ND_OFFLINE

vnlist[v].comment = “bad configuration”

pbs.event().reject(“not accepting jobs”)

5.3.5 Minimize Unnecessary Steps

To speed up your hooks, move any steps to where they are used the fewest times possible. For example, if you retrieve
several pieces of information about a job, but only use them if one of them fits a certain criterion, put the bulk of the
information-retrieval steps in the section where you do the work on the job.

5.3.6 Use Fast Operations

Some of the examples we provide could be faster. Instead of using “==”, you can use the bitwise ampersand operator
(“&”).
PBS Professional 2020.1.1 Hooks Guide HG-69

Chapter 5 Creating and Configuring Hooks
5.3.7 Avoiding Interference with Normal Operation

5.3.7.1 Treat SystemExit as a Normal Occurrence

Both pbs.event().accept() and pbs.event().reject() terminate hook execution by throwing a SystemExit exception. A
try...except clause without arguments will catch all exceptions. If hook content appears in a try except ” clause, add

the following to treat SystemExit as a normal occurrence:

except SystemExit:

pass

Here is an example of an except clause that will catch SystemExit:

try:

...

except:

...

In the above case, we need to add the except SystemExit, so that it will look like this:

try:

...

except SystemExit:

pass

except:

...

If the existing code has a specified exception, we don't need to add “except SystemExit:", since this hook script is only
catching one particular exception and will not match SystemExit. For example:

try:

...

except pbs.BadAttributeValueError:

...

5.3.7.2 Allow the Server to Modify Jobs

The server uses the qalter command during normal operation to modify jobs. Therefore, if you have a modifyjob
hook script, make sure you do not interfere with qalter commands issued by the server. Catch these cases by starting
the hook with an if clause that accepts modification of jobs by PBS:

e = pbs.event()

if e.requestor in ["PBS_Server"]:

e.accept()

While the scheduler also uses the qalter command to modify jobs, this does not trigger any modifyjob hooks.

5.3.7.3 Stay Within the Scheduler Alarm Time

Consider setting hook alarm values in runjob hooks so that they do not unduly delay the scheduler. The scheduler will
wait for a hook to finish executing. The scheduler’s cycle time has a default value of 20 minutes, and is specified in the
scheduler’s sched_cycle_length attribute.
HG-70 PBS Professional 2020.1.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
5.3.8 Avoiding Problems

5.3.8.1 Avoid Hook File I/O

When the PBS server is running, stdout, stderr, and stdin are closed. A hook script attempting I/O will get an excep-
tion. To avoid this, redirect input and output to a file. See section 8.10.2.8, “Hooks Attempting I/O”, on page 225.

5.3.8.2 Avoid Contacting Bad Host

Be careful not to specify a bad host in <job ID> in pbs.event().job.depend. If it references a non-existent or heavily
loaded PBS server, the current PBS server could hang for a few minutes as it tries to contact the bad host. For example:

pbs.event().job.depend = pbs.depend("after:23.bad_host")

The PBS server could hang while trying to contact "bad_host".

5.3.8.3 Avoid os._exit() Python Function

Do not use the os._exit() Python function. It will cause the PBS server to exit.

5.3.8.4 Avoid Attempting to Log Message Using Bad Job ID

If the pbs.logjobmsg() method is passed a bad job ID, it raises a Python ValueError.

5.3.8.5 Avoid Taking Up Lots of Memory

Certain function calls in PBS Python hooks are expensive to use in terms of memory. If they are called repeatedly in
loops, they can use up a lot of memory, potentially causing the server to hang or crash. For example, the following is
expensive since each iterative call to pbs.server().vnodes() causes internal allocation of memory, which won't be freed
until after the hook executes.

In order to avoid this, produce the output only once, save it to memory, and iterate using the copy. For example:

vnl = []

vni = pbs.server().vnodes()

for vn in vni:

pbs.logmsg(pbs.LOG_DEBUG, "found vn.name=%s" %(vn.name))

vnl.append(vn)

The following functions in PBS Python hooks return iterators, and should be used carefully:

• Iterate over a list of jobs:

pbs.server().jobs()

pbs.queue.jobs()

• Iterate over a list of queues:

pbs.server().queues()

• Iterate over a list of vnodes:

pbs.server().vnodes()

• Iterate over a list of reservations:

pbs.server().resvs()
PBS Professional 2020.1.1 Hooks Guide HG-71

Chapter 5 Creating and Configuring Hooks
5.3.8.6 Testing Vnode State

To see whether a vnode has a particular state set:

If v.state == pbs.ND_OFFLINE:

pbs.logmsg(pbs.LOG_DEBUG, “vnode %s is offline!” % (v.name))

5.3.9 Restrictions

5.3.9.1 Local Server Only

Hooks cannot access a server other than the local server. Hooks also cannot specify a non-default server. So for example
if a job submission specifies a queue at a server other than the default, the hook can allow that submission, or can change
it to the default server, but cannot change it to another non-default server.

5.3.9.2 Dictionary Data Type Restriction

The Python types listed as dictionaries, such as pbs.event().env, support a restricted set of operations. They can refer-
ence values by index. Other features, such as has_key(), are not available.

5.3.10 Scheduling Impact of Hooks

5.3.10.1 Effect of runjob Hooks on Preemption

With preemption turned on, the scheduler preempts low-priority jobs to run a high-priority job. If the high-priority job is
rejected by a runjob hook, then the scheduler undoes the preemption of the low-priority jobs. Suspended jobs are
resumed, and checkpointed jobs are restarted.

5.3.10.2 Effect of runjob Hooks with Strict Ordering

When strict_ordering is set to True and backfill_depth is set to 0, a most-deserving job that is repeatedly rejected by a
runjob hook will prevent other jobs from being able to run. A well-written hook would put the job on hold or requeue the
job with a later execution time to prevent idling the system.

5.3.10.3 Effect of runjob Hooks with round_robin and by_queue

With round_robin and by_queue set to True, a job continually rejected by a runjob hook may prevent other jobs from
the same queue from being run. A well-written hook would put the job on hold or requeue the job with a later execution
time to allow other jobs in the same queue to be run.

A runjob hook's performance directly affects the responsiveness of the PBS scheduler. Consider carefully the trade-off
between the work such a hook needs to do and your scheduler's required performance.

5.3.10.4 Peer Scheduling and Hooks

When a job is pulled from one complex to another, the following happens:

• Hooks are applied at the new complex as if the job had been submitted locally

• Any movejob hooks at the furnishing server are run
HG-72 PBS Professional 2020.1.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
5.3.10.5 Performance Considerations

5.3.10.5.i Cost of Accessing Data

• Using pbs.server() to get data about server, queues, jobs, vnodes, or reservations can be slow if run in an execution
hook. This is because of the overhead involved when the function has to directly connect to the server and pass
requests (via TCP). However, you can speed up reading of custom job resources by setting the m flag. See "Allow-
ing Execution Hooks to Read Custom Job Resources Faster" on page 261 in the PBS Professional Administrator’s
Guide.

• Making queries to pbs.server().resources_available[] can be slow.

5.3.10.5.ii Cost of Different Hooks

• Any queuejob hooks execute once per job submission

• Any runjob hooks execute once per attempt to run a job, after the scheduler has found a place for it

What this means to the hook writer:

• Your queuejob hooks can generally get away with longer run times

• Any hook that needs to listen to queuejob events needs to be quick to decide whether it is needed or not

For a fast hook, avoid these:

• Running external commands

• Network connections

• File I/O and logging

• Storing information in server or vnode settings

• Using pbs.server().resources_available

• Iterating over the entire set of vnodes or jobs using pbs.server().vnodes() or pbs.server().jobs().

In addition, see section 5.3.5, “Minimize Unnecessary Steps”, on page 69 and section 5.3.6, “Use Fast Operations”, on
page 69.

5.3.10.6 Effect of Hooks on Job Eligible Time

When eligible time is enabled and a job is blocked by a queuejob hook, the job accrues initial_time. When a job is
accepted or rejected by modifyjob or movejob hooks, the job continues to accrue whatever kind of time it was accruing.
When a job is requeued by a runjob hook or an execution event hook, the scheduler evaluates what kind of time the job
should accrue based on resources and policy.

5.3.11 Windows Caveats

5.3.11.1 Special Characters in Pathnames

On Windows, where backslashes may appear in pathnames, escape each backslash with another backslash, or use the raw
(‘r’) operator to form the string. Both of the following work:

e = pbs.event()

e.progname = "C:\\Program Files\\PBS\\exec\\bin\\pbsnodes.exe"

e.progname = r"C:\Program Files\PBS\exec\bin\pbsnodes.exe"

See section 6.3.3, “Event Object Member Caveats”, on page 115.
PBS Professional 2020.1.1 Hooks Guide HG-73

Chapter 5 Creating and Configuring Hooks
5.3.11.2 Importing and Exporting Hooks

If the name of <input_file> contains spaces, <input file> must be quoted.

5.3.11.3 Modifying Events

On Windows, in a multi-vnoded job, be careful modifying pbs.event().progname and pbs.event().argv[] parameters;
some values are tacked on by pbs_mom and are required. See section 6.3.3.1, “Modifying progname or argv[] Under
Windows”, on page 115.

5.3.11.4 Using Sleep in a Hook Script

Under Windows, the PBS server or MoM cannot interrupt a hook script executing the Python time.sleep(). The server
needs to be able to interrupt the script if the script reaches its timeout. In order to be able to interrupt the script, create a
sleep that incrementally sleeps for 1 second. The server can then interrupt the hook script in between the sleeps. For
example:

import time

def mysleep(sec):

for i in range(sec):

time.sleep(1)

mysleep(30) <-- pseudo sleep for 30 seconds
HG-74 PBS Professional 2020.1.1 Hooks Guide

6

Hook Objects and Methods

Contents

6.1 The pbs Module . 76
6.2 PBS Interface Objects . 76

6.2.1 Table of PBS Interface Objects . 76
6.2.2 Maps of Object Members and Methods . 85

6.3 Event Objects . 87
6.3.1 Event Types . 87
6.3.2 Event Object Members . 108
6.3.3 Event Object Member Caveats . 115
6.3.4 Event-only Methods . 116
6.3.5 Event Object Method Caveats . 116
6.3.6 Examples of Using Event Objects . 117

6.4 Server Objects . 118
6.4.1 Server Object Members . 118
6.4.2 Setting Server Object Members . 119
6.4.3 Examples of Using Server Object Members . 119
6.4.4 Server Object Methods . 119

6.5 Queue Objects . 121
6.5.1 Queue Object Members . 121
6.5.2 Queue Object Methods . 122
6.5.3 Queue Type Constant Objects . 122

6.6 Job Objects . 122
6.6.1 Job Object Members. 123
6.6.2 Setting Job Attributes . 127
6.6.3 Examples of Using Job Object Members . 127
6.6.4 Job Object Methods for Execution Hooks . 127

6.7 The exec_vnode Object . 129
6.7.1 The exec_vnode Object Members . 129
6.7.2 Using pbs.vchunk Objects in exec_vnode . 130
6.7.3 Restrictions on exec_vnode Objects . 131

6.8 Chunk Objects . 131
6.8.1 Chunk Object Members and Methods . 131

6.9 Reservation Objects. 131
6.9.1 Reservation Object Members . 132
6.9.2 Reservation State Constant Objects . 133

6.10 Vnode Objects . 133
6.10.1 Vnode Object Members . 134
6.10.2 Vnode Type Constant Objects . 134
6.10.3 Vnode Sharing Constant Objects . 135
6.10.4 Vnode State Constant Objects . 135

6.11 Configuration File Objects . 135
6.11.1 Variable Containing Hook Configuration File Path . 135
6.11.2 Dictionary of PBS Configuration File Entries . 136

6.12 Constant Objects . 140
6.13 Object Members and Methods . 140
PBS Professional 2020.1.1 Hooks Guide HG-75

Chapter 6 Hook Objects and Methods
6.13.1 PBS Objects and Object Members . 141
6.13.2 Methods Available in Events . 141
6.13.3 PBS Types and Their Methods. 143
6.13.4 Global Methods . 151

6.1 The pbs Module

The pbs module provides an interface to PBS and the hook environment. The interface is made up of Python objects,
members, and methods. You can operate on the objects and use the methods in your Python code. In order to use the pbs
module, you must begin your Python code by importing the pbs module. For example, in a script that modifies a job:

import pbs

pbs.event().job.comment=”Modified this job”

For the contents of the pbs module, see section 4.5, “Python Modules and PBS”, on page 24.

6.2 PBS Interface Objects

The PBS interface contains different kinds of objects:

• Objects to represent PBS entities, e.g. jobs, server, queues, vnodes, reservations, events, log messages, etc.

• Objects to represent job, server, vnode, queue, and reservation attributes.

• Objects to represent arguments to PBS commands, PBS version information, etc.

• Constant objects to represent event types, states, log event classes, queue types, and exceptions.

6.2.1 Table of PBS Interface Objects

PBS provides a set of interface objects for use in hooks. The following table lists all of the PBS objects in alphabetical
order. Each of these objects is described in detail later in the chapter.

Table 6-1: PBS Interface Objects

PBS Interface Object

Description

pbs.acl

Represents a PBS ACL . See section 6.13.3.1, “Method to Create or Set ACL”, on page 143.

pbs.args

Represents a space-separated list of PBS arguments to commands such as qsub, qdel. See "Method to Create or Set Com-
mand Argument List” on page 143.

pbs.argv[]

Argument strings to be passed to the program executed for the job. See section 6.3.2.2, “Job Program Arguments Event
Member”, on page 109.

pbs.BadAttributeValueError

Raised when setting the member value of a pbs.* object and the value given is invalid. See "Table of Exceptions” on
page 43
HG-76 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
pbs.BadAttributeValueTypeError

Raised when setting the member value of a pbs.* object and the value type is invalid. See "Table of Exceptions” on page 43

pbs.BadResourceValueError

Raised when setting the resource value of a pbs.* object and the value given is invalid. See "Table of Exceptions” on page 43

pbs.BadResourceValueTypeError

Raised when setting the resource value of a pbs.* object and the value type is invalid. See "Table of Exceptions” on page 43

pbs.checkpoint

Represents a job's checkpoint attribute. See "Job Checkpoint Attribute Member” on page 124

pbs.depend

Represents a job's dependency attribute. See "Job depend Attribute Member” on page 124.

pbs.duration

Represents a time interval. See "Method to Create or Set Duration from Time String or Integer” on page 144.

pbs.email_list

Represents the set of users to whom mail may be sent. Example: Job's Mail_Users attribute. See "Method to Create or Set
Email List” on page 144

pbs.env[]

Dictionary of environment variables. See section 6.3.2.5, “Job Environment Event Member”, on page 110.

pbs.event

Represents a PBS event. See "Event Objects” on page 87

pbs.EventIncompatibleError

Raised when referencing a nonexistent member in pbs.event(). See "Table of Exceptions” on page 43.

pbs.EXECHOST_PERIODIC

Type for an exechost_periodic hook event. See section 6.3.1.18, “exechost_periodic: Periodic Events on All Execution
Hosts”, on page 107.

pbs.EXECHOST_STARTUP

Type for an exechost_startup hook event. See section 6.3.1.17, “exechost_startup: Event When Execution Host Starts Up”,
on page 106.

pbs.EXECJOB_ATTACH

Type for an execjob_attach hook event. See section 6.3.1.11, “execjob_attach: Event when pbs_attach() runs”, on page
100.

pbs.EXECJOB_BEGIN

Type for an execjob_begin hook event. See section 6.3.1.8, “execjob_begin: Event when Execution Host Receives Job”, on
page 96.

pbs.EXECJOB_END

Type for an execjob_end hook event. See section 6.3.1.16, “execjob_end: Event After Job Cleanup”, on page 105.

Table 6-1: PBS Interface Objects

PBS Interface Object

Description
PBS Professional 2020.1.1 Hooks Guide HG-77

Chapter 6 Hook Objects and Methods
pbs.EXECJOB_EPILOGUE

Type for an execjob_epilogue hook event. See section 6.3.1.15, “execjob_epilogue: Event Just After Killing Job Tasks”, on
page 104.

pbs.EXECJOB_LAUNCH

Type for an execjob_launch hook event. See section 6.3.1.10, “execjob_launch: Event when Execution Host Receives
Job”, on page 98.

pbs.EXECJOB_POSTSUSPEND

Type for an execjob_postsuspend hook event. See section 6.3.1.12, “execjob_postsuspend: Event Just After Suspending
Job”, on page 101.

pbs.EXECJOB_PRERESUME

Type for an execjob_preresume hook event. See section 6.3.1.13, “execjob_preresume: Event Just Before Resuming Job”, on
page 102.

pbs.EXECJOB_PRETERM

Type for an execjob_preterm hook event. See section 6.3.1.14, “execjob_preterm: Event Just Before Killing Job Tasks”, on
page 103.

pbs.EXECJOB_PROLOGUE

Type for an execjob_prologue hook event. See section 6.3.1.9, “execjob_prologue: Event Just Before Execution of Top-
level Job Process”, on page 97.

pbs.PERIODIC

Type for a periodic hook. See section 6.3.1.7, “periodic: Periodic Event at Server Host”, on page 95.

pbs.exec_host

Represents a job’s exec_host attribute. See "job.exec_host” on page 124 .

pbs.exec_vnode

Represents a job’s exec_vnode attribute. See "job.exec_vnode” on page 124 .

pbs.group_list

Represents a list of group names. See "job.group_list” on page 124.

pbs.hold_types

Represents the Hold_Types attribute of a job. See "job.Hold_Types” on page 124.

pbs.job

Represents a PBS job. See "Job Objects” on page 122

pbs.job_list[]

List of pbs.job objects. See "pbs.event().job_list” on page 111.

pbs.job_sort_formula

Represents the job_sort_formula server attribute. See "pbs.job_sort_formula()” on page 145

pbs.JOB_STATE_BEGUN

Job arrays only. Job array has started. See "Job job_state Attribute Member” on page 125

Table 6-1: PBS Interface Objects

PBS Interface Object

Description
HG-78 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
pbs.JOB_STATE_EXITING

Job is exiting after having run. See "Job job_state Attribute Member” on page 125

pbs.JOB_STATE_EXPIRED

Subjobs only. Subjob is finished (expired). See "Job job_state Attribute Member” on page 125

pbs.JOB_STATE_FINISHED

Job is finished: job executed successfully, job was terminated while running, job execution failed, or job was deleted before
execution. See "Job job_state Attribute Member” on page 125.

pbs.JOB_STATE_HELD

Job is held. See "Job job_state Attribute Member” on page 125

pbs.JOB_STATE_MOVED

Job has been moved to another server. See "Job job_state Attribute Member” on page 125.

pbs.JOB_STATE_QUEUED

Job is queued, eligible to run or be routed. See "Job job_state Attribute Member” on page 125

pbs.JOB_STATE_RUNNING

Job is running. See "Job job_state Attribute Member” on page 125

pbs.JOB_STATE_SUSPEND

Job is suspended by server. See "Job job_state Attribute Member” on page 125

pbs.JOB_STATE_SUSPEND_USERACTIVE

Job is suspended due to workstation becoming busy. See "Job job_state Attribute Member” on page 125

pbs.JOB_STATE_TRANSIT

Job is in transit. See "Job job_state Attribute Member” on page 125

pbs.JOB_STATE_WAITING

Job is waiting for its requested execution time to be reached, or the job’s stagein request has failed. See "Job job_state
Attribute Member” on page 125

pbs.join_path

Represents the job’s Join_Path attribute. See "Job Join_Path Attribute Member” on page 125.

pbs.keep_files

Represents the Keep_Files job attribute. See "Job Keep_Files Attribute Member” on page 125

pbs.license_count

Represents a set of licensing-related counters. Server attribute. See section 6.13.3.14, “Method to Create or Set
license_count Object”, on page 146.

pbs.LOG_DEBUG

Log event class. See "Message Log Level Objects” on page 152

pbs.LOG_ERROR

Log event class. See "Message Log Level Objects” on page 152

Table 6-1: PBS Interface Objects

PBS Interface Object

Description
PBS Professional 2020.1.1 Hooks Guide HG-79

Chapter 6 Hook Objects and Methods
pbs.LOG_WARNING

Log event class. See "Message Log Level Objects” on page 152

pbs.mail_points

Represents the Mail_Points attribute of a job. See "Job Mail_Points Attribute Member” on page 126.

pbs.MODIFYJOB

The modifyjob hook event type. Triggered by qalter or pbs_alterjob() API call. Not triggered by scheduler job
modification. See "Event Types” on page 87.

pbs.MOVEJOB

The movejob hook event type. Triggered by qmove or pbs_movejob() API call. See "Event Types” on page 87

pbs.ND_BUSY

Represents busy vnode state. See section 6.10.4, “Vnode State Constant Objects”, on page 135.

pbs.ND_DEFAULT_EXCL

Represents default_excl sharing vnode attribute value. See section 6.10.3, “Vnode Sharing Constant Objects”, on page
135.

pbs.ND_DEFAULT_SHARED

Represents default_shared sharing vnode attribute value. See section 6.10.3, “Vnode Sharing Constant Objects”, on page
135.

pbs.ND_DOWN

Represents down vnode state. See section 6.10.4, “Vnode State Constant Objects”, on page 135.

pbs.ND_FORCE_EXCL

Represents force_excl sharing vnode attribute value. See section 6.10.3, “Vnode Sharing Constant Objects”, on page 135.

pbs.ND_FREE

Represents free vnode state. See section 6.10.4, “Vnode State Constant Objects”, on page 135.

pbs.ND_IGNORE_EXCL

Represents ignore_excl sharing vnode attribute value. See section 6.10.3, “Vnode Sharing Constant Objects”, on page 135.

pbs.ND_JOBBUSY

Represents job-busy vnode state. See section 6.10.4, “Vnode State Constant Objects”, on page 135.

pbs.ND_JOB_EXCLUSIVE

Represents job-exclusive vnode state. See section 6.10.4, “Vnode State Constant Objects”, on page 135.

pbs.ND_OFFLINE

Represents offline vnode state. See section 6.10.4, “Vnode State Constant Objects”, on page 135.

pbs.ND_PBS

Represents pbs value for vnode ntype attribute. See section 6.10.2, “Vnode Type Constant Objects”, on page 134

pbs.ND_PROV

Represents provisioning vnode state. See section 6.10.4, “Vnode State Constant Objects”, on page 135.

Table 6-1: PBS Interface Objects

PBS Interface Object

Description
HG-80 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
pbs.ND_RESV_EXCLUSIVE

Represents resv-exclusive vnode state. See section 6.10.4, “Vnode State Constant Objects”, on page 135.

pbs.ND_STALE

Represents stale vnode state. See section 6.10.4, “Vnode State Constant Objects”, on page 135.

pbs.ND_STATE_UNKNOWN

Represents state-unknown, down vnode state. See section 6.10.4, “Vnode State Constant Objects”, on page 135.

pbs.ND_UNRESOLVABLE

Represents unresolvable vnode state. See section 6.10.4, “Vnode State Constant Objects”, on page 135.

pbs.ND_WAIT_PROV

Represents wait-provisioning vnode state. See section 6.10.4, “Vnode State Constant Objects”, on page 135.

pbs.node_group_key

Represents the node_group_key attribute. See "Method to Create or Set node_group_key Object” on page 146.

pbs.path_list

Represents a list of pathnames. See "Method to Create or Set path_list Object” on page 146.

pbs.pbs_conf[]

Dictionary of entries in pbs.conf. See "pbs.pbs_conf[]” on page 136.

pbs.pbs_resource

List of resource names and values. See section 6.13.3.19, “Method to Create or Set Resource List”, on page 147.

pbs.pid

Represents the process ID of a process belonging to a job.

pbs.place

Represents the place specification when submitting a job. See section 6.13.3.20, “Method to Create or Set place Object”, on
page 147.

pbs.progname

Path of job shell or executable. See section 6.3.2.15, “Job Executable Event Member”, on page 112.

pbs.QTYPE_EXECUTION

Represents execution value for queue_type queue attribute. See "Queue Type Constant Objects” on page 122

pbs.QTYPE_ROUTE

Represents route value for queue_type queue attribute. See "Queue Type Constant Objects” on page 122

pbs.queue

Represents a PBS queue. See "Queue Objects” on page 121

pbs.QUEUEJOB

The queuejob hook event type. Triggered by qsub or pbs_submit() API call. See section 6.3.1.3, “queuejob: Event
when Job is Queued”, on page 91.

Table 6-1: PBS Interface Objects

PBS Interface Object

Description
PBS Professional 2020.1.1 Hooks Guide HG-81

Chapter 6 Hook Objects and Methods
pbs.range

Represents a range of numbers referring to job array indices. See section 6.13.3.21, “Method to Create or Set range Object”,
on page 148.

pbs.resv

Represents a PBS reservation. See "Reservation Objects” on page 131

pbs.RESVSUB

The resvsub hook event type. Triggered by pbs_rsub or pbs_submitresv() API call. See section 6.3.1.1, “resvsub:
Event when Reservation is Created”, on page 90.

pbs.RESV_END

The resv_end hook event type. Triggered by end of reservation. See section 6.3.1.2, “resv_end: Event when Reservation
Ends”, on page 90.

pbs.RESV_STATE_BEING_DELETED

The reservation state RESV_BEING_DELETED. See "Reservation State Constant Objects” on page 133

pbs.RESV_STATE_CONFIRMED

The reservation state RESV_CONFIRMED. See "Reservation State Constant Objects” on page 133

pbs.RESV_STATE_DEGRADED

The reservation state RESV_DEGRADED. See "Reservation State Constant Objects” on page 133

pbs.RESV_STATE_DELETED

The reservation state RESV_DELETED. See "Reservation State Constant Objects” on page 133

pbs.RESV_STATE_DELETING_JOBS

The reservation state RESV_DELETING_JOBS. See "Reservation State Constant Objects” on page 133

pbs.RESV_STATE_FINISHED

The reservation state RESV_FINISHED. See "Reservation State Constant Objects” on page 133

pbs.RESV_STATE_NONE

The reservation state RESV_NONE. See "Reservation State Constant Objects” on page 133

pbs.RESV_STATE_RUNNING

The reservation state RESV_RUNNING. See "Reservation State Constant Objects” on page 133

pbs.RESV_STATE_TIME_TO_RUN

The reservation state RESV_TIME_TO_RUN. See "Reservation State Constant Objects” on page 133

pbs.RESV_STATE_UNCONFIRMED

The reservation state RESV_UNCONFIRMED. See "Reservation State Constant Objects” on page 133

pbs.RESV_STATE_WAIT

The reservation state RESV_WAIT. See "Reservation State Constant Objects” on page 133

pbs.route_destinations

Represents route_destinations queue attribute. See "Method to Create or Set route_destinations Object” on page 148.

Table 6-1: PBS Interface Objects

PBS Interface Object

Description
HG-82 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
pbs.RUNJOB

The runjob hook event type. Triggered by qrun or pbs_runjob() API call. See section 6.3.1.6, “runjob: Event Before
Job is Received by MoM”, on page 94.

pbs.select

Represents the select specification when submitting a job. See "Method to Create or Set select Object” on page 148.

pbs.server

Represents the local PBS server. See"Server Objects” on page 118

pbs.size

Represents a PBS size type. See "Method to Create or Set size Object” on page 150.

pbs.software

Represents a site-dependent software specification resource. See "Method to Create or Set Software Resource Object” on
page 150.

pbs.staging_list

Represents a list of file stagein or stageout parameters. See "Job stagein and stageout Attribute Members” on page 126.

pbs.state_count

Represents a set of job-related state counters. See "Method to Create or Set state_count Object” on page 151.

pbs.SV_STATE_ACTIVE

Server state is Scheduling. See "Server State Member” on page 119

pbs.SV_STATE_HOT

Server state is Hot_Start. See "Server State Member” on page 119

pbs.SV_STATE_IDLE

Server state is Idle. See "Server State Member” on page 119

pbs.SV_STATE_SHUTDEL

Server state is Terminating, Delayed. See "Server State Member” on page 119

pbs.SV_STATE_SHUTIMM

Server state is Terminating. See "Server State Member” on page 119

pbs.SV_STATE_SHUTSIG

Server state is Terminating. See "Server State Member” on page 119

pbs.UnsetAttributeNameError

Raised when referencing a non-existent member name of a pbs.* object. See "Table of Exceptions” on page 43

pbs.UnsetResourceNameError

Raised when referencing a non-existent resource name of a pbs.* object. See "Table of Exceptions” on page 43

pbs.user_list

Represents a list of user names. See section 6.13.3.29, “Method to Create or Set user_list Object”, on page 151.

pbs.vchunk

Represents a job chunk. See section 6.8, “Chunk Objects”, on page 131.

Table 6-1: PBS Interface Objects

PBS Interface Object

Description
PBS Professional 2020.1.1 Hooks Guide HG-83

Chapter 6 Hook Objects and Methods
pbs.version

Represents version information for PBS. See section 6.13.3.30, “Method to Create or Set PBS Version Object”, on page 151.

pbs.vnode

Represents a PBS vnode. See section 6.10, “Vnode Objects”, on page 133.

pbs.vnode_list[]

Represents a list of pbs.vnode objects. See section 6.3.2.22, “The Vnode List Event Member”, on page 114

pbs.vnode_list_fail[]

Represents a list of unhealthy vnodes as pbs.vnode objects. See section 6.3.2.23, “The Failed Vnode List Event Member”,
on page 115

SystemExit

Raised when accepting or rejecting an action. See "Table of Exceptions” on page 43

Table 6-1: PBS Interface Objects

PBS Interface Object

Description
HG-84 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.2.2 Maps of Object Members and Methods

Figure 6-1 shows a map of the PBS Python objects. All hook event objects have the methods listed in “global methods”.
Each object also has its own members and methods, as shown. We expand hook event objects in Figure 6-2.

Figure 6-1:Map of members and methods for major PBS objects

acl()
args()
checkpoint()
depend()
duration()
email_list()
exec_host()
exec_vnode()

group_list()
hold_types()
job_sort_formula()
join_path()
keep_files()
license_count()
logjobmsg()
logmsg()
mail_points()
node_group_key()
path_list()
pbs_env()
place()
range()
reboot()

get_local_nodename()

route_destinations()
select()
size()
software()
staging_list()
state_count()
user_list()
version()

global methods

Execution_Time
Hold_Types

job attributes, e.g.
id

jobserver

exec_vnode
etc.

delete()
in_ms_mom()
is_checkpointed()
rerun()
release_nodes()

name
server attributes, e.g.

default_qsub_arguments
job_sort_formula
resources_available
etc.

queue

name
queue attributes, e.g.

from_route_only
queue_type

job("<job ID>")
jobs()

all events except
periodicperiodic

logjobmsg()
logmsg()

resvid
reservation attributes, e.g.

authorized_users
reserve_start

resv

vnode attributes, e.g.
ntype
sharing
state
resources_available

vnode

chunks[]

exec_vnode

vnode_name

chunk_resources.keys()

vchunk

chunk_resources[]

resv("<reservation ID>")
resvs()
queue("<queue name>")
queues()
vnode("<vnode name>")
vnodes()

job("<job ID>")
jobs()

scheduler_restart_cycle()

hook_config_filename

pbs_conf
PBS Professional 2020.1.1 Hooks Guide HG-85

Chapter 6 Hook Objects and Methods
Figure 6-2 shows an expanded view of hook event objects. All hook events have the members and methods listed in Fig-
ure 6-1, which shows events inheriting global methods. Each type of event also has its own members and/or methods.
For example, movejob events have a job member and a src_queue member, in addition to the type, hook_name,
requestor, requestor_host, and hook_type members, and the accept(), get_local_nodename(), logjobmsg(),
logmsg(), and reject() methods shared by all events. For a description of event objects, see section 6.3, “Event Objects”,
on page 87.

Figure 6-2:Expanded view of event object members and methods
HG-86 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.3 Event Objects

pbs.event

The event object represents the event that has triggered the hook. You can pass the object to the hook script, and use it in
the script. To retrieve objects associated with the event, use this:

pbs.event().<object>

For example, to retrieve the job that triggered an event:

pbs.event().job

There are several types of events. Each type of event is triggered by a different occurrence, and each type has a corre-
sponding hook type. Each type of event has access to different data, and can perform different operations. Some data
and operations are common to all events.

Each type of event hook can read and set different job, vnode, and reservation attributes and resources. Each type of
event can read different server and queue attributes and resources. We list which attributes and resources can be set for
each event in section 5.2.4, “Using Attributes and Resources in Hooks”, on page 44.

6.3.1 Event Types

pbs.event().type

The type of the event. Represents the type attribute of the hook. This object can take one or more of the values shown
here. The following table summarizes the event types, their constant objects, their triggers, and when and where they
run, and gives a pointer to a complete description of the associated hook:

Table 6-2: Event Types and Objects

Event Type &
Constant Object

Trigger Where Run Description

resvsub

pbs.RESVSUB

Triggered by pbs_rsub and the
pbs_submitresv() API call.

A resvsub hook is executed after all pro-
cessing of pbs_rsub input, and just
before a reservation is created.

At server See section 6.3.1.1, “resvsub:
Event when Reservation is
Created”, on page 90.

resv_end

pbs.RESV_END

Triggered by end of reservation.

A resv_end hook is executed when a res-
ervation ends, just before jobs are deleted
from the reservation queue.

At server See section 6.3.1.2, “resv_end:
Event when Reservation
Ends”, on page 90.

queuejob

pbs.QUEUEJOB

Triggered by qsub and the
pbs_submit() API call.

Not triggered by requeueing a job (qre-
run) or on node_fail_requeue, when a
job is discarded by the MoM because the
execution host went down.

A queuejob hook is executed after all pro-
cessing of qsub input, and just before the
job is queued.

At server See section 6.3.1.3, “queue-
job: Event when Job is
Queued”, on page 91.
PBS Professional 2020.1.1 Hooks Guide HG-87

Chapter 6 Hook Objects and Methods
modifyjob

pbs.MODIFYJOB

Triggered by qalter, the
pbs_alterjob() API call, calculating
eligible time, and setting the job’s com-
ment.

A modifyjob hook is executed after all pro-
cessing of qalter input, and just before
the job's attributes are modified.

Not triggered when the scheduler modifies
a job.

At server See section 6.3.1.4, “modify-
job: Event when Job is
Altered”, on page 92.

movejob

pbs.MOVEJOB

Triggered by qmove and the
pbs_movejob() API call.

Not triggered by pbs_rsub
-Wqmove=<job ID>.

A movejob hook is executed after qmove
arguments are processed, but before a job
is moved from one queue to another.

At server See section 6.3.1.5, “movejob:
Event when Job is Moved”, on
page 92.

runjob

pbs.RUNJOB

Triggered by qrun and the
pbs_runjob() API call.

A runjob hook is executed just before a job
is sent to an execution host.

At server See section 6.3.1.6, “runjob:
Event Before Job is Received
by MoM”, on page 94.

periodic

pbs.PERIODIC

A periodic hook is executed at specified
intervals.

At server See section 6.3.1.7, “periodic:
Periodic Event at Server
Host”, on page 95

execjob_begin

pbs.EXECJOB_BEGI

N

An execjob_begin hook is executed when
MoM receives the job, after any files or
directories are staged in.

On primary
MoM host, and
if successful, on
all sister MoM
hosts allocated
to job

See section 6.3.1.8,
“execjob_begin: Event when
Execution Host Receives
Job”, on page 96.

execjob_prologue

pbs.EXECJOB_PRO

LOGUE

An execjob_prologue hook is executed
just before the first job process is started.

On primary
MoM host, and
on all sister
MoM hosts
where any job
task is spawned
or attached

See section 6.3.1.9,
“execjob_prologue: Event Just
Before Execution of Top-level
Job Process”, on page 97.

execjob_launch

pbs.EXECJOB_LAU

NCH

An execjob_launch hook is executed just
before the user’s program is run.

On primary
MoM host, and
on all sister
MoM hosts
where MPI
tasks are started
with
tm_spawn()

See section 6.3.1.10,
“execjob_launch: Event when
Execution Host Receives
Job”, on page 98

Table 6-2: Event Types and Objects

Event Type &
Constant Object

Trigger Where Run Description
HG-88 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
execjob_attach

pbs.EXECJOB_ATTA

CH

An execjob_attach hook is executed
before any execjob_prologue hooks run

On each MoM
host where
pbs_attach
() runs

See section 6.3.1.11,
“execjob_attach: Event when
pbs_attach() runs”, on page
100.

execjob_postsuspend

pbs.EXECJOB_PRE

TERM

An execjob_postsuspend hook is exe-
cuted just after successfully suspending the
job

On all MoM
hosts allocated
to the job

See section 6.3.1.12,
“execjob_postsuspend: Event
Just After Suspending Job”, on
page 101.

execjob_preresume

pbs.EXECJOB_PRE

TERM

An execjob_preresume hook is executed
just before resuming the job

First on the pri-
mary MoM
host, and if that
is successful, on
the sister MoM
hosts

See section 6.3.1.13,
“execjob_preresume: Event
Just Before Resuming Job”,
on page 102.

execjob_preterm

pbs.EXECJOB_PRE

TERM

An execjob_preterm hook is executed
when the job receives a termination signal.

On all MoM
hosts allocated
to the job

See section 6.3.1.14,
“execjob_preterm: Event Just
Before Killing Job Tasks”, on
page 103.

execjob_epilogue

pbs.EXECJOB_EPIL

OGUE

An execjob_epilogue hook is executed
after all of the job processes have termi-
nated, after executing or killing a job, but
before job is cleaned up

On all MoM
hosts allocated
to the job

See section 6.3.1.15,
“execjob_epilogue: Event Just
After Killing Job Tasks”, on
page 104.

execjob_end

pbs.EXECJOB_END

An execjob_end hook is executed on all
hosts allocated to a job, at the end of all job
processing

On all MoM
hosts allocated
to the job

See section 6.3.1.16,
“execjob_end: Event After Job
Cleanup”, on page 105.

exechost_startup

pbs.EXECHOST_ST

ARTUP

An exechost_startup hook is executed
when a MoM starts up or receives a HUP
(Linux).

On all MoM
hosts in the
complex.

See section 6.3.1.18,
“exechost_periodic: Periodic
Events on All Execution
Hosts”, on page 107.

exechost_periodic

pbs.EXECHOST_PE

RIODIC

An exechost_periodic hook is executed at
specified intervals

On all MoM
hosts in the
complex

See section 6.3.1.18,
“exechost_periodic: Periodic
Events on All Execution
Hosts”, on page 107.

Table 6-2: Event Types and Objects

Event Type &
Constant Object

Trigger Where Run Description
PBS Professional 2020.1.1 Hooks Guide HG-89

Chapter 6 Hook Objects and Methods
6.3.1.1 resvsub: Event when Reservation is Created

6.3.1.1.i Modifying Reservation Creation (pbs_rsub)

• When an advance, standing, or job-specific reservation is created via pbs_rsub, resvsub hooks can modify the
reservation’s attributes that can be set via pbs_rsub

• When an advance, standing, or job-specific reservation is created, resvsub hooks can specify additional attributes
that can be specified via pbs_rsub

• The input reservation attributes on which resvsub hooks operate are those that exist after all pbs_rsub processing
of command line arguments is completed

• For resvsub hooks, the input reservation attributes do not include:

• Server or queue resources_default or default_chunk.

• Conversions from old syntax (-lnodes & -lncpus) to new select and place syntax

The only time that a reservation can be modified is during its creation. A resvsub event hook can set any settable reser-
vation attribute and any resource that can be specified via pbs_rsub. See Table 5-8, “Reservation Attributes Readable
& Settable in resvsub and resv_end Hooks,” on page 59 for a complete list of the reservation attributes that this hook can
read and set.

6.3.1.1.ii The resvsub Hook Interface

The type for this event is pbs.RESVSUB.

A resvsub hook is executed after all processing of pbs_rsub input, and just before a reservation is created. The hook
is triggered by pbs_rsub and the pbs_submitresv() API call.

A reservation object’s attributes appear to a resvsub hook as they would be after the event, not before it.

A pbs.RESVSUB event has the following member, in addition to those listed in Table 6-3, “Using Event Object Mem-
bers in Events,” on page 108 and Table 6-14, “Methods Available in Events,” on page 142:

pbs.event().resv

A pbs.resv object containing the attributes and resources specified for the reservation being requested. See
section 6.9, “Reservation Objects”, on page 131.

A pbs.event().accept() terminates hook execution and allows creation of the reservation, and any changes to reservation
resources take effect.

A pbs.event().reject() terminates hook execution and causes the reservation not to be created.

6.3.1.2 resv_end: Event when Reservation Ends

A resv_end event hook can read server and reservation attributes. See Table 5-8, “Reservation Attributes Readable &
Settable in resvsub and resv_end Hooks,” on page 59 for a complete list of the reservation attributes that this hook can
read.

6.3.1.2.i The resv_end Hook Interface

The type for this event is pbs.RESV_END.

A resv_end hook is executed when a confirmed reservation ends, and just before jobs are deleted from the reservation
queue.

A pbs.RESV_END event has the following member, in addition to those listed in Table 6-3, “Using Event Object Mem-
bers in Events,” on page 108 and Table 6-14, “Methods Available in Events,” on page 142:

pbs.event().resv

A pbs.resv object containing the attributes and resources specified for the reservation being requested. See
section 6.9, “Reservation Objects”, on page 131.
HG-90 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
A pbs.event().reject() does not interrupt the execution of the process invoking it.

6.3.1.3 queuejob: Event when Job is Queued

6.3.1.3.i Modifying Job Submission (qsub)

• When a job is submitted via qsub, queuejob hooks can modify the following things explicitly specified in the job
submission:

• Job attributes that can be set via qsub

• Job comment

• Resources requested by the job

• When a job is submitted via qsub, queuejob hooks can add resource requests to those specified in the job submis-
sion

• The input job attributes on which queuejob hooks operate are those that exist after all qsub processing is com-
pleted. These input attributes include:

• Command line arguments

• Script directives

• Server default_qsub_arguments

• When a queuejob hook runs at job submission, the hook can affect only that job.

• For queuejob hooks, the input job attributes do not include:

• Server or queue resources_default or default_chunk.

• Conversions from old syntax (-lnodes or -lncpus) to new select and place syntax

See section 5.2.4, “Using Attributes and Resources in Hooks”, on page 44, for a complete listing of attributes and
resources that this hook can modify.

6.3.1.3.ii The queuejob Hook Interface

The event type for this event is pbs.QUEUEJOB.

A queuejob hook runs after all processing of qsub input, just before the job reaches the server, and before the job is
queued, including when a job is peer queued to a server that has a queuejob hook. (See Figure 4-3.) The hook is trig-
gered by qsub or the pbs_submit() API call. A queuejob hook is not triggered by requeueing a job (qrerun) or
on node_fail_requeue, when a job is discarded by the MoM because the execution host went down. A queuejob hook
runs once per job array.

In a queuejob event, the event’s job object members are as they would be if the job were to be successfully submitted.

A pbs.QUEUEJOB event has the following member, in addition to those listed in Table 6-3, “Using Event Object Mem-
bers in Events,” on page 108 and Table 6-14, “Methods Available in Events,” on page 142:

pbs.event().job

A pbs.job object with the attributes and resources specified at submission for the job being queued. See section
6.6, “Job Objects”, on page 122.

A pbs.event().accept() terminates hook execution and allows the job to be queued, and any changes to job attributes or
resources take effect.

A pbs.event().reject() terminates hook execution and causes the job not to be queued. The job is not accepted by the
server, and is not assigned a job ID.

6.3.1.3.iii Caveats for queuejob Hook

If a user submits a job using old -lnodes or -lncpus syntax, this is translated to a select statement, but only after a
queuejob hook has run. The queuejob hook does have access to the job’s resource request.
PBS Professional 2020.1.1 Hooks Guide HG-91

Chapter 6 Hook Objects and Methods
6.3.1.4 modifyjob: Event when Job is Altered

6.3.1.4.i Modifying Job Change (qalter)

• When a job is changed via qalter, modifyjob hooks can modify the arguments passed to qalter

• When a modifyjob hook runs, it can change the attributes of the job that can be changed via qalter

Before the job runs, this hook can set any job attribute that can be changed via qalter, can set the job’s comment, and
can set any resource requested by the job.

While the job is running, the only job attributes and resources that the hook can set are those that can be changed via the
qalter command: the job’s cput and walltime. See section 5.2.4, “Using Attributes and Resources in Hooks”, on page
44, for a complete listing of attributes and resources that this hook can modify.

See “qalter” on page 127 of the PBS Professional Reference Guide and “Job Attributes” on page 328 of the PBS Profes-
sional Reference Guide.

6.3.1.4.ii The modifyjob Hook Interface

The type for this event is pbs.MODIFYJOB.

A modifyjob hook is executed after all processing of qalter input, and just before the job's attributes are modified. The
hook is triggered by the following:

• A qalter command, except when the scheduler calls the command

• The pbs_alterjob() API call

• Calculating eligible time

• Setting the job’s comment

A modifyjob hook runs once per job array.

In a modifyjob event hook, the pbs.event().job object’s attributes appear to a modifyjob hook as they would be after the
job is modified, not before.

A modifyjob event hook shows the original job with all its attributes in pbs.event().job_o.

A pbs.MODIFYJOB event has the following members, in addition to those listed in Table 6-3, “Using Event Object
Members in Events,” on page 108 and Table 6-14, “Methods Available in Events,” on page 142:

pbs.event().job

A pbs.job object representing the job being modified. See section 6.6, “Job Objects”, on page 122. In this job
object, only attributes and resources that are to be modified by the qalter command are populated. In this job
object, attributes or resources that are not slated to be modified are not populated. This job object’s attributes
appear to a modifyjob hook as they would be after the job is modified, not before.

pbs.event().job_o

A pbs.job object representing the original job, before the job was modified via qalter. All attributes and
resources are populated. See section 6.3.2.12, “Original Job Event Member”, on page 112.

A pbs.event().accept() terminates hook execution and allows the job to be altered, and any changes to job attributes or
resources take effect.

A pbs.event().reject() terminates hook execution and causes the job not to be altered.

6.3.1.5 movejob: Event when Job is Moved

6.3.1.5.i Modifying Job Move (qmove)

• When a job is moved via qmove, movejob hooks can modify the arguments passed to qmove

• When a movejob hook runs, it can change the job’s destination queue to any queue on the default server
HG-92 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
A movejob hook can specify only local queues as the destination queue. Whether a job is submitted with a local
queue or a remote queue as its destination, a movejob hook can change the destination to a local queue.

The only job attribute that a movejob event hook can set is the job’s destination queue.

6.3.1.5.ii The movejob Hook Interface

The type for this event is pbs.MOVEJOB.

The server runs its movejob hooks when any of the following happens:

• This server is the furnishing server when peer scheduling a job

• A job is moved from this server to another server via the qmove command

• A job is moved between two queues on this server

A movejob hook is executed after qmove arguments are processed, but before a job is moved from one queue to another.
This hook is triggered by qmove and the pbs_movejob() API call. movejob hooks are not triggered by pbs_rsub
-Wqmove=<job ID>. A movejob hook runs once per job array.

A job object’s attributes appear to a movejob hook as they would be after the event, not before it.

The hook shows the job’s originating queue in the pbs.event().src_queue object member.

A pbs.MOVEJOB event has the following members, in addition to those listed in Table 6-3, “Using Event Object Mem-
bers in Events,” on page 108 and Table 6-14, “Methods Available in Events,” on page 142:

pbs.event().job

A pbs.job object representing the job being moved. See section 6.6, “Job Objects”, on page 122.

Note that pbs.event().job.queue refers to the destination queue, not the current queue.

pbs.event().src_queue

The pbs.queue object representing the originating queue where pbs.event().job came from.

A pbs.event().accept() terminates hook execution and allows the job to be moved, and any changes to job attributes or
resources take effect.

A pbs.event().reject() terminates hook execution and causes the job not to be moved.
PBS Professional 2020.1.1 Hooks Guide HG-93

Chapter 6 Hook Objects and Methods
6.3.1.6 runjob: Event Before Job is Received by MoM

6.3.1.6.i Changes Before Job is Sent to MoM (qrun)

When the scheduler runs a job or the administrator runs a job using the qrun command, any runjob hooks are executed.

• On accepting a job, a runjob hook can modify the following:

• The job’s Error_Path attribute

• The job’s Output_Path attribute

• All of the job’s Variable_List attribute members

• The following Resource_List attribute members:

cput

exec_vnode

file

max_walltime

min_walltime

nice

pcput

pmem

pvmem

site

software

start_time

walltime

• When a runjob hook rejects a job, it can do the following:

• Set the job’s depend attribute

• Set any members of the job’s Variable_List attribute

• Place a hold on the job

• Release a hold on the job

• Set the job’s project attribute

• Change the time the job is allowed to begin execution

• Set any of the job’s Resource_List attribute members except nodect

• Change the state of a vnode where the job would have run

See Table 5-6, “Job Attributes Readable & Settable via Events,” on page 55 and Table 5-9, “Built-in Job Resources
Readable & Settable by Hooks via Events,” on page 60.

A runjob hook can modify a vnode only if the hook rejects the event, and the vnode is in the job’s exec_vnode attribute.
For a vnode, the hook can modify only the state attribute. The only pre-execution event hook that can change this
attribute is a runjob hook.

6.3.1.6.ii The runjob Hook Interface

The event type is pbs.RUNJOB.

A runjob event occurs when one of the following happens:

• The administrator uses the qrun command

• The scheduler chooses to run a job and calls pbs_runjob()
HG-94 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
A runjob hook is executed just before a job is sent to the execution host. It is triggered by qrun and the
pbs_runjob() API call. A runjob hook runs once per subjob.

For a runjob hook only, job object attributes appear as they would be before the event takes place.

A pbs.RUNJOB event has the following member, in addition to those listed in Table 6-3, “Using Event Object Members
in Events,” on page 108 and Table 6-14, “Methods Available in Events,” on page 142:

pbs.event().job

A pbs.job object representing the job being run. See section 6.6, “Job Objects”, on page 122.

A pbs.event().accept() terminates hook execution and allows the job to be sent to the execution host, and any changes to
job attributes or resources take effect.

A pbs.event().reject() terminates hook execution and causes the job to be requeued instead of being sent to the execution
host. When a job is requeued by this hook, the scheduler considers it for execution in the next scheduling cycle.

6.3.1.7 periodic: Periodic Event at Server Host

6.3.1.7.i Periodic Events at Server Host

Periodically, at the server host, a periodic hook can:

• Run qstat, job start time estimator named pbs_est, etc.

6.3.1.7.ii The periodic Hook Interface

This event type is pbs.PERIODIC.

The periodic hook runs periodically on the server host, in the background. The hook begins periodic execution, and the
interval timer is restarted, when any of the following happens:

• The hook is enabled

• The hook is imported

• The server starts

The periodic hook runs as pbsadmin.

The interval between calls to periodic hooks is specified in the freq hook attribute. See section 5.1.13, “Setting Hook
Interval (Frequency)”, on page 39.

A call to pbs.event().accept() causes any changes made to objects exposed in the hook to take effect.

A call to pbs.event().reject(<message>) prevents any changes from taking effect.

A call to pbs.event().reject(<message>) causes the following messages to appear in the server log:

“run_periodic_hook; request rejected by <hook_name>”

<message>

The periodic hook continues to be periodically called whether or not there are errors in hook script execution or a call to
the pbs.event().reject() action. To stop the hook from being called, either disable it or delete it:

#qmgr -c "s h <periodic hook> enabled=f"

#qmgr -c "d h <periodic hook>"

If the periodic hook script encounters an unexpected error causing an unhandled exception, or if the script terminates due
to a hook alarm, all changes do not take effect. In addition, one of the following messages appears in the MoM log at
event class PBSEVENT_DEBUG2:

“periodic hook <hook_name> encountered an exception, request rejected”

“alarm call while running periodic hook '<hook_name>', request rejected”
PBS Professional 2020.1.1 Hooks Guide HG-95

Chapter 6 Hook Objects and Methods
6.3.1.7.iii Caveats for periodic Event Hooks

The order attribute is ignored for periodic hooks. It does not guarantee the execution order of a list of periodic hooks.

6.3.1.8 execjob_begin: Event when Execution Host Receives Job

6.3.1.8.i Changes When Job is Received by MoM

When MoM receives a job, an execjob_begin hook can:

• Modify the job’s Execution_Time, Hold_Types, Variable_List, and resources_used attributes

• Flag the job to be rerun

• Kill the job

• Set attributes and resources on the vnode(s) managed by the MoM where this job executes

6.3.1.8.ii The execjob_begin Hook Interface

This event type is pbs.EXECJOB_BEGIN.

An execjob_begin hook executes on the primary MoM host and then, if successful, executes on all the sister MoM hosts
allocated to the job. The hook executes when the host first receives the job, after any files or directories are staged in.

A pbs.EXECJOB_BEGIN event has the following members and methods, in addition to those listed in Table 6-3,
“Using Event Object Members in Events,” on page 108 and Table 6-14, “Methods Available in Events,” on page 142:

pbs.event().job

This is a pbs.job object representing the job that is about to run. See section 6.6, “Job Objects”, on page 122.

pbs.event().vnode_list[]

This is a dictionary of pbs.vnode objects, keyed by vnode name, listing the vnodes that are assigned to this job.
See section 6.3.2.22, “The Vnode List Event Member”, on page 114 for information about using
pbs.event().vnode_list[].

A call to pbs.event().accept() means the job can proceed with execution, and any changes to job attributes, resources, or
the vnode list take effect.

A call to pbs.event().reject(<message>) automatically causes the job to be killed and tells the server to requeue the job.
In addition, any changes to job attributes, resources, or vnode list take effect. When a job is requeued by this hook, the
scheduler considers it for execution in the next scheduling cycle.

• If the pbs.event().reject(<message>) call is made on a primary execution host, the following message appears in
the MoM log at log event class PBSEVENT_DEBUG2:
“execjob_begin request rejected by <hook_name>”

<message>

The rejection message <message> also appears in the STDERR of the program such as qrun invoking
pbs_runjob() API:

• If the pbs.event().reject(<message>) call is made on a sister host, the following message appears in the MoM log
at log event class PBSEVENT_DEBUG2:
“execjob_begin request rejected by <hook_name>”

<message>

In addition, this message appears in mom_logs on the primary execution host:

“job_start_error: <hook errno> from node <hostname> could not JOIN_JOB successfully.

• If pbs_runjob() was invoked by the scheduler, the following job comment appears:
“Not running: PBS Error: <message>”
HG-96 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
If the execjob_begin hook script encounters an unexpected error causing an unhandled exception, or if the script termi-
nates due to a hook alarm, the job is automatically killed and the server requeues the job. All job changes, vnode
changes, or requests for host reboot or scheduler cycle restarts do not take effect. In this case, one of the the following
messages appears in the MoM log at event class PBSEVENT_DEBUG2:

“execjob_begin hook <hook_name> encountered an exception, request rejected”

“alarm call while running execjob_begin hook '<hook_name>', request rejected”

6.3.1.9 execjob_prologue: Event Just Before Execution of Top-level

Job Process

6.3.1.9.i Changes Before Job Shell is Executed

Just before a job’s top shell is executed, an execjob_prologue hook can:

• Modify the job’s Execution_Time, Hold_Types, and resources_used attributes

• Flag the job to be rerun

• Kill the job

• Set attributes and resources on the vnode(s) managed by the MoM where this job executes

• Modify a job’s vnode request

• Put a bad vnode in the pbs.event().vnode_list_fail[] list

6.3.1.9.ii The execjob_prologue Hook Interface

This event type is pbs.EXECJOB_PROLOGUE.

An execjob_prologue hook runs on the primary MoM host. If the hook runs successfully on the primary MoM host, an
execjob_prologue hook runs on each of the sister MoM hosts allocated to the job. On the primary MoM host, an
execjob_prologue hook executes just prior to executing the top-level shell or cmd process of the job. This is where the
prologue executes. On a sister MoM host, the hook executes just before the first task of the job on this host is spawned,
and before any execjob_launch or execjob_attach hooks. See Table 4-1, “Execution Event Hook Timing,” on
page 19.

An execjob_prologue hook overrides a prologue. If an execjob_prologue hook exists and is enabled, MoM executes
the hook. Otherwise, she executes the prologue.

A pbs.EXECJOB_PROLOGUE event has the following members and methods, in addition to those listed in Table 6-3,
“Using Event Object Members in Events,” on page 108 and Table 6-14, “Methods Available in Events,” on page 142:

pbs.event().job

This is a pbs.job object representing the job that is about to run. See section 6.6, “Job Objects”, on page 122.

pbs.event().job.release_nodes()

This method releases unneeded vnodes from a job’s vnode request. See section 6.6.4.4, “Job Object Method to
Release Vnodes”, on page 128.

pbs.event().vnode_list[]

This is a dictionary of pbs.vnode objects, keyed by vnode name, listing the vnodes that are assigned to this job.
See section 6.3.2.22, “The Vnode List Event Member”, on page 114 for information about using
pbs.event().vnode_list[].

This is a pbs.job object representing the job that is about to run. See section 6.6, “Job Objects”, on page 122.

pbs.event().vnode_list_fail[]

This is a dictionary of pbs.vnode objects, keyed by vnode name, listing the vnodes that are assigned to this job
but are marked as unhealthy. See section 6.3.2.23, “The Failed Vnode List Event Member”, on page 115 for
information about pbs.event().vnode_list_fail[].
PBS Professional 2020.1.1 Hooks Guide HG-97

Chapter 6 Hook Objects and Methods
A pbs.event().accept() allows the job to continue its normal execution, and any changes to job attributes, resources, or
vnode list take effect.

A pbs.event().reject(<message>) causes the job to be killed, and the owning server to requeue the job. Any changes to
job attributes, resources, or vnode list take effect. When a job is requeued by this hook, the scheduler considers it for
execution in the next scheduling cycle.

• On the primary execution host, the following job-level mom_logs entries appear:
“execjob_prologue request rejected by <hook_name>”

<message>

• On a sister vnode, the following job-level mom_logs entries appear:
“execjob_prologue request rejected by <hook_name>”

<message>

• In addition, the following message appears in the STDERR of the program invoking the tm_attach() API, such as
the pbs_attach() command:
“a hook has rejected the task manager request”

If the following setting is specified in the hook script, just before issuing a pbs.event().reject(), the job is deleted instead
of being requeued:

pbs.event().job.delete()

If the user attribute of the execjob_prologue hook is set to pbsuser, the hook script executes under the context of the
job owner (the value of the euser job attribute).

If the execjob_prologue hook script encounters an unexpected error causing an unhandled exception, or if the script ter-
minates due to a hook alarm, the job is killed and the server requeues the job. All job changes, vnode changes, or
requests for host reboot or scheduler cycle restarts, do not take effect. In addition, one of the following messages appears
in the MoM log at event class PBSEVENT_DEBUG2:

“execjob_prologue hook <hook_name> encountered an exception, request rejected”

“alarm call while running execjob_prologue hook '<hook_name>', request rejected”

The standard output and standard error of an execjob_prologue hook script are not connected to the standard output and
standard error of the job.

6.3.1.10 execjob_launch: Event when Execution Host Receives Job

6.3.1.10.i Changes Before User Program is Executed

Just before the user’s program is executed, an execjob_launch hook can:

• Change the job’s top shell or executable

• Change the arguments to the shell or executable

• Change the job’s environment variables

• Modify job and vnode attributes

• Modify a job’s vnode request

• Put a bad vnode in the pbs.event().vnode_list_fail[] list

An execjob_launch hook cannot modify anything else.

6.3.1.10.ii The execjob_launch Hook Interface

This event type is pbs.EXECJOB_LAUNCH.

An execjob_launch hook runs on the primary MoM host just before executing the user’s program. The hook runs on the
sister MoM hosts allocated to the job, just before executing the user’s program as specified in a tm_spawn() API call,
which is called from pbsdsh and pbs_tmrsh.
HG-98 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
Any execjob_launch hooks runs after execjob_prologue hooks.

 This hook cannot use any of the job’s methods.

A pbs.EXECJOB_LAUNCH event hook has access to the following members and methods, in addition to those listed in
Table 6-3, “Using Event Object Members in Events,” on page 108 and Table 6-14, “Methods Available in Events,” on
page 142:

pbs.event().argv[]

This is a pbs.argv[] object representing the arguments to the shell or executable. See section 6.3.2.2, “Job Pro-
gram Arguments Event Member”, on page 109.

pbs.event().env

This is a pbs.env[] object representing the job’s environment variables. See section 6.3.2.5, “Job Environment
Event Member”, on page 110.

pbs.event().job

This is a pbs.job object representing the job that is about to run. See section 6.6, “Job Objects”, on page 122.

pbs.event().job.release_nodes()

This method releases unneeded vnodes from a job’s vnode request. See section 6.6.4.4, “Job Object Method to
Release Vnodes”, on page 128.

pbs.event().progname

This is a pbs.progname object representing the job shell or executable. See section 6.3.2.15, “Job Executable
Event Member”, on page 112.

pbs.event().vnode_list[]

This is a dictionary of pbs.vnode objects, keyed by vnode name, listing the vnodes that are assigned to the job
that caused the execjob_launch hook to execute. See section 6.3.2.22, “The Vnode List Event Member”, on
page 114 for information about pbs.event().vnode_list[]. This object is read-only for this event. The vnode
objects in vnode_list[] cannot be modified. Attempting to modify them result in the following:

• The execjob_launch hook is terminated

• The job ends prematurely with a non-zero Exit_Status value

• The following PBSEVENT_DEBUG2 message appears in mom_logs:

“execjob_launch hook 'launch' encountered an exception, request rejected”

Can only set progname, argv, env event parameters under execjob_launch hook.”

pbs.event().vnode_list_fail[]

This is a dictionary of pbs.vnode objects, keyed by vnode name, listing the vnodes that are assigned to this job
but are marked as unhealthy. Seesection 6.3.2.23, “The Failed Vnode List Event Member”, on page 115 for
information about pbs.event().vnode_list_fail[].

A call to pbs.event().accept() means the job can proceed with execution, and any changes to progname, argv[], and
env[] take effect. If the hook makes changes to the job's progname, argv[], or env[] parameters, the appropriate
PBSEVENT_DEBUG2 message(s) appear in mom_logs for each change in a value:

“progname orig: <original_progname>”

“progname new: <updated_progname>”

“argv orig: <original_argv>”

“argv new: <updated_argv>”

“env orig: <original_env>”

“env new: <updated_env>”
PBS Professional 2020.1.1 Hooks Guide HG-99

Chapter 6 Hook Objects and Methods
A call to pbs.event().reject(<message>) causes the job to be terminated with a non-zero Exit_Status value, and the
following PBSEVENT_DEBUG2 messages to appear in mom_logs:

“execjob_launch” request rejected by '<hook_name>'”

<message>

If the execjob_launch hook script encounters an unexpected error causing an unhandled exception, the job is terminated
with a non-zero Exit_Status value, and the following PBSEVENT_DEBUG2 messages appear in mom_logs:

“execjob_launch hook <hook_name> encountered an exception, request rejected”

If the execjob_launch hook script terminates due to a hook alarm, the job is terminated with a non-zero Exit_Status
value, and the following PBSEVENT_DEBUG2 messages appear in mom_logs:

“alarm call while running execjob_launch hook '<hook_name>', request rejected”

6.3.1.11 execjob_attach: Event when pbs_attach() runs

6.3.1.11.i Event when pbs_attach() Runs

When pbs_attach() is called, an execjob_attach hook can accept or reject the procedure where the process ID is
attached to the job.

6.3.1.11.ii The execjob_attach Hook Interface

An execjob_attach hook runs on any MoM host where an MPI process is spawned using pbs_attach(). The
execjob_attach hook runs for each process ID.

The execjob_attach hook runs before any execjob_prologue hooks run on behalf of the first task. See Table 4-1,
“Execution Event Hook Timing,” on page 19.

An execjob_attach hook cannot modify any PBS objects.

A pbs.EXECJOB_ATTACH event has the following members and methods, in addition to those listed in Table 6-3,
“Using Event Object Members in Events,” on page 108 and Table 6-14, “Methods Available in Events,” on page 142:

pbs.event().job

This is a pbs.job object representing the job that is about to run. See section 6.6, “Job Objects”, on page 122.
For this hook, this job object is read-only.

pbs.event().pid

This is a Python int representing the process ID whose session ID is being added to the job tasks list. This hook
cannot modify the value of the process ID.

pbs.event().vnode_list[]

This is a dictionary of pbs.vnode objects, keyed by vnode name, listing the vnodes that are assigned to this job.
The list of vnodes is read-only for this event. See section 6.3.2.22, “The Vnode List Event Member”, on page
114 for information about using pbs.event().vnode_list[].

On a call to pbs.event().accept(), MoM proceeds as usual to add the session ID of the process ID to the job’s task list.

On a call to pbs.event().reject(<message>), the following happens:

• Hook execution terminates

• MoM does not get the session ID

• PBS prints the following message in mom_logs at log level PBSEVENT_DEBUG2:
“execjob_attach” request rejected by '<hook_name>'”

<message>
HG-100 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
If the execjob_attach hook script encounters an unhandled exception:

• Hook execution terminates

• MoM does not get the session ID of the process ID

• The following message appears in mom_logs at PBSEVENT_DEBUG2:
“execjob_attach hook <hook_name> encountered an exception, request rejected”

If the execjob_attach hook script terminates due to a hook alarm, MoM does not get the session ID of the process ID,
and the following message appears in mom_logs at PBSEVENT_DEBUG2:

“alarm call while running execjob_attach hook '<hook_name>', request rejected”

6.3.1.11.iii Caveats for execjob_attach Hooks

• Do not attempt to modify pbs.event().pid. If you do:

• Hook execution is terminated

• MoM does not get the session ID of the process ID

• The following messages appear in mom_logs at PBSEVENT_DEBUG2:

“execjob_attach hook <hook_name> encountered an exception, request rejected”

“event attribute 'pid' is read-only”

• Do not attempt to modify pbs.event().job or the objects in pbs.event().vnode_list[]. If you do:

• Hook execution is terminated

• MoM does not get the session ID of the process ID

• The following messages appear in mom_logs at PBSEVENT_DEBUG2:

“execjob_attach hook <hook_name> encountered an exception, request rejected”

“nothing is settable inside an execjob_attach hook!"

6.3.1.12 execjob_postsuspend: Event Just After Suspending Job

6.3.1.12.i The execjob_postsuspend Hook Interface

This event type is pbs.EXECJOB_POSTSUSPEND.

This hook runs on all of the MoM hosts assigned to a job, after the job has been successfully suspended.

An execjob_postsuspend hook:

• Cannot modify any PBS objects

• Cannot be used to set a fail action

• Must run as pbsadmin

• Does not interrupt the flow of suspend/resume

A pbs.EXECJOB_POSTSUSPEND event has the following members and methods, in addition to those listed in
Table 6-3, “Using Event Object Members in Events,” on page 108 and Table 6-14, “Methods Available in Events,” on
page 142:

pbs.event().job

This is a pbs.job object representing the job that has just been suspended. See section 6.6, “Job Objects”, on
page 122. For this hook, this job object is read-only.

pbs.event().vnode_list[]

This is a dictionary of pbs.vnode objects, keyed by vnode name, listing the vnodes that are assigned to this job.
The list of vnodes is read-only for this event. See section 6.3.2.22, “The Vnode List Event Member”, on page
114 for information about using pbs.event().vnode_list[].
PBS Professional 2020.1.1 Hooks Guide HG-101

Chapter 6 Hook Objects and Methods
On a call to pbs.event().accept(), nothing happens.

On a call to pbs.event().reject(<message>), the following happens:

• Hook execution terminates

• PBS prints the following message in mom_logs at log level PBSEVENT_DEBUG2:
“execjob_postsuspend” request rejected by '<hook_name>'”

<message>

6.3.1.13 execjob_preresume: Event Just Before Resuming Job

6.3.1.13.i The execjob_preresume Hook Interface

This event type is pbs.EXECJOB_PRERESUME.

This hook runs on the primary MoM host when this MoM receives a request to resume a job, and then if this is success-
ful, the primary MoM sends a request to the sisters to resume the job, at which point this hook runs on the sister MoM
hosts. All of the execjob_preresume hooks for a job must succeed in order for the job to resume.

An execjob_preresume hook:

• Cannot modify any PBS objects

• Cannot be used to set a fail action

• Must run as pbsadmin

A pbs.EXECJOB_PRERESUME event has the following members and methods, in addition to those listed in Table 6-
3, “Using Event Object Members in Events,” on page 108 and Table 6-14, “Methods Available in Events,” on page 142:

pbs.event().job

This is a pbs.job object representing the job that has just been suspended. See section 6.6, “Job Objects”, on
page 122. For this hook, this job object is read-only.

pbs.event().vnode_list[]

This is a dictionary of pbs.vnode objects, keyed by vnode name, listing the vnodes that are assigned to this job.
The list of vnodes is read-only for this event. See section 6.3.2.22, “The Vnode List Event Member”, on page
114 for information about using pbs.event().vnode_list[].

On a call to pbs.event().accept(), nothing happens

On a call to pbs.event().reject(<message>), the following happens:

• Hook execution terminates

• All MoMs where job processes were running are prevented from resuming the job

• PBS prints the following message in mom_logs at log level PBSEVENT_DEBUG2:
“execjob_preresume” request rejected by '<hook_name>'”

<message>
HG-102 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.3.1.14 execjob_preterm: Event Just Before Killing Job Tasks

6.3.1.14.i Changes Before Job is Killed

Just before a job is killed, an execjob_preterm hook can:

• Modify the job’s Execution_Time, Hold_Types, and resources_used attributes

• Flag the job to be rerun

• Kill the job

• Set attributes and resources on the vnode(s) managed by the MoM where this job executes

• Cause the job to keep running

6.3.1.14.ii The execjob_preterm Hook Interface

This event type is pbs.EXECJOB_PRETERM.

An execjob_preterm hook executes on all the MoM hosts allocated to a job. This hook runs only when a qdel has been
issued. It does not run for any other job termination. For example, it does not run on a qrerun or when a job goes over
its limit. On the primary MoM host, the hook executes when the job receives a signal from the server for the job to ter-
minate. On a sister MoM host, this hook executes when the sister receives a request from the primary MoM host to ter-
minate the job, just before the sister signals the task on this host to terminate.

A pbs.EXECJOB_PRETERM event has the following members and methods, in addition to those listed in Table 6-3,
“Using Event Object Members in Events,” on page 108 and Table 6-14, “Methods Available in Events,” on page 142:

pbs.event().job

This is a pbs.job object representing the job that is about to run (or be killed). See section 6.6, “Job Objects”, on
page 122.

pbs.event().vnode_list[]

This is a dictionary of pbs.vnode objects, keyed by vnode name, listing the vnodes that are assigned to this job.
See section 6.3.2.22, “The Vnode List Event Member”, on page 114 for information about using
pbs.event().vnode_list[].

A pbs.event().accept() call allows job cancellation or deletion to happen, and any changes to job attributes, resources, or
vnode list take effect.

A pbs.event().reject() call causes the job instance on a vnode to continue running, because the terminate signal is not
delivered to the job. Any changes to job attributes, resources, or vnode list take effect.

• On the primary execution host, a pbs.event().reject(<message>) causes the following to appear in the STDERR of
the program (qdel) invoking the pbs_deljob() API:
“hook rejected request”

• The following message appears in the MoM log at log event class PBSEVENT_DEBUG2:
“execjob_preterm request rejected by <hook_name>”

<message>

• On a sister host, a pbs.event().reject(<message>) causes the following message to appear in the MoM log at log
event class PBSEVENT_DEBUG2:
“execjob_preterm request rejected by <hook_name>”

<message>

If the user attribute of the execjob_preterm hook is set to pbsuser, the hook script executes under the context of the job
owner (the value of the euser job attribute).
PBS Professional 2020.1.1 Hooks Guide HG-103

Chapter 6 Hook Objects and Methods
If the execjob_preterm hook script encounters an unexpected error causing an unhandled exception, or if the script ter-
minates due to a hook alarm, the job continues to run, and all job changes, vnode changes, requests for host reboot or
scheduler cycle restarts, do not take effect. In addition, one of the the following messages appears in the MoM log at
event class PBSEVENT_DEBUG2:

“execjob_preterm hook <hook_name> encountered an exception, request rejected”

“alarm call while running execjob_preterm hook '<hook_name>', request rejected”

6.3.1.15 execjob_epilogue: Event Just After Killing Job Tasks

6.3.1.15.i Changes After Job is Executed

Just after a job is executed, an execjob_epilogue hook can:

• Modify the job’s Execution_Time, Hold_Types, and resources_used attributes

• Flag the job to be rerun

• Kill the job

• Set attributes and resources on the vnode(s) managed by the MoM where this job executes

• Use the job’s exit status

6.3.1.15.ii The execjob_epilogue Hook Interface

This event type is pbs.EXECJOB_EPILOGUE.

An execjob_epilogue hook executes on all the MoM hosts allocated to the job. On a primary MoM host, the hook exe-
cutes after all the job tasks/processes on the host have been killed, and basic CPU and memory resource usage informa-
tion have been logged, but before job processes are cleaned up. This is where the epilogue executes. On a sister MoM
host, the hook executes after the sister MoM receives a request to kill the job and has signaled the job tasks to terminate.

When an execjob_epilogue hook modifies the resources_used job attribute, it is modifying only the value counted at
the local host. For example, if a job runs on two hosts, using four minutes of CPU time on each host, and the hook
changes that to three minutes (and this hook runs at both hosts), the job’s final CPU time total is six minutes instead of
eight.

An execjob_epilogue hook overrides an epilogue. If an execjob_epilogue hook exists and is enabled, MoM executes
the hook. Otherwise, she executes the epilogue.

A pbs.EXECJOB_EPILOGUE event has the following members and methods, in addition to those listed in Table 6-3,
“Using Event Object Members in Events,” on page 108 and Table 6-14, “Methods Available in Events,” on page 142:

pbs.event().job

This is a pbs.job object representing the job that just finished. See section 6.6, “Job Objects”, on page 122.

pbs.event().job.Exit_status

A Python int that holds the exit value of the top level shell of the job script. This value is valid only if the hook
is executing on a primary execution host.

pbs.event().vnode_list[]

This is a dictionary of pbs.vnode objects, keyed by vnode name, listing the vnodes that are assigned to this job.
See section 6.3.2.22, “The Vnode List Event Member”, on page 114 for information about using
pbs.event().vnode_list[].

A call to pbs.event().accept() continues the normal end-of-job processing, and any changes to job attributes, resources,
or vnode list take effect.
HG-104 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
A call to pbs.event().reject() causes the job on the current vnode to exit, and the owning server to completely delete the
job. Any changes to job attributes, resources, or vnode list take effect.

• On a primary execution host, a pbs.event().reject(<message>) causes the following message to appear in the
MoM log at log event class PBSEVENT_DEBUG2:
“execjob_epilogue request rejected by <hook_name>”

<message>

• On a sister host, a pbs.event().reject(<message>) causes the following message to appear in the MoM log at log
event class PBSEVENT_DEBUG2:
“execjob_epilogue request rejected by <hook_name>”

<message>

• If the following call has been made prior to calling pbs.event().reject(), the owning server requeues the job:
pbs.event().job.rerun()

If the user attribute of the execjob_epilogue hook is set to pbsuser, the hook script executes under the context of the
job owner (the value of the euser job attribute).

If the execjob_epilogue hook script encounters an unexpected error causing an unhandled exception, or if the script ter-
minates due to a hook alarm, this causes the job on the current vnode to exit, and the owning server to completely delete
the job. All job changes, vnode changes, requests for host reboot or scheduler cycle restarts, do not take effect. In addi-
tion, one of the following messages appears in the MoM log at event class PBSEVENT_DEBUG2:

“execjob_epilogue hook <hook_name> encountered an exception, request rejected”

“alarm call while running execjob_epilogue hook '<hook_name>', request rejected”

The standard output and standard error of an execjob_epilogue hook script are not connected to the standard output and
standard error of the job.

6.3.1.16 execjob_end: Event After Job Cleanup

6.3.1.16.i Changes After Job Finishes or is Killed

Just after a job is cleaned up after it finishes execution or is killed, an execjob_end hook can:

• Set attributes and resources on the vnode(s) managed by the MoM where this job executes

• Use the job’s exit status

An execjob_end hook cannot effectively modify the job’s Execution_Time and Hold_Types attributes. These changes
will not be visible to the server, because the job is already cleaned up and reported.

6.3.1.16.ii The execjob_end Hook Interface

This event type is pbs.EXECJOB_END.

An execjob_end hook executes on all the MoM hosts allocated to a job. The hook is executed after a job is cleaned up.

A pbs.EXECJOB_END event has the following members and methods, in addition to those listed in Table 6-3, “Using
Event Object Members in Events,” on page 108 and Table 6-14, “Methods Available in Events,” on page 142:

pbs.event().job

This is a pbs.job object representing the job that just ran. See section 6.6, “Job Objects”, on page 122.

pbs.event().job.Exit_status

A Python int that holds the exit value of the top level shell of the job script. This value is valid only when the
hook executes on a primary execution host.
PBS Professional 2020.1.1 Hooks Guide HG-105

Chapter 6 Hook Objects and Methods
pbs.event().vnode_list[]

This is a dictionary of pbs.vnode objects, keyed by vnode name, listing the vnodes that are assigned to this job.
See section 6.3.2.22, “The Vnode List Event Member”, on page 114 for information about using
pbs.event().vnode_list[].

A call to pbs.event().accept() ends the job, and any changes to job attributes, resources, or vnode list take effect.

A call to pbs.event().reject(<message>) also ends the job, and any changes to job attributes, resources, or vnode list
also take effect.

A call to pbs.event().reject(<message>) on a primary execution host causes the following message to appear in the
MoM log at log event class PBSEVENT_DEBUG2:

“execjob_end request rejected by <hook_name>”

<message>

A call to pbs.event().reject(<message>) on a sister host causes the following message to appear in the MoM log at log
event class PBSEVENT_DEBUG2:

“execjob_end request rejected by <hook_name>”

<message>

If the execjob_end hook script encounters an unexpected error causing an unhandled exception, or if the script termi-
nates due to a hook alarm, the job terminates, and all job changes, vnode changes, requests for host reboot or scheduler
cycle restarts, do not take effect. In addition, one of the following messages appear in the MoM logs at event class
PBSEVENT_DEBUG2:

“execjob_end hook <hook_name> encountered an exception, request rejected”

“alarm call while running execjob_end hook '<hook_name>', request rejected”

6.3.1.17 exechost_startup: Event When Execution Host Starts Up

6.3.1.17.i Event when Execution Host Starts or Receives HUP

When an execution host starts up or receives a HUP, an exechost_startup hook can:

• Create vnodes on local host

• Create custom resources for vnodes

• Offline vnodes that are not ready for use

• Return vnodes to use that have been previously offlined

• Modify the attributes and resources of the vnodes managed by the local MoM

6.3.1.17.ii The exechost_startup Hook Interface

This event type is pbs.EXECHOST_STARTUP.

The exechost_startup hook runs on a MoM host every time its MoM starts up, or when a Linux pbs_mom receives a
SIGHUP signal. This hook executes after MoM loads pbs.conf values, reads mom_priv/config values, and runs plat-
form-specific initializations, for example cpuset initialization, including topology data gathering. If there are Version 2
configuration files, this hook sets vnode definitions from those Version 2 configuration files.

The exechost_startup hook runs independently of jobs; it depends only on MoM startup and HUP.

A pbs.EXECHOST_STARTUP event has the following members and methods, in addition to those listed in Table 6-3,
“Using Event Object Members in Events,” on page 108 and Table 6-14, “Methods Available in Events,” on page 142:

pbs.event().vnode_list[]

This is a dictionary of pbs.vnode objects, keyed by vnode name, listing the vnodes that are managed by the
MoM where the hook runs. See section 6.3.2.22, “The Vnode List Event Member”, on page 114 for information
about using pbs.event().vnode_list[].
HG-106 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
On a call to pbs.event().accept() or pbs.event().reject(), vnode changes take effect, and MoM continues to run.

A call to pbs.event().reject(<message>) causes the following messages to appear in the MoM log:

“exechost_startup” request rejected by hook <hook_name>”

<message>

If the exechost_startup hook script encounters an unexpected error causing an unhandled exception:

• Vnode changes do not take effect

• MoM continues to run

• The following message appears at PBSEVENT_DEBUG2 in mom_logs:
“exechost_startup hook <hook_name> encountered an exception, request rejected”

If the exechost_startup hook script terminates due to a hook alarm, vnode changes do not take effect, MoM continues
to run, and the following message appears at PBSEVENT_DEBUG2 in mom_logs:

“alarm call while running exechost_startup hook '<hook_name>', request rejected'

6.3.1.17.iii Advice on Using exechost_startup Hooks

• We recommend that your hook does not make changes unless the hook accepts its event. You do not want to have to
back changes out upon a reject().

• For exceptions, we recommend that you catch them via try... except and accompany them with a call to

pbs.event().reject().

• We recommend that before calling pbs.event().reject(), you set the vnodes managed by the local MoM offline with
an accompanying comment. This stops jobs from being sent to the affected vnodes. For example:
vnlist = pbs.event().vnode_list

for v in vnlist.keys():

vnlist[v].state = pbs.ND_OFFLINE

vnlist[v].comment = “bad configuration”

pbs.event().reject(“not accepting jobs”)

6.3.1.18 exechost_periodic: Periodic Events on All Execution Hosts

6.3.1.18.i Periodic Events at Execution Hosts

Periodically, at each execution host, an exechost_periodic hook can:

• Set attributes and resources for any vnode managed by the MoM on the host where the hook runs. This means that
an instance of a hook can affect more than one vnode only when the hook is running on a multi-vnode host.

• Set attributes or resources for each job managed by the local MoM.

6.3.1.18.ii The exechost_periodic Hook Interface

This event type is pbs.EXECHOST_PERIODIC.

The exechost_periodic hook runs periodically on all the MoM hosts in the complex.

The interval between calls to exechost_periodic hooks is specified in the freq hook attribute. See section 5.1.13, “Set-
ting Hook Interval (Frequency)”, on page 39.

A pbs.EXECHOST_PERIODIC event has the following members and methods, in addition to those listed in Table 6-3,
“Using Event Object Members in Events,” on page 108 and Table 6-14, “Methods Available in Events,” on page 142:

pbs.event().vnode_list[]

This is a dictionary of pbs.vnode objects, keyed by vnode name, listing the vnodes that are managed by the
MoM where the hook runs. See section 6.3.2.22, “The Vnode List Event Member”, on page 114 for information
about using pbs.event().vnode_list[].
PBS Professional 2020.1.1 Hooks Guide HG-107

Chapter 6 Hook Objects and Methods
pbs.event().job_list[]

List of the pbs.job objects managed by the local MoM. This hook can set the attributes and resources for these
jobs. See section 6.3.2.11, “Job List Event Member”, on page 111.

A call to pbs.event().accept() or pbs.event().reject(<message>) causes any changes made to vnodes to take effect.

A call to pbs.event().reject(<message>) causes the following messages to appear in the MoM log:

“exechost_periodic” request rejected by hook <hook_name>”

<message>

The periodic hook continues to be periodically called whether or not there are errors in hook script execution or a call to
the pbs.event().reject() action. To stop the hook from being called, either disable it or delete it:

#qmgr -c "s h <periodic hook> enabled=f"

#qmgr -c "d h <periodic hook>"

If the exechost_periodic hook script encounters an unexpected error causing an unhandled exception, or if the script ter-
minates due to a hook alarm, all vnode changes, requests for host reboot or scheduler cycle restarts, do not take effect. In
addition, one of the following messages appears in the MoM log at event class PBSEVENT_DEBUG2:

“exechost_periodic hook <hook_name> encountered an exception, request rejected”

“alarm call while running exechost_periodic hook '<hook_name>', request rejected”

6.3.1.18.iii Caveats for exechost_periodic Event Hooks

The order attribute is ignored for exechost_periodic hooks. It does not guarantee the execution order of a list of peri-
odic hooks.

6.3.2 Event Object Members

Some event object members are hook attributes, and some exist as part of the event object but are not hook attributes.
The following table summarizes the members for event objects, and shows which event objects have access to each
member, and whether the event hook can read and set the member. An “r” indicates read, an “s” indicates set, and an
“o” indicates that this member can be set but the action has no effect. See Table 4-1, “Execution Event Hook Timing,”
on page 19 for more information about why some operations have no effect.

Table 6-3: Using Event Object Members in Events

Event Object Member

q
u

e
u

e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

m
o

v
e
jo

b

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

p
e
ri

o
d

ic

re
s
v
s
u

b

re
s
v
_
e
n

d

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
e
n

d

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic

p
ro

v
is

io
n

pbs.event().alarm ---
pbs.event().argv[] --- --- --- --- --- --- --- --- --- --- --- r, s --- --- --- --- --- --- --- ---
pbs.event().debug ---
pbs.event().enabled ---
pbs.event().env --- --- --- --- --- --- --- --- --- --- --- r, s --- --- --- --- --- --- --- ---
pbs.event().fail_action ---
pbs.event().freq --- --- --- --- r, s --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
pbs.event().hook_name r r r r r --- r r r r r r r r r r r r r r
pbs.event().hook_type r r r r r --- r r r r r r r r r r r r r r
HG-108 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
An event object (an object returned by pbs.event()) has one or more of the following members:

6.3.2.1 Hook Alarm Event Member

pbs.event().alarm

Hook attribute. Number of seconds to allow a hook to run before the hook times out. Must be greater than zero. See
“alarm” on page 349 of the PBS Professional Reference Guide.

Type: Integer

6.3.2.2 Job Program Arguments Event Member

pbs.event().argv[]

The list of arguments to be passed to the job script. The arguments can be modified in an execjob_launch hook.

Type: Python list of strings

To add another argument to the argument list, append it:

pbs.event().argv.append(<new_argument>)

To clear out existing argv[] entries and supply a new set of arguments, use the following:

pbs.event().argv = [] (sets argv[] to empty list)
pbs.event().argv.append(<arg0>)

pbs.event().argv.append(<arg1>)

…

pbs.event().argv.append(<argN>)

pbs.event().job r, s r, s r, s r, s r, s --- --- --- r, s r r, s r r r r, s r, s r, s --- --- ---
pbs.event().job_list (jobs) --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- r, s ---
pbs.event().job_o --- r --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
pbs.event().order ---
pbs.event().pid --- --- --- --- --- --- --- --- --- r --- --- --- --- --- --- --- --- --- ---
pbs.event().progname --- --- --- --- --- --- --- --- --- --- --- r, s --- --- --- --- --- --- --- ---
pbs.event().requestor r r r r r --- r r r r r r r r r r r r r r
pbs.event().requestor_host r r r r r --- r r r r r r r r r r r r r r
pbs.event().resv --- --- --- --- --- --- table

5-8
table
5-8

--- --- --- --- --- --- --- --- --- --- --- ---

pbs.event().src_queue --- --- r --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
pbs.event().type r r r r r --- r r r r r r r r r r r r r r
pbs.event().user ---
pbs.event().vnode_list[] --- --- --- --- --- --- --- --- r, s r r, s r r, s r, s r, s r, s r, s r, s r, s ---
pbs.event().vnode_list_fail[] --- --- --- --- --- --- --- --- --- --- r r --- --- --- --- --- --- --- ---

Table 6-3: Using Event Object Members in Events

Event Object Member

q
u

e
u

e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

m
o

v
e
jo

b

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

p
e
ri

o
d

ic

re
s
v
s
u

b

re
s
v
_
e
n

d

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
e
n

d

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic

p
ro

v
is

io
n

PBS Professional 2020.1.1 Hooks Guide HG-109

Chapter 6 Hook Objects and Methods
On Windows, where backslashes may appear in pathnames, escape each backslash with another backslash, or use the raw

(r) operator to form the string. Both of the following work:

e = pbs.event()

e.progname = "C:\\Program Files\\PBS Pro\\exec\\bin\\pbsnodes.exe"

e.progname = r"C:\Program Files\PBS Pro\exec\bin\pbsnodes.exe"

See section 6.3.3, “Event Object Member Caveats”, on page 115.

To log the arguments to the program, and update some of them:

for a in pbs.event().argv:

pbs.logmsg(pbs.LOG_DEBUG, “a=%s” % (a,))

argv = pbs.event().argv

argv[1] = “beta”

argv[3] = “gamma”

6.3.2.3 Hook Debug Behavior Indicator Event Member

pbs.event().debug

Hook attribute. Specifies whether or not the hook produces debugging files under PBS_HOME/server_priv/
hooks/tmp or PBS_HOME/mom_priv/hooks/tmp. Files are named hook_<hook event>_<hook

name>_<unique ID>.in, .data, and .out. See "Producing Files for Debugging" on page 159 in the PBS Professional
Hooks Guide, and “debug” on page 349 of the PBS Professional Reference Guide.

Type: Boolean

6.3.2.4 Hook Enable or Disable Event Member

pbs.event().enabled

Hook attribute. Specifies whether or not the hook is enabled. See “enabled” on page 349 of the PBS Professional Ref-
erence Guide.

Type: Boolean

6.3.2.5 Job Environment Event Member

pbs.event().env

The job’s environment. Can be modified in an execjob_launch hook.

Type: dictionary of environment <variable>=<value> entries, with <variable> serving as the dictionary key.

To modify a particular environment entry:

pbs.event().env[<variable>] = <value>

To add more entries to the env[] dictionary:

pbs.event().env[<new_var>] = <value>

To clear out existing env[] entries and specify a new environment:

pbs.event().env = pbs.pbs_env()

pbs.event().env[<var1>] = <value1>

pbs.event().env[<var2>] = <value2>

…

pbs.event[<varN>.] = <valueN>
HG-110 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
To unset an existing environment variable:

pbs.event().env[<var>] = None

To embed a comma in an environment variable, escape the value with single quotes:

pbs.event().env[<var>] = '“<value>”'

On Windows, where backslashes appear in pathnames, either escape the backslash with another backslash, or use the raw

(’r’) operator to form the string. Both of the following examples will work:

e = pbs.event()

e.progname = "C:\\Program Files\\PBS Pro\\exec\\bin\\pbsnodes.exe"

e.progname = r"C:\Program Files\PBS Pro\exec\bin\pbsnodes.exe"

See section 6.3.3, “Event Object Member Caveats”, on page 115.

Example 6-1: To log the contents of a job’s environment variables:

for v in pbs.event().env.keys():

e = pbs.event().env[v]

pbs.logmsg(pbs.LOG_DEBUG, “env[%s]=%s” % (v,e))

6.3.2.6 Failure Action Event Member

pbs.event().fail_action

Hook attribute. Action to take on hook failure or on subsequent successful execution. See “fail_action” on page 351 of
the PBS Professional Reference Guide.

6.3.2.7 Frequency Event Member

pbs.event().freq

Hook attribute. Frequency at which to run hook. See “freq” on page 351 of the PBS Professional Reference Guide.

6.3.2.8 Hook Name Event Member

pbs.event().hook_name

Name of the hook being executed.

Type: str

6.3.2.9 Hook Type Event Member

pbs.event().hook_type

The type of the hook. The only valid value is “site”. Represents the Type hook attribute.

Type: str

6.3.2.10 Job Event Member

pbs.event().job

The job that triggered the event. A pbs.job object. See section 6.6, “Job Objects”, on page 122.

6.3.2.11 Job List Event Member

pbs.event().job_list

The list of jobs managed by the local MoM. Each job is a pbs.job, described in section 6.6, “Job Objects”, on page 122.
PBS Professional 2020.1.1 Hooks Guide HG-111

Chapter 6 Hook Objects and Methods
For a list of settable attributes and resources, see Table 5-6, “Job Attributes Readable & Settable via Events,” on page 55
and Table 5-9, “Built-in Job Resources Readable & Settable by Hooks via Events,” on page 60.

Type: dictionary of pbs.job objects

To print the jobs in the list:

for k in pbs.event().job_list.keys():

print pbs.event().job_list[k]

To set a job attribute or resource for all jobs in the list:

for k in pbs.event().job_list.keys():

pbs.event().job_list[k].<attribute> = <value>

In an exechost_periodic hook, attributes are set after the hook ends in a call to pbs.event().accept() or
pbs.event().reject(), but not when the hook encounters an uncaught exception or hits an alarm call.

In an exechost_periodic hook, you can flag a job to be requeued using rerun() or deleted using delete() when the
server is notified that the job has terminated.

Example 6-2: Rerun all jobs in this MoM’s job list:

% cat period.py

import pbs

for k in pbs.event().job_list.keys():

pbs.event().job_list[k].rerun()

6.3.2.12 Original Job Event Member

pbs.event().job_o

This is a pbs.job object representing the original job, before the job was modified via qalter. All resources and
attributes are populated.

See section 6.6, “Job Objects”, on page 122.

6.3.2.13 Order Event Member

pbs.event().order

Hook attribute. Order in which to run hook. See “order” on page 351 of the PBS Professional Reference Guide.

6.3.2.14 Process ID Event Member

pbs.event().pid

The process ID of a task belonging to a job.

Type: int

6.3.2.15 Job Executable Event Member

pbs.event().progname

The path to the job shell or executable. This is settable in an execjob_launch hook as follows:

pbs.event().progname = “<path_to_the_script>”

When setting the value, specify the full path. Otherwise, the path may not be found, and the shell or executable may not
run.

Type: str
HG-112 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.3.2.16 Requestor Event Member

pbs.event().requestor

The requestor of the event.

PBS daemons can request actions. If a daemon requests an action, the requestor member contains one of
"PBS_Server", "Scheduler", or "pbs_mom". If the requestor is root, the member contains “root”.

For Windows systems, if the requestor is the administrator, the member contains the account name of the administrator.

Type: str

6.3.2.17 Requestor Host Event Member

pbs.event().requestor_host

The name of the host from which the event was requested.

Type: str

6.3.2.18 Reservation Event Member

pbs.event().resv

The reservation being requested in a resvsub event or ending in a resv_end event. See section 6.9, “Reservation
Objects”, on page 131.

6.3.2.19 Source Queue Event Member

pbs.event().src_queue

The pbs.queue object representing the original queue where pbs.event().job came from.

See section 6.5, “Queue Objects”, on page 121.

6.3.2.20 Event Type Event Member

pbs.event().type

Hook attribute. The event type, for example, queuejob or movejob. Valid values: one of the PBS event type constants
listed in section 6.3.1, “Event Types”, on page 87. See “type” on page 351 of the PBS Professional Reference Guide.

Type: A PBS event type constant, such as pbs.QUEUEJOB, pbs.RESVSUB

6.3.2.21 Event User Event Member

pbs.event().user

Hook attribute. The username under which the hook executes. See “user” on page 351 of the PBS Professional Refer-
ence Guide.

Valid values: pbsadmin, pbsuser.

pbsadmin

On Linux, this is root. On Windows, this is simply a substitute for the PBS service account; it is not the name of
the PBS service account.

pbsuser

The hook runs under the account of the job owner, which is the value of the euser job attribute. Can be used for
execjob_prologue, execjob_epilogue, execjob_preterm events only.

Default value: pbsadmin
PBS Professional 2020.1.1 Hooks Guide HG-113

Chapter 6 Hook Objects and Methods
Type: String, str

6.3.2.22 The Vnode List Event Member

pbs.event().vnode_list[]

Execution event hooks have access to the list of vnodes assigned to the job. Periodic event hooks have access to the list
of vnodes managed by the local MoM. The exechost_startup hook can create and modify the vnodes managed by the
local MoM.

When a vnode is in such a list, the hook has access to the attributes and resources of that vnode. Table 6-3, “Using Event
Object Members in Events,” on page 108 lists which hooks can operate on vnode_list[]. Table 5-7, “Vnode Attributes
Readable & Settable via Events,” on page 57 and Table 5-10, “Vnode Resources Readable & Settable by Hooks via
Events,” on page 61 show which hooks can read and/or set each vnode attribute or resource.

When this list is retrieved through an execution event, it is associated with a job, and only vnodes assigned to the job
have attributes, resources_available, resources_assigned.ncpus, and resources_assigned.mem filled in; on other
vnodes, only pbs.vnode().name is available. See section 6.10, “Vnode Objects”, on page 133.

You can use an exechost_startup hook to create vnodes on the host where the hook runs:

pbs.event().vnode_list[<new vnode>] = pbs.vnode(<new vnode name>)

If you want to use an execjob_ hook to manipulate a vnode that is not assigned to the job, but is still managed by the
hook’s MoM, you must first instantiate the object for that vnode with the name of the new vnode:

pbs.event().vnode_list[<new vnode>] = pbs.vnode(<new vnode name>)

Once you have instantiated your new vnode (which must still be managed by your hook’s MoM), you can operate on it as
shown here:

• To list all vnodes:
for v in pbs.event().vnode_list.keys():

pbs.logmsg(pbs.LOG_DEBUG, “found vnode %s” % (pbs.event().vnode_list[v].name))

• To get the vnode managed by the local MoM, use the pbs.get_local_nodename() function to return the local parent
vnode name where this hook is executing, and then use pbs.event().vnode_list[<local parent vnode name>].

local_node = pbs.get_local_nodename()

• To find the other vnodes managed by the hook’s MoM:

a. Query the server for its list of vnodes:

pbs.server().vnodes()

b. Look in the Mom attribute in the resulting list of vnodes for a match to the output of:

pbs.get_local_nodename()

On a Cray, the Mom attribute may be a comma-separated list of strings, and you may have to check each one. Fur-
thermore, get_local_nodename() returns the short hostname, and you may need to use instead the canonical host-
name. If the name resolution on the server is consistent with the name resolution on the execution nodes, you can
use the following, which returns in host_canon_name the name to be matched against Mom attribute of each
vnode_list element:

import socket

[...]

host_short_name = pbs.get_local_nodename()

host_canon_name, host_aliases, host_addresses = socket.gethostbyname_ex(host_short_name)
HG-114 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
To run your code only for vnodes managed by the specified MoM:

vnlist = pbs.event().vnode_list

for v in vnlist.keys():

 if host_canon_name in vnlist[v].Mom.split(","):

 [code]

• Setting and unsetting attributes and resources:

To set the attributes and resources for a particular vnode:

pbs.event().vnode_list[<vnode name>].<attribute> = <value>
pbs.event().vnode_list[<vnode name>].<resources_available>[“<resource name>”] = <value>

You can unset a resource value by specifying “None” as its value:

pbs.event().vnode_list[<vnode_name>].resources_available[“<resource name>”] = None

Resource names and string values must be quoted.

For details and examples, see section 5.2.4.11, “Setting and Unsetting Vnode Resources and Attributes”, on page 48.

• You can add new custom host-level, non-consumable resources and their values to resources_available for a
vnode:

vnode_list[<vnode name>].resources_available[<new resource>] = <value>

For details and examples, see section 5.2.7, “Adding Custom Non-consumable Host-level Resources”, on page 64.

You cannot modify a vnode that is managed by a different MoM from where the hook is running. If you try to do this, the
following error message appears in the server’s log at log event class PBSEVENT_DEBUG2:

“<node_host_name>; Not allowed to update <vnode name>, as it is owned by a different mom”

A hook that runs as “pbsuser” (execjob_prologue, execjob_epilogue, execjob_preterm) is not allowed to manipulate
pbs.event().vnode_list[], unless the executing user is a PBS Manager or Operator. If a hook running as an unprivileged
user tries to change pbs.event().vnode_list[], the following error message appears in the server’s log at log event class
PBSEVENT_DEBUG2:

“<node_host_name>; Not allowed to update vnodes or to request scheduler restart cycle, if run as
a non-manager/operator user”

6.3.2.23 The Failed Vnode List Event Member

pbs.event().vnode_list_fail[]

For each execjob_prologue and execjob_launch event, PBS records the list of vnodes, with their assigned resources,
that are marked as bad by MoM. This list can include those vnodes from sister MoMs that failed to join the job, that
rejected an execjob_begin hook or execjob_prologue hook request, or that encountered a communication error while
the primary MoM was polling the sister MoM host. PBS records this list in the pbs.event().vnode_list_fail[] hook
parameter. For how vnodes are marked as failed, see “Checking Vnodes and Marking Them as Failed” on page 431 of
the PBS Professional Administrator’s Guide.

Type: dict (dictionary of pbs.vnode objects keyed by vnode name)

6.3.3 Event Object Member Caveats

6.3.3.1 Modifying progname or argv[] Under Windows

On Windows, in a multi-vnoded job, be careful modifying pbs.event().progname and pbs.event().argv[] parameters;
some values are tacked on by pbs_mom and are required. For example, if a multi-vnode job has in its script:

pbsdsh -n 1 cmd.exe /C echo hi
PBS Professional 2020.1.1 Hooks Guide HG-115

Chapter 6 Hook Objects and Methods
This causes an installed execjob_launch hook to execute on the sister MoM specified at node index '1'. The
execjob_launch hook sees:

pbs.event().progname=cmd.exe

pbs.event().argv[0]=cmd.exe

pbs.event().argv[1]=/c

pbs.event().argv[2]=C:/PROGRA~1/PBSPRO~1/exec/sbin/mom_open_demux.exe

pbs.event().argv[3]=174.host1

pbs.event().argv[5]=cmd.exe

pbs.event().argv[6]=/C

pbs.event().argv[7]=echo

pbs.event().argv[8]=hi

It is important not to modify pbs.event().progname and pbs.event().argv[0],...,pbs.event().argv[3]. These are auto-
matically added by pbs_mom for execution and collecting output.

You can modify pbs.event().argv[] values starting at index 5, and you can use pbs.event().argv.extend() to add more
arguments. Here we modify values for indices 5 through 8, and add pbs.event().argv[9], making it “hello”:

pbs.event().argv[5] = "pbsnodes.exe"

pbs.event().argv[6] = "-a"

pbs.event().argv[7] = ""

pbs.event().argv[8] = ""

pbs.event().argv.extend(["hello"])

6.3.4 Event-only Methods

6.3.4.1 Event Method for Accepting Event

pbs.event().accept()

Terminates hook execution and causes PBS to perform the associated action.

6.3.4.2 Event Method for Rejecting Event

pbs.event().reject()

pbs.event().reject([“<error message>”][,<error code>])

Terminates hook execution and instructs PBS to not perform the associated action. If the <message> argument is given,
it is shown in the appropriate PBS daemon log, and in the stderr of the PBS command that caused this event to take
place.

By default, pbs.event().reject() returns 255. To return an error code other than 255, specify a value between 2 and 255
in the optional <error code>.

6.3.5 Event Object Method Caveats

pbs.event().accept() terminates hook execution by throwing a SystemExit exception. So if hook content appears in a
try…except clause that has no arguments to the except clause, always add the following to treat SystemExit as a normal
occurrence:

except SystemExit:

pass
HG-116 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
See section 5.3.7.1, “Treat SystemExit as a Normal Occurrence”, on page 70.

6.3.6 Examples of Using Event Objects

Example 6-3: Inside a hook script, create a PBS event object:

e = pbs.event()

Example 6-4: Get the event type:

type = e.type

Example 6-5: Get the user who requested the event action:

who = e.requestor

Example 6-6: Get the host where the request came from:

host = e.requestor_host

Example 6-7: The event type is pbs.QUEUEJOB. Get the number of CPUs requested for the job being queued:

j = e.job

res = j.Resource_List[“ncpus”]

Example 6-8: Reset the number of CPUs requested by the job:

j.Resource_List[“ncpus”] = 1

Example 6-9: The event type is pbs.MOVEJOB. Get the request parameters:

j = e.job

q = j.queue

Example 6-10: Accept an event request:

e.accept()

Example 6-11: Reject an event request:

e.reject("Can't set interactive attribute")

Example 6-12: Put a job into a wait state and requeue the job in 3600 seconds (1 hour):

import time

...

j.Execution_Time = time.time() + 3600

Example 6-13: Put a hold on a job:

j = pbs.event().job

j.Hold_Types = pbs.hold_types(“u”)

j.Hold_Types = pbs.hold_types(“uo”)

j.Hold_Types += pbs.hold_types(“s”)

or

j.Hold_Types = pbs.hold_types(“<hold_list>”)

Example 6-14: Release a hold on a job:

j.Hold_Types -= pbs.hold_types(“un”)

j.Hold_Types -= pbs.hold_types(“sp”)

j.Hold_Types -= pbs.hold_types(“o”)
PBS Professional 2020.1.1 Hooks Guide HG-117

Chapter 6 Hook Objects and Methods
or

j.Hold_Types -= pbs.hold_types(“<hold_list>”)

6.4 Server Objects

pbs.server

This object represents a PBS server. This object can either represent the local server, or be just a coding construct, not
representing an actual server. If it represents the local server, you can read but cannot set its attributes. If it is just a cod-
ing construct that does not represent an actual server, you can set its attributes. You cannot alter the PBS server. If this
server object represents the PBS server, it is the server at which the triggering event is taking place, and at which the
hook is executing. The only PBS server available to hooks is the local server.

s = pbs.server([“<name>”])

Creates an instance of a PBS server object. If <name> is not specified, the object represents the default server.

You can use pbs.server() to retrieve server, queue, job, vnode, and reservation information, and pass it to a hook script.
You cannot set attributes or resources for objects that are retrieved through the server via pbs.server().

6.4.1 Server Object Members

Some server object members are server attributes, and some are not. A pbs.server has the following members:

6.4.1.1 Server Name Member

pbs.server().name

The server hostname.

Example: myhost.mydomain.com

This member is read-only.

Python type: str

6.4.1.2 Server Attribute Members

pbs.server().<attribute name>

The PBS server attribute named <attribute name>. The pbs.server object has a member to represent each server
attribute, spelled exactly like the attribute. For information about using attributes, see section 5.2.4, “Using Attributes
and Resources in Hooks”, on page 44.

Server attributes are listed in “Server Attributes” on page 281 of the PBS Professional Reference Guide. Attribute cre-
ation methods are described in section 6.13.3, “PBS Types and Their Methods”, on page 143.
HG-118 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.4.1.3 Server State Member

pbs.server().server_state

The server_state server attribute. It can take one of the following values, represented by constant objects:

6.4.2 Setting Server Object Members

If the server object does not represent the PBS server, you can set, but not unset, server object members. If a server
object does represent the PBS server, you cannot set values for object members. To set the value for the server attribute
named <attribute name> to <attribute value>, where s is an instance of pbs.server:

s.<attribute name> = <attribute value>

6.4.3 Examples of Using Server Object Members

s = pbs.server()

Example 6-15: Get server name:

name = s.name

Example 6-16: Get the value of the server attribute pbs_license_min:

min = s.pbs_license_min

6.4.4 Server Object Methods

6.4.4.1 Method to Return Job

pbs.server().job(’<job ID>’)

Returns a pbs.job object for the job with ID <id>, residing on the local server. Returns None if the job with ID <id> does
not exist at the server. See section 6.6, “Job Objects”, on page 122.

6.4.4.2 Method to Return Job Iterator

pbs.server().jobs()

Returns a Python iterator that iterates over a list of pbs.job objects residing on the local server. Returns an empty iterator
if no jobs exist on the local server. See section 6.6, “Job Objects”, on page 122.

Table 6-4: Server State Constant Objects

Object State

pbs.SV_STATE_IDLE Idle

pbs.SV_STATE_ACTIVE Scheduling

pbs.SV_STATE_HOT Hot_Start

pbs.SV_STATE_SHUTDEL Terminating, Delayed

pbs.SV_STATE_SHUTIMM Terminating

pbs.SV_STATE_SHUTSIG Terminating
PBS Professional 2020.1.1 Hooks Guide HG-119

Chapter 6 Hook Objects and Methods
Example:

for j in s.jobs():

 pbs.logmsg(pbs.LOG_DEBUG, “found job %s” % (j.id))

6.4.4.3 Method to Return Queue

pbs.server().queue(<queue_name>)

Returns a pbs.queue object representing the queue named <queue name> that is managed by the local server. See
section 6.5, “Queue Objects”, on page 121.

A value of None is returned if the queue named <queue_name> does not exist at the local server.

6.4.4.4 Method to Return Queue Iterator

pbs.server().queues()

Returns a Python iterator that iterates over a list of queue objects managed by the the local server. Returns an empty iter-
ator if no queues exist at the local server. See section 6.5, “Queue Objects”, on page 121.

6.4.4.5 Method to Return Reservation

pbs.server().resv(<reservation ID>)

Returns a pbs.resv object for <reservation ID> on the local server. Returns None if <reservation ID> does not exist.
See section 6.9, “Reservation Objects”, on page 131.

6.4.4.6 Method to Return Reservation Iterator

pbs.server().resvs()

Returns a Python iterator that iterates over a list of pbs.resv objects residing on the local server. Returns an empty itera-
tor if no reservations exist at the local server. See section 6.9, “Reservation Objects”, on page 131.

6.4.4.7 Method to Restart Scheduler Cycle

pbs.server().scheduler_restart_cycle()

This directs the current PBS server to tell the scheduler to restart its scheduling cycle.

A hook with its user attribute set to pbsuser cannot successfully invoke pbs.scheduler_restart_cycle(), unless the
hook’s executing user is a PBS Manager or Operator. If this is attempted, the scheduler is not restarted, and the following
message appears at log event class PBSEVENT_DEBUG2 in the MoM logs:

“<node_host_name>;Not allowed to update vnodes or to request scheduler_restart_cycle, if run as a
non-manager/operator user”

6.4.4.8 Method to Return Named Vnode

pbs.server().vnode(<vnode name>)

Returns a pbs.vnode object representing the vnode with name <vnode name> that is managed by the current server.

Returns None if <vnode name> does not exist.

6.4.4.9 Method to Return Vnode List

pbs.server().vnodes()

Returns a list of pbs.vnode objects managed by current server.
HG-120 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
Returns an empty iterator if no vnodes exist at the local server.

Example:

for vn in s.vnodes():

pbs.logmsg(pbs.LOG_DEBUG, “found vn %s” % (vn.name))

6.5 Queue Objects

pbs.queue

This object represents a PBS queue. This object can either represent an actual PBS queue, or be just a coding construct,
not representing an actual queue. If it is just a coding construct, you can set its attributes. If it represents an actual queue,
you can read but cannot set its attributes. You cannot set the attributes of any actual queue in any hook.

To get information about a particular queue with name <name>, you must go through the associated server. Use:

q = pbs.server().queue(“<name>”)

To get a list of queues from the server:

pbs.server().queues()

6.5.1 Queue Object Members

Some queue object members are queue attributes, and some are not.

6.5.1.1 Queue Object Name Member

queue.name

The queue name.

This member is read-only.

Python type: str

6.5.1.2 Queue Object Attribute Members

A pbs.queue has a member representing each of its attributes. Each member that is not a string, int, bool, long, or float
has a corresponding creation method; see section 6.13.3, “PBS Types and Their Methods”, on page 143. See section
5.2.4, “Using Attributes and Resources in Hooks”, on page 44.

queue.<attribute name>

The queue attribute named <attribute name>. Queue attributes are listed in “Queue Attributes” on page 311 of the PBS
Professional Reference Guide.

Example 6-17: Get the queue object representing the queue workq, and its Priority value:

q = s.queue(“workq”)

prio = q.Priority

6.5.1.3 Setting Queue Object Attributes

You can set or unset queue object attributes for queue objects that don’t represent an actual queue. To set the value of a
queue object attribute named <attribute name>:

pbs.queue.<attribute name> = <attribute value>
PBS Professional 2020.1.1 Hooks Guide HG-121

Chapter 6 Hook Objects and Methods
You cannot set or unset attributes for an actual queue.

6.5.2 Queue Object Methods

6.5.2.1 Method to Return Job

queue.job()

pbs.queue.job(“<job ID>”)

Returns a pbs.job object representing PBS job with ID <job ID>. This job must be residing on the queue. Returns None
if the job with the specified job ID does not exist, or if the job is not in the queue. See section 6.6, “Job Objects”, on page
122.

6.5.2.2 Method to Return Job Iterator

queue.jobs()

Returns a Python iterator that iterates over a list of pbs.job objects representing the jobs on the queue. Returns an empty
iterator if no jobs exist on the queue. See section 6.6, “Job Objects”, on page 122.

Example:

for j in pbs.server().queue(“workq”).jobs():

pbs.logmsg(pbs.LOG_DEBUG, “found job %s” % (j.id))

6.5.3 Queue Type Constant Objects

Queue types are represented by constant objects. The pbs.queue.queue_type member represents the type of the
queue. It can take on the following values:

6.6 Job Objects

pbs.job

A job object represents a PBS job.

You can retrieve the job object either through an associated event or through the server. The job object represents one of
the following, depending on how it is retrieved:

• The PBS job associated with the event that triggers the hook. To get the job associated with the current event, go
through the event that triggered the hook:

pbs.event().job

A call to pbs.event().job can return only the job associated with the current event.

Table 6-5: Queue Type Constant Objects

Object Queue Type

pbs.QTYPE_EXECUTION Execution

pbs.QTYPE_ROUTE Route
HG-122 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
When you get a job using pbs.event().job, the hook can read and set the job attributes and resources listed in
Table 5-6, “Job Attributes Readable & Settable via Events,” on page 55 and Table 5-9, “Built-in Job Resources
Readable & Settable by Hooks via Events,” on page 60.

• A job at the server at which the hook is executing. To get a particular job with ID <id>, go through the server:

pbs.server().job(“<job ID>”)

When you get a job using pbs.server().job(<job ID>) , the hook can read all job attributes and resources, but can set
none.

• To get a list of jobs at the server:

pbs.server().jobs()

For information about a list of jobs visible through events, see section 6.3.2.11, “Job List Event Member”, on page 111
and Table 6-3, “Using Event Object Members in Events,” on page 108 for the events that can use this list.

All job objects have the same members and methods. Each hook can read or set different attributes and resources. We
describe what each type of hook can do in section 6.3, “Event Objects”, on page 87.

If you use a hook to make a change to a job, that change is visible to all PBS daemons.

6.6.1 Job Object Members

A pbs.job object has a member to represent each job attribute. Each one is spelled exactly like the corresponding
attribute. We list job object members here that require creation methods, require special treatment, or that are not job
attributes. All job attribute members that are not listed here are defined this way:

job.<attribute name>

The type of the attribute is given in the attribute description, in “Job Attributes” on page 328 of the PBS Professional
Reference Guide.

For information about using job attributes in hooks, see section 5.2.4, “Using Attributes and Resources in Hooks”, on
page 44.

To see which hooks can set which job attributes and resources, see Table 5-6, “Job Attributes Readable & Settable via
Events,” on page 55 and Table 5-9, “Built-in Job Resources Readable & Settable by Hooks via Events,” on page 60.

A pbs.job object also has the id member, which is not a job attribute.

6.6.1.1 Job ID Member

job.id

The PBS job ID.

Read-only.

Python type: str

6.6.1.2 Job array_indices_submitted Attribute Member

job.array_indices_submitted

Job attribute. Python type: range

See section 6.13.3.21, “Method to Create or Set range Object”, on page 148.
PBS Professional 2020.1.1 Hooks Guide HG-123

Chapter 6 Hook Objects and Methods
6.6.1.3 Job Checkpoint Attribute Member

job.Checkpoint

Job attribute. Python type: pbs.checkpoint

See section 6.13.3.3, “Method to Create or Set Checkpoint String”, on page 144.

6.6.1.4 Job depend Attribute Member

job.depend

Job attribute. Python type: pbs.depend

See section 6.13.3.4, “Method to Create or Set Dependency Object”, on page 144.

6.6.1.5 Job Execution_Time Attribute Member

job.Execution_Time

Job attribute. Time when the current job is eligible to run. Syntax:

job.Execution_Time = time.mktime([<YY>, <MM>, <DD>, <HH>, <MM>, <SS>, <WEEKDAY>, <YEARDAY>
<ISDST>])

For example, the following sets a job's Execution_Time to: March 1, 2012 at 09:00 am:

job.Execution_Time = time.mktime([2012, 3, 1, 12, 9, 0, -1, -1, -1])

Python type: int

6.6.1.6 Job exec_host Attribute Member

job.exec_host

Job attribute. Python type: pbs.exec_host

See section 6.13.3.7, “Method to Create or Set exec_host Object”, on page 145.

6.6.1.7 Job exec_vnode Attribute Member

job.exec_vnode

Job attribute. Python type: pbs.exec_vnode

This complex object is described in section 6.7, “The exec_vnode Object”, on page 129.

See also section 6.13.3.8, “Method to Create or Set exec_vnode Object”, on page 145.

6.6.1.8 Job group_list Attribute Member

job.group_list

Job attribute. Python type: pbs.group_list

See section 6.13.3.9, “Method to Create or Set group_list Object”, on page 145.

6.6.1.9 Job Hold_Types Attribute Member

job.Hold_Types

Job attribute. Python type: pbs.hold_types

See section 6.13.3.10, “Method to Create or Set hold_types Object”, on page 145.
HG-124 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.6.1.10 Job job_state Attribute Member

job.job_state

Job attribute. Represents the job’s state. Can be compared to the constants representing job states.

Use job state constant objects to test the state of a job. For example:

e = pbs.event()

if e.job.job_state == pbs.JOB_STATE_RUNNING :

e.accept()

The job_state member can take on any of the values listed here:

6.6.1.11 Job Join_Path Attribute Member

job.Join_Path

Job attribute. Python type: pbs.join_path

See section 6.13.3.12, “Method to Create or Set join_path Object”, on page 146.

6.6.1.12 Job Keep_Files Attribute Member

job.Keep_Files

Job attribute. Python type: pbs.keep_files

See section 6.13.3.13, “Method to Create or Set keep_files Object”, on page 146.

Table 6-6: Job State Objects

Object State Description

pbs.JOB_STATE_BEGUN B Job arrays only: job array has started

pbs.JOB_STATE_EXITING E Job is exiting after having run

pbs.JOB_STATE_EXPIRED X Subjobs only; subjob is finished (expired.)

pbs.JOB_STATE_FINISHED F Job is finished: job executed successfully, job was terminated while run-
ning, job execution failed, or job was deleted before execution

pbs.JOB_STATE_HELD H Job is held.

pbs.JOB_STATE_MOVED M Job has been moved to another server

pbs.JOB_STATE_QUEUED Q Job is queued, eligible to run or be routed

pbs.JOB_STATE_RUNNING R Job is running

pbs.JOB_STATE_SUSPEND S Job is suspended by PBS so that a higher-priority job can run.

pbs.JOB_STATE_SUSPEND_

USERACTIVE

U Job is suspended due to workstation becoming busy

pbs.JOB_STATE_TRANSIT T Job is in transition (being moved to a new location)

pbs.JOB_STATE_WAITING W Job is waiting for its requested execution time to be reached, or the job’s
specified stagein request has failed for some reason.
PBS Professional 2020.1.1 Hooks Guide HG-125

Chapter 6 Hook Objects and Methods
6.6.1.13 Job Mail_Points Attribute Member

job.Mail_Points

Job attribute. Python type: pbs.mail_points

See section 6.13.3.15, “Method to Create or Set mail_points Object”, on page 146.

6.6.1.14 Job Mail_Users Attribute Member

job.Mail_Users

Job attribute. Python type: pbs.email_list

See section 6.13.3.6, “Method to Create or Set Email List”, on page 144.

6.6.1.15 Job Queue Attribute Member

job.queue

Job attribute. Python type: pbs.queue

6.6.1.16 Job Resource_List Attribute Member

job.Resource_List[]

job.Resource_List[“<resource name>”]

Job attribute. The job’s Resource_List attribute.

Python type: dictionary: Resource_List["<resource name>"]=<value> where <resource name> is any built-in or
custom resource

6.6.1.17 Job resources_used Attribute Member

job.resources_used[<resource name>]

Job attribute. The job’s resources_used attribute, which lists the resources used by the job. See section 5.2.4, “Using
Attributes and Resources in Hooks”, on page 44.

Python type: dictionary: resources_used["<resource name>"]=<value> where <resource name> is any built-in or
custom resource

6.6.1.18 Job run_count Attribute Member

job.run_count

Job attribute. Execution hooks must run with user = pbsadmin to reduce the value of this member. Execution hooks
running with user = pbsuser cannot reduce the value of this member.

Python type: int

6.6.1.19 Job stagein and stageout Attribute Members

job.stagein

job.stageout

Job attribute. Python type: pbs.staging_list

See section 6.13.3.27, “Method to Create or Set staging_list Object”, on page 150.
HG-126 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.6.1.20 Job User_List Attribute Member

job.User_List

Job attribute. Python type: pbs.user_list

See section 6.13.3.29, “Method to Create or Set user_list Object”, on page 151.

6.6.1.21 Job Variable_List Attribute Member

job.Variable_List[<variable>]

Job attribute. Holds the job’s environment variables. Syntax:

job.Variable_List[<variable>] = <value>

Python type: dictionary: Variable_List["<variable name>"]=<value>

6.6.2 Setting Job Attributes

How you set a job attribute depends on the type of the attribute; those of type str, int, bool, long, and float can be set
directly. Job attributes of other types require creation methods. Job attribute creation methods are listed in section
6.13.3, “PBS Types and Their Methods”, on page 143.

To set job attributes and resources directly:

pbs.event().job.<attribute> = <value>

pbs.event().job.Resource_List["<resource name>"] = <value>

See section 5.2.4.3, “Determining Whether to Use Creation Method to Set Attribute or Resource”, on page 45.

See section 5.2.4, “Using Attributes and Resources in Hooks”, on page 44.

6.6.3 Examples of Using Job Object Members

Get the job’s Priority value:

prio = job.Priority

Reset the Priority value of job j:

job.Priority = 5

Get the job’s PBS_O_WORKDIR environment variable:

workdir = job.Variable_List["PBS_O_WORKDIR"]

6.6.4 Job Object Methods for Execution Hooks

Job objects have the following methods. Most methods are available in execjob_ hooks except for the execjob_launch
hook, and in the exechost_periodic hook.

6.6.4.1 Job Object Method to Report Checkpoint

job.is_checkpointed()

Returns a Python bool value which is True if the job was checkpointed under the control of the PBS MoM.
PBS Professional 2020.1.1 Hooks Guide HG-127

Chapter 6 Hook Objects and Methods
For example, you could use this in an execjob_epilogue hook, where the hook writer directs the job to be requeued if the
job was checkpointed under the control of PBS:

cat epi.py

import pbs

If pbs.event().job.is_checkpointed():

pbs.event().job.rerun()

pbs.event().reject(“job to be requeued”)

qmgr -c “create hook epi event=execjob_epilogue”

qmgr - c ”import hook epi application/x-python default epi.py”

6.6.4.2 Job Object Method to Report Execution Host Role

job.in_ms_mom()

Returns a Python bool value. Returns True if this job object is running on the primary execution host.

6.6.4.3 Job Object Method to Delete Job

job.delete()

When this method is used in an execution hook, the job is flagged at the server for deletion after its processes have termi-
nated and any epilogue or execjob_epilogue hook has run.

When this method is used in a non-execution hook script, it raises a Python “NotImplementedError” exception.

If the job.delete() method is used in an execjob_end hook, it has no effect, because in this case the server has already
performed end-of-job processing before the execution hook runs.

The job.delete() method overrides the job.rerun() method. If both are used, job.delete() takes precedence.

6.6.4.4 Job Object Method to Release Vnodes

job.release_nodes()

job.release_nodes(keep_select=<select specification>)

Automatically selects vnodes that satisfy the new request and are healthy, keeps them in the job’s vnode request, and
releases all others. The method automatically trims out any vnodes in the pbs.event().vnode_list_fail[] list.

You can call pbs.event().job.release_nodes(keep_select = <desired vnodes>) in an execjob_launch or
execjob_prologue hook. Note that despite the method being named “release_nodes”, it keeps the specified vnodes and
releases all other vnodes. You can specify the job’s original vnode request as the vnodes to keep.

The pbs.event().job.release_nodes() method returns a PBS job object which has the updated values for the job’s
exec_vnode and Resource_List attributes.

This method is only effective when it runs at the primary MoM.

This method can be used only when it’s used for a job whose tolerate_node_failures attribute is set to job_start or all.
HG-128 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.6.4.4.i Advice and Recommendations for Using release_nodes Method

• Put the call to this method in an 'if pbs.event().job.in_ms_mom()' clause

• Request vnodes that are a subset of the existing vnode request

• Because an execjob_launch hook is also called when spawning tasks via pbsdsh and tm_spawn, ensure that any
execjob_launch hook invoking release_nodes() has 'PBS_NODEFILE' in the pbs.event().env list. The pres-
ence of 'PBS_NODEFILE' in the environment ensures that the primary MoM is executing on behalf of starting the
top level job, and not spawning a sister task. You can add the following at the top of the hook:

if 'PBS_NODEFILE' not in pbs.event().env:

 pbs.event().accept()

...

pbs.release_nodes(keep_select=...)

• On Windows, where PBS_NODEFILE always appears in pbs.event().env, put the following at the top of any
execjob_launch hook:

if any("mom_open_demux.exe") in s for s in e.argv):

 e.accept()

6.6.4.4.ii Side Effects of Using release_nodes() Method

When release_nodes() is successfully executed from execjob_prologue or execjob_launch hooks, the following
happen:

• PBS generates the s accounting record.

• The primary MoM notifies the sister MoMs to update their internal nodes tables, so that the task manager API (e.g.
tm_spawn, pbsdsh) will be aware of the change in the future.

• If the pbs_cgroups hook is enabled, the cgroup already created for the job is updated to match the job's new
resources. If the kernel rejects the update to the job's cgroup resources, the job is aborted at the execution host, and
requeued/rerun at the server.

6.6.4.5 Job Object Method to Re-run Job

job.rerun()

When this method is used in an execution hook, the job is flagged at the server for requeueing after its processes have ter-
minated and any epilogue or execjob_epilogue hook has run.

When this method is used in a non-execution hook script, it raises a Python “NotImplementedError” exception.

If the job.rerun() method is used in an execjob_end hook, it has no effect, because in this case the server has already per-
formed end-of-job processing before the execution hook runs.

The job.delete() method overrides the job.rerun() method. If both are used, job.delete() takes precedence.

6.7 The exec_vnode Object

pbs.exec_vnode

The exec_vnode object represents the job’s exec_vnode attribute.

6.7.1 The exec_vnode Object Members

A pbs.exec_vnode object has the following member:
PBS Professional 2020.1.1 Hooks Guide HG-129

Chapter 6 Hook Objects and Methods
6.7.1.1 The exec_vnode Chunks Member

pbs.exec_vnode.chunks[]

List of pbs.vchunk objects. These objects represent the chunks assigned to a job. See section 6.8, “Chunk Objects”, on
page 131.

6.7.2 Using pbs.vchunk Objects in exec_vnode

• To get a list of pbs.vchunks in pbs.event().job.exec_vnode:

pbs.event().job.exec_vnode.chunks

For example, to log the name of the vnode containing each vchunk:

chunklist = pbs.event().job.exec_vnode.chunks

for chunk in chunklist:

pbs.logmsg(pbs.LOG_DEBUG, "chunk.vnode_name=%s " % (chunk.vnode_name))

• To get a pbs.vchunk with a specific index:

pbs.event().job.exec_vnode.chunks[<index>]

• For example, to get the vchunk in pbs.event().job.exec_vnode with index number 2:

pbs.event().job.exec_vnode.chunks[2]

Example 6-18: List the job ID, vnode name, and resources in exec_vnode:

j = pbs.event().job

pbs.logmsg(pbs.LOG_DEBUG, "job %s exec_vnode = %s" % (j.id, j.exec_vnode))

chunklist = j.exec_vnode.chunks

for c in chunklist:

pbs.logmsg(pbs.LOG_DEBUG, "c.vnode_name=%s " % (c.vnode_name))

for r in c.chunk_resources.keys():

pbs.logmsg(pbs.LOG_DEBUG, "c.chunk_resources[%s]=%s" % (r,

c.chunk_resources[r]))

Sample output:

10:16:53;0006;Server@jobim;Hook;Server@jobim;job 153.jobim exec_vnode =
(jobim[2]:ncpus=2:mem=10240kb)+ (jobim[1]:ncpus=2:mem=10240kb) +
(jobim[3]:ncpus=2:mem=2048kb)

10:16:53;0006;Server@jobim;Hook;Server@jobim;c.vnode_name= jobim[2]
10:16:53;0006;Server@jobim;Hook;Server@jobim; c.chunk_resources[ncpus]=2

10:16:53;0006;Server@jobim;Hook;Server@jobim; c.chunk_resources[mem]=10240kb

10:16:53;0006;Server@jobim;Hook;Server@jobim; c.vnode_name=jobim[1]

10:16:53;0006;Server@jobim;Hook;Server@jobim; c.chunk_resources[ncpus]=2

10:16:53;0006;Server@jobim;Hook;Server@jobim; c.chunk_resources[mem]=10240kb

10:16:53;0006;Server@jobim;Hook;Server@jobim; c.vnode_name=jobim[3]

10:16:53;0006;Server@jobim;Hook;Server@jobim; c.chunk_resources[ncpus]=2
10:16:53;0006;Server@jobim;Hook;Server@jobim; c.chunk_resources[mem]=2048kb
HG-130 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.7.3 Restrictions on exec_vnode Objects

A job’s exec_vnode attribute is read-only. You cannot set its value, and you cannot build an exec_vnode object using
pbs.vchunk objects.

6.8 Chunk Objects

pbs.vchunk

The pbs.vchunk object represents a chunk specification. It is used in a job’s exec_vnode attribute or select statement.

6.8.1 Chunk Object Members and Methods

A pbs.vchunk object has the following members:

6.8.1.1 Chunk Object Vnode Name Member

vchunk.vnode_name

Name of the vnode from which the chunk is taken.

Python type: str

6.8.1.2 Chunk Object Chunk Resources Member

vchunk.chunk_resources[]

Resources assigned to the chunk.

Python type: Dictionary containing <resource name>=<value> pairs.

Syntax: chunk_resources['<resource name>'] = <resource value> where <resource name> is any custom or built-in
resource.

6.8.1.3 Chunk Object Method to Return chunk_resources Keys

vchunk.chunk_resources.keys()

Returns list of <resource name> keys of chunk_resources[]. This list makes it convenient to list all the values of
chunk_resources[].

6.9 Reservation Objects

pbs.resv

This represents a PBS reservation. If the reservation is associated with the triggering event, you can read and set reserva-
tion attributes and resources in a resvsub hook, and read them in a resv_end hook. See Table 5-8, “Reservation
Attributes Readable & Settable in resvsub and resv_end Hooks,” on page 59 for a complete list of the reservation
attributes and resources that can be set in the resvsub and resv_end hooks. If the reservation is retrieved through the
server, and is not associated with the triggering event, you can read all its attributes and resources, but set none.

If you are working with the reservation being created using pbs_rsub, you must use pbs.event().resv. The server can-
not return information about the reservation, because it has not yet been created.
PBS Professional 2020.1.1 Hooks Guide HG-131

Chapter 6 Hook Objects and Methods
In order to retrieve information about the reservation associated with the triggering action, you must use a reference to
the reservation object represented by:

pbs.event().resv

To get a copy of a particular reservation, use:

pbs.server().resv(“<reservation name>”)

To get a list of the reservations at a server:

pbs.server().resvs()

6.9.1 Reservation Object Members

A pbs.resv object has members that represent reservation attributes, and the resvid member which exists for the job
object but is not an attribute of a reservation.

6.9.1.1 Reservation ID Member

resv.resvid

The reservation ID.

Example: “R221.myhost”.

This member is read-only.

Python type: str

6.9.1.2 Reservation Attribute Members

resv.<attribute name>

The reservation attribute named <attribute name>. Each member is spelled exactly like the corresponding attribute.

6.9.1.3 Setting Reservation Object Attribute Values

You can set, but not unset, reservation object attributes.

To see a list of which reservation attributes can be read and set by each hook, see Table 5-8, “Reservation Attributes
Readable & Settable in resvsub and resv_end Hooks,” on page 59.

Some attributes require creation methods when setting them. See section 5.2.4.3, “Determining Whether to Use Creation
Method to Set Attribute or Resource”, on page 45. To set a simple reservation object attribute:

pbs.resv.<attribute name> = <attribute value>

Reservation attribute creation methods are listed in section 6.13.3, “PBS Types and Their Methods”, on page 143.

See section 5.2.4, “Using Attributes and Resources in Hooks”, on page 44.

6.9.1.4 Examples of Using Reservation Object Attributes

Example 6-19: Get the reservation’s owner:

owner = pbs.server().resv(<reservation ID>).Reserve_Owner

Example 6-20: Reset the reservation’s name:

pbs.event().resv(<reservation ID>).Reserve_Name = “Resv2008”
HG-132 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.9.2 Reservation State Constant Objects

The pbs.resv.reserve_state member represents the state of the reservation. It can take on the following values, which
are represented by constant objects:

6.10 Vnode Objects

pbs.vnode

Represents a PBS vnode.

The way in which you retrieve a vnode controls what you can do with the vnode. If a vnode is retrieved through an
event, using pbs.event().v node_list[], and is managed by the same MoM where the event hook runs, you can set the
vnode attributes and resources listed in Table 5-7, “Vnode Attributes Readable & Settable via Events,” on page 57 and
Table 5-10, “Vnode Resources Readable & Settable by Hooks via Events,” on page 61. However, if a vnode is not
retrieved through an event, or is not managed by the same MoM where the hook runs, you can read all vnode attributes
and resources, but set none.

Execution events have access to the list of vnodes associated with the job. Periodic events have access to the list of
vnodes managed by the local MoM. See section 6.3.2.22, “The Vnode List Event Member”, on page 114.

• To retrieve the list of vnodes associated with an execution event or a periodic event:

pbs.event().vnode_list[]

• To retrieve a specific vnode that is associated with an execution or periodic event, use the list of vnodes associated
with the event, and specify the vnode name:

pbs.event().vnode_list[“<vnode name>”]

• To retrieve the vnodes associated with a pre-execution event, get the job’s exec_vnode attribute:

Table 6-7: Reservation State Objects

Object State

pbs.RESV_STATE_NONE RESV_NONE

pbs.RESV_STATE_UNCONFIRMED RESV_UNCONFIRMED

pbs.RESV_STATE_CONFIRMED RESV_CONFIRMED

pbs.RESV_STATE_WAIT RESV_WAIT

pbs.RESV_STATE_TIME_TO_RUN RESV_TIME_TO_RUN

pbs.RESV_STATE_RUNNING RESV_RUNNING

pbs.RESV_STATE_FINISHED RESV_FINISHED

pbs.RESV_STATE_BEING_ALTERED RESV_BEING_ALTERED

pbs.RESV_STATE_BEING_DELETED RESV_BEING_DELETED

pbs.RESV_STATE_DELETED RESV_DELETED

pbs.RESV_STATE_DELETING_JOBS RESV_DELETING_JOBS

pbs.RESV_STATE_DEGRADED RESV_DEGRADED

pbs.RESV_STATE_IN_CONFLICT RESV_IN_CONFLICT
PBS Professional 2020.1.1 Hooks Guide HG-133

Chapter 6 Hook Objects and Methods
pbs.event().job.exec_vnode

• To retrieve the server’s list of vnodes:

pbs.server().vnodes()

• To retrieve a named vnode through the server:

pbs.server().vnode(“<vnode name>”)

6.10.1 Vnode Object Members

vnode.<attribute name>

A pbs.vnode object has a member representing each attribute, and each member is spelled exactly like the corresponding
attribute. Table 5-7, “Vnode Attributes Readable & Settable via Events,” on page 57 lists which vnode attributes can be
set by each hook. See section 5.2.4.3, “Determining Whether to Use Creation Method to Set Attribute or Resource”, on
page 45. Attribute creation methods are listed in section 6.13.3, “PBS Types and Their Methods”, on page 143. See sec-
tion 5.2.4, “Using Attributes and Resources in Hooks”, on page 44.

6.10.1.1 The topology_info Attribute Member

vnode.topology_info

Vnode attribute. The topology_info vnode attribute shows topology information. This attribute is visible only in hooks,
and can be used only in hooks.

Python type: str

6.10.1.2 Vnode Attribute Restrictions

• The only vnode attribute that can be changed by a pre-execution hook is the state attribute

• The only pre-execution hook that can change the vnode state attribute is the runjob hook

• Execution and periodic hooks can change all settable vnode attributes

6.10.2 Vnode Type Constant Objects

The pbs.vnode.ntype member represents the type of the vnode. It can take on the following values:

Table 6-8: Vnode Type Objects

Object Type

pbs.ND_PBS Represents pbs value for vnode ntype attribute
HG-134 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.10.3 Vnode Sharing Constant Objects

The pbs.vnode.sharing member represents the vnode’s sharing attribute. It can take on the following values:

6.10.4 Vnode State Constant Objects

The pbs.vnode.state member represents the state of the vnode. It can take on the following values:

6.11 Configuration File Objects

6.11.1 Variable Containing Hook Configuration File Path

pbs.hook_config_filename

Contains the path to the hook’s configuration file, or None if there is no configuration file.

Table 6-9: Vnode Sharing Objects

Object Sharing Value

pbs.ND_DEFAULT_EXCL Represents default_excl vnode sharing attribute value

pbs.ND_DEFAULT_EXCLHOST Represents default_exclhost vnode sharing attribute value

pbs.ND_DEFAULT_SHARED Represents default_shared vnode sharing attribute value

pbs.ND_FORCE_EXCL Represents force_excl vnode sharing attribute value

pbs.ND_FORCE_EXCLHOST Represents force_exclhost vnode sharing attribute value

pbs.ND_IGNORE_EXCL Represents ignore_excl vnode sharing attribute value

Table 6-10: Vnode State Constant Objects

Object State

pbs.ND_BUSY Represents busy vnode state

pbs.ND_DOWN Represents down vnode state

pbs.ND_FREE Represents free vnode state

pbs.ND_JOBBUSY Represents job-busy vnode state

pbs.ND_JOB_EXCLUSIVE Represents job-exclusive vnode state

pbs.ND_OFFLINE Represents offline vnode state

pbs.ND_PROV Represents provisioning vnode state

pbs.ND_RESV_EXCLUSIVE Represents resv-exclusive vnode state

pbs.ND_STALE Represents stale vnode state

pbs.ND_STATE_UNKNOWN Represents state-unknown, down vnode state

pbs.ND_UNRESOLVABLE Represents unresolvable vnode state

pbs.ND_WAIT_PROV Represents wait-provisioning vnode state
PBS Professional 2020.1.1 Hooks Guide HG-135

Chapter 6 Hook Objects and Methods
6.11.2 Dictionary of PBS Configuration File Entries

pbs.pbs_conf[]

This is a dictionary of values which represent entries in the pbs.conf file.

This reflects the contents of /etc/pbs.conf on the host where a hook runs, so pre-execution event (server) hooks get the
entries on the server host, and execution event (MoM) hooks get the entries on the execution host where the hook runs.

Example of using pbs.pbs.conf[]:

pbs.logmsg(pbs.LOG_DEBUG, “pbs home is %s” % (pbs.pbs_conf['PBS_HOME']))

If you change /etc/pbs.conf, HUP pbs_mom (Linux) and/or restart pbs_server to rebuild the dictionary with the
new contents of pbs.conf.

Each parameter in the pbs.conf file is the key to its dictionary entry. The pbs.conf file can contain the following param-
eters:

Table 6-11: Parameters in pbs.conf

Parameter Description

PBS_AUTH_METHOD Specifies default authentication method and library to be used by PBS.
Used only at authenticating client. Case-insensitive.

Default value: resvport

To use MUNGE, set to munge

PBS_BATCH_SERVICE_PORT Port on which server listens. Default: 15001

PBS_BATCH_SERVICE_PORT_DIS DIS port on which server listens.

PBS_COMM_LOG_EVENTS Communication daemon log mask. Default: 511

PBS_COMM_ROUTERS Tells a pbs_comm the location of the other pbs_comms.

PBS_COMM_THREADS Number of threads for communication daemon.

PBS_CONF_REMOTE_VIEWER Specifies remote viewer client.

If not specified, PBS uses native Remote Desktop client for remote
viewer.

Set on submission host(s).

Supported on Windows only.

PBS_CORE_LIMIT Limit on corefile size for PBS daemons. Can be set to an integer num-
ber of bytes or to the string "unlimited". If unset, core file size limit is
inherited from the shell environment.

PBS_DATA_SERVICE_PORT Used to specify non-default port for connecting to data service. Default:
15007

PBS_ENCRYPT_METHOD Specifies method and library for encrypting and decrypting data in cli-
ent-server communication. Used only at authentication client side.
Case-insensitive.

To use TLS encryption in client-server communication, set this parame-
ter to tls.

No default; if this is not set, PBS does not encrypt or decrypt data.

PBS_ENVIRONMENT Location of pbs_environment file.
HG-136 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
PBS_EXEC Location of PBS bin and sbin directories.

PBS_HOME Location of PBS working directories.

PBS_LEAF_NAME Tells endpoint what hostname to use for network.

The value does not include a port, since that is usually set by the dae-
mon.

By default, the name of the endpoint’s host is the hostname of the
machine. You can set the name where an endpoint runs. This is useful
when you have multiple networks configured, and you want PBS to use
a particular network.

The server only queries for the canonicalized address of the MoM host,
unless you let it know via the Mom attribute; if you have set
PBS_LEAF_NAME in /etc/pbs.conf to something else, make sure
you set the Mom attribute at vnode creation.

TPP internally resolves the name to a set of IP addresses, so you do not
affect how pbs_comm works.

PBS_LEAF_ROUTERS Location of endpoint’s pbs_comm daemon(s).

PBS_LOCALLOG=<value> Enables logging to local PBS log files. Valid values:

0: no local logging

1: local logging enabled

Only available when using syslog.

PBS_LOG_HIGHRES_TIMESTAMP Controls whether daemons on this host log timestamps in microseconds.

Default timestamp log format is HH:MM:SS. With microsecond log-
ging, format is HH:MM:SS:XXXXXX.

Does not affect accounting log. Not applicable when using syslog.

Overridden by environment variable of the same name.

Valid values: 0, 1. Default: 0 (no microsecond logging)

PBS_LR_SAVE_PATH Path where Undo Live Recorder stores daemon execution recordings.
Default: $PBS_HOME/spool. See "Sending Daemon Execution Record-
ings to Altair" on page 643 in the PBS Professional Administrator’s
Guide

PBS_MAIL_HOST_NAME Used in addressing mail regarding jobs and reservations that is sent to
users specified in a job or reservation’s Mail_Users attribute.

Optional. If specified, must be a fully qualified domain name. Cannot
contain a colon (“:”). For how this is used in email address, see section
2.2.2, “Specifying Mail Delivery Domain”, on page 20.

PBS_MANAGER_SERVICE_PORT Port on which MoM listens. Default: 15003

PBS_MOM_HOME Location of MoM working directories.

Table 6-11: Parameters in pbs.conf

Parameter Description
PBS Professional 2020.1.1 Hooks Guide HG-137

Chapter 6 Hook Objects and Methods
PBS_MOM_NODE_NAME Name that MoM should use for parent vnode, and if they exist, child
vnodes. If this is not set, MoM defaults to using the non-canonicalized
hostname returned by gethostname().

If you use the IP address for a vnode name, set PBS_MOM_NODE_NAME=<IP
address> in pbs.conf on the execution host.

Dots are not allowed in this parameter unless they are part of an IP
address.

PBS_MOM_SERVICE_PORT Port on which MoM listens. Default: 15002

PBS_OUTPUT_HOST_NAME Host to which all job standard output and standard error are delivered.
If specified in pbs.conf on a job submission host, the value of
PBS_OUTPUT_HOST_NAME is used in the host portion of the job’s
Output_Path and Error_Path attributes. If the job submitter does not
specify paths for standard output and standard error, the current working
directory for the qsub command is used, and the value of
PBS_OUTPUT_HOST_NAME is appended after an at sign (“@”). If
the job submitter specifies only a file path for standard output and stan-
dard error, the value of PBS_OUTPUT_HOST_NAME is appended
after an at sign (“@”). If the job submitter specifies paths for standard
output and standard error that include host names, the specified paths
are used.

Optional. If specified, must be a fully qualified domain name. Cannot
contain a colon (“:”). See "Delivering Output and Error Files" on page
60 in the PBS Professional Administrator’s Guide.

PBS_PRIMARY Hostname of primary server. Used only for failover configuration.
Overrides PBS_SERVER_HOST_NAME.

If you set PBS_LEAF_NAME on the primary server host, make sure
that PBS_PRIMARY matches PBS_LEAF_NAME on the correspond-
ing host. If you do not set PBS_LEAF_NAME on the server host,
make sure that PBS_PRIMARY matches the hostname of the server
host.

PBS_RCP Location of rcp command if rcp is used.

PBS_SCHEDULER_SERVICE_PORT Port on which default scheduler listens. Default value: 15004

PBS_SCHED_THREADS Maximum number of scheduler threads. By default, scheduler starts a
number of threads that is half the number of cores (or hyperthreads, if
applicable) on its host. Scheduler automatically caps number of threads
at the number of cores (or hyperthreads if applicable), regardless of
value of this variable.

Overridden by pbs_sched -t option and
PBS_SCHED_THREADS environment variable.

PBS_SCP Location of scp command if scp is used; setting this parameter causes
PBS to first try scp rather than rcp for file transport.

Table 6-11: Parameters in pbs.conf

Parameter Description
HG-138 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
PBS_SECONDARY Hostname of secondary server. Used only for failover configuration.
Overrides PBS_SERVER_HOST_NAME.

If you set PBS_LEAF_NAME on the secondary server host, make sure
that PBS_SECONDARY matches PBS_LEAF_NAME on the corre-
sponding host. If you do not set PBS_LEAF_NAME on the server
host, make sure that PBS_SECONDARY matches the hostname of the
server host.

PBS_SERVER Hostname of host running the server. Cannot be longer than 255 charac-
ters. If the short name of the server host resolves to the correct IP
address, you can use the short name for the value of the PBS_SERVER
entry in pbs.conf. If only the FQDN of the server host resolves to the
correct IP address, you must use the FQDN for the value of
PBS_SERVER.

Overridden by PBS_SERVER_HOST_NAME and PBS_PRIMARY.

PBS_SERVER_HOST_NAME The FQDN of the server host. Used by clients to contact server. Over-
ridden by PBS_PRIMARY and PBS_SECONDARY failover parame-
ters. Overrides PBS_SERVER parameter. Optional. If specified, must
be a fully qualified domain name. Cannot contain a colon (“:”). See
"Contacting the Server" on page 60 in the PBS Professional Administra-
tor’s Guide.

PBS_START_COMM Set this to 1 if a communication daemon is to run on this host.

PBS_START_MOM Default is 0. Set this to 1 if a MoM is to run on this host.

PBS_START_SCHED Deprecated. Set this to 1 if default scheduler is to run on this host.
Overridden by scheduler’s scheduling attribute.

PBS_START_SERVER Set this to 1 if server is to run on this host.

PBS_SUPPORTED_AUTH_METHODS Specifies supported authentication methods for client-server communi-
cation. Used by authenticating server (PBS server, scheduler, MoM, or
comm); ignored at client. Case-insensitive.

If this parameter is set, PBS accepts only the methods listed.

Format: comma-separated list of authentication methods.

Default value: resvport

Example: munge,GSS

Table 6-11: Parameters in pbs.conf

Parameter Description
PBS Professional 2020.1.1 Hooks Guide HG-139

Chapter 6 Hook Objects and Methods
6.12 Constant Objects

Constant objects are used to represent PBS elements such as event types, job, server, reservation, and vnode states, log
event classes, queue and vnode types, and exceptions. These objects cannot be modified. When the PBS module is
imported, the constant objects are imported. PBS uses the following constant objects:

PBS_SYSLOG=<value> Controls use of syslog facility under which the entries are logged.

Valid values:

0: no syslogging

1: logged via LOG_DAEMON facility

2: logged via LOG_LOCAL0 facility

3: logged via LOG_LOCAL1 facility

...

9: logged via LOG_LOCAL7 facility

PBS_SYSLOGSEVR=<value> Filters syslog messages by severity. Valid values:

0: only LOG_EMERG messages are logged

1: messages up to LOG_ALERT are logged

...

7: messages up to LOG_DEBUG are logged

PBS_TMPDIR Location of temporary files/directories used by PBS components.

Table 6-12: Constant Objects

Category Description

Event type objects The pbs.event().type event member represents the type of the event, for example,
pbs.QUEUEJOB or pbs.MOVEJOB. See section 6-2, “Event Types and
Objects”, on page 87

Message log event class objects You can use these objects to indicate log event class when placing messages in the
server logs.

See section 6-16, “Message Log Level Objects”, on page 152.

Queue type objects The queue(<queue name>).queue_type member represents the type of the
queue. See section 6-5, “Queue Type Constant Objects”, on page 122.

PBS server state objects The pbs.server().server_state member represents the state of the server. See
section 6.4.1.3, “Server State Member”, on page 119.

Job state objects The job.job_state member represents the job’s state. Use these constant objects to
test the state of a job. See section 6-6, “Job State Objects”, on page 125.

Reservation state objects The resv.reserve_state member represents the state of the reservation. See sec-
tion 6-7, “Reservation State Objects”, on page 133.

Table 6-11: Parameters in pbs.conf

Parameter Description
HG-140 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.13 Object Members and Methods

The relationships between objects and methods are shown in Figure 6-1 and Figure 6-2.

Event object members are listed in Table 6-3, “Using Event Object Members in Events,” on page 108.

Non-event objects and object members are listed in Table 6-13, “PBS Objects and Object Members,” on page 141.

Table 6-14, “Methods Available in Events,” on page 142 shows the methods available for each kind of event.

Each global method is described in section 6.13.3, “PBS Types and Their Methods”, on page 143.

Each event-only method is described in section 6.3.4, “Event-only Methods”, on page 116.

Each object-only method is described in the section for its object.

6.13.1 PBS Objects and Object Members

The following table lists PBS objects and their members, such as the server or jobs:

Vnode state objects The vnode.state member represents the state of the vnode. See section 6-10,
“Vnode State Constant Objects”, on page 135.

Vnode sharing objects The vnode.sharing member represents the vnode’s sharing attribute. See section
6-9, “Vnode Sharing Objects”, on page 135.

Vnode type objects The vnode.ntype member represents the type of the vnode. See section 6-8,
“Vnode Type Objects”, on page 134.

Table 6-13: PBS Objects and Object Members

Object Object Member Object Sub-member

pbs.hook_config_filename

pbs.job job.id

job.<attribute name>

pbs.exec_vnode (job attribute) pbs.exec_vnode.chunks[]

pbs.pbs_conf[]

pbs.queue queue.<attribute name>

queue.name

pbs.resv resv.<attribute name>

resv.resvid

pbs.server pbs.server().<attribute name>

pbs.server().name

pbs.vnode vnode.<attribute name>

pbs.vchunk vchunk.chunk_resources[]

vchunk.vnode_name

Table 6-12: Constant Objects

Category Description
PBS Professional 2020.1.1 Hooks Guide HG-141

Chapter 6 Hook Objects and Methods
6.13.2 Methods Available in Events

The following table lists all methods, and shows which event can use each method. A “y” means that the hook can use
the method, an “n” means it cannot, and an “o” means that it can but will have no effect:

Table 6-14: Methods Available in Events

Method

q
u

e
u

e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

m
o

v
e
jo

b

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

p
e
ri

o
d

ic

re
s
v
s
u

b

re
s
v
_
e
n

d

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
e
n

d

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic

p
ro

v
is

io
n

job.delete() y y y y y n o o y o y o o o o y y o y n
job.in_ms_mom() y y y y y n o o y o y o y y y y y o y n
job.is_checkpointed() y y y y y n o o y o y o y y y y y o y n
job.release_nodes() n n n n n n n o n n y y n n n n n n n n
job.rerun() y y y y y n o o y o y o o o o y y o y n
pbs.acl() y y y y y n o o y o y o y y y y y o y n
pbs.args() y y y y y n y o y y y y y y y y y y y n
pbs.checkpoint() y y y y y n o o y o y o y y y y y o y n
pbs.depend() y y y y y n o o y o y o y y y y y o y n
pbs.depend() y y y y y n o o y o y o y y y y y o y n
pbs.duration() y y y y y n o o y o y o y y y y y o y n
pbs.email_list() y y y y y n o o y o y o y y y y y o y n
pbs.event().accept() y y y y y n y o y y y y y y y y y y y n
pbs.event().reject() y y y y y n y o y y y y y y y y y y y n
pbs.exec_host() y y y y y n o o y o y o y y y y y o y n
pbs.exec_vnode() y y y y y n o o y o y o y y y y y o y n
pbs.get_local_nodename() y y y y y n y o y y y y y y y y y y y n
pbs.group_list() y y y y y n o o y o y o y y y y y o y n
pbs.hold_types() y y y y y n o o y o y o y y y y y o y n
pbs.job_sort_formula() y y y y y n o o y o y o y y y y y o y n
pbs.join_path() y y y y y n o o y o y o y y y y y o y n
pbs.keep_files() y y y y y n o o y o y o y y y y y o y n
pbs.license_count() y y y y y n o o y o y o y y y y y o y n
pbs.logjobmsg() y y y y y y y o y y y y y y y y y y y n
pbs.logmsg() y y y y y y y o y y y y y y y y y y y n
pbs.mail_points() y y y y y n o o y o y o y y y y y o y n
pbs.node_group_key() y y y y y n o o y o y o y y y y y o y n
pbs.path_list() y y y y y n o o y o y o y y y y y o y n
pbs.pbs_env() y y y y y n y o y y y y y y y y y y y n
pbs.place() y y y y y n o o y o y o y y y y y o y n
pbs.range() y y y y y n o o y o y o y y y y y o y n
pbs.reboot() y
pbs.route_destinations() y y y y y n o o y o y o y y y y y o y n
pbs.select() y y y y y n o o y o y o y y y y y o y n
pbs.select.increment_chunks() y y o o o o o o o o o o o o o o o o o o
pbs.server().job(’<job ID>’) y y y y y n y o y y y y y y y y y y y n
pbs.server().jobs() y y y y y n y o y y y y y y y y y y y n
HG-142 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.13.3 PBS Types and Their Methods

6.13.3.1 Method to Create or Set ACL

pbs.acl()

pbs.acl("[+|-]<entity>][,...]")

Creates an object representing a PBS ACL, from the specified formatted input string.

6.13.3.2 Method to Create or Set Command Argument List

pbs.args()

pbs.args("<args>")

where <args> are space-separated arguments to a command.

Creates an object representing the arguments to the command from the specified formatted input string <args>.

Example of setting a command argument list:

pbs.args(“-Wsuppress_email=N -r y”)

pbs.server().queue(<queue_name>) y y y y y n y o y y y y y y y y y y y n
pbs.server().queues() y y y y y n y o y y y y y y y y y y y n
pbs.server().resv(<reservation ID>) y y y y y n y o y y y y y y y y y y y n
pbs.server().resvs() y y y y y n y o y y y y y y y y y y y n
pbs.server().scheduler_restart_cycle() y y y y y n y o y y y y y y y y y y y n
pbs.server().vnode(<vnode name>) y y y y y n y o y y y y y y y y y y y n
pbs.server().vnodes() y y y y y n y o y y y y y y y y y y y n
pbs.size() y y y y y n o o y o y o y y y y y o y n
pbs.software() y y y y y n o o y o y o y y y y y o y n
pbs.staging_list() y y y y y n o o y o y o y y y y y o y n
pbs.state_count() y y y y y n o o y o y o y y y y y o y n
pbs.user_list() y y y y y n o o y o y o y y y y y o y n
pbs.version() y y y y y n y o y y y y y y y y y y y n
queue.job() y y y y y n y o y y y y y y y y y y y n
queue.jobs() y y y y y n y o y y y y y y y y y y y n
vchunk.chunk_resources.keys() y y y y y n y o y y y y y y y y y y y n

Table 6-14: Methods Available in Events

Method

q
u

e
u

e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

m
o

v
e
jo

b

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

p
e
ri

o
d

ic

re
s
v
s
u

b

re
s
v
_
e
n

d

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
e
n

d

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic

p
ro

v
is

io
n

PBS Professional 2020.1.1 Hooks Guide HG-143

Chapter 6 Hook Objects and Methods
6.13.3.3 Method to Create or Set Checkpoint String

pbs.checkpoint()

pbs.checkpoint("<checkpoint_string>")

where <checkpoint_string> must be one of "n", "s", "c", "c=mmm", "w", or "w=mmm"

Creates an object representing the job Checkpoint attribute, using the specified formatted input string
<checkpoint_string>.

6.13.3.4 Method to Create or Set Dependency Object

pbs.depend()

pbs.depend("<depend_string>")

<depend_string> must be of format "<type>:<jobid>[,<jobid>...]", or “on:<count>”.

where <type> is one of "after", "afterok", "afterany", "afternotok", "before", "beforeok", "beforeany", and "befor-

enotok”.

Creates a PBS dependency specification object representing the job depend attribute, using the given <depend_string>.

Usage:

pbs.event().job.depend = pbs.depend(“<depend_string>”)

6.13.3.5 Method to Create or Set Duration from Time String or Integer

pbs.duration()

pbs.duration("[[hours:]minutes:]seconds[.milliseconds]")

Creates a time specification duration instance, returning the equivalent number of seconds from the given time string.
Represents an interval or elapsed time in number of seconds. Duration objects can be specified using either a time or an
integer. See "Method to Create or Set Duration from Time String or Integer".

pbs.duration(<integer>)

Creates an integer duration instance using the specified number of seconds.

A pbs.duration instance can be operated on by any of the Python int functions. When performing arithmetic operations
on a pbs.duration type, ensure the resulting value is a pbs.duration() type, before assigning to a job member that expects
such a type.

Example:

pbs.event().job.Resource_List["cput"] = pbs.duration(300 + d1) # safe

The following will not work, since Python evaluates from left to right, and returns result as the type at left (int):

d1 = pbs.duration(30)

pbs.event().job.Resource_List["cput"] = 300 + d1

6.13.3.6 Method to Create or Set Email List

pbs.email_list()

pbs.email_list("<email_address1>[, <email address2>...]")

Creates an object representing a mail list from the specified formatted input string.
HG-144 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.13.3.7 Method to Create or Set exec_host Object

pbs.exec_host()

pbs.exec_host("host/N[*C][+...]")

Create an object representing the exec_host job attribute, using the specified input string containing host and resource
specification.

6.13.3.8 Method to Create or Set exec_vnode Object

pbs.exec_vnode()

pbs.exec_vnode("<vchunk>[+<vchunk> ...]")

<vchunk> is (<vnodename:ncpus=N:mem=M>)

Creates an object representing the exec_vnode job attribute, using the input string containing the vnode and resource
specification. When the qrun -H command is used, or when the scheduler runs a job, the job.exec_vnode object con-
tains the vnode specification for the job.

Example:

pbs.exec_vnode(“(vnodeA:ncpus=N:mem=X)+(nodeB:ncpus=P:mem=Y+nodeC:mem=Z)”)

This object is managed and accessed via the str() or repr() functions. Example:

Python> ev = pbs.server().job(“10”).exec_vnode

Python> str(ev) “(vnodeA:ncpus=2:mem=200m)+(vnodeB:ncpus=5:mem=1g)"

6.13.3.9 Method to Create or Set group_list Object

pbs.group_list()

pbs.group_list("<group_name>[@<host>][,<group_name>[@<host>]...]")

Creates an object representing a PBS group list from the specified formatted input string.

To use a group list object:

job.group_list = pbs.group_list(....)

6.13.3.10 Method to Create or Set hold_types Object

pbs.hold_types()

pbs.hold_types("<hold_type_str>")

where <hold_type_str> is one of "u", "o", "s", or "n".

Creates an object representing the Hold_Types job attribute from the specified formatted input string.

6.13.3.11 Method to Create or Set job_sort_formula Object

pbs.job_sort_formula()

pbs.job_sort_formula("<formula string>")

where <formula string> is a string containing a math formula. See section 4.9.21, “Using a Formula for Computing Job
Execution Priority”, on page 149.

Creates an object representing the job_sort_formula server attribute from the specified formatted input string.
PBS Professional 2020.1.1 Hooks Guide HG-145

Chapter 6 Hook Objects and Methods
6.13.3.12 Method to Create or Set join_path Object

pbs.join_path()

pbs.join_path({"oe"|"eo"|"n"})

Creates an object representing the Join_Path job attribute from the specified formatted input string.

6.13.3.13 Method to Create or Set keep_files Object

pbs.keep_files()

pbs.keep_files("<Keep_Files option>")

where <Keep_Files option> is one of "n", "d", "o", "e", "oe", "eo".

Creates an object representing the Keep_Files job attribute from the specified formatted input string.

6.13.3.14 Method to Create or Set license_count Object

pbs.license_count()

pbs.license_count("Avail_Global:<value> Avail_Local:<value> Used:<value> High_Use:<value>”)

Instantiates an object representing a license_count attribute from the specified formatted input string.

6.13.3.15 Method to Create or Set mail_points Object

pbs.mail_points()

pbs.mail_points("<mail points string>")

where mail points string is "a", "b", and/or "e", optionally with j , or “n”.

Creates a pbs.mail_points object representing a Mail_Points attribute from the specified formatted input string.

6.13.3.16 Method to Create or Set node_group_key Object

pbs.node_group_key()

pbs.node_group_key("<resource(s)>")

Creates a pbs.node_group_key object representing the resource(s) to be used for node grouping, using the specified
resource(s). The input string is a comma-separated, quoted list of resources.

6.13.3.17 Method to Create or Set path_list Object

pbs.path_list()

pbs.path_list("<path>[@<host>][,<path>@<host> ...]")

Creates an object representing a PBS pathname list from the specified formatted input string.

To use a path list object:

job.Shell_Path_List = pbs.path_list(....)

6.13.3.18 Method to Create or Set Job Environment Object

pbs.pbs_env()

Creates an empty environment variable list.
HG-146 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
For example, to clear an environment variable list:

pbs.event().env = pbs.pbs_env()

6.13.3.19 Method to Create or Set Resource List

pbs.pbs_resource()

pbs.pbs_resource(<resource list name>)

Creates a pbs.pbs_resource object with the specified name.

To set values for a pbs.pbs_resource object:

<resource list name>[‘<resource name>’]=<resource value>

For example:

Resource_List[’ncpus’]=8

Resource_List[’mem’]=pbs.size("10gb")

Resource_List[’walltime’]=pbs.duration(‘00:45:00’)

A pbs.pbs_resource is similar to a dictionary, but you cannot use direct traversal. To loop through entries:

for r in <list name>.keys():

 ...

For example:

for r in <Resource_List>.keys():

 pbs.logmsg(pbs.LOG_DEBUG, "Resource_List[%s]=%s" % (r, Resource_List[r]))

which produces the following log message:

03/08/2018 18:47:16;0006;pbs_python;Hook;pbs_python;Resource_List[walltime]=00:45:00

03/08/2018 18:47:16;0006;pbs_python;Hook;pbs_python;Resource_List[mem]=10gb

03/08/2018 18:47:16;0006;pbs_python;Hook;pbs_python;Resource_List[ncpus]=7

A str(<object of type pbs.pbs_resource>) produces output of the form:

<resource name>=<value>,<resource name>=<value>, ...

To do the equivalent of str():

pbs.logmsg(pbs.LOG_DEBUG, "Resource_List is %s (%s)" % (Resource_List, type(Resource_List)))

This produces the following log message:

03/08/2018 18:47:16;0006;pbs_python;Hook;pbs_python;Resource_List is
mem=10gb,ncpus=7,walltime=00:45:00 (<class 'pbs.v1._base_types.pbs_resource'>)

6.13.3.20 Method to Create or Set place Object

pbs.place()

pbs.place("[arrangement]:[sharing]:[group]")

arrangement can be “pack”, “scatter”, “free”, “vscatter”

sharing can be "shared", "excl", "exclhost"

group can be of the form “group=<resource>”

[arrangement], [sharing], and [group] can be given in any order or combination.

Creates a place object representing the job’s place specification from the specified formatted input string.
PBS Professional 2020.1.1 Hooks Guide HG-147

Chapter 6 Hook Objects and Methods
Example:

pl = pbs.place("pack:excl")

s = repr(pl) (or s = `pl`)

letter = pl[0] (assigns 'p' to letter)

s = s + “:group=host” (append to string)

pl = pbs.place(s) (update original pl)

6.13.3.21 Method to Create or Set range Object

pbs.range()

pbs.range("<start>-<stop>:<step>")

Creates a PBS object representing a range of values from the specified formatted input string. Can be used to create a
job.array_indices_submitted object. See section 6.6.1.2, “Job array_indices_submitted Attribute Member”, on page
123.

Example:

pbs.range(“1-30:3”)

6.13.3.22 Method to Create or Set route_destinations Object

pbs.route_destinations()

pbs.route_destinations("<queue_spec>[,<queue_spec>,...]")

where <queue_spec> is queue_name[@server_host[:port]]

Creates an object that represents a route_destinations routing queue attribute from the specified formatted input string.

6.13.3.23 Method to Create or Set select Object

pbs.select()

pbs.select("[N:]res=val[:res=val]…[+[N:]res=val[:res=val] ...]")

Creates a select object representing the job’s select specification from the specified formatted input string.

Example:

sel = pbs.select("2:ncpus=1:mem=5gb+3:ncpus=2:mem=5gb")

s = repr(sel) (or s = `sel`)

letter = s[3] (assigns 'c' to letter)

s = s + "+5:scratch=10gb" (append to string)

sel = pbs.select(s) (reset the value of sel)

6.13.3.24 Method to Increment select Object Chunks

pbs.select.increment_chunks()

pbs.select.increment_chunks(<increment specification>)

Creates a select object representing the job’s new select specification, which has been padded from the original accord-
ing to the increment specification.

You can pad all chunks, but you do not pad the primary vnode request itself; the job can only request one primary vnode.
So when a job requests 3:ncpus=8+4:ncpus=1, the non-paddable primary vnode is considered to be a separate request of
1:ncpus=8, and the paddable part is the remaining 2:ncpus=8+4:ncpus=1.
HG-148 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
 :

Table 6-15: Behavior for increment specification

Value of increment
specification

Behavior

Integer amount

Format: can be with or
without quotes (a number
or a numeric string), e.g.
5 or “5”

Adds specified number of vnodes to each chunk in the job’s vnode request. Examples:

Given this initial select statement:

my_select=pbs.select("ncpus=3:mem=1gb+1:ncpus=2:mem=2gb+2:ncpus=1:mem=3gb")
Calling my_select.increment_chunks(2) returns:

"1:ncpus=3:mem=1gb+3:ncpus=2:mem=2gb+4:ncpus=1:mem=3gb"
Calling my_select.increment_chunks("3") returns:

"1:ncpus=3:mem=1gb+4:ncpus=2:mem=2gb+5:ncpus=1:mem=3gb"

Percentage amount

Format: a quoted numeric
string ending in a per-
cent sign, e.g. “10%”

Adds specified percent of vnodes to each chunk in the job’s vnode request. Resulting
amounts are rounded up. Example:

Given this initial select statement:

my_select=pbs.select("ncpus=3:mem=1gb+1:ncpus=2:mem=2gb+2:ncpus=1:mem=3gb")
Calling my_select.increment_chunks("23.5%") returns:

"1:ncpus=3:mem=1gb+2:ncpus=2:mem=2gb+3:ncpus=1:mem=3gb"
The first chunk, which is a single chunk, is left as is, and the second and third chunks are
increased by 23.5 %. 1.24 is rounded up to 2, and 2.47 is rounded up to 3.

Per-chunk specification

Format: {<chunk index>

: <increment>, ...}
where the increment can
be an integer or a per-
centage

Adds specified amount or percent to specified chunk(s). Chunk index starts at 0. Examples:

Given this initial select statement:

my_select=pbs.select("ncpus=3:mem=1gb+1:ncpus=2:mem=2gb+2:ncpus=1:mem=3gb")
Calling my_select.increment_chunks({0: 0, 1: 4, 2: "50%"}) returns:

"1:ncpus=3:mem=1gb+5:ncpus=2:mem=2gb+3:ncpus=1:mem=3gb"
There is no increase (0) for chunk 1, we give 4 additional chunks to chunk 2, and we
increase chunk 3 by 50%, resulting in 3.

Given this initial select statement:

my_select=pbs.select("5:ncpus=3:mem=1gb+4:ncpus=2:mem=2gb+2:ncpus=1:mem=3gb")
Calling my_select.increment_chunks("50%") or my_select.increment_chunks({0:

"50%", 1: "50%", 2: "50%}) returns:

"7:ncpus=3:mem=1gb+6:ncpus=2:mem=2gb+3:ncpus=1:mem=3gb"
The primary vnode is broken out as "1:ncpus=3:mem=1gb" and is left as is. The "50%"
increase is applied to the remaining portion, "4:ncpus=3:mem=1gb". After the increase is
applied, the original first chunk is re-created from the primary vnode and the padded
remains of the first chunk to make 7. Chunk 2 gets 6 and chunk 3 gets 3.
PBS Professional 2020.1.1 Hooks Guide HG-149

Chapter 6 Hook Objects and Methods
6.13.3.24.i Example of Padding Chunks

The following code snippet illustrates padding a job’s vnode request by one extra vnode per chunk:

import pbs

e=pbs.event()

j = e.job

new_select = e.job.Resource_List["select"].increment_chunks(1)

e.job.Resource_List["select"] = new_select

6.13.3.25 Method to Create or Set size Object

pbs.size()

You can create a pbs.size object using either a byte count or a suffix:

pbs.size(<integer>)

Creates a PBS size object using integer byte count, storing the value as the number of bytes. Size objects can be speci-
fied using either an integer or a string. See the "pbs.size("<integer><suffix>")" creation method.

pbs.size("<integer><suffix>")

Creates a PBS size object using the specified suffix. The suffix must be a multiplier defined in the table shown in “Size”
on page 360 of the PBS Professional Reference Guide. The size of a word is the word size on the execution host. Size
objects can be specified using either an integer or a string.

To operate on pbs.size instances, use the “+” and “-“ operators.

To compare pbs.size instances, use the “==”, “!=”, “>”, “<”, “>=”, and “<=” operators.

Example: the sizes are normalized to the smaller of the 2 suffixes. In this case, “10gb” becomes “10240mb” and is added
to “10mb”:

sz = pbs.size(“10gb”)

sz = sz + 10mb

10250mb

Example: the following returns True because sz is greater than 100 bytes:

if sz > 100:

gt100 = True

6.13.3.26 Method to Create or Set Software Resource Object

pbs.software()

pbs.software("<software info string>")

Creates an object representing a site-dependent software resource from the specified formatted input string.

6.13.3.27 Method to Create or Set staging_list Object

pbs.staging_list()

pbs.staging_list("<filespec>[,<filespec>,...]")

where <filespec> is <execution_path>@<storage_host>:<storage_path>

Creates an object representing a job file staging parameters list from the specified formatted input string.

To use a staging list object:

job.stagein = pbs.staging_list(....)
HG-150 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.13.3.28 Method to Create or Set state_count Object

pbs.state_count()

pbs.state_count("Transit:<U> Queued:<V> Held:<W> Running:<X> Exiting:<Y> Begun:<Z>”)

Instantiates an object representing a state_count attribute from the specified formatted input string.

6.13.3.29 Method to Create or Set user_list Object

pbs.user_list()

pbs.user_list("<user>[@<host>][,<user>@<host>...]")

Creates an object representing a PBS user list from the specified formatted input string.

To use a user list object:

job.User_List = pbs.user_list(....)

6.13.3.30 Method to Create or Set PBS Version Object

pbs.version()

pbs.version("<pbs version string>")

Creates an object representing the PBS version string from the specified formatted input string.

6.13.4 Global Methods

6.13.4.1 Method to Get Local Vnode Name

pbs.get_local_nodename()

This returns a Python str whose value is the name of the local parent vnode.

If you want to refer to the vnode object representing the current host, you can pass this vnode name as the key to
pbs.event().vnode_list[]. For example:

Vn = pbs.event().vnode_list[pbs.get_local_nodename()]

6.13.4.2 Method to Log Job-related String

pbs.logjobmsg()

pbs.logjobmsg(job ID, message)

where job ID must be an existing or previously existing job ID and where message is an arbitrary string.

This puts a custom string in the log of the PBS daemon running the hook, so if the method is being run by a server hook
such as queuejob, it prints to the server log, but if the method is being run at an execution host hook such as
execjob_prologue, it prints to the MoM log.

The tracejob command can be used to print out the job-related messages logged by a hook script.

Messages are logged at log event class pbs.LOG_DEBUG. See Table 6.13.4.4, “Message Log Level Objects,” on
page 152.
PBS Professional 2020.1.1 Hooks Guide HG-151

Chapter 6 Hook Objects and Methods
6.13.4.3 Method to Log String

pbs.logmsg()

pbs.logmsg(log event class, message)

where message is an arbitrary string, and where log event class can be one of the message log event class constants
shown in Table 6-16, “Message Log Level Objects,” on page 152.

This puts a custom string in the log of the PBS daemon running the hook, so if the method is being run by a server hook
such as queuejob, it prints to the server log, but if the method is being run at an execution host hook such as
execjob_prologue, it prints to the MoM log.

Example:

for j in pbs.server().jobs():

 pbs.logmsg(pbs.LOG_DEBUG, “found job %s” % (j.id))

6.13.4.4 Message Log Level Objects

You can use the following objects to indicate log level when placing messages in the server logs.

Table 6-16: Message Log Level Objects

Object
Deci
mal

Hex
PBS Log

Event
Filter

Name and Event Category

pbs. EVENT_ERROR 1 0x0001 error PBSEVENT_ERROR

Internal errors

pbs. EVENT_SYSTEM 2 0x0002 system PBSEVENT_SYSTEM

system errors

pbs. EVENT_ADMIN 4 0x0004 admin PBSEVENT_ADMIN

Administrative events

pbs.LOG_WARNING 4 0x0004 admin PBSEVENT_ADMIN

Administrative events

pbs.LOG_ERROR 4 0x0004 admin PBSEVENT_ADMIN

Administrative events

pbs.LOG_DEBUG 4 0x0004 admin PBSEVENT_ADMIN

Administrative events

pbs. EVENT_JOB 8 0x0008 job PBSEVENT_JOB

Job-related events

pbs. EVENT_JOB_USAGE 16 0x0010 job_usage PBSEVENT_JOB_USAGE

Job accounting info

pbs. EVENT_SECURITY 32 0x0020 Security PBSEVENT_SECURITY

Security violations

pbs. EVENT_SCHED 64 0x0040 sched PBSEVENT_SCHED

Scheduler events
HG-152 PBS Professional 2020.1.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.13.4.5 Method to Reboot Host

pbs.reboot()

pbs.reboot([<command>])

This stops hook execution, so that remaining lines in the hook script are not executed, and starts the tasks that would nor-
mally begin after the hook is finished, such as flagging the current host to be rebooted. The MoM logs show the follow-
ing:

<hook name> requested for host to be rebooted

We recommend that before calling pbs.reboot(), you set any vnodes managed by this MoM offline, and requeue the cur-
rent job, if this hook is not an exechost_periodic hook. For example:

for v in pbs.event().vnode_list.keys():

pbs.event().vnode_list[v].state = pbs.ND_OFFLINE

pbs.event().vnode_list[v].comment = "Rebooting host"

pbs.event().job.rerun()

pbs.reboot()

The effect of the call to pbs.reboot() is not instantaneous. The reboot happens after the hook executes, and after any of
the other actions such as pbs.event().job.rerun(), pbs.event().delete(), and pbs.event().vnode_list[] take effect.

A hook with its user attribute set to pbsuser cannot successfully invoke pbs.reboot(), even if the owner is a PBS Man-
ager or Operator. If this is attempted, the host is not rebooted, and the following message appears at log event class
PBSEVENT_DEBUG2 in the MoM logs:

<hook_name>; Not allowed to issue reboot if run as user.

The <command> is an optional argument. It is a Python str which is executed instead of the reboot command that is the
default for the system. For example:

pbs.reboot(“/usr/local/bin/my_reboot -s 10 -c 'going down in 10'”)

The specified <command> is executed in a shell on Linux/UNIX or via cmd on Windows.

pbs. EVENT_DEBUG 128 0x0080 debug PBSEVENT_DEBUG

Common debug messages

pbs. EVENT_DEBUG2 256 0x0100 debug2 PBSEVENT_DEBUG2

Uncommon debug messages

pbs. EVENT_RESV 512 0x0200 resv PBSEVENT_RESV

Reservation-related events

pbs. EVENT_DEBUG3 1024 0x0400 debug3 PBSEVENT_DEBUG3

Less common than PBSEVENT_DEBUG2

pbs. EVENT_DEBUG4 2048 0x0800 debug4 PBSEVENT_DEBUG4

Less common than debug3

pbs. EVENT_FORCE 4096 0x8000 (No filter
applies)

PBSEVENT_FORCE

Forces a message to be logged

Table 6-16: Message Log Level Objects

Object
Deci
mal

Hex
PBS Log

Event
Filter

Name and Event Category
PBS Professional 2020.1.1 Hooks Guide HG-153

Chapter 6 Hook Objects and Methods
HG-154 PBS Professional 2020.1.1 Hooks Guide

7

Built-in Hooks

7.1 Managing Built-in Hooks

PBS comes shipped with built-in hooks that implement features or patch bugs. You can operate on these hooks via
qmgr. The qmgr keyword for built-in hooks is “pbshook”. These hooks are named with the “PBS” prefix.

7.2 Prerequisites

You can operate on built-in hooks only from an account that has root access to the PBS server host.

When operating on a built-in hook, use the keyword “pbshook”, not “hook”.

7.3 Allowed Operations

You can perform a limited set of operations on built-in hooks. You can do the following:

• View attributes

• Set all attributes except for type

• Edit configuration files

• Replace with your own hook

7.4 Viewing Built-in Hooks

You can view attributes of built-in hooks:

qmgr -c "list pbshook"

Hook PBS_example_hook

type = pbs

enabled = false

event = queuejob,resvsub

user = pbsadmin

alarm = 90

order = 1000
PBS Professional 2020.1.1 Hooks Guide HG-155

Chapter 7 Built-in Hooks
7.5 Setting Attributes of Built-in Hooks

You can set all attributes except for the type attribute for a built-in hook. For example, you can enable and disable built-
in hooks:

qmgr -c "set pbshook <built-in hook name> enabled=true"

qmgr -c "set pbshook <built-in hook name> enabled=false"

If you disable a built-in hook, the following message is printed to qmgr’s STDERR:

“WARNING: Disabling a PBS hook results in an unsupported configuration!”

7.6 Editing and Importing Configuration Files for

Built-in Hooks

You can edit and re-import a configuration file for a built-in hook. Get the contents of the configuration file by exporting
the file:

#qmgr -c "export pbshook <hook name> application/x-config default" > config_file_save

Edit the file (here, config_file.save), then re-import it:

qmgr -c "import pbshook <hook name> application/x-config <content-encoding> default
config_file.save"

7.7 Restrictions

• You cannot create or delete a built-in hook. Attempting to do so results in the following error being printed to
qmgr’s STDERR:
Invalid request

• You cannot import or export content of a built-in hook. Attempting to do so results in the following error being
printed to qmgr’s STDERR:
<content-type> must be application/x-config

• You cannot display the commands to re-create a built-in hook: using qmgr -c "print pbshook" won’t work.

7.8 Replacing a Built-in Hook with Your Own Hook

You can replace a built-in hook with your own hook. For example, to replace a built-in exechost_startup hook:

1. Disable the built-in hook:
qmgr -c "set pbshook <built-in startup hook> enabled=false"

2. Create your own site-defined hook instead:

qmgr -c "create hook <your startup hook> event=exechost_startup"

qmgr -c "import hook <your startup hook> application/x-python default <your startup script>
HG-156 PBS Professional 2020.1.1 Hooks Guide

Built-in Hooks Chapter 7
7.9 Errors and Logging when Operating on Built-in

Hooks

• If you try to operate on a built-in hook from an account that does not have root or Admin access, the following error
message is issued to STDERR:
“unable to generate a hook_tempfile from <filepath> - Permission denied”

<user>@<host> is unauthorized to access hooks data from server <hostname>”

• If you try to import or export a built-in hook, you will see one of the following messages on STDERR:
qmgr -c "import pbshook <hook name> application/x-python default my_hook.py"

<content-type> must be application/x-config

or

#qmgr -c "export pbshook <hook name> application/x-python default"

<content-type> must be application/x-config
PBS Professional 2020.1.1 Hooks Guide HG-157

Chapter 7 Built-in Hooks
HG-158 PBS Professional 2020.1.1 Hooks Guide

8

Debugging Hooks

8.1 The pbs_python Hook Debugging Tool

You can use the pbs_python wrapper that is shipped with PBS to debug hooks. Either:

• Use the --hook option to pbs_python to run pbs_python as a wrapper to Python, employing the
pbs_python options. With the --hook option, you cannot use the standard Python options. The rest of this sec-
tion covers how to use pbs_python with the --hook option.

• Do not use the --hook option, so pbs_python runs the Python interpreter, with the standard Python options, and
without access to the pbs_python options.

Usage for pbs_python:

pbs_python --hook [-e <log event mask>] [-i <event input_file>] [-L <log dir>] [-l <log file>] [-o <hook execution
record>] [-r <resourcedef file>] [-s site data file] [<python script>]

For a complete description of pbs_python, see “pbs_python” on page 83 of the PBS Professional Reference Guide.

8.2 Files for Debugging

You can get each hook to write out debugging files, and then modify the files and use them as debugging input to
pbs_python. Alternatively, you can write the files yourself.

Debugging files can contain information about the event, about the site, and about what the hook changed. You can use
these as inputs to a hook when debugging.

8.2.1 Producing Files for Debugging

To get a hook to write out event and site debugging files, and a hook execution record, set its debug attribute to True
(the default is False). The files are named hook_<event type>_<hook name>_<random integer>.in, .data, and
.out. The <random integer> is the same for all output files for one run of a hook. The <random integer> is different
for each run.

The hook writes these files:

• Event file, containing the values that populate the pbs.event() objects in the hook and any other top level pbs
objects like pbs.get_local_nodename(), and job and job list information. This file always contains the event type.
The file is named hook_<event type>_<hook name>_<random integer>.in. Can be passed to pbs_python
using -i <event file> option. See section 8.2.5, “Event File”, on page 160.

• Site data file, containing the values that populate the pbs.server() objects: server, queue, vnode, etc. information.
The site data file is named hook_<event type>_<hook name>_<random integer>.data. Can be passed to
pbs_python using -s <site data file> option. This file is populated only when the hook calls
pbs.server(). See section 8.2.6, “Site Data File”, on page 164.

• Hook execution record, listing whether the hook accepted or rejected the event, and whatever was changed by the
hook, named hook_<event type>_<hook name>_<random integer>.out. See section 8.2.7, “Hook Execution
Record File”, on page 164.
PBS Professional 2020.1.1 Hooks Guide HG-159

Chapter 8 Debugging Hooks
So for example an execjob_begin hook named BeginHook will produce files, if PBS chooses “15223” as its random
integer, named hook_execjob_begin_BeginHook_15223.in, hook_execjob_begin_BeginHook_15223.data, and
hook_execjob_begin_BeginHook_15223.out.

8.2.2 Locations for Debugging Files

These files are written to these locations:

• Pre-execution hooks: PBS_HOME/server_priv/hooks/tmp

• All exechost_* and execjob_* hooks: PBS_HOME/mom_priv/hooks/tmp

8.2.3 Format for Debugging Files

File format for debugging files is text. For example:

pbs.event().job.Hold_Types=u

pbs.event().job.Job_Name=STDIN

pbs.event().job.Checkpoint=u

pbs.event().job.Join_Path=n

pbs.event().job.Keep_Files=n

pbs.event().job.Mail_Points=a

pbs.event().job.Priority=0

pbs.event().job.Rerunable=TRUE

pbs.event().job.Resource_List[ncpus]=5

pbs.event().job.Resource_List[mem]=2gb

pbs.get_local_nodename()=mars.example.com

pbs.event().type=queuejob

pbs.event().hook_name=qjob

pbs.event().hook_type=site

pbs.event().requestor=TestUser

pbs.event().requestor_host=mars.example.com

pbs.event().user=pbsadmin

pbs.event().alarm=30

8.2.4 Time Limit for Debugging Files

PBS deletes hook .in, .data, and .out files in PBS_HOME/*/hooks/tmp that are older than 20 minutes. If you need to
keep any of these files, copy them to another location.

8.2.5 Event File

The event file must contain the event type, and can contain any relevant information about the triggering event, the cur-
rent job, or list of jobs.

When the hook writes it, this file contains the values that populate the pbs.event() objects in the hook and any other top
level pbs objects such as the local vnode, the job, and the list of jobs. When a hook writes this file, it includes
pbs.event().type and the result of get_local_nodename(). Each kind of hook writes different additional pbs.event()
information.
HG-160 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
The file is named hook_<event type>_<hook name>_<random integer>.in. It can be passed to pbs_python
using the -i <event file> option.

The following table shows which information is written to the event file by each kind of hook:

Table 8-1: Event File by Hook

Event Information Written by
Hooks:

pbs.event.<list item>

q
u

e
u

e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

m
o

v
e
jo

b

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

p
e
ri

o
d

ic

re
s
v
s
u

b

re
s
v
_
e
n

d

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
e
n

d

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic

p
ro

v
is

io
n

pbs.get_local_nodename() y y y y y y y y y y y y y y y y y y
alarm y y y y y y y y y y y y y y y y y y
argv[] y
env y
freq y
hook_name y y y y y y y y y y y y y y y y y y
hook_type y y y y y y y y y y y y y y y y y y
job.Checkpoint y y y y y y y y
job.egroup y y y y y y y y
job.Error_Path y y y y y y y y
job.euser y y y y y y y y
job.exec_vnode y y y y y y y y
job.Exit_Status y y y
job.id y y y y y y y y
job.jobdir y y y y y
job.job_kill_delay y y y y y y y y
job.Job_Name y y y y y y y y
job.Job_Owner y y y y y y y y
job.job_state y y y y y y y
job.Join_Path y y y y y y y y
job.Keep_Files y y y y y y y y
job.mtime y y y y y y y y
job.Output_Path y y y y y y y y
job.Priority y y y y y y y
job.project y y y y y y y y
job.queue y y y y y y y y
job.resources_used[cpupercent] y y y y y
job.resources_used[cput] y y y y y
job.resources_used[mem] y y y y y
job.resources_used[ncpus] y y y y y
job.resources_used[vmem] y y y y
job.resources_used[walltime] y y y y y
job.Resource_List[file] y y y y y y y y
job.Resource_List[ncpus] y y y y y y y y
job.Resource_List[place] y y y y y y y y
job.run_count y y y y y y y y
job.run_version y y y y y y y y
job.schedselect y y y y y y y y
PBS Professional 2020.1.1 Hooks Guide HG-161

Chapter 8 Debugging Hooks
job.server y y y y y y y y
job.session_id y y y y y
job.substate y y y y y y y
job.Variable_List y y y y y y y y
job_list[<job ID>].Checkpoint y
job_list[<job ID>].egroup y
job_list[<job ID>].Error_Path y
job_list[<job ID>].euser y
job_list[<job ID>].exec_vnode y
job_list[<job ID>].hashname y
job_list[<job ID>].jobdir y
job_list[<job ID>].job_kill_delay y
job_list[<job ID>].Job_Name y
job_list[<job ID>].Job_Owner y
job_list[<job ID>].job_state y
job_list[<job ID>].Join_Path y
job_list[<job ID>].Keep_Files y
job_list[<job ID>].mtime y
job_list[<job ID>].Output_Path y
job_list[<job ID>].project y
job_list[<job ID>].queue y
job_list[<job ID>].resources_used[cpu-

percent]

y

job_list[<job ID>].resources_used[cput] y
job_list[<job ID>].resources_used[mem] y
job_list[<job ID>].resources_used[ncpus] y
job_list[<job ID>].resources_used[wall -

time]

y

job_list[<job ID>].Resource_List[file] y
job_list[<job ID>].Resource_List[ncpus] y
job_list[<job ID>].Resource_List[place] y
job_list[<job ID>].run_count y
job_list[<job ID>].run_version y
job_list[<job ID>].schedselect y
job_list[<job ID>].server y
job_list[<job ID>].session_id y
job_list[<job ID>].substate y
job_list[<job ID>].Variable_List y
job_list[<job ID>]._msmom y
job_list[<job ID>]._stderr_file y
job_list[<job ID>]._stdout_file y
progname y

Table 8-1: Event File by Hook

Event Information Written by
Hooks:

pbs.event.<list item>

q
u

e
u

e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

m
o

v
e
jo

b

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

p
e
ri

o
d

ic

re
s
v
s
u

b

re
s
v
_
e
n

d

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
e
n

d

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic

p
ro

v
is

io
n

HG-162 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
For example, an event file created by a queuejob hook contains this data:

pbs.get_local_nodename()=jupiter.example.com

pbs.event().type=queuejob

pbs.event().hook_name=qjob

pbs.event().hook_type=site

pbs.event().requestor=TestUser

pbs.event().requestor_host=jupiter.example.com

pbs.event().user=pbsadmin

pbs.event().alarm=30

The equivalent command is:

Qmgr: list hook

8.2.5.1 Caveats

When the execjob_epilogue or execjob_end hook writes resources such as resources_used to the event file, it is
writing about only the resources on the local host.

requestor y y y y y y y y y y y y y y y y y
requestor_host y y y y y y y y y y y y y y y y y
resv.reserve_end y y
resv.reserve_start y y
resv.Variable_List y y
type y y y y y y y y y y y y y y y y y y
user y y y y y y y y y y y y y y y y y y
vnode_list[<local vnode name>]

.pbs_version

y y y y y y y y y

vnode_list[<local vnode name>] .pcpus y y y y y y y y y
vnode_list[<local vnode name>]

.resources_assigned[mem]

y y y y y y y y

vnode_list[<local vnode name>]

.resources_assigned[ncpus]

y y y y y y y y

vnode_list[<local vnode name>]

.resources_available[arch]

y y y y y y y y y

vnode_list[<local vnode name>]

.resources_available[file]

y

vnode_list[<local vnode name>]

.resources_available[mem]

y y y y y y y y y y

vnode_list[<local vnode name>]

.resources_available[ncpus]

y y y y y y y y y

Table 8-1: Event File by Hook

Event Information Written by
Hooks:

pbs.event.<list item>

q
u

e
u

e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

m
o

v
e
jo

b

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

p
e
ri

o
d

ic

re
s
v
s
u

b

re
s
v
_
e
n

d

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
e
n

d

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic

p
ro

v
is

io
n

PBS Professional 2020.1.1 Hooks Guide HG-163

Chapter 8 Debugging Hooks
8.2.6 Site Data File

The site data file can contain any relevant information about the server, queues, vnodes, and jobs at the server.

This file is populated only when the hook calls pbs.server().

When the hook writes it, this file contains the values that populate the server, queues, vnodes, reservations, and jobs, with
all attributes and resources for which there are values.

The site data file is named hook_<event type>_<hook name>_<random integer>.data. It can be passed to
pbs_python using the -s <site data file> option.

The following commands give equivalent information:

qstat -Bf

qstat -Qf

qstat -f

pbsnodes -av

For example, here are some representative parts of a site data file:

pbs.server().scheduling=True

pbs.server().total_jobs=2

pbs.server().state_count=Transit:0 Queued:0 Held:2 Waiting:0 Running:0 Exiting:0 Begun:0

...

ppbs.server().default_chunk[ncpus]=1

pbs.server().resources_assigned[mem]=0mb

pbs.server().resources_assigned[ncpus]=0

...

pbs.server().job(501.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(501.jupiter.example.com).job_state=H

pbs.server().job(501.jupiter.example.com).queue=workq

...

pbs.server().job(501.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(501.jupiter.example.com).Resource_List[place]=pack

...

pbs.server().queue(workq).queue_type=Execution

pbs.server().queue(workq).total_jobs=2

pbs.server().queue(workq).resources_assigned[mem]=0mb

pbs.server().queue(workq).resources_assigned[ncpus]=0

8.2.7 Hook Execution Record File

The hook execution record file is produced when the hook runs. This file lists the following:

• Whether the event was accepted or rejected

• Any job values that were changed by the hook, showing the new values

This file is named hook_<event type>_<hook name>_<random integer>.out.
HG-164 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
8.3 Steps to Debug a Hook Using pbs_python

When you debug a hook using pbs_python, give it the following information:

• Use the --hook option to pbs_python so that you can use the other pbs_python options

• Specify event information by using -i <event file>. At a minimum, include the type of the event, but you can
also include job and job list information. Information about the event can be one of these:

• An event information file (.in) written by the hook

• A file written by you

• Interactive input

See section 8.2.5, “Event File”, on page 160.

• Optionally, provide site data. Site data includes data about the server, queues, vnodes, etc. You specify site data in a
file by using -s <site data file name>. If you do not specify the -s option, pbs_python connects to the
server and obtains live data about the site. See section 8.2.6, “Site Data File”, on page 164. Site data can come from
one of these sources:

• A site data file (.data) written by the hook

• A file written by you

• Interactive input

• Live data from the server

• If you have added any custom resources, specify the PBS_HOME/server_priv/resourcedef file with the -r option to
pbs_python. Make sure you specify the whole path to the file. For example:
pbs_python --hook -r $PBS_HOME/server_priv/resourcedef -i <input_file> <hook.py>

• If your hook uses a configuration file, set the environment variable PBS_HOOK_CONFIG_FILE to the file's path-
name before calling pbs_python. See section 5.1.6, “Using Hook Configuration Files”, on page 32.

• Run pbs_python on the hook:
pbs_python --hook -s <site data> -i <event file> <hook script>

8.4 Caveats and Restrictions for pbs_python

• When you run a hook inside pbs_python, it has access to the extended set of PBS_EXEC/python modules listed in
section 4.5, “Python Modules and PBS”, on page 24. When you run pbs_python at the command line (without -
-hook), the hook does not have access to the PBS_EXEC/lib set of modules.

• If PBS has attempted to run a job multiple times in the 20 minute window, you may need to check the timestamp of
hook debugging files (e.g. ls -lt) to figure out which files were produced during a particular hook run.

• The site data file is populated only when the hook calls pbs.server().
PBS Professional 2020.1.1 Hooks Guide HG-165

Chapter 8 Debugging Hooks
8.5 Examples of Using pbs_python to Debug

Hooks

Example 8-1: Basic periodic hook, with updates to vnodes:

• Input file:
% cat hook.input

pbs.event().type=exechost_periodic

pbs.event().vnode_list["host1"].state=free

pbs.get_local_nodename()=host1

• Hook file:
$ cat test.py

import pbs

e = pbs.event()

pbs.event().vnode_list[pbs.get_local_nodename()].resources_available["ncpus"]=7

pbs.event().vnode_list[pbs.get_local_nodename()].resources_available["mem"]=pbs.size("7gb")

• Run:
$ pbs_python --hook -i hook.input test.py

pbs.event().accept=True

pbs.event().reject=False

pbs.event().vnode_list["host1"].resources_available[ncpus]=7

pbs.event().vnode_list["host1"].resources_available[mem]=7gb

Example 8-2: A queuejob hook:

• Input file:
$ cat qjob.input

pbs.event().hook_name=qjob

pbs.event().hook_type=site

pbs.event().type=queuejob

pbs.event().requestor=user1

pbs.event().requestor_host=host1

pbs.event().alarm=40

pbs.event().job.Job_Name=pact

pbs.event().job.Resource_List[ncpus]=1

pbs.event().job.Resource_List[mem]=1mb

• Hook file:
$ cat qjob.py

import pbs

e = pbs.event()

e.job.Priority = 7

e.job.Account_Name = "mammoth"

e.job.Resource_List["ncpus"] = 5
HG-166 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
e.job.Resource_List["mem"] = pbs.size("5gb")

• Run:
% pbs_python --hook -i qjob.input qjob.py

pbs.event().accept=True

pbs.event().reject=False

pbs.event().job.Priority=7

pbs.event().job.Resource_List[ncpus]=5

pbs.event().job.Resource_List[mem]=5gb

pbs.event().job.Account_Name=mammoth

Example 8-3: Reservation hook:

• Input file:
% cat rsub.input

pbs.event().hook_name=qjob

pbs.event().hook_type=site

pbs.event().type=resvsub

pbs.event().requestor=user1

pbs.event().requestor_host=host1

pbs.event().alarm=40

pbs.event().resv.Reserve_Name=my_resv

pbs.event().resv.Resource_List[ncpus]=1

pbs.event().resv.Resource_List[mem]=1mb

• Hook file:
% cat rsub.py

import pbs

def print_attribs(pbs_obj):

for a in pbs_obj.attributes:

v = getattr(pbs_obj, a)

if v and str(v) != "":

pbs.logmsg(pbs.LOG_DEBUG, "%s = %s" % (a,v))

e = pbs.event()

r = e.resv

print_attribs(r)

r.Resource_List["select"] = pbs.select("1:ncpus=1:mem=5mb")

r.Resource_List["place"] = pbs.place("pack:shared")

group_list = pbs.group_list

r.group_list = pbs.group_list("Everyone,Everyone@host2,group1@jobim")

Mail_Points= pbs.mail_points

r.Mail_Points = pbs.mail_points("a")
PBS Professional 2020.1.1 Hooks Guide HG-167

Chapter 8 Debugging Hooks
User_List = pbs.user_list

r.User_List = pbs.user_list("pbstest,pbstest@host2")

Authorized_Users = pbs.acl

r.Authorized_Users = pbs.acl("pbstest,user1,Administrator")

Authorized_Groups = pbs.acl

r.Authorized_Groups = pbs.acl("Everyone,group1,group2")

• Run:
% pbs_python --hook -i rsub.input rsub.py

pbs.event().accept=True

pbs.event().reject=False

pbs.event().resv.group_list=Everyone,Everyone@host2,group1@jobim

pbs.event().resv.User_List=pbstest,pbstest@host2

pbs.event().resv.Resource_List[select]=1:ncpus=1:mem=5mb

pbs.event().resv.Resource_List[place]=pack:shared

pbs.event().resv.Mail_Points=a

pbs.event().resv.Authorized_Users=pbstest,user1,Administrator

pbs.event().resv.Authorized_Groups=Everyone,group1,group2

Example 8-4: A modifyjob hook:

• Hook script:
$ cat modifyjob.py

import pbs

def print_attribs(pbs_obj):

for a in pbs_obj.attributes:

v = getattr(pbs_obj, a)

if v and str(v) != "":

pbs.logmsg(pbs.LOG_DEBUG, "%s = %s" % (a,v))

e = pbs.event()

pbs.logmsg(pbs.LOG_DEBUG, "------> printing job %s" % (e.job_o.id))

print_attribs(e.job_o)

e.job.Priority = 5

e.job.Resource_List["file"] = pbs.size("7gb")

e.job.Variable_List["FILE"] = "7gb"

• Use the pbs_python debugging tool.
HG-168 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
Ensure you have the following input file:

% cat hook.input

pbs.event().type=modifyjob

pbs.event().job.id=0.host1

pbs.event().job.Variable_List=A=b

• Run the hook:
% pbs_python --hook -i hook.input modifyjob.py

• The following are printed:
pbs.event().accept=True

pbs.event().reject=False

pbs.event().job.Variable_List=A=b,FILE=7gb

pbs.event().job.Priority=5

pbs.event().job.Resource_List[file]=7gb

• The pbs_python log file shows this:

% cat <yyyymmdd>

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;----------------> printing job 0.host1

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;qtime = 1357387083

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;Error_Path =

host1.example.com:/home/user1/STDIN.e0

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;job_state = 1

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;schedselect =1:ncpus=1

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;ctime = 1357387083

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;Rerunable = 1

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;server = host1

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;egroup = pbs

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;Variable_List =A=b,FILE=7gb

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;Checkpoint = u

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;etime = 1357387083

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;queue = workq

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;Job_Name = STDIN

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;comment = Not Running:

Could not run job - nodes are not licensed or unable to obtain 1 cpu licenses. avail_licenses=0

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;substate = 10

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;queue_rank = 1

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;euser = user1

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;Mail_Points = a

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;Priority = 0

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;project = _pbs_project_default

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;queue_type = 1

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;Output_Path =

host1.example.com:/home/user1/STDIN.o0

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;Hold_Types = n
PBS Professional 2020.1.1 Hooks Guide HG-169

Chapter 8 Debugging Hooks
01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;Join_Path = n

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;mtime = 1357387083

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;id = 0.host1

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;Resource_List =
select=1:ncpus=1,nodect=1,ncpus=1,place=free

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;Keep_Files = n

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;_connect_server = host1

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;Job_Owner = user1@host1.example.com

Example 8-5: A movejob hook which prints job ID, src_queue, and movejob event parameters, and sets src_queue:

• Hook script:
$ cat movejob.py

import pbs

def print_attribs(pbs_obj):

for a in pbs_obj.attributes:

v = getattr(pbs_obj, a)

if v and str(v) != "":

pbs.logmsg(pbs.LOG_DEBUG, "%s = %s" % (a,v))

e = pbs.event()

pbs.logmsg(pbs.LOG_DEBUG, "----------------> printing src_queue %s" % (e.src_queue.name))

print_attribs(e.src_queue)

pbs.logmsg(pbs.LOG_DEBUG, "----------------> printing job %s" % (e.job.id))

print_attribs(e.job)

e.job.queue = pbs.server().queue("workq2")

• Use the pbs_python debugging tool:

Use the following input file:

% cat hook.input2

pbs.event().type=movejob

pbs.event().job.id=<existing-job-id>
HG-170 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
where <existing-job-id> must be some arbitrary job currently existing in the queue workq. Submit one (qsub -h)
if it doesn't exist.

• Run the hook:
% pbs_python --hook -i hook.input2 movejob.py

• The following is printed:
pbs.event().accept=True

pbs.event().reject=False

pbs.event().src_queue=workq2

• The pbs_python log file shows this:

% cat <yyyymmdd>

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;----------------> printing

src_queue workq

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;name = workq

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;----------------> printing

job 0.host1

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;qtime = 1357387083

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;Error_Path = host1.example.com:/home/user1/
STDIN.e0

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;job_state = 1

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;ctime = 1357387083

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;Rerunable = 1

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;server = host1

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;Variable_List =

PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/bash,PBS_O_HOME=/home/
user1,PBS_O_HOST=host1.example.com,PBS_O_LOGNAME=user1,PBS_O_WORKDIR=/home/
user1,PBS_O_LANG=en_US.UTF-8,PBS_O_PATH=/opt/pbs/bin:/opt/pbs/python/bin:/opt/pbs/tcltk/
bin:/home/user1/bin:/opt/pbs/bin:/opt/pbs/python/bin:/opt/pbs/tcltk/bin:/home/user1/bin:/
usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/home/user1/bin:/usr/local/rational/releases/
purify.i386_linux2.2003a.06.15.FixPack.0194:/usr/local/purify/base/cots/flexlm.10.8.0.1/
i386_linux2:/home/user1/PbsTestLab/bin:/home/user1/bin:/home/user1/bin:/usr/local/rational/
releases/purify.i386_linux2.2003a.06.15.FixPack.0194:/usr/local/purify/base/cots/
flexlm.10.8.0.1/i386_linux2:/home/user1/PbsTestLab/bin,PBS_O_QUEUE=workq,PBS_O_MAIL=/var/
spool/mail/user1

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;Checkpoint = u

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;etime = 1357387083

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;Job_Name = STDIN

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;comment = Not Running:

Could not run job - nodes are not licensed or unable to obtain 1 cpu licenses. avail_licenses=0

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;substate = 10

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;Mail_Points = a

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;Priority = 0

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;project = _pbs_project_default

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;Output_Path =

host1.example.com:/home/user1/STDIN.o0

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;Hold_Types = n
PBS Professional 2020.1.1 Hooks Guide HG-171

Chapter 8 Debugging Hooks
01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;Join_Path = n

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;mtime = 1357387083

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;id = 0.host1

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;Resource_List =

select=1:ncpus=1,nodect=1,ncpus=1,place=free

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;Keep_Files = n

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;_connect_server = host1

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;Job_Owner =

user1@host1.example.com

Example 8-6: A runjob hook to print attributes:

• Hook script:

$ cat runjob.py

import pbs

import time

def print_attribs(pbs_obj):

for a in pbs_obj.attributes:

v = getattr(pbs_obj, a)

if v and str(v) != "":

pbs.logmsg(pbs.LOG_DEBUG, "%s = %s" % (a,v))

e = pbs.event()

pbs.logmsg(pbs.LOG_DEBUG, "----------------> printing job %s" % (e.job.id))

print_attribs(e.job)

e.job.Hold_Types = pbs.hold_types("us")

e.job.Execution_Time = time.mktime([15, 11, 28, 14, 10, 15, -1, -1, 01])

e.job.project="looper"

pbs.event().reject("not allowed to run at this time!")

• Use the following input file:
% cat hook.input3

pbs.event().type=runjob

pbs.event().job.id=<existing-job-id>
HG-172 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
where <existing-job-id> must be some arbitrary job currently existing in the server. Submit one (qsub -h) if it
doesn't exist.

• Run the hook:
pbs_python --hook -i hook.input3 runjob.py

• The execution record contains the following:
pbs.event().reject=True

pbs.event().accept=False

pbs.event().reject_msg=not allowed to run at this time!

pbs.event().job.Execution_Time=1448745015

pbs.event().job.Hold_Types=us

pbs.event().job.project=looper

• The pbs_python log file shows:

% cat <yyyymmdd>

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;----------------> printing

job 5.host1

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;qtime = 1357424154

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;Error_Path =

host1.example.com:/home/user1/bugs/sp260361/STDIN.e5

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;job_state = 2

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;ctime = 1357424154

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;Rerunable = 1

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;server = host1

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;Variable_List =

PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/bash,PBS_O_HOME=/home/
user1,PBS_O_HOST=host1.example.com,PBS_O_LOGNAME=user1,PBS_O_WORKDIR=/home/user1/bugs/
sp260361,PBS_O_LANG=en_US.UTF-8,PBS_O_PATH=/opt/pbs/bin:/opt/pbs/python/bin:/opt/pbs/tcltk/
bin:/home/user1/bin:/opt/pbs/bin:/opt/pbs/python/bin:/opt/pbs/tcltk/bin:/home/user1/bin:/
usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/home/user1/bin:/usr/local/rational/releases/
purify.i386_linux2.2003a.06.15.FixPack.0194:/usr/local/purify/base/cots/flexlm.10.8.0.1/
i386_linux2:/home/user1/PbsTestLab/bin:/home/user1/bin:/home/user1/bin:/usr/local/rational/
releases/purify.i386_linux2.2003a.06.15.FixPack.0194:/usr/local/purify/base/cots/
flexlm.10.8.0.1/i386_linux2:/home/user1/PbsTestLab/bin,PBS_O_QUEUE=workq,PBS_O_MAIL=/var/
spool/mail/user1

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;Checkpoint = u

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;Submit_arguments =

<jsdl-hpcpa:Argument>-h</jsdl-hpcpa:Argument>

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;queue = workq

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;Job_Name = STDIN

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;substate = 20

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;Mail_Points = a

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;Priority = 0

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;project = _pbs_project_default

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;Output_Path =

host1.example.com:/home/user1/bugs/sp260361/STDIN.o5

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;Hold_Types = u
PBS Professional 2020.1.1 Hooks Guide HG-173

Chapter 8 Debugging Hooks
01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;Join_Path = n

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;mtime = 1357424154

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;id = 5.host1

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;Resource_List =

select=1:ncpus=1,nodect=1,ncpus=1,place=pack

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;Keep_Files = n

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;_connect_server = host1

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;Job_Owner =

user1@host1.example.com

8.6 Using Log Messages to Debug Hook Scripts

The following steps may help you avoid errors in hook scripts:

1. Create a hook, and import its content.

2. Temporarily set the server’s log_events to a higher value such as 2047 to see plenty of logging.

3. Do a test run of the hook script, by causing events (e.g. qsub, qalter, qmove, pbs_rsub) that invoke the hook
script. Check for error messages in the server logs.

4. Correct the hook script, re-import the fixed code, and rerun the test.

5. Once the hook script is running fine, then set the server’s log_events back to the default (i.e. 511).

8.7 Checking Hook Syntax using Python

You can check hook syntax using Python. If you run Python on the hook, the hook cannot import the pbs module. If the
first error you see is a failure to import the pbs module, Python did not find any syntax errors.

8.8 Examples of Debugging Files

Example 8-7: We show several hooks and their debugging files. Our example hooks are queuejob, exechost_startup,
exechost_periodic, execjob_begin, and execjob_launch.

Given the following two jobs in the system:

TestUser@jupiter:~/jobs> qstat

Job id Name User Time Use S Queue

---------------- ---------------- ---------------- -------- - -----

501.jupiter STDIN TestUser 0 H workq

502.jupiter STDIN TestUser 0 H workq

Given the following reservations:

TestUser@jupiter:~/jobs> pbs_rstat

Resv ID Queue User State Start / Duration / End

R503.jupiter. R503 TestUser@ CO Today 08:00 / 1800 / Today 08:30

R504.jupiter. R504 TestUser@ CO Today 09:00 / 1800 / Today 09:30
HG-174 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
Given the following set of vnodes:

TestUser@jupiter:~/jobs> pbsnodes -av

jupiter

Mom = jupiter.example.com

Port = 15002

pbs_version = PBSPro_10.0

ntype = PBS

state = free

pcpus = 1

resv = R504.jupiter.example.com, R503.jupiter.example.com

resources_available.arch = linux

resources_available.host = jupiter

resources_available.mem = 8gb

resources_available.ncpus = 8

resources_available.vnode = jupiter

resources_assigned.accelerator_memory = 0kb

resources_assigned.mem = 0kb

resources_assigned.naccelerators = 0

resources_assigned.ncpus = 0

resources_assigned.vmem = 0kb

resv_enable = True

sharing = default_shared

mars

Mom = mars.example.com

Port = 15002

pbs_version = PBSPro_10.0

ntype = PBS

state = free

pcpus = 1

resources_available.arch = linux

resources_available.host = mars

resources_available.mem = 8gb

resources_available.ncpus = 8

resources_available.vnode = mars

resources_assigned.accelerator_memory = 0kb

resources_assigned.mem = 0kb

resources_assigned.naccelerators = 0

resources_assigned.ncpus = 0

resources_assigned.vmem = 0kb

resv_enable = True

sharing = default_shared
PBS Professional 2020.1.1 Hooks Guide HG-175

Chapter 8 Debugging Hooks
queuejob hook attributes:

Hook qjob

type = site

enabled = true

event = queuejob

user = pbsadmin

alarm = 30

order = 1

debug = true

fail_action = none

queuejob hook contents:

import pbs

e=pbs.event()

e.job.Priority=7

e.job.Resource_List["file"] = pbs.size("7gb")

s=pbs.server()

for j in s.jobs():

pbs.logmsg(pbs.LOG_DEBUG, "got j %s" % (j.id,))

for q in s.queues():

pbs.logmsg(pbs.LOG_DEBUG, "got q %s" % (q.name,))

for v in s.vnodes():

pbs.logmsg(pbs.LOG_DEBUG, "got vnode %s" % (v.name,))

for r in s.resvs():

pbs.logmsg(pbs.LOG_DEBUG, "got resv %s" % (r.resvid))

Submit the job:

% qsub job.scr

Here are the resulting *.in, *.data, and *.out files:

jupiter:/var/spool/PBS/mom_priv/hooks/tmp # ls -ltr /var/spool/PBS/server_priv/hooks/tmp

-rw-r--r-- 1 root root 241 Sep 17 03:54 hook_queuejob_qjob_1410940476.in

-rw-r--r-- 1 root root 18619 Sep 17 03:54 hook_queuejob_qjob_1410940476.data

-rw-r--r-- 1 root root 805 Sep 17 03:54 hook_queuejob_qjob_1410940476.out
HG-176 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
List the queuejob hook event file:

jupiter:/var/spool/PBS/server_priv/hooks/tmp # cat hook_queuejob_qjob_1410940476.in

pbs.get_local_nodename()=jupiter.example.com

pbs.event().type=queuejob

pbs.event().hook_name=qjob

pbs.event().hook_type=site

pbs.event().requestor=TestUser

pbs.event().requestor_host=jupiter.example.com

pbs.event().user=pbsadmin

pbs.event().alarm=30
PBS Professional 2020.1.1 Hooks Guide HG-177

Chapter 8 Debugging Hooks
List the queuejob hook site data file:

jupiter:/var/spool/PBS/server_priv/hooks/tmp # cat hook_queuejob_qjob_1410940476.data

pbs.server().server_state=Active

pbs.server().server_host=jupiter.example.com

pbs.server().scheduling=True

pbs.server().total_jobs=2

pbs.server().state_count=Transit:0 Queued:0 Held:2 Waiting:0 Running:0 Exiting:0 Begun:0

pbs.server().managers=TestUser@*

pbs.server().default_queue=workq

pbs.server().log_events=511

pbs.server().mail_from=adm

pbs.server().query_other_jobs=True

pbs.server().resources_default[ncpus]=1

pbs.server().default_chunk[ncpus]=1

pbs.server().resources_assigned[mem]=0mb

pbs.server().resources_assigned[ncpus]=0

pbs.server().resources_assigned[nodect]=0

pbs.server().scheduler_iteration=600

pbs.server().flatuid=True

pbs.server().FLicenses=32

pbs.server().resv_enable=True

pbs.server().node_fail_requeue=310

pbs.server().max_array_size=10000

pbs.server().pbs_license_min=1

pbs.server().pbs_license_max=2147483647

pbs.server().pbs_license_linger_time=3600

pbs.server().license_count=Avail_Global:0 Avail_Local:32 Used:0 High_Use:2

pbs.server().pbs_version=PBSPro_10.0

pbs.server().eligible_time_enable=False

pbs.server().max_concurrent_provision=5

pbs.server().job(501.jupiter.example.com).Job_Name=STDIN

pbs.server().job(501.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(501.jupiter.example.com).job_state=H

pbs.server().job(501.jupiter.example.com).queue=workq

pbs.server().job(501.jupiter.example.com).server=jupiter.example.com

pbs.server().job(501.jupiter.example.com).Checkpoint=u

pbs.server().job(501.jupiter.example.com).ctime=1410940219

pbs.server().job(501.jupiter.example.com).Error_Path=jupiter.example.com:/home/TestUser/jobs/
STDIN.e501

pbs.server().job(501.jupiter.example.com).Hold_Types=u

pbs.server().job(501.jupiter.example.com).Join_Path=n

pbs.server().job(501.jupiter.example.com).Keep_Files=n

pbs.server().job(501.jupiter.example.com).Mail_Points=a

pbs.server().job(501.jupiter.example.com).mtime=1410940219

pbs.server().job(501.jupiter.example.com).Output_Path=jupiter.example.com:/home/TestUser/jobs/
STDIN.o501
HG-178 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
pbs.server().job(501.jupiter.example.com).Priority=7

pbs.server().job(501.jupiter.example.com).qtime=1410940219

pbs.server().job(501.jupiter.example.com).Rerunable=True

pbs.server().job(501.jupiter.example.com).Resource_List[file]=7gb

pbs.server().job(501.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(501.jupiter.example.com).Resource_List[nodect]=1

pbs.server().job(501.jupiter.example.com).Resource_List[place]=pack

pbs.server().job(501.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().job(501.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().job(501.jupiter.example.com).substate=20

pbs.server().job(501.jupiter.example.com).Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/
bash,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/
jobs,PBS_O_LANG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/
lib64/mpi/gcc/openmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/
X11R6/bin:/usr/games:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/
TestUser,PBS_O_QUEUE=workq,PBS_O_HOST=jupiter.example.com

pbs.server().job(501.jupiter.example.com).euser=TestUser

pbs.server().job(501.jupiter.example.com).egroup=users

pbs.server().job(501.jupiter.example.com).hop_count=1

pbs.server().job(501.jupiter.example.com).queue_rank=185

pbs.server().job(501.jupiter.example.com).queue_type=E

pbs.server().job(501.jupiter.example.com).Submit_arguments=<jsdl-hpcpa:Argument>-h</jsdl-
hpcpa:Argument>

pbs.server().job(501.jupiter.example.com).project=_pbs_project_default

pbs.server().queue(workq).queue_type=Execution

pbs.server().queue(workq).total_jobs=2

pbs.server().queue(workq).state_count=Transit:0 Queued:0 Held:2 Waiting:0 Running:0 Exiting:0
Begun:0

pbs.server().queue(workq).resources_assigned[mem]=0mb

pbs.server().queue(workq).resources_assigned[ncpus]=0

pbs.server().queue(workq).resources_assigned[nodect]=0

pbs.server().queue(workq).enabled=True

pbs.server().queue(workq).started=True

pbs.server().job(502.jupiter.example.com).Job_Name=STDIN

pbs.server().job(502.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(502.jupiter.example.com).job_state=H

pbs.server().job(502.jupiter.example.com).queue=workq

pbs.server().job(502.jupiter.example.com).server=jupiter.example.com

pbs.server().job(502.jupiter.example.com).Checkpoint=u

pbs.server().job(502.jupiter.example.com).ctime=1410940221

pbs.server().job(502.jupiter.example.com).Error_Path=jupiter.example.com:/home/TestUser/jobs/
STDIN.e502

pbs.server().job(502.jupiter.example.com).Hold_Types=u

pbs.server().job(502.jupiter.example.com).Join_Path=n

pbs.server().job(502.jupiter.example.com).Keep_Files=n

pbs.server().job(502.jupiter.example.com).Mail_Points=a

pbs.server().job(502.jupiter.example.com).mtime=1410940221
PBS Professional 2020.1.1 Hooks Guide HG-179

Chapter 8 Debugging Hooks
pbs.server().job(502.jupiter.example.com).Output_Path=jupiter.example.com:/home/TestUser/jobs/
STDIN.o502

pbs.server().job(502.jupiter.example.com).Priority=7

pbs.server().job(502.jupiter.example.com).qtime=1410940223

pbs.server().job(502.jupiter.example.com).Rerunable=True

pbs.server().job(502.jupiter.example.com).Resource_List[file]=7gb

pbs.server().job(502.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(502.jupiter.example.com).Resource_List[nodect]=1

pbs.server().job(502.jupiter.example.com).Resource_List[place]=pack

pbs.server().job(502.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().job(502.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().job(502.jupiter.example.com).substate=20

pbs.server().job(502.jupiter.example.com).Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/
bash,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/
jobs,PBS_O_LANG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/
lib64/mpi/gcc/openmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/
X11R6/bin:/usr/games:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/
TestUser,PBS_O_QUEUE=workq,PBS_O_HOST=jupiter.example.com

pbs.server().job(502.jupiter.example.com).euser=TestUser

pbs.server().job(502.jupiter.example.com).egroup=users

pbs.server().job(502.jupiter.example.com).hop_count=1

pbs.server().job(502.jupiter.example.com).queue_rank=186

pbs.server().job(502.jupiter.example.com).queue_type=E

pbs.server().job(502.jupiter.example.com).Submit_arguments=<jsdl-hpcpa:Argument>-h</jsdl-
hpcpa:Argument>

pbs.server().job(502.jupiter.example.com).project=_pbs_project_default

pbs.server().queue(R503).queue_type=Execution

pbs.server().queue(R503).total_jobs=0

pbs.server().queue(R503).state_count=Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0
Begun:0

pbs.server().queue(R503).acl_user_enable=True

pbs.server().queue(R503).acl_users=TestUser@jupiter.example.com

pbs.server().queue(R503).resources_max[ncpus]=1

pbs.server().queue(R503).resources_max[walltime]=00:30:00

pbs.server().queue(R503).resources_available[ncpus]=1

pbs.server().queue(R503).resources_available[walltime]=00:30:00

pbs.server().queue(R503).enabled=True

pbs.server().queue(R503).started=False

pbs.server().queue(R504).queue_type=Execution

pbs.server().queue(R504).total_jobs=0

pbs.server().queue(R504).state_count=Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0
Begun:0

pbs.server().queue(R504).acl_user_enable=True

pbs.server().queue(R504).acl_users=TestUser@jupiter.example.com

pbs.server().queue(R504).resources_max[ncpus]=1

pbs.server().queue(R504).resources_max[walltime]=00:30:00

pbs.server().queue(R504).resources_available[ncpus]=1
HG-180 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
pbs.server().queue(R504).resources_available[walltime]=00:30:00

pbs.server().queue(R504).enabled=True

pbs.server().queue(R504).started=False

pbs.server().vnode(jupiter).Mom=jupiter.example.com

pbs.server().vnode(jupiter).Port=15002

pbs.server().vnode(jupiter).pbs_version=PBSPro_10.0

pbs.server().vnode(jupiter).pcpus=1

pbs.server().vnode(jupiter).resv=R504.jupiter.example.com, R503.jupiter.example.com

pbs.server().vnode(jupiter).resources_available[arch]=linux

pbs.server().vnode(jupiter).resources_available[host]=jupiter

pbs.server().vnode(jupiter).resources_available[mem]=8gb

pbs.server().vnode(jupiter).resources_available[ncpus]=8

pbs.server().vnode(jupiter).resources_available[vnode]=jupiter

pbs.server().vnode(jupiter).resources_assigned[accelerator_memory]=0kb

pbs.server().vnode(jupiter).resources_assigned[mem]=0kb

pbs.server().vnode(jupiter).resources_assigned[naccelerators]=0

pbs.server().vnode(jupiter).resources_assigned[ncpus]=0

pbs.server().vnode(jupiter).resources_assigned[vmem]=0kb

pbs.server().vnode(jupiter).resv_enable=True

pbs.server().vnode(jupiter).sharing=1

pbs.server().resv(R503.jupiter.example.com).Reserve_Name=NULL

pbs.server().resv(R503.jupiter.example.com).Reserve_Owner=TestUser@jupiter.example.com

pbs.server().resv(R503.jupiter.example.com).reserve_type=2

pbs.server().resv(R503.jupiter.example.com).reserve_state=2

pbs.server().resv(R503.jupiter.example.com).reserve_substate=2

pbs.server().resv(R503.jupiter.example.com).reserve_start=1410955200

pbs.server().resv(R503.jupiter.example.com).reserve_end=1410957000

pbs.server().resv(R503.jupiter.example.com).reserve_duration=1800

pbs.server().resv(R503.jupiter.example.com).queue=R503

pbs.server().resv(R503.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().resv(R503.jupiter.example.com).Resource_List[walltime]=00:30:00

pbs.server().resv(R503.jupiter.example.com).Resource_List[nodect]=1

pbs.server().resv(R503.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().resv(R503.jupiter.example.com).Resource_List[place]=free

pbs.server().resv(R503.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().resv(R503.jupiter.example.com).resv_nodes=(jupiter:ncpus=1)

pbs.server().resv(R503.jupiter.example.com).Authorized_Users=TestUser@jupiter.example.com

pbs.server().resv(R503.jupiter.example.com).server=jupiter.example.com

pbs.server().resv(R503.jupiter.example.com).ctime=1410940237

pbs.server().resv(R503.jupiter.example.com).mtime=1410940237

pbs.server().resv(R503.jupiter.example.com).hop_count=1

pbs.server().resv(R503.jupiter.example.com).Variable_List=PBS_O_LOGNAME=TestUser,PBS_O_HOST=jupi
ter.example.com,PBS_O_MAIL=/var/spool/mail/TestUser

pbs.server().resv(R503.jupiter.example.com).euser=TestUser

pbs.server().resv(R503.jupiter.example.com).egroup=users

pbs.server().resv(R504.jupiter.example.com).Reserve_Name=NULL
PBS Professional 2020.1.1 Hooks Guide HG-181

Chapter 8 Debugging Hooks
pbs.server().resv(R504.jupiter.example.com).Reserve_Owner=TestUser@jupiter.example.com

pbs.server().resv(R504.jupiter.example.com).reserve_type=2

pbs.server().resv(R504.jupiter.example.com).reserve_state=2

pbs.server().resv(R504.jupiter.example.com).reserve_substate=2

pbs.server().resv(R504.jupiter.example.com).reserve_start=1410958800

pbs.server().resv(R504.jupiter.example.com).reserve_end=1410960600

pbs.server().resv(R504.jupiter.example.com).reserve_duration=1800

pbs.server().resv(R504.jupiter.example.com).queue=R504

pbs.server().resv(R504.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().resv(R504.jupiter.example.com).Resource_List[walltime]=00:30:00

pbs.server().resv(R504.jupiter.example.com).Resource_List[nodect]=1

pbs.server().resv(R504.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().resv(R504.jupiter.example.com).Resource_List[place]=free

pbs.server().resv(R504.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().resv(R504.jupiter.example.com).resv_nodes=(jupiter:ncpus=1)

pbs.server().resv(R504.jupiter.example.com).Authorized_Users=TestUser@jupiter.example.com

pbs.server().resv(R504.jupiter.example.com).server=jupiter.example.com

pbs.server().resv(R504.jupiter.example.com).ctime=1410940250

pbs.server().resv(R504.jupiter.example.com).mtime=1410940250

pbs.server().resv(R504.jupiter.example.com).hop_count=1

pbs.server().resv(R504.jupiter.example.com).Variable_List=PBS_O_LOGNAME=TestUser,PBS_O_HOST=jupi
ter.example.com,PBS_O_MAIL=/var/spool/mail/TestUser

pbs.server().resv(R504.jupiter.example.com).euser=TestUser

pbs.server().resv(R504.jupiter.example.com).egroup=users

List the queuejob hook execution record file:

jupiter:/var/spool/PBS/server_priv/hooks/tmp # cat hook_queuejob_qjob_1410940476.out

pbs.event().job.Rerunable=1

pbs.event().job.Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/bash,PBS_O_HOME=/home/
TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/jobs,PBS_O_LANG=en_US.UTF-
8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/gcc/openmpi/bin:/
home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/games:/opt/
pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/TestUser

pbs.event().job.Checkpoint=u

pbs.event().job.Submit_arguments=<jsdl-hpcpa:Argument>job.scr</jsdl-hpcpa:Argument>

pbs.event().job.Job_Name=job.scr

pbs.event().job.Mail_Points=a

pbs.event().job.Priority=7

pbs.event().job.Hold_Types=n

pbs.event().job.Join_Path=n

pbs.event().job.Resource_List[file]=7gb

pbs.event().job.Keep_Files=n
HG-182 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
The exechost_startup hook attributes:

Hook start

type = site

enabled = true

event = exechost_startup

user = pbsadmin

alarm = 30

order = 1

debug = true

fail_action = none

The exechost_startup hook contents:

import pbs

e=pbs.event()

e.vnode_list[pbs.get_local_nodename()].resources_available["file"] = pbs.size("7gb")

s=pbs.server()

for j in s.jobs():

pbs.logmsg(pbs.LOG_DEBUG, "got j %s" % (j.id,))

for q in s.queues():

pbs.logmsg(pbs.LOG_DEBUG, "got q %s" % (q.name,))

for v in s.vnodes():

pbs.logmsg(pbs.LOG_DEBUG, "got vnode %s" % (v.name,))

for r in s.resvs():

pbs.logmsg(pbs.LOG_DEBUG, "got resv %s" % (r.resvid))

Restart pbs_mom. Upon startup, the exechost_startup hook writes the following files:

jupiter:/home/TestUser/jobs # cd /var/spool/PBS/mom_priv/hooks/tmp

jupiter:/var/spool/PBS/mom_priv/hooks/tmp # ls -ltr

total 24

-rw-r--r-- 1 root root 455 Sep 17 04:02 hook_exechost_startup_start_11607.in

-rw-r--r-- 1 root root 115 Sep 17 04:02 hook_exechost_startup_start_11607.out

-rw-r--r-- 1 root root 12389 Sep 17 04:02 hook_exechost_startup_start_11607.data
PBS Professional 2020.1.1 Hooks Guide HG-183

Chapter 8 Debugging Hooks
List the exechost_startup hook event file:

jupiter:/var/spool/PBS/mom_priv/hooks/tmp # cat hook_exechost_startup_start_11607.in

pbs.event().vnode_list["jupiter"].resources_available[mem]=757388kb

pbs.event().vnode_list["jupiter"].resources_available[ncpus]=1

pbs.get_local_nodename()=jupiter

pbs.event().type=exechost_startup

pbs.event().hook_name=start

pbs.event().hook_type=site

pbs.event().requestor=pbs_mom

pbs.event().requestor_host=jupiter.example.com

pbs.event().user=pbsadmin

pbs.event().alarm=30
HG-184 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
List the exechost_startup hook site data file:

jupiter:/var/spool/PBS/mom_priv/hooks/tmp # cat hook_exechost_startup_start_11607.data

pbs.server().server_state=Active

pbs.server().server_host=jupiter.example.com

pbs.server().scheduling=True

pbs.server().total_jobs=2

pbs.server().state_count=Transit:0 Queued:0 Held:2 Waiting:0 Running:0 Exiting:0 Begun:0

pbs.server().managers=TestUser@*

pbs.server().default_queue=workq

pbs.server().log_events=511

pbs.server().mail_from=adm

pbs.server().query_other_jobs=True

pbs.server().resources_default[ncpus]=1

pbs.server().default_chunk[ncpus]=1

pbs.server().resources_assigned[mem]=0mb

pbs.server().resources_assigned[ncpus]=0

pbs.server().resources_assigned[nodect]=0

pbs.server().scheduler_iteration=600

pbs.server().flatuid=True

pbs.server().FLicenses=32

pbs.server().resv_enable=True

pbs.server().node_fail_requeue=310

pbs.server().max_array_size=10000

pbs.server().pbs_license_min=1

pbs.server().pbs_license_max=2147483647

pbs.server().pbs_license_linger_time=3600

pbs.server().license_count=Avail_Global:0 Avail_Local:32 Used:0 High_Use:2

pbs.server().pbs_version=PBSPro_10.0

pbs.server().eligible_time_enable=False

pbs.server().max_concurrent_provision=5

pbs.server().job(501.jupiter.example.com).Job_Name=STDIN

pbs.server().job(501.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(501.jupiter.example.com).job_state=H

pbs.server().job(501.jupiter.example.com).queue=workq

pbs.server().job(501.jupiter.example.com).server=jupiter.example.com

pbs.server().job(501.jupiter.example.com).Checkpoint=u

pbs.server().job(501.jupiter.example.com).ctime=1410940219

pbs.server().job(501.jupiter.example.com).Error_Path=jupiter.example.com:/home/TestUser/jobs/
STDIN.e501

pbs.server().job(501.jupiter.example.com).Hold_Types=u

pbs.server().job(501.jupiter.example.com).Join_Path=n

pbs.server().job(501.jupiter.example.com).Keep_Files=n

pbs.server().job(501.jupiter.example.com).Mail_Points=a

pbs.server().job(501.jupiter.example.com).mtime=1410940219

pbs.server().job(501.jupiter.example.com).Output_Path=jupiter.example.com:/home/TestUser/jobs/
STDIN.o501
PBS Professional 2020.1.1 Hooks Guide HG-185

Chapter 8 Debugging Hooks
pbs.server().job(501.jupiter.example.com).Priority=7

pbs.server().job(501.jupiter.example.com).qtime=1410940219

pbs.server().job(501.jupiter.example.com).Rerunable=True

pbs.server().job(501.jupiter.example.com).Resource_List[file]=7gb

pbs.server().job(501.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(501.jupiter.example.com).Resource_List[nodect]=1

pbs.server().job(501.jupiter.example.com).Resource_List[place]=pack

pbs.server().job(501.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().job(501.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().job(501.jupiter.example.com).substate=20

pbs.server().job(501.jupiter.example.com).Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/
bash,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/
jobs,PBS_O_LANG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/
lib64/mpi/gcc/openmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/
X11R6/bin:/usr/games:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/
TestUser,PBS_O_QUEUE=workq,PBS_O_HOST=jupiter.example.com

pbs.server().job(501.jupiter.example.com).euser=TestUser

pbs.server().job(501.jupiter.example.com).egroup=users

pbs.server().job(501.jupiter.example.com).queue_rank=185

pbs.server().job(501.jupiter.example.com).queue_type=E

pbs.server().job(501.jupiter.example.com).Submit_arguments=<jsdl-hpcpa:Argument>-h</jsdl-
hpcpa:Argument>

pbs.server().job(501.jupiter.example.com).project=_pbs_project_default

pbs.server().job(502.jupiter.example.com).Job_Name=STDIN

pbs.server().job(502.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(502.jupiter.example.com).job_state=H

pbs.server().job(502.jupiter.example.com).queue=workq

pbs.server().job(502.jupiter.example.com).server=jupiter.example.com

pbs.server().job(502.jupiter.example.com).Checkpoint=u

pbs.server().job(502.jupiter.example.com).ctime=1410940221

pbs.server().job(502.jupiter.example.com).Error_Path=jupiter.example.com:/home/TestUser/jobs/
STDIN.e502

pbs.server().job(502.jupiter.example.com).Hold_Types=u

pbs.server().job(502.jupiter.example.com).Join_Path=n

pbs.server().job(502.jupiter.example.com).Keep_Files=n

pbs.server().job(502.jupiter.example.com).Mail_Points=a

pbs.server().job(502.jupiter.example.com).mtime=1410940221

pbs.server().job(502.jupiter.example.com).Output_Path=jupiter.example.com:/home/TestUser/jobs/
STDIN.o502

pbs.server().job(502.jupiter.example.com).Priority=7

pbs.server().job(502.jupiter.example.com).qtime=1410940223

pbs.server().job(502.jupiter.example.com).Rerunable=True

pbs.server().job(502.jupiter.example.com).Resource_List[file]=7gb

pbs.server().job(502.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(502.jupiter.example.com).Resource_List[nodect]=1

pbs.server().job(502.jupiter.example.com).Resource_List[place]=pack

pbs.server().job(502.jupiter.example.com).Resource_List[select]=1:ncpus=1
HG-186 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
pbs.server().job(502.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().job(502.jupiter.example.com).substate=20

pbs.server().job(502.jupiter.example.com).Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/
bash,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/
jobs,PBS_O_LANG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/
lib64/mpi/gcc/openmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/
X11R6/bin:/usr/games:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/
TestUser,PBS_O_QUEUE=workq,PBS_O_HOST=jupiter.example.com

pbs.server().job(502.jupiter.example.com).euser=TestUser

pbs.server().job(502.jupiter.example.com).egroup=users

pbs.server().job(502.jupiter.example.com).queue_rank=186

pbs.server().job(502.jupiter.example.com).queue_type=E

pbs.server().job(502.jupiter.example.com).Submit_arguments=<jsdl-hpcpa:Argument>-h</jsdl-
hpcpa:Argument>

pbs.server().job(502.jupiter.example.com).project=_pbs_project_default

pbs.server().queue(workq).queue_type=Execution

pbs.server().queue(workq).total_jobs=2

pbs.server().queue(workq).state_count=Transit:0 Queued:0 Held:2 Waiting:0 Running:0 Exiting:0
Begun:0

pbs.server().queue(workq).resources_assigned[mem]=0mb

pbs.server().queue(workq).resources_assigned[ncpus]=0

pbs.server().queue(workq).resources_assigned[nodect]=0

pbs.server().queue(workq).enabled=True

pbs.server().queue(workq).started=True

pbs.server().queue(R503).queue_type=Execution

pbs.server().queue(R503).total_jobs=0

pbs.server().queue(R503).state_count=Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0
Begun:0

pbs.server().queue(R503).acl_user_enable=True

pbs.server().queue(R503).acl_users=TestUser@jupiter.example.com

pbs.server().queue(R503).resources_max[ncpus]=1

pbs.server().queue(R503).resources_max[walltime]=00:30:00

pbs.server().queue(R503).resources_available[ncpus]=1

pbs.server().queue(R503).resources_available[walltime]=00:30:00

pbs.server().queue(R503).enabled=True

pbs.server().queue(R503).started=False

pbs.server().queue(R504).queue_type=Execution

pbs.server().queue(R504).total_jobs=0

pbs.server().queue(R504).state_count=Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0
Begun:0

pbs.server().queue(R504).acl_user_enable=True

pbs.server().queue(R504).acl_users=TestUser@jupiter.example.com

pbs.server().queue(R504).resources_max[ncpus]=1

pbs.server().queue(R504).resources_max[walltime]=00:30:00

pbs.server().queue(R504).resources_available[ncpus]=1

pbs.server().queue(R504).resources_available[walltime]=00:30:00

pbs.server().queue(R504).enabled=True
PBS Professional 2020.1.1 Hooks Guide HG-187

Chapter 8 Debugging Hooks
pbs.server().queue(R504).started=False

pbs.server().vnode(jupiter).Mom=jupiter.example.com

pbs.server().vnode(jupiter).Port=15002

pbs.server().vnode(jupiter).pbs_version=PBSPro_10.0

pbs.server().vnode(jupiter).ntype=0

pbs.server().vnode(jupiter).state=0

pbs.server().vnode(jupiter).pcpus=1

pbs.server().vnode(jupiter).resv=R504.jupiter.example.com, R503.jupiter.example.com

pbs.server().vnode(jupiter).resources_available[arch]=linux

pbs.server().vnode(jupiter).resources_available[host]=jupiter

pbs.server().vnode(jupiter).resources_available[mem]=8gb

pbs.server().vnode(jupiter).resources_available[ncpus]=8

pbs.server().vnode(jupiter).resources_available[vnode]=jupiter

pbs.server().vnode(jupiter).resources_assigned[accelerator_memory]=0kb

pbs.server().vnode(jupiter).resources_assigned[mem]=0kb

pbs.server().vnode(jupiter).resources_assigned[naccelerators]=0

pbs.server().vnode(jupiter).resources_assigned[ncpus]=0

pbs.server().vnode(jupiter).resources_assigned[vmem]=0kb

pbs.server().vnode(jupiter).resv_enable=True

pbs.server().vnode(jupiter).sharing=1

pbs.server().vnode(mars).Mom=mars.example.com

pbs.server().vnode(mars).Port=15002

pbs.server().vnode(mars).pbs_version=PBSPro_10.0

pbs.server().vnode(mars).ntype=0

pbs.server().vnode(mars).state=0

pbs.server().vnode(mars).pcpus=1

pbs.server().vnode(mars).resources_available[arch]=linux

pbs.server().vnode(mars).resources_available[host]=mars

pbs.server().vnode(mars).resources_available[mem]=8gb

pbs.server().vnode(mars).resources_available[ncpus]=8

pbs.server().vnode(mars).resources_available[vnode]=mars

pbs.server().vnode(mars).resources_assigned[accelerator_memory]=0kb

pbs.server().vnode(mars).resources_assigned[mem]=0kb

pbs.server().vnode(mars).resources_assigned[naccelerators]=0

pbs.server().vnode(mars).resources_assigned[ncpus]=0

pbs.server().vnode(mars).resources_assigned[vmem]=0kb

pbs.server().vnode(mars).resv_enable=True

pbs.server().vnode(mars).sharing=1

pbs.server().resv(R503.jupiter.example.com).Reserve_Name=NULL

pbs.server().resv(R503.jupiter.example.com).Reserve_Owner=TestUser@jupiter.example.com

pbs.server().resv(R503.jupiter.example.com).reserve_type=2

pbs.server().resv(R503.jupiter.example.com).reserve_state=2

pbs.server().resv(R503.jupiter.example.com).reserve_substate=2

pbs.server().resv(R503.jupiter.example.com).reserve_start=1410955200

pbs.server().resv(R503.jupiter.example.com).reserve_end=1410957000

pbs.server().resv(R503.jupiter.example.com).reserve_duration=1800
HG-188 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
pbs.server().resv(R503.jupiter.example.com).queue=R503

pbs.server().resv(R503.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().resv(R503.jupiter.example.com).Resource_List[walltime]=00:30:00

pbs.server().resv(R503.jupiter.example.com).Resource_List[nodect]=1

pbs.server().resv(R503.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().resv(R503.jupiter.example.com).Resource_List[place]=free

pbs.server().resv(R503.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().resv(R503.jupiter.example.com).resv_nodes=(jupiter:ncpus=1)

pbs.server().resv(R503.jupiter.example.com).Authorized_Users=TestUser@jupiter.example.com

pbs.server().resv(R503.jupiter.example.com).server=jupiter.example.com

pbs.server().resv(R503.jupiter.example.com).ctime=1410940237

pbs.server().resv(R503.jupiter.example.com).mtime=1410940237

pbs.server().resv(R503.jupiter.example.com).Variable_List=PBS_O_LOGNAME=TestUser,PBS_O_HOST=jupi
ter.example.com,PBS_O_MAIL=/var/spool/mail/TestUser

pbs.server().resv(R503.jupiter.example.com).euser=TestUser

pbs.server().resv(R503.jupiter.example.com).egroup=users

pbs.server().resv(R504.jupiter.example.com).Reserve_Name=NULL

pbs.server().resv(R504.jupiter.example.com).Reserve_Owner=TestUser@jupiter.example.com

pbs.server().resv(R504.jupiter.example.com).reserve_type=2

pbs.server().resv(R504.jupiter.example.com).reserve_state=2

pbs.server().resv(R504.jupiter.example.com).reserve_substate=2

pbs.server().resv(R504.jupiter.example.com).reserve_start=1410958800

pbs.server().resv(R504.jupiter.example.com).reserve_end=1410960600

pbs.server().resv(R504.jupiter.example.com).reserve_duration=1800

pbs.server().resv(R504.jupiter.example.com).queue=R504

pbs.server().resv(R504.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().resv(R504.jupiter.example.com).Resource_List[walltime]=00:30:00

pbs.server().resv(R504.jupiter.example.com).Resource_List[nodect]=1

pbs.server().resv(R504.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().resv(R504.jupiter.example.com).Resource_List[place]=free

pbs.server().resv(R504.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().resv(R504.jupiter.example.com).resv_nodes=(jupiter:ncpus=1)

pbs.server().resv(R504.jupiter.example.com).Authorized_Users=TestUser@jupiter.example.com

pbs.server().resv(R504.jupiter.example.com).server=jupiter.example.com

pbs.server().resv(R504.jupiter.example.com).ctime=1410940250

pbs.server().resv(R504.jupiter.example.com).mtime=1410940250

pbs.server().resv(R504.jupiter.example.com).Variable_List=PBS_O_LOGNAME=TestUser,PBS_O_HOST=jupi
ter.example.com,PBS_O_MAIL=/var/spool/mail/TestUser

pbs.server().resv(R504.jupiter.example.com).euser=TestUser

pbs.server().resv(R504.jupiter.example.com).egroup=users

List the exechost_startup hook execution record file:

jupiter:/var/spool/PBS/mom_priv/hooks/tmp # cat hook_exechost_startup_start_11607.out

pbs.event().accept=True

pbs.event().reject=False

pbs.event().vnode_list["jupiter"].resources_available[file,size]=7gb
PBS Professional 2020.1.1 Hooks Guide HG-189

Chapter 8 Debugging Hooks
The exechost_periodic hook attributes:

Hook period

type = site

enabled = true

event = exechost_periodic

user = pbsadmin

alarm = 30

freq = 30

order = 1

debug = true

fail_action = none

The contents of the exechost_periodic hook:

jupiter:/home/TestUser/jobs # qmgr -c "e h period application/x-python default"

import pbs

e=pbs.event()

e.vnode_list[pbs.get_local_nodename()].resources_available["file"] = pbs.size("7gb")

s=pbs.server()

for j in s.jobs():

pbs.logmsg(pbs.LOG_DEBUG, "got j %s" % (j.id,))

for q in s.queues():

pbs.logmsg(pbs.LOG_DEBUG, "got q %s" % (q.name,))

for v in s.vnodes():

pbs.logmsg(pbs.LOG_DEBUG, "got vnode %s" % (v.name,))

for r in s.resvs():

pbs.logmsg(pbs.LOG_DEBUG, "got resv %s" % (r.resvid))

In our example, we have two jobs running on the execution host:

jupiter:/var/spool/PBS/mom_priv/hooks/tmp # qstat

Job id Name User Time Use S Queue

------------ ----------- ----------- -------- - -----

501.jupiter STDIN TestUser 0 H workq

502.jupiter STDIN TestUser 0 H workq

506.jupiter STDIN TestUser 00:00:00 R workq

507.jupiter STDIN TestUser 00:00:00 R workq

The *.in, *.out, and *.data files end up here:

jupiter:/var/spool/PBS/mom_priv/hooks/tmp # ls -ltr

-rw-r--r-- 1 root root 6885 Sep 17 04:09 hook_exechost_periodic_period_11753.in

-rw-r--r-- 1 root root 1387 Sep 17 04:09 hook_exechost_periodic_period_11753.out

-rw-r--r-- 1 root root 19039 Sep 17 04:09 hook_exechost_periodic_period_11753.data
HG-190 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
List the exechost_periodic event file:

jupiter:/var/spool/PBS/mom_priv/hooks/tmp # cat hook_exechost_periodic_period_11753.in

pbs.event().freq=30

pbs.event().vnode_list["jupiter"].pcpus=1

pbs.event().vnode_list["jupiter"].resources_available[ncpus]=1

pbs.event().vnode_list["jupiter"].resources_available[mem]=757388kb

pbs.event().vnode_list["jupiter"].resources_available[arch]=linux

pbs.event().vnode_list["jupiter"].pbs_version=PBSPro_10.0

pbs.event().vnode_list["jupiter"].resources_available[file]=7gb

pbs.event().job_list["506.jupiter.example.com"].Job_Name=STDIN

pbs.event().job_list["506.jupiter.example.com"].Job_Owner=TestUser@jupiter.example.com

pbs.event().job_list["506.jupiter.example.com"].resources_used[cpupercent]=0

pbs.event().job_list["506.jupiter.example.com"].resources_used[cput]=00:00:00

pbs.event().job_list["506.jupiter.example.com"].resources_used[mem]=3880kb

pbs.event().job_list["506.jupiter.example.com"].resources_used[ncpus]=1

pbs.event().job_list["506.jupiter.example.com"].resources_used[vmem]=32192kb

pbs.event().job_list["506.jupiter.example.com"].resources_used[walltime]=00:00:13

pbs.event().job_list["506.jupiter.example.com"].job_state=T

pbs.event().job_list["506.jupiter.example.com"].queue=workq

pbs.event().job_list["506.jupiter.example.com"].server=jupiter.example.com

pbs.event().job_list["506.jupiter.example.com"].Checkpoint=u

pbs.event().job_list["506.jupiter.example.com"].Error_Path=jupiter.example.com:/home/TestUser/
jobs/STDIN.e506

pbs.event().job_list["506.jupiter.example.com"].exec_host2=jupiter.example.com:15002/0

pbs.event().job_list["506.jupiter.example.com"].exec_vnode=(jupiter:ncpus=1)

pbs.event().job_list["506.jupiter.example.com"].Join_Path=n

pbs.event().job_list["506.jupiter.example.com"].Keep_Files=n

pbs.event().job_list["506.jupiter.example.com"].mtime=1410941347

pbs.event().job_list["506.jupiter.example.com"].Output_Path=jupiter.example.com:/home/TestUser/
jobs/STDIN.o506

pbs.event().job_list["506.jupiter.example.com"].Resource_List[file]=7gb

pbs.event().job_list["506.jupiter.example.com"].Resource_List[ncpus]=1

pbs.event().job_list["506.jupiter.example.com"].Resource_List[place]=pack

pbs.event().job_list["506.jupiter.example.com"].schedselect=1:ncpus=1

pbs.event().job_list["506.jupiter.example.com"].session_id=11683

pbs.event().job_list["506.jupiter.example.com"].jobdir=/home/TestUser

pbs.event().job_list["506.jupiter.example.com"].substate=0

pbs.event().job_list["506.jupiter.example.com"].Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/
bin/bash,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/
jobs,PBS_O_LANG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/
lib64/mpi/gcc/openmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/
X11R6/bin:/usr/games:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/
TestUser,PBS_O_QUEUE=workq,PBS_O_HOST=jupiter.example.com

pbs.event().job_list["506.jupiter.example.com"].euser=TestUser

pbs.event().job_list["506.jupiter.example.com"].egroup=users

pbs.event().job_list["506.jupiter.example.com"].hashname=506.jupiter.example.com

pbs.event().job_list["506.jupiter.example.com"].cookie=000000002CEAFC4E0000000043354104
PBS Professional 2020.1.1 Hooks Guide HG-191

Chapter 8 Debugging Hooks
pbs.event().job_list["506.jupiter.example.com"].run_count=1

pbs.event().job_list["506.jupiter.example.com"].job_kill_delay=10

pbs.event().job_list["506.jupiter.example.com"].project=_pbs_project_default

pbs.event().job_list["506.jupiter.example.com"].run_version=1

pbs.event().job_list["506.jupiter.example.com"]._msmom=True

pbs.event().job_list["506.jupiter.example.com"]._stdout_file=/var/spool/PBS/spool/
506.jupiter.example.com.OU

pbs.event().job_list["506.jupiter.example.com"]._stderr_file=/var/spool/PBS/spool/
506.jupiter.example.com.ER

pbs.event().job_list["507.jupiter.example.com"].Job_Name=STDIN

pbs.event().job_list["507.jupiter.example.com"].Job_Owner=TestUser@jupiter.example.com

pbs.event().job_list["507.jupiter.example.com"].resources_used[cpupercent]=0

pbs.event().job_list["507.jupiter.example.com"].resources_used[cput]=00:00:00

pbs.event().job_list["507.jupiter.example.com"].resources_used[mem]=3892kb

pbs.event().job_list["507.jupiter.example.com"].resources_used[ncpus]=1

pbs.event().job_list["507.jupiter.example.com"].resources_used[vmem]=32192kb

pbs.event().job_list["507.jupiter.example.com"].resources_used[walltime]=00:00:10

pbs.event().job_list["507.jupiter.example.com"].job_state=T

pbs.event().job_list["507.jupiter.example.com"].queue=workq

pbs.event().job_list["507.jupiter.example.com"].server=jupiter.example.com

pbs.event().job_list["507.jupiter.example.com"].Checkpoint=u

pbs.event().job_list["507.jupiter.example.com"].Error_Path=jupiter.example.com:/home/TestUser/
jobs/STDIN.e507

pbs.event().job_list["507.jupiter.example.com"].exec_host2=jupiter.example.com:15002/1

pbs.event().job_list["507.jupiter.example.com"].exec_vnode=(jupiter:ncpus=1)

pbs.event().job_list["507.jupiter.example.com"].Join_Path=n

pbs.event().job_list["507.jupiter.example.com"].Keep_Files=n

pbs.event().job_list["507.jupiter.example.com"].mtime=1410941350

pbs.event().job_list["507.jupiter.example.com"].Output_Path=jupiter.example.com:/home/TestUser/
jobs/STDIN.o507

pbs.event().job_list["507.jupiter.example.com"].Resource_List[file]=7gb

pbs.event().job_list["507.jupiter.example.com"].Resource_List[ncpus]=1

pbs.event().job_list["507.jupiter.example.com"].Resource_List[place]=pack

pbs.event().job_list["507.jupiter.example.com"].schedselect=1:ncpus=1

pbs.event().job_list["507.jupiter.example.com"].session_id=11716

pbs.event().job_list["507.jupiter.example.com"].jobdir=/home/TestUser

pbs.event().job_list["507.jupiter.example.com"].substate=0

pbs.event().job_list["507.jupiter.example.com"].Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/
bin/bash,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/
jobs,PBS_O_LANG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/
lib64/mpi/gcc/openmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/
X11R6/bin:/usr/games:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/
TestUser,PBS_O_QUEUE=workq,PBS_O_HOST=jupiter.example.com

pbs.event().job_list["507.jupiter.example.com"].euser=TestUser

pbs.event().job_list["507.jupiter.example.com"].egroup=users

pbs.event().job_list["507.jupiter.example.com"].hashname=507.jupiter.example.com

pbs.event().job_list["507.jupiter.example.com"].cookie=000000003C3AB5AC000000007A31CFD4
HG-192 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
pbs.event().job_list["507.jupiter.example.com"].run_count=1

pbs.event().job_list["507.jupiter.example.com"].job_kill_delay=10

pbs.event().job_list["507.jupiter.example.com"].project=_pbs_project_default

pbs.event().job_list["507.jupiter.example.com"].run_version=1

pbs.event().job_list["507.jupiter.example.com"]._msmom=True

pbs.event().job_list["507.jupiter.example.com"]._stdout_file=/var/spool/PBS/spool/
507.jupiter.example.com.OU

pbs.event().job_list["507.jupiter.example.com"]._stderr_file=/var/spool/PBS/spool/
507.jupiter.example.com.ER

pbs.get_local_nodename()=jupiter

pbs.event().type=exechost_periodic

pbs.event().hook_name=period

pbs.event().hook_type=site

pbs.event().requestor=pbs_mom

pbs.event().requestor_host=jupiter.example.com

pbs.event().user=pbsadmin

pbs.event().alarm=30
PBS Professional 2020.1.1 Hooks Guide HG-193

Chapter 8 Debugging Hooks
List the exechost_periodic site data file:

jupiter:/var/spool/PBS/mom_priv/hooks/tmp # cat hook_exechost_periodic_period_11753.data

pbs.server().server_state=Active

pbs.server().server_host=jupiter.example.com

pbs.server().scheduling=True

pbs.server().total_jobs=4

pbs.server().state_count=Transit:0 Queued:0 Held:2 Waiting:0 Running:2 Exiting:0 Begun:0

pbs.server().managers=TestUser@*

pbs.server().default_queue=workq

pbs.server().log_events=511

pbs.server().mail_from=adm

pbs.server().query_other_jobs=True

pbs.server().resources_default[ncpus]=1

pbs.server().default_chunk[ncpus]=1

pbs.server().resources_assigned[mem]=0mb

pbs.server().resources_assigned[ncpus]=2

pbs.server().resources_assigned[nodect]=2

pbs.server().scheduler_iteration=600

pbs.server().flatuid=True

pbs.server().FLicenses=30

pbs.server().resv_enable=True

pbs.server().node_fail_requeue=310

pbs.server().max_array_size=10000

pbs.server().pbs_license_min=1

pbs.server().pbs_license_max=2147483647

pbs.server().pbs_license_linger_time=3600

pbs.server().license_count=Avail_Global:0 Avail_Local:30 Used:2 High_Use:2

pbs.server().pbs_version=PBSPro_10.0

pbs.server().eligible_time_enable=False

pbs.server().max_concurrent_provision=5

pbs.server().job(501.jupiter.example.com).Job_Name=STDIN

pbs.server().job(501.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(501.jupiter.example.com).job_state=H

pbs.server().job(501.jupiter.example.com).queue=workq

pbs.server().job(501.jupiter.example.com).server=jupiter.example.com

pbs.server().job(501.jupiter.example.com).Checkpoint=u

pbs.server().job(501.jupiter.example.com).ctime=1410940219

pbs.server().job(501.jupiter.example.com).Error_Path=jupiter.example.com:/home/TestUser/jobs/
STDIN.e501

pbs.server().job(501.jupiter.example.com).Hold_Types=u

pbs.server().job(501.jupiter.example.com).Join_Path=n

pbs.server().job(501.jupiter.example.com).Keep_Files=n

pbs.server().job(501.jupiter.example.com).Mail_Points=a

pbs.server().job(501.jupiter.example.com).mtime=1410940219

pbs.server().job(501.jupiter.example.com).Output_Path=jupiter.example.com:/home/TestUser/jobs/
STDIN.o501
HG-194 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
pbs.server().job(501.jupiter.example.com).Priority=7

pbs.server().job(501.jupiter.example.com).qtime=1410940219

pbs.server().job(501.jupiter.example.com).Rerunable=True

pbs.server().job(501.jupiter.example.com).Resource_List[file]=7gb

pbs.server().job(501.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(501.jupiter.example.com).Resource_List[nodect]=1

pbs.server().job(501.jupiter.example.com).Resource_List[place]=pack

pbs.server().job(501.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().job(501.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().job(501.jupiter.example.com).substate=20

pbs.server().job(501.jupiter.example.com).Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/
bash,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/
jobs,PBS_O_LANG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/
lib64/mpi/gcc/openmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/
X11R6/bin:/usr/games:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/
TestUser,PBS_O_QUEUE=workq,PBS_O_HOST=jupiter.example.com

pbs.server().job(501.jupiter.example.com).euser=TestUser

pbs.server().job(501.jupiter.example.com).egroup=users

pbs.server().job(501.jupiter.example.com).queue_rank=185

pbs.server().job(501.jupiter.example.com).queue_type=E

pbs.server().job(501.jupiter.example.com).Submit_arguments=<jsdl-hpcpa:Argument>-h</jsdl-
hpcpa:Argument>

pbs.server().job(501.jupiter.example.com).project=_pbs_project_default

pbs.server().job(502.jupiter.example.com).Job_Name=STDIN

pbs.server().job(502.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(502.jupiter.example.com).job_state=H

pbs.server().job(502.jupiter.example.com).queue=workq

pbs.server().job(502.jupiter.example.com).server=jupiter.example.com

pbs.server().job(502.jupiter.example.com).Checkpoint=u

pbs.server().job(502.jupiter.example.com).ctime=1410940221

pbs.server().job(502.jupiter.example.com).Error_Path=jupiter.example.com:/home/TestUser/jobs/
STDIN.e502

pbs.server().job(502.jupiter.example.com).Hold_Types=u

pbs.server().job(502.jupiter.example.com).Join_Path=n

pbs.server().job(502.jupiter.example.com).Keep_Files=n

pbs.server().job(502.jupiter.example.com).Mail_Points=a

pbs.server().job(502.jupiter.example.com).mtime=1410940221

pbs.server().job(502.jupiter.example.com).Output_Path=jupiter.example.com:/home/TestUser/jobs/
STDIN.o502

pbs.server().job(502.jupiter.example.com).Priority=7

pbs.server().job(502.jupiter.example.com).qtime=1410940223

pbs.server().job(502.jupiter.example.com).Rerunable=True

pbs.server().job(502.jupiter.example.com).Resource_List[file]=7gb

pbs.server().job(502.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(502.jupiter.example.com).Resource_List[nodect]=1

pbs.server().job(502.jupiter.example.com).Resource_List[place]=pack

pbs.server().job(502.jupiter.example.com).Resource_List[select]=1:ncpus=1
PBS Professional 2020.1.1 Hooks Guide HG-195

Chapter 8 Debugging Hooks
pbs.server().job(502.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().job(502.jupiter.example.com).substate=20

pbs.server().job(502.jupiter.example.com).Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/
bash,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/
jobs,PBS_O_LANG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/
lib64/mpi/gcc/openmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/
X11R6/bin:/usr/games:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/
TestUser,PBS_O_QUEUE=workq,PBS_O_HOST=jupiter.example.com

pbs.server().job(502.jupiter.example.com).euser=TestUser

pbs.server().job(502.jupiter.example.com).egroup=users

pbs.server().job(502.jupiter.example.com).queue_rank=186

pbs.server().job(502.jupiter.example.com).queue_type=E

pbs.server().job(502.jupiter.example.com).Submit_arguments=<jsdl-hpcpa:Argument>-h</jsdl-
hpcpa:Argument>

pbs.server().job(502.jupiter.example.com).project=_pbs_project_default

pbs.server().job(506.jupiter.example.com).Job_Name=STDIN

pbs.server().job(506.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(506.jupiter.example.com).resources_used[cpupercent]=0

pbs.server().job(506.jupiter.example.com).resources_used[cput]=00:00:00

pbs.server().job(506.jupiter.example.com).resources_used[mem]=3880kb

pbs.server().job(506.jupiter.example.com).resources_used[ncpus]=1

pbs.server().job(506.jupiter.example.com).resources_used[vmem]=32192kb

pbs.server().job(506.jupiter.example.com).resources_used[walltime]=00:00:13

pbs.server().job(506.jupiter.example.com).job_state=R

pbs.server().job(506.jupiter.example.com).queue=workq

pbs.server().job(506.jupiter.example.com).server=jupiter.example.com

pbs.server().job(506.jupiter.example.com).Checkpoint=u

pbs.server().job(506.jupiter.example.com).ctime=1410941347

pbs.server().job(506.jupiter.example.com).Error_Path=jupiter.example.com:/home/TestUser/jobs/
STDIN.e506

pbs.server().job(506.jupiter.example.com).exec_host=jupiter/0

pbs.server().job(506.jupiter.example.com).exec_vnode=(jupiter:ncpus=1)

pbs.server().job(506.jupiter.example.com).Hold_Types=n

pbs.server().job(506.jupiter.example.com).Join_Path=n

pbs.server().job(506.jupiter.example.com).Keep_Files=n

pbs.server().job(506.jupiter.example.com).Mail_Points=a

pbs.server().job(506.jupiter.example.com).mtime=1410941347

pbs.server().job(506.jupiter.example.com).Output_Path=jupiter.example.com:/home/TestUser/jobs/
STDIN.o506

pbs.server().job(506.jupiter.example.com).Priority=7

pbs.server().job(506.jupiter.example.com).qtime=1410941347

pbs.server().job(506.jupiter.example.com).Rerunable=True

pbs.server().job(506.jupiter.example.com).Resource_List[file]=7gb

pbs.server().job(506.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(506.jupiter.example.com).Resource_List[nodect]=1

pbs.server().job(506.jupiter.example.com).Resource_List[place]=pack

pbs.server().job(506.jupiter.example.com).Resource_List[select]=1:ncpus=1
HG-196 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
pbs.server().job(506.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().job(506.jupiter.example.com).stime=1410941347

pbs.server().job(506.jupiter.example.com).session_id=11683

pbs.server().job(506.jupiter.example.com).jobdir=/home/TestUser

pbs.server().job(506.jupiter.example.com).substate=42

pbs.server().job(506.jupiter.example.com).Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/
bash,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/
jobs,PBS_O_LANG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/
lib64/mpi/gcc/openmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/
X11R6/bin:/usr/games:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/
TestUser,PBS_O_QUEUE=workq,PBS_O_HOST=jupiter.example.com

pbs.server().job(506.jupiter.example.com).euser=TestUser

pbs.server().job(506.jupiter.example.com).egroup=users

pbs.server().job(506.jupiter.example.com).hashname=506.jupiter.example.com

pbs.server().job(506.jupiter.example.com).queue_rank=188

pbs.server().job(506.jupiter.example.com).queue_type=E

pbs.server().job(506.jupiter.example.com).comment=Job run at Wed Sep 17 at 04:09 on
(jupiter:ncpus=1)

pbs.server().job(506.jupiter.example.com).etime=1410941347

pbs.server().job(506.jupiter.example.com).run_count=1

pbs.server().job(506.jupiter.example.com).project=_pbs_project_default

pbs.server().job(506.jupiter.example.com).run_version=1

pbs.server().job(507.jupiter.example.com).Job_Name=STDIN

pbs.server().job(507.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(507.jupiter.example.com).resources_used[cpupercent]=0

pbs.server().job(507.jupiter.example.com).resources_used[cput]=00:00:00

pbs.server().job(507.jupiter.example.com).resources_used[mem]=3892kb

pbs.server().job(507.jupiter.example.com).resources_used[ncpus]=1

pbs.server().job(507.jupiter.example.com).resources_used[vmem]=32192kb

pbs.server().job(507.jupiter.example.com).resources_used[walltime]=00:00:10

pbs.server().job(507.jupiter.example.com).job_state=R

pbs.server().job(507.jupiter.example.com).queue=workq

pbs.server().job(507.jupiter.example.com).server=jupiter.example.com

pbs.server().job(507.jupiter.example.com).Checkpoint=u

pbs.server().job(507.jupiter.example.com).ctime=1410941350

pbs.server().job(507.jupiter.example.com).Error_Path=jupiter.example.com:/home/TestUser/jobs/
STDIN.e507

pbs.server().job(507.jupiter.example.com).exec_host=jupiter/1

pbs.server().job(507.jupiter.example.com).exec_vnode=(jupiter:ncpus=1)

pbs.server().job(507.jupiter.example.com).Hold_Types=n

pbs.server().job(507.jupiter.example.com).Join_Path=n

pbs.server().job(507.jupiter.example.com).Keep_Files=n

pbs.server().job(507.jupiter.example.com).Mail_Points=a

pbs.server().job(507.jupiter.example.com).mtime=1410941350

pbs.server().job(507.jupiter.example.com).Output_Path=jupiter.example.com:/home/TestUser/jobs/
STDIN.o507

pbs.server().job(507.jupiter.example.com).Priority=7
PBS Professional 2020.1.1 Hooks Guide HG-197

Chapter 8 Debugging Hooks
pbs.server().job(507.jupiter.example.com).qtime=1410941350

pbs.server().job(507.jupiter.example.com).Rerunable=True

pbs.server().job(507.jupiter.example.com).Resource_List[file]=7gb

pbs.server().job(507.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(507.jupiter.example.com).Resource_List[nodect]=1

pbs.server().job(507.jupiter.example.com).Resource_List[place]=pack

pbs.server().job(507.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().job(507.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().job(507.jupiter.example.com).stime=1410941350

pbs.server().job(507.jupiter.example.com).session_id=11716

pbs.server().job(507.jupiter.example.com).jobdir=/home/TestUser

pbs.server().job(507.jupiter.example.com).substate=42

pbs.server().job(507.jupiter.example.com).Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/
bash,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/
jobs,PBS_O_LANG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/
lib64/mpi/gcc/openmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/
X11R6/bin:/usr/games:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/
TestUser,PBS_O_QUEUE=workq,PBS_O_HOST=jupiter.example.com

pbs.server().job(507.jupiter.example.com).euser=TestUser

pbs.server().job(507.jupiter.example.com).egroup=users

pbs.server().job(507.jupiter.example.com).hashname=507.jupiter.example.com

pbs.server().job(507.jupiter.example.com).queue_rank=189

pbs.server().job(507.jupiter.example.com).queue_type=E

pbs.server().job(507.jupiter.example.com).comment=Job run at Wed Sep 17 at 04:09 on
(jupiter:ncpus=1)

pbs.server().job(507.jupiter.example.com).etime=1410941350

pbs.server().job(507.jupiter.example.com).run_count=1

pbs.server().job(507.jupiter.example.com).project=_pbs_project_default

pbs.server().job(507.jupiter.example.com).run_version=1

pbs.server().queue(workq).queue_type=Execution

pbs.server().queue(workq).total_jobs=4

pbs.server().queue(workq).state_count=Transit:0 Queued:0 Held:2 Waiting:0 Running:2 Exiting:0
Begun:0

pbs.server().queue(workq).resources_assigned[mem]=0mb

pbs.server().queue(workq).resources_assigned[ncpus]=2

pbs.server().queue(workq).resources_assigned[nodect]=2

pbs.server().queue(workq).enabled=True

pbs.server().queue(workq).started=True

pbs.server().queue(R503).queue_type=Execution

pbs.server().queue(R503).total_jobs=0

pbs.server().queue(R503).state_count=Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0
Begun:0

pbs.server().queue(R503).acl_user_enable=True

pbs.server().queue(R503).acl_users=TestUser@jupiter.example.com

pbs.server().queue(R503).resources_max[ncpus]=1

pbs.server().queue(R503).resources_max[walltime]=00:30:00

pbs.server().queue(R503).resources_available[ncpus]=1
HG-198 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
pbs.server().queue(R503).resources_available[walltime]=00:30:00

pbs.server().queue(R503).enabled=True

pbs.server().queue(R503).started=False

pbs.server().queue(R504).queue_type=Execution

pbs.server().queue(R504).total_jobs=0

pbs.server().queue(R504).state_count=Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0
Begun:0

pbs.server().queue(R504).acl_user_enable=True

pbs.server().queue(R504).acl_users=TestUser@jupiter.example.com

pbs.server().queue(R504).resources_max[ncpus]=1

pbs.server().queue(R504).resources_max[walltime]=00:30:00

pbs.server().queue(R504).resources_available[ncpus]=1

pbs.server().queue(R504).resources_available[walltime]=00:30:00

pbs.server().queue(R504).enabled=True

pbs.server().queue(R504).started=False

pbs.server().vnode(jupiter).Mom=jupiter.example.com

pbs.server().vnode(jupiter).Port=15002

pbs.server().vnode(jupiter).pbs_version=PBSPro_10.0

pbs.server().vnode(jupiter).ntype=0

pbs.server().vnode(jupiter).state=0

pbs.server().vnode(jupiter).pcpus=1

pbs.server().vnode(jupiter).jobs=506.jupiter.example.com/0, 507.jupiter.example.com/1

pbs.server().vnode(jupiter).resv=R504.jupiter.example.com, R503.jupiter.example.com

pbs.server().vnode(jupiter).resources_available[arch]=linux

pbs.server().vnode(jupiter).resources_available[file]=7gb

pbs.server().vnode(jupiter).resources_available[host]=jupiter

pbs.server().vnode(jupiter).resources_available[mem]=8gb

pbs.server().vnode(jupiter).resources_available[ncpus]=8

pbs.server().vnode(jupiter).resources_available[vnode]=jupiter

pbs.server().vnode(jupiter).resources_assigned[accelerator_memory]=0kb

pbs.server().vnode(jupiter).resources_assigned[mem]=0kb

pbs.server().vnode(jupiter).resources_assigned[naccelerators]=0

pbs.server().vnode(jupiter).resources_assigned[ncpus]=2

pbs.server().vnode(jupiter).resources_assigned[vmem]=0kb

pbs.server().vnode(jupiter).resv_enable=True

pbs.server().vnode(jupiter).sharing=1

pbs.server().vnode(mars).Mom=mars.example.com

pbs.server().vnode(mars).Port=15002

pbs.server().vnode(mars).pbs_version=PBSPro_10.0

pbs.server().vnode(mars).ntype=0

pbs.server().vnode(mars).state=0

pbs.server().vnode(mars).pcpus=1

pbs.server().vnode(mars).resources_available[arch]=linux

pbs.server().vnode(mars).resources_available[file]=7gb

pbs.server().vnode(mars).resources_available[host]=mars

pbs.server().vnode(mars).resources_available[mem]=8gb
PBS Professional 2020.1.1 Hooks Guide HG-199

Chapter 8 Debugging Hooks
pbs.server().vnode(mars).resources_available[ncpus]=8

pbs.server().vnode(mars).resources_available[vnode]=mars

pbs.server().vnode(mars).resources_assigned[accelerator_memory]=0kb

pbs.server().vnode(mars).resources_assigned[mem]=0kb

pbs.server().vnode(mars).resources_assigned[naccelerators]=0

pbs.server().vnode(mars).resources_assigned[ncpus]=0

pbs.server().vnode(mars).resources_assigned[vmem]=0kb

pbs.server().vnode(mars).resv_enable=True

pbs.server().vnode(mars).sharing=1

pbs.server().resv(R503.jupiter.example.com).Reserve_Name=NULL

pbs.server().resv(R503.jupiter.example.com).Reserve_Owner=TestUser@jupiter.example.com

pbs.server().resv(R503.jupiter.example.com).reserve_type=2

pbs.server().resv(R503.jupiter.example.com).reserve_state=2

pbs.server().resv(R503.jupiter.example.com).reserve_substate=2

pbs.server().resv(R503.jupiter.example.com).reserve_start=1410955200

pbs.server().resv(R503.jupiter.example.com).reserve_end=1410957000

pbs.server().resv(R503.jupiter.example.com).reserve_duration=1800

pbs.server().resv(R503.jupiter.example.com).queue=R503

pbs.server().resv(R503.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().resv(R503.jupiter.example.com).Resource_List[walltime]=00:30:00

pbs.server().resv(R503.jupiter.example.com).Resource_List[nodect]=1

pbs.server().resv(R503.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().resv(R503.jupiter.example.com).Resource_List[place]=free

pbs.server().resv(R503.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().resv(R503.jupiter.example.com).resv_nodes=(jupiter:ncpus=1)

pbs.server().resv(R503.jupiter.example.com).Authorized_Users=TestUser@jupiter.example.com

pbs.server().resv(R503.jupiter.example.com).server=jupiter.example.com

pbs.server().resv(R503.jupiter.example.com).ctime=1410940237

pbs.server().resv(R503.jupiter.example.com).mtime=1410940237

pbs.server().resv(R503.jupiter.example.com).Variable_List=PBS_O_LOGNAME=TestUser,PBS_O_HOST=jupi
ter.example.com,PBS_O_MAIL=/var/spool/mail/TestUser

pbs.server().resv(R503.jupiter.example.com).euser=TestUser

pbs.server().resv(R503.jupiter.example.com).egroup=users

pbs.server().resv(R504.jupiter.example.com).Reserve_Name=NULL

pbs.server().resv(R504.jupiter.example.com).Reserve_Owner=TestUser@jupiter.example.com

pbs.server().resv(R504.jupiter.example.com).reserve_type=2

pbs.server().resv(R504.jupiter.example.com).reserve_state=2

pbs.server().resv(R504.jupiter.example.com).reserve_substate=2

pbs.server().resv(R504.jupiter.example.com).reserve_start=1410958800

pbs.server().resv(R504.jupiter.example.com).reserve_end=1410960600

pbs.server().resv(R504.jupiter.example.com).reserve_duration=1800

pbs.server().resv(R504.jupiter.example.com).queue=R504

pbs.server().resv(R504.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().resv(R504.jupiter.example.com).Resource_List[walltime]=00:30:00

pbs.server().resv(R504.jupiter.example.com).Resource_List[nodect]=1

pbs.server().resv(R504.jupiter.example.com).Resource_List[select]=1:ncpus=1
HG-200 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
pbs.server().resv(R504.jupiter.example.com).Resource_List[place]=free

pbs.server().resv(R504.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().resv(R504.jupiter.example.com).resv_nodes=(jupiter:ncpus=1)

pbs.server().resv(R504.jupiter.example.com).Authorized_Users=TestUser@jupiter.example.com

pbs.server().resv(R504.jupiter.example.com).server=jupiter.example.com

pbs.server().resv(R504.jupiter.example.com).ctime=1410940250

pbs.server().resv(R504.jupiter.example.com).mtime=1410940250

pbs.server().resv(R504.jupiter.example.com).Variable_List=PBS_O_LOGNAME=TestUser,PBS_O_HOST=jupi
ter.example.com,PBS_O_MAIL=/var/spool/mail/TestUser

pbs.server().resv(R504.jupiter.example.com).euser=TestUser

pbs.server().resv(R504.jupiter.example.com).egroup=users

List the exechost_periodic hook execution record file:

jupiter:/var/spool/PBS/mom_priv/hooks/tmp # cat hook_exechost_periodic_period_11753.out

pbs.event().accept=True

pbs.event().reject=False

pbs.event().vnode_list["jupiter"].resources_available[file,size]=7gb

pbs.event().job_list["506.jupiter.example.com"].Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/
bin/bash,PBS_O_HOME=/home/
TestUser,PBS_O_HOST=jupiter.example.com,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/
jobs,PBS_O_LANG=en_US.UTF-8,PBS_O_QUEUE=workq,PBS_O_MAIL=/var/spool/mail/
TestUser,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/gcc/openmpi/
bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/games:/
opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin

pbs.event().job_list["506.jupiter.example.com"]._delete=False

pbs.event().job_list["506.jupiter.example.com"]._rerun=False

pbs.event().job_list["507.jupiter.example.com"].Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/
bin/bash,PBS_O_HOME=/home/
TestUser,PBS_O_HOST=jupiter.example.com,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/
jobs,PBS_O_LANG=en_US.UTF-8,PBS_O_QUEUE=workq,PBS_O_MAIL=/var/spool/mail/
TestUser,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/gcc/openmpi/
bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/games:/
opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin

pbs.event().job_list["507.jupiter.example.com"]._delete=False

pbs.event().job_list["507.jupiter.example.com"]._rerun=False

Attributes of the execjob_begin hook:

Hook begin

type = site

enabled = true

event = execjob_begin

user = pbsadmin

alarm = 30

order = 1

debug = true

fail_action = none
PBS Professional 2020.1.1 Hooks Guide HG-201

Chapter 8 Debugging Hooks
Contents of the execjob_begin hook:

import pbs

e=pbs.event()

e.job.Priority=7

e.job.Variable_List["Monsieur"] = "Shlomi"

s=pbs.server()

for j in s.jobs():

pbs.logmsg(pbs.LOG_DEBUG, "got j %s" % (j.id,))

for q in s.queues():

pbs.logmsg(pbs.LOG_DEBUG, "got q %s" % (q.name,))

for v in s.vnodes():

pbs.logmsg(pbs.LOG_DEBUG, "got vnode %s" % (v.name,))

for r in s.resvs():

pbs.logmsg(pbs.LOG_DEBUG, "got resv %s" % (r.resvid))

We submit a job:

% qsub job.scr

The resulting execjob_begin debug files are here:

jupiter:/var/spool/PBS/mom_priv/hooks/tmp # ls -ltr

-rw-r--r-- 1 root root 2263 Sep 17 04:15 hook_execjob_begin_begin_11883.in

-rw-r--r-- 1 root root 585 Sep 17 04:15 hook_execjob_begin_begin_11883.out

-rw-r--r-- 1 root root 15327 Sep 17 04:15 hook_execjob_begin_begin_11883.data
HG-202 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
List the execjob_begin event file:

jupiter:/var/spool/PBS/mom_priv/hooks/tmp # cat hook_execjob_begin_begin_11883.in

pbs.event().job.id=509.jupiter.example.com

pbs.event().job.Job_Name=job.scr

pbs.event().job.Job_Owner=TestUser@jupiter.example.com

pbs.event().job.queue=workq

pbs.event().job.server=jupiter.example.com

pbs.event().job.Checkpoint=u

pbs.event().job.Error_Path=jupiter.example.com:/home/TestUser/jobs/job.scr.e509

pbs.event().job.exec_host2=jupiter.example.com:15002/0

pbs.event().job.exec_vnode=(jupiter:ncpus=1)

pbs.event().job.Join_Path=n

pbs.event().job.Keep_Files=n

pbs.event().job.mtime=1410941704

pbs.event().job.Output_Path=jupiter.example.com:/home/TestUser/jobs/job.scr.o509

pbs.event().job.Resource_List[file]=7gb

pbs.event().job.Resource_List[ncpus]=1

pbs.event().job.Resource_List[place]=pack

pbs.event().job.schedselect=1:ncpus=1

pbs.event().job.Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/bash,PBS_O_HOME=/home/
TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/jobs,PBS_O_LANG=en_US.UTF-
8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/gcc/openmpi/bin:/
home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/games:/opt/
pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/
TestUser,PBS_O_QUEUE=workq,PBS_O_HOST=jupiter.example.com

pbs.event().job.euser=TestUser

pbs.event().job.egroup=users

pbs.event().job.hashname=509.jupiter.example.com

pbs.event().job.run_count=1

pbs.event().job.job_kill_delay=10

pbs.event().job.project=_pbs_project_default

pbs.event().job.run_version=1

pbs.event().job._msmom=True

pbs.event().job._stdout_file=

pbs.event().job._stderr_file=

pbs.event().vnode_list["jupiter"].resources_assigned[ncpus]=1

pbs.event().vnode_list["jupiter"].resources_assigned[mem]=0kb

pbs.event().vnode_list["jupiter"].pcpus=1

pbs.event().vnode_list["jupiter"].resources_available[ncpus]=1

pbs.event().vnode_list["jupiter"].resources_available[mem]=757388kb

pbs.event().vnode_list["jupiter"].resources_available[arch]=linux

pbs.event().vnode_list["jupiter"].pbs_version=PBSPro_10.0

pbs.get_local_nodename()=jupiter

pbs.event().type=execjob_begin

pbs.event().hook_name=begin

pbs.event().hook_type=site

pbs.event().requestor=pbs_mom
PBS Professional 2020.1.1 Hooks Guide HG-203

Chapter 8 Debugging Hooks
pbs.event().requestor_host=jupiter.example.com

pbs.event().user=pbsadmin

pbs.event().alarm=30
HG-204 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
List the execjob_begin site data file:

jupiter:/var/spool/PBS/mom_priv/hooks/tmp # cat hook_execjob_begin_begin_11883.data

pbs.server().server_state=Active

pbs.server().server_host=jupiter.example.com

pbs.server().scheduling=True

pbs.server().total_jobs=3

pbs.server().state_count=Transit:0 Queued:0 Held:2 Waiting:0 Running:1 Exiting:0 Begun:0

pbs.server().managers=TestUser@*

pbs.server().default_queue=workq

pbs.server().log_events=511

pbs.server().mail_from=adm

pbs.server().query_other_jobs=True

pbs.server().resources_default[ncpus]=1

pbs.server().default_chunk[ncpus]=1

pbs.server().resources_assigned[mem]=0mb

pbs.server().resources_assigned[ncpus]=1

pbs.server().resources_assigned[nodect]=1

pbs.server().scheduler_iteration=600

pbs.server().flatuid=True

pbs.server().FLicenses=31

pbs.server().resv_enable=True

pbs.server().node_fail_requeue=310

pbs.server().max_array_size=10000

pbs.server().pbs_license_min=1

pbs.server().pbs_license_max=2147483647

pbs.server().pbs_license_linger_time=3600

pbs.server().license_count=Avail_Global:0 Avail_Local:31 Used:1 High_Use:2

pbs.server().pbs_version=PBSPro_10.0

pbs.server().eligible_time_enable=False

pbs.server().max_concurrent_provision=5

pbs.server().job(501.jupiter.example.com).Job_Name=STDIN

pbs.server().job(501.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(501.jupiter.example.com).job_state=H

pbs.server().job(501.jupiter.example.com).queue=workq

pbs.server().job(501.jupiter.example.com).server=jupiter.example.com

pbs.server().job(501.jupiter.example.com).Checkpoint=u

pbs.server().job(501.jupiter.example.com).ctime=1410940219

pbs.server().job(501.jupiter.example.com).Error_Path=jupiter.example.com:/home/TestUser/jobs/
STDIN.e501

pbs.server().job(501.jupiter.example.com).Hold_Types=u

pbs.server().job(501.jupiter.example.com).Join_Path=n

pbs.server().job(501.jupiter.example.com).Keep_Files=n

pbs.server().job(501.jupiter.example.com).Mail_Points=a

pbs.server().job(501.jupiter.example.com).mtime=1410940219

pbs.server().job(501.jupiter.example.com).Output_Path=jupiter.example.com:/home/TestUser/jobs/
STDIN.o501
PBS Professional 2020.1.1 Hooks Guide HG-205

Chapter 8 Debugging Hooks
pbs.server().job(501.jupiter.example.com).Priority=7

pbs.server().job(501.jupiter.example.com).qtime=1410940219

pbs.server().job(501.jupiter.example.com).Rerunable=True

pbs.server().job(501.jupiter.example.com).Resource_List[file]=7gb

pbs.server().job(501.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(501.jupiter.example.com).Resource_List[nodect]=1

pbs.server().job(501.jupiter.example.com).Resource_List[place]=pack

pbs.server().job(501.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().job(501.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().job(501.jupiter.example.com).substate=20

pbs.server().job(501.jupiter.example.com).Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/
bash,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/
jobs,PBS_O_LANG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/
lib64/mpi/gcc/openmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/
X11R6/bin:/usr/games:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/
TestUser,PBS_O_QUEUE=workq,PBS_O_HOST=jupiter.example.com

pbs.server().job(501.jupiter.example.com).euser=TestUser

pbs.server().job(501.jupiter.example.com).egroup=users

pbs.server().job(501.jupiter.example.com).queue_rank=185

pbs.server().job(501.jupiter.example.com).queue_type=E

pbs.server().job(501.jupiter.example.com).Submit_arguments=<jsdl-hpcpa:Argument>-h</jsdl-
hpcpa:Argument>

pbs.server().job(501.jupiter.example.com).project=_pbs_project_default

pbs.server().job(502.jupiter.example.com).Job_Name=STDIN

pbs.server().job(502.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(502.jupiter.example.com).job_state=H

pbs.server().job(502.jupiter.example.com).queue=workq

pbs.server().job(502.jupiter.example.com).server=jupiter.example.com

pbs.server().job(502.jupiter.example.com).Checkpoint=u

pbs.server().job(502.jupiter.example.com).ctime=1410940221

pbs.server().job(502.jupiter.example.com).Error_Path=jupiter.example.com:/home/TestUser/jobs/
STDIN.e502

pbs.server().job(502.jupiter.example.com).Hold_Types=u

pbs.server().job(502.jupiter.example.com).Join_Path=n

pbs.server().job(502.jupiter.example.com).Keep_Files=n

pbs.server().job(502.jupiter.example.com).Mail_Points=a

pbs.server().job(502.jupiter.example.com).mtime=1410940221

pbs.server().job(502.jupiter.example.com).Output_Path=jupiter.example.com:/home/TestUser/jobs/
STDIN.o502

pbs.server().job(502.jupiter.example.com).Priority=7

pbs.server().job(502.jupiter.example.com).qtime=1410940223

pbs.server().job(502.jupiter.example.com).Rerunable=True

pbs.server().job(502.jupiter.example.com).Resource_List[file]=7gb

pbs.server().job(502.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(502.jupiter.example.com).Resource_List[nodect]=1

pbs.server().job(502.jupiter.example.com).Resource_List[place]=pack

pbs.server().job(502.jupiter.example.com).Resource_List[select]=1:ncpus=1
HG-206 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
pbs.server().job(502.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().job(502.jupiter.example.com).substate=20

pbs.server().job(502.jupiter.example.com).Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/
bash,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/
jobs,PBS_O_LANG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/
lib64/mpi/gcc/openmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/
X11R6/bin:/usr/games:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/
TestUser,PBS_O_QUEUE=workq,PBS_O_HOST=jupiter.example.com

pbs.server().job(502.jupiter.example.com).euser=TestUser

pbs.server().job(502.jupiter.example.com).egroup=users

pbs.server().job(502.jupiter.example.com).queue_rank=186

pbs.server().job(502.jupiter.example.com).queue_type=E

pbs.server().job(502.jupiter.example.com).Submit_arguments=<jsdl-hpcpa:Argument>-h</jsdl-
hpcpa:Argument>

pbs.server().job(502.jupiter.example.com).project=_pbs_project_default

pbs.server().job(509.jupiter.example.com).Job_Name=job.scr

pbs.server().job(509.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(509.jupiter.example.com).job_state=R

pbs.server().job(509.jupiter.example.com).queue=workq

pbs.server().job(509.jupiter.example.com).server=jupiter.example.com

pbs.server().job(509.jupiter.example.com).Checkpoint=u

pbs.server().job(509.jupiter.example.com).ctime=1410941704

pbs.server().job(509.jupiter.example.com).Error_Path=jupiter.example.com:/home/TestUser/jobs/
job.scr.e509

pbs.server().job(509.jupiter.example.com).exec_host=jupiter/0

pbs.server().job(509.jupiter.example.com).exec_vnode=(jupiter:ncpus=1)

pbs.server().job(509.jupiter.example.com).Hold_Types=n

pbs.server().job(509.jupiter.example.com).Join_Path=n

pbs.server().job(509.jupiter.example.com).Keep_Files=n

pbs.server().job(509.jupiter.example.com).Mail_Points=a

pbs.server().job(509.jupiter.example.com).mtime=1410941704

pbs.server().job(509.jupiter.example.com).Output_Path=jupiter.example.com:/home/TestUser/jobs/
job.scr.o509

pbs.server().job(509.jupiter.example.com).Priority=7

pbs.server().job(509.jupiter.example.com).qtime=1410941704

pbs.server().job(509.jupiter.example.com).Rerunable=True

pbs.server().job(509.jupiter.example.com).Resource_List[file]=7gb

pbs.server().job(509.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(509.jupiter.example.com).Resource_List[nodect]=1

pbs.server().job(509.jupiter.example.com).Resource_List[place]=pack

pbs.server().job(509.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().job(509.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().job(509.jupiter.example.com).substate=41

pbs.server().job(509.jupiter.example.com).Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/
bash,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/
jobs,PBS_O_LANG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/
lib64/mpi/gcc/openmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/
X11R6/bin:/usr/games:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/
PBS Professional 2020.1.1 Hooks Guide HG-207

Chapter 8 Debugging Hooks
TestUser,PBS_O_QUEUE=workq,PBS_O_HOST=jupiter.example.com

pbs.server().job(509.jupiter.example.com).euser=TestUser

pbs.server().job(509.jupiter.example.com).egroup=users

pbs.server().job(509.jupiter.example.com).hashname=509.jupiter.example.com

pbs.server().job(509.jupiter.example.com).queue_rank=190

pbs.server().job(509.jupiter.example.com).queue_type=E

pbs.server().job(509.jupiter.example.com).comment=Job run at Wed Sep 17 at 04:15 on
(jupiter:ncpus=1)

pbs.server().job(509.jupiter.example.com).etime=1410941704

pbs.server().job(509.jupiter.example.com).run_count=1

pbs.server().job(509.jupiter.example.com).Submit_arguments=<jsdl-hpcpa:Argument>job.scr</jsdl-
hpcpa:Argument>

pbs.server().job(509.jupiter.example.com).project=_pbs_project_default

pbs.server().job(509.jupiter.example.com).run_version=1

pbs.server().queue(workq).queue_type=Execution

pbs.server().queue(workq).total_jobs=3

pbs.server().queue(workq).state_count=Transit:0 Queued:0 Held:2 Waiting:0 Running:1 Exiting:0
Begun:0

pbs.server().queue(workq).resources_assigned[mem]=0mb

pbs.server().queue(workq).resources_assigned[ncpus]=1

pbs.server().queue(workq).resources_assigned[nodect]=1

pbs.server().queue(workq).enabled=True

pbs.server().queue(workq).started=True

pbs.server().queue(R503).queue_type=Execution

pbs.server().queue(R503).total_jobs=0

pbs.server().queue(R503).state_count=Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0
Begun:0

pbs.server().queue(R503).acl_user_enable=True

pbs.server().queue(R503).acl_users=TestUser@jupiter.example.com

pbs.server().queue(R503).resources_max[ncpus]=1

pbs.server().queue(R503).resources_max[walltime]=00:30:00

pbs.server().queue(R503).resources_available[ncpus]=1

pbs.server().queue(R503).resources_available[walltime]=00:30:00

pbs.server().queue(R503).enabled=True

pbs.server().queue(R503).started=False

pbs.server().queue(R504).queue_type=Execution

pbs.server().queue(R504).total_jobs=0

pbs.server().queue(R504).state_count=Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0
Begun:0

pbs.server().queue(R504).acl_user_enable=True

pbs.server().queue(R504).acl_users=TestUser@jupiter.example.com

pbs.server().queue(R504).resources_max[ncpus]=1

pbs.server().queue(R504).resources_max[walltime]=00:30:00

pbs.server().queue(R504).resources_available[ncpus]=1

pbs.server().queue(R504).resources_available[walltime]=00:30:00

pbs.server().queue(R504).enabled=True

pbs.server().queue(R504).started=False
HG-208 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
pbs.server().vnode(jupiter).Mom=jupiter.example.com

pbs.server().vnode(jupiter).Port=15002

pbs.server().vnode(jupiter).pbs_version=PBSPro_10.0

pbs.server().vnode(jupiter).ntype=0

pbs.server().vnode(jupiter).state=0

pbs.server().vnode(jupiter).pcpus=1

pbs.server().vnode(jupiter).jobs=509.jupiter.example.com/0

pbs.server().vnode(jupiter).resv=R504.jupiter.example.com, R503.jupiter.example.com

pbs.server().vnode(jupiter).resources_available[arch]=linux

pbs.server().vnode(jupiter).resources_available[file]=7gb

pbs.server().vnode(jupiter).resources_available[host]=jupiter

pbs.server().vnode(jupiter).resources_available[mem]=8gb

pbs.server().vnode(jupiter).resources_available[ncpus]=8

pbs.server().vnode(jupiter).resources_available[vnode]=jupiter

pbs.server().vnode(jupiter).resources_assigned[accelerator_memory]=0kb

pbs.server().vnode(jupiter).resources_assigned[mem]=0kb

pbs.server().vnode(jupiter).resources_assigned[naccelerators]=0

pbs.server().vnode(jupiter).resources_assigned[ncpus]=1

pbs.server().vnode(jupiter).resources_assigned[vmem]=0kb

pbs.server().vnode(jupiter).resv_enable=True

pbs.server().vnode(jupiter).sharing=1

pbs.server().vnode(mars).Mom=mars.example.com

pbs.server().vnode(mars).Port=15002

pbs.server().vnode(mars).pbs_version=PBSPro_10.0

pbs.server().vnode(mars).ntype=0

pbs.server().vnode(mars).state=0

pbs.server().vnode(mars).pcpus=1

pbs.server().vnode(mars).resources_available[arch]=linux

pbs.server().vnode(mars).resources_available[file]=7gb

pbs.server().vnode(mars).resources_available[host]=mars

pbs.server().vnode(mars).resources_available[mem]=8gb

pbs.server().vnode(mars).resources_available[ncpus]=8

pbs.server().vnode(mars).resources_available[vnode]=mars

pbs.server().vnode(mars).resources_assigned[accelerator_memory]=0kb

pbs.server().vnode(mars).resources_assigned[mem]=0kb

pbs.server().vnode(mars).resources_assigned[naccelerators]=0

pbs.server().vnode(mars).resources_assigned[ncpus]=0

pbs.server().vnode(mars).resources_assigned[vmem]=0kb

pbs.server().vnode(mars).resv_enable=True

pbs.server().vnode(mars).sharing=1

pbs.server().resv(R503.jupiter.example.com).Reserve_Name=NULL

pbs.server().resv(R503.jupiter.example.com).Reserve_Owner=TestUser@jupiter.example.com

pbs.server().resv(R503.jupiter.example.com).reserve_type=2

pbs.server().resv(R503.jupiter.example.com).reserve_state=2

pbs.server().resv(R503.jupiter.example.com).reserve_substate=2

pbs.server().resv(R503.jupiter.example.com).reserve_start=1410955200
PBS Professional 2020.1.1 Hooks Guide HG-209

Chapter 8 Debugging Hooks
pbs.server().resv(R503.jupiter.example.com).reserve_end=1410957000

pbs.server().resv(R503.jupiter.example.com).reserve_duration=1800

pbs.server().resv(R503.jupiter.example.com).queue=R503

pbs.server().resv(R503.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().resv(R503.jupiter.example.com).Resource_List[walltime]=00:30:00

pbs.server().resv(R503.jupiter.example.com).Resource_List[nodect]=1

pbs.server().resv(R503.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().resv(R503.jupiter.example.com).Resource_List[place]=free

pbs.server().resv(R503.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().resv(R503.jupiter.example.com).resv_nodes=(jupiter:ncpus=1)

pbs.server().resv(R503.jupiter.example.com).Authorized_Users=TestUser@jupiter.example.com

pbs.server().resv(R503.jupiter.example.com).server=jupiter.example.com

pbs.server().resv(R503.jupiter.example.com).ctime=1410940237

pbs.server().resv(R503.jupiter.example.com).mtime=1410940237

pbs.server().resv(R503.jupiter.example.com).Variable_List=PBS_O_LOGNAME=TestUser,PBS_O_HOST=jupi
ter.example.com,PBS_O_MAIL=/var/spool/mail/TestUser

pbs.server().resv(R503.jupiter.example.com).euser=TestUser

pbs.server().resv(R503.jupiter.example.com).egroup=users

pbs.server().resv(R504.jupiter.example.com).Reserve_Name=NULL

pbs.server().resv(R504.jupiter.example.com).Reserve_Owner=TestUser@jupiter.example.com

pbs.server().resv(R504.jupiter.example.com).reserve_type=2

pbs.server().resv(R504.jupiter.example.com).reserve_state=2

pbs.server().resv(R504.jupiter.example.com).reserve_substate=2

pbs.server().resv(R504.jupiter.example.com).reserve_start=1410958800

pbs.server().resv(R504.jupiter.example.com).reserve_end=1410960600

pbs.server().resv(R504.jupiter.example.com).reserve_duration=1800

pbs.server().resv(R504.jupiter.example.com).queue=R504

pbs.server().resv(R504.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().resv(R504.jupiter.example.com).Resource_List[walltime]=00:30:00

pbs.server().resv(R504.jupiter.example.com).Resource_List[nodect]=1

pbs.server().resv(R504.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().resv(R504.jupiter.example.com).Resource_List[place]=free

pbs.server().resv(R504.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().resv(R504.jupiter.example.com).resv_nodes=(jupiter:ncpus=1)

pbs.server().resv(R504.jupiter.example.com).Authorized_Users=TestUser@jupiter.example.com

pbs.server().resv(R504.jupiter.example.com).server=jupiter.example.com

pbs.server().resv(R504.jupiter.example.com).ctime=1410940250

pbs.server().resv(R504.jupiter.example.com).mtime=1410940250

pbs.server().resv(R504.jupiter.example.com).Variable_List=PBS_O_LOGNAME=TestUser,PBS_O_HOST=jupi
ter.example.com,PBS_O_MAIL=/var/spool/mail/TestUser

pbs.server().resv(R504.jupiter.example.com).euser=TestUser

pbs.server().resv(R504.jupiter.example.com).egroup=users
HG-210 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
List the execjob_begin hook execution record file:

jupiter:/var/spool/PBS/mom_priv/hooks/tmp # cat hook_execjob_begin_begin_11883.out

pbs.event().accept=True

pbs.event().reject=False

pbs.event().job.Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/
bash,Monsieur=Shlomi,PBS_O_HOME=/home/
TestUser,PBS_O_HOST=jupiter.example.com,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/
jobs,PBS_O_LANG=en_US.UTF-8,PBS_O_QUEUE=workq,PBS_O_MAIL=/var/spool/mail/
TestUser,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/gcc/openmpi/
bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/games:/
opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin

pbs.event().job.Priority=7

Attributes of the execjob_launch hook:

Hook launch

type = site

enabled = true

event = execjob_launch

user = pbsadmin

alarm = 30

order = 1

debug = true

fail_action = none

Contents of the execjob_launch hook:

import pbs

e=pbs.event()

e.progname = "/bin/sleep"

e.argv[1] = "30"

s=pbs.server()

for j in s.jobs():

pbs.logmsg(pbs.LOG_DEBUG, "got j %s" % (j.id,))

for q in s.queues():

pbs.logmsg(pbs.LOG_DEBUG, "got q %s" % (q.name,))

for v in s.vnodes():

pbs.logmsg(pbs.LOG_DEBUG, "got vnode %s" % (v.name,))

for r in s.resvs():

pbs.logmsg(pbs.LOG_DEBUG, "got resv %s" % (r.resvid))

Submit a job:

% qsub job.scr
PBS Professional 2020.1.1 Hooks Guide HG-211

Chapter 8 Debugging Hooks
The execjob_launch hook writes the *.in, *.data, and *.out files in /var/spool/PBS/spool:

jupiter:/var/spool/PBS/spool # ls -ltr /var/spool/PBS/spool

-rw------- 1 TestUser users 3489 Sep 17 04:24 hook_execjob_launch_launch_12135.in

-rw------- 1 TestUser users 1045 Sep 17 04:24 hook_execjob_launch_launch_12135.out

-rw------- 1 TestUser users 15906 Sep 17 04:24 hook_execjob_launch_launch_12135.data

List the execjob_launch hook event file:

cat hook_execjob_launch_launch_12135.in

pbs.event().progname=/bin/bash

pbs.event().argv[0]=-bash

pbs.event().env=TZ=US/Eastern,PATH=/bin:/usr/bin,PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/
bash,Monsieur=Shlomi,PBS_O_HOME=/home/
TestUser,PBS_O_HOST=jupiter.example.com,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/
jobs,PBS_O_LANG=en_US.UTF-8,PBS_O_QUEUE=workq,PBS_O_MAIL=/var/spool/mail/
TestUser,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/gcc/openmpi/
bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/games:/
opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,HOME=/home/
HG-212 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
TestUser,LOGNAME=TestUser,PBS_JOBNAME=job.scr,PBS_JOBID=511.jupiter.example.com,PBS_QUEUE=wo
rkq,SHELL=/bin/
bash,USER=TestUser,PBS_JOBCOOKIE=00000000434AB4BA000000000BDC62D3,PBS_NODENUM=0,PBS_TASKNUM=
1,PBS_MOMPORT=15003,OMP_NUM_THREADS=1,NCPUS=1,PBS_NODEFILE=/var/spool/PBS/aux/
511.jupiter.example.com,PBS_TMPDIR=/var/tmp/pbs.511.jupiter.example.com,PBS_JOBDIR=/home/
TestUser,PBS_ENVIRONMENT=PBS_BATCH,ENVIRONMENT=BATCH

pbs.event().job.id=511.jupiter.example.com

pbs.event().job.Job_Name=job.scr

pbs.event().job.Job_Owner=TestUser@jupiter.example.com

pbs.event().job.job_state=T

pbs.event().job.queue=workq

pbs.event().job.server=jupiter.example.com

pbs.event().job.Checkpoint=u

pbs.event().job.Error_Path=jupiter.example.com:/home/TestUser/jobs/job.scr.e511

pbs.event().job.exec_host2=jupiter.example.com:15002/0

pbs.event().job.exec_vnode=(jupiter:ncpus=1)

pbs.event().job.Join_Path=n

pbs.event().job.Keep_Files=n

pbs.event().job.mtime=1410942248

pbs.event().job.Output_Path=jupiter.example.com:/home/TestUser/jobs/job.scr.o511

pbs.event().job.Priority=7

pbs.event().job.Resource_List[file]=7gb

pbs.event().job.Resource_List[ncpus]=1

pbs.event().job.Resource_List[place]=pack

pbs.event().job.schedselect=1:ncpus=1

pbs.event().job.substate=0

pbs.event().job.Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/
bash,Monsieur=Shlomi,PBS_O_HOME=/home/
TestUser,PBS_O_HOST=jupiter.example.com,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/
jobs,PBS_O_LANG=en_US.UTF-8,PBS_O_QUEUE=workq,PBS_O_MAIL=/var/spool/mail/
TestUser,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/gcc/openmpi/
bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/games:/
opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin

pbs.event().job.euser=TestUser

pbs.event().job.egroup=users

pbs.event().job.hashname=511.jupiter.example.com

pbs.event().job.cookie=00000000434AB4BA000000000BDC62D3

pbs.event().job.run_count=1

pbs.event().job.job_kill_delay=10

pbs.event().job.project=_pbs_project_default

pbs.event().job.run_version=1

pbs.event().job._msmom=True

pbs.event().job._stdout_file=/var/spool/PBS/spool/511.jupiter.example.com.OU

pbs.event().job._stderr_file=/var/spool/PBS/spool/511.jupiter.example.com.ER

pbs.event().vnode_list["jupiter"].resources_assigned[ncpus]=1

pbs.event().vnode_list["jupiter"].resources_assigned[mem]=0kb

pbs.event().vnode_list["jupiter"].pcpus=1

pbs.event().vnode_list["jupiter"].resources_available[ncpus]=1
PBS Professional 2020.1.1 Hooks Guide HG-213

Chapter 8 Debugging Hooks
pbs.event().vnode_list["jupiter"].resources_available[mem]=757388kb

pbs.event().vnode_list["jupiter"].resources_available[arch]=linux

pbs.event().vnode_list["jupiter"].pbs_version=PBSPro_10.0

pbs.get_local_nodename()=jupiter

pbs.event().type=execjob_launch

pbs.event().hook_name=launch

pbs.event().hook_type=site

pbs.event().requestor=pbs_mom

pbs.event().requestor_host=jupiter.example.com

pbs.event().user=pbsadmin

pbs.event().alarm=30
HG-214 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
List the execjob_launch hook site data file:

jupiter:/var/spool/PBS/spool # cat hook_execjob_launch_launch_12135.data

pbs.server().server_state=Active

pbs.server().server_host=jupiter.example.com

pbs.server().scheduling=True

pbs.server().total_jobs=3

pbs.server().state_count=Transit:0 Queued:0 Held:2 Waiting:0 Running:1 Exiting:0 Begun:0

pbs.server().managers=TestUser@*

pbs.server().default_queue=workq

pbs.server().log_events=511

pbs.server().mail_from=adm

pbs.server().query_other_jobs=True

pbs.server().resources_default[ncpus]=1

pbs.server().default_chunk[ncpus]=1

pbs.server().resources_assigned[mem]=0mb

pbs.server().resources_assigned[ncpus]=1

pbs.server().resources_assigned[nodect]=1

pbs.server().scheduler_iteration=600

pbs.server().flatuid=True

pbs.server().FLicenses=31

pbs.server().resv_enable=True

pbs.server().node_fail_requeue=310

pbs.server().max_array_size=10000

pbs.server().pbs_license_min=1

pbs.server().pbs_license_max=2147483647

pbs.server().pbs_license_linger_time=3600

pbs.server().license_count=Avail_Global:0 Avail_Local:31 Used:1 High_Use:2

pbs.server().pbs_version=PBSPro_10.0

pbs.server().eligible_time_enable=False

pbs.server().max_concurrent_provision=5

pbs.server().job(501.jupiter.example.com).Job_Name=STDIN

pbs.server().job(501.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(501.jupiter.example.com).job_state=H

pbs.server().job(501.jupiter.example.com).queue=workq

pbs.server().job(501.jupiter.example.com).server=jupiter.example.com

pbs.server().job(501.jupiter.example.com).Checkpoint=u

pbs.server().job(501.jupiter.example.com).ctime=1410940219

pbs.server().job(501.jupiter.example.com).Error_Path=jupiter.example.com:/home/TestUser/jobs/
STDIN.e501

pbs.server().job(501.jupiter.example.com).Hold_Types=u

pbs.server().job(501.jupiter.example.com).Join_Path=n

pbs.server().job(501.jupiter.example.com).Keep_Files=n

pbs.server().job(501.jupiter.example.com).Mail_Points=a

pbs.server().job(501.jupiter.example.com).mtime=1410940219

pbs.server().job(501.jupiter.example.com).Output_Path=jupiter.example.com:/home/TestUser/jobs/
STDIN.o501
PBS Professional 2020.1.1 Hooks Guide HG-215

Chapter 8 Debugging Hooks
pbs.server().job(501.jupiter.example.com).Priority=7

pbs.server().job(501.jupiter.example.com).qtime=1410940219

pbs.server().job(501.jupiter.example.com).Rerunable=True

pbs.server().job(501.jupiter.example.com).Resource_List[file]=7gb

pbs.server().job(501.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(501.jupiter.example.com).Resource_List[nodect]=1

pbs.server().job(501.jupiter.example.com).Resource_List[place]=pack

pbs.server().job(501.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().job(501.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().job(501.jupiter.example.com).substate=20

pbs.server().job(501.jupiter.example.com).Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/
bash,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/
jobs,PBS_O_LANG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/
lib64/mpi/gcc/openmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/
X11R6/bin:/usr/games:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/
TestUser,PBS_O_QUEUE=workq,PBS_O_HOST=jupiter.example.com

pbs.server().job(501.jupiter.example.com).euser=TestUser

pbs.server().job(501.jupiter.example.com).egroup=users

pbs.server().job(501.jupiter.example.com).queue_rank=185

pbs.server().job(501.jupiter.example.com).queue_type=E

pbs.server().job(501.jupiter.example.com).Submit_arguments=<jsdl-hpcpa:Argument>-h</jsdl-
hpcpa:Argument>

pbs.server().job(501.jupiter.example.com).project=_pbs_project_default

pbs.server().job(502.jupiter.example.com).Job_Name=STDIN

pbs.server().job(502.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(502.jupiter.example.com).job_state=H

pbs.server().job(502.jupiter.example.com).queue=workq

pbs.server().job(502.jupiter.example.com).server=jupiter.example.com

pbs.server().job(502.jupiter.example.com).Checkpoint=u

pbs.server().job(502.jupiter.example.com).ctime=1410940221

pbs.server().job(502.jupiter.example.com).Error_Path=jupiter.example.com:/home/TestUser/jobs/
STDIN.e502

pbs.server().job(502.jupiter.example.com).Hold_Types=u

pbs.server().job(502.jupiter.example.com).Join_Path=n

pbs.server().job(502.jupiter.example.com).Keep_Files=n

pbs.server().job(502.jupiter.example.com).Mail_Points=a

pbs.server().job(502.jupiter.example.com).mtime=1410940221

pbs.server().job(502.jupiter.example.com).Output_Path=jupiter.example.com:/home/TestUser/jobs/
STDIN.o502

pbs.server().job(502.jupiter.example.com).Priority=7

pbs.server().job(502.jupiter.example.com).qtime=1410940223

pbs.server().job(502.jupiter.example.com).Rerunable=True

pbs.server().job(502.jupiter.example.com).Resource_List[file]=7gb

pbs.server().job(502.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(502.jupiter.example.com).Resource_List[nodect]=1

pbs.server().job(502.jupiter.example.com).Resource_List[place]=pack

pbs.server().job(502.jupiter.example.com).Resource_List[select]=1:ncpus=1
HG-216 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
pbs.server().job(502.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().job(502.jupiter.example.com).substate=20

pbs.server().job(502.jupiter.example.com).Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/
bash,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/
jobs,PBS_O_LANG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/
lib64/mpi/gcc/openmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/
X11R6/bin:/usr/games:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/
TestUser,PBS_O_QUEUE=workq,PBS_O_HOST=jupiter.example.com

pbs.server().job(502.jupiter.example.com).euser=TestUser

pbs.server().job(502.jupiter.example.com).egroup=users

pbs.server().job(502.jupiter.example.com).queue_rank=186

pbs.server().job(502.jupiter.example.com).queue_type=E

pbs.server().job(502.jupiter.example.com).Submit_arguments=<jsdl-hpcpa:Argument>-h</jsdl-
hpcpa:Argument>

pbs.server().job(502.jupiter.example.com).project=_pbs_project_default

pbs.server().job(511.jupiter.example.com).Job_Name=job.scr

pbs.server().job(511.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(511.jupiter.example.com).resources_used[cpupercent]=0

pbs.server().job(511.jupiter.example.com).resources_used[cput]=00:00:00

pbs.server().job(511.jupiter.example.com).resources_used[mem]=0kb

pbs.server().job(511.jupiter.example.com).resources_used[ncpus]=1

pbs.server().job(511.jupiter.example.com).resources_used[vmem]=0kb

pbs.server().job(511.jupiter.example.com).resources_used[walltime]=00:00:00

pbs.server().job(511.jupiter.example.com).job_state=R

pbs.server().job(511.jupiter.example.com).queue=workq

pbs.server().job(511.jupiter.example.com).server=jupiter.example.com

pbs.server().job(511.jupiter.example.com).Checkpoint=u

pbs.server().job(511.jupiter.example.com).ctime=1410942249

pbs.server().job(511.jupiter.example.com).Error_Path=jupiter.example.com:/home/TestUser/jobs/
job.scr.e511

pbs.server().job(511.jupiter.example.com).exec_host=jupiter/0

pbs.server().job(511.jupiter.example.com).exec_vnode=(jupiter:ncpus=1)

pbs.server().job(511.jupiter.example.com).Hold_Types=n

pbs.server().job(511.jupiter.example.com).Join_Path=n

pbs.server().job(511.jupiter.example.com).Keep_Files=n

pbs.server().job(511.jupiter.example.com).Mail_Points=a

pbs.server().job(511.jupiter.example.com).mtime=1410942250

pbs.server().job(511.jupiter.example.com).Output_Path=jupiter.example.com:/home/TestUser/jobs/
job.scr.o511

pbs.server().job(511.jupiter.example.com).Priority=7

pbs.server().job(511.jupiter.example.com).qtime=1410942249

pbs.server().job(511.jupiter.example.com).Rerunable=True

pbs.server().job(511.jupiter.example.com).Resource_List[file]=7gb

pbs.server().job(511.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(511.jupiter.example.com).Resource_List[nodect]=1

pbs.server().job(511.jupiter.example.com).Resource_List[place]=pack

pbs.server().job(511.jupiter.example.com).Resource_List[select]=1:ncpus=1
PBS Professional 2020.1.1 Hooks Guide HG-217

Chapter 8 Debugging Hooks
pbs.server().job(511.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().job(511.jupiter.example.com).stime=1410942250

pbs.server().job(511.jupiter.example.com).session_id=12134

pbs.server().job(511.jupiter.example.com).jobdir=/home/TestUser

pbs.server().job(511.jupiter.example.com).substate=42

pbs.server().job(511.jupiter.example.com).Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/
bash,Monsieur=Shlomi,PBS_O_HOME=/home/
TestUser,PBS_O_HOST=jupiter.example.com,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/
jobs,PBS_O_LANG=en_US.UTF-8,PBS_O_QUEUE=workq,PBS_O_MAIL=/var/spool/mail/
TestUser,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/gcc/openmpi/
bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/games:/
opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin

pbs.server().job(511.jupiter.example.com).euser=TestUser

pbs.server().job(511.jupiter.example.com).egroup=users

pbs.server().job(511.jupiter.example.com).hashname=511.jupiter.example.com

pbs.server().job(511.jupiter.example.com).queue_rank=192

pbs.server().job(511.jupiter.example.com).queue_type=E

pbs.server().job(511.jupiter.example.com).comment=Job run at Wed Sep 17 at 04:24 on
(jupiter:ncpus=1)

pbs.server().job(511.jupiter.example.com).etime=1410942249

pbs.server().job(511.jupiter.example.com).run_count=1

pbs.server().job(511.jupiter.example.com).Submit_arguments=<jsdl-hpcpa:Argument>job.scr</jsdl-
hpcpa:Argument>

pbs.server().job(511.jupiter.example.com).project=_pbs_project_default

pbs.server().job(511.jupiter.example.com).run_version=1

pbs.server().queue(workq).queue_type=Execution

pbs.server().queue(workq).total_jobs=3

pbs.server().queue(workq).state_count=Transit:0 Queued:0 Held:2 Waiting:0 Running:1 Exiting:0
Begun:0

pbs.server().queue(workq).resources_assigned[mem]=0mb

pbs.server().queue(workq).resources_assigned[ncpus]=1

pbs.server().queue(workq).resources_assigned[nodect]=1

pbs.server().queue(workq).enabled=True

pbs.server().queue(workq).started=True

pbs.server().queue(R503).queue_type=Execution

pbs.server().queue(R503).total_jobs=0

pbs.server().queue(R503).state_count=Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0
Begun:0

pbs.server().queue(R503).acl_user_enable=True

pbs.server().queue(R503).acl_users=TestUser@jupiter.example.com

pbs.server().queue(R503).resources_max[ncpus]=1

pbs.server().queue(R503).resources_max[walltime]=00:30:00

pbs.server().queue(R503).resources_available[ncpus]=1

pbs.server().queue(R503).resources_available[walltime]=00:30:00

pbs.server().queue(R503).enabled=True

pbs.server().queue(R503).started=False

pbs.server().queue(R504).queue_type=Execution

pbs.server().queue(R504).total_jobs=0
HG-218 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
pbs.server().queue(R504).state_count=Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0
Begun:0

pbs.server().queue(R504).acl_user_enable=True

pbs.server().queue(R504).acl_users=TestUser@jupiter.example.com

pbs.server().queue(R504).resources_max[ncpus]=1

pbs.server().queue(R504).resources_max[walltime]=00:30:00

pbs.server().queue(R504).resources_available[ncpus]=1

pbs.server().queue(R504).resources_available[walltime]=00:30:00

pbs.server().queue(R504).enabled=True

pbs.server().queue(R504).started=False

pbs.server().vnode(jupiter).Mom=jupiter.example.com

pbs.server().vnode(jupiter).Port=15002

pbs.server().vnode(jupiter).pbs_version=PBSPro_10.0

pbs.server().vnode(jupiter).ntype=0

pbs.server().vnode(jupiter).state=0

pbs.server().vnode(jupiter).pcpus=1

pbs.server().vnode(jupiter).jobs=511.jupiter.example.com/0

pbs.server().vnode(jupiter).resv=R504.jupiter.example.com, R503.jupiter.example.com

pbs.server().vnode(jupiter).resources_available[arch]=linux

pbs.server().vnode(jupiter).resources_available[file]=7gb

pbs.server().vnode(jupiter).resources_available[host]=jupiter

pbs.server().vnode(jupiter).resources_available[mem]=8gb

pbs.server().vnode(jupiter).resources_available[ncpus]=8

pbs.server().vnode(jupiter).resources_available[vnode]=jupiter

pbs.server().vnode(jupiter).resources_assigned[accelerator_memory]=0kb

pbs.server().vnode(jupiter).resources_assigned[mem]=0kb

pbs.server().vnode(jupiter).resources_assigned[naccelerators]=0

pbs.server().vnode(jupiter).resources_assigned[ncpus]=1

pbs.server().vnode(jupiter).resources_assigned[vmem]=0kb

pbs.server().vnode(jupiter).resv_enable=True

pbs.server().vnode(jupiter).sharing=1

pbs.server().vnode(mars).Mom=mars.example.com

pbs.server().vnode(mars).Port=15002

pbs.server().vnode(mars).pbs_version=PBSPro_10.0

pbs.server().vnode(mars).ntype=0

pbs.server().vnode(mars).state=0

pbs.server().vnode(mars).pcpus=1

pbs.server().vnode(mars).resources_available[arch]=linux

pbs.server().vnode(mars).resources_available[file]=7gb

pbs.server().vnode(mars).resources_available[host]=mars

pbs.server().vnode(mars).resources_available[mem]=8gb

pbs.server().vnode(mars).resources_available[ncpus]=8

pbs.server().vnode(mars).resources_available[vnode]=mars

pbs.server().vnode(mars).resources_assigned[accelerator_memory]=0kb

pbs.server().vnode(mars).resources_assigned[mem]=0kb

pbs.server().vnode(mars).resources_assigned[naccelerators]=0
PBS Professional 2020.1.1 Hooks Guide HG-219

Chapter 8 Debugging Hooks
pbs.server().vnode(mars).resources_assigned[ncpus]=0

pbs.server().vnode(mars).resources_assigned[vmem]=0kb

pbs.server().vnode(mars).resv_enable=True

pbs.server().vnode(mars).sharing=1

pbs.server().resv(R503.jupiter.example.com).Reserve_Name=NULL

pbs.server().resv(R503.jupiter.example.com).Reserve_Owner=TestUser@jupiter.example.com

pbs.server().resv(R503.jupiter.example.com).reserve_type=2

pbs.server().resv(R503.jupiter.example.com).reserve_state=2

pbs.server().resv(R503.jupiter.example.com).reserve_substate=2

pbs.server().resv(R503.jupiter.example.com).reserve_start=1410955200

pbs.server().resv(R503.jupiter.example.com).reserve_end=1410957000

pbs.server().resv(R503.jupiter.example.com).reserve_duration=1800

pbs.server().resv(R503.jupiter.example.com).queue=R503

pbs.server().resv(R503.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().resv(R503.jupiter.example.com).Resource_List[walltime]=00:30:00

pbs.server().resv(R503.jupiter.example.com).Resource_List[nodect]=1

pbs.server().resv(R503.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().resv(R503.jupiter.example.com).Resource_List[place]=free

pbs.server().resv(R503.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().resv(R503.jupiter.example.com).resv_nodes=(jupiter:ncpus=1)

pbs.server().resv(R503.jupiter.example.com).Authorized_Users=TestUser@jupiter.example.com

pbs.server().resv(R503.jupiter.example.com).server=jupiter.example.com

pbs.server().resv(R503.jupiter.example.com).ctime=1410940237

pbs.server().resv(R503.jupiter.example.com).mtime=1410940237

pbs.server().resv(R503.jupiter.example.com).Variable_List=PBS_O_LOGNAME=TestUser,PBS_O_HOST=jupi
ter.example.com,PBS_O_MAIL=/var/spool/mail/TestUser

pbs.server().resv(R503.jupiter.example.com).euser=TestUser

pbs.server().resv(R503.jupiter.example.com).egroup=users

pbs.server().resv(R504.jupiter.example.com).Reserve_Name=NULL

pbs.server().resv(R504.jupiter.example.com).Reserve_Owner=TestUser@jupiter.example.com

pbs.server().resv(R504.jupiter.example.com).reserve_type=2

pbs.server().resv(R504.jupiter.example.com).reserve_state=2

pbs.server().resv(R504.jupiter.example.com).reserve_substate=2

pbs.server().resv(R504.jupiter.example.com).reserve_start=1410958800

pbs.server().resv(R504.jupiter.example.com).reserve_end=1410960600

pbs.server().resv(R504.jupiter.example.com).reserve_duration=1800

pbs.server().resv(R504.jupiter.example.com).queue=R504

pbs.server().resv(R504.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().resv(R504.jupiter.example.com).Resource_List[walltime]=00:30:00

pbs.server().resv(R504.jupiter.example.com).Resource_List[nodect]=1

pbs.server().resv(R504.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().resv(R504.jupiter.example.com).Resource_List[place]=free

pbs.server().resv(R504.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().resv(R504.jupiter.example.com).resv_nodes=(jupiter:ncpus=1)

pbs.server().resv(R504.jupiter.example.com).Authorized_Users=TestUser@jupiter.example.com

pbs.server().resv(R504.jupiter.example.com).server=jupiter.example.com
HG-220 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
pbs.server().resv(R504.jupiter.example.com).ctime=1410940250

pbs.server().resv(R504.jupiter.example.com).mtime=1410940250

pbs.server().resv(R504.jupiter.example.com).Variable_List=PBS_O_LOGNAME=TestUser,PBS_O_HOST=jupi
ter.example.com,PBS_O_MAIL=/var/spool/mail/TestUser

pbs.server().resv(R504.jupiter.example.com).euser=TestUser

pbs.server().resv(R504.jupiter.example.com).egroup=users

List the execjob_launch hook execution record file:

jupiter:/var/spool/PBS/spool # cat hook_execjob_launch_launch_12135.out

pbs.event().accept=True

pbs.event().reject=False

pbs.event().progname=/bin/sleep

pbs.event().argv[0]=sleep

pbs.event().env=PBS_O_SYSTEM=Linux,PBS_JOBCOOKIE=00000000434AB4BA000000000BDC62D3,PBS_O_SHELL=/
bin/bash,PBS_O_HOME=/home/
TestUser,PBS_O_HOST=jupiter.example.com,PBS_NODENUM=0,PBS_O_LOGNAME=TestUser,PBS_JOBID=511.j
upiter.example.com,PBS_JOBNAME=job.scr,PBS_O_LANG=en_US.UTF-8,USER=TestUser,PATH=/bin:/usr/
bin,HOME=/home/TestUser,PBS_QUEUE=workq,PBS_O_MAIL=/var/spool/mail/TestUser,PBS_TMPDIR=/var/
tmp/pbs.511.jupiter.example.com,ENVIRONMENT=BATCH,PBS_NODEFILE=/var/spool/PBS/aux/
511.jupiter.example.com,SHELL=/bin/
bash,PBS_ENVIRONMENT=PBS_BATCH,Monsieur=Shlomi,OMP_NUM_THREADS=1,NCPUS=1,PBS_JOBDIR=/home/
TestUser,PBS_O_QUEUE=workq,PBS_MOMPORT=15003,PBS_O_WORKDIR=/home/TestUser/jobs,PBS_O_PATH=/
usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/gcc/openmpi/bin:/home/TestUser/
bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/games:/opt/pbs/bin:/opt/
pbs/bin:/opt/pbs/bin,LOGNAME=TestUser,PBS_TASKNUM=1,TZ=US/Eastern

8.9 Interactive Debugging using pbs_python

You can perform interactive debugging by leaving out the hook name and supplying event input information and/or site
data information. For example, to interactively debug with event input and site data information:

pbs_python --hook -i MyEventInputFile -s MySiteData

You get a pbs_python prompt, and in order to end the session, issue a pbs.event().accept() or pbs.event().reject():

>>import pbs

>>print pbs.event().job.id

1234.examplehost

>>pbs.event().accept()

8.10 Error Reporting and Logging

Hook errors are printed to stderr for the command (qsub, qalter, pbs_rsub, or qmove) that triggered the hook. If
the hook provides a custom error message, that message is treated the same way.

Hooks can log custom strings to the log file of the daemon from which the hook is executing. When logging a message,
a hook uses message logging methods to specify the message, and constant objects to specify the log event class. See
"pbs.logmsg()” on page 152, and section 6.13.4.4, “Message Log Level Objects”, on page 152.

When the PBS server starts, it prints to the server logs both the Python version integrated with the server, and a list of all
the hook names registered with the server.
PBS Professional 2020.1.1 Hooks Guide HG-221

Chapter 8 Debugging Hooks
To see only hook-related 0x0400 messages in the MoM logs, such as “<hook name>;started”, “<hook_name>;finished”,
set the $logevent MoM parameter to 0x400 in the MoM configuration file.

To see all the different types of MoM log messages, set $logevent to 0xffff.

The default value for the $logevent MoM parameter is 975, so that the following log events are captured. See “Log
Levels” on page 375 of the PBS Professional Reference Guide for more about log levels.

PBSEVENT_ERROR

PBSEVENT_SYSTEM

PBSEVENT_ADMIN

PBSEVENT_JOB

PBSEVENT_JOB_USAGE

PBSEVENT_SECURITY

PBSEVENT_DEBUG

PBSEVENT_DEBUG2

PBSEVENT_RESV

8.10.1 Errors During Creation and Deployment

8.10.1.1 Hook Name Matches Existing Hook

Creating a hook whose name matches that of an existing hook: the following error message is printed in stderr and in
the server logs:

“hook error: hook name <hook_name> already registered, try another name”

8.10.1.2 Using a Hook Name that Starts with PBS

Using a hook name that starts with “PBS”: the hook name is rejected with the following error in qmgr's stderr, as well
as in the server logs:

“hook error: cannot use PBS as a prefix - it is reserved for PBS hooks”

8.10.1.3 Deleting a Non-Existent Hook

Deleting a non-existent hook: the following is returned in qmgr's stderr and server logs:

“qmgr: hook error: <non-existent hook name> does not exist”

8.10.1.4 Specifying a Non-Existent Event Type

Specifying a non-existent event type: an error message is printed to qmgr's stderr and also to the server logs:

Example:

Qmgr: set hook hook1 event=”mom_checkpoint”

“hook error: invalid argument to event. Should be one of: queuejob, modifyjob, resvsub, movejob,
runjob, provision, execjob_begin, execjob_prologue, execjob_epilogue, execjob_preterm,
execjob_end, exechost_periodic, execjob_launch, exechost_startup, execjob_attach or ““ for no
event."

“qmgr: hook error returned from server”
HG-222 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
8.10.1.5 Using a Bad Hook Value

Putting in a bad hook value: an error is printed to qmgr's stderr and also to the server logs:

Example:

Qmgr: set hook hook2 order=1025

“qmgr obj=hookA svr=default: order given (1025) is outside the acceptable range of [1, 1000] for
type 'site'.”

“qmgr: hook error returned from server”

8.10.1.6 Unauthorized User

If qmgr is invoked, and the object being operated on is “hook”, and the executing user at some host does not have access
to the target server's private location for hooks data, then the following error is issued to stderr and server logs:

"<user>@<host> is unauthorized to access hooks data from server <hostname>”

8.10.1.7 Setting a Bad Hook Type

Setting a bad type to a hook produces the following error message in qmgr's stderr and also in the server logs:

“hook error: invalid argument to type. Must be site”

8.10.1.8 Setting a Bad Alarm Value

Setting a bad alarm value to a hook produces the following error message in qmgr's stderr and also in the server logs:

“hook error: alarm value of a hook must be > 0”

8.10.1.9 Exporting To Non-Writable File

Exporting a hook's content to a file that is not writable due to ownership or permission problems results in the following
error message being printed to stderr:

“qmgr: hook error: <output_file> permission denied”

8.10.1.10 Setting Bad Hook user Attribute

Setting a value for the user attribute of a hook to something other than “pbsadmin” produces the following error mes-
sage in qmgr's stderr and also in the server logs:

“hook error: user value of a hook must be pbsadmin, pbsuser”

This attribute does not need to be set to the actual name of the PBS service account.

8.10.1.11 Importing From Non-Readable File

Importing a hook where the PBS server is unable to open the input file because the file is non-existent, has a permission
problem, or any other system-related error causes the following error message to be printed in stderr and in the server
logs:

"qmgr: hook error: unable to open <filename> by server run by <user>@<host>: <error message>"

Examples:

"qmgr: hook error: unable to open hook1.py by server run by pbsadmin@hostX: permission denied"

"qmgr: hook error: unable to open hook1.py by server run by pbsadmin@hostY: No such file or
directory"
PBS Professional 2020.1.1 Hooks Guide HG-223

Chapter 8 Debugging Hooks
8.10.1.12 Importing or Exporting with Wrong Content Type

Importing or exporting a hook where the <content-type> is something other than “application/x-python” causes the fol-
lowing error message to be printed in stderr and in the server logs:

"qmgr: hook error: <content_type> must be 'application/x-python'"

Importing/exporting a hook where the <content-encoding> is something other than “default” or “base64” causes the
following error message to be printed in stderr and on the server logs:

"qmgr: hook error: <content_encoding> must be 'default' or 'base64'"

An import call on a hook that already has a content script results in the following informational message being printed in
stdout and server logs:

“qmgr: hook <hook_name> contents overwritten by file <hook input file>

8.10.1.13 Setting Vnode State to Invalid Value

Setting a vnode’s state attribute to an invalid value causes the pbs.BadAttributeValueError exception to be raised.

8.10.1.14 Creating a Hook with Same Name as Existing Hook

You may find that when you remove a hook, it may take some time for the hook to be completely purged. If you run
"qmgr -c 'create hook <hook_name>'" where a previous hook of the same <hook_name> still exists, you
will see the following message:

"hook name <hook_name> is pending delete, try another name"

Either specify another name for the hook, or retry the qmgr request again later, after the previous hook is completely
purged.

8.10.2 Errors And Messages During Hook Execution

8.10.2.1 Successful Operation of runjob Hook

When a hook successfully sets an attribute, one of the following is written to the server’s log:

<job ID>; ‘<hook name>’ hook set job’s <attribute name> = <value>

or

Job held by ‘<hook name>’ hook on <timedate>

8.10.2.2 Unsuccessful Operation for runjob Hook

When a hook fails to set an attribute, the following is written to the server’s log:

<job ID>; ‘<hook name>’ hook failed to set job’s <attribute name> = <value>

8.10.2.3 Rejecting an Action

If a hook rejects an action by calling the pbs.event().reject() function:

• The following messages are printed to stderr of the command that triggered the hook:
“<command_name>: Request rejected by filter hook <hook_name>” “<command_name>:<'msg' value passed

to pbs.event().reject()>”
HG-224 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
where 'msg' is the message passed (if any) as input to pbs.event().reject().

• The following messages are printed in the appropriate PBS daemon log, logged at event class 0x0400:
“<user>@<host>…<request type> request rejected by <hook name> “<user>@<host> …<request type>

<'msg' value passed to pbs.event().reject()>”

8.10.2.4 Triggering an Alarm

If the alarm was triggered while executing a hook:

• The command that initiated the request gets the following messages in its stderr:
“<command_name>: Request rejected by filter hook <hook_name>” “<command_name>: alarm call while

running hook <hook_name>”

• The following entry appears in the appropriate PBS daemon log, logged under event class PBSEVENT_DEBUG2:
“<user>@<host>…<request type> alarm call while running hook <hook_name>, request rejected”

8.10.2.5 Encountering an Unhandled Exception

If a hook encounters an unhandled exception:

• PBS rejects the corresponding action. The command that triggered the hook gets the following message in stderr:
“<command_name>: request rejected as filter hook <hook_name> encountered an exception. Inform

admin.”

• The following message appears on the appropriate PBS daemon log, logged under PBSEVENT_DEBUG2 event
class:
“<request type> hook <hook_name> encountered an exception, request rejected”

See section 5.2.3, “Hook Alarm Calls and Unhandled Exceptions”, on page 43.

8.10.2.6 Starting and Finishing Hook Execution

Whenever hook execution starts or finishes, timestamped 0x0400 event class log messages appear in the appropriate PBS
daemon log:

 “11/13/2007 00:00:42 …<user>@<host>…<request type> running hook named <hook name>”

“11/13/2007 00:01:42<user@><host>…<request type> <hook_name> finished”

8.10.2.7 Hook Timeout

When a hook timeout is triggered, the hook script gets a Python KeyboardInterrupt from the PBS server. The server logs
show the following:

06/17/2008 17:57:16;0001;Server@host2;Svr;Server@host2;PBS server internal error (15011) in
Python script received a KeyboardInterrupt, <type 'exceptions.KeyboardInterrupt'>

8.10.2.8 Hooks Attempting I/O

When the PBS server is running, stdout, stderr, and stdin are closed, so that a hook script containing calls to print to
standard output or standard error, or to read input from standard input, gets the following exception:

02/24/2008 08:03:34;0086;Server@a-centauri;Svr;Server@a-centauri;Compiling script file: </var/
spool/pbs/server_priv/hooks/hook_test.PY>

02/24/2008 08:03:34;0001;Server@a-centauri;Svr;Server@a-centauri;PBS server internal error
(15011) in Error evaluating Python script, <type 'exceptions.IOError'>
PBS Professional 2020.1.1 Hooks Guide HG-225

Chapter 8 Debugging Hooks
8.10.2.9 Bad Value for debug Attribute

If you specify an invalid value for a hook’s debug attribute, the following error message appears in qmgr's STDERR:

“unexpected value '<bad_val>' must be (not case sensitive) true|t|y|1|false|f|n|0”

8.10.2.10 Commands Fail Inside Hooks

When a command fails inside a hook, but succeeds outside the hook, the problem may be a difference in the environ-
ments.

8.10.2.11 runjob Hook Errors

8.10.2.11.i Modifying Hold, Execution Time, Dependency, or Project of Accepted
Job

If a runjob hook accepts an event request, using pbs.event().accept(), but attempts to set a disallowed attribute, the hook
request is rejected.

If the hook is triggered by a qrun command, the following message is sent to stderr where the qrun command was
run. If the hook is triggered when the scheduler tries to run the job, the following message is written to the job’s com-

ment attribute:

request rejected by filter hook <hook_name>: cannot modify job after runjob request has been
accepted.

The following message is written to the PBS server log, at log event class PBSEVENT_DEBUG2:

<hook name>; Found job <attribute name> attribute flagged to be set

runjob request rejected by <hook name>: cannot modify job after runjob request has been accepted.

8.10.2.11.ii Modifying Disallowed Attributes of Rejected Job

If a runjob hook rejects an event request, using pbs.event().reject(), but attempts to do any of the above, the following
message is written to the PBS server log, at log event class 0x0100:

runjob request rejected by <hook name>: cannot modify job attribute

<attribute name> after runjob request has been rejected.

8.10.2.11.iii Modifying Vnode

If a runjob hook event is accepted via a pbs.event().accept() call, and yet an attempt is made to modify a vnode's state,
then the hook request is rejected. The following message is sent to the stderr of qrun, and becomes the job’s comment:

request rejected by filter hook <hook_name>: cannot modify vnode after runjob request has been
accepted.

The following message appears in the PBS server log, logged at event class PBSEVENT_DEBUG2:

runjob request rejected by <hook name>: cannot modify a vnode after runjob request has been
accepted.

8.10.2.11.iv runjob Hook Referencing Wrong Parameter

If a runjob hook attempts to reference a pbs.event() parameter other than pbs.event().job, the exception pbs.EventIn-

compatibleError is raised.

8.10.2.11.v Attempting to Set Restricted Resource

A runjob hook cannot set the value of a Resource_LIst member other than those listed in Table 5-9, “Built-in Job
Resources Readable & Settable by Hooks via Events,” on page 60.
HG-226 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
Setting any of the wrong resources results in the following:

• The hook request is rejected

• The following message is sent to the STDERR of qrun, or after the failed pbs_runjob():
“ request rejected by filter hook: '<hook name>' hook failed to set job's

Resource_List.<resc_name> = <resc_value> (not allowed)”

• The scheduler updates the affected job's comment attribute with the above message.

• The following message appears in the server’s log, logged at level PBSEVENT_DEBUG2:
“runjob request rejected: '<hook name>' hook failed to set job's Resource_list.<resc_name> =

<resc_value> (not allowed)”

8.10.2.12 Special Errors Requiring Support

If you encounter any of the following log messages, an internal failure has occurred during hook setup. Please contact
PBS Professional support:

04/15/2011 17:55:23;0100;Server@jobim;Hook;<hook_name>t3;Encountered an error while setting event

04/15/2011 17:55:23;0001;Server@jobim;Svr;Server@jobim;PBS server internal error (15011) in
_get_job, partially populated python job object

04/15/2011 17:55:23;0001;Server@jobim;Svr;Server@jobim;PBS server internal error (15011) in
_get_server, partially populated python server object

04/15/2011 17:55:26;0001;Server@jobim;Svr;Server@jobim;PBS server internal error (15011) in
_get_queue, partially populated python queue object

04/15/2011 17:55:26;0001;Server@jobim;Svr;Server@jobim;PBS server internal error (15011) in
_get_vnode, partially populated python vnode object

04/15/2011 17:55:26;0001;Server@jobim;Svr;Server@jobim;PBS server internal error (15011) in
_get_resv, warning: partially populated python resv object

8.10.3 Errors During Startup

If the server starts up and encounters a hook that has no content (no script was imported into the hook), PBS displays the
following warning:

“failed to stat <path_server_priv_hooks>/<hook_name>.PY”

“failed to allocate storage for python script

<path_server_priv_hooks>/<hook_name>.PY”

8.10.4 Errors in Hook Updates

Updates to hooks are asynchronous with respect to jobs. During an update, some jobs may run on updated MoMs while
others run on MoMs that are not yet updated. A multi-host job that started running before the update may find itself run-
ning on some MoMs that are updated and some that are not. In addition, a multi-host job that starts during the update
may start on updated and non-updated MoMs. When a job triggers a hook, the hook that runs is the current hook, not the
hook that was there when the job started. If you change, delete, or add a hook while a job is running, and the job subse-
quently triggers the hook, that job will encounter whatever changes have propagated to the MoM.

• If a job runs where a hook update is incomplete, PBS prints the following to the server’s log file:
"vnode <node_name>'s parent mom <mom_host>:<mom_port> has a pending copy hook or delete hook

request"
PBS Professional 2020.1.1 Hooks Guide HG-227

Chapter 8 Debugging Hooks
Bear in mind that hooks are updated asynchronously with respect to jobs, so a multi-host job that started before the
update may encounter an incompletely updated hook.

• As PBS copies or deletes execution or periodic hooks to the MoMs, the following messages are printed in the
server’s log file at 2047:
"successfully sent hook file <filename> to <mom_hostname>"

"successfully sent rescdef file <filename> to <mom host name>"

"successfully deleted hook file <filename> from <mom host name>"

"successfully deleted rescdef file <filename> from <mom host name>"

"failed to copy hook file <filename> to <mom host name>"

"failed to copy rescdef file <filename> to <mom host name>"

"failed to delete hook file <filename> from <mom host name>"

"failed to delete rescdef file <filename> from <mom host name>"

• You may find that when you remove a hook, it takes some time for the hook to be completely purged. If you run
"qmgr -c 'create hook <hook_name>'" where a previous hook of the same <hook_name> still exists,
you will see the following message:
"hook name <hook_name> is pending delete, try another name"

Either specify another name for the hook, or retry the qmgr request again later, after the previous hook is completely
purged.

• If a hook tries to use a resource that is not yet propagated, this will cause an exception, which if unhandled, may
delete the job. Write your hooks so that they trap exceptions and deal gracefully with the job. For example, you can
use pbs.event().job.rerun(). Custom resources are propagated to MoMs under the following circumstances:

• When you install PBS on a multi-vnoded machine

• When you add MoMs, resources are propagated to those MoMs

• When you create a custom resource inside a hook

8.10.5 Hook-related Error Codes

The following are hook-related error codes:

Table 8-2: Hook-related Error Codes

Error Name Code Description

PBSE_MOM_INCOMPLETE_HOOK 15167 Execution hook not fully transferred to a particular MoM

PBSE_MOM_REJECT_ROOT_SCRIPTS 15168 A MoM has rejected a request to copy a hook-related file,
or a job script to be executed by root

PBSE_HOOK_REJECT 15169 A MoM received a reject result from an execution or peri-
odic hook

PBSE_HOOK_REJECT_RERUNJOB 15170 Hook rejection requiring a job to be rerun

PBSE_HOOK_REJECT_DELETEJOB 15171 Hook rejection requiring a job to be deleted
HG-228 PBS Professional 2020.1.1 Hooks Guide

Debugging Hooks Chapter 8
8.10.6 Troubleshooting

8.10.6.1 Bad Interpreter Path

If you see the following error:

/opt/pbs/bin/pbs_python: bad interpreter: No such file or directory

You should check to see whether this is a valid path on this host. Try to cd to the job execution directory and execute
any command using this interpreter path.

8.10.6.2 Viewing Hook Propagation

You don’t need to restart pbs_mom for a MoM hook to take effect. If you use qmgr, PBS takes care of copying the new
hook over to the MoM, in the background. It’s possible a job may have seen the old MoM hook before the new hook
arrives. After the new hook arrives, you’ll see a message in the server_logs with the following:

vnode <name>’s parent mom <mom_name> has a pending copy hook or delete hook request
PBS Professional 2020.1.1 Hooks Guide HG-229

Chapter 8 Debugging Hooks
HG-230 PBS Professional 2020.1.1 Hooks Guide

9

Hook Examples

Contents

9.1 resvsub Hook Examples . 232
9-1 Restrict ability to submit reservations to PBS administrators . 232

9.2 queuejob Hook Examples . 234
9-2 Reject jobs which do not specify walltime. 234

9-3 Reject jobs with CPU requests that are not multiples of 8 . 235
9-4 If a user asks for -l ncpus=8:ppn=24, change ncpus to 24 . 237
9-5 Calculate and set custom resource . 238
9-6 Put interactive jobs in a particular queue . 239
9-7 Set job project based on queue where job is submitted . 240
9-8 Speed up throughput of interactive jobs . 241
9-9 Validate job account . 242
9-10 Check job resource request and verify that job can run in this complex . 244

9.3 modifyjob Hook Examples . 262
9-11 Prevent users from using qalter to change their jobs . 262
9-12 Reject jobs requesting a specific queue that do not request mem . 263

9.4 periodic Hook Examples . 264
9-13 Run job start time estimator . 264

9.5 execjob_launch Hook Examples . 265
9-14 Modify arguments to job program . 265

9.6 execjob_prologue and execjob_epilogue Hook Examples . 266
9-15 Run shell script prologue or epilogue. 266

9.7 exechost_startup Hook Examples . 279
9-16 Create vnode and set vnode resources . 279

9.8 exechost_periodic Hook Examples . 281
9-17 Monitor load; offline or free vnode depending on CPU load. 281
9-18 Periodically update resources on vnodes . 282
9-19 Log loads on vnodes . 284
9-20 Set job attributes and resources . 285

9.9 Multi-event Hooks. 286
9-21 Helper function for logging exceptions more completely and flexibly:. 286
PBS Professional 2020.1.1 Hooks Guide HG-231

Chapter 9 Hook Examples
9.1 resvsub Hook Examples

Example 9-1: Restrict ability to submit reservations to PBS administrators

Hook type: resvsub

Script NoSub.py on Windows:

import pbs

import os

e = pbs.event()

r = e.resv

who = e.requestor

pbs.logmsg(pbs.LOG_DEBUG, "requestor=%s" % (who,))

isadmin=0

admin_ulist = ["PBS_Server", "Scheduler", "pbs_mom", "Administrator"]

if who in admin_ulist:

isadmin=1

else:

cmd = "net user " + who + "/domain"

admin_glist = ['Administrators', 'Domain Admins', 'Enterprise

Admins']

for line in os.popen(cmd).readlines():

if line.find("Group") >= 0:

for li in line.split("*"):

if li.strip() in admin_glist:

isadmin=1

break

if e.type == pbs.RESVSUB and not isadmin:

e.reject("Only admins allowed to create reservations!")
HG-232 PBS Professional 2020.1.1 Hooks Guide

Hook Examples Chapter 9
Script NoSub.py on Linux:

import pbs

import os

e = pbs.event()

r = e.resv

who = e.requestor

pbs.logmsg(pbs.LOG_DEBUG, "requestor=%s" % (who,))

admin_ulist = ["PBS_Server", "Scheduler", "pbs_mom", "root"]

if e.type == pbs.RESVSUB and who not in admin_ulist:

e.reject("Only admins allowed to create reservations!")

Create hook and import script:

qmgr -c 'create hook NoSub event="resvsub"'

qmgr -c 'import hook NoSub application/x-python default NoSub.py'
PBS Professional 2020.1.1 Hooks Guide HG-233

Chapter 9 Hook Examples
9.2 queuejob Hook Examples

Example 9-2: Reject jobs which do not specify walltime

Hook type: queuejob

Script RequireWalltime.py:

import pbs

import sys

try:

e = pbs.event()

j = e.job

if j.Resource_List[“walltime”] == None :

e.reject("Job has no walltime requested")

except SystemExit:

pass

except pbs.UnsetResourceNameError:

e.reject("Job has no walltime requested")

Create hook and import script:

qmgr -c 'create hook RequireWalltime event="queuejob"'

qmgr -c 'import hook RequireWalltime application/x-python default RequireWalltime.py'
HG-234 PBS Professional 2020.1.1 Hooks Guide

Hook Examples Chapter 9
Example 9-3: Reject jobs with CPU requests that are not multiples of 8

Hook type: queuejob

Script Multiple8.py:

import pbs

import sys

e = pbs.event()

j = e.job

mult_limit = 8

if j.Resource_List["ncpus"] != None:

try:

e = pbs.event()

j = e.job

R = j.Resource_List["ncpus"] % mult_limit

if R != 0:

e.reject("Ncpus resource is not a multiple of %s." % (mult_limit,))

except SystemExit:

pass

except (pbs.UnsetResourceNameError, TypeError):

e.reject("Bad ncpus resource value.")

else:

R = pbs.event().job.Resource_List

sel = repr(R["select"])

tot_ncpus = 0

for chunk in sel.split("+"):

nchunks = 1

for c in chunk.split(":"):

kv = c.split("=")

if len(kv) == 1:

nchunks = kv[0]

elif len(kv) == 2:

if kv[0] == "ncpus":

tot_ncpus += (int(nchunks) * int(kv[1]))

try:

mod = tot_ncpus % mult_limit

if mod != 0:

e.reject("Ncpus resource is not a multiple of %s." % \

(mult_limit,))

except SystemExit:

pass

except (pbs.UnsetResourceNameError, TypeError):
PBS Professional 2020.1.1 Hooks Guide HG-235

Chapter 9 Hook Examples
e.reject("Bad Ncpus resource value.")

Create hook and import script:

qmgr -c 'create hook Multiple8 event="queuejob"'

qmgr -c 'import hook Multiple8 application/x-python default Multiple8.py'
HG-236 PBS Professional 2020.1.1 Hooks Guide

Hook Examples Chapter 9
Example 9-4: If a user asks for -l ncpus=8:ppn=24, change ncpus to 24

Hook type: queuejob

Script ChangeNcpus.py:

import pbs

import sys

try:

e = pbs.event()

j = e.job

j.Resource_List["ncpus"] = max(j.Resource_List["ncpus"],j.Resource_List["ppn"])

except SystemExit:

pass

except (pbs.UnsetResourceNameError, pbs.BadResourceValError):

e.reject("Failed to reset ncpus value")

Create hook and import script:

qmgr -c 'create hook ChangeNcpus event="queuejob"'

qmgr -c 'import hook ChangeNcpus application/x-python default ChangeNcpus.py'
PBS Professional 2020.1.1 Hooks Guide HG-237

Chapter 9 Hook Examples
Example 9-5: Calculate and set custom resource

Hook type: queuejob

Custom resource cph == total ncpus * walltime (in hours). Calculate it and set its value.

You must create the cph resource before using it.

Script CustCPH.py:

import pbs

R = pbs.event().job.Resource_List

sel = repr(R[“select”])

tot_ncpus = 0

for chunk in sel.split("+"):

nchunks = 1

for c in chunk.split(":"):

kv = c.split("=")

if len(kv) == 1:

nchunks = kv[0]

elif len(kv) == 2:

if kv[0] == "ncpus":

tot_ncpus += (int(nchunks) * int(kv[1]))

R["cph"] = tot_ncpus * R["walltime"]

Create hook and import script:

qmgr -c 'create hook CustCPH event="queuejob"'

qmgr -c 'import hook CustCPH application/x-python default CustCPH.py'
HG-238 PBS Professional 2020.1.1 Hooks Guide

Hook Examples Chapter 9
Example 9-6: Put interactive jobs in a particular queue

Hook type: queuejob

Put job into “interQ" if the job was submitted interactively (using qsub -I).

Script IQueue.py:

get the pbs module

import pbs

import sys

try:

Get the hook event information and parameters

This will be for the 'queuejob' event type.

e = pbs.event()

Get the information for the job being queued

j = e.job

if j.interactive:

Get the “interQ” queue object

q = pbs.server().queue("interQ")

Reset the job's destination queue

parameter for this event

j.queue = q

accept the event

e.accept()

except SystemExit:

pass

except:

e.reject("Failed to route job to queue interQ")

Create hook and import script:

qmgr -c 'create hook IQueue event="queuejob"'

qmgr -c 'import hook IQueue application/x-python default IQueue.py'
PBS Professional 2020.1.1 Hooks Guide HG-239

Chapter 9 Hook Examples
Example 9-7: Set job project based on queue where job is submitted

Hook type: queuejob

The following is a snippet of a queuejob hook:

import pbs

e = pbs.event()

If e.job.queue == None:

user did not specify a queue to submit to, so use default

target_qname = pbs.server().default_queue

else:

target_qname = e.job.queue.name

If (target_qname == “large”) or (target_qname == “medium”):

e.job.project = “some_large_medium_project”
HG-240 PBS Professional 2020.1.1 Hooks Guide

Hook Examples Chapter 9
Example 9-8: Speed up throughput of interactive jobs

Hook type: queuejob

Use a queuejob hook that determines whether a job entering the system is an interactive job. If so, it directs the job to the
high priority queue specified in 'high_priority_queue', and tells the server to restart the scheduling cycle. You must first
define a "high" queue as follows:

qmgr -c "create queue high queue_type=e,Priority=150"

qenable high

qstart high

The default priority for an express queue is 150. If you do not want interactive jobs to go into an express queue, set the
priority of the queue named “high” to a value greater than ordinary queues but lower than the value for an express queue.
See section 4.9.18, “Express Queues”, on page 137.

Instantiate the hook as follows:

qmgr -c "create hook rapid_inter event=queuejob"

qmgr -c "import hook rapid_inter application/x-python default rapid_inter.py"

Hook script:

import pbs

high_priority_queue="high"

e = pbs.event()

if e.job.interactive:

high = pbs.server().queue(high_priority_queue)

if high != None:

e.job.queue = high

pbs.logmsg(pbs.LOG_DEBUG, "quick start interactive job")

pbs.server().scheduler_restart_cycle()
PBS Professional 2020.1.1 Hooks Guide HG-241

Chapter 9 Hook Examples
Example 9-9: Validate job account

This hook reads valid accounts from a JSON file.

import os

import simplejson

try:

 import pbs

 pbs_conf = pbs.pbs_conf

except ImportError:

 pass

Read in the configurations file

pbs_hook_cfg = pbs.hook_config_filename

if pbs_hook_cfg == None:

 pbs.logmsg(pbs.EVENT_DEBUG3,”%s”%os.environ)

 pbs_hook_cfg = os.environ[“PBS_HOOK_CONFIG_FILE”]

pbs.logmsg(pbs.EVENT_DEBUG3,”read config file: %s”%pbs.hook_config_filename)

config_file = open(pbs.hook_config_filename).read()

va_cfg = simplejson.loads(config_file)

#pbs.logmsg(pbs.EVENT_DEBUG2,”config file: %s”%va_cfg)

je = pbs.event()

j = pbs.event().job

user=je.requestor

account=j.Account_Name

#pbs.logmsg(pbs.EVENT_DEBUG2,”my Account_Name is: %s”%account)

#pbs.logmsg(pbs.EVENT_DEBUG2,”allowed users for this account are:
%s”%va_cfg[“accounts”][account])

if user in va_cfg[“accounts”][account]:

 pbs.logmsg(pbs.EVENT_DEBUG2,”user is allowed to submit to account”)

else:

 pbs.logmsg(pbs.EVENT_DEBUG2,”user is NOT allowed to submit to account”)

 je.reject(“user is unauthorized to submit to this account”)
HG-242 PBS Professional 2020.1.1 Hooks Guide

Hook Examples Chapter 9
Here is an example JSON file with valid accounts:

{

 “accounts”: {

 “account1”:[“user1”],

 “account11”:[“user11”],

 “account2”:[“user2”],

 “accountall”:[“user1”,”user2”]

 }

}

PBS Professional 2020.1.1 Hooks Guide HG-243

Chapter 9 Hook Examples
Example 9-10: Check job resource request and verify that job can run in this complex

#!/usr/bin/env python

-*- coding: utf-8 -*-

###

Purpose: To check the request of the job and verify that it will be able to

run on this cluster

#

Setup: Modify the config file. You will need to provide the correct

information for your complex

###

import pbs

import sys

import os

from string import join

import simplejson as json

import traceback

import re

import string

pbs.logmsg(pbs.EVENT_DEBUG, “Entering the check limits hook”)

e = pbs.event()

py_base_dir = pbs.pbs_conf[‘PBS_EXEC’] + “/python/lib/python2.5”

try:

 sys.path.index(py_base_dir + ‘site-packages’)

except ValueError:

 sys.path = [py_base_dir,

 py_base_dir + ‘plat-linux2’,

 py_base_dir + ‘lib-tk’,

 py_base_dir + ‘lib-dynload’,

 py_base_dir + ‘site-packages’] \

 + sys.path

def caller_name():

 return str(sys._getframe(1).f_code.co_name)

Define error codes

class AdminError(Exception):

 pass

class ConfigError(AdminError):

 pass
HG-244 PBS Professional 2020.1.1 Hooks Guide

Hook Examples Chapter 9
def e_reject(msg):

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: Message: %s” % (caller_name(), msg))

 pbs.event().reject(msg)

#

FUNCTION decode_dict

#

def decode_dict(data):

 rv = {}

 for key, value in data.iteritems():

 if isinstance(key, unicode):

 key = key.encode(‘utf-8’)

 if isinstance(value, unicode):

 value = value.encode(‘utf-8’)

 elif isinstance(value, list):

 value = decode_list(value)

 elif isinstance(value, dict):

 value = decode_dict(value)

 rv[key] = value

 return rv

def decode_list(data):

 rv = []

 for item in data:

 if isinstance(item, unicode):

 item = item.encode(‘utf-8’)

 elif isinstance(item, list):

 item = decode_list(item)

 elif isinstance(item, dict):

 item = decode_dict(item)

 rv.append(item)

 return rv

#

FUNCTION convert_size

#

Convert a string containing a size specification (e.g. “1m”) to a

string using different units (e.g. “1024k”).

#

This function only interprets a decimal number at the start of the string,

stopping at any unrecognized character and ignoring the rest of the string.

#

When down-converting (e.g. MB to KB), all calculations involve integers and

the result returned is exact. When up-converting (e.g. KB to MB) floating
PBS Professional 2020.1.1 Hooks Guide HG-245

Chapter 9 Hook Examples
point numbers are involved. The result is rounded up. For example:

#

1023MB -> GB yields 1g

1024MB -> GB yields 1g

1025MB -> GB yields 2g <-- This value was rounded up

#

Pattern matching or conversion may result in exceptions.

#

def convert_size(value, units=’b’):

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: Method called” % (caller_name()))

 pbs.logmsg(pbs.EVENT_DEBUG3, “value: %s, units: %s” % (value, units))

 logs = {‘b’: 0, ‘k’: 10, ‘m’: 20, ‘g’: 30,

 ‘t’: 40, ‘p’: 50, ‘e’: 60, ‘z’: 70, ‘y’: 80}

 try:

 new = units[0].lower()

 if new not in logs:

 new = ‘b’

 val, old = re.match(‘([-+]?\d+)([bkmgtpezy]?)’,

 str(value).lower()).groups()

 val = int(val)

 if val < 0:

 raise ValueError(‘Value may not be negative’)

 if old not in logs.keys():

 old = ‘b’

 factor = logs[old] - logs[new]

 val *= 2 ** factor

 slop = val - int(val)

 val = int(val)

 if slop > 0:

 val += 1

 # pbs.size() does not like units following zero

 if val <= 0:

 pbs.logmsg(pbs.EVENT_DEBUG3, “Return value: %s” % str(0))

 return ‘0’

 else:

 pbs.logmsg(pbs.EVENT_DEBUG3, “Return value: %s” % str(val) + new)

 return str(val) + new

 except:

 pbs.logmsg(pbs.EVENT_DEBUG3, “Return value: None”)

 return None

#

FUNCTION size_as_int

#

HG-246 PBS Professional 2020.1.1 Hooks Guide

Hook Examples Chapter 9
Convert a size string to an integer representation of size in bytes

#

def size_as_int(value):

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: Method called” % (caller_name()))

 return int(convert_size(value).rstrip(string.ascii_lowercase))

#

FUNCTION caller_name

#

Return the name of the calling function or method.

#

Read the config file in json format

def parse_config_file(e, s):

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: Method called” % (caller_name()))

 config = {}

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: Server Name: %s” %

 (caller_name(), s.name))

 # Identify the config file and read in the data

 if pbs.hook_config_filename is not None:

 config_file = pbs.hook_config_filename

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: Config file is %s” %

 (caller_name(), config_file))

 try:

 config = json.load(open(config_file, ‘r’),

 object_hook=decode_dict)

 except IOError:

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: Encountered IOError:\n %s” %

 (caller_name(), sys.exec_info()[0]))

 raise ConfigError(“I/O error reading config file”)

 except json.JSONDecodeError:

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: Encountered DecodeError:\n %s” %

 (caller_name(), sys.exec_info()[0]))

 raise ConfigError(

 “JSON parsing error reading config file”)

 except Exception:

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: Encountered error:\n %s” %

 (caller_name(), sys.exec_info()[0]))

 raise

 else:

 raise ConfigError(“No configuration file present”)
PBS Professional 2020.1.1 Hooks Guide HG-247

Chapter 9 Hook Examples
 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: Config file:\n %s” %

 (caller_name(), config))

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: I am here 0 “ % (caller_name()))

 # Set some defaults if they are not present

 if ‘clusters’ not in config:

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: I am here 1 “ % (caller_name()))

 e_reject(“Please define the cluster inputs “)

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: I am here 1.5 “ % (caller_name()))

 if s.name not in config[‘clusters’]:

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: I am here 2 “ % (caller_name()))

 e_reject(“Cluster: %s needs to be “ % s.name +

 “defined in the config file: %s” % config[‘clusters’].keys())

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: I am here 2.5 “ % (caller_name()))

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: %s “ % (caller_name(), s.name))

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: %s “ %

 (caller_name(), config[“clusters”][s.name]))

 if ‘default_queue’ not in config[“clusters”][s.name]:

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: I am here 3 “ % (caller_name()))

 # Find the default queue

 config[“clusters”][s.name][‘default_queue’] = s.default_queue

 # e_reject(“Please define the default queue for the job”)

 else:

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: I am here 4 “ % (caller_name()))

 try:

 s.queues(config[“clusters”][s.name][‘default_queue’])

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: I am here 5 “ % (caller_name()))

 except:

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s not found in pbs complex “ %

 config[“clusters”][s.name][‘default_queue’])

 config[“clusters”][s.name][‘default_queue’] = s.default_queue

 pbs.logmsg(pbs.EVENT_DEBUG3, “Changed default queue to %s” %

 config[“clusters”][s.name][‘default_queue’])

 if ‘site_info’ not in config[“clusters”][s.name]:

 config[“clusters”][s.name][‘site_info’] = “not undefined”

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: Return Config file:\n %s” %

 (caller_name(), config))

 return config

def chunk_resource_check(e, request, cluster):

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: Method called” % (caller_name()))

 pbs.logmsg(pbs.EVENT_DEBUG3, “Request: %s” % (request))

 pbs.logmsg(pbs.EVENT_DEBUG3, “type: %s” % (type(request[0])))

 pbs.logmsg(pbs.EVENT_DEBUG3, “type: %s” % (type(request[1])))
HG-248 PBS Professional 2020.1.1 Hooks Guide

Hook Examples Chapter 9
 resource = request[0]

 if resource not in cluster:

 pbs.logmsg(pbs.EVENT_DEBUG3,

 “Resource %s is not defined in the cfg” %

 resource)

 try:

 pbs.logmsg(pbs.EVENT_DEBUG3,

 “Trying to return an int for %s” % (request))

 return int(request[1])

 except:

 pbs.logmsg(pbs.EVENT_DEBUG3,

 “Returning a string”)

 return request[1]

 elif resource == ‘mem’:

 value = pbs.size(request[1])

 clust_res = pbs.size(str(cluster[resource]))

 elif isinstance(cluster[resource], int):

 value = int(request[1])

 clust_res = cluster[resource]

 elif isinstance(cluster[resource], float):

 value = int(request[1])

 clust_res = cluster[resource]

 else:

 pbs.logmsg(pbs.EVENT_DEBUG3, “Not checking resource: %s” % (resource))

 return True

 pbs.logmsg(pbs.EVENT_DEBUG3, “Resource: %s” % (resource))

 pbs.logmsg(pbs.EVENT_DEBUG3, “R:%s A:%s” %

 (str(request[1]), str(clust_res)))

 if value > clust_res:

 pbs.logmsg(pbs.EVENT_DEBUG3, “I am here”)

 line = “\nError: You requested %s=%s per “ % (resource, value) + \

 “node. This exceeds the available %s “ % resource + \

 “on a %s node (%s)\n” % (cluster[‘name’], clust_res)

 if resource == ‘ncpus’:

 clust_mem = pbs.size(str(cluster[‘mem’]))

 line += “For example on %s use -l “ % cluster[‘name’] + \

 “select=2:%s=%s:mem=%s” % \

 (resource, cluster[resource], clust_mem)

 else:

 line += “For example on %s use -l “ % cluster[‘name’] + \

 “select=2:ncpus=%s:%s=%s” % \

 (cluster[‘ncpus’], resource, clust_res)

 line += “\nIf you still have questions, “ + \

 “please refer to %s” % \
PBS Professional 2020.1.1 Hooks Guide HG-249

Chapter 9 Hook Examples
 cluster[‘site_info’]

 pbs.logmsg(pbs.EVENT_DEBUG3, “line: %s” % (line))

 e_reject(line)

 return False

 pbs.logmsg(pbs.EVENT_DEBUG3, “Return %s value: %s” % (resource, value))

 return value

def job_ncpus_check(e, request, cluster):

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: Method called” % (caller_name()))

 pbs.logmsg(pbs.EVENT_DEBUG3, “Request: %s” % (request))

 ncpus = int(request[1])

 if ncpus > int(cluster[‘ncpus’]):

 line = “\nError: You requested ncpus=%d in a chunk. This “ % ncpus + \

 “is more than is available on a %s “ % cluster[‘name’] + \

 “compute node (%d).\n” % (int(cluster[‘ncpus’]))

 line += “For example, on %s, use -l “ % cluster[‘name’] + \

 “select=2:ncpus=%s:mpiprocs=%s “ % \

 (cluster[‘ncpus’], cluster[‘ncpus’]) + \

 “to use %d cores\n” % \

 (2 * int(cluster[‘ncpus’]))

 line += “If you still have questions, refer to %s.\n” % \

 cluster[‘site_info’]

 pbs.logmsg(pbs.EVENT_DEBUG3, “line: %s” % (line))

 e_reject(line)

 return ncpus

def job_mem_check(e, request, s, cluster):

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: Method called” % (caller_name()))

 pbs.logmsg(pbs.EVENT_DEBUG3, “Request: %s” % (request))

 mem = pbs.size(request[1])

 clust_mem = pbs.size(str(cluster[‘mem’]))

 pbs.logmsg(pbs.EVENT_DEBUG3, “Cluster mem: %s” % (clust_mem))

 if mem > clust_mem:

 pbs.logmsg(pbs.EVENT_DEBUG3, “I am here”)

 line = “\nError: You requested %s of memory per “ % mem + \

 “node. This exceeds the available memory “ + \

 “on a %s node (%s)\n” % (cluster[‘name’], clust_mem)

 pbs.logmsg(pbs.EVENT_DEBUG3, “line: %s” % (line))

 line += “For example on %s use -l “ % cluster[‘name’] + \

 “select=2:ncpus=%s:mpiprocs=%s:mem=%s” % \

 (cluster[‘ncpus’], cluster[‘ncpus’], clust_mem)

 pbs.logmsg(pbs.EVENT_DEBUG3, “line: %s” % (line))

 line += “\nIf you still have questions, “ + \
HG-250 PBS Professional 2020.1.1 Hooks Guide

Hook Examples Chapter 9
 “please refer to %s” % \

 cluster[‘site_info’]

 e_reject(line)

 pbs.logmsg(pbs.EVENT_DEBUG3, “Return mem value: %s” % (mem))

 return mem

def job_size_mem(mem, ncpus, R, cluster):

 pbs.logmsg(pbs.EVENT_DEBUG3, “Check placement: %s” %

 (repr(R[‘place’])))

 if repr(R[‘place’]).find(‘excl’) == -1:

 pbs.logmsg(pbs.EVENT_DEBUG3, “Set mem for non excl job”)

 mem_line = ‘mem=%s’ % pbs.size(convert_size(ncpus * size_as_int(

 cluster[‘default_mem_per_core’]), “mb”))

 else:

 pbs.logmsg(pbs.EVENT_DEBUG3, “Set mem for excl job”)

 mem_line = ‘mem=%s’ % pbs.size(convert_size(

 cluster[‘ncpus’] * size_as_int(

 cluster[‘default_mem_per_core’]), “mb”))

 pbs.logmsg(pbs.EVENT_DEBUG3, “mem_line: %s” % mem_line)

 return mem_line

def job_requested_queue(j, s, cluster):

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: Method called” % (caller_name()))

 # Check to see if the queue has been specified, if not specify the default

 # as defined in the config file.

 if hasattr(j.queue, ‘name’):

 pbs.logmsg(pbs.EVENT_DEBUG3, “job queue: %s” %

 j.queue.name)

 else:

 pbs.logmsg(pbs.EVENT_DEBUG3, “Set job queue to : %s” %

 cluster[‘default_queue’])

 j.queue = s.queue(“%s” % cluster[‘default_queue’])

 pbs.logmsg(pbs.EVENT_DEBUG3, “job queue: %s” %

 j.queue.name)

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: Leaving” % (caller_name()))

def job_select_cores_only(sel, s, cluster):

 # Initialize local variables

 R = pbs.event().job.Resource_List

 tmp_select = list()
PBS Professional 2020.1.1 Hooks Guide HG-251

Chapter 9 Hook Examples
 try:

 tot_ncpus = int(sel)

 tot_mpiprocs = int(sel)

 pbs.logmsg(pbs.EVENT_DEBUG3, “tot_ncpus: %s” % tot_ncpus)

 pbs.logmsg(pbs.EVENT_DEBUG3, “Mem/Core: %s” %

 cluster[‘default_mem_per_core’])

 tot_mem = pbs.size(convert_size(tot_ncpus *

 size_as_int(cluster[‘default_mem_per_core’]), “mb”))

 pbs.logmsg(pbs.EVENT_DEBUG3, “tot_ncpus: %d\ttot_mem: %s” %

 (tot_ncpus, tot_mem))

 # Check to see if tot_ncpus > total ncpus on cluster

 if tot_ncpus > cluster[‘total_cpus’]:

 reject_job(“total”, “ncpus”, tot_ncpus, cluster[‘total_cpus’],

 s.name, cluster)

 cores_per_node = int(cluster[‘ncpus’])

 full_nodes = int(tot_ncpus / cores_per_node)

 remaining_cores = tot_ncpus % cores_per_node

 pbs.logmsg(pbs.EVENT_DEBUG3, “tot_ncpus: %d\tfull_nodes: %d\t” %

 (tot_ncpus, full_nodes) +

 “remaining_cores: %d\ttot_mem: %s” %

 (remaining_cores, tot_mem))

 if ‘resize_select’ in cluster and cluster[‘resize_select’]:

 pbs.logmsg(pbs.EVENT_DEBUG3, “Resizing select statement”)

 if full_nodes == 0:

 tmp_select.append(“1:ncpus=%d:mpiprocs=%d:mem=%s” %

 (remaining_cores, remaining_cores, pbs.size(

 convert_size(remaining_cores * size_as_int(

 cluster[‘default_mem_per_core’]), “mb”))))

 elif remaining_cores == 0:

 pbs.logmsg(pbs.EVENT_DEBUG3, “Remaining cores: 0”)

 pbs.logmsg(pbs.EVENT_DEBUG3, “Cluster: %s” % cluster)

 tmp_select.append(“%d:ncpus=%d:mpiprocs=%d:mem=%s” %

 (full_nodes, cores_per_node, cores_per_node,

 pbs.size(convert_size(

 int(cores_per_node) * size_as_int(

 cluster[‘default_mem_per_core’]), “mb”))))

 pbs.logmsg(pbs.EVENT_DEBUG3, “tmp_select: %s” % tmp_select)

 else:

 tmp_select.append(“%d:ncpus=%d:mpiprocs=%d:mem=%s” %

 (full_nodes, cores_per_node, cores_per_node,

 pbs.size(convert_size(
HG-252 PBS Professional 2020.1.1 Hooks Guide

Hook Examples Chapter 9
 cores_per_node * size_as_int(

 cluster[‘default_mem_per_core’]), “mb”))))

 tmp_select.append(“1:ncpus=%d:mpiprocs=%d:mem=%s” %

 (remaining_cores, remaining_cores,

 pbs.size(convert_size(

 remaining_cores * size_as_int(

 cluster[‘default_mem_per_core’]), “mb”))))

 # Replace the old select statement with the new select statement

 R[‘select’] = pbs.select(join(tmp_select, ‘+’))

 pbs.logmsg(pbs.EVENT_DEBUG3, “New select Line: %s” % R[‘select’])

 pbs.logmsg(pbs.EVENT_DEBUG3, “Server: %s” % s.name)

 pbs.logmsg(pbs.EVENT_DEBUG3, “tot_ncpus: %d,\tcluster cores: %s” %

 (tot_ncpus, int(cluster[‘ncpus’])))

 return True

 except ValueError:

 return False

def job_requested_resources(e, j, s, cluster, cfg):

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: Method called” % (caller_name()))

 R = j.Resource_List

 sel = repr(R[“select”])

 if R[“select”] == None:

 sel = ‘1’

 pbs.logmsg(pbs.LOG_WARNING, “%s: Requested Resources: %s” %

 (caller_name(), R))

 if ‘accept_empty_select’ in cfg[‘clusters’][s.name]:

 if cfg[‘clusters’][s.name][‘accept_empty_select’]:

 return False

 # Calculate the ncpus and memory requested by this job

 tot_ncpus = 0

 tot_mpiprocs = 0

 tot_mem = pbs.size(“0kb”)

 tot_ngpus = 0

 tot_nmics = 0

 # Initialize a tmp select list

 tmp_select = list()

 pbs.logmsg(pbs.EVENT_DEBUG3, “Select Line: %s” % sel)

 # Check to see if the users just selected ncpus verses a chunk
PBS Professional 2020.1.1 Hooks Guide HG-253

Chapter 9 Hook Examples
 # i.e select=32 vs select=1:ncpus=32:mpiprocs=32:mem=32gb

 status = job_select_cores_only(sel, s, cluster)

 pbs.logmsg(pbs.EVENT_DEBUG3,

 “job_select_cores_only Status: %s” % status)

 if not status:

 pbs.logmsg(pbs.EVENT_DEBUG3, “Eval select Line: %s” % R[‘select’])

 for chunk in sel.split(“+”):

 nchunks = 1

 tmp_chunk = chunk.split(“:”)

 mpiprocs = -1

 ncpus = -1

 mem = 1900

 for c in tmp_chunk:

 pbs.logmsg(pbs.EVENT_DEBUG3, “Chunk: %s” % c)

 kv = c.split(“=”)

 if len(kv) == 1:

 nchunks = kv[0]

 elif kv[0] == “ncpus”:

 pbs.logmsg(pbs.EVENT_DEBUG3, “ncpus: %s” % kv)

 ncpus = chunk_resource_check(e, kv, cluster)

 tot_ncpus += int(nchunks) * ncpus

 elif kv[0] == “ngpus”:

 pbs.logmsg(pbs.EVENT_DEBUG3, “ngpus: %s” % kv)

 ngpus = chunk_resource_check(e, kv, cluster)

 tot_ngpus += int(nchunks) * ngpus

 elif kv[0] == “nmics”:

 pbs.logmsg(pbs.EVENT_DEBUG3, “nmics: %s” % kv)

 nmics = chunk_resource_check(e, kv, cluster)

 tot_nmics += int(nchunks) * nmics

 elif kv[0] == “mpiprocs”:

 pbs.logmsg(pbs.EVENT_DEBUG3, “mpiprocs: %s” % kv)

 mpiprocs = chunk_resource_check(e, kv, cluster)

 tot_mpiprocs += int(nchunks) * mpiprocs

 elif kv[0] == “mem”:

 pbs.logmsg(pbs.EVENT_DEBUG3, “mem: %s” % kv)

 mem = chunk_resource_check(e, kv, cluster)

 pbs.logmsg(pbs.EVENT_DEBUG3, “mem: %s” % mem)

 pbs.logmsg(pbs.EVENT_DEBUG3, “nchunks: %d” % int(nchunks))

 pbs.logmsg(pbs.EVENT_DEBUG3, “mem (b): %d” %
HG-254 PBS Professional 2020.1.1 Hooks Guide

Hook Examples Chapter 9
 size_as_int(str(mem)))

 mem = pbs.size(convert_size(

 int(nchunks) * size_as_int(mem), “mb”))

 pbs.logmsg(pbs.EVENT_DEBUG3, “mem: %s” % mem)

 tot_mem = tot_mem + mem

 pbs.logmsg(pbs.EVENT_DEBUG3, “Total mem: %s” % tot_mem)

 # Set up the ncpus, mpiprocs, and mem if not set by the user

 if ncpus == -1:

 ncpus = 1

 tmp_chunk.append(‘ncpus=%d’ % ncpus)

 if mpiprocs == -1:

 tmp_chunk.append(‘mpiprocs=%d’ % ncpus)

 if mpiprocs > ncpus:

 e_reject(“You cannot specify more mpiprocs than ncpus\n” +

 “You specified: %s” % sel)

 if mem == 1900 and cluster[‘assign_mem_per_core’]:

 tmp_chunk.append(job_size_mem(mem, ncpus, R, cluster))

 tmp_select.append(join(tmp_chunk, ‘:’))

 R[‘select’] = pbs.select(join(tmp_select, ‘+’))

 pbs.logmsg(pbs.EVENT_DEBUG3, “Check tot_ncpus: %d” %

 (tot_ncpus))

 # Check to see if tot_ncpus > total ncpus on cluster

 if tot_ncpus > cluster[‘total_cpus’]:

 reject_job(“total”, “ncpus”, tot_ncpus, cluster[‘total_cpus’],

 s.name, cluster)

 if pbs.size(tot_mem) > pbs.size(cluster[‘total_mem’]):

 tot_mem = pbs.size(convert_size(tot_mem, “gb”))

 reject_job(“total”, “mem”, tot_mem, cluster[‘total_mem’],

 s.name, cluster)

 pbs.logmsg(pbs.EVENT_DEBUG3, “Return resource totals”)

 return {‘tncpus’: tot_ncpus, ‘tmem’: tot_mem, ‘tmpiprocs’: tot_mpiprocs,

 ‘tnmics’: tot_nmics, ‘tngpus’: tot_ngpus}

def reject_job(ltype, lres, lrequest, rlimit, lname, cluster):

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: Method called” % (caller_name()))

 line = “\nInvalid job request.\n”

 if ltype == “total”:

 line += “Job requested %s=%s and the total available for %s “ % \

 (lres, lrequest, lname) + \
PBS Professional 2020.1.1 Hooks Guide HG-255

Chapter 9 Hook Examples
 “is %s=%s\n” % (lres, rlimit)

 elif (lres == “ncpus” or lres == “mem” or lres == “nmics” or

 lres == “ngpus”):

 if lname is not ““:

 line += “Job requested %s=%s and the %s limit for the %s %s “ % \

 (lres, lrequest, ltype, lname, ltype) + \

 “is %s=%s\n” % (lres, rlimit)

 else:

 line += “Job requested %s=%s and the limit for the %s is “ % \

 (lres, lrequest, ltype) + “%s=%s\n” % (lres, rlimit)

 elif lres == “walltime”:

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: resource limit %s” %

 (caller_name(), lres))

 if ltype == “None” or ltype is None:

 line += “Job has not requested a walltime \nPlease add a “ + \

 “walltime and resubmit.\n”

 line += “For example: To request 24 hours add this to the “ + \

 “submission line -lwalltime=24:00:00\n”

 if ltype == “max”:

 if lname is not ““:

 line += “Job has requested %s walltime which “ % lrequest + \

 “exceeds the %s %s walltime limit of %s\n” % \

 (lname, ltype, rlimit)

 else:

 line += “Job has requested %s walltime which “ % lrequest + \

 “exceeds the %s walltime limit of %s\n” % \

 (ltype, rlimit)

 line += “Please change the walltime or queue (depending on “ + \

 “the violated walltime limits) and resubmit.\n”

 if ltype == “min”:

 if lname is not ““:

 line += “Job requested %s walltime which is “ % lrequest + \

 “less than the %s %s walltime limit of %s\n” % \

 (lname, ltype, rlimit)

 else:

 line += “Job requested %s walltime which is “ % lrequest + \

 “less than the %s walltime limit of %s\n” % \

 (ltype, rlimit)

 line += “Please change the walltime or queue (depending on “ + \

 “the violated walltime limits) and resubmit.\n”

 else:

 pbs.logmsg(pbs.EVENT_DEBUG3, “Unknown resource: %s” % (lres))

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: line %s” %

 (caller_name(), line))
HG-256 PBS Professional 2020.1.1 Hooks Guide

Hook Examples Chapter 9
 line += “If you believe that this is a valid “ + \

 “job request, please contact the HPC staff\n”

 line += “For more information, please refer to %s\n” % \

 cluster[‘site_info’]

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: Ready to reject job” % (caller_name()))

 e_reject(line)

def check_ncpus_limits(job_res, j, s, cluster):

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: Method called” % (caller_name()))

 ncpus_max_qlim = s.queue(j.queue.name).resources_max[‘ncpus’]

 ncpus_min_qlim = s.queue(j.queue.name).resources_min[‘ncpus’]

 ncpus_max_slim = s.resources_max[‘ncpus’]

 pbs.logmsg(pbs.EVENT_DEBUG3, “ncpus_max_qlim: %s” %

 (ncpus_max_qlim))

 pbs.logmsg(pbs.EVENT_DEBUG3, “ncpus_max_slim: %s” %

 (ncpus_max_slim))

 R = j.Resource_List

 pbs.logmsg(pbs.EVENT_DEBUG3, “Job Resource List: %s” % (R))

 if R[“ncpus”] != None:

 ncpus_req = R[“ncpus”]

 else:

 ncpus_req = job_res[‘tncpus’]

 pbs.logmsg(pbs.EVENT_DEBUG3, “Required ncpus: %s” % (ncpus_req))

 pbs.logmsg(pbs.EVENT_DEBUG3,

 “Above Find the PBS_GENERIC ncpus limit”)

 # Find the PBS_GENERIC ncpus limit

 pbs.logmsg(pbs.EVENT_DEBUG3, “Above ncpus checks:”)

 # Check to see if requested ncpus does not violate the limits

 if ((ncpus_max_qlim is not None) and

 (int(ncpus_req) > int(ncpus_max_qlim))):

 pbs.logmsg(pbs.EVENT_DEBUG3, “ncpus_max_qlim:”)

 reject_job(“queue”, “ncpus”, ncpus_req, ncpus_max_qlim,

 j.queue.name, cluster)

 elif ((ncpus_min_qlim is not None) and

 (int(ncpus_req) < int(ncpus_min_qlim))):

 pbs.logmsg(pbs.EVENT_DEBUG3, “ncpus_min_qlim:”)

 reject_job(“queue”, “ncpus”, ncpus_req, ncpus_min_qlim,

 j.queue.name, cluster)

 elif ((ncpus_max_slim is not None) and

 (int(ncpus_req) > int(ncpus_max_slim))):

 pbs.logmsg(pbs.EVENT_DEBUG3, “ncpus_max_slim:”)
PBS Professional 2020.1.1 Hooks Guide HG-257

Chapter 9 Hook Examples
 reject_job(“server”, “ncpus”, ncpus_req, ncpus_max_slim,

 ““, cluster)

 pbs.logmsg(pbs.EVENT_DEBUG3, “Done with ncpus checks”)

def check_mem_limits(job_res, j, s, cluster):

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: Method called” % (caller_name()))

 # Mem limit checking section

 pbs.logmsg(pbs.EVENT_DEBUG3, “Looking at mem limits”)

 mem_lim = s.queue(j.queue.name).max_run_res[‘mem’]

 pbs.logmsg(pbs.EVENT_DEBUG3,

 “PBS_GENERIC mem limit: %s” % (mem_lim))

 mem_max_qlim = s.queue(j.queue.name).resources_max[‘mem’]

 pbs.logmsg(pbs.EVENT_DEBUG3, “mem_max_qlim: %s” % (mem_max_qlim))

 # Get the requested memory

 R = j.Resource_List

 if R[“mem”] != None:

 mem_req = R[“mem”]

 else:

 mem_req = job_res[‘tmem’]

 pbs.logmsg(pbs.EVENT_DEBUG3, “Required mem: %s” % (mem_req))

 # Find the PBS_GENERIC mem limit

 if mem_lim is not None:

 tmp_mem_lim = mem_lim.split(‘,’)

 pbs.logmsg(pbs.EVENT_DEBUG3, “Above tmp_mem_lim: %s” %

 (tmp_mem_lim))

 mem_lim = -1

 for limit in tmp_mem_lim:

 if “PBS_GENERIC=” in limit:

 mem_lim = pbs.size(limit.split(‘=’)[1].replace(‘]’,

 ‘’))

 else:

 mem_lim = -1

 # Check to see if requested mem does not violate the limits

 pbs.logmsg(pbs.EVENT_DEBUG3, “mem_lim: %s” % (mem_lim))

 pbs.logmsg(pbs.EVENT_DEBUG3, “mem_req: %s” % (mem_req))

 if mem_lim != -1 and pbs.size(mem_req) > mem_lim:

 pbs.logmsg(pbs.EVENT_DEBUG3, “mem_req > mem_lim”)

 reject_job(“user”, “mem”, mem_req, mem_lim,

 j.queue.name, cfg[‘clusters’][s.name])
HG-258 PBS Professional 2020.1.1 Hooks Guide

Hook Examples Chapter 9
 elif mem_max_qlim is not None and pbs.size(mem_req) > mem_max_qlim:

 pbs.logmsg(pbs.EVENT_DEBUG3, “mem_req > mem_max_lim”)

 reject_job(“queue”, “mem”, mem_req, mem_max_qlim,

 j.queue.name, cfg[‘clusters’][s.name])

def check_walltime(j, s, cluster):

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: Method called” % (caller_name()))

 R = j.Resource_List

 if R[“walltime”] != None:

 wt_req = R[“walltime”]

 else:

 wt_req = None

 pbs.logmsg(pbs.EVENT_DEBUG3, “Requested walltime: %s” %

 (wt_req))

 # Get the walltime limits

 limit_name = j.queue.name

 wt_max = s.queue(limit_name).resources_max[‘walltime’]

 wt_min = s.queue(limit_name).resources_min[‘walltime’]

 pbs.logmsg(pbs.EVENT_DEBUG3, “Wall Limit: %s” % (wt_max))

 pbs.logmsg(pbs.EVENT_DEBUG3, “Wall Requested: %s” % (wt_req))

 if wt_max is not None and wt_req > wt_max:

 pbs.logmsg(pbs.EVENT_DEBUG3, “This job should exit: %s” %

 (wt_req))

 pbs.logmsg(pbs.EVENT_DEBUG3, “Check the walltimes”)

 if wt_max is None:

 # Check to see if it is set at the server level

 wt_max = s.resources_max[‘walltime’]

 if wt_max is not None:

 limit_name = “server”

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: Method called” % (caller_name()))

 pbs.logmsg(pbs.EVENT_DEBUG3, “%s: req: %s, max: %s, min: %s, name: %s” %

 (caller_name(), wt_req, wt_max, wt_min, limit_name))

 if wt_req is None:

 if ‘require_walltime’ in cluster:

 if cluster[‘require_walltime’]:

 reject_job(“None”, “walltime”, ““, ““, limit_name, cluster)

 elif wt_max is not None and wt_req > wt_max:

 reject_job(“max”, “walltime”, wt_req, wt_max,

 limit_name, cluster)

 elif wt_min is not None and wt_req < wt_min:

 reject_job(“min”, “walltime”, wt_req, wt_min,

 limit_name, cluster)
PBS Professional 2020.1.1 Hooks Guide HG-259

Chapter 9 Hook Examples
 else:

 return True

 return False

def main():

 pbs.logmsg(pbs.EVENT_DEBUG3, “Entering check limits hook”)

 e = pbs.event()

 j = e.job

 s = pbs.server()

 who = e.requestor

 # Read in the config file

 cfg = parse_config_file(e, s)

 cluster = cfg[‘clusters’][s.name]

 # Check to see if we are running in test mode

 if ‘test_mode’ in cfg[‘clusters’][s.name]:

 if cfg[‘clusters’][s.name][‘test_mode’]:

 pbs.logmsg(pbs.EVENT_DEBUG3, “Entering check user”)

 pbs.logmsg(pbs.EVENT_DEBUG3, “cfg: %s” % cfg[‘clusters’][s.name])

 if ‘test_users’ in cfg[‘clusters’][s.name]:

 pbs.logmsg(pbs.EVENT_DEBUG3, “check user: %s” % who)

 if who not in cfg[‘clusters’][s.name][‘test_users’]:

 pbs.logmsg(pbs.EVENT_DEBUG3,

 “User %s not in test users %s” %

 (who, cfg[‘clusters’][s.name][‘test_users’]))

 e.accept()

 else:

 pbs.logmsg(pbs.EVENT_DEBUG3,

 “Running hook for User %s” % who)

 # Collect the job requested resources

 pbs.logmsg(pbs.EVENT_DEBUG3, “Ready to look at job requested resources”)

 job_res = job_requested_resources(e, j, s, cluster, cfg)

 pbs.logmsg(pbs.EVENT_DEBUG3, “Returned totals: %s” % job_res)

 try:

 pbs.logmsg(pbs.EVENT_DEBUG3, “Default Queue: %s” %

 cluster[‘default_queue’])

 job_requested_queue(j, s, cluster)

 pbs.logmsg(pbs.EVENT_DEBUG3, “job queue %s” % j.queue.name)

 # Find the server limits
HG-260 PBS Professional 2020.1.1 Hooks Guide

Hook Examples Chapter 9
 q = s.queue(j.queue.name)

 pbs.logmsg(pbs.EVENT_DEBUG3, “queue %s” % q.name)

 for key in q.attributes.keys():

 exec “a=q.%s” % key

 # check server/queue limits section

 pbs.logmsg(pbs.EVENT_DEBUG3, “Ready to check queue/server limits”)

 if job_res is not False:

 if cfg[‘clusters’][s.name][‘check_ncpus’]:

 check_ncpus_limits(job_res, j, s, cluster)

 if cfg[‘clusters’][s.name][‘check_mem’]:

 check_mem_limits(job_res, j, s, cluster)

 if cfg[‘clusters’][s.name][‘check_walltime’]:

 check_walltime(j, s, cluster)

 except:

 err = sys.exc_info()[0]

 pbs.logmsg(pbs.EVENT_DEBUG3, “This job had an exception: %s” % err)

 pass

if __name__ == ‘builtins’:

 try:

 pbs.logmsg(pbs.EVENT_DEBUG, “Entering the main loop”)

 main()

 except SystemExit:

 pass

 except AdminError, exc:

 pbs.logmsg(pbs.EVENT_DEBUG3, “Encountered Admin Error”)

 # Something on the system is misconfigured

 pbs.logmsg(pbs.EVENT_DEBUG3,

 str(traceback.format_exc().strip().splitlines()))

 msg = (“Admin error in %s handling %s event” %

 (e.hook_name, “queuejob”))

 pbs.logmsg(pbs.EVENT_ERROR, msg)

 e_reject(msg)

 except:

 e_reject(“%s hook failed with %s.\nPlease contact your sys admin “ +

 “if this problem persists for more than 10 minutes” %

 (e.hook_name, sys.exc_info()[:2]))
PBS Professional 2020.1.1 Hooks Guide HG-261

Chapter 9 Hook Examples
9.3 modifyjob Hook Examples

Example 9-11: Prevent users from using qalter to change their jobs

Hook type: modifyjob

Allow only administrators to change jobs.

Script NoAlter.py, on Windows, in a domain:

import os

import pbs

e = pbs.event()

j = e.job

who = e.requestor

pbs.logmsg(pbs.LOG_DEBUG, "requestor=%s" % (who,))

isadmin=0

admin_ulist = ["PBS_Server", "Scheduler", "pbs_mom", "Administrator"]

if who in admin_ulist:

isadmin=1

else:

cmd = "net user " + who + " /domain"

admin_glist = ['Administrators', 'Domain Admins', 'Enterprise

Admins']

for line in os.popen(cmd).readlines():

if line.find("Group") >= 0:

for li in line.split("*"):

if li.strip() in admin_glist:

isadmin=1

break

if e.type == pbs.MODIFYJOB and not isadmin:

e.reject("Normal users are not allowed to modify their jobs")

Script NoAlter.py, on Linux:

import pbs

e = pbs.event()

j = e.job

who = e.requestor

pbs.logmsg(pbs.LOG_DEBUG, "requestor=%s" % (who,))

admin_ulist = ["PBS_Server", "Scheduler", "pbs_mom", "root"]

if who not in admin_ulist:

e.reject("Normal users are not allowed to modify their jobs")

Create hook and import script:

qmgr -c 'create hook NoAlter event="modifyjob"'

qmgr -c 'import hook NoAlter application/x-python default NoAlter.py'
HG-262 PBS Professional 2020.1.1 Hooks Guide

Hook Examples Chapter 9
Example 9-12: Reject jobs requesting a specific queue that do not request mem

Hook type: modifyjob

Reject jobs requesting workq2 if they don’t also request memory.

Script queuespec.py:

import pbs

import sys

try:

e = pbs.event()

j = e.job

if j.queue.name == "workq2" and not j.Resource_List["mem"]:

e.reject("workq2 requires job to have mem specification")

except SystemExit:

pass

except:

e.reject("%s hook failed with %s. Please contact

Admin" % (e.hook_name, sys.exc_info()[:2]))

Create hook, import script:

qmgr -c 'create hook queuespec event="modifyjob"'

qmgr -c 'import hook queuespec application/x-python default queuespec.py'
PBS Professional 2020.1.1 Hooks Guide HG-263

Chapter 9 Hook Examples
9.4 periodic Hook Examples

Example 9-13: Run job start time estimator

Hook type: periodic

Run job start time estimator named pbs_est.

Script run_pbs_est.py:

import pbs

import time

import os

import subprocess

pbs_est_cmd = os.path.join(pbs.pbs_conf['PBS_EXEC'], 'sbin', 'pbs_est')

e = pbs.event()

pbs.logmsg(pbs.LOG_DEBUG, "Starting job start time estimation task")

exit_stat = subprocess.call([pbs_est_cmd], shell=True)

if exit_stat != 0:

e.reject("%s exited abnormally with return code %d" % (pbs_est_cmd, exit_stat))

else:

e.accept()
HG-264 PBS Professional 2020.1.1 Hooks Guide

Hook Examples Chapter 9
9.5 execjob_launch Hook Examples

Example 9-14: Modify arguments to job program

Hook type: execjob_launch

The argv[] entries can be modified to change the existing arguments to progname.

Given the following hook:

cat launch.py

import pbs

e = pbs.event()

e.argv[1] = “cool”

qmgr -c "create hook launch event=execjob_launch"

qmgr -c "import hook launch application/x-python default launch.py"

So if a job is submitted as follows:

% qsub -- /bin/echo uncool

When the job is submitted, progname = “/bin/echo”, argv[0] = “/bin/echo”, argv[1]=”uncool”. However, when the
job executes, the execjob_launch hook runs, causing “/bin/echo cool” to execute instead of “/bin/echo uncool”.
PBS Professional 2020.1.1 Hooks Guide HG-265

Chapter 9 Hook Examples
9.6 execjob_prologue and execjob_epilogue Hook

Examples

Example 9-15: Run shell script prologue or epilogue.

You can use this hook when the execjob_prologue and execjob_epilogue events are used in other hooks, such as the
cgroups hook, and you still want to run the classic prologue and epilogue scripts we describe in section “Using Shell
Scripts for Prologue and Epilogue”, on page 498 in the PBS Professional Administrator’s Guide. Additionally, the
hook introduces parallel prologue and epilogue shell scripts.

See “Using Hooks for Prologue and Epilogue”, on page 502 in the PBS Professional Administrator’s Guide, for con-
figuration and installation instructions.

This hook is included in $PBS_EXEC/unsupported. as run_pelog_shell.py, along with its configuration file,
run_pelog_shell.ini.

Configuration File

Here is the contents of run_pelog_shell.ini:

[run_pelog_shell]

Enable parallel prologues/epilogues that run on sister moms. Note that all

the normal requirements apply, except the scripts should be named pprologue

and pepilogue.

ENABLE_PARALLEL=False

Provide verbose hook output to the user’s .o/.e file

VERBOSE_USER_OUTPUT=False

DEFAULT_ACTION can be one of DELETE or RERUN

DEFAULT_ACTION=RERUN

Enable Torque argument compatibility

TORQUE_COMPAT=False
HG-266 PBS Professional 2020.1.1 Hooks Guide

Hook Examples Chapter 9
Hook Script

Here is the hook script (the contents of run_pelog_shell.py):

import pbs

import os, sys

import time

Set up a few variables

start_time=time.time()

pbs_event=pbs.event()

hook_name=pbs_event.hook_name

hook_alarm=30 # default, we’ll read it from the .HK later

DEBUG=False # default, we’ll read it from the .HK later

job=pbs_event.job

The trace_hook function has been written to be portable between hooks.

def trace_hook(**kwargs):

 “““Simple exception trace logger for PBS hooks

 loglevel=<int> (pbs.LOG_DEBUG): log level to pass to pbs.logmsg()

 reject=True: reject the job upon completion of logging trace

 trace_in_reject=<bool> (False): pass trace to pbs.event().reject()

 trace_in_reject=<str>: message to pass to pbs.event().reject() with trace

 Usage:

 try:

 your=code(here)

 except:

 trace_hook()

 “““

 import sys

 if ‘loglevel’ in kwargs:

 loglevel=kwargs[‘loglevel’]

 else:

 loglevel=pbs.LOG_ERROR

 if ‘reject’ in kwargs:

 reject=kwargs[‘reject’]

 else:

 reject=True

 if ‘trace_in_reject’ in kwargs:

 trace_in_reject=kwargs[‘trace_in_reject’]

 else:

 trace_in_reject=False

 # Associate hook events with the appropriate PBS constant. This is a list

 # of all hook events as of PBS Pro 13.0. If the event does not exist, it is

 # removed from the list.

 hook_events=[‘queuejob’, ‘modifyjob’, ‘movejob’, ‘runjob’, ‘execjob_begin’,
PBS Professional 2020.1.1 Hooks Guide HG-267

Chapter 9 Hook Examples
 ‘execjob_prologue’, ‘execjob_launch’, ‘execjob_attach’,

 ‘execjob_preterm’, ‘execjob_epilogue’, ‘execjob_end’,

 ‘resvsub’, ‘resv_end’, ‘provision’, ‘exechost_periodic’,

 ‘exechost_startup’, ‘periodic’]

 hook_event={}

 for he in hook_events:

 # Only set available hooks for the current version of PBS.

 if hasattr(pbs, he.upper()):

 event_code=eval(‘pbs.’+he.upper())

 hook_event[event_code]=he

 hook_event[he]=event_code

 hook_event[he.upper()]=event_code

 del event_code

 else:

 del hook_events[hook_events.index(he)]

 trace={

 ‘line’: sys.exc_info()[2].tb_lineno,

 ‘module’: sys.exc_info()[2].tb_frame.f_code.co_name,

 ‘exception’: sys.exc_info()[0].__name__,

 ‘message’: sys.exc_info()[1].message,

 }

 tracemsg=’%s hook %s encountered an exception: Line %s in %s %s: %s’ %(

 hook_event[pbs.event().type], pbs.event().hook_name,

 trace[‘line’], trace[‘module’], trace[‘exception’], trace[‘message’]

)

 rejectmsg=”Hook Error: request rejected as filter hook ‘%s’ encountered “ \

 “an exception. Please inform Admin” % pbs.event().hook_name

 if not isinstance(loglevel, int):

 pbs.logmsg(pbs.LOG_ERROR, ‘trace_hook() called with invalid argument’ \

 ‘ (loglevel=%s), setting to pbs.LOG_ERROR. ‘ % repr(loglevel))

 loglevel=pbs.LOG_ERROR

 pbs.logmsg(loglevel, tracemsg)

 if reject:

 tracemsg+=’, request rejected’

 if isinstance(trace_in_reject, bool):

 if trace_in_reject:

 pbs.event().reject(tracemsg)

 else:

 pbs.event().reject(rejectmsg)

 else:

 pbs.event().reject(str(trace_in_reject)+’Line %s in %s %s:\n%s’ % (

 trace[‘line’],trace[‘module’],trace[‘exception’],
HG-268 PBS Professional 2020.1.1 Hooks Guide

Hook Examples Chapter 9
 trace[‘message’]))

class JobLog:

 “““ Class for managing output to job stdout and stderr.”””

 def __init__(self):

 PBS_SPOOL=os.path.join(pbs_conf()[‘PBS_MOM_HOME’], ‘spool’)

 self.stdout_log=os.path.join(PBS_SPOOL,

 ‘%s.OU’ % str(pbs.event().job.id))

 self.stderr_log=os.path.join(PBS_SPOOL,

 ‘%s.ER’ % str(pbs.event().job.id))

 if str(pbs.event().job.Join_Path) == ‘oe’:

 self.stderr_log=self.stdout_log

 elif str(pbs.event().job.Join_Path) == ‘eo’:

 self.stdout_log=self.stderr_log

 def stdout(self, msg):

 “““Write msg to appropriate file handle for stdout”””

 import sys

 try:

 if not pbs.event().job.interactive and pbs.event().job.in_ms_mom:

 logfile=open(self.stdout_log, ‘ab+’)

 else:

 logfile=sys.stdout

 if DEBUG:

 pbs.logmsg(pbs.EVENT_DEBUG3,

 ‘%s;%s;[DEBUG3]: writing %s to %s’ %

 (pbs.event().hook_name,

 pbs.event().job.id,

 repr(msg),

 logfile.name))

 logfile.write(msg)

 logfile.flush()

 logfile.close()

 except IOError:

 trace_hook()

 def stderr(self, msg):

 “““Write msg to appropriate file handle for stdout”””

 import sys

 try:
PBS Professional 2020.1.1 Hooks Guide HG-269

Chapter 9 Hook Examples
 if not pbs.event().job.interactive and pbs.event().job.in_ms_mom():

 logfile=open(self.stderr_log, ‘ab+’)

 else:

 logfile=sys.stderr

 if DEBUG:

 pbs.logmsg(pbs.EVENT_DEBUG3,

 ‘%s;%s;[DEBUG3]: writing %s to %s’ %

 (pbs.event().hook_name,

 pbs.event().job.id,

 repr(msg),

 logfile.name))

 logfile.write(msg)

 logfile.flush()

 logfile.close()

 except IOError:

 trace_hook()

Read in pbs.conf

def pbs_conf(pbs_key=None):

 “““Function to return the values from /etc/pbs.conf

 If the PBS python interpreter hasn’t been recycled, it is not necessary

 to re-read and re-parse /etc/pbs.conf. This function will simply return

 the variable that exists from the first time this function ran.

 Creates a dict containing the key/value pairs in pbs.conf, accounting for

 comments in lines and empty lines.

 Returns a string representing the pbs.conf setting for pbs_key if set, or

 the dict of all pbs.conf settings if pbs_key is not set.

 “““

 import os

 if hasattr(pbs_conf, ‘pbs_keys’):

 return pbs_conf.pbs_keys[pbs_key] if pbs_key else pbs_conf.pbs_keys

 if ‘PBS_CONF_FILE’ in os.environ.keys():

 pbs_conf_file=os.environ[‘PBS_CONF_FILE’]

 elif sys.platform == ‘win32’:

 if ‘ProgramFiles(x86)’ in os.environ.keys():

 program_files=os.environ[‘ProgramFiles(x86)’]

 else:

 program_files=os.environ[‘ProgramFiles’]

 pbs_conf_file=’%s\\PBS Pro\\pbs.conf’ % program_files

 else:

 pbs_conf_file=’/etc/pbs.conf’
HG-270 PBS Professional 2020.1.1 Hooks Guide

Hook Examples Chapter 9
 pbs_conf.pbs_keys=dict([line.split(‘#’)[0].strip().split(‘=’) \

 for line in open(pbs_conf_file) \

 if not line.startswith(‘#’) and ‘=’ in line])

 if ‘PBS_MOM_HOME’ not in pbs_conf.pbs_keys.keys():

 pbs_conf.pbs_keys[‘PBS_MOM_HOME’] = \

 pbs_conf.pbs_keys[‘PBS_HOME’]

 return pbs_conf.pbs_keys[pbs_key] if pbs_key else pbs_conf.pbs_keys

Primary hook execution begins here

try:

 def rejectjob(reason, action=DEFAULT_ACTION):

 “““Log job rejection and then call pbs.event().reject()”””

 # Arguments to pbs.event().reject() do nothing in execjob events. Log a

 # warning instead, update the job comment, then reject the job.

 if action == RERUN:

 job.rerun()

 reason=’Requeued - %s’ % reason

 elif action == DELETE:

 job.delete()

 reason=’Deleted - %s’ % reason

 else:

 reason=’Rejected - %s’ % reason

 job.comment=’%s: %s’ % (hook_name, reason)

 pbs.logmsg(pbs.LOG_WARNING, ‘;’.join([hook_name, job.id, reason]))

 pbs.logjobmsg(job.id, reason) # Add a message that can be tracejob’d

 if VERBOSE_USER_OUTPUT:

 print reason

 pbs_event.reject()

 # For the path to mom_priv, we use PBS_MOM_HOME in case that is set,

 # pbs_conf() will return PBS_HOME if it is not.

 mom_priv=os.path.abspath(os.path.join(

 pbs_conf()[‘PBS_MOM_HOME’],’mom_priv’))

 # Get the hook alarm time from the .HK file if it exists.

 hk_file=os.path.join(mom_priv,’hooks’,’%s.HK’ % hook_name)

 if os.path.exists(hk_file):

 hook_settings=dict([l.strip().split(‘=’) for l in

 open(hk_file,’r’).readlines()])

 if ‘alarm’ in hook_settings.keys():
PBS Professional 2020.1.1 Hooks Guide HG-271

Chapter 9 Hook Examples
 hook_alarm=int(hook_settings[‘alarm’])

 if ‘debug’ in hook_settings.keys():

 DEBUG=True if hook_settings[‘debug’]==’true’ else False

 if DEBUG:

 pbs.logmsg(pbs.LOG_DEBUG, ‘%s;%s;[DEBUG] starting.’ %

 (hook_name, job.id))

 if ‘PBS_HOOK_CONFIG_FILE’ in os.environ:

 config_file = os.environ[“PBS_HOOK_CONFIG_FILE”]

 config=dict([l.split(‘#’)[0].strip().split(‘=’)

 for l in open(config_file,’r’).readlines() if ‘=’ in l])

 # Set the true/false configurations

 if ‘ENABLE_PARALLEL’ in config.keys():

 ENABLE_PARALLEL=config[‘ENABLE_PARALLEL’].lower()[0] in [‘t’, ‘1’]

 if ‘VERBOSE_USER_OUTPUT’ in config.keys():

 VEROSE_USER_OUTPUT=config[‘VERBOSE_USER_OUTPUT’].lower()[0] in [‘t’, ‘1’]

 if ‘DEFAULT_ACTION’ in config.keys():

 if config[‘DEFAULT_ACTION’].upper() == ‘DELETE’:

 DEFAULT_ACTION=DELETE

 elif config[‘DEFAULT_ACTION’].upper() == ‘RERUN’:

 DEFAULT_ACTION=RERUN

 else:

 pbs.logmsg(pbs.LOG_WARN,

 ‘%s;%s;[ERROR] ‘ % (hook_name, job.id) + \

 ‘DEFAULT_ACTION in %s.ini must be one ‘ % (hook_name) + \

 ‘of DELETE or RERUN.’)

 if ‘TORQUE_COMPAT’ in config.keys():

 TORQUE_COMPAT=config[‘TORQUE_COMPAT’].lower()[0] in [‘t’, ‘1’]

 # Skip sister mom if parallel pelogs aren’t enabled.

 if not ENABLE_PARALLEL and not job.in_ms_mom():

 pbs_event.accept()

 # Prologues and epilogues have different arguments

 if pbs_event.type == pbs.EXECJOB_PROLOGUE:

 event=’prologue’

 args=[

 job.id, # argv[1]

 job.euser, # argv[2]

 job.egroup # argv[3]

]

 if TORQUE_COMPAT:

 args.extend([

 job.Job_Name, # argv[4]
HG-272 PBS Professional 2020.1.1 Hooks Guide

Hook Examples Chapter 9
 job.Resource_List, # argv[5]

 job.queue.name, # argv[6]

 job.Account_Name or ‘’ # argv[7]

])

 elif pbs_event.type == pbs.EXECJOB_EPILOGUE:

 null=’null’ if not TORQUE_COMPAT else ‘’

 event=’epilogue’

 args=[

 job.id, # argv[1]

 job.euser, # argv[2]

 job.egroup, # argv[3]

 job.Job_Name, # argv[4]

 job.session_id, # argv[5]

 job.Resource_List, # argv[6]

 job.resources_used, # argv[7]

 job.queue.name, # argv[8]

 job.Account_Name or null, # argv[9]

 job.Exit_status # argv[10]

]

 else: # hook has wrong events added

 pbs.logmsg(pbs.LOG_WARNING,

 ‘%s;%s;[ERROR] PBS event type %s not supported in this hook.’ %

 (hook_name, job.id, pbs_event.type))

 pbs_event.accept()

 # Handle empty arguments

 args=[str(a) if (a or a == 0) else ‘’ for a in args]

 if DEBUG: pbs.logmsg(pbs.LOG_DEBUG,

 ‘%s;%s;[DEBUG] %s event triggered.’ % \

 (hook_name, job.id, event))

 if DEBUG:

 pbs.logmsg(pbs.LOG_DEBUG, ‘%s;%s;[DEBUG3] args=%s’ % \

 (hook_name, job.id, repr(args)))

 # execjob_prologue and execjob_epilogue hooks can run on all nodes, so use

 # pprologue/pepilogue if available and not on primary execution node.

 p=’’ if job.in_ms_mom() else ‘p’

 if DEBUG:

 pbs.logmsg(pbs.LOG_DEBUG, ‘%s;%s;[DEBUG] %s.’ %

 (pbs_event.hook_name,

 job.id,

 ‘in sister mom’ if p else ‘in the primary execution host’))
PBS Professional 2020.1.1 Hooks Guide HG-273

Chapter 9 Hook Examples
 script=os.path.join(mom_priv, p+event)

 if sys.platform == ‘win32’:

 script=script + ‘.bat’

 if DEBUG:

 pbs.logmsg(pbs.EVENT_DEBUG3, ‘%s;%s;[DEBUG3] script set to %s.’ % (

 pbs_event.hook_name, job.id, script))

 correct_permissions = False

 if not script:

 pbs_event.accept()

 if not os.path.exists(script):

 pbs_event.accept()

 if sys.platform == ‘win32’:

 # Windows support is currently not implemented.

 pbs.logmsg(pbs.LOG_WARNING,

 ‘%s;%s;[ERROR] ‘ % (hook_name, job.id) + \

 ‘Classic prologues and epilogues on Windows are not ‘ + \

 ‘currently implemented in this hook.’)

 pbs_event.accept()

 else:

 try:

 struct_stat = os.stat(script)

 except OSError:

 rejectjob(‘Could not stat the %s script (%s).’ %

 (event, script), RERUN)

 # We mask for read and execute on owner make sure no one else can write

 # with 0522 (?r?x?w??w?). With this, permissions such as 0777 masked by

 # 522 will return 522. Acceptable permissions will return 500.

 correct_permissions = bool(struct_stat.st_mode & 0522 == 0500 and

 struct_stat.st_uid == 0)

 if correct_permissions:

 import signal

 import subprocess

 import shlex

 # Correction for subprocess SIGPIPE handling courtesy of Colin Watson:

 # http://www.chiark.greenend.org.uk/~cjwatson/blog/python-sigpipe.html

 def subprocess_setup():

 “““subprocess_setup corrects a known bug where python installs a
HG-274 PBS Professional 2020.1.1 Hooks Guide

Hook Examples Chapter 9
 SIGPIPE handler by default. This is usually not what non-Python

 subprocesses expect”””

 signal.signal(signal.SIGPIPE, signal.SIG_DFL)

 if DEBUG:

 pbs.logmsg(pbs.EVENT_DEBUG2,

 ‘%s;%s;[DEBUG2] script %s has appropriate permissions.’ %

 (hook_name, job.id, script))

 # change to the correct working directory (PBS_HOME):

 os.chdir(pbs_conf()[‘PBS_MOM_HOME’])

 # add PBS_JOBDIR environment variable, accounting for empty job.jobdir

 os.environ[‘PBS_JOBDIR’] = job.jobdir or ‘’

 shell=””

 if sys.platform == ‘win32’: #win32 is _always_ cmd

 shell=”cmd /c”

 else:

 # check the script for the interpreter line

 shebang=open(script, ‘r’).readline().strip().split(‘#!’)

 if len(shebang)==2:

 shell=shebang[1].split()[0]

 if not os.path.exists(shell):

 rejectjob(

 ‘Interpreter specified in %s (%s) does not exist.’ %

 (p+event, shell),

 RERUN)

 else:

 rejectjob(‘No interpreter specified in %s.’ % (p+event), RERUN)

 if DEBUG:

 pbs.logmsg(pbs.EVENT_DEBUG2,

 ‘%s;%s;[DEBUG2] interpreter set to “%s”.’ %

 (hook_name, job.id, shell))

 pbs.logmsg(pbs.LOG_DEBUG, ‘%s;%s;running %s.’ %

 (hook_name, job.id, p+event))

 # We perform a shlex.split to make sure we capture any #! arguments

 cmd=shlex.split(‘%s %s’ % (shell, script))

 cmd.extend(args)

 if DEBUG:

 pbs.logmsg(pbs.EVENT_DEBUG3,

 ‘%s;%s;[DEBUG3] cmd=%s’ % (hook_name, job.id, repr(cmd)))
PBS Professional 2020.1.1 Hooks Guide HG-275

Chapter 9 Hook Examples
 if str(job.Join_Path) in [‘oe’,’eo’]:

 proc=subprocess.Popen(

 cmd,

 stdout=subprocess.PIPE,

 stderr=subprocess.STDOUT,

 preexec_fn=subprocess_setup)

 else:

 proc=subprocess.Popen(

 cmd,

 stdout=subprocess.PIPE,

 stderr=subprocess.PIPE,

 preexec_fn=subprocess_setup)

 # Wait for the script to gracefully exit.

 while time.time() < start_time + hook_alarm - 5:

 if proc.poll() is not None:

 break

 time.sleep(1)

 # If we reach the alarm time - 5 seconds, send a SIGTERM

 if proc.poll() is None:

 pbs.logmsg(pbs.LOG_WARNING,

 ‘%s;%s;[WARNING] Terminating %s after %s seconds’ % \

 (hook_name, job.id, event, int(time.time() - start_time)))

 os.kill(proc.pid, signal.SIGTERM)

 while time.time() < start_time + hook_alarm - 3:

 if proc.poll() is not None:

 break

 time.sleep(0.5)

 # If we reach an alarm time - 3 seconds, send a SIGKILL

 if proc.poll() is None:

 pbs.logmsg(pbs.LOG_WARNING,

 ‘%s;%s;[WARNING] Killing %s after %s seconds’ % \

 (hook_name, job.id, event, int(time.time() - start_time)))

 os.kill(proc.pid, signal.SIGKILL)

 while time.time() < start_time + hook_alarm - 1:

 if proc.poll() is not None:

 break

 time.sleep(0.5)

 # If we still can’t kill the script, log a warning and let pbs kill it

 if proc.poll() is None:

 pbs.logmsg(pbs.LOG_WARNING,

 ‘%s;%s;[WARNING] Unable to kill %s after %s seconds’ % \
HG-276 PBS Professional 2020.1.1 Hooks Guide

Hook Examples Chapter 9
 (hook_name, job.id, event, start_time - time.time()))

 # Get the stdout and stderr from the pelog

 (o, e)=proc.communicate()

 if DEBUG:

 pbs.logmsg(

 pbs.EVENT_DEBUG2,

 ‘%s;%s;[DEBUG2]: stdout=%s, stderr=%s.’ %

 (hook_name, job.id, repr(o), repr(e)))

 joblog=JobLog()

 if o:

 joblog.stdout(o)

 if e:

 joblog.stderr(e)

 if proc.returncode:

 return_action=RERUN

 if event == ‘prologue’:

 return_action=RERUN

 if proc.returncode == 1:

 return_action=DELETE

 elif event == ‘epilogue’:

 return_action=DELETE

 if proc.returncode == 2:

 return_action=RERUN

 rejectjob(

 ‘%s exited with a status of %s.’ % (p+event, proc.returncode),

 return_action)

 else:

 if DEBUG:

 pbs.logmsg(pbs.LOG_DEBUG,

 ‘%s;%s;[DEBUG] %s exited with a status of 0.’ %

 (hook_name, job.id, p+event))

 if pbs_event.type == pbs.EXECJOB_PROLOGUE and VERBOSE_USER_OUTPUT:

 print ‘%s: attached as primary execution host.’ % \

 pbs.get_local_nodename()

 pbs_event.accept()

 else:

 rejectjob(“The %s does not have the correct “ % (p+event) + \

 ‘permissions. See the section entitled, ‘ + \

 ‘”Prologue and Epilogue Requirements” in the PBS Pro ‘ + \
PBS Professional 2020.1.1 Hooks Guide HG-277

Chapter 9 Hook Examples
 “Administrator’s Guide.”, RERUN)

except SystemExit:

 pass

except:

 trace_hook()
HG-278 PBS Professional 2020.1.1 Hooks Guide

Hook Examples Chapter 9
9.7 exechost_startup Hook Examples

Example 9-16: Create vnode and set vnode resources

Hook type: exechost_startup

% cat startup.py

import pbs

e=pbs.event()

for v in e.vnode_list.keys():

vn = e.vnode_list[v]

vn.resources_available["file"] = pbs.size("7gb")

vn.resources_available["fab_int"] = 9

vn.resources_available["fab_str"] = "happy"

vn.resources_available["fab_bool"] = False

vn.resources_available["fab_size"] = pbs.size("7mb")

vn.resources_available["fab_time"] = pbs.duration("00:30:00")

vn.resources_available["fab_float"] = 7.0

e.vnode_list["mars[1]"] = pbs.vnode("mars[1]")

e.vnode_list["mars[1]"].resources_available["ncpus"] = 7

Create hook

qmgr -c "create hook start event=exechost_startup"

qmgr -c "import hook start application/x-python default startup.py"

Restart MoM

kill <pbs_mom PID>

then

systemctl start pbs
PBS Professional 2020.1.1 Hooks Guide HG-279

Chapter 9 Hook Examples
or

/etc/init.d/pbs start (start MoM)

Output

pbsnodes -av

mars

Mom = mars.example.com

Port = 15002

pbs_version = PBSPro_12.3.0.140813

ntype = PBS

state = free

pcpus = 4

resources_available.arch = linux

resources_available.fab_bool = False

resources_available.fab_float = 7

resources_available.fab_int = 9

resources_available.fab_size = 7mb

resources_available.fab_str = happy

resources_available.fab_time = 1800

resources_available.file = 7gb

resources_available.host = mars

resources_available.mem = 8gb

resources_available.ncpus = 5

resources_available.vmem = 16gb

resources_available.vnode = mars

…

mars[1]

Mom = mars.example.com

Port = 15002

pbs_version = PBSPro_12.3.0.140813

ntype = PBS

state = free

resources_available.arch = linux

resources_available.file = 7gb

resources_available.host = mars

resources_available.ncpus = 7 (set in hook)
resources_available.vnode = mars[1]
HG-280 PBS Professional 2020.1.1 Hooks Guide

Hook Examples Chapter 9
9.8 exechost_periodic Hook Examples

Example 9-17: Monitor load; offline or free vnode depending on CPU load

Hook type: exechost_periodic

Monitor load average on the local host. Offline or free the vnode representing the host depending on the CPU load.

You can modify values for ideal_load and max_load. Your hook does the following:

If the system's CPU load average rises above max_load, the state of the vnode corresponding to the current host is set to
offline. This prevents the scheduler from scheduling jobs on this vnode.

If the system's CPU load average falls below ideal_load, the state of the vnode representing the current host is set to
free. This allows the scheduler to schedule jobs on this vnode.

To instantiate this hook, specify the following:

qmgr -c "create hook load_balance event=exechost_periodic,freq=10"

qmgr -c "import hook load_balance application/x-python default load_balance.py"

Hook script:

import pbs

import os

import re

ideal_load=1.5

max_load=2.0

get_la: returns a list of load averages within the past 1-minute, 5-minute, 15-minutes range.

def get_la():

line=os.popen("uptime").read()

r = re.search(r'load average: (\S+), (\S+), (\S+)$', line).groups()

return map(float, r)

local_node = pbs.get_local_nodename()

vnl = pbs.event().vnode_list

current_state = pbs.server().vnode(local_node).state

mla = get_la()[0]

if (mla >= max_load) and ((current_state == pbs.ND_OFFLINE) == 0):

vnl[local_node].state = pbs.ND_OFFLINE

vnl[local_node].comment = "offlined node as it is heavily loaded"

elif (mla < ideal_load) and ((current_state == pbs.ND_OFFLINE) != 0):

vnl[local_node].state = pbs.ND_FREE

vnl[local_node].comment = None
PBS Professional 2020.1.1 Hooks Guide HG-281

Chapter 9 Hook Examples
Example 9-18: Periodically update resources on vnodes

Hook type: exechost_periodic

Periodically update the values of a set of custom resources for the vnode where the current MoM runs.

The current set includes two size types, which are scratch and home

Prerequisites:

1. Create the following custom resources:
qmgr -c "create resource scratch type=size, flag=nh"

qmgr -c "create resource home type=size, flag=nh"

2. Add the new resources to the "resources:" line in the sched_config file and restart pbs_sched:

% cat PBS_HOME/sched_priv/sched_config resources

ncpus, mem, arch, [...], scratch, home

3. Install this hook as follows:

qmgr -c "create hook mom_dyn_res event=exechost_periodic,freq=30"

qmgr -c "import hook mom_dyn_res application/x-python default mom_dyn_res.py"

The mom_dyn_res.py script:

NOTE:

Update the dyn_res[] array below to include any other custom resources

to be included in the updates. Ensure that each resource added has an

entry in the scheduler's sched_config file.

import pbs

import os

import sys

get_filesystem_avail_unprivileged: returns available size in kbytes

(in pbs.size type) to unprivileged users, of the filesystem where

'dirname' resides.

def get_filesystem_avail_unprivileged(dirname):

o = os.statvfs(dirname)

return pbs.size("%skb" % ((o.f_bsize * o.f_bavail) / 1024))

get_filesystem_avail_privileged: returns available size in kbytes

(in pbs.size type) to privileged users, of the filesystem where 'dirname'

resides.

def get_filesystem_avail_privileged(dirname):

o = os.statvfs(dirname)

return pbs.size("%skb" % ((o.f_bsize * o.f_bfree) / 1024))

try:

Define here the custom resources as key, and the function and its

argument for obtaining the value of the custom resource:
HG-282 PBS Professional 2020.1.1 Hooks Guide

Hook Examples Chapter 9
Format: dyn_res[<resource_name>] = [<function_name>,

<function_argument>]

So "<function_name>(<function_argument>)" is called to return the

value for custom <resource_name>.

dyn_res = {}

dyn_res["scratch"] = [get_filesystem_avail_unprivileged, "/tmp"]

dyn_res["home"] = [get_filesystem_avail_unprivileged, "/home"]

vnl = pbs.event().vnode_list

local_node = pbs.get_local_nodename()

for k in dyn_res.keys():

vnl[local_node].resources_available[k] = dyn_res[k][0](dyn_res[k][1])

except SystemExit:

pass

except:

e = pbs.event()

e.reject("%s hook failed with %s. Please contact Admin" % \

(e.hook_name, sys.exc_info()[:2]))
PBS Professional 2020.1.1 Hooks Guide HG-283

Chapter 9 Hook Examples
Example 9-19: Log loads on vnodes

Hook type: exechost_periodic

You must create the custom resources r1m, r5m, and r15m on the vnodes.

#cat getload.py

import pbs

import sys

import os

load = os.getloadavg()

r1m = load[0]

r5m = load[1]

r15m = load[2]

e = pbs.event()

mynode = pbs.get_local_nodename()

v = e.vnode_list[mynode]

v.resources_available["r1m"] = r1m

v.resources_available["r5m"] = r5m

v.resources_available["r15m"] = r15m

pbs.logmsg(pbs.LOG_DEBUG,"getloadavg: vnode %s, r1m = %f, r5m = %f, r15m = %f" %

(repr(mynode), r1m, r5m, r15m))
HG-284 PBS Professional 2020.1.1 Hooks Guide

Hook Examples Chapter 9
Example 9-20: Set job attributes and resources

Hook type: exechost_periodic

% cat period.py

import pbs

E = pbs.event()

for k in e.job_list.keys():

e.job_list[k].resources_used["mem"] = pbs.size("7gb")

e.job_list[k].Variable_List["POLI"] = "negri"

e.job_list[k].Hold_Types = pbs.hold_types(“us”)

Create the hook:

qmgr -c "create hook period event=exechost_periodic,freq=30"

qmgr -c "import hook period application/x-python default period.py"

Submit several jobs:

% qsub job.scr

<job-id1>

% qsub job.scr

<job-id2>

As the exechost_periodic hook executes, the jobs get the new values:

% qstat -f <job-id1>

…

Resources_used.mem = 7gb

Hold_Types = us

Variable_List = …POLI=negri…

2

% qstat -f <job-id1>

…

Resources_used.mem = 7gb

Hold_Types = us

Variable_List = …POLI=negri…
PBS Professional 2020.1.1 Hooks Guide HG-285

Chapter 9 Hook Examples
9.9 Multi-event Hooks

Example 9-21: Helper function for logging exceptions more completely and flexibly:

The trace_hook function has been written to be portable between hooks.

def trace_hook(**kwargs):

 “““Simple exception trace logger for PBS hooks

 loglevel=<int> (pbs.LOG_DEBUG): log level to pass to pbs.logmsg()

 reject=True: reject the job upon completion of logging trace

 trace_in_reject=<bool> (False): pass trace to pbs.event().reject()

 trace_in_reject=<str>: message to pass to pbs.event().reject() with trace

 Usage:

 try:

 your=code(here)

 except:

 trace_hook()

 “““

 import pbs

 import sys

 if ‘loglevel’ in kwargs:

 loglevel=kwargs[‘loglevel’]

 else:

 loglevel=pbs.LOG_ERROR

 if ‘reject’ in kwargs:

 reject=kwargs[‘reject’]

 else:

 reject=True

 if ‘trace_in_reject’ in kwargs:

 trace_in_reject=kwargs[‘trace_in_reject’]

 else:

 trace_in_reject=False

 # Associate hook events with the appropriate PBS constant. This is a list

 # of all hook events as of PBS Pro 13.0. If the event does not exist, it is

 # removed from the list.

 hook_events=[‘queuejob’, ‘modifyjob’, ‘movejob’, ‘runjob’, ‘execjob_begin’,

 ‘execjob_prologue’, ‘execjob_launch’, ‘execjob_attach’,

 ‘execjob_preterm’, ‘execjob_epilogue’, ‘execjob_end’,

 ‘resvsub’, ‘provision’, ‘exechost_periodic’,

 ‘exechost_startup’]

 hook_event={}

 for he in hook_events:

 # Only set available hooks for the current version of PBS.
HG-286 PBS Professional 2020.1.1 Hooks Guide

Hook Examples Chapter 9
 if hasattr(pbs, he.upper()):

 event_code=eval(‘pbs.’+he.upper())

 hook_event[event_code]=he

 hook_event[he]=event_code

 hook_event[he.upper()]=event_code

 del event_code

 else:

 del hook_events[hook_events.index(he)]

 trace={

 ‘line’: sys.exc_info()[2].tb_lineno,

 ‘module’: sys.exc_info()[2].tb_frame.f_code.co_name,

 ‘exception’: sys.exc_info()[0].__name__,

 ‘message’: sys.exc_info()[1].message,

 }

 tracemsg=’%s hook %s encountered an exception: Line %s in %s %s: %s’ %(

 hook_event[pbs.event().type], pbs.event().hook_name,

 trace[‘line’], trace[‘module’], trace[‘exception’], trace[‘message’]

)

 rejectmsg=”Hook Error: request rejected as filter hook ‘%s’ encountered “ \

 “an exception. Please inform Admin” % pbs.event().hook_name

 if not isinstance(loglevel, int):

 pbs.logmsg(pbs.LOG_ERROR, ‘trace_hook() called with invalid argument’ \

 ‘ (loglevel=%s), setting to pbs.LOG_ERROR. ‘ % repr(loglevel))

 loglevel=pbs.LOG_ERROR

 pbs.logmsg(loglevel, tracemsg)

 if reject:

 tracemsg+=’, request rejected’

 if isinstance(trace_in_reject, bool):

 if trace_in_reject:

 pbs.event().reject(tracemsg)

 else:

 pbs.event().reject(rejectmsg)

 else:

 pbs.event().reject(str(trace_in_reject)+’Line %s in %s %s:\n%s’ % (

 trace[‘line’],trace[‘module’],trace[‘exception’],

 trace[‘message’]))
PBS Professional 2020.1.1 Hooks Guide HG-287

Chapter 9 Hook Examples
HG-288 PBS Professional 2020.1.1 Hooks Guide

Index

job.resources_used HG-126

A
accept an action HG-5
action HG-5

B
built-in hook HG-5

C
configuration file

hook HG-6
creating a hook HG-5

D
DIS HG-136

E
event HG-5
events

exechost_periodic HG-95, HG-106, HG-107
execjob_begin HG-96, HG-98
execjob_end HG-105
execjob_epilogue HG-104
execjob_preterm HG-103
execjob_prologue HG-97
modifyjob HG-92
movejob HG-93
queuejob HG-91
resvsub HG-90
runjob HG-94

exechost_periodic HG-89
exechost_periodic events HG-95, HG-106, HG-107
execjob_attach HG-89
execjob_begin HG-88
execjob_begin events HG-96, HG-98
execjob_end HG-89
execjob_end events HG-104, HG-105
execjob_epilogue HG-89
execjob_launch HG-88
execjob_postsuspend HG-89
execjob_preresume HG-89
execjob_preterm HG-89
execjob_preterm events HG-103
execjob_prologue HG-88

execjob_prologue events HG-97
execution event hooks HG-6

F
failover and hooks HG-21
failure action HG-6

H
hook

configuration file HG-6
creating HG-5
importing HG-6

hook configuration file HG-6
PBS Professional 2020.1 Hooks Guide HG-289

Index
hooks
and failover HG-21
creating empty hooks HG-30
deleting HG-31
enabling and disabling HG-38
event types HG-15
events

exechost_periodic HG-95, HG-106, HG-107
execjob_begin HG-96, HG-98
execjob_end HG-104, HG-105
execjob_preterm HG-103
execjob_prologue HG-97
modifyjob HG-92
movejob HG-93
queuejob HG-91
resvsub HG-90
runjob HG-94

exechost_periodic events HG-95, HG-106, HG-107
execjob_begin events HG-96, HG-98
execjob_end events HG-104, HG-105
execjob_preterm events HG-103
execjob_prologue events HG-97
execution event HG-6
exporting HG-35
importing HG-34
interface objects HG-76
job attributes HG-55
log level objects HG-152
modifyjob events HG-92
MoM HG-6
movejob events HG-93
non-job event HG-6
overview of creating HG-30
pbs.exec_vnode HG-129
pbs.job HG-122
pbs.queue() HG-121
pbs.resv HG-131
pbs.server() HG-118
pbs.vchunk HG-131
pbs.vnode HG-133
pre-execution event HG-6
queuejob events HG-91
reservation attributes HG-59
resources HG-47
resvsub events HG-90
runjob events HG-94
setting order of execution HG-38
setting timeout HG-39
setting trigger events HG-31
simple how-to HG-11
vnode attributes HG-57

I
importing a hook HG-6
interface objects for hooks HG-76

J
job

attributes in hooks HG-55
job.array_indices_submitted HG-123
job.Checkpoint HG-124
job.delete() HG-128
job.depend HG-124
job.exec_host HG-124
job.exec_vnode HG-124
job.Execution_Time HG-124
job.group_list HG-124
job.Hold_Types HG-124
job.id HG-123
job.in_ms_mom() HG-128
job.is_checkpointed() HG-127
job.job_state HG-125
job.Mail_Points HG-126
job.Mail_Users HG-126
job.rerun() HG-129
job.stagein HG-126
job.stageout HG-126
job.User_List HG-127

L
logging

hooks log level objects HG-152

M
modifyjob HG-88
modifyjob events HG-92
MoM hooks HG-6
movejob HG-88
movejob events HG-93

N
non-job event hooks HG-6

P
pbs module HG-6
pbs.acl() HG-143
pbs.args() HG-143
pbs.checkpoint() HG-143
pbs.depend() HG-143
pbs.duration() HG-143
pbs.email_list() HG-144
pbs.event().accept() HG-116
pbs.event().alarm HG-109
pbs.event().hook_name HG-111, HG-112
HG-290 PBS Professional 2020.1 Hooks Guide

Index
pbs.event().hook_type HG-111
pbs.event().pid HG-112
pbs.event().reject() HG-116
pbs.event().requestor HG-113
pbs.event().requestor_host HG-113
pbs.event().type HG-113
pbs.exec_host() HG-144
pbs.exec_vnode HG-129
pbs.exec_vnode() HG-144
pbs.get_local_nodename() HG-151
pbs.group_list() HG-144
pbs.hold_types() HG-145
pbs.job HG-122
pbs.job_sort_formula() HG-145
pbs.join_path() HG-145
pbs.keep_files() HG-145
pbs.license_count() HG-145
pbs.logmsg() HG-152
pbs.mail_points() HG-145
pbs.node_group_key() HG-145
pbs.path_list() HG-146
pbs.pbs_env() HG-146
pbs.pid HG-81
pbs.place() HG-147
pbs.queue HG-121
pbs.queue() HG-121
pbs.queue.job() HG-122
pbs.range() HG-147
pbs.reboot() HG-153
pbs.resv HG-131
pbs.route_destinations() HG-147
pbs.select() HG-147, HG-148
pbs.server() HG-118
pbs.server(). HG-118
pbs.server().job() HG-119
pbs.server().jobs() HG-119
pbs.server().name HG-118
pbs.server().queue() HG-120
pbs.server().queues() HG-120
pbs.server().resv() HG-120
pbs.server().resvs() HG-120
pbs.server().scheduler_restart_cycle() HG-120
pbs.server().vnode() HG-120
pbs.server().vnodes() HG-120
pbs.size() HG-150
pbs.software() HG-150
pbs.staging_list() HG-150
pbs.state_count() HG-151
pbs.user_list() HG-151
pbs.vchunk HG-131
pbs.version() HG-151
pbs.vnode HG-133
PBS_AUTH_METHOD HG-136
PBS_BATCH_SERVICE_PORT HG-136

PBS_BATCH_SERVICE_PORT_DIS HG-136
PBS_COMM_LOG_EVENTS HG-136
PBS_COMM_ROUTERS HG-136
PBS_COMM_THREADS HG-136
PBS_CONF_REMOTE_VIEWER HG-136
PBS_CONF_SYSLOG HG-139
PBS_CONF_SYSLOGSEVR HG-139
PBS_CORE_LIMIT HG-136
PBS_DATA_SERVICE_PORT HG-136
PBS_ENCRYPT_METHOD HG-136
PBS_ENVIRONMENT HG-136
PBS_EXEC HG-137
PBS_HOME HG-137
PBS_LEAF_NAME HG-137
PBS_LEAF_ROUTERS HG-137
PBS_LOCALLOG HG-137
PBS_MAIL_HOST_NAME HG-137
PBS_MANAGER_SERVICE_PORT HG-137
PBS_MOM_HOME HG-137
PBS_MOM_NODE_NAME HG-137
PBS_MOM_SERVICE_PORT HG-137
PBS_OUTPUT_HOST_NAME HG-138
PBS_PRIMARY HG-138
PBS_RCP HG-138
PBS_SCHED_THREADS HG-138
PBS_SCHEDULER_SERVICE_PORT HG-138
PBS_SCP HG-138
PBS_SECONDARY HG-138
PBS_SERVER HG-139
PBS_SERVER_HOST_NAME HG-139
PBS_START_COMM HG-139
PBS_START_MOM HG-139
PBS_START_SCHED HG-139
PBS_START_SERVER HG-139
PBS_SUPPORTED_AUTH_METHODS HG-139
PBS_TMPDIR HG-139
pbshook HG-6
pre-execution event hooks HG-6
primary server HG-138

Q
queue. HG-121
queue.job() HG-122
queue.jobs() HG-122
queue.name HG-121
queuejob HG-87
queuejob events HG-91

R
rcp HG-138
reject an action HG-6
reservation

attributes in hooks HG-59
PBS Professional 2020.1 Hooks Guide HG-291

Index
resources
in hooks HG-47

resv. HG-132
resv.resvid HG-132
resvsub HG-87
resvsub events HG-90
runjob HG-88
runjob events HG-94

S
scp HG-138
secondary server HG-138
server

primary HG-138
secondary HG-138

server hook HG-6
setting hook trigger events HG-31

V
vchunk.chunk_resources.keys() HG-131
vchunk.vnode_name HG-131
vnode

attributes in hooks HG-57
vnode.topology_info HG-134
HG-292 PBS Professional 2020.1 Hooks Guide

Altair®

PBS Professional®

2020.1.1

Reference Guide

You are reading the Altair PBS Professional 2020.1.1

Reference Guide (RG)

Updated 9/30/20

Copyright © 2003-2020 Altair Engineering, Inc. All rights reserved.

ALTAIR ENGINEERING INC. Proprietary and Confidential. Contains Trade Secret Information. Not for use or disclo-
sure outside of Licensee’s organization. The software and information contained herein may only be used internally and
are provided on a non-exclusive, non-transferable basis. Licensee may not sublicense, sell, lend, assign, rent, distribute,
publicly display or publicly perform the software or other information provided herein, nor is Licensee permitted to
decompile, reverse engineer, or disassemble the software. Usage of the software and other information provided by Altair
(or its resellers) is only as explicitly stated in the applicable end user license agreement between Altair and Licensee. In
the absence of such agreement, the Altair standard end user license agreement terms shall govern.

Use of Altair’s trademarks, including but not limited to “PBS™”, “PBS Professional®”, and “PBS Pro™”, “PBS
Works™”, “PBS Control™”, “PBS Access™”, “PBS Analytics™”, “PBScloud.io™”, and Altair’s logos is subject to
Altair's trademark licensing policies. For additional information, please contact Legal@altair.com and use the wording
“PBS Trademarks” in the subject line.

For a copy of the end user license agreement(s), log in to https://secure.altair.com/UserArea/agreement.html or contact
the Altair Legal Department. For information on the terms and conditions governing third party codes included in the
Altair Software, please see the Release Notes.

This document is proprietary information of Altair Engineering, Inc.

Contact Us

For the most recent information, go to the PBS Works website, www.pbsworks.com, select "My PBS", and log in with
your site ID and password.

Altair

Altair Engineering, Inc., 1820 E. Big Beaver Road, Troy, MI 48083-2031 USA www.pbsworks.com

Sales

pbssales@altair.com 248.614.2400

Please send any questions or suggestions for improvements to agu@altair.com.

https://secure.altair.com/UserArea/agreement.html
http://www.pbsworks.com
http://www.pbsworks.com

Technical Support

Need technical support? We are available from 8am to 5pm local times:

Location Telephone e-mail

Australia +1 800 174 396 anz-pbssupport@india.altair.com

China +86 (0)21 6117 1666 pbs@altair.com.cn

France +33 (0)1 4133 0992 pbssupport@europe.altair.com

Germany +49 (0)7031 6208 22 pbssupport@europe.altair.com

India +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

Italy +39 800 905595 pbssupport@europe.altair.com

Japan +81 3 6225 5821 pbs@altairjp.co.jp

Korea +82 70 4050 9200 support@altair.co.kr

Malaysia +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

North America +1 248 614 2425 pbssupport@altair.com

Russia +49 7031 6208 22 pbssupport@europe.altair.com

Scandinavia +46 (0)46 460 2828 pbssupport@europe.altair.com

Singapore +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

South Africa +27 21 831 1500 pbssupport@europe.altair.com

South America +55 11 3884 0414 br_support@altair.com

UK +44 (0)1926 468 600 pbssupport@europe.altair.com

Contents

1 Glossary of Terms 1

2 PBS Commands 21
2.1 Our Command Notation . 21

2.2 Requirements for Commands . 21

2.3 mpiexec . 26

2.4 pbs. 28

2.5 pbsdsh. 29

2.6 pbsfs . 31

2.7 pbsnodes. 35

2.8 pbsrun . 40

2.9 pbsrun_unwrap . 50

2.10 pbsrun_wrap . 51

2.11 pbs_account . 53

2.12 pbs_attach. 55

2.13 pbs_comm. 57

2.14 pbs_dataservice . 60

2.15 pbs_ds_password . 61

2.16 pbs_hostn . 63

2.17 pbs_idled . 64

2.18 pbs_iff . 66

2.19 pbs_interactive . 67

2.20 pbs_lamboot . 68

2.21 pbs_login . 69

2.22 pbs_mkdirs . 70

2.23 pbs_mom. 71

2.24 pbs_mpihp. 76

2.25 pbs_mpilam. 78

2.26 pbs_mpirun . 79

2.27 pbs_probe . 81

2.28 pbs_python . 83

2.29 pbs_ralter . 86

2.30 pbs_rdel. 90

2.31 pbs_release_nodes. 92

2.32 pbs_rstat . 94

2.33 pbs_rsub . 96

2.34 pbs_sched. 105

2.35 pbs_server. 108

2.36 pbs_snapshot . 112

2.37 pbs_tclsh . 119

2.38 pbs_tmrsh . 120

2.39 pbs_topologyinfo . 122

2.40 pbs_wish . 124

2.41 printjob. 125

2.42 qalter . 127

2.43 qdel . 140
PBS Professional 2020.1 Reference Guide RG-v

Contents
2.44 qdisable . 143

2.45 qenable . 145

2.46 qhold . 147

2.47 qmgr . 149

2.48 qmove . 172

2.49 qmsg . 174

2.50 qorder . 176

2.51 qrerun . 178

2.52 qrls. 180

2.53 qrun . 182

2.54 qselect . 186

2.55 qsig . 192

2.56 qstart . 195

2.57 qstat. 197

2.58 qstop . 211

2.59 qsub. 213

2.60 qterm . 233

2.61 tracejob . 235

2.62 win_postinstall.py . 238

3 MoM Parameters 239
3.1 Syntax of MoM Configuration File . 239

3.2 Contents of MoM Configuration File . 240

4 Scheduler Parameters 249
4.1 Format of Scheduler Configuration File. 249

4.2 Configuration Parameters . 250

5 List of Built-in Resources 259
5.1 Resource Data Types . 259

5.2 Viewing Resource Information . 261

5.3 Resource Flags . 262

5.4 Attributes where Resources Are Tracked . 263

5.5 Resource Table Format. 264

5.6 Resources Built Into PBS . 265

6 Attributes 277
6.1 Attribute Behavior . 277

6.2 How To Set Attributes . 277

6.3 Viewing Attribute Values . 278

6.4 Attribute Table Format. 279

6.5 Caveats . 280

6.6 Server Attributes . 281

6.7 Scheduler Attributes . 298

6.8 Reservation Attributes . 303

6.9 Queue Attributes . 311

6.10 Vnode Attributes . 320

6.11 Job Attributes . 328

6.12 Hook Attributes . 349
RG-vi PBS Professional 2020.1 Reference Guide

Contents
7 Formats 353
7.1 Non-resource Formats . 353

7.2 Resource Formats. 359

8 States 361
8.1 Job States . 361

8.2 Job Array States . 363

8.3 Subjob States . 364

8.4 Server States. 364

8.5 Vnode States. 365

8.6 Reservation States . 367

9 The PBS Configuration File 369
9.1 Format of Configuration File . 369

9.2 Contents of Configuration File. 369

10 Log Levels 375
10.1 Log Levels . 375

11 Job Exit Status 377
11.1 Job Exit Status . 377

12 Example Configurations 379
12.1 Single Vnode System . 379

12.2 Separate Server and Execution Host . 380

12.3 Multiple Execution Hosts . 380

12.4 Complex Multi-level Route Queues. 382

12.5 External Software License Management. 384

12.6 Multiple User ACL Example . 385

13 Run Limit Error Messages 387
13.1 Run Limit Error Messages. 387

14 Error Codes 389

15 Request Codes 395

16 PBS Environment Variables 399

17 File Listing 401

18 Introduction to PBS 409
18.1 Acknowledgements . 409

Index 411
PBS Professional 2020.1 Reference Guide RG-vii

Contents
RG-viii PBS Professional 2020.1 Reference Guide

1

Glossary of Terms

This chapter describes the terms used in PBS Professional documentation.

Accept an action (Hooks)

A hook accepts an action when the hook allows the action to take place.

Access control list, ACL

An ACL, or Access Control List, is a list of users, groups, or hosts from which users or groups may be attempt-
ing to gain access. This list defines who or what is allowed or denied access to parts of PBS such as the server,
queues, or reservations. A server ACL applies to access to the server, and therefore all of PBS. A queue’s ACL
applies only to that particular queue. A reservation’s ACL applies only to that particular reservation. See
"ACLs" on page 363 in the PBS Professional Administrator’s Guide.

Access to a queue

Applies to users, groups, and hosts. Being able to submit jobs to the queue, move jobs into the queue, being
able to perform operations on jobs in the queue, and being able to get the status of the queue.

Access to a reservation

Applies to users, groups, and hosts. Being able to place jobs in the reservation, whether by submitting jobs to
the reservation or moving jobs into the reservation. It also means being able to delete the reservation, and being
able to operate on the jobs in the reservation.

Access to the server

Applies to users, groups, and hosts. Being able to run PBS commands to submit jobs and perform operations on
them such as altering, selecting, and querying status. It also means being able to get the status of the server and
queues.

Account string

An account string is an arbitrary character string of characters that your site may use to provide additional
accounting or charge information. The syntax is unspecified except that it must be a single string. When pro-
vided on the command line to a PBS utility or in a directive in a PBS job script, any embedded white space must
be escaped by enclosing the string in quotes.

Action (Hooks)

A PBS operation or state transition. The actions that hooks can affect are submitting a job, altering a job, run-
ning a job, making a reservation, and moving a job to another queue.

Active (Failover)

A server daemon is active when it is managing user requests and communicating with a scheduler and MoMs.

Active Directory (Windows)

Active Directory is an implementation of LDAP directory services by Microsoft to use in Windows environ-
ments. It is a directory service used to store information about the network resources (e.g. user accounts and
groups) across a domain.

Admin (Windows)

A user logged in from an account that is either:

1. A member of a group having full control over the local computer and the domain controller

2. Allowed to make domain and schema changes to the Active Directory.
PBS Professional 2020.1.1 Reference Guide RG-1

Chapter 1 Glossary of Terms
Administrator

Same as PBS Administrator.

Linux: person with Manager privilege and root access.

Windows: person with Manager privilege who is a member of the local Administrators group.

A person who administers PBS, performing functions such as downloading, installing, upgrading, configuring,
or managing PBS.

Administrator is distinguished from “site administrator”, although often these are the same person.

Administrators (Windows)

A group that has built-in capabilities that give its members full control over the local system, or the domain con-
troller host itself.

Advance reservation

A reservation for a specific set of resources for a specified start time and duration in the future. Advance reser-
vations are created by users to reserve resources for jobs. The reservation is available only to the creator of the
reservation and any users or groups specified by the creator.

ALM license server

The license server that supplies licenses to run a PBS complex. See the PBS Works Licensing Guide.

AOE, Application operating environment

The environment on a vnode. This may be one that results from provisioning that vnode, or one that is already
in place

API

PBS provides an Application Programming Interface, or API, which is used by the commands to communicate
with the server. This API is described in the PBS Professional Programmer’s Guide. A site may make use of the
API to implement new commands if so desired.

Application checkpoint

The application performs its own checkpointing when it receives the appropriate signal etc.

Array job

See "Job array".

ASAP reservation, job-specific ASAP reservation

Reservation created for a specific queued job, for the same resources the job requests. PBS schedules the reser-
vation to run as soon as possible, and PBS moves the job into the reservation. Created when you use
pbs_rsub -Wqmove=<job ID> on a queued job.

Attribute

An attribute is a data item belonging to an object such as a job, reservation, vnode, queue, hook, scheduler, or
server. The attribute’s value affects the behavior of or provides information about the object. See Chapter 6,
"Attributes", on page 277. You specify attributes via the qmgr command.

Backfilling

A scheduling policy where

1. High-priority jobs are scheduled for execution

2. Lower-priority jobs are run if the following conditions are true:

Resources (that cannot be used by the high-priority jobs) are available

The lower-priority jobs will not delay the higher-priority jobs

Lower-priority jobs selected for execution are those next in priority order that will fit in the available resources.
RG-2 PBS Professional 2020.1.1 Reference Guide

Glossary of Terms Chapter 1
Batch, Batch processing

Allowing jobs to be run outside of the interactive login environment.

Borrowing vnode

The vnode where a shared vnode resource is available, but not managed.

Built-in hook

A hook that is supplied as part of PBS. These hooks cannot be created or deleted by administrators. See "Man-
aging Built-in Hooks" on page 155 in the PBS Professional Hooks Guide.

Built-in resource

A resource that is defined in PBS Professional as shipped. Examples of built-in resources are ncpus, which
tracks the number of CPUs, and mem, which tracks memory. See "Built-in vs. Custom Resources" on page 233
in the PBS Professional Administrator’s Guide.

Checkpoint/Restart

Allows jobs to be checkpointed and restarted. Uses OS-provided or third-party checkpoint/restart facility.

Checkpoint and Abort, checkpoint_abort

The checkpoint script or tool writes a restart file, then PBS kills and requeues the job. The job resumes from the
start file when it is executed again.

Child vnode

On a multi-vnode machine, there is one parent vnode and one or more child vnodes. For multi-vnode machines,
child vnodes represent hardware. See "Parent vnode” on page 13.

Chunk

A set of resources allocated as a unit to a job. Specified inside a selection directive. All parts of a chunk come
from the same host. In a typical MPI (Message-Passing Interface) job, there is one chunk per MPI process.

Chunk-level resource, host-level resource

A resource that is available at the host level, for example, CPUs or memory. Chunk resources are requested
inside of a selection statement. The resources of a chunk are to be applied to the portion of the job running in
that chunk.

Chunk resources are requested inside a select statement. A single chunk is requested using this form:

-l select=<resource name>=<value>:<resource name>=<value>
For example, one chunk might have 2 CPUs and 4GB of memory:

-l select=ncpus=2:mem=4gb

To request multiples of a chunk, prefix the chunk specification by the number of chunks:

-l select=[number of chunks]<chunk specification>
For example, to request six of the previous chunk:

-l select=6:ncpus=2:mem=4gb

To request different chunks, concatenate the chunks using the plus sign (“+”):

-l select=[number of chunks]<chunk specification>+[number of chunks]<chunk specification>
For example, to request two kinds of chunks, one with 2 CPUs per chunk, and one with 8 CPUs per chunk, both
kinds with 4GB of memory:

-l select=6:ncpus=2:mem=4gb+3:ncpus=8:mem=4GB

Chunk set

An identical set of chunks requested in a select statement. The following is a chunk set: 4:ncpus=8:mem=4GB

Cluster

A relatively homogeneous set of systems that are used as if they are a single machine.
PBS Professional 2020.1.1 Reference Guide RG-3

Chapter 1 Glossary of Terms
Commands

PBS supplies both command line programs that are POSIX 1003.2d conforming and a graphical interface.
These are used to submit, monitor, modify, and delete jobs. These client commands can be installed on any sys-
tem type supported by PBS and do not require the local presence of any of the other components of PBS.

There are three classifications of commands: user commands (which any authorized user can use), Operator
commands, and Manager (or administrator) commands. Operator and Manager commands require specific
access privileges.

Communication daemon, comm

The daemon which handles communication between the server, scheduler, and MoMs. Executable is
pbs_comm.

Complex

A PBS complex consists of the machines running one primary server+scheduler (plus, optionally, a secondary
backup server+scheduler) and all the machines on which the MoMs (attached to this server+scheduler) are run-
ning. A complex can be a heterogeneous mix of system architectures, and can include one or more clusters.

Consumable resource

A consumable resource is a resource that is reduced or taken up by being used. Examples of consumable
resources are memory or CPUs. See "Consumable vs. Non-consumable Resources" on page 234 in the PBS
Professional Administrator’s Guide.

CPU

Has two meanings, one from a hardware viewpoint, and one from a software viewpoint:

1. A core. The part of a processor that carries out computational tasks. Some systems present virtual cores,
for example in hyperthreading.

2. Resource required to execute a program thread. PBS schedules jobs according, in part, to the number of
threads, giving each thread a core on which to execute. The resource used by PBS to track CPUs is called
“ncpus”. The number of CPUs available for use defaults to the number of cores reported by the OS. When
a job requests one CPU, it is requesting one core on which to run.

Creating a hook

When you “create a hook” using qmgr, you’re telling PBS that you want it to make you an empty hook object
that has no characteristics other than a name.

Custom resource

A resource that is not defined in PBS as shipped. Custom resources are created by the PBS administrator or by
PBS for some systems. See "Built-in vs. Custom Resources" on page 233 in the PBS Professional Administra-
tor’s Guide.

Data service account

Created by PBS on installation. Account that is internal to the data service, with its own data service password.
Used by PBS to log into and do operations on the data service. PBS maps this account to the PBS data service
management account. Must have same name as PBS data service management account.

Data service management account

Created by administrator. Account with a system password. Data service account maps to the PBS data service
management account and both must have the same name.
RG-4 PBS Professional 2020.1.1 Reference Guide

Glossary of Terms Chapter 1
Default server

The default server is the server which handles any server tasks, such as client requests, unless you specify a dif-
ferent server. By default, PBS provides a default server; you do not need to take any action to have a default
server. If you have installed more than one server, you can specify the default using these:

• The PBS_DEFAULT environment variable

• The PBS_SERVER parameter in /etc/pbs.conf on the local host

If both are present, PBS_DEFAULT overrides PBS_SERVER.

Server names have the following format:

<hostname>[:<port number>]
where hostname is the fully-qualified domain name of the host on which the server is running and port number
is the port number to which to connect. If you do not specify port number, PBS defaults to using 15001.

There is always at least one active server; the default server is the active server unless another server has been
made active.

Degraded reservation

An advance reservation for which one or more associated vnodes are unavailable.

A standing reservation for which one or more vnodes associated with any occurrence are unavailable.

Delegation (Windows)

A capability provided by Active Directory that allows granular assignment of privileges to a domain account or
group. So for instance, instead of adding an account to the “Account Operators” group which might give too
much access, delegation allows giving the account read access only to all domain users and groups information.
This is done via the Delegation wizard.

Deprecate

We use deprecated to mean that something such as a feature or a platform is still supported, but will not be sup-
ported beginning with a later release. When a feature is no longer supported, we say it has been removed or is
obsolete.

Destination, destination identifier, destination queue, destination server

String. One or more queues or a server. Jobs may be queried at or sent to a destination queue. Commands may
be directed to a destination queue or server. A destination may be at the default PBS server or at another server.

Destination queue format:

<queue name>
Indicates specified queue at default server.

@<server name>
When moving a job, indicates default queue at that server.

When operating on queues, can indicate all queues at that server.

<queue name>@<server name>
Indicates specified queue at specified server.

Destination server format:

(no server name)
Indicates default server.

@<server name>
Indicates specified server.

@default
Indicates default server.
PBS Professional 2020.1.1 Reference Guide RG-5

Chapter 1 Glossary of Terms
Directive

A means by which the user specifies to PBS the value of a job submission variable such as number of CPUs, the
name of the job, etc. The default start of a directive is “#PBS”. PBS directives either specify resource require-
ments or attribute values. See page "Changing the Directive Prefix", on page 16 of the PBS Professional User’s
Guide.

Domain Admin Account (Windows)

A domain account on Windows that is a member of the “Domain Admins” group.

Domain Admins (Windows)

A global group whose members are authorized to administer the domain. By default, the Domain Admins group
is a member of the Administrators group on all computers that have joined a domain, including the domain con-
trollers.

Domain User Account (Windows)

A domain account on Windows that is a member of the Domain Users group.

Domain Users (Windows)

A global group that, by default, includes all user accounts in a domain. When you create a user account in a
domain, it is added to this group automatically.

Endpoint

A PBS server, scheduler, or MoM daemon.

Enterprise Admins (Windows)

A group that exists only in the root domain of an Active Directory forest of domains. The group is authorized to
make forest-wide changes in Active Directory, such as adding child domains.

Entity, PBS entity

A user, group, or host.

Entity share

Setting job execution and/or preemption priority according to how much of the fairshare tree is assigned to each
job’s owner.

Event

A PBS operation or state transition. Also called action. For a list of events, see "Event Types" on page 87 in
the PBS Professional Hooks Guide.

Execution event hook

A hook that runs at an execution host. These hooks run after a job is received by MoM. Execution event hooks
have names prefixed with “execjob_”.

Execution host

A computer which runs PBS jobs. An execution host is a system with a single operating system (OS) image, a
unified virtual memory space, one or more CPUs and one or more IP addresses. Systems like Linux clusters,
which contain separate computational units each with their own OS, are collections of hosts. Systems such as
the HPE 8600 are also collections of hosts.

An execution host can be comprised of one or more vnodes. On the HPE 8600, each blade is treated as a vnode.
See "Vnode".

Execution queue

A queue from which a job can be executed.
RG-6 PBS Professional 2020.1.1 Reference Guide

Glossary of Terms Chapter 1
Failover

The PBS complex can run a backup server. If the primary server fails, the secondary takes over without an
interruption in service.

Failure action

The action taken when a hook fails to execute. Specified in the fail_action hook attribute. See "Using the
fail_action Hook Attribute" on page 37 in the PBS Professional Hooks Guide.

Fairshare

A scheduling policy that prioritizes jobs according to how much of a specified resource is being used by, and
has recently been used by, job submitters. Job submitters can be organized into groups and subgroups, so that
jobs can also be prioritized according to those groups’ resource usage. Users and groups can each be allotted a
percentage of total resource usage. See "Using Fairshare" on page 138 in the PBS Professional Administrator’s
Guide.

File staging

File staging is the transfer of files between a specified storage location and the execution host. See "Stage in"
and "Stage out".

Finished jobs

Jobs whose execution is done, for any reason:

• Jobs which finished execution successfully and exited

• Jobs terminated by PBS while running

• Jobs whose execution failed because of system or network failure

• Jobs which were deleted before they could start execution

Floating license

A unit of application license dynamically allocated (checked out) when a user begins using an application on
some host (when the job starts), and deallocated (checked in) when a user finishes using the application (when
the job ends).

Furnishing queue/complex

In peer scheduling, the queue/complex from which jobs are pulled to be run at another queue/complex

Generic group limit

A limit that applies separately to groups at the server or a queue. This is the limit for groups which have no indi-
vidual limit specified. A limit for generic groups is applied to the usage across the entire group. A separate
limit can be specified at the server and each queue.

Generic project limit

Applies separately to projects at the server or a queue. The limit for projects which have no individual limit
specified. A limit for generic projects is applied to the usage across the entire project. A separate limit can be
specified at the server and each queue.

Generic user limit

A limit that applies separately to users at the server or a queue. This is the limit for users who have no individ-
ual limit specified. A separate limit for generic users can be specified at the server and at each queue.

Global resource

A global resource is defined in a resources_available attribute, at the server, a queue, or a host. Global
resources can be operated on via the qmgr command and are visible via the qstat and pbsnodes com-
mands. See "Global vs. Local Resources" on page 235 in the PBS Professional Administrator’s Guide.
PBS Professional 2020.1.1 Reference Guide RG-7

Chapter 1 Glossary of Terms
Group

A collection of system users. A user must be a member of at least one group, and can be a member of more than
one group.

Group access, Access by group

Refers to access to PBS objects, such as the server, queues, and reservations. A user in the specified group is
allowed access at the server, queues, and reservations

Group ID (GID)

Unique numeric identifier assigned to each group. See "Group".

Group limit

Refers to configurable limits on resources and jobs. This is a limit applied to the total used by a group, whether
the limit is a generic group limit or an individual group limit.

History jobs

Jobs which will no longer execute at this server:

• Moved jobs

• Finished jobs

Hold

A restriction which prevents a job from being executed. When a job has a hold applied to it, it is in the Held (H)
state. See section 2.46, “qhold”, on page 147.

Hook

Hooks are custom executables that can be run at specific points in the execution of PBS. They accept, reject, or
modify the upcoming action. This provides job filtering, patches or workarounds, and extends the capabilities
of PBS, without the need to modify source code.

Host

A machine running an operating system. A host can be made up of one or more vnodes. All vnodes of a host
share the same value for resources_available.host.

Host access, Access from host

Refers to user access at the server, queues, and reservations from the specified host

Hostname

A hostname is a string. A hostname is of the form <machine name>.<domain name>, where domain name is a
hierarchical, dot-separated list of subdomains. A hostname cannot contain the following:

• A dot (“.”), other than as a subdomain separator

• The commercial at sign, “@”, as this is often used to separate a file from the host in a remote file name

• To prevent confusion with port numbers, a hostname cannot contain a colon (":")

HTT

Intel’s Hyper-Threading Technology

Idle

A server daemon is idle when it is running, but only accepting handshake messages, not performing workload
management.

Importing a hook

When you “import a hook” using qmgr, you’re telling PBS which Python script to run when the hook is trig-
gered.
RG-8 PBS Professional 2020.1.1 Reference Guide

Glossary of Terms Chapter 1
Importing a hook configuration file

When you “import a hook configuration file” using qmgr, you’re telling PBS which file should be stored as the
configuration file for the specified hook.

Indirect resource

A shared vnode resource at vnode(s) where the resource is not defined, but which share the resource.

Individual group limit

Applies separately to groups at the server or a queue. This is the limit for a group which has its own individual
limit specified. An individual group limit overrides the generic group limit, but only in the same context, for
example, at a particular queue. The limit is applied to the usage across the entire group. A separate limit can be
specified at the server and each queue.

Individual project limit

Applies separately to projects at the server or a queue. Limit for a project which has its own individual limit
specified. An individual project limit overrides the generic project limit, but only in the same context, for
example, at a particular queue. The limit is applied to the usage across the entire project. A separate limit can
be specified at the server and each queue.

Individual user limit

Applies separately to users at the server or a queue. This is the limit for users who have their own individual
limit specified. A limit for an individual user overrides the generic user limit, but only in the same context, for
example, at a particular queue. A separate limit can be specified at the server and each queue.

Installation account

The account used by the administrator when installing PBS. Not the pbsadmin account used by PBS.

Interactive job

A job where standard input and output are connected to the terminal from which the job was submitted.

Job or Batch job

A unit of work managed by PBS. A job is a related set of tasks, created and submitted by the user. The user
specifies the resources required by the job, and the processes that make up the job. When the user submits a job
to PBS, the user is handing off these tasks to PBS to manage. PBS then schedules the job to be run, and man-
ages the running of the job, treating the tasks as parts of a whole. A job is usually composed of a set of direc-
tives and a shell script.

Job array

A job array is a container for a collection of similar jobs submitted under a single job ID. It can be submitted,
queried, modified and displayed as a unit. The jobs in the collection are called subjobs. For more on job arrays,
see "Job Arrays", on page 149 of the PBS Professional User’s Guide.

Job array identifier

The identifier returned upon success when submitting a job array.

Job array identifiers are a sequence number followed by square brackets:

<sequence number>[][.<server name>][@<server name>]
Example:

1234[]

Note that some shells require that you enclose a job array ID in double quotes.

The largest value that sequence number can be is set in the max_job_sequence_id server attribute. This
attribute defaults to 9999999. Minimum value for this attribute is 9999999, and maximum is
999999999999. After maximum for sequence number has been reached, job array IDs start again at 0.
PBS Professional 2020.1.1 Reference Guide RG-9

Chapter 1 Glossary of Terms
Job array range

A specification for a set of subjobs within a job array. When specifying a range, indices used must be valid
members of the job array’s indices. Format:

<sequence number>[<first>-<last>:<step>][.server][@new server]
first is the first index of the subjobs.

last is the last index of the subjobs.

step is the stepping factor.

Job ID, Job identifier

When a job is successfully submitted to PBS, PBS returns a unique identifier for the job. Format:

<sequence number>[.<server>][@<new server>]
The <server> portion indicates the name of the original server where the job was submitted.

The @<new server> portion indicates the current location of the job if it is not at the original server.

The largest value that sequence number can be is set in the max_job_sequence_id server attribute. This
attribute defaults to 9999999. Minimum value for this attribute is 9999999, and maximum is
999999999999. After maximum for sequence number has been reached, job IDs start again at 0.

Job name, Job array name

A job name or job array name can be at most 230 characters. It must consist only of alphabetic, numeric, plus
sign (“+”), dash or minus or hyphen (“-”), underscore (“_”), and dot or period (“.”) characters.

Default: if a script is used to submit the job, the job’s name is the name of the script. If no script is used, the
job’s name is “STDIN”.

Job state

A job exists in one of the possible states throughout its existence within the PBS system. For example, a job can
be queued, running, or exiting. See "States” on page 361.

Job-specific ASAP reservation, ASAP reservation

Reservation created for a specific queued job, for the same resources the job requests. PBS schedules the reser-
vation to run as soon as possible, and PBS moves the job into the reservation. Created when you use
pbs_rsub -Wqmove=<job ID> on a queued job.

Job-specific now reservation, now reservation

Reservation created for a specific running job. PBS creates a job-specific now reservation on the same
resources as the job is using, and moves the job into the reservation. The reservation is created and starts run-
ning immediately when you use pbs_rsub --job <job ID> on a running job.

Job-specific reservation

A reservation created for a specific job, for the same resources that the job requested.

Job-specific start reservation, start reservation

Reservation created for a specific queued job, for the same resources the job requests. PBS starts the job
according to scheduling policy. When the job starts, PBS creates and starts the reservation, and PBS moves the
job into the reservation. Created when you use qsub -Wcreate_resv_from_job=true on a queued
job.

Job Submission Description Language (JSDL)

Language for describing the resource requirements of jobs.
RG-10 PBS Professional 2020.1.1 Reference Guide

Glossary of Terms Chapter 1
Job-wide resource, server resource, queue resource

A job-wide resource, also called a server-level or queue-level resource, is a resource that is available to the
entire job at the server or queue.

A job-wide resource is available to be consumed or matched at the server or queue if you set the server or queue
resources_available.<resource name> attribute to the available or matching value. For example, you can
define a custom resource called FloatingLicenses and set the server’s resources_available.FloatingLicenses
attribute to the number of available floating licenses.

Examples of job-wide resources are shared scratch space, application licenses, or walltime.

A job can request a job-wide resource for the entire job, but not for individual chunks. Job-wide resources are
requested outside of a selection statement, in this form:

-l keyword=value[,keyword=value ...]
where keyword identifies either a consumable resource or a time-based resource such as walltime.

A resource request “outside of a selection statement” means that the resource request comes after “-l”, but not
after “-lselect=”.

Kill a job

To terminate the execution of a job.

Leaf

An endpoint (a server, scheduler, or MoM daemon.)

License Manager Daemon (lmx-serv-altair)

Daemon that functions as the license server. ALM license server. See the PBS Works Licensing Guide.

License server

Manages licenses for PBS jobs. ALM license server. See the PBS Works Licensing Guide.

License Server List Configuration

One form of redundant license server configuration. A collection of "<port number>@<hostname>" settings,
pointing to license servers managing Altair licenses. Each server on the list is tried in turn. There could be X
licenses on <server1>, Y licenses on <server2>, and Z licenses on <server3>, and the total licenses available
would actually be X+Y+Z, but a request must be satisfied only by one server at a time. The first running server
is the only server queried. See the PBS Works Licensing Guide.

Limit

A maximum that can be applied in various situations:

• The maximum number of jobs that can be queued

• The maximum number of jobs that can be running

• The maximum number of jobs that can be queued and running

• The maximum amount of a resource that can be allocated to queued jobs

• The maximum amount of a resource that can be consumed at any time by running jobs

• The maximum amount of a resource that can be allocated to queued and running jobs

Linux-Windows complex, Windows-Linux complex

A PBS complex with a Linux server/scheduler/comm host and Windows execution and client hosts.

Load balance

Scheduling policy wherein jobs are distributed across multiple hosts to even out the workload on each host.
PBS Professional 2020.1.1 Reference Guide RG-11

Chapter 1 Glossary of Terms
Local resource

A local resource is defined in a Version 1 MoM configuration file. Local resources cannot be operated on via
the qmgr command and are not visible via the qstat and pbsnodes commands. Local resources can be
used by a scheduler. See "Global vs. Local Resources" on page 235 in the PBS Professional Administrator’s
Guide.

Manager

A person who has been granted Manager privilege by being listed in the server’s managers attribute. A Man-
ager is authorized to use all restricted capabilities of PBS. A PBS Manager may act upon the server, queues, or
jobs. See "Manager" on page 361 in the PBS Professional Administrator’s Guide.

Managing vnode

The vnode where a shared vnode resource is defined, and which manages the resource.

Master provisioning script, Master script (Hooks)

The script that makes up the provisioning hook.

Memory-only vnode

Represents a node board that has only memory resources (no CPUs).

Mixed-mode complex

A PBS complex with a Linux server/scheduler/comm host, Linux execution and client hosts, and Windows exe-
cution and client hosts.

MoM

The daemon which runs on an execution host, managing the jobs on that host. MoM is the informal name for
the process called pbs_mom. One MoM runs on each execution host.

MoM runs each job when it receives a copy of the job from the server. MoM creates a new session that is as
identical to the user’s login session as possible. For example under Linux, if the user’s login shell is csh, MoM
creates a session in which .login is run as well as .cshrc. MoM returns the job’s output to the user when
directed to do so by the server.

MoM is a reverse-engineered acronym that stands for “Machine Oriented Mini-server”.

Monitoring

The act of tracking and reserving system resources and enforcing usage policy. This covers both user-level and
system-level monitoring as well as monitoring running jobs. Tools are provided to aid human monitoring of the
PBS system as well.

Primary execution host MoM (was Mother Superior)

The MoM on the head or first host of a multihost job. This MoM controls the job, communicates with the
server, and controls and consolidates resource usage information. When a job is to run on more than one execu-
tion host, the job is sent to the MoM on the primary execution host, which then starts the job.

Moved jobs

Jobs which were moved to another server

No longer used. See "Execution host".

Non-consumable resource

A non-consumable resource is a resource that is not reduced or taken up by being used. Examples of non-con-
sumable resources are Boolean resources and walltime. See "Consumable vs. Non-consumable Resources" on
page 234 in the PBS Professional Administrator’s Guide.

Non-job event hook

A hook that is not directly related to a specific job. Non-job event hooks are periodic hooks, startup hooks, pro-
visioning hooks, and reservation creation hooks.
RG-12 PBS Professional 2020.1.1 Reference Guide

Glossary of Terms Chapter 1
Now reservation, job-specific now reservation

Reservation created for a specific running job. PBS creates a job-specific now reservation on the same
resources as the job is using, and moves the job into the reservation. The reservation is created and starts run-
ning immediately when you use pbs_rsub --job <job ID> on a running job.

nppcu

Number of Processors Per Compute Unit - Cray BASIL 1.3 attribute in the RESERVE XML for specifying how
many processors of a compute unit should be used.

Object, PBS object

An element of PBS such as the server, a queue, or a reservation

Occurrence of a standing reservation

An instance of the standing reservation.

An occurrence of a standing reservation behaves like an advance reservation, with the following exceptions:

• While a job can be submitted to a specific advance reservation, it can only be submitted to the standing res-
ervation as a whole, not to a specific occurrence. You can only specify when the job is eligible to run. See
the qsub(1B) man page.

• When an advance reservation ends, it and all of its jobs, running or queued, are deleted, but when an occur-
rence ends, only its running jobs are deleted.

Each occurrence of a standing reservation has reserved resources which satisfy the resource request, but each
occurrence may have its resources drawn from a different source. A query for the resources assigned to a stand-
ing reservation will return the resources assigned to the soonest occurrence, shown in the resv_nodes attribute
reported by pbs_rstat.

Operator

This term means a person who has been granted Operator privilege by being listed in the server’s operators
attribute. An Operator can use some but not all of the restricted capabilities of PBS. See "Operator" on page
360 in the PBS Professional Administrator’s Guide.

Overall limit

Limit on the total usage. In the context of server limits, this is the limit for usage at the PBS complex. In the
context of queue limits, this is the limit for usage at the queue. An overall limit is applied to the total usage at
the specified location. Separate overall limits can be specified at the server and each queue.

Owner, Job owner

The user who submitted a specific job to PBS.

Parameter

A parameter specifies an element of the behavior of a component of PBS. For example, MoMs have parame-
ters specifying which events to log, or what the maximum load should be. Parameters are specified by editing
the component’s configuration files.

Parent vnode

For single-vnode machines, the only vnode is the parent vnode.

For multi-vnode machines, there is a vnode called the parent vnode. A parent vnode does not correspond to any
actual hardware. The parent vnode is used to define any placement set information that is invariant for a given
host. The parent vnode is also used to define dynamic host-level resources, and can be used to define shared
resources. See "Parent Vnodes and Child Vnodes" on page 38 in the PBS Professional Administrator’s Guide.
We used to call this vnode the “natural vnode”.

For multi-vnode machines, vnodes that represent hardware are called child vnodes. See "Child vnode” on
page 3.
PBS Professional 2020.1.1 Reference Guide RG-13

Chapter 1 Glossary of Terms
Node

A host

pbshook

Keyword used by qmgr to operate on built-in hooks.

PBS Entity

A user, group, or host

pbs module

The pbs module is an interface to PBS and the hook environment. The interface is made up of Python objects,
which have attributes and methods. You can operate on these objects using Python code.

PBS Object

An element of PBS such as the server, a queue, or a reservation

PBS Administrator

Same as Administrator.

Linux: person with Manager privilege and root access.

Windows: person with Manager privilege who is a member of the local Administrators group.

A person who administers PBS, performing functions such as downloading, installing, upgrading, configuring,
or managing PBS.

PBS Administrator is distinguished from “site administrator”, although often these are the same person.

pbsadmin (Windows)

The account that is used to execute the PBS MoM, pbs_mom, via the Service Control Manager on Windows.
This must be “pbsadmin”.

PBS_HOME

The path containing PBS files. The path under which PBS files are installed on the local system.

Default: /var/spool/pbs

PBS_EXEC

The path containing PBS executables. The path under which PBS executables are installed on the local system.

Default: /opt/pbs

PBS Professional

A workload management system consisting of a server, a scheduler, and any number of execution hosts each
managed by a MoM. PBS accepts batch jobs from users, and schedules them on execution hosts according to
the policy chosen by the site. PBS manages the jobs and their output according to site-specified policy.

Peer scheduling

A feature allowing different PBS complexes to automatically run each others’ jobs. This way jobs can be
dynamically load-balanced across the complexes. Each complex involved in peer scheduling is called a peer.

Placement set

A set of vnodes on which jobs can be run, selected so that the job will run as efficiently as possible. Placement
sets are used to improve task placement (optimizing to provide a “good fit”) by exposing information on system
configuration and topology. See "Placement Sets" on page 168 in the PBS Professional Administrator’s Guide.

Placement set series

The set of placement sets defined by a resource, where each set has the same value for the resource. If the
resource takes on N values, there are N placement sets in the series. See "Placement Sets" on page 168 in the
PBS Professional Administrator’s Guide.
RG-14 PBS Professional 2020.1.1 Reference Guide

Glossary of Terms Chapter 1
Placement pool

All of the placement sets defined at a PBS object. Each queue can have its own placement pool, and the server
can have its own placement pool. See "Placement Sets" on page 168 in the PBS Professional Administrator’s
Guide.

Policy, Scheduling policy

The set of rules by which a scheduler selects jobs for execution.

POSIX

Refers to the various standards developed by the Technical Committee on Operating Systems and Application
Environments of the IEEE Computer Society under standard P1003.

Preempt

Stop one or more running jobs in order to start a higher-priority job.

Preemption level

Job characteristic used to determine whether a job may preempt another or may be preempted, such as being in
an express queue, starving, having an owner who is over a soft limit, being a normal job, or having an owner
who is over a fairshare allotment.

Preemption method

The method by which a job is preempted. This can be checkpointing, suspension, or requeueing.

Preemption target

A preemption target is a job in a specified queue or a job that has requested a specified resource. The queue
and/or resource is specified in another job’s Resource_List.preempt_targets.

Pre-execution event hook

A hook that runs before the job is accepted by MoM. These hooks do not run on execution hosts. Pre-execution
event hooks are for job submission, moving a job, altering a job, or just before sending a job to an execution
host.

Primary scheduler

The PBS Professional scheduler daemon which is running during normal operation.

Primary execution host

The execution host where a job’s top task runs, and where the MoM that manages the job runs.

Primary server

The PBS Professional server daemon which is running during normal operation.

Primetime and non-primetime

An arbitrary, defined set of time slots during which scheduling follows the rules specified for primetime. By
default primetime is 24/7, but you can define it to be any desired time slots. If a time slot is not primetime, it is
non-primetime, during which scheduling follows non-primetime rules. There are default behaviors for prime-
time and non-primetime, but you can set up the behavior you want for each type. You can also define primetime
and non-primetime queues. Jobs in a primetime queue run only during primetime, and jobs in non-primetime
queues run only during non-primetime. See "Using Primetime and Holidays" on page 191 in the PBS Profes-
sional Administrator’s Guide.

Project

In PBS, a project is a way to group jobs independently of users and groups. A project is a tag that identifies a set
of jobs. Each job’s project attribute specifies the job’s project.

Project limit

This is a limit applied to the total used by a project, whether the limit is a generic project limit or an individual
project limit.
PBS Professional 2020.1.1 Reference Guide RG-15

Chapter 1 Glossary of Terms
Provision

To install an OS or application, or to run a script which performs installation and/or setup

Provisioned vnode

A vnode which, through the process of provisioning, has an OS or application that was installed, or which has
had a script run on it

Provisioning hook

The hook which performs the provisioning, either by calling other scripts or by running commands

Provisioning tool

A tool that performs the actual provisioning, e.g. HPE Performance Cluster Manager (HPCM).

Pulling queue

In peer scheduling, the queue into which jobs are pulled, and from which they are run

Queue

A queue is a named container for jobs at a server. There are two types of queues in PBS: routing queues and exe-
cution queues. A routing queue is a queue used to move jobs to other queues including those that exist on other
PBS servers. A job must reside in an execution queue to be eligible to run and remains in an execution queue
during the time it is running. In spite of the name, jobs in a queue need not be processed in queue order (first-
come first-served or FIFO).

Queuing

The collecting together of work or tasks to be run on a computer. Users submit tasks or “jobs” to the resource
management system where they are queued up until the system is ready to run them.

Redundant License Server Configuration

Allows licenses to continue to be available should one or more license servers fail. There are two types: 1)
license server list configuration, and 2) three-server configuration. See the PBS Works Licensing Guide.

Reject an action (Hooks)

An action is rejected when a hook prevents the action from taking place.

Requeue

The process of stopping a running job and putting it back into the queued (“Q”) state.

Rerunnable

If a running PBS job can be terminated and then restarted from the beginning without harmful side effects, the
job is rerunnable. The job’s Rerunnable attribute must be set to y in order for PBS to consider a job to be rerun-
nable.

Reservation degradation

PBS attempts to ensure that reservations run by finding usable vnodes when reservation vnodes become
unavailable.

Reservation ID, reservation identifier

When a reservation is successfully submitted to PBS, PBS returns a unique identifier for the reservation.

Format for advance reservation:

R<sequence number>[.server][@new server]
Format for standing reservation:

S<sequence number>[.server][@new server]
Format for maintenance reservation:

M<sequence number>[.server][@new server]
RG-16 PBS Professional 2020.1.1 Reference Guide

Glossary of Terms Chapter 1
Resource

A resource can be something used by a job, such as CPUs, memory, high-speed switches, scratch space, appli-
cation licenses, or time, or it can be an arbitrary item defined for another purpose. PBS has built-in resources,
and allows custom-defined resources. See "Using PBS Resources" on page 229 in the PBS Professional
Administrator’s Guide.

Restart

A job that was stopped after being checkpointed while previously executing is executed again, starting from the
point where it was checkpointed.

Restart File

The job-specific file that is written by the checkpoint script or tool. This file contains any information needed to
restart the job from where it was when it was checkpointed.

Restart Script

The script that MoM runs to restart a job. This script is common to all jobs, and so must use the information in
a job’s restart file to restart the job.

Route a job

When PBS moves a job between queues. PBS provides a mechanism whereby a job is automatically moved
from a routing queue to another queue. This is performed by PBS. The resource request for each job in a rout-
ing queue is examined, and the job is placed in a destination queue which matches the resource request. The
destination queue can be an execution queue or another routing queue.

Routing queue

A queue that serves as a temporary holding place for jobs, before they are moved to another queue. Jobs cannot
run from routing queues.

 Scheduler

A scheduler is a daemon which implements some or all of the site’s job scheduling policy controlling when and
where each job is run. A scheduler is a process called pbs_sched.

Scheduling

The process of selecting which jobs to run when and where, according to a predetermined policy. Sites balance
competing needs and goals on the system(s) to maximize efficient use of resources (both computer time and
people time).

Scheduling policy

Scheduling policy determines when each job runs, and and how much of each resource it can use. Scheduling
policy consists of a system for determining the priority of each job, combined with a set of limits on how many
jobs can be run, and/or how much of each resource can be used.

Schema Admins (Windows)

A group that exists only in the root domain of an Active Directory forest of domains. The group is authorized to
make schema changes in Active Directory.

Secondary scheduler

The PBS Professional scheduler daemon which takes over when the primary scheduler is not available.

Secondary server

The PBS Professional server daemon which takes over when the primary server fails.

Sequence number

The numeric part of a job ID, job array ID, or reservation ID, for example, 1234. The largest value that can be
used for a sequence number is set in the max_job_sequence_id job attribute.
PBS Professional 2020.1.1 Reference Guide RG-17

Chapter 1 Glossary of Terms
 Server

The central PBS daemon, which does the following:

• Handles PBS commands

• Receives and creates batch jobs

• Sends jobs for execution

The server is the process called pbs_server.

Each PBS complex has one primary server, and if the complex is configured for failover, a secondary server.

The server contains a licensing client which communicates with the licensing server for licensing PBS jobs.

PBS provides a default server; see "Default server” on page 5.

Server name

A server name is an ASCII character string. Format:

<hostname>[:<port number>]
The network routine gethostbyname is used to translate this to a network address. The network routine
getservbyname is used to determine the port number. An alternate port number may be specified by
appending a colon (“:”) and the port number to the hostname.

Shared resource

A vnode resource defined and managed at one vnode, but available for use at others.

Shrink-to-fit job

A job that requests the min_walltime resource. A shrink-to-fit job requests a running time in a specified range,
where min_walltime is required, and max_walltime is not. PBS computes the actual walltime.

Sister

Any MoM that is not on the head or first host of a multihost job. A sister is directed by the primary execution
host. Also called a subordinate MoM.

Sisterhood

All of the MoMs involved in running a particular job.

Site

A location which for our purposes uses (or will use) PBS. A site can employ one or more PBS complexes, each
made up of any combination of hardware and software that PBS supports.

Snapshot Checkpoint

The checkpoint script or tool writes a restart file, and the job continues to execute. The job resumes from this
start file if the system experiences a problem during the job’s subsequent execution.

Soonest occurrence of a standing reservation

The occurrence which is currently active, or if none is active, it is the next occurrence.

Stage in

The process of moving one or more job-related files from a storage location to the execution host before running
the job.

Stage out

The process of moving one or more job-related files from the execution host to a storage location after running
the job.
RG-18 PBS Professional 2020.1.1 Reference Guide

Glossary of Terms Chapter 1
Staging and execution directory

The staging and execution directory is a directory on the execution host where the following happens:

• Files are staged into this directory before execution

• The job runs in this directory

• Files are staged out from this directory after execution

A job-specific staging and execution directory can be created for each job, or PBS can use a specified directory,
or a default directory. See "Staging and Execution Directories for Job" on page 513 in the PBS Professional
Administrator’s Guide.

Standing reservation

An advance reservation which recurs at specified times. For example, the user can reserve 8 CPUs and 10GB
every Wednesday and Thursday from 5pm to 8pm, for the next three months.

Start reservation, Job-specific start reservation

Reservation created for a specific queued job, for the same resources the job requests. PBS starts the job
according to scheduling policy. When the job starts, PBS creates and starts the reservation, and PBS moves the
job into the reservation. Created when you use qsub -Wcreate_resv_from_job=true on a queued
job.

State

The PBS server, vnodes, reservations, and jobs can be in various states, depending on what PBS is doing. For
example the server can be idle or scheduling, vnodes can be busy or free, and jobs can be queued or running,
among other states. For a complete description of states, see "States” on page 361.

Strict ordering

A scheduling policy where jobs are run according to policy order. If the site-specified policy dictates a particu-
lar priority ordering for jobs, that is the order in which they are run. Strict ordering can be modified by backfill-
ing in order to increase throughput. See "Backfilling".

Subject

A process belonging to a job run by an authorized, unprivileged user (a job submitter.)

Subjob

One of the jobs in a job array, e.g. 1234[7], where 1234[] is the job array itself, and 7 is the index. Queued
subjobs are not individually listed in the queue; only their job array is listed. Running subjobs are individually
listed.

Subjob index

The unique index which differentiates one subjob from another. This must be a non-negative integer.

Subordinate MoM

Any MoM that is not on the head or first host of a multihost job. A subordinate MoM is directed by the primary
execution host. Also called a sister.

Task

A process belonging to a job. A POSIX session started by MoM on behalf of a job.

Task placement

The process of choosing a set of vnodes to allocate to a job that will both satisfy the job's resource request
(select and place specifications) and satisfy the configured scheduling policy.

Three-server configuration

One form of redundant license server configuration. Means that if any 2 of the 3 license servers are up and run-
ning (referred to as a quorum), the system is functional, with 1 server acting as master who can issue licenses. If
the master goes down, another server must take over as master. See the PBS Works Licensing Guide.
PBS Professional 2020.1.1 Reference Guide RG-19

Chapter 1 Glossary of Terms
TPP

TCP-based Packet Protocol. Protocol used by pbs_comm.

User

Has two meanings:

1. A person who submits jobs to PBS, as differentiated from Operators, Managers and administrators. See
"User" on page 360 in the PBS Professional Administrator’s Guide.

2. A system user, identified by a unique character string (the user name) and by a unique number (the user ID).
Any person using the system has a username and user ID.

User access, Access by user

The specified user is allowed access at the server, queues, and reservations .

User ID, UID

A unique numeric identifier assigned to each user.

User limit

Refers to configurable limits on resources and jobs. A limit placed on one or more users, whether generic or
individual.

Vchunk

The part of a chunk that is supplied by one vnode. If a chunk is broken up across multiple vnodes, each vnode
supplies a vchunk.

Version 1 configuration file

MoM configuration file containing MoM configuration parameters. See Chapter 3, "MoM Parameters", on
page 239.

Version 2 configuration file

Also called vnodedefs file. Vnode configuration file containing vnode attribute and resource settings. Created
using pbs_mom -s insert command. See "Version 2 Vnode Configuration Files" on page 42 in the PBS
Professional Administrator’s Guide.

Virtual processor, VP

PBS can treat a vnode as if it has more processors available than the number of physical processors. When
resources_available.ncpus is set to a number higher than the actual number of physical processors, the vnode
can be said to have virtual processors. Also called logical processors.

Vnode

A virtual node, or vnode, is an abstract object representing a host or a set of resources which form a usable part
of an execution host. This could be an entire host, or a nodeboard or a blade. A single host can be made up of
multiple vnodes. Each vnode can be managed and scheduled independently. Each vnode in a complex must
have a unique name. Vnodes on a host can share resources, such as node-locked licenses.

vnodedefs file

A Version 2 configuration file. Vnode configuration file containing vnode attribute and resource settings. Cre-
ated using pbs_mom -s insert command. See "Version 2 Vnode Configuration Files" on page 42 in the
PBS Professional Administrator’s Guide.

vp

Virtual processor. The smallest unit of execution resources that can be specified to run a job. Cray refers to these
as a CPU (aka a BASIL PE, an Intel thread or an AMD core).

Windows-Linux complex, Linux-Windows complex

A PBS complex with a Linux server/scheduler/comm host and Windows execution and client hosts.
RG-20 PBS Professional 2020.1.1 Reference Guide

2

PBS Commands

In this chapter, we describe each PBS command, including any options, operands, etc.

2.1 Our Command Notation

Optional Arguments

Optional arguments are enclosed in square brackets. For example, in the qstat man page, the -E option is shown this
way:

qstat [-E]

To use this option, you would type:

qstat -E

Variable Arguments

Variable arguments (where you fill in the variable with the actual value) such as a job ID or vnode name are enclosed in
angle brackets. Here's an example from the pbsnodes man page:

pbsnodes -v <vnode>

To use this command on a vnode named “my_vnode”, you’d type:

pbsnodes -v my_vnode

Optional Variables

Optional variables are enclosed in angle brackets inside square brackets. In this example from the qstat man page, the
job ID is optional:

qstat [<job ID>]

To query the job named “1234@my_server”, you would type this:

qstat 1234@my_server

Literal Terms

Literal terms appear exactly as they should be used. For example, to get the version for a command, you type the com-
mand, then "--version". Here’s the syntax:

qstat --version

And here’s how you would use it:

qstat --version

2.2 Requirements for Commands

Some PBS commands require root privilege or PBS Operator or Manager privilege in order to run. Some can be exe-
cuted by anyone, but the output depends upon the privilege of the user.

Most PBS commands require that the server be running; some require that MoMs be running.
PBS Professional 2020.1.1 Reference Guide RG-21

Chapter 2 PBS Commands
The following table lists the commands, and indicates the permissions required to use each, and whether the server or
MoM must be running.

Table 2-1: Permission and Daemon Requirements for Commands

Command Action
Permission
Required

Server
Must Be

Running?

MoM
Must Be

Running?

mpiexec Runs MPI programs under PBS
on Linux

Any No No

pbs Start, stop, restart, or get the
PIDs of PBS daemons

Root on Linux; Admin
on Windows

No No

pbsdsh Distributes tasks to vnodes under
PBS

Any No Yes

pbsfs Show or manipulate PBS fair-
share usage data

Any Yes No

pbsnodes Query PBS host or vnode status,
mark hosts free or offline, change
the comment for a host, or output
vnode information

Result depends on per-
mission

Yes No

pbsrun General-purpose wrapper script
for mpirun

Root or PBS adminis-
trator only

No No

pbsrun_unwrap Unwraps mpirun, reversing
pbsrun_wrap

Root on Linux No No

pbsrun_wrap General-purpose script for wrap-
ping mpirun in pbsrun

Root on Linux No No

pbs_account For Windows. Manage PBS ser-
vice account

Admin on Windows No No

pbs_attach Attaches a session ID to a PBS
job

Any Yes Yes

pbs_comm Starts the PBS communication
daemon

Root on Linux No No

pbs_dataservice Start, stop, or check the status of
PBS data service

Root on Linux No No

pbs_ds_password Sets or changes data service user
account or its password

Root on Linux; Admin
on Windows

No No

pbs_hostn Reports hostname and network
address(es)

Any No No

pbs_idled Runs PBS daemon that monitors
the console and informs
pbs_mom of idle time

Root or PBS adminis-
trator only

No No

pbs_iff Tests authentication with the
server

Any; useful only to root Yes No
RG-22 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
pbs_interactive For Windows. Register, unregis-
ter, or get the version of
PBS_INTERACTIVE service

Administrator only No No

pbs_lamboot PBS front end to LAM’s lam-
boot program

Any No No

pbs_login Caches encrypted user password
for authentication

Any No, for PBS
service
account

Yes, for job
submitters

No

pbs_mkdirs For Windows. Create, or fix the
permissions of, the directories
and files used by PBS

PBS administrator only No No

pbs_mom Runs the PBS job monitoring and
execution daemon

Root on Linux; Admin
on Windows

No No

pbs_mpihp Runs an MPI application in a
PBS job with HP MPI

Any Yes Yes

pbs_mpilam Runs MPI programs under PBS
with LAM MPI

Any Yes Yes

pbs_mpirun Runs MPI programs under PBS
with MPICH

Any Yes Yes

pbs_probe Deprecated. Reports PBS diag-
nostic information and fixes per-
mission errors

Root or PBS adminis-
trator only

No No

pbs_python Python interpreter for debugging
a hook script from the command
line

Any No No

pbs_ralter Modify an existing advance,
standing, or job-specific reserva-
tion

Job owner or PBS
administrator

Yes No

pbs_rdel Deletes a PBS advance, standing,
or job-specific reservation

Any Yes No

pbs_release_nodes Releases sister hosts or vnodes
assigned to a PBS job

Job owner, PBS Man-
ager, Operator, admin-
istrator, root on Linux,
Admin on Windows

Yes Yes

pbs_rstat Shows status of PBS advance,
standing, or job-specific reserva-
tions

Any Yes No

Table 2-1: Permission and Daemon Requirements for Commands

Command Action
Permission
Required

Server
Must Be

Running?

MoM
Must Be

Running?
PBS Professional 2020.1.1 Reference Guide RG-23

Chapter 2 PBS Commands
pbs_rsub Creates a PBS advance, standing,
or job-specific reservation

Any Yes No

pbs_sched Runs a PBS scheduler Root on Linux No No

pbs_server Starts a PBS batch server Root on Linux No No

pbs_snapshot Captures PBS data to be used for
diagnostics

Root on Linux Yes No

pbs_tclsh Deprecated. TCL shell with
TCL-wrapped PBS API

Any No No

pbs_tmrsh TM-enabled replacement for
rsh/ssh for use by MPI imple-
mentations

Any No Yes

pbs_topologyinfo Reports topological information Root or Windows
administrator only

No No

pbs_wish Deprecated. TK window shell
with TCL-wrapped PBS API

Any No No

printjob Prints job information Root or Windows
Administrator only

No No

qalter Alters a PBS job Any Yes No

qdel Deletes PBS jobs Any Yes No

qdisable Prevents a queue from accepting
jobs

Manager or Operator
only

Yes No

qenable Allows a queue to accept jobs Manager or Operator
only

Yes No

qhold Holds PBS batch jobs Some holds can be set
by Operator, Manager,
root, or administrator
only

Yes No

qmgr Administrator’s command inter-
face for managing PBS

Any Yes No

qmove Moves a PBS job from one queue
to another

Any; managers and
operators can move
jobs in some cases
where unprivileged
users cannot

Yes No

qmsg Writes message string into one or
more job output files

Any Yes No

qorder Swaps queue positions of two
PBS jobs

Any Yes No

Table 2-1: Permission and Daemon Requirements for Commands

Command Action
Permission
Required

Server
Must Be

Running?

MoM
Must Be

Running?
RG-24 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.2.1 Windows Requirements

Under Windows, use double quotes when specifying arguments to PBS commands.

qrerun Requeues a PBS job Manager or Operator
only

Yes No

qrls Releases holds on PBS jobs Some holds can be
released by Operator,
Manager, root, or
administrator only

Yes No

qrun Runs a PBS job immediately Operator or Manager
only

Yes No

qselect Selects specified PBS jobs Any Yes No

qsig Send signal to PBS job Operator or Manager
required to send
admin-suspend,
admin-resume, sus-

pend, and resume.
Any privilege for other
signals.

Yes Yes

qstart Turns on scheduling or routing
for the jobs in a PBS queue

Operator or Manager
only

Yes No

qstat Displays status of PBS jobs,
queues, or servers

Result depends on per-
mission

Yes No

qstop Prevents PBS jobs in the speci-
fied queue from being scheduled
or routed

Operator or Manager
only

Yes No

qsub Submits a job to PBS Any Yes No

qterm Terminates one or both PBS serv-
ers, and optionally terminates
scheduler and/or MoMs

Operator or Manager
only

Yes No

tracejob Extracts and prints log messages
for a PBS job

Root or PBS adminis-
trator only

No No

win_postinstall.py For Windows. Configures PBS
services

Administrator No No

Table 2-1: Permission and Daemon Requirements for Commands

Command Action
Permission
Required

Server
Must Be

Running?

MoM
Must Be

Running?
PBS Professional 2020.1.1 Reference Guide RG-25

Chapter 2 PBS Commands
2.3 mpiexec

Runs MPI programs under PBS on Linux

2.3.1 Synopsis

mpiexec

mpiexec --version

2.3.2 Description

The PBS mpiexec command provides the standard mpiexec interface on a system running supported versions of HPE
MPI. If executed on a different system, it will assume it was invoked by mistake. In this case it will use the value of
PBS_O_PATH to search for the correct mpiexec. If one is found, the PBS mpiexec will exec it.

The PBS mpiexec calls the HPE mpirun(1).

It is transparent to the user; MPI jobs submitted outside of PBS run as they would normally. MPI jobs can be launched
across multiple HPE systems. PBS will manage, track, and cleanly terminate multi-host MPI jobs. PBS users can run an
MPI job within a specific partition.

If CSA has been configured and enabled, PBS will collect accounting information on all tasks launched by an MPI job.
CSA information will be associated with the PBS job ID that invoked it, on each execution host.

If the PBS_MPI_DEBUG environment variable’s value has a nonzero length, PBS writes debugging information to stan-
dard output.

2.3.3 Usage

The PBS mpiexec command presents the mpiexec interface described in section “4.1 Portable MPI Process Startup”
of the “MPI-2: Extensions to the Message-Passing Interface” document in http://www.mpiforum.org/docs/
mpi-20-html/node42.htm

2.3.4 Options

--version

The mpiexec command returns its PBS version information and exits. This option can only be used alone.

2.3.5 Requirements

• System running a supported version of HPE MPI.

• PBS uses HPE’s mpirun(1) command to launch MPI jobs. HPE’s mpirun must be in the standard location.

• The location of pbs_attach() on each vnode of a multi-vnode MPI job must be the same as it is on the primary
execution host vnode.

• In order to run multihost jobs, the HPE Array Services must be correctly configured. HPE systems communicating
via HPE’s Array Services must all use the same version of the sgi-arraysvcs package. HPE systems communi-
cating via HPE’s Array Services must have been configured to interoperate with each other using the default array.
See HPE’s array_services(5) man page.
RG-26 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.3.6 Environment Variables

PBS_ENVIRONMENT

The PBS_ENVIRONMENT environment variable is used to determine whether mpiexec is being called from
within a PBS job.

PBS_MPI_DEBUG

The PBS mpiexec checks the PBS_MPI_DEBUG environment variable. If this variable has a nonzero
length, debugging information is written.

PBS_O_PATH

The PBS mpiexec uses the value of PBS_O_PATH to search for the correct mpiexec if it was invoked by
mistake.

2.3.7 Path

PBS’ mpiexec is located in PBS_EXEC/bin/mpiexec.

2.3.8 See Also

The PBS Professional Administrator's Guide, "pbs_attach” on page 55

HPE man pages: HPE's mpirun(1), HPE's mpiexec_mpt(1), HPE's array_services(5)
PBS Professional 2020.1.1 Reference Guide RG-27

Chapter 2 PBS Commands
2.4 pbs

Start, stop, restart, or get the PIDs of PBS daemons

2.4.1 Synopsis

pbs [start | stop | restart | status]

2.4.2 Description

The pbs command starts, stops or restarts all PBS daemons on the local machine, or reports the PIDs of all daemons
when given the status argument. Does not affect other hosts.

You can start, stop, restart, or status the PBS daemons using the systemctl command; see “Starting & Stopping PBS
on Linux” on page 159 in the PBS Professional Installation & Upgrade Guide.

2.4.2.1 Caveats

This command operates only on daemons that are marked as active in pbs.conf. For example, if PBS_START_MOM
is set to 0 in the local pbs.conf, this command will not operate on pbs_mom, and will not start, stop, or restart
pbs_mom.

This command is typically placed in /etc/init.d so that PBS starts up automatically.

2.4.2.2 Required Privilege

You need root privilege to use this command to start, stop, or restart PBS daemons.

A non-root user can use this command to get the PIDs of PBS daemons.

2.4.3 Arguments

restart

All daemons on the local machine are stopped, then they are restarted. PBS reports the name of the license
server and the number and type of licenses available.

start

Each daemon on the local machine is started. PBS reports the number and type of licenses available, as well as
the name of the license server. Any running jobs are killed.

status

PBS reports the PID of each daemon on the local machine.

stop

Each daemon on the local machine is stopped, and its PID is reported.

2.4.4 See Also

The PBS Professional Administrator's Guide, "pbs_comm” on page 57, "pbs_mom” on page 71, "pbs_sched” on
page 105, "pbs_server” on page 108
RG-28 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.5 pbsdsh

Distributes tasks to vnodes under PBS

2.5.1 Synopsis

pbsdsh [-c <copies>] [-s] [-v] [-o] -- <program> [<program args>]

pbsdsh [-n <vnode index>] [-s] [-v] [-o] -- <program >[<program args>]

pbsdsh --version

2.5.2 Description of pbsdsh Command

The pbsdsh command allows you to distribute and execute a task on each of the vnodes assigned to your job by execut-
ing (spawning) the application on each vnode. The pbsdsh command uses the PBS Task Manager, or TM, to distribute
the program on the allocated vnodes.

When run without the -c or the -n option, pbsdsh will spawn the program on all vnodes allocated to the PBS job. The
spawns take place concurrently; all execute at (about) the same time.

Note that the double dash must come after the options and before the program and arguments. The double dash is only
required for Linux.

The pbsdsh command runs one task for each line in the $PBS_NODEFILE. Each MPI rank gets a single line in the
$PBS_NODEFILE, so if you are running multiple MPI ranks on the same host, you still get multiple pbsdsh tasks on
that host.

2.5.2.1 Example

The following example shows the pbsdsh command inside of a PBS batch job. The options indicate that the user wants
pbsdsh to run the myapp program with one argument (app-arg1) on all four vnodes allocated to the job (i.e. the
default behavior).

#!/bin/sh

#PBS -l select=4:ncpus=1

#PBS -l walltime=1:00:00

pbsdsh ./myapp app-arg1

2.5.3 Options to pbsdsh Command

-c <copies>

The program is spawned copies times on the vnodes allocated, one per vnode, unless copies is greater than the
number of vnodes. If copies is greater than the number of vnodes, it wraps around, running multiple instances
on some vnodes. This option is mutually exclusive with -n.

-n <vnode index>

The program is spawned only on a single vnode, which is the vnode index-th vnode allocated. This option is
mutually exclusive with -c.

-o

No obit request is made for spawned tasks. The program does not wait for the tasks to finish.
PBS Professional 2020.1.1 Reference Guide RG-29

Chapter 2 PBS Commands
-s

The program is run in turn on each vnode, one after the other.

-v

Produces verbose output about error conditions and task exit status.

--version

The pbsdsh command returns its PBS version information and exits. This option can only be used alone

2.5.4 Operands

program

The first operand, program, is the program to execute. The double dash must precede program under Linux.

program args

Additional operands, program args, are passed as arguments to the program.

2.5.5 Standard Error

The pbsdsh command writes a diagnostic message to standard error for each error occurrence.

2.5.6 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide, "qsub” on page 213, "TM Library Rou-
tines" on page 93 in the PBS Professional Programmer’s Guide
RG-30 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.6 pbsfs

Show or manipulate PBS fairshare usage data

2.6.1 Synopsis

Showing usage data:

pbsfs [-c <entity1> <entity2>] [-g <entity>] [-I <scheduler name>] [-p] [-t]

Manipulating usage data:

pbsfs [-d] [-e] [-I <scheduler name>] [-s <entity> <usage value>]

Printing version:

pbsfs --version

2.6.2 Description

You can use the pbsfs command to print or manipulate a PBS scheduler’s fairshare usage data. You can print the usage
data in various formats, described below. Changes made using pbsfs take effect in the next scheduling cycle; you do
not need to restart or HUP a scheduler for changes to take effect.

We recommend that if you use the options that manipulate usage data, you should do this when a scheduler is not sched-
uling jobs, because scheduling while changing fairshare usage data may give unwanted results.

2.6.2.1 Prerequisites

The server must be running in order to use the pbsfs command.

2.6.2.2 Permissions

You must be root to run the pbsfs command; if not, it will print the error message, “Unable to access fair-
share data”.

2.6.3 Options to pbsfs

You can safely use the following options while jobs are being scheduled:

(no options)

Same as pbsfs -p.

-c <entity1> <entity2>

Compares two fairshare entities.

-g <entity>

Prints a detailed listing for the specified entity, including the path from the root of the tree to the entity.

-I <scheduler name>

Specifies name of scheduler whose data is to be manipulated or shown. Required for multischeds; optional for
default scheduler. Name of default scheduler is “default”. If not specified, pbsfs operates on default sched-
uler.
PBS Professional 2020.1.1 Reference Guide RG-31

Chapter 2 PBS Commands
-p

Prints the fairshare tree as a table, showing for each internal and leaf vertex the group ID of the vertex’s parent,
group ID of the vertex, vertex shares, vertex usage, and percent of shares allotted to the vertex.

-t

Prints the fairshare tree in a hierarchical format.

--version

The pbsfs command returns its PBS version information and exits. This option can only be used alone.

It is not recommended to be scheduling jobs when you use the following options:

-d

Decays the fairshare tree by the amount specified in the fairshare_decay_factor scheduler parameter.

-e

Trims fairshare tree to just the entities in the resource_group file. Unknown entities and their usage are
deleted; as a result the unknown group has no usage and no children.

-s <entity> <usage value>

Sets entity’s usage value to usage value. Editing a non-leaf entity is ignored. All non-leaf entity usage values
are calculated each time you use the pbsfs command to make changes.

2.6.3.1 Output Formats for pbsfs

The pbsfs command can print output in three different formats:

pbsfs -g <entity>

Prints a detailed listing for the specified entity. Example:

pbsfs –g pbsuser3

fairshare entity: pbsuser3

Resgroup: 20

cresgroup: 22

Shares: 40

Percentage: 24.000000%

fairshare_tree_usage: 0.832973

usage: 1000 (cput)

usage/perc: 4167

Path from root:

TREEROOT : 0 1201 / 1.000 = 1201

group2 : 20 1001 / 0.600 = 1668

pbsuser3 : 22 1000 / 0.240 = 4167
RG-32 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
pbsfs,

pbsfs -p

Prints the entire tree as a table, with data in columns. Example:

pbsfs

Fairshare usage units are in: cput

TREEROOT : Grp: -1 cgrp: 0 Shares: -1 Usage: 1201 Perc: 100.000%

group2 : Grp: 0 cgrp: 20 Shares: 60 Usage: 1001 Perc: 60.000%

pbsuser3 : Grp: 20 cgrp: 22 Shares: 40 Usage: 1000 Perc: 24.000%

pbsuser2 : Grp: 20 cgrp: 21 Shares: 60 Usage: 1 Perc: 36.000%

group1 : Grp: 0 cgrp: 10 Shares: 40 Usage: 201 Perc: 40.000%

pbsuser1 : Grp: 10 cgrp: 12 Shares: 50 Usage: 100 Perc: 20.000%

pbsuser : Grp: 10 cgrp: 11 Shares: 50 Usage: 100 Perc: 20.000%

unknown : Grp: 0 cgrp: 1 Shares: 0 Usage: 1 Perc: 0.000%

pbsfs -t

Prints the entire tree as a tree, showing group-child relationships. Example:

pbsfs –t

 TREEROOT(0)

 group2(20)

 pbsuser3(22)

 pbsuser2(21)

 group1(10)

 pbsuser1(12)

 pbsuser(11)

 unknown(1)

2.6.3.2 Data Output by pbsfs

cresgroup, cgrp

Group ID of the entity

fairshare entity

The specified fairshare tree entity

fairshare usage units

The resource for which a scheduler accumulates usage for fairshare calculations. This defaults to cput (CPU
seconds) but can be set in a scheduler’s configuration file.

fairshare_tree_usage

The entity’s effective usage. See "Computing Effective Usage (fairshare_tree_usage)" on page 143 in the PBS
Professional Administrator’s Guide.

Path from root

The path from the root of the tree to the entity. A scheduler follows this path when comparing priority between
two entities.

Percentage, perc

The percentage of the shares in the tree allotted to the entity, computed as fairshare_perc. See "Computing
Target Usage for Each Vertex (fairshare_perc)" on page 143 in the PBS Professional Administrator’s Guide.

Resgroup, Grp

Group ID of the entity’s parent group
PBS Professional 2020.1.1 Reference Guide RG-33

Chapter 2 PBS Commands
Shares

The number of shares allotted to the entity

usage

The amount of usage by the entity

usage/perc

The value a scheduler uses to the pick which entity has priority over another. The smaller the number the higher
the priority.

2.6.4 See Also

"Using Fairshare" on page 138 in the PBS Professional Administrator’s Guide.
RG-34 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.7 pbsnodes

Query PBS host or vnode status, mark hosts free or offline, change the comment for a host, or output vnode information

2.7.1 Synopsis

pbsnodes [-o | -r] [-s <server name>] [-C <comment>] <hostname> [<hostname> ...]

pbsnodes [-l] [-s <server name>]

pbsnodes -v <vnode> [<vnode> ...] [-s <server name>]

pbsnodes -a[v] [-S[j][L]] [-F json|dsv [-D <delimiter>]] [- s <server name>]

pbsnodes [-H] [-S[j][L]] [-F json|dsv [-D <delimiter>]] <hostname> [<hostname> ...]

pbsnodes --version

2.7.2 Description

The pbsnodes command is used to query the status of hosts or vnodes, to mark hosts FREE or OFFLINE, to edit a
host’s comment attribute, or to output vnode information. The pbsnodes command obtains host information by send-
ing a request to the PBS server.

2.7.2.1 Using pbsnodes

To list all vnodes:

pbsnodes -av

To print the status of the specified host or hosts, run pbsnodes with no options (except the -s option) and with a list of
hosts.

To print the command usage, run pbsnodes with no options and without a list of hosts.

To remove a vnode from the scheduling pool, mark it OFFLINE. If it is marked DOWN, when the server next queries
the MoM, and can connect, the vnode will be marked FREE.

To offline a single vnode in a multi-vnoded system, use:

qmgr -c "set node <vnode name> state=offline"

2.7.2.2 Output

The order in which hosts or vnodes are listed in the output of the pbsnodes command is undefined. Do not rely on out-
put being ordered.

If you print attributes, pbsnodes prints out only those attributes which are not at default values.

2.7.2.3 Permissions

PBS Manager or Operator privilege is required to execute pbsnodes with the -o or -r options, to view custom
resources which have been created to be invisible to users, and to see some output such as PBS version.
PBS Professional 2020.1.1 Reference Guide RG-35

Chapter 2 PBS Commands
2.7.3 Options to pbsnodes

(no options)

If neither options nor a host list is given, the pbsnodes command prints usage syntax.

-a

Lists all hosts and all their attributes (available and used.)

When used with the -v option, lists all vnodes.

When listing a host with multiple vnodes:

The output for the jobs attribute lists all the jobs on all the vnodes on that host. Jobs that run on more than
one vnode will appear once for each vnode they run on.

For consumable resources, the output for each resource is the sum of that resource across all vnodes on that
host.

For all other resources, e.g. string and Boolean, if the value of that resource is the same on all vnodes on
that host, the value is returned. Otherwise the output is the literal string “<various>”.

-C <comment>

Sets the comment attribute for the specified host(s) to the value of comment. Comments containing spaces
must be quoted. The comment string is limited to 80 characters. Usage:

pbsnodes -C <comment> <hostname> [<hostname> ...]

To set the comment for a vnode:

qmgr -c "s n <vnode name> comment=<comment>"

-F dsv [-D <delimiter>]

Prints output in delimiter-separated value format. Optional delimiter specification. Default delimiter is vertical
bar (“|”).

-F json

Prints output in JSON format.

-H <hostname> [<hostname> ...]

Prints all non-default-valued attributes for specified hosts and all vnodes on specified hosts.
RG-36 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
-j

Displays the following job-related headers for specified vnodes:

Note that nmics is a custom resource that must be created by the administrator if you want it displayed here.

Each subjob is treated as a unique job.

-L

Displays output with no restrictions on column width.

-l

Lists all hosts marked as DOWN or OFFLINE. Each such host’s state and comment attribute (if set) is listed.
If a host also has state STATE-UNKNOWN, it is listed. For hosts with multiple vnodes, only hosts where all
vnodes are marked as DOWN or OFFLINE are listed.

-o <hostname> [<hostname> ...]

Marks listed hosts as OFFLINE even if currently in use. This is different from being marked DOWN. A host
that is marked OFFLINE continues to execute the jobs already on it, but is removed from the scheduling pool
(no more jobs are scheduled on it.)

For hosts with multiple vnodes, pbsnodes operates on a host and all of its vnodes, where the hostname is
resources_available.host, which is the name of the parent vnode.

To offline all vnodes on a multi-vnoded machine:

pbsnodes -o <name of parent vnode>

To offline a single vnode on a multi-vnoded system, use:

Qmgr: qmgr -c "set node <vnode name> state=offline"

Requires PBS Manager or Operator privilege.

-r <hostname> [<hostname> ...]

Clears OFFLINE from listed hosts.

Table 2-2: Output for -j Option

Header Width Description

vnode 15 Vnode name

state 15 Vnode state

njobs 6 Number of jobs on vnode

run 5 Number of running jobs at vnode

susp 6 Number of suspended jobs at vnode

mem f/t 12 Vnode memory free/total

ncpus f/t 7 Number of CPUs at vnode free/total

nmics f/t 7 Number of MICs free/total

ngpus f/t 7 Number of GPUs at vnode free/total

jobs No restriction List of job IDs on vnode
PBS Professional 2020.1.1 Reference Guide RG-37

Chapter 2 PBS Commands
-S

Displays the following vnode information:

Note that nmics and OS are custom resources that must be created by the administrator if you want their values
displayed here.

-s <server name>

Specifies the PBS server to which to connect.

-v [<vnode> [<vnode> ...]]

Lists all non-default-valued attributes for each specified vnode.

With no arguments, prints one entry for each vnode in the PBS complex.

With one or more vnodes specified, prints one entry for each specified vnode.

When used with -a, lists all vnodes.

--version

The pbsnodes command returns its PBS version information and exits. This option can only be used alone.

2.7.4 Operands

<server name>

Specifies the server to which to connect. Default: default server.

<hostname> [<hostname> ...]

Specifies the host(s) to be queried or operated on.

<vnode> [<vnode> ...]

Specifies the vnode(s) to be queried or operated on.

Table 2-3: Output for -S Option

Header Width Description

name 15 Vnode name

state 15 Vnode state

OS 8 Value of OS custom resource, if any

hardware 8 Value of hardware custom resource, if any

host 15 Hostname

queue 10 Value of vnode’s queue attribute

ncpus 7 Number of CPUs at vnode

nmics 7 Number of MICs at vnode

mem 8 Vnode memory

ngpus 7 Number of GPUs at vnode

comment No restriction Vnode comment
RG-38 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.7.5 Exit Status

Zero

Success

Greater than zero

• Incorrect operands are given

• pbsnodes cannot connect to the server

• There is an error querying the server for the vnodes

2.7.6 See Also

The PBS Professional Administrator’s Guide, "qmgr” on page 149
PBS Professional 2020.1.1 Reference Guide RG-39

Chapter 2 PBS Commands
2.8 pbsrun

General-purpose wrapper script for mpirun

2.8.1 Synopsis

pbsrun

pbsrun --version

2.8.2 Description

pbsrun is a wrapper script for any of several versions of mpirun. This provides a user-transparent way for PBS to
control jobs which call mpirun in their job scripts. The pbsrun_wrap script instantiates pbsrun so that the wrapper
script for the specific version of mpirun being used has the same name as that version of mpirun.

If the mpirun wrapper script is run inside a PBS job, it translates any mpirun call of the form:

mpirun [<options>] <executable> [<args>]

into

mpirun [<options>] pbs_attach [<special options to pbs_attach>] <executable> [<args>]

where special options refers to any option needed by pbs_attach to do its job (e.g. -j $PBS_JOBID).

If the wrapper script is executed outside of PBS, a warning is issued about “not running under PBS”, but it proceeds as if
the actual program had been called in standalone fashion.

The pbsrun wrapper script is not meant to be executed directly; instead it is instantiated by pbsrun_wrap. It is cop-
ied to the target directory and renamed “pbsrun.<mpirun version/flavor>” where mpirun version/flavor is a
string that identifies the mpirun version being wrapped (e.g. ch_gm).

The pbsrun script, if executed inside a PBS job, runs an initialization script, named $PBS_EXEC/lib/MPI/
pbsrun.<mpirun version/flavor>.init, then parses mpirun-like arguments from the command line, sorting
which options and option values to retain, to ignore, or to transform, before calling the actual mpirun script with a
“pbs_attach” prefixed to the executable. The actual mpirun to call is found by tracing the link pointed to by
$PBS_EXEC/lib/MPI/pbsrun.<mpirun version/flavor>.link.

For all of the wrapped MPIs, the maximum number of ranks that can be launched is the number of entries in
$PBS_NODEFILE.

The wrapped MPIs are:

• MPICH-GM’s mpirun (mpirun.ch_gm) with rsh/ssh (The wrapper is deprecated as of 14.2.1)

• MPICH-MX’s mpirun (mpirun.ch_mx) with rsh/ssh (The wrapper is deprecated as of 14.2.1)

• MPICH-GM’s mpirun (mpirun.mpd) with MPD (The wrapper is deprecated as of 14.2.1)

• MPICH-MX’s mpirun (mpirun.mpd) with MPD (The wrapper is deprecated as of 14.2.1)

• MPICH2’s mpirun

• Intel MPI’s mpirun (The wrapper is deprecated as of 13.0)

• MVAPICH1’s mpirun (The wrapper is deprecated as of 14.2.1)

• MVAPICH2’s mpiexec
RG-40 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.8.3 Options

--version

The pbsrun command returns its PBS version information and exits. This option can only be used alone.

2.8.4 Initialization Script

The initialization script, called $PBS_EXEC/lib/MPI/pbsrun.<mpirun version/flavor>.init, where
mpirun version/flavor reflects the mpirun flavor/version being wrapped, can be modified by an administrator to cus-
tomize against the local flavor/version of mpirun being wrapped.

Inside this sourced init script, 8 variables are set:

options_to_retain=”-optA -optB <val> -optC <val1> val2> ...”

options_to_ignore=”-optD -optE <n> -optF <val1> val2> ...”

options_to_transform=”-optG -optH <val> -optI <val1> val2> ...”

options_to_fail=”-optY -optZ ...”

options_to_configfile=”-optX <val> ...”

options_with_another_form=”-optW <val> ...”

pbs_attach=pbs_attach

options_to_pbs_attach=”-J $PBS_JOBID”

2.8.4.1 Initialization Script Options

options_to_retain

Space-separated list of options and values that pbsrun.<mpirun version/flavor> passes on to the
actual mpirun call. Options must begin with “-” or “--”, and option arguments must be specified by some arbi-
trary name with left and right arrows, as in “<val1>”.

options_to_ignore

Space-separated list of options and values that pbsrun.<mpirun version/flavor> does not pass on to
the actual mpirun call. Options must begin with “-” or “--”, and option arguments must be specified by arbi-
trary names with left and right arrows, as in “<n>”.

options_to_transform

Space-separated list of options and values that pbsrun modifies before passing on to the actual mpirun call.

options_to_fail

Space-separated list of options that will cause pbsrun to exit upon encountering a match.

options_to_configfile

Single option and value that refers to the name of the configuration file containing command line segments
found in certain versions of mpirun.

options_with_another_form

Space-separated list of options and values that can be found in options_to_retain, options_to_ignore, or
options_to_transform, whose syntax has an alternate, unsupported form.

pbs_attach

Path to pbs_attach, which is called before the executable argument of mpirun.

options_to_pbs_attach

Special options to pass to the pbs_attach call. You may pass variable references (e.g. $PBS_JOBID) and
they are substituted by pbsrun to actual values.
PBS Professional 2020.1.1 Reference Guide RG-41

Chapter 2 PBS Commands
If pbsrun encounters any option not found in options_to_retain, options_to_ignore, and options_to_transform, it is
flagged as an error.

These functions are created inside the init script. These can be modified by the PBS administrator.

transform_action () {

passed actual values of $options_to_transform

args=$*

}

boot_action () {

mpirun_location=$1

}

evaluate_options_action () {

passed actual values of transformed options

args=$*

}

configfile_cmdline_action () {

args=$*

}

end_action () {

mpirun_location=$1

}

transform_action()

The pbsrun.<mpirun version/flavor> wrapper script invokes the function transform_action()
(called once on each matched item and value) with actual options and values received matching one of the
options_to_transform. The function returns a string to pass on to the actual mpirun call.

boot_action()

Performs any initialization tasks needed before running the actual mpirun call. For instance, GM’s MPD
requires the MPD daemons to be user-started first. This function is called by the pbsrun.<mpirun ver-
sion/flavor> script with the location of actual mpirun passed as the first argument. Also, the
pbsrun.<mpirun version/flavor> checks for the exit value of this function to determine whether or
not to progress to the next step.

evaluate_options_action()

Called with the actual options and values that resulted after consulting options_to_retain, options_to_ignore,
options_to_transform, and executing transform_action(). This provides one more chance for the script writer
to evaluate all the options and values in general, and make any necessary adjustments, before passing them on to
the actual mpirun call. For instance, this function can specify what the default value is for a missing -np
option.
RG-42 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
configfile_cmdline_action()

Returns the actual options and values to be put in before the option_to_configfile parameter.

configfile_firstline_action()

Returns the item that is put in the first line of the configuration file specified in the option_to_configfile param-
eter.

end_action()

Called by pbsrun.<mpirun version/flavor> at the end of execution. It undoes any action done by
transform_action(), such as cleanup of temporary files. It is also called when pbsrun.<mpirun ver-
sion/flavor> is prematurely killed. This function is called with the location of actual mpirun passed as
first argument.

The actual mpirun program to call is the path pointed to by $PBS_EXEC/lib/MPI/pbsrun.<mpirun version/
flavor>.link.

2.8.4.2 Modifying *.init Scripts

In order for administrators to modify *.init scripts without breaking package verification in RPM, master copies of
the initialization scripts are named *.init.in. pbsrun_wrap instantiates the *.init.in files as *.init. For
instance, $PBS_EXEC/lib/MPI/pbsrun.mpich2.init.in is the master copy, and pbsrun_wrap instantiates it
as $PBS_EXEC/lib/MPI/pbsrun.mpich2.init. pbsrun_unwrap takes care of removing the *.init files.

2.8.5 Versions/Flavors of mpirun

2.8.5.1 MPICH-GM mpirun (mpirun.ch_gm) with rsh/ssh:
pbsrun.ch_gm

2.8.5.1.i Syntax

pbsrun.ch_gm <options> <executable> <arg1> <arg2> ... <argn>

Deprecated. The PBS wrapper script to MPICH-GM's mpirun (mpirun.ch_gm) with rsh/ssh process startup
method is named pbsrun.ch_gm.

If executed inside a PBS job, this allows for PBS to track all MPICH-GM processes started by rsh/ssh so that PBS can
perform accounting and have complete job control.

If executed outside of a PBS job, it behaves exactly as if standard mpirun.ch_gm were used.

2.8.5.1.ii Options Handling

If executed inside a PBS job script, all mpirun.ch_gm options given are passed on to the actual mpirun call with
these exceptions:

-machinefile <file>

The file argument contents are ignored and replaced by the contents of $PBS_NODEFILE.

-np

If not specified, the number of entries found in $PBS_NODEFILE is used.

-pg

The use of the -pg option, for having multiple executables on multiple hosts, is allowed but it is up to the user to
make sure only PBS hosts are specified in the process group file; MPI processes spawned are not guaranteed to
be under the control of PBS.
PBS Professional 2020.1.1 Reference Guide RG-43

Chapter 2 PBS Commands
2.8.5.1.iii Wrap/Unwrap

To wrap MPICH-GM’s mpirun script:

pbsrun_wrap [MPICH-GM_BIN_PATH]/mpirun.ch_gm pbsrun.ch_gm

To unwrap MPICH-GM’s mpirun script:

pbsrun_unwrap pbsrun.ch_gm

2.8.5.2 MPICH-MX mpirun (mpirun.ch_mx) with rsh/ssh:

pbsrun.ch_mx

2.8.5.2.i Syntax

pbsrun.ch_mx <options> <executable> <arg1> <arg2> ... <argn>

The wrapper is deprecated. The PBS wrapper script to MPICH-MX's mpirun (mpirun.ch_gm) with rsh/ssh pro-
cess startup method is named pbsrun.ch_mx.

If executed inside a PBS job, this allows PBS to track all MPICH-MX processes started by rsh/ssh so that PBS can
perform accounting and have complete job control.

If executed outside of a PBS job, it behaves exactly as if standard mpirun.ch_mx were used.

2.8.5.2.ii Options Handling

If executed inside a PBS job script, all mpirun.ch_gm options given are passed on to the actual mpirun call with
some exceptions:

-machinefile <file>

The file argument contents is ignored and replaced by the contents of $PBS_NODEFILE.

-np

If not specified, the number of entries found in $PBS_NODEFILE is used.

-pg

The use of the -pg option, for having multiple executables on multiple hosts, is allowed but it is up to the user to
make sure only PBS hosts are specified in the process group file; MPI processes spawned are not guaranteed to
be under the control of PBS.

2.8.5.2.iii Wrap/Unwrap

To wrap MPICH-MX’s mpirun script:

pbsrun_wrap [MPICH-MX_BIN_PATH]/mpirun.ch_mx pbsrun.ch_mx

To unwrap MPICH-MX’s mpirun script:

pbsrun_unwrap pbsrun.ch_mx

2.8.5.3 MPICH-GM mpirun (mpirun.mpd) with MPD: pbsrun.gm_mpd

2.8.5.3.i Syntax

pbsrun.gm_mpd <options> <executable> <arg1> <arg2> ... <argn>

The wrapper is deprecated. The PBS wrapper script to MPICH-GM's mpirun (mpirun.ch_gm) with MPD process
startup method is called pbsrun.gm_mpd.

If executed inside a PBS job, this allows PBS to track all MPICH-GM processes started by the MPD daemons so that
PBS can perform accounting and have complete job control.

If executed outside of a PBS job, it behaves exactly as if standard mpirun.ch_gm with MPD were used.
RG-44 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.8.5.3.ii Options Handling

If executed inside a PBS job script, all mpirun.ch_gm with MPD options given are passed on to the actual mpirun
call with these exceptions:

-m <file>

The file argument contents are ignored and replaced by the contents of $PBS_NODEFILE.

-np

If not specified, the number of entries found in $PBS_NODEFILE is used.

-pg

The use of the -pg option, for having multiple executables on multiple hosts, is allowed but it is up to the user to
make sure only PBS hosts are specified in the process group file; MPI processes spawned are not guaranteed to
be under the control of PBS.

2.8.5.3.iii Startup/Shutdown

The script starts MPD daemons on each of the unique hosts listed in $PBS_NODEFILE, using either rsh or ssh based
on the value of the environment variable RSHCOMMAND. The default is rsh.

The script also takes care of shutting down the MPD daemons at the end of a run.

2.8.5.3.iv Wrap/Unwrap

To wrap MPICH-GM’s mpirun script with MPD:

pbsrun_wrap [MPICH-GM_BIN_PATH]/mpirun.mpd pbsrun.gm_mpd

To unwrap MPICH-GM’s mpirun script with MPD:

pbsrun_unwrap pbsrun.gm_mpd

2.8.5.4 MPICH-MX mpirun (mpirun.mpd) with MPD: pbsrun.mx_mpd

2.8.5.4.i Syntax

pbsrun.mx_mpd <options> <executable> <arg1> <arg2> ... <argn>

The wrapper is deprecated. The PBS wrapper script to MPICH-MX's mpirun (mpirun.ch_mx) with MPD process
startup method is called pbsrun.mx_mpd.

If executed inside a PBS job, this allows PBS to track all MPICH-MX processes started by the MPD daemons so that
PBS can perform accounting and have complete job control.

If executed outside of a PBS job, it behaves exactly as if standard mpirun.ch_mx with MPD were used.

2.8.5.4.ii Options Handling

If executed inside a PBS job script, all mpirun.mx_mpd with MPD options given are passed on to the actual mpirun
call with these exceptions:

-m <file>

The file argument contents are ignored and replaced by the contents of $PBS_NODEFILE.

-np

If not specified, the number of entries found in $PBS_NODEFILE is used.

-pg

The use of the -pg option, for having multiple executables on multiple hosts, is allowed but it is up to the user to
make sure only PBS hosts are specified in the process group file; MPI processes spawned are not guaranteed to
be under the control of PBS.
PBS Professional 2020.1.1 Reference Guide RG-45

Chapter 2 PBS Commands
2.8.5.4.iii Startup/Shutdown

The script starts MPD daemons on each of the unique hosts listed in $PBS_NODEFILE, using either rsh or ssh , based
on the value of the environment variable RSHCOMMAND. The default is rsh.

The script also takes care of shutting down the MPD daemons at the end of a run.

2.8.5.4.iv Wrap/Unwrap

To wrap MPICH-MX’s mpirun script with MPD:

pbsrun_wrap [MPICH-MX_BIN_PATH]/mpirun.mpd pbsrun.mx_mpd

To unwrap MPICH-MX’s mpirun script with MPD:

pbsrun_unwrap pbsrun.mx_mpd

2.8.5.5 MPICH2 mpirun: pbsrun.mpich2

2.8.5.5.i Syntax

pbsrun.mpich2 [<global args>] [<local args>] <executable> [<args>] [: [<local args>] <executable> [<args>]]

- or -

pbsrun.mpich2 -configfile <configfile>

where configfile contains command line segments as lines:

[local args] executable1 [args]

[local args] executable2 [args]

[local args] executable3 [args]

The PBS wrapper script to MPICH2's mpirun is called pbsrun.mpich2.

If executed inside a PBS job, this allows PBS to track all MPICH2 processes so that PBS can perform accounting and
have complete job control.

If executed outside of a PBS job, it behaves exactly as if standard MPICH2’s mpirun were used.

2.8.5.5.ii Options Handling

If executed inside a PBS job script, all MPICH2’s mpirun options given are passed on to the actual mpirun call with
these exceptions:

-host and -ghost

For specifying the execution host to run on. Not passed on to the actual mpirun call.

-machinefile <file>

The file argument contents are ignored and replaced by the contents of $PBS_NODEFILE.

MPICH2 s mpirun -localonly <num processes>

For specifying number of processes to run locally. Not supported. The user is advised instead to use the equiv-
alent arguments: -np <num processes> -localonly. The reason for this is that the pbsrun wrapper script
cannot handle a variable number of arguments to an option (e.g. “-localonly” has one argument and “-loca-
lonly <num processes>” has two arguments).

-np

If the user does not specify the -np option, no default value is provided by the PBS wrapper scripts. It is up to
the local mpirun to decide what the reasonable default value should be, which is usually 1.
RG-46 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.8.5.5.iii Startup/Shutdown

The script takes care of ensuring that the MPD daemons on each of the hosts listed in $PBS_NODEFILE are started. It
also takes care of ensuring that the MPD daemons have been shut down at the end of MPI job execution.

2.8.5.5.iv Wrap/Unwrap

To wrap MPICH2’s mpirun script:

pbsrun_wrap [<MPICH2 BIN PATH>]/mpirun pbsrun.mpich2

To unwrap MPICH2’s mpirun script:

pbsrun_unwrap pbsrun.mpich2

In the case where MPICH2 uses mpirun.py, run pbsrun_wrap on mpirun.py itself.

2.8.5.6 Intel MPI mpirun: pbsrun.intelmpi

Wrapping Intel MPI, and support for mpdboot, are deprecated.

2.8.5.6.i Syntax

pbsrun.intelmpi [<mpdboot options>] [<mpiexec options>] <executable> [<prog args>] [: [<mpiexec options>]
<executable> [<prog args>]]

- or -

pbsrun.intelmpi [<mpdboot options>] -f <configfile>

where mpdboot options are any options to pass to the mpdboot program, which is automatically called by Intel MPI’s
mpirun to start MPDs, and configfile contains command line segments as lines.

The PBS wrapper script to Intel MPI's mpirun is called pbsrun.intelmpi.

If executed inside a PBS job, this allows PBS to track all Intel MPI processes so that PBS can perform accounting and
have complete job control.

If executed outside of a PBS job, it behaves exactly as if standard Intel MPI’s mpirun were used.

2.8.5.6.ii Options Handling

If executed inside a PBS job script, all of the options to the PBS interface to Intel MPI’s mpirun are passed to the actual
mpirun call with these exceptions:

-host and -ghost

For specifying the execution host to run on. Not passed on to the actual mpirun call.

-machinefile <file>

The file argument contents are ignored and replaced by the contents of $PBS_NODEFILE.

mpdboot options --totalnum=* and --file=*

Ignored and replaced by the number of unique entries in $PBS_NODEFILE and name of $PBS_NODEFILE
respectively.

arguments to mpdboot options --file=* and -f <mpd_hosts_file>

Replaced by $PBS_NODEFILE.

-s

If pbsrun.intelmpi is called inside a PBS job, Intel MPI’s mpirun -s argument to mpdboot is not sup-
ported as this closely matches the mpirun option -s <spec> . The user can simply run a separate mpdboot
-s before calling mpirun. A warning message is issued by pbsrun.intelmpi upon encountering a -s
option telling users of the supported form.
PBS Professional 2020.1.1 Reference Guide RG-47

Chapter 2 PBS Commands
-np

If the user does not specify the -np option, no default value is provided by the PBS wrap scripts. It is up to the
local mpirun to decide what the reasonable default value should be, which is usually 1.

2.8.5.6.iii Startup/Shutdown

Intel MPI’s mpirun itself takes care of starting/stopping the MPD daemons. pbsrun.intelmpi always passes the
arguments -totalnum=<number of mpds to start> and -file=<mpd_hosts_file> to the actual mpirun, taking its input
from unique entries in $PBS_NODEFILE.

2.8.5.6.iv Wrap/Unwrap

To wrap Intel MPI’s mpirun script:

pbsrun_wrap [INTEL_MPI_BIN_PATH]/mpirun pbsrun.intelmpi

To unwrap Intel MPI’s mpirun script:

pbsrun_unwrap pbsrun.intelmpi

2.8.5.7 MVAPICH1 mpirun: pbsrun.mvapich1

2.8.5.7.i Syntax

pbsrun.mvapich1 <mpirun options> <executable> <options>

The wrapper is deprecated. The PBS wrapper script to MVAPICH1's mpirun is called pbsrun.mvapich1.

Only one executable can be specified. MVAPICH1 allows the use of InfiniBand.

If executed inside a PBS job, this allows PBS to be aware of all MVAPICH1 ranks and to track their resources, so that
PBS can perform accounting and have complete job control.

If executed outside of a PBS job, it behaves exactly as if standard mpirun were used.

2.8.5.7.ii Options Handling

If executed inside a PBS job script, all mpirun options given are passed on to the actual mpirun call with these excep-
tions:

-map <list>

The map option is ignored.

-exclude <list>

The exclude option is ignored.

-machinefile <file>

The machinefile option is ignored.

-np

If not specified, the number of entries found in $PBS_NODEFILE is used.

2.8.5.7.iii Wrap/Unwrap

To wrap MVAPICH1’s mpirun script:

pbsrun_wrap <path-to-actual-mpirun> pbsrun.mvapich1

To unwrap MVAPICH1’s mpirun script:

pbsrun_unwrap pbsrun.mvapich1
RG-48 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.8.5.8 MVAPICH2 mpiexec: pbsrun.mvapich2

2.8.5.8.i Syntax

pbsrun.mvapich2 <mpiexec args> <executable> <executable’s args> [: <mpiexec args> <executable> <executable’s
args>]

The PBS wrapper script to MVAPICH2's mpiexec is called pbsrun.mvapich2.

Multiple executables can be specified using the colon notation. MVAPICH2 allows the use of InfiniBand.

If executed inside a PBS job, this allows PBS to be aware of all MVAPICH2 ranks and to track their resources, so that
PBS can perform accounting and have complete job control.

If executed outside of a PBS job, it behaves exactly as if standard mpiexec were used.

2.8.5.8.ii Options Handling

If executed inside a PBS job script, all mpiexec options given are passed on to the actual mpiexec call with these
exceptions:

-host <hostname>

The hostname argument contents are ignored.

-machinefile <file>

The file argument contents are ignored and replaced by the contents of the $PBS_NODEFILE.

2.8.5.8.iii Wrap/Unwrap

To wrap MVAPICH2’s mpiexec script:

pbsrun_wrap <path-to-actual-mpiexec> pbsrun.mvapich2

To unwrap MVAPICH2’s mpiexec script:

pbsrun_unwrap pbsrun.mvapich2

2.8.6 Requirements

The mpirun being wrapped must be installed and working on all the vnodes in the PBS cluster.

2.8.7 Errors

If pbsrun encounters any option not found in options_to_retain, options_to_ignore, and options_to_transform, it is
flagged as an error.

2.8.8 See Also

The PBS Professional Administrator’s Guide, "pbs_attach” on page 55, "pbsrun_wrap” on page 51, "pbsrun_unwrap” on
page 50
PBS Professional 2020.1.1 Reference Guide RG-49

Chapter 2 PBS Commands
2.9 pbsrun_unwrap

Unwraps mpirun, reversing pbsrun_wrap

2.9.1 Synopsis

pbsrun_unwrap pbsrun.<mpirun version/flavor>

pbsrun_unwrap --version

2.9.2 Description

The pbsrun_unwrap script is used to reverse the actions of the pbsrun_wrap script.

Use pbsrun_wrap to wrap mpirun.

Using pbsrun_unwrap for Intel MPI is deprecated as of 13.0.

2.9.2.1 Syntax

pbsrun_unwrap pbsrun.<mpirun version/flavor>

For example, running the following:

pbsrun_unwrap pbsrun.ch_gm

causes the following actions:

1. Checks for a link in $PBS_EXEC/lib/MPI/pbsrun.ch_gm.link; If one exists, get the pathname it points to,
for example:

/opt/mpich-gm/bin/mpirun.ch_gm.actual

2. rm $PBS_EXEC/lib/MPI/pbsrun.mpirun.ch_gm.link

3. rm /opt/mpich-gm/bin/mpirun.ch_gm

4. rm $PBS_EXEC/bin/pbsrun.ch_gm

5. mv /opt/mpich-gm/bin/mpirun.ch_gm.actual /opt/mpich-gm/bin/mpirun.ch_gm

2.9.3 Options

--version

The pbsrun_unwrap command returns its PBS version information and exits. This option can only be used
alone.

2.9.4 See Also

The PBS Professional Administrator’s Guide, "pbs_attach” on page 55, "pbsrun” on page 40, "pbsrun_wrap” on page 51
RG-50 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.10 pbsrun_wrap

General-purpose script for wrapping mpirun in pbsrun

2.10.1 Synopsis

pbsrun_wrap [-s] <path to actual mpirun> pbsrun.<mpirun version/flavor>

pbsrun_wrap --version

2.10.2 Description

The pbsrun_wrap script is used to wrap any of several versions of mpirun in pbsrun. The pbsrun_wrap script
creates a symbolic link with the same path and name as the mpirun being wrapped. This calls pbsrun, which uses
pbs_attach to give MoM control of jobs. The result is transparent to the user; when mpirun is called from inside a
PBS job, PBS can monitor and control the job, but when mpirun is called from outside of a PBS job, it behaves as it
would normally. See "pbs_attach” on page 55 and "pbsrun” on page 40.

Use pbsrun_unwrap to reverse the process.

Using pbsrun_wrap for Intel MPI is deprecated as of 13.0.

Available only under Linux.

2.10.2.1 Syntax

pbsrun_wrap [-s] <path to actual mpirun> pbsrun.<mpirun version/flavor>

Any mpirun version/flavor that can be wrapped has an initialization script ending in “.init”, found in $PBS_EXEC/
lib/MPI:

$PBS_EXEC/lib/MPI/pbsrun.<mpirun version/flavor>.init

The pbsrun_wrap script instantiates the pbsrun wrapper script as pbsrun.<mpirun version/flavor> in
the same directory where pbsrun is located, and sets up the link to actual mpirun call via the symbolic link:

$PBS_EXEC/lib/MPI/pbsrun.<mpirun version/flavor>.link

For example, running:

pbsrun_wrap /opt/mpich-gm/bin/mpirun.ch_gm pbsrun.ch_gm

causes the following actions:

1. Save original mpirun.ch_gm script:
mv /opt/mpich-gm/bin/mpirun.ch_gm /opt/mpich/gm/bin/mpirun.ch_gm.actual

2. Instantiate pbsrun wrapper script as pbsrun.ch_gm:

cp $PBS_EXEC/bin/pbsrun $PBS_EXEC/bin/pbsrun.ch_gm

3. Link “mpirun.ch_gm” to actually call “pbsrun.ch_gm”:

ln -s $PBS_EXEC/bin/pbsrun.ch_gm /opt/mpich-gm/bin/mpirun.ch_gm

4. Create a link so that “pbsrun.ch_gm” calls “mpirun.ch_gm.actual”:

ln -s /opt/mpich-gm/bin/mpirun.ch_gm.actual $PBS_EXEC/lib/MPI/pbsrun.ch_gm.link
PBS Professional 2020.1.1 Reference Guide RG-51

Chapter 2 PBS Commands
2.10.3 Options

-s

Sets the “strict_pbs” options in the various initialization scripts (e.g. pbsrun.bgl.init,
pbsrun.ch_gm.init, etc...) to 1 from the default 0. This means that the mpirun being wrapped by
pbsrun will only be executed if inside a PBS environment. Otherwise, the user gets the error:

Not running under PBS exiting since strict_pbs is enabled; execute only in PBS

--version

The pbsrun_wrap command returns its PBS version information and exits. This option can only be used
alone.

2.10.4 Requirements

The mpirun being wrapped must be installed and working on all the vnodes in the PBS complex.

2.10.5 See Also

The PBS Professional Administrator’s Guide, "pbs_attach” on page 55, "pbsrun” on page 40, "pbsrun_unwrap” on
page 50
RG-52 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.11 pbs_account

For Windows. Manage PBS service account

2.11.1 Synopsis

pbs_account [-a <PBS service account name>] [-c [<password>]] [--ci] [--instid <instance ID>] [-o <output path>]
[-p [<password>]] [--reg <service path>] [-s] [--unreg <service path>]

2.11.2 Description

The pbs_account command is used to manage the PBS service account. It is used to create the account, set or vali-
date the account password, add privileges to the account, and register or unregister the account with the SCM.

2.11.2.1 Permissions

This command can be run by administrators only.

2.11.2.2 Platforms

This command is available on Windows only.

2.11.2.3 Caveats

Using pbs_account --unreg and pbs_account --reg stops and restarts MoM, which can kill jobs.

2.11.3 Options

-a <account name>

Specifies service account name.

-c [<password>]

• If specified account does not exist, creates the account with the password.

• If specified account exists, validates password against it.

Gives necessary privileges to the specified account: Create Token Object, Replace Process Level Token,
Log on as a Service, and Act as Part of the Operating System

If password is not specified, user is prompted for password.

--ci

Informational only. Prints actions taken by pbs_account while creating PBS service account when opera-
tions are performed.

--instid <instance ID>

Specifies the instance ID when registering or unregistering multiple instances of a service. Example:

pbs_account --reg "C:\Program Files (x86)\PBS Pro_2\exec\sbin\pbs_mom" --instid 2 -a <username>
-p <password>

pbs_account --unreg "C:\Program Files (x86)\PBS Pro_2\exec\sbin\pbs_mom" --instid 2

-o <output path>

Prints stdout and stderr messages in specified output path.
PBS Professional 2020.1.1 Reference Guide RG-53

Chapter 2 PBS Commands
-p [<password >]

Updates the PBS service account password. If no password is specified, the user is prompted for a password.

--reg <path to service>

Registers the PBS service with the SCM, instructing it to run the services under the PBS service account. path
to service must be in double quotes. Restarts MoM.

-s

Adds necessary privileges to the PBS service account. Grants the "Create Token Object", "Replace Process
Level Token", “Log On as a Service", and "Act as Part of the Operating System" privileges to PBS service
account.

--unreg <path to service>

Unregisters the PBS service with the SCM. path to service must be in double quotes. Stops MoM.

(no options)

Prints name of PBS service account, if it exists. Exit value is 0.

2.11.4 Examples

Example 2-1: To create the PBS service account:

pbs_account -c -s -p <password>

Example 2-2: To change the PBS service account:

pbs_account --reg <service path> -a <PBS service account name>

Example 2-3: To register the MoM service:

pbs_account --reg "\Program Files\PBS\exec\sbin\pbs_mom.exe" -p <password>

2.11.5 Exit Value

Zero

Upon success
RG-54 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.12 pbs_attach

Attaches a session ID to a PBS job

2.12.1 Synopsis

Linux

pbs_attach [-j <job ID>] [-m <port number>] -p <PID>

pbs_attach [-j <job ID>] [-m <port number>] [-P] [-s] <cmd> [<arg> ...]

pbs_attach --version

Windows

pbs_attach [-c <path to script>] [-j <job ID>] [-m <port number>] -p <PID>

pbs_attach [-c <path to script>] [-j <job ID>] [-m <port number>] [-P] [-s] <cmd> [<arg> ...]

pbs_attach --version

2.12.2 Description

The pbs_attach command associates the processes in a session with a PBS job by attaching the session ID to the job.
This allows PBS MoM to monitor and control those processes.

MoM uses process IDs to determine session IDs, which are put into MoM’s task list (attached to the job.) All process IDs
in a session are then associated with the job.

When a command cmd is given as an operand, the pbs_attach process becomes the parent process of cmd, and the
session ID of pbs_attach is attached to the job.

2.12.3 Options to pbs_attach

-c <path to script>

Windows only. Specified command is invoked using a new command shell. In order to spawn and attach built-
in DOS commands such as set or echo, it is necessary to open the task using a cmd shell. The new command
shell, cmd.exe, is attached as a task to the PBS job. The pbs_attach command spawns a program using a
new command shell when attaching a batch script, or when invoked with the -c option.

-j <job ID>

The job ID to which the session ID is to be attached. If job ID is not specified, a best effort is made to determine
the job to which to attach the session.

-m <port number>

The port at which to contact MoM. Default: value of $PBS_MANAGER_SERVICE_PORT from
pbs.conf.

-p <PID>

Process ID whose session ID is to be attached to the job. Default: process ID of pbs_attach. Cannot be
used with the -P or -s options or the cmd operand.

-P

Attach sessions of both pbs_attach and the parent of pbs_attach to job. When used with -s option, the
sessions of the new fork()ed pbs_attach and its parent, which is pbs_attach, are attached to the job.
Cannot be used with the -p or -s options or the cmd operand.
PBS Professional 2020.1.1 Reference Guide RG-55

Chapter 2 PBS Commands
-s

Starts a new session and attaches it to the job; pbs_attach calls fork(), then the child pbs_attach first
calls setsid() and then calls tm_attach to attach the new session to the job. The session ID of the new
pbs_attach is attached to the job.

--version

The pbs_attach command returns its PBS version information and exits. This option can only be used
alone.

2.12.4 Operands

cmd

Name of command whose process ID is to be associated with the job.

2.12.5 Exit Status

0

Success

1

Any error following successful command line processing. A message is printed to standard error.

If cmd is specified, pbs_attach waits for cmd to exit, then exits with the exit value of cmd.

If cmd is not specified, pbs_attach exits after attaching the session ID(s) to the job.

2.12.6 See Also

The PBS Professional Administrator's Guide, "pbs_mom” on page 71, "pbs_tmrsh” on page 120, "TM Library", on page
93 of the PBS Professional Programmer’s Guide
RG-56 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.13 pbs_comm

Starts the PBS communication daemon

2.13.1 Synopsis

pbs_comm [-N] [-r <other routers>] [-t <number of threads>]

pbs_comm --version

2.13.2 Description

The PBS communication daemon, pbs_comm, handles communication between daemons, except for scheduler-server
and server-server communication, which uses TCP. The server, scheduler(s), and MoMs are connected by one or more
pbs_comm daemons.

See “Communication” on page 45 in the PBS Professional Installation & Upgrade Guide.

Available on Linux only.

2.13.3 Options to pbs_comm

-N

Runs the communication daemon in standalone mode.

-r <other routers>

List of other pbs_comm daemons to which this pbs_comm must connect. This is equivalent to the pbs.conf
variable PBS_COMM_ROUTERS. The command line overrides the variable. Format:

<hostname>[:<port number>][,<hostname>[:<port number>]]

-t <number of threads>

Number of threads the pbs_comm daemon uses. This is equivalent to the pbs.conf variable
PBS_COMM_THREADS. The command line overrides the variable. Format:

Integer

--version

Prints the PBS version information and exits. This option can only be used alone.

2.13.4 Configuration Parameters

PBS_LEAF_ROUTERS

Parameter in /etc/pbs.conf. Tells an endpoint where to find its communication daemon.

You can tell each endpoint which communication daemon it should talk to. Specifying the port is optional.

Format: PBS_LEAF_ROUTERS=<hostname>[:<port number>][,<hostname>[:<port number>]]

PBS_COMM_ROUTERS

Parameter in /etc/pbs.conf. Tells a pbs_comm where to find its fellow communication daemons.

When you add a communication daemon, you must tell it about the other pbs_comms in the complex. When
you inform communication daemons about each other, you only tell one of each pair about the other. Do not tell
both about each other. We recommend that an easy way to do this is to tell each new pbs_comm about each
existing pbs_comm, and leave it at that.
PBS Professional 2020.1.1 Reference Guide RG-57

Chapter 2 PBS Commands
Format: PBS_COMM_ROUTERS=<hostname>[:<port number>][,<hostname>[:<port number>]]

PBS_COMM_THREADS

Parameter in /etc/pbs.conf. Tells pbs_comm how many threads to start.

By default, each pbs_comm process starts four threads. You can configure the number of threads that each
pbs_comm uses. Usually, you want no more threads than the number of processors on the host.

Maximum allowed value: 100

Format: Integer

Example:

PBS_COMM_THREADS=8

PBS_COMM_LOG_EVENTS

Parameter in /etc/pbs.conf. Tells pbs_comm which log mask to use.

By default, pbs_comm produces few log messages. You can choose more logging, usually for troubleshooting.
See “Logging and Errors with TPP” on page 54 in the PBS Professional Installation & Upgrade Guide for log-
ging details.

Format: Integer

Default: 511

Example:

PBS_COMM_LOG_EVENTS=<log level>

PBS_LEAF_NAME

Parameter in /etc/pbs.conf. Tells endpoint what name to use for network. The value does not include a
port, since that is usually set by the daemon.

By default, the name of the endpoint’s host is the hostname of the machine. You can set the name where an end-
point runs. This is useful when you have multiple networks configured, and you want PBS to use a particular
network.

The server only queries for the canonicalized address of the MoM host, unless you let it know via the Mom
attribute; if you have set PBS_LEAF_NAME in /etc/pbs.conf to something else, make sure you set the Mom
attribute at vnode creation.

TPP internally resolves the name to a set of IP addresses, so you do not affect how pbs_comm works.

Format: String

Example:

PBS_LEAF_NAME=host1

PBS_START_COMM

Parameter in /etc/pbs.conf. Tells PBS init script whether to start a pbs_comm on this host if one is
installed. When set to 1, pbs_comm is started.

Just as with the other PBS daemons, you can specify whether each host should start pbs_comm.

Format: Boolean

Default: 0

Example:

PBS_START_COMM=1

2.13.5 Communication Daemon Logfiles

The pbs_comm daemon creates its log files under $PBS_HOME/comm_logs. This directory is automatically created by the
PBS installer.
RG-58 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
In a failover configuration, this directory is in the shared PBS_HOME, and is used by the pbs_comm daemons running on
both the primary and secondary servers. This directory must never be shared across multiple pbs_comm daemons in
any other case.

The log filename format is yyyymmdd (the same as for other PBS daemons).

The log record format is the same as used by other pbs daemons, with the addition of the thread number and the daemon
name in the log record. The log record format is as follows:

<date and time>;<event code>;<daemon name>(<thread number>);<object type>;<object name>;<message>

Example:

03/25/2014 15:13:39;0d86;host1.example.com;TPP;host1.example.com(Thread 2);Connection from leaf
192.168.184.156:19331, tfd=81 down

2.13.6 Signal Handling by Communication Daemon

The pbs_comm daemon handles the following signals:

HUP

Re-reads the value of $PBS_COMM_LOG_EVENTS from pbs.conf.

TERM

The pbs_comm daemon exits.
PBS Professional 2020.1.1 Reference Guide RG-59

Chapter 2 PBS Commands
2.14 pbs_dataservice

Start, stop, or check the status of PBS data service

2.14.1 Synopsis

pbs_dataservice [start | stop | status]

2.14.2 Description

The pbs_dataservice command starts, stops or gets the status of the PBS data service.

2.14.2.1 Permission

Root privilege is required to use this command.

2.14.3 Arguments

start

Starts the PBS data service.

stop

Stops the PBS data service.

Can be used only when the PBS server is not running.

status

Displays the status of the PBS data service, as follows:

• Data service running

PBS Data Service running

• Data service not running

PBS Data Service not running

2.14.4 Exit Status

Zero

Success

Non-zero

Failure
RG-60 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.15 pbs_ds_password

Sets or changes data service user account or its password

2.15.1 Synopsis

pbs_ds_password [-C <username>] [-r]

2.15.2 Description

You can use this command to change the user account or account password for the data service.

2.15.2.1 Passwords

Blank passwords are not allowed.

If you type in a password, make sure it does not contain restricted characters. The pbs_ds_password command gen-
erates passwords containing the following characters:

0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!@#$%^&*()_+

When creating a password manually, do not use \ (backslash) or ‘ (backquote). This can prevent certain commands such
as pbs_server, pbs_ds_password, and printjob from functioning properly, as they rely on connecting to the
database. The format is also described in "PBS Password” on page 357.

2.15.2.2 Permissions

On Linux, root privilege is required to use this command. On Windows, Admin privilege is required.

2.15.2.3 Restrictions

Do not run this command if failover is configured. It is important not to inadvertently start two separate instances of the
data service on two machines, thus potentially corrupting the database. If failover is configured, stop the secondary
server, remove definitions for PBS_PRIMARY and PBS_SECONDARY from pbs.conf on the primary server host,
start PBS, run pbs_ds_password, stop PBS, replace the definitions, and start PBS again.

2.15.3 Options to pbs_ds_password

-C <username>

Changes user account for data service to specified account. Specified user account must already exist.

On Linux-based systems, the specified user account must not be root.

On Windows, the specified user account must match the PBS service account (which can be any user account.)

This option cannot be used while the data service is running.

Can be used with the -r option to automatically generate a password for the new account.

-r

Generates a random password. The data service is updated with the new password.

Can be used with the -C option.

(no options)

Asks the user to enter a new password twice. Entries must match. Updates data service with new password.
PBS Professional 2020.1.1 Reference Guide RG-61

Chapter 2 PBS Commands
2.15.4 Exit Status

Zero

Success

Non-zero

Failure
RG-62 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.16 pbs_hostn

Reports hostname and network address(es)

2.16.1 Synopsis

pbs_hostn [-v] <hostname>

pbs_hostn --version

2.16.2 Description

The pbs_hostn command takes a hostname, and reports the results of both the gethostbyname(3) and geth-
ostbyaddr(3) system calls. Both forward and reverse lookup of hostname and network addresses need to succeed in
order for PBS to authenticate a host.

Running this command can assist in troubleshooting problems related to incorrect or non-standard network configura-
tion, especially within clusters.

2.16.3 Options

-v

Turns on verbose mode.

--version

The pbs_hostn command returns its PBS version information and exits. This option can only be used alone.

2.16.4 Operands

hostname

The pbs_hostn command accepts a hostname operand either in short name form, or in fully qualified domain
name (FQDN) form.

2.16.5 Standard Error

The pbs_hostn command writes a diagnostic message to standard error for each error occurrence.

2.16.6 Exit Status

Zero

Upon successful processing of all the operands presented to the pbs_hostn command.

Greater than zero

If the pbs_hostn command fails to process any operand.
PBS Professional 2020.1.1 Reference Guide RG-63

Chapter 2 PBS Commands
2.17 pbs_idled

Runs PBS daemon that monitors the console and informs pbs_mom of idle time

2.17.1 Linux Synopsis

pbs_idled [-D <display>] [-r <reconnect delay>] [-w <wait time>]

pbs_idled --version

2.17.2 Windows Synopsis

pbs_idled [start | stop]

pbs_idled --version

2.17.3 Linux Description

On Linux, the pbs_idled program monitors an X windows display and communicates the idle time of the display back
to PBS. If the mouse is moved or a key is touched, PBS is informed that the vnode is busy.

You should run this program from the system-wide Xsession file, in the background before the window manager is run.
If this program is run outside of the Xsession, it needs to be able to make a connection to the X display. See the xhost
or xauth man pages for a description of X security.

2.17.4 Windows Description

On Windows, pbs_idled reads its polling interval from a file called idle_poll_time which is created by MoM.
The service monitors keyboard, mouse, and console activity, and updates a file called idle_touch when it finds user
activity. The idle_touch file is created by MoM.

2.17.5 Linux Options to pbs_idled

-D <display>

The display to connect to and monitor

-r <reconnect delay>

Time to wait before we try to reconnect to the X display if the previous attempt was unsuccessful

-w <wait time>

Interval between times when the daemon checks for events or pointer movement

--version

The pbs_idled command returns its PBS version information and exits. This option can only be used alone.

2.17.6 Windows Options to pbs_idled

start

Starts the pbs_idled process.
RG-64 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
stop

Stops the pbs_idled process.

--version

The pbs_idled process returns its PBS version information and exits. This option can only be used alone.

2.17.7 See Also

The PBS Professional Administrator's Guide

xhost(1), xauth(1)
PBS Professional 2020.1.1 Reference Guide RG-65

Chapter 2 PBS Commands
2.18 pbs_iff

Tests authentication with the server

2.18.1 Usage

pbs_iff [-t] <server host> <server port>

pbs_iff --version

2.18.2 Description

Called from the pbs_connect() IFL API to authenticate a connection with the PBS server. Designed to be called inter-
nally by PBS commands and components, to be used by our IFL layer to talk to the server.

If pbs_iff cannot authenticate, it returns an error message.

2.18.2.1 Required Privilege

Can be run by any user.

It's a setuid root binary so it runs as the user who requests a connection to a server but it becomes root so that it can grab
a privileged port.

2.18.3 Options to pbs_iff

-t

Test mode; means test whether pbs_iff can authenticate with the server

--version

Reports version and exits; can only be used alone

2.18.4 Arguments to pbs_iff

daemon host

Host where server is running

daemon port

Port on which server is listening; default is 15001

2.18.5 Exit Status

Zero

If pbs_iff is able to contact the server at the specified port

Non-zero

If pbs_iff is unable to contact the server at the specified port
RG-66 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.19 pbs_interactive

Windows. Register, unregister, or get the version of PBS_INTERACTIVE service

2.19.1 Synopsis

pbs_interactive [R | U]

pbs_interactive --version

2.19.2 Description

The pbs_interactive command registers, unregisters, or gets the version of the Windows PBS_INTERACTIVE
service. The service must be registered manually; the installer does not register it.

On Windows, the PBS_INTERACTIVE service itself monitors logging in and out by users, starts a pbs_idled pro-
cess for each user logging in, and stops the pbs_idled process of each user logging out.

2.19.2.1 Required Privilege

Admin privilege is required to use this command.

2.19.3 Arguments

R

Registers the PBS_INTERACTIVE service.

U

Unregisters the PBS_INTERACTIVE service.

--version

The pbs_interactive command returns its PBS version information and exits. This option can only be
used alone.
PBS Professional 2020.1.1 Reference Guide RG-67

Chapter 2 PBS Commands
2.20 pbs_lamboot

Deprecated. PBS front end to LAM’s lamboot program

2.20.1 Synopsis

pbs_lamboot

pbs_lamboot --version

2.20.2 Description

The PBS command pbs_lamboot replaces the standard lamboot command in a PBS LAM MPI job, for starting
LAM software on each of the PBS execution hosts running Linux 2.4 or higher.

Usage is the same as for LAM’s lamboot. All arguments except for bhost are passed directly to lamboot. PBS will
issue a warning saying that the bhost argument is ignored by PBS since input is taken automatically from
$PBS_NODEFILE. The pbs_lamboot program will not redundantly consult the $PBS_NODEFILE if it has been
instructed to boot the vnodes using the tm module. This instruction happens when an argument is passed to
pbs_lamboot containing “-ssi boot tm” or when the LAM_MPI_SSI_boot environment variable exists with the
value tm.

2.20.3 Options

--version

The pbs_lamboot command returns its PBS version information and exits. This option can only be used
alone.

2.20.4 Operands

The operands for pbs_lamboot are the same as for lamboot.

2.20.5 Environment Variables and Path

The PATH on remote machines must contain PBS_EXEC/bin.

2.20.6 See Also

The PBS Professional Administrator's Guide, lamboot(1), "TM Library", on page 93 of the PBS Pro-
fessional Programmer’s Guide
RG-68 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.21 pbs_login

Caches encrypted user password for authentication

2.21.1 Usage

pbs_login

pbs_login -m <PBS service account password>

echo <password>| pbs_login -p

2.21.2 Description

The pbs_login command encrypts the password and caches it locally where it can be used by daemons for authoriza-
tion.

Job submitters must run this command at each submission host each time their password changes.

On Windows, the win_postinstall script calls pbs_login to store the PBS service account password so that the
account user can be authenticated by daemons.

2.21.3 Required Privilege

Can be run by any user.

2.21.4 Options to pbs_login

(no options)

Queries user for password.

-m <PBS service account password>

This option is intended to be used only by the PBS service account, which is the account that is used to execute
pbs_mom via the Service Control Manager on Windows. This option is used during installation when invoked
by the win_postinstall script, or by the administrator when the PBS service account password has changed.
Stores PBS service account password in the mom_priv directory.

-p

Caches user password on client host. Intended to be run by job submitter at client host. Allows job submitter to
be authenticated by daemons.
PBS Professional 2020.1.1 Reference Guide RG-69

Chapter 2 PBS Commands
2.22 pbs_mkdirs

For Windows. Create, or fix the permissions of, the directories and files used by PBS

2.22.1 Synopsis

pbs_mkdirs

pbs_mkdirs [mom]

2.22.2 Description

Runs on Windows only. If the directories and files used by PBS exist, the pbs_mkdirs command fixes their permis-
sions. If the directories and/or files do not exist, the pbs_mkdirs command creates them, with the correct permissions.
The pbs_mkdirs command always examines the following directories and files:

pbs.conf

PBS_EXEC

PBS_HOME/spool

PBS_HOME/undelivered

PBS_HOME/pbs_environment

2.22.2.1 Required Privilege

You must have Administrator privilege to run this command.

2.22.3 Options

mom

The pbs_mkdirs command examines the following additional items:

PBS_HOME/mom_priv

PBS_HOME/mom_logs

(no options)

The pbs_mkdirs command examines all of the files and directories specified for the mom option.

2.22.4 See Also

The PBS Professional Administrator’s Guide, "pbs_probe” on page 81
RG-70 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.23 pbs_mom

Runs the PBS job monitoring and execution daemon

2.23.1 Synopsis

pbs_mom [-a <alarm timeout>] [-C <checkpoint directory>] [-c <config file>] [-d <MoM home directory>] [-L
<logfile>] [-M <MoM port>] [-N] [-n <nice value>] [-p|-r] [-R <inter-MoM communication port>] [-S <server
port>] [-s <options>]

pbs_mom --version

2.23.2 Description

The pbs_mom command starts the PBS job monitoring and execution daemon, called MoM.

The standard MoM starts jobs on the execution host, monitors and reports resource usage, enforces resource usage limits,
and notifies the server when the job is finished. The MoM also runs any prologue scripts before the job runs, and runs
any epilogue scripts after the job runs.

The MoM performs any communication with job tasks and with other MoMs. The MoM on the first vnode on which a
job is running manages communication with the MoMs on the remaining vnodes on which the job runs.

The MoM manages one or more vnodes. PBS may treat a host as a set of virtual nodes, in which case one MoM manages
all of the host’s vnodes. See "Configuring MoMs and Vnodes" on page 33 in the PBS Professional Administrator’s
Guide.

2.23.2.1 Logging

The MoM’s log file is in PBS_HOME/mom_logs. The MoM writes an error message in its log file when it encounters
any error. If it cannot write to its log file, it writes to standard error. The MoM writes events to its log file. The MoM
writes its PBS version and build information to the logfile whenever it starts up or the logfile is rolled to a new file.

2.23.2.2 Required Permission

The executable for pbs_mom is in PBS_EXEC/sbin, and can be run only by root on Linux, and Admin on Windows.

2.23.2.2.i HPE Systems Running Supported Versions of HPE MPI

A PBS job can run across multiple machines that run supported versions of HPE MPI.

PBS can run using HPE’s MPI (MPT) over InfiniBand. See the PBS Professional Administrator’s Guide.

2.23.2.3 Effect on Jobs of Starting MoM

When MoM is started or restarted, her default behavior is to leave any running processes running, but to tell the PBS
server to requeue the jobs she manages. MoM tracks the process ID of jobs across restarts.

In order to have all jobs killed and requeued, use the -r option when starting or restarting MoM.

In order to leave any running processes running, and not to requeue any jobs, use the -p option when starting or restarting
MoM.
PBS Professional 2020.1.1 Reference Guide RG-71

Chapter 2 PBS Commands
2.23.3 Options to pbs_mom

-a <alarm timeout>

Number of seconds before alarm timeout. Whenever a resource request is processed, an alarm is set for the
given amount of time. If the request has not completed before alarm timeout, the OS generates an alarm signal
and sends it to MoM.

Format: Integer

Default: 10 seconds

-C <checkpoint directory>

Specifies the path to the directory where MoM creates job-specific subdirectories used to hold each job’s restart
files. MoM passes this path to checkpoint and restart scripts. Overrides other checkpoint path specification
methods. Any directory specified with the -C option must be owned, readable, writable, and executable by root
only (rwx,---,---, or 0700), to protect the security of the restart files. See the -d option to pbs_mom and "Spec-
ifying Checkpoint Path" on page 422 in the PBS Professional Administrator’s Guide.

Format: String

Default: PBS_HOME/checkpoint

-c <config file>

MoM will read this alternate default configuration file upon starting. If this is a relative file name it is relative to
PBS_HOME/mom_priv. If the specified file cannot be opened, pbs_mom will abort. See the -d option.

MoM’s normal operation, when the -c option is not given, is to attempt to open the default configuration file
PBS_HOME/mom_priv/config. If this file is not present, pbs_mom will log the fact and continue.

-d <MoM home directory>

Specifies the path of the directory to be used in place of PBS_HOME by pbs_mom. The default directory is
given by $PBS_HOME.

Format: String

-L <logfile>

Specifies an absolute path and filename for the log file. The default is a file named for the current date in
PBS_HOME/mom_logs/. See the -d option.

Format: String.

-M <MoM port>

Specifies the port number on which MoM will listen for server requests and instructions. Overrides
PBS_MOM_SERVICE_PORT setting in pbs.conf and environment variable.

Format: Integer port number.

Default: 15002.

-n <nice value>

Specifies the priority for the pbs_mom daemon.

Format: Integer.

-N

Specifies that when starting, MoM should not detach from the current session.

-p

Specifies that when starting, MoM should allow any running jobs to continue running, and not have them
requeued. This option can be used for single-host jobs only; multi-host jobs cannot be preserved. Cannot be
used with the -r option. MoM is not the parent of these jobs.
RG-72 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
-r

Specifies that when starting, MoM should requeue any rerunnable jobs and kill any non-rerunnable jobs that she
was tracking, and mark the jobs as terminated. Cannot be used with the -p option. MoM is not the parent of
these jobs.

It is not recommended to use the -r option after a reboot, because process IDs of new, legitimate tasks may
match those MoM was previously tracking. If they match and MoM is started with the -r option, MoM will kill
the new tasks.

-R <inter-MoM communication port>

Specifies the port number on which MoM will listen for pings, resource information requests, communication
from other MoMs, etc. Overrides PBS_MANAGER_SERVICE_PORT setting in pbs.conf and environment
variable.

Format: Integer port number

Default: 15003

-S <server port>

Specifies the port number on which pbs_mom initially contacts the server.

Format: Integer port number

Default: 15001

-s <file options>

If you are running the cgroups hook, make sure that the vnode names in any Version 2 configuration file exactly
match those in the output of pbsnodes -av.

This option lets you add, delete, and display Version 2 configuration files. Run this command at the host you
want to change. The file options are used this way:

-s insert <Version 2 filename> <inputfile>
Reads inputfile and copies it to a Version 2 vnode configuration file with the filename Version 2 filename.
For example, to create a Version 2 file named “Myhost_V2”:

pbs_mom -s insert <Myhost_V2> <myhost_v2_input>

If a configuration file with the specified Version 2 filename already exists, the operation fails, and
pbs_mom prints a diagnostic and exits with a nonzero status. Configuration files whose names begin with
the prefix “PBS” are reserved. You cannot add a file whose name begins with “PBS”; pbs_mom will print
a diagnostic message and exit with a nonzero status.

-s remove <Version 2 filename>
Removes the configuration file named Version 2 filename if it exists. Example:

pbs_mom -s remove <Version 2 filename>

If the file does not exist or if you try to remove a file with the reserved “PBS” prefix, the operation fails,
and pbs_mom prints a diagnostic and exits with a nonzero status.

-s show <Version 2 filename>
Prints the contents of the named file to standard output. Example:

pbs_mom -s show <Version 2 filename>

If Version 2 filename does not exist, the operation fails and pbs_mom writes a diagnostic and exits with a
nonzero status.

-s list
MoM lists the PBS-prefixed and site-defined configuration files in the order in which they are executed.
Example:

pbs_mom -s list

WINDOWS:
PBS Professional 2020.1.1 Reference Guide RG-73

Chapter 2 PBS Commands
Under Windows, use the -N option so that pbs_mom will start up as a standalone program. For example:

pbs_mom -N -s insert <Version 2 filename> <inputfile>

or

pbs_mom -N -s list

--version

The pbs_mom command returns its PBS version information and exits. This option can only be used alone.

2.23.4 Files and Directories

$PBS_HOME/mom_priv

Default directory for default configuration files.

$PBS_HOME/mom_priv/config

MoM’s default configuration file.

$PBS_HOME/mom_logs

Default directory for log files written by MoM.

$PBS_HOME/mom_priv/prologue

File containing administrative script to be run before job execution.

$PBS_HOME/mom_priv/epilogue

File containing administrative script to be run after job execution.

2.23.5 Signal Handling

pbs_mom handles the following signals:

SIGHUP

The pbs_mom daemon rereads its configuration files, closes and reopens the log file, and reinitializes resource
structures.

SIGALRM

MoM writes a log file entry. See the -a <alarm timeout> option.

SIGINT

The pbs_mom daemon exits, leaving all running jobs still running. See the -p option.

SIGKILL

This signal is not caught. The pbs_mom daemon exits immediately.

SIGTERM, SIGXCPU, SIGXFSZ, SIGCPULIM, SIGSHUTDN

The pbs_mom daemon terminates all running children and exits.

SIGPIPE, SIGUSR1, SIGUSR2, SIGINFO

These are ignored.

All other signals have their default behavior installed.
RG-74 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.23.6 Exit Status

Zero

Upon success

Greater than zero

• If the pbs_mom daemon fails to start

• If the -s insert option is used with an existing Version 2 filename

• If the administrator attempts to add a script whose name begins with “PBS”

• If the administrator attempts to use the -s remove option on a nonexistent configuration file, or on a con-
figuration file whose name begins with “PBS”

• If the administrator attempts to use the -s show option on a nonexistent script

2.23.7 See Also

The PBS Professional Administrator’s Guide
PBS Professional 2020.1.1 Reference Guide RG-75

Chapter 2 PBS Commands
2.24 pbs_mpihp

Runs an MPI application in a PBS job with HP MPI

2.24.1 Synopsis

pbs_mpihp [-h <hostname>] [-np <number>] [<other HP mpirun options>] <program> [<args>]

pbs_mpihp [<HP mpirun options>] -f <appfile> [-- [<extra args>]]

pbs_mpihp --version

2.24.2 Description

The PBS command pbs_mpihp replaces the standard mpirun command in a PBS HP MPI job, for executing pro-
grams. pbs_mpihp is a front end to the HP MPI version of mpirun.

When pbs_mpihp is invoked from a PBS job, it processes the command line arguments, then calls standard HP
mpirun to actually start the MPI ranks. The ranks created are mapped onto CPUs on the vnodes allocated to the PBS
job. The environment variable MPI_REMSH is set to $PBS_EXEC/bin/pbs_tmrsh. This causes the processes that
are created to become part of the PBS job.

The path to standard HP mpirun is found by checking to see if a link exists with the name PBS_EXEC/etc/
pbs_mpihp. If this link exists, it points to standard HP mpirun. If it does not exist, a call to mpirun -version is
made to determine whether it is HP mpirun. If so, the call is made to “mpirun” without an absolute path. If HP
mpirun cannot be found, an error is output, all temp files are cleaned up and the script exits with value 127.

If pbs_mpihp is invoked from outside a PBS job, it passes all of its arguments directly to standard HP mpirun without
further processing.

2.24.2.1 Configuration

When HP MPI is wrapped with pbs_mpihp, “rsh” is the default used to start the mpids. If you wish to use “ssh” or
something else, be sure to set the following in $PBS_HOME/pbs_environment:

PBS_RSHCOMMAND=ssh

or put the following in the job script:

export PBS_RSHCOMMAND=<rsh_cmd>

2.24.2.2 Usage

Usage is the same as for HP mpirun.

pbs_mpihp <program> allows one executable to be specified.

pbs_mpihp -f <appfile> uses an appfile to list multiple executables. The format is described in the HP mpirun
man page. If this form is used from inside a PBS job, the file is read to determine what executables are to be run and how
many processes are started for each.

Executing pbs_mpihp with the -client option is not supported under PBS.

2.24.3 Options to pbs_mpihp

All options except the following are passed directly to HP mpirun with no modification.
RG-76 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
-client

Not supported.

-f <appfile>

The specified appfile is read by pbs_mpihp.

-h <hostname>

Ignored by pbs_mpihp.

-l <username>

Ignored by pbs_mpihp.

-np <number>

Specifies the number of processes to run on the PBS vnodes.

--version

The pbs_mpihp command returns its PBS version information and exits. This option can only be used alone.

2.24.4 Exit Values

127

If HP mpirun cannot be found

2.24.5 See Also

The PBS Professional Administrator’s Guide

mpirun(1)
PBS Professional 2020.1.1 Reference Guide RG-77

Chapter 2 PBS Commands
2.25 pbs_mpilam

Deprecated. Runs MPI programs under PBS with LAM MPI

2.25.1 Synopsis

pbs_mpilam [<mpilam options>]

pbs_mpilam --version

2.25.2 Description

The PBS command pbs_mpilam replaces the standard mpirun command in a PBS LAM MPI job.

If used to run a single program, PBS tracks resource usage and controls all user processes spawned by the program. If
used to run multiple programs as specified in an application file (no <where> argument and no -np/-c option), PBS
does not manage the spawned user processes of each program.

If the where argument is not specified, pbs_mpilam will try to run the user’s program on all available CPUs using the
C keyword.

2.25.2.1 Prerequisites

The PATH on remote machines must contain PBS_EXEC/bin.

2.25.2.2 Usage

Usage is the same as for LAM mpirun. All options are passed directly to mpirun.

2.25.3 Options to pbs_mpilam

<mpilam options>

The pbs_mpilam command uses the same options as mpirun.

--version

The pbs_mpilam command returns its PBS version information and exits. This option can only be used
alone.

2.25.4 See Also

The PBS Professional Administrator’s Guide

mpirun(1)
RG-78 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.26 pbs_mpirun

Deprecated. Runs MPI programs under PBS with MPICH

2.26.1 Synopsis

pbs_mpirun [<mpirun options>]

pbs_mpirun --version

2.26.2 Description

The PBS command pbs_mpirun replaces the standard mpirun command in a PBS MPICH job using P4.

On Windows, this command cannot be used to start job processes or track a job’s resource usage.

2.26.2.1 Prerequisite

The PATH on remote machines must contain PBS_EXEC/bin.

2.26.2.2 Usage

Usage is the same as for mpirun, except for the -machinefile option. All other options are passed directly to
mpirun.

2.26.3 Options to pbs_mpirun

<mpirun options>

The options to pbs_mpirun are the same as for mpirun, except for the -machinefile option. This is
generated by pbs_mpirun. The user should not attempt to specify -machinefile.

The value for -machinefile is a temporary file created from PBS_NODEFILE in the format:

hostname-1[:number of processors]

hostname-2[:number of processors]

hostname-n[:number of processors]

where if the number of processors is not specified, it is 1. An attempt by the user to specify the -machinefile
option will result in a warning saying “Warning, -machinefile value replaced by PBS”.

The default value for the -np option is the number of entries in PBS_NODEFILE.

--version

The pbs_mpirun command returns its PBS version information and exits. This option can only be used
alone.

2.26.4 Environment Variables

pbs_mpirun modifies P4_RSHCOMMAND and PBS_RSHCOMMAND. Users should not edit these.
pbs_mpirun copies the value of P4_RSHCOMMAND into PBS_RSHCOMMAND.
PBS Professional 2020.1.1 Reference Guide RG-79

Chapter 2 PBS Commands
2.26.5 See Also

The PBS Professional Administrator’s Guide, mpirun(1)
RG-80 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.27 pbs_probe

Deprecated. Reports PBS diagnostic information and fixes permission errors

2.27.1 Synopsis

pbs_probe [-f | -v]

pbs_probe --version

2.27.2 Description

The pbs_probe command reports post-installation information useful for PBS diagnostics, and fixes permission
errors.

2.27.2.1 Information Sources

• Information that is supplied on the command line

• The file /etc/pbs.conf

• The file /etc/init.d/pbs

• The values of any of the following environment variables; these may be set in the environment in which
pbs_probe is run: PBS_CONF_FILE, PBS_HOME, PBS_EXEC, PBS_START_SERVER,

PBS_START_MOM, and PBS_START_SCHED

2.27.2.2 Required Privilege

In order to execute pbs_probe, you must have PBS Operator or Manager privilege.

2.27.3 Options to pbs_probe

(no options)

Run in “report” mode. In this mode pbs_probe reports any permission errors detected in PBS infrastructure
files. The command categorizes the errors and writes a list of them by category. Empty categories are not writ-
ten.

-f

Run in “fix” mode. In this mode pbs_probe examines each of the relevant infrastructure files and, where
possible, fixes any permission errors that it detects, and prints a message saying what got changed. If it is
unable to fix a problem, it prints a message saying what was detected.

-v

Run in “verbose” mode. In this mode pbs_probe writes a complete list of the infrastructure files that it
checked.

--version

The pbs_probe command returns its PBS version information and exits. This option can only be used alone.

2.27.4 Standard Error

The pbs_probe command writes a diagnostic message to standard error for each error occurrence.
PBS Professional 2020.1.1 Reference Guide RG-81

Chapter 2 PBS Commands
2.27.5 Exit Status

Exit code does not reflect results of probe; it reflects whether or not the program ran.

Zero

When run correctly, whether or not pbs_probe finds any problems or errors

Non-negative

When run incorrectly

2.27.6 See Also

The PBS Professional Administrator’s Guide
RG-82 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.28 pbs_python

Python interpreter for debugging a hook script from the command line

2.28.1 Synopsis

pbs_python --hook [-e <log event mask>] [-i <event input file>] [-L <log dir>] [-l <log file>] [-o <hook execution
record>] [-r <resourcedef file>] [-s <site data file>] [<Python script>]

pbs_python <standard Python options>

pbs_python --version

2.28.2 Description

The PBS Python interpreter, pbs_python, is a wrapper for Python.

You can use the pbs_python wrapper that is shipped with PBS to debug hooks. Either:

• Use the --hook option to pbs_python to run pbs_python as a wrapper to Python, employing the
pbs_python options. With the --hook option, you cannot use the standard Python options. The rest of this sec-
tion covers how to use pbs_python with the --hook option.

• Do not use the --hook option, so pbs_python runs the Python interpreter, with the standard Python options, and
without access to the pbs_python options.

2.28.2.1 Debugging Hooks

You can get each hook to write out debugging files, and then modify the files and use them as debugging input to
pbs_python. Alternatively, you can write the files yourself.

Debugging files can contain information about the event, about the site, and about what the hook changed. You can use
these as inputs to a hook when debugging.

For a complete description of using pbs_python with debugging files, see "Debugging Hooks" on page 159 in the
PBS Professional Hooks Guide.

2.28.3 Options to pbs_python

--hook

This option is a switch. When you use this option, you can use the PBS Python module (via "import pbs"),
and the other options described here are available. When you use this option, you cannot use the standard
Python options. This option is useful for debugging.

When you do not use this option, you cannot use the other options listed here, but you can use the standard
Python options.

-e <log event mask>

Sets the mask that determines which event types are logged by pbs_python. To see only debug messages, set
the value to 0xd80. To see all messages, set the value to 0xffff. The pbs_python interpreter uses the same
set of mask values that are used for the $logevent <mask> entry in the pbs_mom configuration file. See sec-
tion 2.23, “pbs_mom”, on page 71. Available only when --hook option is used.

-i <event input file>

Text file containing data to populate pbs.event() objects. Each line specifies an attribute value or a resource
value. Syntax of each input line is one of the following:
PBS Professional 2020.1.1 Reference Guide RG-83

Chapter 2 PBS Commands
<object name>.<attribute name>=<attribute value>
<object name>.<resource list>[<resource name>]=<resource value>
Where

<object name> is a PBS object name which can refer to its sub-objects. Examples: "pbs.event()",

"pbs.event().job", "pbs.event().vnode_list["<vnode name>"]".

Example input file:

pbs.event().hook_name=proto

pbs.event().hook_type=site

pbs.event().type=queuejob

pbs.event().requestor=user1

pbs.event().requestor_host=host1

pbs.event().alarm=40

pbs.event().job.id=72

pbs.event().job.Job_Name=job1

pbs.event().job.Resource_List[ncpus]=5

pbs.event().job.Resource_List[mem]=6mb

pbs.event().vnode_list["host1"].resources_available["ncpus"] = 5

pbs.event().vnode_list["host1"].resources_available["mem"] = 300gb

Available only when --hook option is used.

-L <log dir>

Directory holding the log file where pbs.logmsg() and pbs.logjobmsg() write their output. Default is current
working directory where pbs_python is executed. Available only when --hook option is used.

-l <log file>

Log file where pbs.logmsg() and pbs.logjobmsg() write their output. Default file name is current date in
yyyymmdd format. Available only when --hook option is used.

-o <hook execution record>

The hook execution record contains the changes made after executing the hook script, such as the attributes and
resources set in any pbs.event() jobs and reservations, whether an action was accepted or rejected, and any
pbs.reject() messages.

Example hook execution record:

pbs.event().job.Job_Name=job2

pbs.event().job.Resource_List[file]=60gb

pbs.event().job.Resource_List[ncpus]=5

pbs.event().job.Resource_List[mem]=20gb

pbs.event().job.Account_Name=account2

pbs.event().reject=True

pbs.event().reject_msg=No way!

Without this option, output goes to stdout. Available only when --hook option is used.

-r <resourcedef file>

File/path name containing a resource definition specifying a custom resource whose Python type is
pbs.resource. Format:

<resource name> type=<typename> [flag=<value>]
Available only when --hook option is used.
RG-84 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
-s <site data file>

The site data file can contain any relevant information about the server, queues, vnodes, and jobs at the server.
This file can be written by a hook or by the administrator.

When the hook writes it, this file contains the values that populate the server, queues, vnodes, reservations, and
jobs, with all attributes and resources for which there are values.

The site data file is named hook_<event type>_<hook name>_<random integer>.data. It can be passed to
pbs_python using the -s <site data file> option.

Available only when --hook option is used.

--version

The pbs_python command prints its version information and exits. This option can only be used alone.

2.28.4 Arguments

<Python script>

The hook script to execute. We recommend importing the PBS Python module at the start of the script:

import pbs

If you do not specify <Python script>, you can perform interactive debugging. If you type the following:

% pbs_python --hook -i hook.input

The interpreter displays a prompt:

>>

You can type your Python lines at the prompt:

>>import pbs

>> e=pbs.event().job

>> print e.id

<job-id>

...
PBS Professional 2020.1.1 Reference Guide RG-85

Chapter 2 PBS Commands
2.29 pbs_ralter

Modifies an existing reservation

2.29.1 Summary

Alter an existing advance, standing, or job-specific reservation.

2.29.2 Synopsis

pbs_ralter [-D <duration>] [-E <end time>] [-G <auth group list>] [-I <block time>] [-m <mail points>] [-M <mail
list>] [-N <reservation name>] [-R <start time>] [-U <auth user list>] <reservation ID>

2.29.3 Description

You can use the pbs_ralter command to alter an existing advance, job-specific, or standing reservation. You can
change the start time, end time, duration, events that generate mail, mail recipient list, authorized groups, authorized
users, and reservation name.

You can use this command to change an advance or job-specific reservation, or the next or current instance of a standing
reservation.

After the change is requested, the change is either confirmed or denied. On denial of the change, the reservation is not
deleted and is left as is, and the following message appears in the server’s log:

Unable to alter reservation <reservation ID>

When a reservation is confirmed, the following message appears in the server’s log:

Reservation alter successful for <reservation ID>

To find out whether or not the change was allowed:

• Use the pbs_rstat command: see whether you altered reservation attribute(s)

• Use the interactive option: check for confirmation after the blocking time has run out

• Check the server log for confirmation or denial messages

Before the change is confirmed or denied, the change is unconfirmed, and the reservation state is AL.

Once a reservation change is confirmed, the reservation state is CO or RN.

If the reservation has not started and it cannot be confirmed on the same vnodes, PBS searches for another set of vnodes.

2.29.3.1 Caveats and Restrictions

You cannot change the start time of a reservation if jobs are running in it.

If you change the end time of a reservation so that it ends before a job running in the reservation finishes, the job is killed
when the reservation ends.

2.29.3.2 Required Privilege

You must be the reservation owner or the PBS Administrator to run this command.
RG-86 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.29.4 Options to pbs_ralter

-D <duration>

Specifies reservation's new duration. This option can be used even when the reservation is running and has jobs
that are submitted to and/or are running in the reservation.

Can be specified with start and/or end time. PBS calculates anything not specified. When specified without
start or end time, PBS keeps previous start time.

If you change the duration to less than the time the reservation has already run, PBS deletes the reservation.

Format: Duration, as seconds or hh:mm:ss

-E <end time>

Specifies reservation's new end time. This option can be used even when the reservation is running and has jobs
that are submitted to and/or are running in the reservation.

Format: Datetime

-G <auth group list>

Comma-separated list of names of groups who can or cannot submit jobs to this reservation. Sets reservation’s
Authorized_Groups attribute to auth group list.

This list becomes the acl_groups list for the reservation’s queue.

More specific entries should be listed before more general, because the list is read left-to-right, and the first
match determines access.

If both the Authorized_Users and Authorized_Groups reservation attributes are set, a user must belong to both
in order to be able to submit jobs to this reservation.

Group names are interpreted in the context of the server host, not the context of the host from which the job is
submitted.

See the Authorized_Groups reservation attribute in section 6.8, “Reservation Attributes”, on page 303.

Syntax:

[+|-]<group name>[,[+|-]<group name> ...]
Default: no default

-I <block time>

Specifies interactive mode. The pbs_ralter command will block, up to block time seconds, while waiting
for the reservation's change request to be confirmed or denied.

The value for block time must be positive. The pbs_ralter command returns either the status “CON-

FIRMED” or the status “DENIED”.

Format: Integer

Default: Not interactive
PBS Professional 2020.1.1 Reference Guide RG-87

Chapter 2 PBS Commands
-m <mail points>

Specifies the set of events that cause mail to be sent to the list of users specified in the -M <mail list>
option.

Format: string consisting of 1) any combination of “a”, “b”, “c” or “e”, or 2) the single character “n”.

Default: No default; if not specified, mail events are unchanged.

-M <mail list>

The list of users to whom mail is sent whenever the reservation transitions to one of the states specified in the -
m <mail points> option.

Format: <username>[@<hostname>][,<username>[@<hostname>]...]

Default: No default; if not specified, user list is unchanged.

-N <reservation name>

Specifies a name for the reservation.

Format: String up to 15 characters in length. It must consist of printable, non-white space characters with the
first character alphabetic.

Default: No default; if not specified, reservation name is unchanged.

-R <start time>

Specifies reservation's new start time. This option can be used either when the reservation is not running or there
are no jobs are submitted to the reservation. You cannot use this option when a reservation is not empty and has
started running.

The specifications for providing the time are the same as for pbs_rsub:

If the day, DD, is not specified, it defaults to today if the time hhmm is in the future. Otherwise, the day is set to
tomorrow. For example, if you alter a reservation with the specification -R 1110 at 11:15 a.m., it is interpreted
as being for 11:10 a.m. tomorrow. If the month portion, MM, is not specified, it defaults to the current month,
provided that the specified day DD, is in the future. Otherwise, the month is set to next month. Similar rules
apply to the two other optional, left-side components.

Format: Datetime

Table 2-4: Suboptions to -m Option

Character Meaning

a Notify if reservation is terminated for any reason

b Notify when the reservation period begins

c Notify when the reservation is confirmed

e Notify when the reservation period ends

n Send no mail. Cannot be used with any of a, b, c or e.
RG-88 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
-U <auth user list>

Comma-separated list of users who are and are not allowed to submit jobs to this reservation. Sets reservation’s
Authorized_Users attribute to auth user list.

This list becomes the acl_users attribute for the reservation’s queue.

More specific entries should be listed before more general, because the list is read left-to-right, and the first
match determines access. The reservation creator’s username is automatically added to this list, whether or not
the reservation creator specifies this list.

If both the Authorized_Users and Authorized_Groups reservation attributes are set, a user must belong to both
in order to be able to submit jobs to this reservation.

See the Authorized_Users reservation attribute in section 6.8, “Reservation Attributes”, on page 303.

Syntax:

[+|-]<username>[@<hostname>][,[+|-]<username>[@<hostname>]...]

2.29.5 Operands

The pbs_ralter command takes a reservation ID.

For an advance or job-specific reservation this has the form:

R<sequence number>[.<server name>][@<remote server>]

For a standing reservation this has the form:

S<sequence number>[.<server name>][@<remote server>]

@<remote server> specifies a reservation at a server other than the default server.
PBS Professional 2020.1.1 Reference Guide RG-89

Chapter 2 PBS Commands
2.30 pbs_rdel

Deletes a PBS reservation

2.30.1 Synopsis

pbs_rdel <reservation ID>[,<reservation ID>...]

pbs_rdel --version

2.30.2 Description

The pbs_rdel command deletes reservations in the order specified.

This command deletes the specified reservations, whether or not they are running, all jobs in the reservations, and the res-
ervation queues.

2.30.2.1 Required Privilege

A reservation may be deleted by its owner, a PBS Operator, or a PBS Manager.

2.30.3 Options

--version

The pbs_rdel command returns its PBS version information and exits. This option can only be used alone.

2.30.4 Operands

The pbs_rdel command accepts one or more reservation ID operands.

For an advance or job-specific reservation this has the form:

R<sequence number>[.<server name>][@<remote server>]

For a standing reservation this has the form:

S<sequence number>[.<server name>][@<remote server>]

For a maintenance reservation this has the form:

M<sequence number>[.<server name>][@<remote server>]

@<remote server> specifies a reservation at a server other than the default server.

2.30.5 Exit Status

Zero

Upon success

Greater than zero

Upon failure to process any operand
RG-90 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.30.6 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide, "pbs_rsub” on page 96,
"pbs_rstat” on page 94, "Reservation Attributes” on page 303
PBS Professional 2020.1.1 Reference Guide RG-91

Chapter 2 PBS Commands
2.31 pbs_release_nodes

Releases vnodes assigned to a PBS job

2.31.1 Synopsis

pbs_release_nodes [-j <job ID>] [-k (<number of hosts to keep> | <selection of vnodes to keep>)] <vnode> [<vnode>
[<vnode>] ...]

pbs_release_nodes [-j <job ID>] -a

pbs_release_nodes --version

2.31.2 Description

You can use the pbs_release_nodes command to release no-longer-needed sister hosts or vnodes assigned to a run-
ning job, before the job would normally release them. These vnodes are then available for use by other jobs.

You can specify the names of sister vnodes to be released, or you can release all sister vnodes not on the primary execu-
tion host that are assigned to a running job via the -a option.

PBS can keep the number of sister hosts you specify, or PBS can release all sister vnodes except for the ones you specify
via a select statement.

Can be used on jobs and subjobs, but not on job arrays or ranges of subjobs.

2.31.2.1 Caveats and Restrictions

• You can release only sister hosts or vnodes that are not on the primary execution host. You cannot release vnodes on
the primary execution host.

• The job must be running (in the R state).

• The pbs_release_nodes command is not supported on vnodes tied to Cray X* series systems (vnodes whose
vntype has the "cray_" prefix).

• If cgroups support is enabled, and pbs_release_nodes is called to release some but not all the vnodes managed
by a MoM, resources on those vnodes are released.

• You cannot release a partial host. If you try to release some but not all of a host, the job’s exec_vnode attribute
shows the new, smaller list of vnodes, but the pbsnodes command will reveal that the host is still allocated to the
job.

• If you specify release of a vnode on which a job process is running, that process is terminated when the vnode is
released.

2.31.2.2 Required Privilege

This command can be run by the job owner, the PBS Manager, Operator, and Administrator, as well as root on Linux and
Admin on Windows.

2.31.3 Options to pbs_release_nodes

-a

Releases all job vnodes not on the primary execution host. Cannot be used with -k option, or with list of vnode
names.
RG-92 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
-j <job ID>

Specifies the job ID for the job or subjob whose vnode(s) are to be released.

-k <keep number> | <keep selection>

Use keep number to specify how many sister hosts to keep.

Use keep selection to specify which sister vnodes to keep. The keep selection is a select statement beginning
with “select=” specifying which vnodes to keep.

The primary execution host and its vnodes are not released.

For example, to release all sister hosts except 8:

pbs_release_nodes -k 8

To release all sister vnodes except for 4 of the ones marked with “bigmem”:

pbs_release_nodes -k select=4:bigmem=true

Cannot be used with -a option or with vnode list argument.

(no options)

With no options, pbs_release_nodes uses the value of the PBS_JOBID environment variable as the job
ID of the job whose vnodes are to be released.

--version

The pbs_release_nodes command returns its PBS version information and exits. This option can only be
used alone.

2.31.4 Operands for pbs_release_nodes

The pbs_release_nodes command can take as an operand a list of vnodes. Format:

<vnode name> [<vnode name> [<vnode name>] ...]

Cannot be used with the -a option.

2.31.5 Usage

This command can be run at the command line, or called inside a job script, where it can use the value of the
PBS_JOBID environment variable.

You can release any vnode that appears in the job’s exec_vnode attribute that is not on the primary execution host. You
can release a particular set of a job’s vnodes, or you can release all of a job’s non-primary-execution-host vnodes.

To release specific vnodes:

pbs_release_nodes [-j <job ID>] <vnode name> [<vnode name>] ...]

To release all of a job’s vnodes that are not on the primary execution host:

pbs_release_nodes [-j <job ID>] -a

To release all except a specified number of vnodes:

pbs_release_nodes -k <number of sister hosts to keep>

To release all vnodes except for those in a select specification:

pbs_release_nodes -k <select specification>
PBS Professional 2020.1.1 Reference Guide RG-93

Chapter 2 PBS Commands
2.32 pbs_rstat

Shows status of PBS reservations

2.32.1 Synopsis

pbs_rstat [-B] [-f|-F] [-S] [<reservation ID>...]

pbs_rstat --version

2.32.2 Description

The pbs_rstat command shows the status of all reservations at the PBS server. Denied reservations are not dis-
played.

2.32.2.1 Required Privilege

This command can be run by a user with any level of PBS privilege. For full output, users without manager or operator
privilege cannot print custom resources which were created to be invisible to users.

2.32.3 Output

The pbs_rstat command displays output in any of brief, short, or full formats.

See section 6.8, “Reservation Attributes”, on page 303 and section 8.6, “Reservation States”, on page 367.

2.32.4 Options to pbs_rstat

-B

Brief output. Displays each reservation identifier only.

-f, -F

Full output. Displays all reservation attributes that are not set to the default value. Users without manager or
operator privilege cannot print custom resources which were created to be invisible to users.

-S

Short output. Displays a table showing the name, queue, owner, state, start time, duration, and end time of each
reservation.

--version

The pbs_rstat command returns its PBS version information and exits. This option can only be used alone.

(no options)

Short output. Same behavior as -S option.

2.32.5 Operands

The pbs_rstat command accepts one or more reservation ID operands.

Format for an advance or job-specific reservation:

R<sequence number>[.<server name>][@<remote server>]
RG-94 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
Format for a standing reservation:

S<sequence number>[.<server name>][@<remote server>]

Format for a maintenance reservation:

M<sequence number>[.<server name>][@<remote server>]

@<remote server> specifies a reservation at a server other than the default server.

2.32.6 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide, "pbs_rsub” on page 96, "pbs_rdel” on
page 90, "Reservation Attributes” on page 303
PBS Professional 2020.1.1 Reference Guide RG-95

Chapter 2 PBS Commands
2.33 pbs_rsub

Creates a PBS reservation

2.33.1 Synopsis

For advance and standing reservations:

pbs_rsub [-D <duration>] [-E <end time>] [-g <group list>] [-G <auth group list>] [-H <auth host list>] [-I <block
time>] [-l <placement>] [-l <resource request>] [-m <mail events>] [-M <mail list>] [-N <reservation name>] [-
q <destination>] [-r <recurrence rule>] [-R <start time>] [-u <user list>] [-U <auth user list>] [-W <attribute
value list>]

For job-specific now reservations:

pbs_rsub [-I <block time>] [-m <mail events>] [-M <mail list>] --job <job ID>

For maintenance reservations:

pbs_rsub [-D <duration>] [-E <end time>] [-g <group list>] [-G <auth group list>] [-H <auth host list>] [-m <mail
events>] [-M <mail list>] [-N <reservation name>] [-q <destination>] [-R <start time>] [-u <user list>] [-U
<auth user list>] --hosts <host list>

For version information:

pbs_rsub --version

2.33.2 Description

The pbs_rsub command is used to create advance, standing, job-specific now, job-specific ASAP, or maintenance res-
ervations. For creating job-specific start reservations, see "qsub” on page 213.

• An advance reservation reserves specific resources for the requested time period.

• A standing reservation reserves specific resources for recurring time periods.

• A job-specific now reservation reserves the resources being used by a specific job in case the job fails and needs to
be re-submitted, allowing it to run again without having to wait to be scheduled. The reservation is created and starts
running when a queued job starts running, or immediately when you use pbs_rsub --job <job ID> on a running
job.

• A job-specific ASAP reservation is created from a queued job via pbs_rsub -Wqmove=<job ID>. The reser-
vation runs as soon as possible, and the job is moved into the reservation. The reservation is created using the same
resources as the job requested.

• A job-specific start reservation is created immediately using a running job’s resources, and the job is moved into the
reservation. You create job-specific start reservations using qsub -Wcreate_resv_from_job=true on a
running job. See the qsub command.

• A maintenance reservation reserves the specified hosts for the specified time regardless of other circumstances.

Advance, standing, and job-specific reservations are “job reservations”, to distinguish them from maintenance reserva-
tions. When a reservation is created, it has an associated queue.

To get information about a reservation, use the pbs_rstat command.

To delete a reservation, use the pbs_rdel command. Do not use the qdel command.

The behavior of the pbs_rsub command may be affected by any site hooks. Site hooks can modify the reservation’s
attributes.
RG-96 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.33.2.1 Job Reservations

After an advance or standing reservation is requested, it is either confirmed or denied. A job-specific now reservation is
created when the job is started and confirmed immediately. A job-specific ASAP reservation is scheduled as soon as pos-
sible. Once the reservation has been confirmed, authorized users submit jobs to the reservation’s queue via qsub and
qmove.

A confirmed job reservation will accept jobs at any time. The jobs in its queue can run only during the reservation
period. Jobs in a single advance reservation or job-specific reservation can run only during the reservation’s time slot,
and jobs in a standing reservation can run only during the time slots of occurrences of the standing reservation.

When an advance reservation ends, all of its jobs are deleted, whether running or queued. When an occurrence of a
standing reservation ends, only its running jobs are deleted; those jobs still in the queue are not deleted.

2.33.2.2 Maintenance Reservations

You can create maintenance reservations using pbs_rsub --hosts <host list>. Maintenance reservations are
designed to make the specified hosts available for the specified amount of time, regardless of what else is happening:

• You can create a maintenance reservation that includes or is made up of vnodes that are down or offline.

• Maintenance reservations ignore the value of a vnode’s resv_enable attribute.

• PBS immediately confirms any maintenance reservation.

• Maintenance reservations take precedence over other reservations; if you create a maintenance reservation that over-
laps an advance or standing job reservation, the overlapping vnodes become unavailable to the job reservation, and
the job reservation is in conflict with the maintenance reservation. PBS looks for replacement vnodes; see "Reserva-
tion Fault Tolerance" on page 426 in the PBS Professional Administrator’s Guide.

PBS will not start any new jobs on vnodes overlapping or in a maintenance reservation. However, jobs that were already
running on overlapping vnodes continue to run; you can let them run or requeue them.

You cannot specify place or select for a maintenance reservation; these are created by PBS:

• PBS creates the reservation’s placement specification so that hosts are assigned exclusively to the reservation. The
placement specification is always the following:

-lplace=exclhost
• PBS sets the reservation’s resv_nodes attribute value so that all CPUs on the reserved hosts are assigned to the

maintenance reservation. The select specification is always the following:

-lselect=host=<host1>:ncpus=<number of CPUs at host1>+host=<host2>:ncpus=<number of CPUs at
host2>+...

Maintenance reservations are prefixed with M. A maintenance reservation ID has the format:

M<sequence number>.<server name>

You cannot create a recurring maintenance reservation.

Creating a maintenance reservation does not trigger a scheduling cycle.

You must have manager or operator privilege to create a maintenance reservation.

2.33.2.3 Requirements

When using pbs_rsub to request a standing, advance, or maintenance reservation, you must specify two of the follow-
ing options: -R, -E, and -D. The resource request -l walltime can be used instead of the -D option.

If you want to run jobs in a reservation that will request exclusive placement, you must create the reservation with exclu-
sive placement via -l place=excl.
PBS Professional 2020.1.1 Reference Guide RG-97

Chapter 2 PBS Commands
2.33.3 Options to pbs_rsub

-D <duration>

Specifies reservation duration. If the start time and end time are the only times specified, this duration time is
calculated.

Format: Duration

Default: none

-E <end time>

Specifies the reservation end time. If start time and duration are the only times specified, the end time value is
calculated.

Format: Datetime.

Default: none

-g <group_list>

The group list is a comma-separated list of group names. The server uses entries in this list, along with an
ordered set of rules, to associate a group name with the reservation. The reservation creator’s primary group is
automatically added to this list.

Format: <group>@<hostname>[,<group>@<hostname> ...]

-G <auth group list>

Comma-separated list of names of groups who can or cannot submit jobs to this reservation. Sets reservation’s
Authorized_Groups attribute to auth group list.

This list becomes the acl_groups list for the reservation’s queue.

More specific entries should be listed before more general, because the list is read left-to-right, and the first
match determines access.

If both the Authorized_Users and Authorized_Groups reservation attributes are set, a user must belong to both
in order to be able to submit jobs to this reservation.

Group names are interpreted in the context of the server host, not the context of the host from which the job is
submitted.

See the Authorized_Groups reservation attribute in section 6.8, “Reservation Attributes”, on page 303.

Syntax:

[+|-]<group name>[,[+|-]<group name> ...]
Default: No groups are authorized to submit jobs

--hosts <host list>

Space-separated list of hosts to be included in maintenance reservation. PBS creates placement and resource
requests. Placement is always exclhost, and all CPUs of requested hosts are assigned to maintenance reserva-
tion. Cannot be used with the -l <placement>, -l <resource request>, or -I <block time>
options.

-H <auth host list>

Comma-separated list of hosts from which jobs can and cannot be submitted to this reservation. This list
becomes the acl_hosts list for the reservation’s queue. More specific entries should be listed before more gen-
eral, because the list is read left-to-right, and the first match determines access. If the reservation creator speci-
fies this list, the creator’s host is not automatically added to the list.

See the Authorized_Hosts reservation attribute in section 6.8, “Reservation Attributes”, on page 303.

Format: [+|-]<hostname>[,[+|-]<hostname> ...]

Default: All hosts are authorized to submit jobs
RG-98 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
-I <block time>

Specifies interactive mode. The pbs_rsub command will block, up to block time seconds, while waiting for
the reservation request to be confirmed or denied.

If block time is positive, and the reservation isn’t confirmed or denied in the specified time, the ID string for the
reservation is returned with the status “UNCONFIRMED”.

If block time is negative, and a scheduler doesn’t confirm or deny the reservation in the specified time, the reser-
vation is deleted.

Cannot be used with --hosts option. Has no effect when used with --job option.

Format: Integer.

Default: Not interactive.

--job <job ID>

Immediately creates and confirms a job-specific now reservation on the same resources as the job (including
resources inherited by the job), and places the job in the job-specific now reservation queue. Sets the job’s
create_resv_from_job attribute to True. Sets the now reservation’s reserve_job attribute to the ID of the job
from which the reservation was created, sets the reservation’s Reserve_Owner attribute to the value of the
job’s Job_Owner attribute, sets the reservation’s resv_nodes attribute to the job’s exec_vnode attribute, sets
the reservation’s resources to match the job’s schedselect attribute, and sets the reservation’s Resource_List
attribute to the job’s Resource_List attribute.

The now reservation’s duration and start time are the same as the job’s walltime and start time. If the job is peer
scheduled, the now reservation is created in the pulling complex.

Format: Boolean

Default: no default

Example:

pbs_rsub --job 1234.myserver

Can be used on running jobs only (jobs in the R state, with substate 42).

Cannot be used with job arrays, jobs already in reservations, or other users’ jobs.

-l <placement>

The placement specifies how vnodes are reserved. The place statement can contain the following elements, in
any order:

-l place=[<arrangement>][:[<sharing>]][:[<grouping>]]

where

arrangement
Whether this reservation chunk is willing to share this vnode or host with other chunks from this reserva-
tion. One of free | pack | scatter | vscatter

sharing
Whether this reservation chunk is willing to share this vnode or host with other reservations or jobs. One of
excl | shared | exclhost

grouping
Whether the chunks from this reservation should be placed on vnodes that all have the same value for a
resource. Can have only one instance of group=<resource name>

free
Place reservation on any vnode(s).

pack
All chunks are taken from one host.

scatter
PBS Professional 2020.1.1 Reference Guide RG-99

Chapter 2 PBS Commands
Only one chunk with any MPI processes is taken from a host. A chunk with no MPI processes may be
taken from the same vnode as another chunk.

vscatter
Only one chunk is taken from any vnode. Each chunk must fit on a vnode.

excl
Only this reservation uses the vnodes chosen.

shared
This reservation can share the vnodes chosen.

exclhost
The entire host is allocated to the reservation.

group=<resource name>
Chunks are grouped according to the specified resource. All vnodes in the group must have a common
value for resource, which can be either the built-in resource host or a custom vnode-level resource.

Resource name must be a string or a string array.

If you want to run jobs in the reservation that will request exclusive placement, you must create the reservation
with exclusive placement via -l place=excl.

The place statement cannot start with a colon. Colons are delimiters; use them only to separate parts of a place
statement, unless they are quoted inside resource values.

Note that vnodes can have sharing attributes that override reservation placement requests.

See section 6.10, “Vnode Attributes”, on page 320.

Cannot be used with --hosts option.

-l <resource request>

The resource request specifies the resources required for the reservation. These resources are used for the limits
on the queue that is dynamically created for the reservation. The aggregate amount of resources for currently
running jobs from this queue will not exceed these resource limits. Jobs in the queue that request more of a
resource than the queue limit for that resource are not allowed to run. Also, the queue inherits the value of any
resource limit set on the server, and these are used for the job if the reservation request itself is silent about that
resource. A non-privileged user cannot submit a reservation requesting a custom resource which has been cre-
ated to be invisible or read-only for users.

Resources are requested by using the -l option, either in chunks inside of selection statements, or in job-wide
requests using <resource name>=<value> pairs.

Requesting resources in chunks:

-l select=[N:]<chunk>[+[N:]<chunk> ...]

where N specifies how many of that chunk, and a chunk is of the form:

<resource name>=<value>[:<resource name>=<value> ...]

Requesting job-wide resources:

-l <resource name>=<value>[,<resource name>=<value> ...]

Default: One chunk containing one CPU.

Cannot be used with --hosts option.
RG-100 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
-m <mail events>

Specifies the set of events that cause mail to be sent to the list of users specified in the -M <mail list>
option.

Format: string consisting of one of the following:

• Any combination of “a”, “b”, “c” or “e”

• The single character “n”

The following table lists the sub-options to the -m option:

 Default: “ac”.

-M <mail list>

The list of users to whom mail is sent whenever the reservation transitions to one of the states specified in the -
m <mail events> option.

Format: <username>[@<hostname>][,<username>[@<hostname>]...]

Default: Reservation owner.

-N <reservation name>

Specifies a name for the reservation.

Format: Reservation Name. See "Reservation Name” on page 358.

Default: None.

-q <server>

Specifies the server at which to create the reservation.

Default: Default server

-r <recurrence rule>

Specifies rule for recurrence of standing reservations. Rule must conform to iCalendar syntax, and is specified
using a subset of parameters from RFC 2445.

Valid syntax for recurrence rule takes one of two forms:

FREQ=<freq spec>;COUNT=<count spec>;<interval spec>

or

FREQ=<freq spec>;UNTIL=<until spec>;<interval spec>

where

freq spec
Frequency with which the standing reservation repeats. Valid values are:

WEEKLY|DAILY|HOURLY

Table 2-5: Sub-options to -m Option

Character Meaning

a Notify if the reservation is terminated for whatever reason

b Notify when the reservation period begins

c Notify when the reservation is confirmed

e Notify when the reservation period ends

n Send no mail. Cannot be used with any of a, b, c, or e.
PBS Professional 2020.1.1 Reference Guide RG-101

Chapter 2 PBS Commands
count spec
The exact number of occurrences. Number up to 4 digits in length.

Format: Integer.

interval spec
Specifies interval. Format is one or both of:

BYDAY=MO|TU|WE|TH|FR|SA|SU

or

BYHOUR=0|1|2|...|23

When using both, separate them with a semicolon.

Elements specified in the recurrence rule override those specified in the arguments to the -R and -E options.
For example, the BYHOUR specification overrides the hourly part of the -R option. For example, -R
0730 -E 0830 ... BYHOUR=9 results in a reservation that starts at 9:30 and runs for 1 hour.

until spec
Occurrences will start up to but not after date and time specified. Format:

<YYYYMMDD>[T<HHMMSS>]

Note that the year-month-day section is separated from the hour-minute-second section by a capital T.

Requirements:

• The recurrence rule must be on one unbroken line and must be enclosed in double quotes.

• A start and end date must be used when specifying a recurrence rule. See the R and E options.

• The PBS_TZID environment variable must be set at the submission host. The format for PBS_TZID is a
timezone location. Examples: America/Los_Angeles, America/Detroit, Europe/Berlin,
Asia/Calcutta. See the PBS Professional User’s Guide.

• Spaces are not allowed.

Examples of Standing Reservations

For a reservation that runs every day from 8am to 10am, for a total of 10 occurrences:

pbs_rsub -R 0800 -E 1000 -r “FREQ=DAILY;COUNT=10”

Every weekday from 6am to 6pm until December 10 2008

pbs_rsub -R 0600 -E 1800 -r “FREQ=WEEKLY;BYDAY=MO,TU,WE,TH,FR;UNTIL=20081210”

Every week from 3pm to 5pm on Monday, Wednesday, and Friday, for 9 occurrences, i.e., for three weeks:

pbs_rsub -R 1500 -E 1700 -r “FREQ=WEEKLY;BYDAY=MO,WE,FR;COUNT=3”

-R <start time>

Specifies reservation starting time. If the reservation’s end time and duration are the only times specified, this
start time is calculated.

If the day, DD, is not specified, it defaults to today if the time hhmm is in the future. Otherwise, the day is set to
tomorrow. For example, if you submit a reservation with the specification -R 1110 at 11:15 a.m., it is inter-
preted as being for 11:10am tomorrow. If the month portion, MM, is not specified, it defaults to the current
month, provided that the specified day DD, is in the future. Otherwise, the month is set to next month. Similar
rules apply to the two other optional, left-side components.

Format: Datetime

-u <user list>

Not used. Comma-separated list of user names.

Format: <username>[@<hostname>][,<username>[@<hostname>] ...]

Default: None.
RG-102 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
-U <auth user list>

Comma-separated list of users who are and are not allowed to submit jobs to this reservation. Sets reservation’s
Authorized_Users attribute to auth user list.

This list becomes the acl_users attribute for the reservation’s queue.

More specific entries should be listed before more general, because the list is read left-to-right, and the first
match determines access. The reservation creator’s username is automatically added to this list, whether or not
the reservation creator specifies this list.

If both the Authorized_Users and Authorized_Groups reservation attributes are set, a user must belong to both
in order to be able to submit jobs to this reservation.

See the Authorized_Users reservation attribute in section 6.8, “Reservation Attributes”, on page 303.

Syntax:

[+|-]<username>[@<hostname>][,[+|-]<username>[@<hostname>]...]
Default: Job owner only.

-W <extended options>

This allows you to define other attributes for the reservation or perform other actions.

delete_idle_time=<allowed idle time>
Deletes the reservation after the specified amount of idle time. Applies to each instance of a standing reser-
vation.

qmove=<job ID> [-I -<timeout>]
Takes as input a queued job, creates a job-specific ASAP reservation for the same resources the job
requests, and moves the job into the reservation’s queue. The reservation is scheduled to run as soon as
possible.

When the reservation is created, it inherits its resources from the job, not from the resources requested
through the pbs_rsub command.

You can use the -I option to specify a timeout for the conversion. If you use the qmove option to convert
a job to a reservation, and the reservation is not confirmed within the timeout period, the reservation is
deleted. The default timeout period is 10 seconds. There is no option for this kind of reservation to be
unconfirmed.

To specify the timeout, you must give a negative value for the -I option. For example, to specify a timeout
of 300 seconds:

pbs_rsub -Wqmove=<job ID> -I -300

The default value for the delete_idle_time attribute for an ASAP reservation is 10 minutes.

The -R and -E options to pbs_rsub are disabled when using the qmove=<job ID> option.

Some shells require that you enclose a job array ID in double quotes.

Can be used on queued jobs only.

--version

The pbs_rsub command returns its PBS version information and exits. This option can only be used alone.

2.33.4 Output

The pbs_rsub command returns the reservation identifier.

Format for an advance or job-specific reservation:

R<sequence number>.<server name>

The associated queue’s name is the prefix, R<sequence number>.
PBS Professional 2020.1.1 Reference Guide RG-103

Chapter 2 PBS Commands
Format for a standing reservation:

S<sequence number>.<server name>

The associated queue’s name is the prefix, S<sequence number>.

Format for a maintenance reservation:

M<sequence number>.<server name>

2.33.5 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide, "pbs_rstat” on page 94, "pbs_rdel” on
page 90, "Reservation Attributes” on page 303
RG-104 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.34 pbs_sched

Runs a PBS scheduler

2.34.1 Synopsis

pbs_sched [-a <alarm>] [-c <clientsfile>] [-d <home dir>] [-I <scheduler name>] [-L <logfile>] [-n] [-N] [-p
<output file>] [-R <port number>] [-S <port number>] [-t <num threads>]

pbs_sched --version

2.34.2 Description

Runs the default scheduler or a multisched.

2.34.2.1 Required Permission

pbs_sched must be executed with root permission.

2.34.3 Options to pbs_sched

-a <alarm>

Deprecated. Overwrites value of sched_cycle_length scheduler attribute. Time in seconds to wait for a sched-
uling cycle to finish.

Format: Time, in seconds.

-c <clientsfile>

Add clients to this scheduler’s list of known clients. The clientsfile contains single-line entries of the form

$clienthost <hostname>

Each hostname is added to the list of hosts allowed to connect to this scheduler. If clientsfile cannot be opened,
this scheduler aborts. Path can be absolute or relative. If relative, it is relative to PBS_HOME/sched_priv/.

-d <home dir>

The directory in which this scheduler will run.

Default: PBS_HOME/sched_priv.

-I <scheduler name>

Name of scheduler to start. Required when starting a multisched.

-L <logfile>

The absolute path and filename of the log file. This scheduler writes its PBS version and build information to
logfile whenever it starts up or logfile is rolled to a new file.

See the -d option.

Default: This scheduler opens a file named for the current date in the PBS_HOME/sched_log directory.

-n

Tells this scheduler to not restart itself if it receives a sigsegv or a sigbus. A scheduler by default restarts itself
if it receives either of these two signals more than five minutes after starting. A scheduler does not restart itself
if it receives either one within five minutes of starting.
PBS Professional 2020.1.1 Reference Guide RG-105

Chapter 2 PBS Commands
-N

Runs the scheduler in standalone mode.

-p <output file>

Any output which is written to standard out or standard error is written to output file. The pathname can be
absolute or relative, in which case it is relative to PBS_HOME/sched_priv.

See the -d option.

Default: PBS_HOME/sched_priv/sched_out

-R <port number>

The port for MoM to use. If this option is not given, the port number is taken from
PBS_MANAGER_SERVICE_PORT, in pbs.conf.

Default: 15003

-S <port number>

The port for this scheduler to use.

Required when starting a multisched.

For the default scheduler, if this option is not specified, the default port is taken from
PBS_SCHEDULER_SERVICE_PORT, in pbs.conf.

Default value for default scheduler: 15004

Default value for multisched: none

-t <num threads>

Specifies number of threads for this scheduler.

Scheduler automatically caps number of threads at the number of cores (or hyperthreads if applicable), regard-
less of value of num threads.

Overrides PBS_SCHED_THREADS environment variable and PBS_SCHED_THREADS parameter in
pbs.conf.

Valid values: >=1

Default: one thread

--version

The pbs_sched command returns its PBS version information and exits. This option can only be used alone.

2.34.4 Signal Handling

All signals are ignored until the end of the cycle. Most signals are handled in the standard UNIX fashion.

SIGHUP

This scheduler closes and reopens its log file and rereads its configuration file if one exists.

SIGALRM, SIGBUS, etc.

Ignored until end of scheduling cycle. This scheduler quits.

SIGINT and SIGTERM

This scheduler closes its log file and shuts down.

All other signals have the default action installed.
RG-106 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.34.5 Exit Status

Zero

Upon normal termination

2.34.6 See Also

The PBS Professional Administrator’s Guide
PBS Professional 2020.1.1 Reference Guide RG-107

Chapter 2 PBS Commands
2.35 pbs_server

Starts a PBS batch server

2.35.1 Synopsis

pbs_server [-A <acctfile>] [-a <active>] [-C] [-d <config path>] [-e <mask>] [-F <delay>] [-L <logfile>] [-M
<MoM port>] [-N] [-p <port number>] [-R <MoM RM port>] [-S <default scheduler port>] [-s <replacement
string>] [-t <restart type>]

pbs_server --version

2.35.2 Description

The pbs_server command starts a batch server on the local host. Typically, this command is in a local boot file such
as /etc/rc.local. If the batch server is already running, pbs_server exits with an error.

2.35.2.1 Required Permission

To ensure that the pbs_server command is not runnable by the general user community, the server runs only if its real
and effective UID is zero. You must be root.

2.35.3 Options to pbs_server

-A <acctfile>

Specifies an absolute path name for the file to use as the accounting file. If not specified, the file is named for
the current date in the PBS_HOME/server_priv/accounting directory.

-a <value>

When True, the server is in state “active” and the default scheduler is called to schedule jobs. When False, the
server is in state “idle” and the default scheduler is not called to schedule jobs. Sets the server’s scheduling
attribute. If this option is not specified, the server uses the previously specified value for the scheduling
attribute.

Format: Boolean

-C

The server starts up, creates the database, and exits. Windows only.

-d <config path>

Specifies the absolute path to the directory containing the server configuration files, PBS_HOME. A host may
have multiple servers. Each server must have a different configuration directory. The default configuration
directory is specified in $PBS_HOME, and is typically /var/spool/pbs.

-e <mask>

Specifies a log event mask to be used when logging. See “log_events” in section 6.6, “Server Attributes”, on
page 281.

-F <delay>

Specifies the number of seconds that the secondary server should wait before taking over when it believes the
primary server is down. If the number of seconds is specified as -1, the secondary will make one attempt to
contact the primary and then become active.

Default: 30 seconds
RG-108 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
-L <logfile>

Specifies the absolute path name for the log file. If not specified, the file is named for the current date in the
PBS_HOME/server_logs directory. PBS_HOME is specified in the $PBS_HOME environment variable or in
/etc/pbs.conf; see the -d option.

-M <MoM port>

Specifies the hostname and/or port number on which the server should connect to MoM. The option argument,
MoM port, uses the syntax:

[<hostname>][:<port number>]
If hostname not specified, the local host is assumed.

If port number is not specified, the default port is assumed.

See the -M option in section 2.23, “pbs_mom”, on page 71.

Default: 15002

-N

Runs the server in standalone mode.

-p <port number>

Specifies the port number on which the server is to listen for batch requests. If multiple servers are running on
a single host, each must have its own unique port number. This option is for testing with multiple batch systems
on a single host.

Format: Integer port number

Default: 15001

-R <MoM RM port>

Specifies the port number on which the server should query the up/down status of MoM. See the -R option in
section 2.23, “pbs_mom”, on page 71.

Default: 15003

-S <default scheduler port>

Specifies the port number to which the server should connect when contacting the default scheduler. The option
argument, default scheduler port, uses the syntax:

[<hostname>][:<port number>]
If hostname not specified, the local host is assumed. If port number is not specified, the default port is assumed.

Default: 15004

-s <replacement string>

Specifies the string to use when replacing spaces in accounting entity names. Only available under Windows.

-t <restart type>

Specifies behavior when the server restarts. The restart type argument is one of the following:

cold
All jobs are purged. Positive confirmation is required before this direction is accepted.

create
The server discards any existing configuration files: server, nodes, queues, and jobs, and initializes config-
uration files to the default values. The default scheduler is idled (scheduling is set to False). Any multi-
scheds are deleted.
PBS Professional 2020.1.1 Reference Guide RG-109

Chapter 2 PBS Commands
hot
All jobs in the Running state are retained in that state. Any job that was requeued into the Queued state
from the Running state when the server last shut down is run immediately, assuming the required resources
are available. This returns the server to the same state as when it went down. After those jobs are restarted,
normal scheduling takes place for all remaining queued jobs. All other jobs are retained in their current
state.

If a job cannot be restarted immediately because of a missing resource, such as a vnode being down, the
server attempts to restart it periodically for up to 5 minutes. After that period, the server will revert to a nor-
mal state, as if warm started, and will no longer attempt to restart any remaining jobs which were running
prior to the shutdown.

updatedb
Updates format of PBS data from the previous format to the data service format.

warm
All jobs in the Running state are retained in that state. All other jobs are maintained in their current state.
The default scheduler typically chooses new jobs for execution. warm is the default if -t is not specified.

--version

The pbs_server command returns its PBS version information and exits. This option can only be used
alone.

2.35.4 Files

$PBS_HOME/server_priv

Default directory for configuration files.

$PBS_HOME/server_logs

Directory for log files recorded by the server.

2.35.5 Signal Handling for pbs_server

When it receives the following signals, the server performs the following actions:

SIGHUP

The current server log and accounting log are closed and reopened. This allows for the prior log to be renamed
and a new log started from the time of the signal.

SIGTERM

Causes a rapid orderly shutdown of pbs_server, identical to “qterm -t quick”.

SIGSHUTDN

On systems where SIGSHUTDN is defined, causes an orderly “quick” shutdown of the server.

SIGPIPE, SIGUSR1, SIGUSR2

These signals are ignored.

All other signals have their default behavior installed.

2.35.6 Diagnostic Messages

The server records a diagnostic message in a log file for any error occurrence. The log files are maintained in the
server_logs directory below the home directory of the server. If the log file cannot be opened, the diagnostic message
is written to the system console. The server writes its PBS version and build information to the logfile whenever it starts
up or the logfile is rolled to a new file.
RG-110 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.35.7 Stopping the PBS Server

2.35.7.1 Stopping the Server on Linux

Use the qterm command (see section 2.60, “qterm”, on page 233):

qterm

or send a SIGTERM:

kill <server PID>

2.35.8 Exit Status

Zero

When the server has run in the background and then exits

Greater than zero

If the server daemon fails to begin batch operation

2.35.9 See Also

The PBS Professional Administrator’s Guide
PBS Professional 2020.1.1 Reference Guide RG-111

Chapter 2 PBS Commands
2.36 pbs_snapshot

Linux only. Captures PBS data to be used for diagnostics

2.36.1 Synopsis

pbs_snapshot -h, --help

pbs_snapshot -o <output directory path> [--accounting-logs=<number of days>] [--additional-hosts=<hostname
list>] [--basic] [--daemon-logs=<number of days>] [-H <server host>] [-l <log level>] [--map=<file path>] [--
obfuscate] [--with-sudo]

pbs_snapshot --version

2.36.2 Description

You use pbs_snapshot to capture PBS data for diagnostics. This tool is written in Python and uses PTL libraries,
including PBSSnapUtils, to extract the data. You can optionally anonymize the PBS data. The pbs_snapshot com-
mand captures data from all multischeds. The command detects which daemon or daemons are running on the host
where it is collecting information, and captures daemon and system data accordingly. If no PBS daemons are running,
the command collects system information. The output tarball contains information about the host specified via the -H
option, or if that is not specified, the local host. If you specify additional hosts, the command creates a tarball for each
additional host and includes it as a sub-tarball in the output.

If you want to capture only PBS configuration information, use the --basic option.

2.36.2.1 Required Privilege

The pbs_snapshot command allows you to use the sudo infrastructure provided by the PTL framework to capture
root-owned information via --with-sudo. All other information is collected as a normal user. If you need to run
pbs_snapshot as a non-privileged user, and without using the PTL --with-sudo infrastructure, you must be root
if you want root-owned information to be collected.

2.36.2.2 Restrictions

The pbs_snapshot command is not available on Windows.

2.36.3 Options to pbs_snapshot

--accounting-logs=<number of days>

Specifies number of days of accounting logs to be collected; this count includes the current day.

Value of number of days must be >=0:

• If number of days is 0, no logs are captured.

• If number of days is 1, only the logs for the current day are captured.

Default: pbs_snapshot collects 30 days of accounting logs
RG-112 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
--additional-hosts=<hostname list>

Specifies that pbs_snapshot should gather data from the specified list of additional hosts. Launches the
pbs_snapshot command on each specified host, creates a tarball there named <hostname>_snapshot.tgz,
and includes it as a sub-tarball in the output for the main output. If you use the --with-sudo option, each
launched copy uses that option as well.

The command does not query the server when it runs at a non-server host.

The command collects a full snapshot, including the following information:

• Daemon logs, for the number of days of logs being captured, specified via the --daemon-logs=<num-
ber of days> option

• The PBS_HOME/<daemon>_priv directory

• Accounting logs if server daemon runs on host

• System information

Format for hostname list is a comma-separated list of one or more hostnames:

<hostname>[, <hostname> ...]

--basic

Captures PBS configuration information only. Captures the following:

Can be combined with other options such as --accounting-logs and --daemon-logs in order to cap-
ture additional information.

Table 2-6: PBS Configuration Information Captured with --basic Option

Output File Description of Captured Information

server/qstat_Bf.out Output of qstat -Bf

server/qstat_Qf.out Output of qstat -Qf

scheduler/qmgr_lsched.out Output of qmgr -c 'list sched'

node/pbsnodes_va.out Output of pbsnodes -va

reservation/pbs_rstat_f.out Output of pbs_rstat -f

job/qstat_f.out Output of qstat -f

hook/qmgr_lpbshook.out Output of qmgr -c 'list pbshook'

sched_priv/ for each scheduler instance Copy of each scheduler’s sched_priv directory

server_priv/resourcedef Copy of server_priv/resourcedef file

pbs.conf Copy of /etc/pbs.conf on server host

pbs_snapshot.log Log of pbs_snapshot execution

ctime Timestamp of when the snapshot was taken
PBS Professional 2020.1.1 Reference Guide RG-113

Chapter 2 PBS Commands
--daemon-logs=<number of days>

Specifies number of days of daemon logs to be collected; this count includes the current day.

Value of number of days must be >=0:

• If number of days is 0, no logs are captured.

• If number of days is 1, only the logs for the current day are captured.

Default: pbs_snapshot collects 5 days of daemon logs

-h, --help

Prints usage and exits.

-H <hostname>

Specifies hostname for host whose retrieved data is to be at the top level in the output tarball. If not specified,
pbs_snapshot puts data for the local host at the top level in the output tarball.

-l <log level>

Specifies level at which pbs_snapshot writes its log. The log file is pbs_snapshot.log, in the output
directory path specified using the -o <output directory path> option.

Valid values, from most comprehensive to least: DEBUG2, DEBUG, INFOCLI2, INFOCLI, INFO, WARN-

ING, ERROR, FATAL

Default: INFOCLI2

--map=<file path>

Specifies path for file containing obfuscation map, which is a <key>:<value> pair-mapping of obfuscated data.
Path can be absolute or relative to current working directory.

Default: pbs_snapshot writes its obfuscation map in a file called “obfuscate.map” in the location specified
via the -o <output directory path> option.

Can only be used with the --obfuscate option.

--obfuscate

Obfuscates (anonymizes) or deletes sensitive PBS data captured by pbs_snapshot.

• Obfuscates the following data: euser, egroup, project, Account_Name, operators, managers,

group_list, Mail_Users, User_List, server_host, acl_groups, acl_users, acl_resv_groups,

acl_resv_users, sched_host, acl_resv_hosts, acl_hosts, Job_Owner, exec_host, Host, Mom,

resources_available.host, resources_available.vnode

• Deletes the following data: Variable_List, Error_Path, Output_Path, mail_from, Mail_Points,

Job_Name, jobdir, Submit_arguments, Shell_Path_List

--version

The pbs_snapshot command prints its PBS version information and exits. Can only be used alone.

--with-sudo

Uses the PTL sudo infrastructure in order capture root-owned information via sudo. (Information not owned
by root is captured using normal privilege, not root privilege.) With this option, you do not need to prefix your
pbs_snapshot command with sudo, and you do not need root privilege.
RG-114 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.36.4 Arguments to pbs_snapshot

-o <output directory path>

Path to directory where pbs_snapshot writes its output tarball. Required. Path can be absolute or relative to
current working directory.

For example, if you specify “-o /temp”, pbs_snapshot writes "/temp/snapshot_<timestamp>.tgz".

The output directory path must already exist.

2.36.5 Output

2.36.5.1 Output Location

You must use the -o <output directory path> option to specify the directory where pbs_snapshot writes
its output. The path can be absolute or relative to current working directory. The output directory must already exist. As
an example, if you specify "-o /temp", pbs_snapshot writes "/temp/snapshot_<timestamp>.tgz".

2.36.5.2 Output Contents

The pbs_snapshot command writes the output for the local host and each specified remote host as a tarball. Tarballs
for remote hosts are included in the main tarball.

The command captures JSON output from qstat-f -F json and pbsnodes -av -F json.

The main tarball contains the following directory structure, files, and tarballs:

Table 2-7: Contents of Snapshot

Directory or File Directory Contents Description

server/

qstat_B.out Output of qstat -B

qstat_Bf.out Output of qstat -Bf

qmgr_ps.out Output of qmgr print server

qstat_Q.out Output of qstat -Q

qstat_Qf.out Output of qstat -Qf

qmgr_pr.out Output of qmgr print resource

server_priv/ Copy of the PBS_HOME/server_priv directory.

Core files are captured separately; see core_file_bt/.

accounting/ Accounting logs from PBS_HOME/server_priv/accounting/
directory for the number of days specified via --account-
ing-logs option

server_logs/ Server logs from the PBS_HOME/server_logs directory for the number of days specified via -
-daemon-logs option
PBS Professional 2020.1.1 Reference Guide RG-115

Chapter 2 PBS Commands
job/

qstat.out Output of qstat

qstat_f.out Output of qstat -f

qstat_f_F_json.out Output of qstat -f -F json

qstat_t.out Output of qstat -t

qstat_tf.out Output of qstat -tf

qstat_x.out Output of qstat -x

qstat_xf.out Output of qstat -xf

qstat_ns.out Output of qstat -ns

qstat_fx_F_dsv.out Output of qstat -fx -F dsv

qstat_f_F_dsv.out Output of qstat -f -F dsv

node/

pbsnodes_va.out Output of pbsnodes -va

pbsnodes_a.out Output of pbsnodes -a

pbsnodes_avSj.out Output of pbsnodes -avSj

pbsnodes_aSj.out Output of pbsnodes -aSj

pbsnodes_avS.out Output of pbsnodes -avS

pbsnodes_aS.out Output of pbsnodes -aS

pbsnodes_aFdsv.out Output of pbsnodes -aF dsv

pbsnodes_avFdsv.out Output of pbsnodes -avF dsv

pbsnodes_avFjson.out Output of pbsnodes -avF json

qmgr_pn_default.out Output of qmgr print node @default

mom_priv/ Copy of the PBS_HOME/mom_priv directory.

Core files are captured separately; see core_file_bt/.

mom_logs/ MoM logs from the PBS_HOME/mom_logs directory for the number of days specified via --
daemon-logs option

comm_logs/ Comm logs from the PBS_HOME/comm_logs directory for the number of days specified via --
daemon-logs option

sched_priv/ Copy of the PBS_HOME/sched_priv directory, with all files.

Core files are not captured; see core_file_bt/.

sched_logs/ Scheduler logs from the PBS_HOME/sched_log directory for the number of days specified via
--daemon-logs option

sched_priv_<multi-
sched name>/

Copy of the PBS_HOME/sched_priv_<multisched name> directory, with all files.

Core files are not captured; see core_file_bt/.

Table 2-7: Contents of Snapshot

Directory or File Directory Contents Description
RG-116 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
sched_logs_<multi-
sched name>/

Multisched logs from the PBS_HOME/sched_log_<multisched name> directory for the num-
ber of days specified via --daemon-logs option

reservation/

pbs_rstat_f.out Output of pbs_rstat -f

pbs_rstat.out Output of pbs_rstat

scheduler/

qmgr_lsched.out Output of qmgr list sched

hook/

qmgr_ph_default.out Output of qmgr print hook @default

qmgr_lpbshook.out Output of qmgr list pbshook

datastore/

pg_log/ Copy of the PBS_HOME/datastore/pg_log directory for the
number of days specified via --daemon-logs option

core_file_bt/ Stack backtrace from core files

sched_priv/ Files containing the output of thread apply all back-
trace full on all core files captured from PBS_HOME/
sched_priv

sched_priv_<multisched
name>

Files containing the output of thread apply all back-
trace full on all core files captured from PBS_HOME/
sched_priv_<multisched name>

server_priv/ Files containing the output of thread apply all back-
trace full on all core files captured from PBS_HOME/
server_priv

mom_priv/ Files containing the output of thread apply all back-
trace full on all core files captured from PBS_HOME/
mom_priv

misc/ Files containing the output of thread apply all back-
trace full on any other core files found inside PBS_HOME

Table 2-7: Contents of Snapshot

Directory or File Directory Contents Description
PBS Professional 2020.1.1 Reference Guide RG-117

Chapter 2 PBS Commands
2.36.6 Examples

pbs_snapshot -o /tmp

Writes a snapshot to /temp/snapshot_<timestamp>.tgz that includes 30 days of accounting logs and 5 days of
daemon logs from the server host.

pbs_snapshot --daemon-logs=1 --accounting-logs=1 -o /tmp --obfuscate --map=mapfile.txt

Writes a snapshot to /temp/snapshot_<timestamp>.tgz that includes 1 day of accounting and daemon logs.
Obfuscates the data and stores the data mapping in the map file named “mapfile.txt”.

system/

pbs_probe_v.out Output of pbs_probe -v

pbs_hostn_v.out Output of pbs_hostn -v $(hostname)

pbs_environment Copy of PBS_HOME/pbs_environment file

os_info Information about the OS

process_info List of processes running on the system when the snapshot was
taken. Output of ps -aux | grep [p]bs on Linux sys-
tems, or tasklist /v on Windows systems

ps_leaf.out Output of ps -leaf. Linux only.

lsof_pbs.out Output of lsof | grep [p]bs. Linux only.

etc_hosts Copy of /etc/hosts file. Linux only.

etc_nsswitch_conf Copy of /etc/nsswitch.conf file. Linux only.

vmstat.out Output of the command vmstat. Linux only.

df_h.out Output of the command df -h. Linux only.

dmesg.out Output of the dmesg command. Linux only.

pbs.conf Copy of the pbs.conf file on the server host

ctime Contains the time in seconds since epoch when the snapshot was taken

pbs_snapshot.log Log messages written by pbs_snapshot

<remote host-
name>.tgz

Tarball of output from running the pbs_snapshot command at a remote host

Table 2-7: Contents of Snapshot

Directory or File Directory Contents Description
RG-118 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.37 pbs_tclsh

Deprecated. TCL shell with TCL-wrapped PBS API

2.37.1 Synopsis

pbs_tclsh

pbs_tclsh --version

2.37.2 Description

The pbs_tclsh command starts a version of the TCL shell which includes wrapped versions of the PBS external API.
The PBS TCL API is documented in "TCL/tk Interface" on page 103 in the PBS Professional Programmer’s Guide.

The pbs_tclsh command is used to query MoM. For example:

> pbs_tclsh

tclsh> openrm <hostname>

<file descriptor>

tclsh> addreq <file descriptor> "loadave"

tclsh> getreq <file descriptor>

<load average>

tclsh> closereq <file descriptor>

2.37.2.1 Required Permission

Root privilege is required in order to query MoM for dynamic resources. Root privilege is not required in order to query
MoM for built-in resources and site-defined static resources.

2.37.3 Options

--version

The pbs_tclsh command returns its PBS version information and exits. This option can only be used alone.

2.37.4 Standard Error

The pbs_tclsh command writes a diagnostic message to standard error for each error occurrence.

2.37.5 See Also

The PBS Professional Administrator’s Guide, the PBS Programmer’s Guide, "pbs_wish” on page 124
PBS Professional 2020.1.1 Reference Guide RG-119

Chapter 2 PBS Commands
2.38 pbs_tmrsh

TM-enabled replacement for rsh/ssh for use by MPI implementations

2.38.1 Synopsis

pbs_tmrsh <hostname> [-l <username>] [-n] <command> [<args> ...]

pbs_tmrsh --version

2.38.2 Description

The pbs_tmrsh command attempts to emulate an “rsh” connection to the specified host, via underlying calls to the
Task Management (TM) API. The program is intended to be used during MPI integration activities, and not by end-
users.

Running “pbs_tmrsh <hostname> <command>” causes a PBS task to be started on hostname running command.

2.38.2.1 Requirements for Environment Variables

The environment variables used by the two MPI implementations to point to the rsh work-alike (MPI_REMSH in the
case of HP and P4_RSHCOMMAND for MPICH) must be set in the job environment and point to the full path for
pbs_tmrsh.

The file $PBS_HOME/pbs_environment should contain the environment variable PATH in which to search for the
program executable. This applies to both Windows and Linux. It is expected that a full path will be specified for the
command and the PATH variable will not be needed.

2.38.3 Options

-l <username>

Specifies the username under which to execute the task. If used, username must match the username running
the pbs_tmrsh command.

-n

A no-op; provided for MPI implementations that expect to call rsh with the “-n” option.

--version

The pbs_tmrsh command returns its PBS version information and exits. This option can only be used alone.

2.38.4 Operands

command

Specifies command to be run as a PBS task.

hostname

Specifies host on which to run PBS task. The hostname may be specified in IP-dot-address form.

2.38.5 Output and Error

Output and errors are written to the PBS job’s output and error files, not to standard output/error.
RG-120 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
The pbs_tmrsh command writes a diagnostic message to the PBS job’s error file for each error occurrence.

2.38.6 Exit Status

The pbs_tmrsh program exits with the exit status of the remote command or with 255 if an error occurred. This is
because ssh works this way.

2.38.7 See Also

The PBS Professional Administrator’s Guide, "pbs_attach” on page 55, "TM Library Routines", on page 93 of the PBS
Professional Programmer’s Guide
PBS Professional 2020.1.1 Reference Guide RG-121

Chapter 2 PBS Commands
2.39 pbs_topologyinfo

Reports topological information

2.39.1 Synopsis

pbs_topologyinfo (-a | --all) [(-l | --license) | (-s | --sockets)]

pbs_topologyinfo (-l | --license) <vnode name> [<vnode name> ...]

pbs_topologyinfo (-s | --sockets) <vnode name> [<vnode name> ...]

pbs_topologyinfo -h | --help

2.39.2 Description

The pbs_topologyinfo command reports topological information for one or more vnodes. This information is used
for licensing purposes. To use the command, you must specify what kind of topological information you want. The
command reports only the requested information.

This command must be run on the server host.

2.39.2.1 Usage

pbs_topologyinfo -al reports number of node licenses needed for all vnodes.

pbs_topologyinfo -l <vnode name> reports number of node licenses needed for vnode name.

pbs_topologyinfo -as reports socket counts for all vnodes that have reported sockets.

pbs_topologyinfo -s <vnode name> reports socket count for vnode vnode name.

2.39.2.2 Prerequisites

Before you use this command, the server and MoMs must be configured so that they can contact each other, and must
have been run.

2.39.2.3 Required Privilege for pbs_topologyinfo

This command can be run only by root or Admin on Windows.

2.39.3 Options for pbs_topologyinfo

-a, --all

Reports requested topological information for all vnodes. When this option is used alone, the command does
not report any information.

-h, --help

Prints usage and exits.

-l, --license [<vnode name(s)>]

Reports number of node licenses required. If you specify vnode name(s), the command reports node licenses
needed for the specified vnode(s) only.
RG-122 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
-s, --sockets [<vnode name(s)>]

Reports derived socket counts. If you specify vnode name(s), the command reports socket count information
for the specified vnode(s) only.

(no options)

Does not report any information.

2.39.4 Errors

If you specify an invalid vnode name, the command prints a message to standard error.

2.39.5 Operands

vnode name [<vnode name> ...]

Name(s) of vnode(s) about which to report.

2.39.6 Exit Status

0

Success

1

Any error following successful command line processing

2.39.7 Standard Error

If an invalid vnode name is specified, a message is printed to standard error.

2.39.8 See Also

The PBS Professional Administrator’s Guide
PBS Professional 2020.1.1 Reference Guide RG-123

Chapter 2 PBS Commands
2.40 pbs_wish

Deprecated. TK window shell with TCL-wrapped PBS API

2.40.1 Synopsis

pbs_wish

pbs_wish --version

2.40.2 Description

The pbs_wish command is a version of the TK window shell which includes wrapped versions of the PBS external
API. The PBS TCL API is documented in "TCL/tk Interface" on page 103 in the PBS Professional Programmer’s Guide.

2.40.3 Options

--version

The pbs_wish command returns its PBS version information and exits. This option can only be used alone.

2.40.4 Standard Error

The pbs_wish command writes a diagnostic message to standard error for each error occurrence.

2.40.5 See Also

The PBS Professional Administrator’s Guide, "pbs_tclsh” on page 119
RG-124 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.41 printjob

Prints job information

2.41.1 Synopsis

printjob [-a | -s] <job ID>

printjob [-a] <file path> [<file path>...]

printjob --version

2.41.2 Description

Prints job information. This command is mainly useful for troubleshooting, as during normal operation, the "qstat" com-
mand is the preferred method for displaying job-specific data and attributes. The server and MoM do not have to be run-
ning to execute this command.

2.41.2.1 Usage

For a running job, you can run this command at any host using a job ID, and you can run this command at any execution
host where the job is running using a .JB file path.

For a finished job, if job history is enabled, you can run this command at the server using the job ID.

When querying the server, you must use the job ID, and the data service must be running.

Results will vary depending on whether you use the job ID or a .JB file, and on which execution host you query with a
.JB file.

2.41.2.2 Permissions

In order to execute printjob, you must have root or Windows Administrator privilege.

2.41.3 Options to printjob

(no options>

Prints all job data including job attributes.

-a

Suppresses the printing of job attributes. Cannot be used with -s option.

-s

Prints out the job script only. Can be used at server or primary execution host. Cannot be used with -a option.
Must be used with a job ID.

--version

The printjob command returns its PBS version information and exits. This option can only be used alone.
PBS Professional 2020.1.1 Reference Guide RG-125

Chapter 2 PBS Commands
2.41.4 Operands for printjob

file path

The printjob command accepts one or more file path operands at the execution host. Files are found in
PBS_HOME/mom_priv/jobs/ on the primary execution host. File path must include full path to file. Can-
not be used with -s option.

job ID

The printjob command accepts a job ID at the server host. The format is described in "Job ID, Job Identi-
fier” on page 355. Data service must be running.

2.41.5 Standard Error

The printjob command writes a diagnostic message to standard error for each error occurrence.

2.41.6 Exit Status

Zero

Upon successful processing of all operands presented

Greater than zero

If the printjob command fails to process any operand

2.41.7 See Also

The PBS Professional Administrator’s Guide, "qstat” on page 197
RG-126 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.42 qalter

Alters a PBS job

2.42.1 Synopsis

qalter [-a <date and time>] [-A <account string>] [-c <checkpoint spec>] [-e <error path>] [-h <hold list>] [-j
<join>] [-k <discard>] [-l <resource list>] [-m <mail events>] [-M <user list>] [-N <name>] [-o <output path>]
[-p <priority>] [-P <project>] [-r <y|n>] [-R <remove options>] [-S <path list>] [-u <user list>] [-W
<additional attributes>] <job ID> [<job ID> ...]

qalter --version

2.42.2 Description

The qalter command is used to alter one or more PBS batch jobs. Each of certain job attributes can be modified using
the qalter option for that attribute. You can alter a job or a job array, but not a subjob or range of subjobs.

2.42.2.1 Required Privilege

A non-privileged user can alter their own jobs, whether they are queued or running. An Operator or Manager can alter
any job, whether it is queued or running.

A non-privileged user can only lower resource requests. An Operator or Manager can raise or lower resource requests.

2.42.2.2 Modifying Resources and Job Placement

A Manager or Operator may lower or raise requested resource limits, except for per-process limits such as pcput and
pmem, because these are set when the process starts, and enforced by the kernel. A non-privileged user can only lower
resource requests.

The qalter command cannot be used by a non-privileged user to alter a custom resource which has been created to be
invisible or read-only for users.

If a job is running, the only resources that can be modified are cput, walltime, min_walltime, and max_walltime.

If a job is queued, any resource mentioned in the options to the qalter command can be modified, but requested mod-
ifications must fit within the limits set at the server and queue for the amount of each resource allocated for queued jobs.
If a requested modification does not fit within these limits, the modification is rejected.

A job’s resource request must fit within the queue’s and server’s resource run limits. If a modification to a resource
exceeds the amount of the resource allowed by the queue or server to be used by running jobs, the job is never run.

Requesting resources includes setting limits on resource usage and controlling how the job is placed on vnodes.

See Chapter 5, "List of Built-in Resources", on page 259.

2.42.2.2.i Syntax for Modifying Resources and Job Placement

Resources are modified by using the -l option, either in chunks inside of selection statements, or in job-wide requests
using <resource name>=<value> pairs. The selection statement is of the form:

-l select=[<N>:]<chunk>[+[<N>:]<chunk> ...]

where N specifies how many of that chunk, and a chunk is of the form:

<resource name>=<value>[:<resource name>=<value> ...]
PBS Professional 2020.1.1 Reference Guide RG-127

Chapter 2 PBS Commands
Job-wide <resource name>=<value> requests are of the form:

-l <resource name>=<value>[,<resource name>=<value> ...]

2.42.2.2.ii The Place Statement

You choose how your chunks are placed using the place statement. The place statement can contain the following
elements, in any order:

-l place=[<arrangement>][: <sharing>][: <grouping>]

where

arrangement

Whether this chunk is willing to share this vnode or host with other chunks from the same job. One of free |

pack | scatter | vscatter

sharing

Whether this this chunk is willing to share this vnode or host with other jobs. One of excl | shared | exclhost

grouping

Whether the chunks from this job should be placed on vnodes that all have the same value for a resource. Can
have only one instance of group=<resource name>

free

Place job on any vnode(s).

pack

All chunks are taken from one host.

scatter

Only one chunk with any MPI processes is taken from a host. A chunk with no MPI processes may be taken
from the same vnode as another chunk.

vscatter

Only one chunk is taken from any vnode. Each chunk must fit on a vnode.

excl

Only this job uses the vnodes chosen.

shared

This job can share the vnodes chosen.

exclhost

The entire host is allocated to the job.

group=<resource name>

Chunks are grouped according to a resource. All vnodes in the group must have a common value for resource,
which can be either the built-in resource host or a custom vnode-level resource. The resource name must be a
string or a string array.

The place statement cannot begin with a colon. Colons are delimiters; use them only to separate parts of a place
statement, unless they are quoted inside resource values.

Note that vnodes can have sharing attributes that override job placement requests. See section 6.10, “Vnode
Attributes”, on page 320.

For more on resources, resource requests, usage limits, and job placement, see "Using PBS Resources" on page 229 in
the PBS Professional Administrator’s Guide and "Allocating Resources & Placing Jobs", on page 49 of the PBS Profes-
sional User’s Guide.
RG-128 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.42.2.3 Modifying Attributes

The user alters job attributes via options to the qalter command. Each qalter option changes a job attribute.

The behavior of the qalter command may be affected by any site hooks. Site hooks can modify the job’s attributes,
change its routing, etc.

2.42.2.4 Caveats and Restrictions for Altering Jobs

• When you lengthen the walltime of a running job, make sure that the new walltime will not interfere with any exist-
ing reservations etc.

• If any of the modifications to a job fails, none of the job’s attributes is modified.

• A job that is in the process of provisioning cannot be altered.

2.42.3 Options to qalter

-a <date and time>

Changes the point in time after which the job is eligible for execution. Given in pairs of digits. Sets job’s
Execution_Time attribute to date and time.

Format: Datetime

Each portion of the date defaults to the current date, as long as the next-smaller portion is in the future. For
example, if today is the 3rd of the month and the specified day DD is the 5th, the month MM is set to the current
month.

If a specified portion has already passed, the next-larger portion is set to one after the current date. For example,
if the day DD is not specified, but the hour hh is specified to be 10:00 a.m. and the current time is 11:00 a.m., the
day DD is set to tomorrow.

The job’s Execution_Time attribute can be altered after the job has begun execution, in which case it will not
take effect until the job is rerun.

-A <account string>

Replaces the accounting string associated with the job. Used for labeling accounting data. Sets job’s
Account_Name attribute to account string. This attribute cannot be altered once the job has begun execution.

Format: String

-c <checkpoint spec>

Changes when the job will be checkpointed. Sets job’s Checkpoint attribute. An $action script is required to
checkpoint the job. This attribute can be altered after the job has begun execution, in which case the new value
will not take effect until the job is rerun.

The argument checkpoint spec can take one of the following values:

c
Checkpoint at intervals, measured in CPU time, set on job’s execution queue. If no interval set at queue,
job is not checkpointed.

c=<minutes of CPU time>
Checkpoint at intervals of specified number of minutes of job CPU time. This value must be greater than
zero. If interval specified is less than that set on job’s execution queue, queue's interval is used.

Format: Integer

w
Checkpoint at intervals, measured in walltime, set on job’s execution queue. If no interval set at queue, job
is not checkpointed.
PBS Professional 2020.1.1 Reference Guide RG-129

Chapter 2 PBS Commands
w=<minutes of walltime>
Checkpoint at intervals of the specified number of minutes of job walltime. This value must be greater than
zero. If the interval specified is less that that set on the job’s execution queue, the queue's interval is used.

Format: Integer

n
No checkpointing.

s
Checkpoint only when the server is shut down.

u
Unset. Defaults to behavior when interval argument is set to s.

Default: u

Format: String

-e <error path>

Replaces the path to be used for the job’s standard error stream. Sets job’s Error_Path attribute to error path.
Overridden by -k option.

Format: [<hostname>:]<path>

The error path is interpreted as follows:

path
If path is relative, it is taken to be relative to the current working directory of the qalter command, where
it is executing on the current host.

If path is absolute, it is taken to be an absolute path on the current host where the qalter command is
executing.

hostname:path
If path is relative, it is taken to be relative to the user’s home directory on the host named hostname.

If path is absolute, it is the absolute path on the host named hostname.

If path does not include a filename, the default filename is <job ID>.ER

If the -e option is not specified, PBS writes standard error to the default filename, which has this form:

<job name>.e<sequence number>

This attribute can be altered after the job has begun execution, in which case the new value will not take effect
until the job is rerun.

If you use a UNC path, the hostname is optional. If you use a non-UNC path, the hostname is required.
RG-130 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
-h <hold list>

Updates the job’s hold list. Adds hold list to the job’s Hold_Types attribute. The hold list is a string of one or
more characters. The following table shows the holds and the privilege required to set each:

This attribute can be altered after the job has begun execution, in which case the new value will not take effect
until the job is rerun.

-j <join>

Changes whether and how to join the job’s standard error and standard output streams. Sets job’s Join_Path
attribute to join.

This attribute can be altered after the job has begun execution, in which case the new value will not take effect
until the job is rerun.

Default: n; not merged

The join argument can take the following values:

Table 2-8: Hold Types

Hold Type Meaning Who Can Set

u User Job owner, Operator, Manager, administrator, root

o Other Operator, Manager, administrator, root

s System Manager, administrator, root, PBS (dependency)

n None Job owner, Operator, Manager, administrator, root

p Bad password Administrator, root

Table 2-9: Join Path Options

Value Meaning

oe Standard error and standard output are merged into standard output.

eo Standard error and standard output are merged into standard error.

n Standard error and standard output are not merged.
PBS Professional 2020.1.1 Reference Guide RG-131

Chapter 2 PBS Commands
-k <discard>

Changes whether and which of the standard output and standard error streams is left behind on the execution
host, and whether they are written to their final destinations. Sets the job’s Keep_Files attribute to discard.
Overrides default path names for these streams. Overrides -o and -e options.

This attribute cannot be altered once the job has begun execution.

In the case where output and/or error is retained on the execution host in a job-specific staging and execution
directory created by PBS, these files are deleted when PBS deletes the directory.

Default: n; neither is retained, and files are not written to final destinations

The discard argument can take the following values:

-l <resource list>

Allows the user to change requested resources and job placement. Sets job’s Resource_list attribute to resource
list. Uses resource request syntax. Requesting a resource places a limit on its usage. Users without manager or
operator privilege cannot alter a custom resource which was created to be invisible or read-only for users. For
syntax, see section 2.42.2.2.i, “Syntax for Modifying Resources and Job Placement”, on page 127.

If a requested modification to a resource would exceed the server’s or the job queue’s limits, the resource
request is rejected. Which resources can be altered is system-dependent.

If the job was submitted with an explicit “-l select=”, vnode-level resources must be qaltered using the “-l
select=” form. In this case a vnode-level resource resource cannot be qaltered with the “-l <resource
name>” form.

The place statement cannot begin with a colon.

Examples:

1. Submit the job:

% qsub -l select=1:ncpus=2:mem=512mb jobscript

Job’s ID is 230

2. qalter the job using “-l <resource name>” form:

% qalter -l ncpus=4 230

Error reported by qalter:

qalter: Resource must only appear in “select” specification when select is used: ncpus 230

3. qalter the job using the “-l select=” form:

% qalter -l select=1:ncpus=4:mem=512mb 230

Table 2-10: discard Argument Values

Option Meaning

e The standard error stream is retained on the execution host, in the job’s staging and execution
directory. The filename is <job name>.e<sequence number>

o The standard output stream is retained on the execution host, in the job’s staging and execution
directory. The filename is <job name>.o<sequence number>

eo, oe Both standard output and standard error streams are retained on the execution host, in the job’s
staging and execution directory.

d Output and/or error are written directly to their final destination. Overrides the action of leaving
files behind on execution host.

n Neither stream is retained.
RG-132 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
No error reported by qalter:

%

For more on resource requests, usage limits and job placement, see "Allocating Resources & Placing Jobs", on
page 49 of the PBS Professional User’s Guide.

-m <mail events>

Changes the set of conditions under which mail about the job is sent. Sets job’s Mail_Points attribute to mail
events. The mail events argument can be one of the following:

• The single character “n”

• Any combination of “a”, “b”, and “e”, with optional “j”

The following table lists the sub-options to the -m option:

Can be used with job arrays but not subjobs.

Format: String

Syntax: n | [j](one or more of a, b, e)

Example: -m ja

Default value: a

-M <user list>

Alters list of users to whom mail about the job is sent. Sets job’s Mail_Users attribute to user list.

Format: <username>[@<hostname>][,<username>[@<hostname>],...]

Default: Job owner.

-N <name>

Renames the job. Sets job’s Job_Name attribute to name.

Format: Job Name. See "Job Name, Job Array Name” on page 355.

Default: if a script is used to submit the job, the job’s name is the name of the script. If no script is used, the
job’s name is “STDIN”.

-o <output path>

Alters path to be used for the job’s standard output stream. Sets job’s Output_Path attribute to output path.
Overridden by -k option.

Format: [<hostname>:]<path>

The output path is interpreted as follows:

path
If path is relative, it is taken to be relative to the current working directory of the command, where it is exe-
cuting on the current host.

Table 2-11: Sub-options to m Option

Suboption Meaning

n No mail is sent.

a Mail is sent when the job is aborted by PBS.

b Mail is sent when the job begins execution.

e Mail is sent when the job terminates.

j Mail is sent for subjobs. Must be combined with one or more of a, b, or e options
PBS Professional 2020.1.1 Reference Guide RG-133

Chapter 2 PBS Commands
If path is absolute, it is taken to be an absolute path on the current host where the command is executing.

<hostname>:<path>
If path is relative, it is taken to be relative to the user’s home directory on the host named hostname.

If path is absolute, it is the absolute path on the host named hostname.

If path does not include a filename, the default filename is:

<job ID>.OU

If the -o option is not specified, PBS writes standard output to the default filename, which has this form:

<job name>.o<sequence number>

This attribute can be altered after the job has begun execution, in which case the new value will not take effect
until the job is rerun.

If you use a UNC path, the hostname is optional. If you use a non-UNC path, the hostname is required.

-p <priority>

Alters priority of the job. Sets job’s Priority attribute to priority.

This attribute can be altered after the job has begun execution, in which case the new value will not take effect
until the job is rerun.

Format: Host-dependent integer

Range: [-1024, +1023] inclusive

Default: zero

-P <project>

Specifies a project for the job. Sets job's project attribute to specified value.

Format: Project Name; see "Project Name” on page 357

Default: "_pbs_project_default"

-r <y|n>

Changes whether the job is rerunnable. Sets job’s Rerunable attribute to the argument. Does not affect how job
is handled when the job is unable to begin execution.

See "qrerun” on page 178.

Format: Single character, “y” or “n”.

y
Job is rerunnable.

n
Job is not rerunnable.

Default: “y”.

Interactive jobs are not rerunnable. Job arrays are always rerunnable.
RG-134 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
-R <remove options>

Changes whether standard output and/or standard error files are automatically removed upon job completion.

Sets the job’s Remove_Files attribute to remove options. Overrides default path names for these streams.
Overrides -o and -e options.

This attribute cannot be altered once the job has begun execution.

Default: unset; neither is removed

The remove options argument can take the following values:

-S <path list>

Specifies the interpreter or shell path for the job script. Sets job’s Shell_Path_List attribute to path list.

The path list argument is the full path to the interpreter or shell including the executable name.

Only one path may be specified without a hostname. Only one path may be specified per named host. The path
selected is the one whose hostname is that of the server on which the job resides.

This attribute can be altered after the job has begun execution, but in this case the new value will not take effect
until the job is rerun.

Format:

<path>[@<hostname>][,<path>@<hostname> ...]
If the path contains spaces, it must be quoted. For example:

qsub -S "C:Program Files\PBS Pro\bin\pbs_python.exe" <script name>

Default: user’s login shell on execution node

Example of using bash via a directive:

#PBS -S /bin/bash@mars,/usr/bin/bash@jupiter

Example of running a Python script from the command line on Linux:

qsub -S $PBS_EXEC/bin/pbs_python <script name>

Example of running a Python script from the command line on Windows:

qsub -S %PBS_EXEC%\bin\pbs_python.exe <script name>

-u <user list>

Alters list of usernames. Job will run under a username from this list. Sets job’s User_List attribute to user list.

Only one username may be specified without a hostname. Only one username may be specified per named host.
The server on which the job resides will select first the username whose hostname is the same as the server
name. Failing that, the next selection will be the username with no specified hostname. The usernames on the
server and execution hosts must be the same. The job owner must have authorization to run as the specified
user.

This attribute cannot be altered once the job has begun execution.

Table 2-12: discard Argument Values

Option Meaning

e The standard error stream is removed (deleted) upon job completion

o The standard output stream is removed (deleted) upon job completion

eo, oe Both standard output and standard error streams are removed (deleted) upon job completion

unset Neither stream is removed
PBS Professional 2020.1.1 Reference Guide RG-135

Chapter 2 PBS Commands
Format: <username>[@<hostname>][,<username>@<hostname> ...]

Default: Job owner (username on submit host)

-W <additional attributes>

Each sub-option to the -W option allows you to change a specific job attribute.

Format: -W <attribute name> = <attribute value>[,<attribute name>=<attribute value>...]

If white space occurs within the additional attributes argument, or the equal sign (“=”) occurs within an
attribute value string, that argument or string must be enclosed in single or double quotes. PBS supports setting
the following attributes via the -W option:

depend=<dependency list>
Defines dependencies between this and other jobs. Sets the job’s depend attribute to dependency list. The
dependency list has the form:

<type>:<arg list>[,<type>:<arg list> ...]

where except for the on type, the <arg list> is one or more PBS job IDs in the form:

<job ID>[:<job ID> ...]

The types and their argument lists can be:

after: <arg list>

This job may be scheduled for execution at any point after all jobs in arg list have started execution.

afterok: <arg list>

This job may be scheduled for execution only after all jobs in arg list have terminated with no errors.
See section 2.42.6.1, “Warning About Exit Status with csh”, on page 139.

afternotok: <arg list>

This job may be scheduled for execution only after all jobs in arg list have terminated with errors. See
section 2.42.6.1, “Warning About Exit Status with csh”, on page 139.

afterany: <arg list>

This job may be scheduled for execution after all jobs in arg list have terminated, with or without
errors. This job will not run if a job in the arg list was deleted without ever having been run.

before: <arg list>

Jobs in arg list may begin execution once this job has begun execution.

beforeok: <arg list>

Jobs in arg list may begin execution once this job terminates without errors. See section 2.42.6.1,
“Warning About Exit Status with csh”, on page 139.

beforenotok: <arg list>

If this job terminates execution with errors, jobs in arg list may begin. See section 2.42.6.1, “Warning
About Exit Status with csh”, on page 139.

beforeany: <arg list>

Jobs in arg list may begin execution once this job terminates execution, with or without errors.

on: <count>
This job may be scheduled for execution after count dependencies on other jobs have been satisfied.
This type is used in conjunction with one of the before types listed. count is an integer greater than 0.

runone:<job ID>
(2020.1 Beta) Puts the current job and the job with job ID in a set of jobs out of which PBS will even-
tually run just one. To add a job to a set, specify the job ID of another job already in the set.

Restrictions:

Job IDs in the arg list of before types must have been submitted with a type of on.
RG-136 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
To use the before types, the user must have the authority to alter the jobs in arg list. Otherwise, the depen-
dency is rejected and the new job aborted.

Error processing of the existence, state, or condition of the job on which the newly-submitted job depends
is performed after the job is queued. If an error is detected, the new job is deleted by the server. Mail is
sent to the job submitter stating the error.

Dependency examples:

qalter -W depend = afterok:123.host1.domain.com /tmp/script

qalter -W depend= before:234.host1.com:235.host1.com /tmp/script

group_list=<group list>
Alters list of group names. Job will run under a group name from this list. Sets job’s group_List attribute
to group list.

Only one group name may be specified without a hostname. Only one group name may be specified per
named host. The server on which the job resides will select first the group name whose hostname is the
same as the server name. Failing that, the next selection is the group name with no specified hostname.
The group names on the server and execution hosts must be the same.

Format: <group>[@<hostname>][,<group>@<hostname> ...]

Default: no default

release_nodes_on_stageout=<value>
When set to True, all of the job’s vnodes not on the primary execution host are released when stageout
begins.

Cannot be used with vnodes tied to Cray X* series systems.

When cgroups is enabled and this is used with some but not all vnodes from one MoM, resources on those
vnodes that are part of a cgroup are not released until the entire cgroup is released.

The job’s stageout attribute must be set for the release_nodes_on_stageout attribute to take effect.

Format: Boolean

Default: False

run_count=<count>
Sets the number of times the server thinks it has run the job. Sets the job’s run_count attribute to count.
Can be altered while job is running. Job is held when the value of this attribute goes over 20.

Format: Integer greater than or equal to zero

sandbox=<sandbox spec>
Changes which directory PBS uses for the job’s staging and execution. Sets job’s sandbox attribute to the
value of sandbox spec.

Format: String

Allowed values for sandbox spec:

PRIVATE
PBS creates a job-specific directory for staging and execution.

HOME or unset
PBS uses the user’s home directory for staging and execution.

stagein=<path list>

stageout=<path list>
Changes files or directories to be staged in before execution or staged out after execution is complete. Sets
the job’s stagein and stageout attributes to the specified path lists. On completion of the job, all staged-in
and staged-out files and directories are removed from the execution host(s). A path list has the form:

<filespec>[,<filespec>]
PBS Professional 2020.1.1 Reference Guide RG-137

Chapter 2 PBS Commands
where filespec is

<execution path>@<hostname>:<storage path>
regardless of the direction of the copy. The execution path is the name of the file or directory on the pri-
mary execution host. It can be relative to the staging and execution directory on the execution host, or it
can be an absolute path.

The “@” character separates execution path from storage path.

The storage path is the path on hostname. The name can be relative to the staging and execution directory
on the primary execution host, or it can be an absolute path.

If path list has more than one filespec, i.e. it contains commas, it must be enclosed in double quotes.

If you use a UNC path, the hostname is optional. If you use a non-UNC path, the hostname is required.

umask=<mask value>
Alters the umask with which the job is started. Controls umask of job’s standard output and standard error.
Sets job’s umask attribute to mask value.

Format: one to four digits; typically two

The following example allows group and world read of the job’s output and error:

-W umask=33

Default: 077

--version

The qalter command returns its PBS version information and exits. This option can only be used alone.

2.42.4 Operands

The qalter command accepts a job ID list as its operand. The job ID list is a space-separated list of one or more job
IDs for normal jobs or array jobs.

Subjobs and ranges of subjobs are not alterable.

Job IDs have the form:

<sequence number>[.<server name>][@<server name>]

<sequence number>[][.<server name>][@<server name>]

Note that some shells require that you enclose a job array ID in double quotes.

2.42.5 Standard Error

The qalter command writes a diagnostic message to standard error for each error occurrence.

2.42.6 Exit Status

Zero

Upon successful processing of input

Greater than zero

Upon failure
RG-138 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.42.6.1 Warning About Exit Status with csh

If a job is run in csh and a .logout file exists in the home directory in which the job executes, the exit status of the job
is that of the .logout script, not the job script. This may impact any inter-job dependencies.

2.42.7 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide, "Job Attributes” on page 328, Chapter
5, "List of Built-in Resources", on page 259
PBS Professional 2020.1.1 Reference Guide RG-139

Chapter 2 PBS Commands
2.43 qdel

Deletes PBS jobs

2.43.1 Synopsis

qdel [-x] [-Wforce| -Wsuppress_email=<N>] <job ID> [<job ID> ...]

qdel --version

2.43.2 Description

The qdel command deletes jobs in the order given, whether they are at the local server or at a remote server.

2.43.2.1 Usage

The qdel command is used without options to delete queued, running, held, or suspended jobs, while the -x option
gives it the additional capacity to delete finished or moved jobs. With the -x option, this command can be used on fin-
ished and moved jobs, in addition to queued, running, held, or suspended jobs.

When this command is used without the -x option, if job history is enabled, the deleted job’s history is retained. The -x
option is used to additionally remove the history of the job being deleted.

If someone other than the job's owner deletes the job, mail is sent to the job's owner, or to a list of mail recipients if spec-
ified during qsub. See "qsub” on page 213.

If the job is in the process of provisioning, it can be deleted only by using the -W force option.

2.43.2.2 How Behavior of qdel Command Can Be Affected

The server's default_qdel_arguments attribute may affect the behavior of the qdel command. This attribute is settable
by the administrator via the qmgr command. The attribute may be set to "-Wsuppress_email=<N>". The server
attribute is overridden by command-line arguments. See section 6.6, “Server Attributes”, on page 281.

2.43.2.3 Sequence of Events

1. The job's running processes are killed.

2. The epilogue runs.

3. Files that were staged in are staged out. This includes standard out (.o) and standard error (.e) files.

4. Files that were staged in or out are deleted.

5. The job's temp directory is removed.

6. The job is removed from the MoM(s) and the server.

2.43.2.4 Required Privilege

A PBS job may be deleted by its owner, an Operator, or the administrator. The MoM deletes a PBS job by sending a
SIGTERM signal, then, if there are remaining processes, a SIGKILL signal.
RG-140 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.43.3 Options to qdel

(no options)

Can delete queued, running, held, or suspended jobs. Does not delete job history for specified job(s).

-W force

Deletes the job whether or not the job’s execution host is reachable. Deletes the job whether or not the job is in
the process of provisioning. Cannot be used with the -Wsuppress_email option.

If the server can contact the MoM, this option is ignored; the server allows the job to be deleted normally. If the
server cannot contact the MoM or the job is in the E state, the server deletes its information about the job.

-Wsuppress_email=<N>

Sets limit on number of emails sent when deleting multiple jobs or subjobs.

• If N >= 1 and N or more job IDs are given, N emails are sent.

• If N >=1 and less than N job identifiers are given, the number of emails is the same as the number of jobs.

• If N = 0, this option is ignored.

• If N = -1, no mail is sent.

Note that there is no space between “W” and “suppress_email”.

The N argument is an integer.

Cannot be used with -Wforce option.

-x

Can delete running, queued, suspended, held, finished, or moved jobs. Deletes job history for the specified
job(s).

--version

The qdel command returns its PBS version information and exits. This option can only be used alone.

2.43.4 Operands

The qdel command accepts one or more space-separated job ID operands. These operands can be job identifiers, job
array identifiers, subjob identifiers, or subjob range identifiers.

Job IDs have the form:

<sequence number>[.<server name>][@<server name>]

Job arrays have the form:

<sequence number>[][.<server name>][@<server name>]

Subjobs have the form:

<sequence number>[<index>][.<server name>][@<server name>]

Ranges of subjobs have the form:

<sequence number>[<first>-<last>][.<server name>][@<server name>]

Job array identifiers must be enclosed in double quotes for some shells.

2.43.5 Standard Error

The qdel command writes a diagnostic message to standard error for each error occurrence.
PBS Professional 2020.1.1 Reference Guide RG-141

Chapter 2 PBS Commands
2.43.6 Exit Status

Zero

Upon successful processing of input

Greater than zero

Upon error

2.43.7 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide
RG-142 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.44 qdisable

Prevents a queue from accepting jobs

2.44.1 Synopsis

qdisable <destination> [<destination> ...]

qdisable --version

2.44.2 Description

The qdisable command prevents a queue from accepting batch jobs. Sets the value of the queue’s enabled attribute
to False. If the command is accepted, the queue no longer accepts Queue Job requests. Jobs already in the queue con-
tinue to be processed. You can use this to drain a queue of jobs.

2.44.2.1 Required Permission

In order to execute qdisable, the user must have PBS Operator or Manager privilege.

2.44.3 Options

--version

The qdisable command returns its PBS version information and exits. This option can only be used alone.

2.44.4 Operands

The qdisable command accepts one or more space-separated destination operands. The operands take any of the fol-
lowing forms:

<queue name>

Prevents specified queue at default server from accepting jobs.

@<server name>

Prevents all queues at specified server from accepting jobs.

<queue name>@<server name>

Prevents specified queue at specified server from accepting jobs.

To prevent all queues at the default server from accepting jobs, use the qmgr command:

Qmgr: set queue @default enabled=false

2.44.5 Standard Error

The qdisable command writes a diagnostic message to standard error for each error occurrence.
PBS Professional 2020.1.1 Reference Guide RG-143

Chapter 2 PBS Commands
2.44.6 Exit Status

Zero

Upon successful processing of all the operands

Greater than zero

If the qdisable command fails to process any operand

2.44.7 See Also

The PBS Professional Administrator’s Guide, "qmgr” on page 149, "qenable” on page 145
RG-144 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.45 qenable

Allows a queue to accept jobs

2.45.1 Synopsis

qenable <destination> [<destination> ...]

qenable --version

2.45.2 Description

The qenable command allows a queue to accept batch jobs. Sets the value of the queue’s enabled attribute to True.
If the command is accepted, the destination accepts Queue Job requests.

2.45.2.1 Required Privilege

In order to execute qenable, the user must have PBS Operator or Manager privilege.

2.45.3 Options

--version

The qenable command returns its PBS version information and exits. This option can only be used alone.

2.45.4 Operands

The qenable command accepts one or more space-separated destination operands. The operands take any of the fol-
lowing forms:

<queue name>

Allows specified queue at default server to accept jobs.

@<server name>

Allows all queues at specified server to accept jobs.

<queue name>@<server name>

Allows specified queue at specified server to accept jobs.

To allow all queues at the default server to accept jobs, use the qmgr command:

Qmgr: set queue @default enabled=true

2.45.5 Standard Error

The qenable command writes a diagnostic message to standard error for each error occurrence.

2.45.6 Exit Status

Zero

Upon successful processing of all the operands
PBS Professional 2020.1.1 Reference Guide RG-145

Chapter 2 PBS Commands
Greater than zero

If the qenable command fails to process any operand

2.45.7 See Also

The PBS Professional Administrator’s Guide, "qmgr” on page 149, "qdisable” on page 143
RG-146 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.46 qhold

Holds PBS batch jobs

2.46.1 Synopsis

qhold [-h <hold list>] <job ID> [<job ID> ...]

qhold --version

2.46.2 Description

Places one or more holds on a job. A job that has a hold is not eligible for execution. Can be used on jobs and job arrays,
but not on subjobs or ranges of subjobs.

If a job identified by job ID is in the queued, held, or waiting states, all that occurs is that the hold type is added to the
job. The job is then put into the held state if it resides in an execution queue.

If the job is running, the result of the qhold command depends upon whether the job can be checkpointed. The job can
be checkpointed if the OS supports checkpointing, or if the application being checkpointed supports checkpointing. See
the PBS Professional Administrator’s Guide. If the job can be checkpointed, the following happens:

• The job is checkpointed and its execution is interrupted.

• The resources assigned to the job are released.

• The job is placed in the held state in the execution queue.

• The job’s Hold_Types attribute is set to u for user hold.

If checkpoint / restart is not supported, qhold simply sets the job’s Hold_Types attribute to u. The job continues to exe-
cute.

A job’s dependency places a system hold on the job. When the dependency is satisfied, the system hold is removed. If
the administrator sets a system hold on a job with a dependency, when the dependency is satisfied, the job becomes eli-
gible for execution.

If the job is in the process of provisioning, it cannot be held.

A hold on a job can be released by the PBS Administrator, root, a Manager, an Operator, or the job owner, when the job
reaches the time set in its Execution_Time attribute, or when a dependency clears. See "qrls” on page 180.

2.46.2.1 Effect of Privilege on Behavior

The following table shows the holds and the privilege required to set each:

Table 2-13: Hold Types

Hold Type Meaning Who Can Set

u User Job owner, Operator, Manager, PBS Administrator, root

o Other Operator, Manager, PBS Administrator, root

s System Manager, PBS Administrator, root, PBS (dependency)

n No hold Job owner, Operator, Manager, PBS Administrator, root

p Bad password PBS Administrator, root
PBS Professional 2020.1.1 Reference Guide RG-147

Chapter 2 PBS Commands
2.46.3 Options to qhold

(no options)

Same as -h u. Applies the user hold to the specified job(s).

-h <hold list>

Types of holds to be placed on the job(s).

The hold list argument is a string consisting of one or more of the letters “u”, “o”, or “s” in any combination, or
one of the letters “n” or “p”.

--version

The qhold command returns its PBS version information and exits. This option can only be used alone.

2.46.4 Operands

The qhold command can be used on jobs and job arrays, but not on subjobs or ranges of subjobs. The qhold com-
mand accepts one or more job IDs in the form:

<sequence number>[.<server name>][@<server name>]

<sequence number>[][.<server name>][@<server name>]

Note that some shells require that you enclose a job array identifier in double quotes.

2.46.5 Standard Error

The qhold command writes a diagnostic message to standard error for each error occurrence.

2.46.6 Exit Status

Zero

Upon successful processing of all operands

Greater than zero

If the qhold command fails to process any operand

2.46.7 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide, "qrls” on page 180
RG-148 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.47 qmgr

Administrator’s command interface for managing PBS

2.47.1 Synopsis

At shell command line:

qmgr -c ‘<directive> [-a] [-e] [-n] [-z]’

qmgr -c ‘help [<help option>]’

qmgr <return>

qmgr --version

In qmgr session:

<directive> [-a] [-e] [-n] [-z]

help <help option>

2.47.2 Description

The PBS manager command, qmgr, provides a command-line interface to parts of PBS. The qmgr command is used to
create or delete queues, vnodes, resources, and hooks, to set or change vnode, queue, hook, server, or scheduler attributes
and resources, and to view information about hooks, queues, vnodes, resource definitions, the server, and schedulers.

For a list of quick summaries of information about syntax, commands, attributes, operators, names, and values, type
“help” or “?” at the qmgr prompt. See section 2.47.11, “Printing Usage Information”, on page 170.

2.47.2.1 Modes of Operation

• When you type qmgr -c ‘<directive>’, qmgr performs its task and then exits.

• When you type qmgr <return>, qmgr starts a session and presents you with its command line prompt. The qmgr
command then reads directives etc. from standard input; see section 2.47.4.1, “Directive Syntax”, on page 151. You
can edit the command line; see section 2.47.2.4, “Reusing and Editing the qmgr Command Line”, on page 150.

For a qmgr prompt, type:

qmgr <return>

You will see the qmgr prompt:

Qmgr:

2.47.2.2 Required Privilege

The qmgr command requires different levels of privilege depending on the operation to be performed.

All users can list or print attributes except for hook attributes.

PBS Operator or Manager privilege is required in order to set or change vnode, queue, server, or scheduler attributes.
PBS Manager privilege is required in order to create or delete queues, vnodes, and resources.

Under Linux, root privilege is required in order to create hooks, or operate on hooks or the job_sort_formula server
attribute. Under Windows, this must be done from the installation account.

For domained environments, the installation account must be a local account that is a member of the local Administrators
group on the local computer.
PBS Professional 2020.1.1 Reference Guide RG-149

Chapter 2 PBS Commands
Users without manager or operator privilege cannot view custom resources or resource definitions which were created to
be invisible to users.

2.47.2.3 When To Run qmgr At Server Host

When operating on hooks or on the job_sort_formula server attribute, the qmgr command must be run at the server host.

2.47.2.4 Reusing and Editing the qmgr Command Line

You can reuse or edit qmgr command lines. The qmgr command maintains a history of commands entered, up to a
maximum of 500. You can use the ‘history’ command to see a numbered list of commands, and the !<n> command
to execute the line whose number is n. You must not put any spaces between the bang (“!”) and the number. For exam-
ple, to execute the 123rd command, type the following:

!123

You can see the last m commands by typing ‘history m’. For example, to see the last 6 commands, type the follow-
ing:

history 6

You can use the up and down arrows to navigate through the command history list, and the left and right arrows to navi-
gate within a command line. Within a command line, you can use emacs commands to move forward and backward,
and delete characters.

You can edit the qmgr command line using the backspace and delete keys, and you can insert characters anywhere in a
command line.

History is maintained across qmgr sessions, so that if you start qmgr, then exit, then restart it, you can reuse your com-
mands from the previous session. If you exit qmgr and then restart it, the command lines are renumbered.

If you enter the same command line more than once in a row, only one occurrence is recorded in the history. If you enter
the same command line multiple times, but intersperse other command lines after each line, each occurrence is recorded.

Each user’s history is unique to that user on that host.

In the case where an account runs concurrent sessions, the most recent logout of a session overwrites history from previ-
ous logouts. For example, if two people are both logged in as root and using qmgr, the second person to log out over-
writes the history file.

2.47.2.4.i The qmgr History File

The qmgr command stores and retrieves its history. First, it tries to write its history in the ${HOME}/
.pbs_qmgr_history file. If this file or directory location is not writable, the command stores its history in
$PBS_HOME/spool/.pbs_qmgr_history_<user name>. If this file is also not writable, the following happens:

• The qmgr command prints error messages once at qmgr startup

• The qmgr command cannot provide history across qmgr sessions
RG-150 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.47.3 Options to qmgr

The following table lists the options to qmgr:

2.47.4 Directives

A qmgr directive is a command together with the object(s) to be operated on, the attribute(s) belonging to the object that
is to be changed, the operator, and the value(s) the attribute(s) will take. In the case of resources, you can set the type
and/or flag(s).

2.47.4.1 Directive Syntax

A directive is terminated by a newline or a semicolon (“;”). Multiple directives may be entered on a single line. A direc-
tive may extend across lines by escaping the newline with a backslash (“\”).

Comments begin with the “#” character and continue to the end of the line. Comments and blank lines are ignored by
qmgr.

2.47.4.1.i Server, Scheduler, Queue, Vnode Directives

Syntax for operating on servers, schedulers, queues, and vnodes:

<command> <object type> [<object name(s)>] [<attribute> <operator> <value>[,<attribute> <operator>
<value>,...]]

For information about attributes, see Chapter 6, "Attributes", on page 277.

2.47.4.1.ii Resource Directives

Syntax for operating on resources:

<command> <resource name> [<resource name> ...] [type = <type>][,flag = <flag(s)>]

For information about resources, see "Using PBS Resources" on page 229 in the PBS Professional Administrator’s Guide
and Chapter 5, "List of Built-in Resources", on page 259.

Table 2-14: qmgr Options

Option Action

<return> Starts a qmgr session and presents user with qmgr prompt

-a Aborts qmgr on any syntax errors or any requests rejected by a server.

-c ‘<direc-
tive>’

Executes a single command (directive) and exit qmgr. The directive must be enclosed in sin-
gle or double quote marks, for example:

qmgr -c "print server"

-c ‘help [<help
option>]’

Prints out usage information. See "Printing Usage Information” on page 170

-e Echoes all commands to standard output

-n No commands are executed; syntax checking only is performed

-z No errors are written to standard error

--version The qmgr command returns its PBS version information and exits. This option can only be
used alone
PBS Professional 2020.1.1 Reference Guide RG-151

Chapter 2 PBS Commands
2.47.4.1.iii Hook-only Directives

The directives here apply only to hooks. Other directives apply to all objects such as queues, resources, hooks, etc.

Syntax for importing and exporting site-defined hooks:

"import hook <hook name> application/x-python <content-encoding> (<input file> | -)"

"export hook <hook name> <content-type> <content-encoding>" > [<output file>]

Syntax for importing site-defined hook configuration file:

"import hook <hook name> application/x-config <content-encoding> (<input file> | -)"

Syntax for importing built-in hook configuration file:

"import pbshook <hook name> application/x-config <content-encoding> (<input file> | -)"

2.47.4.2 Using Directives

You can use a directive from the shell command line or from within the qmgr session.

• To use a directive from the command line, enclose the command and its arguments in single or double quotes.

qmgr -c ‘<command> <command arguments>’

For example, to have qmgr print server information and exit:

qmgr -c "print server"

• To use a directive from within the qmgr session, first start qmgr:
qmgr <return>

The qmgr session presents a qmgr prompt:

Qmgr:

At the qmgr prompt, enter the directive (a command and its arguments). For example, to enter the same "print
server" directive:

Qmgr: print server

2.47.4.3 Commands Used in Directives

Commands can be abbreviated to their minimum unambiguous form. Commands apply to all target objects unless
explicitly limited. The following table lists the commands, briefly tells what they do, and gives a link to a full descrip-
tion:

Table 2-15: qmgr Commands Used in Directives

Command
Abbr

.
Effect Description

active a Specifies active objects See section 2.47.6.1, “Making Objects Active”, on page 156

create c Creates object See section 2.47.6.2, “Creating Objects (Server, Scheduler,
Vnode, Queue, Hook)”, on page 157

delete d Deletes object See section 2.47.6.3, “Deleting Objects”, on page 157

exit Exits (quits) the qmgr ses-
sion

export e Exports hook or hook con-
figuration file

See section 2.47.10.6, “Exporting Hooks”, on page 169 and sec-
tion 2.47.10.5.ii, “Exporting Configuration Files”, on page 168
RG-152 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.47.5 Arguments to Directive Commands

2.47.5.1 Object Arguments to Directive Commands

The qmgr command can operate on objects (servers, schedulers, queues, vnodes, resources, hooks, and built-in hooks).
Each of these can be abbreviated inside a directive. The following table lists the objects and their abbreviations:

help or ? h, ? Prints usage to stdout See section 2.47.11, “Printing Usage Information”, on page 170

import i Imports hook or configura-
tion file

See section 2.47.10.4, “Importing Hooks”, on page 167 or section
2.47.10.5.i, “Importing Configuration Files”, on page 168

list l Lists object attributes and
their values

See section 2.47.8.1, “Listing Objects and Their Attributes”, on
page 164

print p Prints creation and config-
uration commands

See section 2.47.8.3, “Printing Creation and Configuration Com-
mands”, on page 166

quit q Quits (exits) the qmgr ses-
sion

set s Sets value of attribute See section 2.47.7.1, “Setting Attribute and Resource Values”, on
page 158

unset u Unsets value of attribute See section 2.47.7.2, “Unsetting Attribute and Resource Values”,
on page 159

Table 2-16: qmgr Objects

Object
Name

Abbr. Object Can Be Created/Deleted By: Can Be Modified By:

server s server No one (created at installation) Administrator, Operator, Manager

sched sc default scheduler No one (created at installation) Administrator, Operator, Manager

multisched Administrator, Manager Administrator, Operator, Manager

queue q queue Administrator, Operator, Manager Administrator, Operator, Manager

node n vnode Administrator, Operator, Manager Administrator, Operator, Manager

resource r resource Administrator, Manager Administrator, Manager

hook h hook Linux: root

Windows: installation account

Linux: root

Windows: installation account

pbshook p built-in hook No one (created at installation) Linux: root

Windows: installation account

Table 2-15: qmgr Commands Used in Directives

Command
Abbr

.
Effect Description
PBS Professional 2020.1.1 Reference Guide RG-153

Chapter 2 PBS Commands
2.47.5.1.i Specifying Active Server

The qmgr command operates on objects (queues, vnodes, etc.) at the active server. There is always at least one active
server; the default server is the active server unless other servers have been made active. The default server is the server
managing the host where the qmgr command runs, meaning it is the server specified in that host’s pbs.conf file.
Server names have the following format:

<hostname>[:<port number>]

where hostname is the fully-qualified domain name of the host on which the server is running and port number is the port
number to which to connect. If port number is not specified, the default port number, 15001, is used.

• To specify the default server:

@default
• To specify a named server:

@<server name>
• To specify all active servers:

@active

2.47.5.1.ii Using Lists of Object Names

In a qmgr directive, object name(s) is a list of one or more names of specific objects. The administrator specifies the
name of an object when creating the object. The name list is in the form:

<object name>[@<server>][,<object name>[@<server>] ...]

where server is replaced in the directive with “default”, “active”, or the name of the server. The name list must conform
to the following:

• There must be no space between the object name and the @ sign.

• Name lists must not contain white space between entries.

• All objects in a list must be of the same type.

• Node attributes cannot be used as vnode names.

2.47.5.1.iii Specifying Object Type and Name

You can specify objects in the following ways:

• To act on the active objects of the named type, at the active server:

<object type>

For example, to list all active vnodes, along with their attributes, at the active server:

Qmgr: list node

• To act on the active objects of the named type, at a specified server:

<object type> @<server name> (note space before @ sign)

For example, to list all active vnodes at the default server, along with their attributes:

Qmgr: list node @default

For example, to print out all queues at the default server, along with their attributes:

qmgr -c "print queue @default"

• To act on a specific named object:

<object type> <object name>

For example, to list Node1 and its attributes:

Qmgr: list node Node1
RG-154 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
To list queues workq, slowq, and fastq at the active server:

Qmgr: list queue workq,slowq,fastq

• To act on the named object at the specified server:

<object type> <object name>@<server name>

For example, to list Node1 at the default server, along with the attributes of Node1:

Qmgr: list node Node1@default

To list queues Queue1 at the default server, Queue2 at Server2, and Queue3 at the active server:

Qmgr: list queue Queue1@default,Queue2@Server2,Queue3@active

2.47.5.2 Operators in Directive Commands

In a qmgr directive, operator is the operation to be performed with the attribute and its value. Operators are listed here:

Example 2-4: Set routing destination for queue Queue1 to be Dest1:

Qmgr: set queue route_destinations = Dest1

Example 2-5: Add new routing destination for queue Queue1:

Qmgr: set queue route_destinations += Dest2

Example 2-6: Remove new routing destination for queue Queue1:

Qmgr: set queue route_destinations -= Dest2

When setting numerical resource values, you can use only the equal sign (“=”).

2.47.5.3 Windows Requirements For Directive Arguments

Under Windows, use double quotes when specifying arguments to qmgr. For example:

Qmgr: import hook hook1 application/x-python default "\Documents and
Settings\pbsuser1\hook1.py"

or

qmgr -c 'import hook hook1 application/x-python default "\Documents and Set-
tings\pbsuser1\hook1.py"'

Table 2-17: Operators in Directive Commands

Operator Effect

= Sets the value of the attribute or resource. If the attribute or resource has an existing value, the current
value is replaced with the new value.

+= Increases the current value of the attribute or resource by the amount in the new value. When used for a
string array, adds the new value as another string after a comma.

-= Decreases the current value of the attribute or resource by the specified amount. When used for a string
array, removes the first matching string.
PBS Professional 2020.1.1 Reference Guide RG-155

Chapter 2 PBS Commands
2.47.6 Operating on Objects (Server, Scheduler, Vnode, Queue,

Hook)

2.47.6.1 Making Objects Active

Making objects active is a way to set up a list of objects, all of the same type, on which you can then use a single com-
mand. For example, if you are going to set the same attribute to the same value on several vnodes, you can make all of
the target vnodes active before using a single command to set the attribute value, instead of having to give the command
once for each vnode. You can make any type of object active except for resources or hooks.

When an object is active, it is acted upon when you specify its type but do not specify names. When you specify any
object names in a directive, active objects are not operated on unless they are named in the directive.

You can specify a list of active objects for each type of object. You can have active objects of multiple types at the same
time. The active objects of one type have no effect on whether objects of another type are active.

Objects are active only until the qmgr command is exited, so this feature can be used only at the qmgr prompt.

Each time you make any objects active at a given server, that list of objects replaces any active objects of the same kind
at that server. For example, if you have four queues at a particular server, and you make Q1 and Q2 active, then later
make Q3 and Q4 active, the result is that Q3 and Q4 are the only active queues.

You can make different objects be active at different servers simultaneously. For example, you can set vnodes N1 and N2
at the default server, and vnodes N3 and N4 at server Server2 to be active at the same time.

To make all objects inactive, quit qmgr. When you quit qmgr, any object that was active is no longer active.

2.47.6.1.i Using the active Command

• To make the named object(s) of the specified type active:

active <object type> [<object name>[,<object name> ...]]

Example: To make queue Queue1 active:

Qmgr: active queue Queue1

Example: To make queues Queue1 and Queue2 at the active server be active, then enable them:

Qmgr: active queue Queue1,Queue2
Qmgr: set queue enabled=True

Example: To make queue Queue1 at the default server and queue Queue2 at Server2 be active:

Qmgr: active queue Queue1@default,Queue2@Server2

Example: To make vnodes N1, N2, N3, and N4 active, and then give them all the same value for their max_running
attribute:

Qmgr: active node N1,N2,N3,N4
Qmgr: set node max_running = 2

• To make all object(s) of the specified type at the specified server active:

active <object type> @<server name> (note space before @ sign)

Example: To make all queues at the default server active:

Qmgr: active queue @default

Example: To make all vnodes at server Server2 active:

Qmgr: active node @Server2

• To report which objects of the specified type are active:

active <object type>

The qmgr command prints a list of names of active objects of the specified type to stdout.
RG-156 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.47.6.2 Creating Objects (Server, Scheduler, Vnode, Queue, Hook)

• To create one new object of the specified type for each name, and give it the specified name:

create <object type> <object name>[,<object name> ...] [[<attribute> = <value>] [,<attribute> = <value>] ...]

Can be used only with multischeds, queues, vnodes, resources, and hooks. Cannot be used with built-in hooks.

For example, to create a multisched named multisched_1 at the active server:

Qmgr: create sched multisched_1

For example, to create a queue named Q1 at the active server:

Qmgr: create queue Q1

For example, to create a vnode named N1 and a vnode named N2:

Qmgr: create node N1,N2

For example, to create queue Queue1 at the default server and queue Queue2 at Server2:

Qmgr: create queue Queue1@default,Queue2@Server2

For example, to create vnodes named N1, N2, N3, and N4 at the active server, and to set their Mom attribute to
Host1 and their max_running attribute to 1:

Qmgr: create node N1,N2,N3,N4 Mom=Host1, max_running = 1

To create a host-level consumable string resource named “foo” that can be read and set by execution hooks:

Qmgr: qmgr -c "create resource foo type=string,flag=mnh"

All objects of the same type at a server must have unique names. For example, each queue at server Server1 must have a
unique name. Objects at one server can have the same name as objects at another server.

You can create multiple objects of the same type with a single command. You cannot create multiple types of objects in
a single command.

To create multiple resources of the same type and flag, separate each resource name with a comma:

qmgr -c "create resource <resource>[,<resource> ...] type=<type>,flag=<flag(s)>"

2.47.6.2.i Examples of Creating Objects

Example 2-7: Create queue:

create queue fast priority=10,queue_type=e,enabled = true,max_running=0

Example 2-8: Create queue, set resources:

create queue little

set queue little resources_max.mem=8mw,resources_max.cput=10

2.47.6.3 Deleting Objects

• To delete the named object(s):

delete <object type> <object name>[,<object name> ...]

When you delete more than one object, do not put a space after a comma.

Can be used only with queues, vnodes, resources, and hooks. Cannot be used with built-in hooks.

For example, to delete queue Q1 at the active server:

Qmgr: delete queue Q1

For example, to delete vnodes N1 and N2 at the active server:

Qmgr: delete node N1,N2
PBS Professional 2020.1.1 Reference Guide RG-157

Chapter 2 PBS Commands
For example, to delete queue Queue1 at the default server and queue Queue2 at Server2:

Qmgr: delete queue Queue1@default,Queue2@Server2

For example, to delete resource “foo” at the active server:

Qmgr: delete resource foo

• To delete the active objects of the specified type:

delete <object type>

For example, to delete the active queues:

Qmgr: delete queue

• To delete the active objects of the specified type at the specified server:

delete <object type> @<server name>

For example, to delete the active queues at server Server2:

Qmgr: delete queue @Server2

You can delete multiple objects of the same type with a single command. You cannot delete multiple types of objects in
a single command. To delete multiple resources, separate the resource names with commas.

For example:

Qmgr: delete resource r1,r2

You cannot delete a resource that is requested by a job or reservation, or that is set on a server, queue, or vnode.

2.47.7 Operating on Attributes and Resources

You can specify attributes and resources for named objects or for all objects of a type.

2.47.7.1 Setting Attribute and Resource Values

• To set the value of the specified attribute(s) for the named object(s):

set <object type> <object name>[,<object name> ...] <attribute> = <value> [,<attribute> = <value> ...]

Each specified attribute is set for each named object, so if you specify three attributes and two objects, both objects
get all three attributes set.

• To set the attribute value for all active objects when there are active objects of the type specified:

set <object type> <attribute> = <value>
• To set the attribute value for all active objects at the specified server when there are active objects of the type speci-

fied:

set <object type> @<server name> <attribute> = <value>

For example, to set the amount of memory on a vnode:

Qmgr: set node Vnode1 resources_available.mem = 2mb

If the attribute is one which describes a set of resources such as resources_available, resources_default,

resources_max, resources_used, etc., the attribute is specified in the form:

<attribute name>.<resource name>

You can have spaces between attribute=value pairs.
RG-158 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.47.7.1.i Examples of Setting Attribute Values

Example 2-9: Increase limit on queue:

set queue fast max_running +=2

Example 2-10: Set software resource on mynode:

set node mynode resources_available.software = "myapp=/tmp/foo"

Example 2-11: Set limit on queue:

set queue max_running = 10

Example 2-12: Set vnode offline:

set node state = "offline"

2.47.7.2 Unsetting Attribute and Resource Values

You can use the qmgr command to unset attributes of any object, except for the type attribute of a built-in hook.

• To unset the value of the specified attributes of the named object(s):

unset <object type> <object name>[,<object name> ...] <attribute>[,<attribute>...]
• To unset the value of specified attributes of active objects:

unset <object type> <attribute>[,<attribute>...]
• To unset the value of specified attributes of the named object:

unset <object type> <object name> <attribute>[,<attribute>...]
• To unset the value of specified attributes of the named object:

unset <object type> @<server name> <attribute>[,<attribute>...]

2.47.7.2.i Example of Unsetting Attribute Value

Example 2-13: Unset limit on queue

unset queue fast max_running

2.47.7.3 Caveats and Restrictions for Setting Attribute and Resource

Values

• If the value includes whitespace, commas or other special characters, such as the # character, the value string must
be enclosed in single or double quotes. For example:
Qmgr: set node Vnode1 comment="Node will be taken offline Friday at 1:00 for memory

upgrade."

• You can set or unset attribute values for only one type of object in each command.

• You can use the qmgr command to set attributes of any object, except for the type attribute of a built-in hook.

• You can have spaces between attribute names.

• Attribute and resource values must conform to the format for the attribute or resource type. Each attribute’s type is
listed in Chapter 6, "Attributes", on page 277. Each format is described in Chapter 7, "Formats", on page 353.

• Most of a vnode’s attributes may be set using qmgr. However, some must be set on the individual execution host in
Version 2 vnode configuration files, NOT by using qmgr. See "Configuring Vnodes" on page 41 in the PBS Profes-
sional Administrator’s Guide.

2.47.7.4 Setting Custom Resource Type and Flag(s)

You can use the qmgr command to set or unset the type and flag(s) for custom resources.
PBS Professional 2020.1.1 Reference Guide RG-159

Chapter 2 PBS Commands
Resource types can be the following; see section 7.2, “Resource Formats”, on page 359:

string

boolean

string_array

long

size

float

• To set a custom resource type:

set resource <resource name> type = <type>

Sets the type of the named resource to the specified type. For example:

Qmgr: qmgr -c "set resource foo type=string_array"

2.47.7.4.i Resource Accumulation Flags

When you define a custom resource, you can specify whether it is server-level or host-level, and whether it is consumable
or not. This is done by setting resource accumulation flags via qmgr. A consumable resource is tracked, or accumulated,
in the server, queue or vnode resources_assigned attribute. The resource accumulation flags determine where the value
of resources_assigned.<resource name> is incremented.

2.47.7.4.ii Allowable Values for Resource Accumulation Flags

The value of <resource flags>, which is the resource accumulation flag for a resource can be one of the following:

Table 2-18: Resource Accumulation Flags

Flag Meaning

(no flags) Indicates a queue-level or server-level resource that is not consumable.

fh The amount is consumable at the host level for only the first vnode allocated to the job (vnode with first
task.) Must be consumable or time-based. Cannot be used with Boolean or string resources. .

This flag specifies that the resource is accumulated at the first vnode, meaning that the value of
resources_assigned.<resource> is incremented only at the first vnode when a job is allocated this
resource or when a reservation requesting this resource on this vnode starts.
RG-160 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.47.7.4.iii When to Use Accumulation Flags

The following table shows when to use accumulation flags.

2.47.7.4.iv Example of Resource Accumulation Flags

When defining a static consumable host-level resource, such as a node-locked application license, you would use the “n”
and “h” flags.

When defining a dynamic resource such as a floating license, you would use no flags.

h Indicates a host-level resource. Used alone, means that the resource is not consumable. Required for any
resource that will be used inside a select statement. This flag selects hardware. This flag indicates that the
resource must be requested inside of a select statement.

Example: for a Boolean resource named "green":

Qmgr: create resource green type=boolean, flag=h

nh The amount is consumable at the host level, for all vnodes assigned to the job. Must be consumable or
time-based. Cannot be used with Boolean or string resources.

This flag specifies that the resource is accumulated at the vnode level, meaning that the value of
resources_assigned.<resource> is incremented at relevant vnodes when a job is allocated this
resource or when a reservation requesting this resource on this vnode starts.

This flag is not used with dynamic consumable resources. The scheduler will not oversubscribe dynamic
consumable resources.

q The amount is consumable at the queue and server level. When a job is assigned one unit of a resource
with this flag, the resources_assigned.<resource> attribute at the server and any queue is incre-
mented by one. Must be consumable or time-based.

This flag specifies that the resource is accumulated at the queue and server level, meaning that the value
of resources_assigned.<resource> is incremented at each queue and at the server when a job is allo-
cated this resource. When a reservation starts, allocated resources are added to the server’s
resources_assigned attribute.

This flag is not used with dynamic consumable resources. The scheduler will not oversubscribe dynamic
consumable resources.

Table 2-19: When to Use Accumulation Flags

Resource
Category

Server Queue Host

Static, consumable flag = q flag = q flag = nh or fh

Static, not consumable flag = (none of h, n, q or f) flag = (none of h, n, q or f) flag = h

Dynamic server_dyn_res line in
sched_config,

flag = (none of h, n, q or f)

(cannot be used) MoM config and
mom_resources line (deprecated
as of 18.2.1) in sched_config,

flag = h

Table 2-18: Resource Accumulation Flags

Flag Meaning
PBS Professional 2020.1.1 Reference Guide RG-161

Chapter 2 PBS Commands
2.47.7.4.v Resource Accumulation Flag Restrictions and Caveats

• Numeric dynamic resources cannot have the q or n flags set. This would cause these resources to be under-used.
These resources are tracked automatically by the scheduler.

2.47.7.4.vi Resource Permission Flags

When you define a custom resource, you can specify whether unprivileged users have permission to view or request the
resource, and whether users can qalter a request for that resource. This is done by setting a resource permission flag
via qmgr.

2.47.7.4.vii Allowable Values for Resource Permission Flags

The permission flag for a resource can be one of the following:

2.47.7.4.viii Effect of Resource Permission Flags

• PBS Operators and Managers can view and request a resource, and qalter a resource request for that resource,
regardless of the i and r flags.

• Users, operators and managers cannot submit a job which requests a restricted resource. Any job requesting a
restricted resource will be rejected. If a manager needs to run a job which has a restricted resource with a different
value from the default value, the manager must submit the job without requesting the resource, then qalter the
resource value.

• While users cannot request these resources, their jobs can inherit default resources from
resources_default.<resource name> and default_chunk.<resource name>.

If a user tries to request a resource or modify a resource request which has a resource permission flag, they will get
an error message from the command and the request will be rejected. For example, if they try to qalter a job’s
resource request, they will see an error message similar to the following:

“qalter: Cannot set attribute, read only or insufficient permission Resource_List.hps 173.mars”

2.47.7.4.ix Resource Permission Flag Restrictions and Caveats

• You can specify only one of the i or r flags per resource. If both are specified, the resource is treated as if only the i
flag were specified, and an error message is logged at the default log level and printed to standard error.

• Resources assigned from the default_qsub_arguments server attribute are treated as if the user requested them. A
job will be rejected if it requests a resource that has a resource permission flag whether that resource was requested
by the user or came from default_qsub_arguments.

• The behavior of several command-line interfaces is dependent on resource permission flags. These interfaces are
those which view or request resources or modify resource requests:

pbsnodes

Users cannot view restricted host-level custom resources.

Table 2-20: Resource Permission Flags

Flag Meaning

(no flag) Users can view and request the resource, and qalter a resource request for this resource.

i “Invisible”. Users cannot view or request the resource. Users cannot qalter a resource request for this
resource.

r “Read only”. Users can view the resource, but cannot request it or qalter a resource request for this
resource.
RG-162 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
pbs_rstat

Users cannot view restricted reservation resources.

pbs_rsub

Users cannot request restricted custom resources for reservations.

qalter

Users cannot alter a restricted resource.

qmgr

Users cannot print or list a restricted resource.

qselect

Users cannot specify restricted resources via -l Resource_List.

qsub

Users cannot request a restricted resource.

qstat

Users cannot view a restricted resource.

2.47.7.4.x Allowing Execution Hooks to Read Custom Job Resources Faster

You can make it faster for execution hooks to read custom job resources. Execution hooks cannot read custom job
resources via the event, only via the server. However, you can cache a copy of a custom job resource at the MoMs for
faster local reading by execution hooks, by setting the m flag for the resource. The job resources that can be cached are
found in the following job attributes:

exec_vnode

Resource_List

resources_used

To create a resource with the m flag set, include the flag. For example, to create two host-level consumable resources r1
and r2 of type long that will be cached at MoMs:

qmgr -c "create resource r1,r2 type=long,flag=mnh"

To unset this flag for r1:

qmgr -c "set resource r1 flag=nh"

You can combine this flag with any other resource flag. Job resources created in an exechost_startup hook have the m
flag set automatically.

2.47.7.4.xi Caveats for Caching Custom Job Resources

Large numbers of job resources that are cached at MoMs can slow things down. If you don’t need execution hooks to be
able to read a custom job resource often, don’t cache the resource at the MoMs.

2.47.7.4.xii Setting Types and Flags for Custom Resources via qmgr

To set the type for a resource:

set resource <resource name> type = <type>

For example:

qmgr -c "set resource foo type=string_array"

To set the flags for a resource:

set resource <resource name> flag=<flag(s)>
PBS Professional 2020.1.1 Reference Guide RG-163

Chapter 2 PBS Commands
For example:

qmgr -c "set resource foo flag=nh"

To set the type and flags for a resource:

set resource <resource name> type=<type>, flag=<flag(s)>

For example:

qmgr -c "set resource foo type=long,flag=nhi"

You can set multiple resources by separating the names with commas. For example:

qmgr -c "set resource r1, r2 type=long"

You cannot set the nh, fh, or q flag for a resource of type string, string_array, or Boolean.

You cannot set both the n and the f flags on one resource.

You cannot have the n or f flags without the h flag.

You cannot set both the i and r flags on one resource.

You cannot unset the type for a resource.

You cannot set the type for a resource that is requested by a current or history job or reservation, or set on a server, queue,
or vnode.

You cannot set the flag(s) to h, nh, fh, or q for a resource that is currently requested by a current or history job or reser-
vation.

You cannot unset the flag(s) for a resource that is currently requested by a current or history job or a reservation, or set on
any server, queue, or vnode.

You cannot alter a built-in resource.

You can unset custom resource flags, but not their type.

2.47.7.4.xiii

2.47.8 Viewing Object, Attribute, and Resource Information

2.47.8.1 Listing Objects and Their Attributes

You can use the qmgr command to list attributes of any object, including attributes at their default values.

• To list the attributes, with associated values, of the named object(s):

list <object type> <object name>[,<object name> ...]
• To list values of the specified attributes of the named object:

list <object type> <object name> <attribute name>[, <attribute name>]...
• To list attributes, with associated values, of active objects of the specified type at the active server:

list <object type>
• To list all objects of the specified type at the specified server, with their attributes and the values associated with the

attributes:

list <object type> @<server name>
• To list attributes of the active server:

list server

 If no server other than the default server has been made active, lists attributes of the default server (it is the active
server).

• To list attributes of the specified server:
RG-164 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
list server <server name>
• To list attributes of all schedulers:

list sched
• To list attributes of the specified scheduler:

list sched <scheduler name>
• To list all hooks, along with their attributes:

list hook
• To list attributes of the specified hook:

list hook <hook name>

2.47.8.1.i Examples of Listing Objects and Their Attributes

Example 2-14: List serverA’s schedulers’ attributes:

list sched @serverA

Example 2-15: List attributes for default server’s scheduler(s):

l sched @default

Example 2-16: List PBS version for default server’s scheduler(s):

l sched @default pbs_version

Example 2-17: List queues at a specified server:

list queue @server1

2.47.8.2 Listing Resource Definitions

You can use the qmgr list and print commands to list resource definitions showing resource name, type, and
flag(s).

• To list the name, type, and flag(s) of the named resource(s):

list resource <resource name>[,<resource name> ...]

or

print resource <resource name>[,<resource name> ...]
• To list name, type, and flag(s) of custom resources only:

list resource

or

print resource

or

print server (note that this also prints information for the active server)
• To list all custom resources at the specified server, with their names, types, and flags:

list resource @<server name>

or

print resource @<server name>
When used by a non-privileged user, qmgr prints only resource definitions for resources that are visible to non-privi-
leged users (those that do not have the i flag set).
PBS Professional 2020.1.1 Reference Guide RG-165

Chapter 2 PBS Commands
2.47.8.3 Printing Creation and Configuration Commands

For printing the creation commands for any object except for a built-in hook.

• To print out the commands to create the named object(s) and set their attributes to their current values:

print <object type> <object name>[,<object name> ...]

where object name follows the name rules in section 2.47.5.1.ii, “Using Lists of Object Names”, on page 154.

• To print out the commands to create the named object and set its attributes to their current values:

print <object type> <object name> [<attribute name>[, <attribute name>]...]

where object name follows the name rules in section 2.47.5.1.ii, “Using Lists of Object Names”, on page 154.

• To print out the commands to create and configure the active objects of the named type:

print <object type>
• To print out the commands to create and configure all of the objects of the specified type at the specified server:

print <object type> @<server name>
• To print out the commands to create each queue, set the attributes of each queue to their current values, and set the

attributes of the server to their current values:

print server
This is used for the server and queues, but not hooks.

Prints information for the active server. If there is no active server, prints information for the default server.

• To print out the creation commands for all schedulers:

print sched
• To print out the creation commands for the specified scheduler:

print sched <scheduler name>

2.47.8.4 Caveats for Viewing Information

Some attributes whose values are unset do not appear in the output of the qmgr command.

Definitions for built-in resources do not appear in the output of the qmgr command.

When a non-privileged user prints resource definitions, qmgr prints only resource definitions for resources that are visi-
ble to non-privileged users (those that do not have the i flag set).

2.47.9 Saving and Re-creating Server and Queue Information

To save and recreate server and queue configuration, print the configuration information to a file, then read it back in
later. For example, to save your configuration:

qmgr -c "print server" > savedsettings

or

Qmgr: print server > savedsettings

When re-creating queue and server configuration, read the commands back into qmgr. For example:

qmgr < savedsettings
RG-166 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.47.10 Operating on Hooks

2.47.10.1 Creating Hooks

• To create a hook:

Qmgr: create hook <hook name>

For example:

Qmgr: create hook my_hook

2.47.10.2 Deleting Hooks

• To delete a hook:

Qmgr: delete hook <hook name>

For example:

Qmgr: delete hook my_hook

2.47.10.3 Setting and Unsetting Hook Attributes

• To set a hook attribute:

Qmgr: set hook <hook name> <attribute> = <value>
• To unset a hook attribute:

Qmgr: unset hook <hook name> <attribute>

Example 2-18: Unset hook1’s alarm attribute, causing hook1’s alarm to revert to its default value of 30 seconds:

Qmgr: unset hook hook1 alarm

2.47.10.4 Importing Hooks

For importing the contents of a site-defined hook. Cannot be used with built-in hooks.

To import a hook, you import the contents of a hook script into the hook. You must specify a filename that is locally
accessible to qmgr and the PBS server.

Format for importing a site-defined hook:

import hook <hook name> application/x-python <content encoding> {<input file> | -}

This uses the contents of input file or stdin (-) as the contents of hook hook name.

• The input file or stdin (-) data must have a format of content type and must be encoded with content encoding.

• The allowed values for content encoding are “default” (7bit) and “base64”.

• If the source of input is stdin (-) and content encoding is “default”, qmgr expects the input data to be terminated
by EOF.

• If the source of input is stdin (-) and content encoding is “base64”, qmgr expects input data to be terminated by a
blank line.

• input file must be locally accessible to both qmgr and the requested batch server.

• A relative path input file is relative to the directory where qmgr was executed.

• If a hook already has a content script, that is overwritten by this import call.

• If the name in input file contains spaces as are used in Windows filenames, input file must be quoted.

There is no restriction on the size of the hook script.
PBS Professional 2020.1.1 Reference Guide RG-167

Chapter 2 PBS Commands
2.47.10.4.i Examples of Importing Hooks

Example 2-19: Given a Python script in ASCII text file "hello.py", use its contents as the script contents of hook1:

#cat hello.py

import pbs

pbs.event().job.comment="Hello, world"

qmgr -c 'import hook hook1 application/x-python default hello.py'

Example 2-20: Given a base64-encoded file "hello.py.b64", qmgr unencodes the file's contents, and then makes
this the script contents of hook1:

cat hello.py.b64

cHJpbnQgImhlbGxvLCB3b3JsZCIK

qmgr -c 'import hook hook1 application/x-python base64 hello.py.b64'

Example 2-21: To create a provisioning hook called Provision_Hook, and import the ASCII hook script called
“master_provision.py” located in /root/data/:

Qmgr: create hook Provision_Hook
Qmgr: import hook Provision_Hook application/x-python default /root/data/

master_provision.py

2.47.10.5 Importing and Exporting Hook Configuration Files

2.47.10.5.i Importing Configuration Files

For importing the contents of a site-defined or built-in hook configuration file. To import a hook configuration file, you
import the contents of a file to a hook. You must specify a filename that is locally accessible to qmgr and the PBS
server.

Format for importing a site-defined hook configuration file:

import hook <hook name> application/x-config <content encoding> {<config file>|-}

Format for importing a built-in hook configuration file:

import pbshook <hook name> application/x-config <content encoding> {<config file>|-}

This uses the contents of config file or stdin (-) as the contents of the configuration file for hook hook name.

• The config file or stdin (-) data must have a format of content-type and must be encoded with content encoding.

• The allowed values for content encoding are “default” (7bit) and “base64”.

• If the source of input is stdin (-) and content encoding is “default”, qmgr expects the input data to be terminated
by EOF.

• If the source of input is stdin (-) and content encoding is “base64”, qmgr expects input data to be terminated by a
blank line.

• config file must be locally accessible to both qmgr and the requested batch server.

• A relative path config file is relative to the directory where qmgr was executed.

• If a hook already has a configuration file, that file is overwritten by this import call.

• If the name in config file contains spaces as are used in Windows filenames, input file must be quoted.

There is no restriction on the size of the hook configuration file.

2.47.10.5.ii Exporting Configuration Files

Format for exporting a site-defined hook configuration file:

qmgr -c "export hook <hook name> application/x-config default" > {<config file>|-}
RG-168 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
Format for exporting a built-in hook configuration file:

qmgr -c "export pbshook <hook name> application/x-config default" > {<config file>|-}

2.47.10.5.iii Hook Configuration File Format

PBS supports several file formats for configuration files. The format of the file is specified in its suffix. Formats can be
any of the following:

• .ini

• .json

• .py (Python)

• .txt (generic, no special format)

• .xml

• No suffix: treat the input file as if it is a .txt file

• The dash (-) symbol: configuration file content is taken from STDIN. The content is treated as if it is a .txt file.

Example 2-22: To import a configuration file in .json format:

qmgr -c "import hook my_hook application/x-config default my_input_file.json"

2.47.10.6 Exporting Hooks

For exporting the contents of a site-defined hook. Cannot be used with built-in hooks.

Format for exporting a hook:

qmgr -c "export hook <hook name> <content type> <content encoding>" > [<output file>]

This dumps the script contents of hook hook name into output file, or stdout if output file is not specified.

• The resulting output file or stdout data is of content type and content encoding.

• The only content type currently supported is “application/x-python”.

• The allowed values for content encoding are “default” (7bit) and “base64”.

• output file must be a path that can be created by qmgr.

• Any relative path output file is relative to the directory where qmgr was executed.

• If output file already exists it is overwritten. If PBS is unable to overwrite the file due to ownership or permission
problems, an error message is displayed in stderr.

• If the output file name contains spaces like the ones used in Windows file names, output file must be enclosed in
quotes.

2.47.10.6.i Examples of Exporting Hooks

Example 2-23: Dump hook1's script contents directly into a file "hello.py.out":

qmgr -c "export hook hook1 application/x-python default" > hello.py

cat hello.py

import pbs

pbs.event().job.comment="Hello, world"

Example 2-24: To< dump the script contents of a hook 'hook1' into a file in “\My Hooks\hook1.py”:

qmgr -c "export hook hook1 application/x-python default" > "\My Hooks\hook1.py"

2.47.10.7 Printing Hook Information

• To print out the commands to create and configure all hooks, including their configuration files:
PBS Professional 2020.1.1 Reference Guide RG-169

Chapter 2 PBS Commands
print hook
• To print out the commands to create and configure the specified hook, including its configuration file:

print hook <hook name>

2.47.10.8 Saving and Re-creating Hook Information

You can save creation and configuration information for all hooks. For example:

qmgr -c "print hook" > hook.qmgr

You can re-create all hooks and their configuration files. For example:

qmgr < hook.qmgr

2.47.10.9 Restrictions on Built-in Hooks

You cannot do the following with built-in hooks:

• Import a built-in hook

• Export a built-in hook

• Print creation commands for a built-in hook

• Create a built-in hook

• Delete a built-in hook

• Set the type attribute for a built-in hook

2.47.11 Printing Usage Information

You use the help command or a question mark (“?”) to invoke the qmgr built-in help function. You can request usage
information for any of the qmgr commands, and for topics including attributes, operators, names, and values.

• To print out usage information for the specified command or topic:

Qmgr: help [<command or topic>]

or

Qmgr: ? [<command or topic>]

For example, to print usage information for the set command:

qmgr

Qmgr: help set

Syntax: set object [name][,name...] attribute[.resource] OP value

2.47.12 Standard Input

When you start a qmgr session, the qmgr command reads standard input for directives until it reaches end-of-file, or it
reads the exit or quit command.

2.47.13 Standard Output

When you start a qmgr session, and standard output is connected to a terminal, qmgr writes a command prompt to stan-
dard output.

If you specify the -e option, qmgr echoes the directives it reads from standard input to standard output.
RG-170 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.47.14 Standard Error

If you do not specify the -z option, the qmgr command writes a diagnostic message to standard error for each error
occurrence.

2.47.15 Exit Status

0

Success

1

Error in parsing

2

Error in execution

3

Error connecting to server

4

Error making object active

5

Memory allocation error

2.47.16 See Also

The PBS Professional Administrator’s Guide, Chapter 6, "Attributes", on page 277, Chapter 5, "List of Built-in
Resources", on page 259
PBS Professional 2020.1.1 Reference Guide RG-171

Chapter 2 PBS Commands
2.48 qmove

Moves a PBS job from one queue to another

2.48.1 Synopsis

qmove <destination> <job ID> [<job ID> ...]

qmove --version

2.48.2 Description

Moves a job from one queue to another.

The behavior of the qmove command may be affected by any site hooks. Site hooks can modify the job’s attributes,
change its routing, etc.

2.48.2.1 Restrictions

The qmove command can be used on job arrays, but not on subjobs or ranges of subjobs.

Job arrays can only be moved from one server to another if they are in the ‘Q’, ‘H’, or ‘W’ states, and only if there are no
running subjobs. The state of the job array is preserved, and the job array will run to completion on the new server.

A job in the Running, Transiting, or Exiting state cannot be moved.

A job in the process of provisioning cannot be moved.

2.48.2.2 Effect of Privilege on Behavior

An unprivileged user can use the qmove command to move a job only when the move would not violate queue restric-
tions. A privileged user (root, Manager, Operator) can use the qmove command to move a job under some circum-
stances where an unprivileged user cannot. The following restrictions apply only to unprivileged users:

• The queue must be enabled

• Moving the job into the queue must not exceed the queue’s limits for jobs or resources

• If the job is an array job, the size of the job array must not exceed the queue’s max_array_size

• The queue cannot have its from_route_only attribute set to True (accepting jobs only from routing queues)

2.48.3 Options

--version

The qmove command returns its PBS version information and exits. This option can only be used alone.

2.48.4 Operands

destination

Where job(s) are to end up. First operand. Syntax:

<queue name>
Moves the job(s) into the specified queue at the job’s current server.

@<server name>
RG-172 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
Moves the job(s) into the default queue at specified server.

<queue name>@<server name>
Moves the job(s) into the specified queue at the specified server.

See Chapter 7, "Formats", on page 353 for destination identifier formats.

job ID

Job(s) and/or job array(s) to be moved to the new destination . The qmove command accepts one or more job
ID operands of the form:

<sequence number>[.<server name>][@<server name>]
<sequence number>[][.<server name>][@<server name>]
Note that some shells require that you enclose a job array identifier in double quotes.

2.48.5 Standard Error

The qmove command writes a diagnostic messages to standard error for each error occurrence.

2.48.6 Exit Status

Zero

Upon successful processing of all the operands presented to the qmove command.

Greater than zero

If the qmove command fails to process any operand.

2.48.7 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide
PBS Professional 2020.1.1 Reference Guide RG-173

Chapter 2 PBS Commands
2.49 qmsg

Writes message string into one or more job output files

2.49.1 Synopsis

qmsg [-E] [-O] <message string> <job ID> [<job ID> ...]

qmsg --version

2.49.2 Description

Writes a message string into one or more output files of the job. Typically this is done to leave an informative message in
the output of the job. Also called “sending a message to a job”.

The qmsg command writes messages into the files of jobs by sending a Message Job batch request to the batch server
that owns the job. The qmsg command does not directly write the message into the files of the job.

The qmsg command can be used on jobs and subjobs, but not on job arrays or ranges of subjobs.

2.49.3 Options

-E

The message is written to the standard error of each job.

-O

The message is written to the standard output of each job.

--version

The qmsg command returns its PBS version information and exits. This option can only be used alone.

(no options)

The message is written to the standard error of each job.

2.49.4 Operands

message string

The message to be written. String. First operand. If the string contains blanks, the string must be quoted. If the
final character of the string is not a newline, a newline character is added when written to the job’s file.

job ID

The job(s) to receive the message string. This operand follows the message string operand. Can be a job or sub-
job. Cannot be a job array or range of subjobs. The qmsg command accepts one or more job ID operands.

Format for job:

<sequence number>[.<server name>][@<server name>]
Format for subjob. Note that a subjob has square brackets around its index number:

<sequence number>[<index>][.<server name>][@<server name>]

2.49.5 Standard Error

The qmsg command writes a diagnostic message to standard error for each error occurrence.
RG-174 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.49.6 Exit Status

Zero

Upon successful processing of all the operands presented to the qmsg command.

Greater than zero

If the qmsg command fails to process any operand.

2.49.7 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide
PBS Professional 2020.1.1 Reference Guide RG-175

Chapter 2 PBS Commands
2.50 qorder

Swaps queue positions of two PBS jobs

2.50.1 Synopsis

qorder <job ID> <job ID>

qorder --version

2.50.2 Description

Exchanges positions in queue(s) of two jobs, whether in the same or different queue(s).

No attribute of either job, e.g. priority, is changed. The impact of interchanging the order within or between queues is
dependent on local job scheduling policy; contact your systems administrator.

2.50.2.1 Restrictions

• A job in the running state cannot be reordered.

• The qorder command can be used on job arrays, but not on subjobs or ranges of subjobs.

• The two jobs must be located at the same server.

2.50.2.2 Effect of Privilege on Behavior

For an unprivileged user to reorder jobs, both jobs must be owned by the user. A privileged user (Manager, Operator) can
reorder any jobs.

2.50.3 Options

--version

The qorder command returns its PBS version information and exits. This option can only be used alone.

2.50.4 Operands

Both operands are job IDs which specify the jobs to be exchanged. The qorder command accepts two job ID operands
of the form:

<sequence number>[.<server name>][@<server name>]

<sequence number>[][.<server name>][@<server name>]

If you specify the server for both jobs, they must be at the same server.

Note that some shells require that you enclose a job array identifier in double quotes.

2.50.5 Standard Error

The qorder command writes diagnostic messages to standard error for each error occurrence.
RG-176 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.50.6 Exit Status

Zero

Upon successful processing of all the operands presented to the qorder command

Greater than zero

If the qorder command fails to process any operand

2.50.7 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide
PBS Professional 2020.1.1 Reference Guide RG-177

Chapter 2 PBS Commands
2.51 qrerun

Requeues a PBS job

2.51.1 Synopsis

qrerun [-W force] <job ID> [<job ID> ...]

qrerun --version

2.51.2 Description

If possible, kills the specified job(s), then requeues each job in the execution queue from which it was run.

The qrerun command can be used on jobs, job arrays, subjobs, and ranges of subjobs. If you give a job array identifier
as an argument, the job array is returned to its initial state at submission time, or to its altered state if it has been qaltered.
All of that job array’s subjobs are requeued, which includes those that are currently running, and those that are completed
and deleted. If a you give a subjob or range as an argument, those subjobs are requeued.

2.51.2.1 Restrictions

If a job is marked as not rerunnable, qrerun neither kills nor requeues the job. See the -r option for the qsub and
qalter commands, and the Rerunable job attribute.

The qrerun command cannot requeue a job or subjob which is not running, is held, or is suspended.

2.51.2.2 Required Privilege

PBS Manager or Operator privilege is required to use this command.

2.51.3 Options

-W force

The job is to be requeued even if the vnode on which the job is executing is unreachable, or if the job’s substate
is provisioning.

--version

The qrerun command returns its PBS version information and exits. This option can only be used alone.

2.51.4 Operands

The qrerun command accepts one or more job ID operands of the form:

<sequence number>[.<server name>][@<server name>]

<sequence number>[][.<server name>][@<server name>]

<sequence number>[<index>][.<server name>][@<server name>]

<sequence number>[<index start>-<index end>][.<server name>][@<server name>]

Note that some shells require that you enclose a job array identifier in double quotes.
RG-178 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.51.5 Standard Error

The qrerun command writes a diagnostic message to standard error for each error occurrence.

2.51.6 Exit Status

Zero

Upon successful processing of all operands

Greater than zero

Upon failure to process any operand

2.51.7 See Also

PBS Professional Administrator's Guide, PBS Professional User’s Guide
PBS Professional 2020.1.1 Reference Guide RG-179

Chapter 2 PBS Commands
2.52 qrls

Releases holds on PBS jobs

2.52.1 Synopsis

qrls [-h <hold list>] <job ID> [<job ID> ...]

qrls --version

2.52.2 Description

The qrls command directly releases or removes holds on batch jobs or job arrays, and indirectly on subjobs with a Sys-
tem hold. You cannot use the command with a specified range of subjobs. If you use qrls on a job array which has a
System hold because it has one or more subjobs with a System hold, the System hold is removed from the subjobs, then
from the job array.

A job may have one or more types of holds which make the job ineligible for execution.

When you qrls a job whose Execution_Time attribute is not set to a time in the future, the job changes to the queued
state. If Execution_Time is in the future, the job changes to the waiting state.

Holds can be set by the owner, an Operator, or Manager, when a job has a dependency, or when a job has its
Execution_Time attribute set to a time in the future. See "qhold” on page 147.

2.52.2.1 Effect of Privilege on Behavior

The following table shows the holds and the privilege required to release each:

If you try to release a hold for which the you do not have privilege, the entire request is rejected, and no holds are
released.

2.52.3 Options

(no options)

Defaults to -h u, removing user hold.

-h <hold list>

Types of hold to be released for the jobs. The hold list option argument is a string consisting of one or more of
the letters u, o, or s in any combination, or one of the letters n or p.

Table 2-21: Hold Types

Hold Type Meaning Privilege Required to Release

u User Job owner, Operator, Manager, PBS Administrator, root

o Other Operator, Manager, administrator, root

s System Manager, administrator, root, PBS (dependency)

n No hold Job owner, Operator, Manager, administrator, root

p Bad password Administrator, root
RG-180 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
--version

The qrls command returns its PBS version information and exits. This option can only be used alone.

2.52.4 Operands

The qrls command can be used directly on jobs and job arrays, but indirectly on subjobs, and cannot be used on ranges
of subjobs. The qrls command accepts one or more job ID operands of the form:

<sequence number>[.<server name>][@<server name>]

<sequence number>[][.<server name>][@<server name>]

Note that some shells require that you enclose a job array identifier in double quotes.

2.52.5 Standard Error

The qrls command writes a diagnostic message to standard error for each error occurrence.

2.52.6 Exit Status

Zero

Upon successful processing of all the operands presented to the qrls command

Greater than zero

If the qrls command fails to process any operand

2.52.7 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide, "qhold” on page 147
PBS Professional 2020.1.1 Reference Guide RG-181

Chapter 2 PBS Commands
2.53 qrun

Runs a PBS job immediately

2.53.1 Synopsis

qrun [-a] [-H <vnode specification>] <job ID> [<job ID> ...]

qrun [-a] [-H -] <job ID> [<job ID> ...]

qrun --version

2.53.2 Description

Forces a job to run, regardless of scheduling position or resource requirements.

The qrun command can be used on jobs, subjobs, or ranges of subjobs, but not on job arrays. When it is used on a range
of subjobs, the non-running subjobs in that range are run.

When preemption is enabled, a scheduler preempts other jobs in order to run this job. Running a job via qrun gives the
job higher preemption priority than any of the priorities defined in the preempt_prio scheduler parameter. See "Using
Preemption" on page 180 in the PBS Professional Administrator’s Guide.

2.53.2.1 Required Privilege

In order to execute qrun, you must have PBS Operator or Manager privilege.

2.53.2.2 Caveats for qrun

• The job is run without respect for limits, primetime, or dedicated time.

• If you use a -H <vnode specification> option to run a job, but specify insufficient vnodes or resources, the
job may not run correctly. Avoid using this option unless you are sure.

• If you don’t use the -H option, the job must be in the Queued state and reside in an execution queue.

• If you do use the -H option, the job must be in the Queued or Suspended state and reside in an execution queue.

• The qrun command cannot be used on a job that is in the process of provisioning.

• If you use the -H option, all schedulers are bypassed, and partition boundaries are ignored.

2.53.3 Options to qrun

-a

The qrun command exits before the job actually starts execution.
RG-182 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
(no -H option)

The job is run immediately regardless of scheduling policy as long as the following are true:

• The queue in which the job resides is an execution queue.

• Either the resources required by the job are available, or preemption is enabled and the required resources
can be made available by preempting jobs that are running.

The qrun command by itself, with no -H option, overrides the following:

• Limits on resource usage by users, groups, and projects

• Limits on the number of jobs that can be run at a vnode

• Boundaries between primetime and non-primetime, specified in backfill_prime

• Whether the job is in a primetime queue: you can run a job in a primetime slot even when it’s not prime-
time, or vice versa. Primetime boundaries are not honored.

• Dedicated time: you can run a job in a dedicated time slot, even if it’s not in a dedicated time queue, and
vice versa. However, dedicated time boundaries are still honored.

The qrun command by itself, with no -H option, does not override the following:

• Server and queue resource usage limits

(with -H option)

Do NOT use this option unless you know exactly what you are doing.

With the -H option, all scheduling policies are bypassed and the job is run directly. The job is run immediately
on the named or previously-assigned vnodes, regardless of current usage on those vnodes or which scheduler
manages those vnodes, with the exception of vnode state. The job is not run and the qrun request is rejected if
any named vnode is down, already allocated exclusively, or would need to be allocated exclusively and another
job is already running on the vnode. The job is run if the vnode is offline.

The -H option runs jobs that are queued or suspended.

If the qrun -H command is used on a job that requests an AOE, and that AOE is not instantiated on those
vnodes, the vnodes are provisioned with the AOE.

If the job requests an AOE, and that AOE is not available on the specified vnodes, the job is held.

-H <vnode specification without resources>
The vnode specification without resources has this format:

(<vchunk>)[+(<vchunk>) ...]
where vchunk has the format

<vnode name>[+<vnode name> ...]
Example:

-H (VnodeA+VnodeB)+(VnodeC)

PBS applies one requested chunk from the job’s selection directive in round-robin fashion to each vchunk in
the list. Each vchunk must be sufficient to run the job’s corresponding chunk, otherwise the job may not
execute correctly.
PBS Professional 2020.1.1 Reference Guide RG-183

Chapter 2 PBS Commands
-H <vnode specification with resources>
The vnode specification with resources has this format:

(<vchunk>)[+(<vchunk>) ...]
where vchunk has the format

<vnode name>:<vnode resources>[+<vnode name>:<vnode resources> ...]
and where vnode resources has the format

<resource name>=<value>[:<resource name>=<value> ...]
Example:

-H (VnodeA:mem=100kb:ncpus=1) +(VnodeB:mem=100kb:ncpus=2+VnodeC:mem=100kb)

PBS creates a new selection directive from the vnode specification with resources, using it instead of the
original specification from the user. Any single resource specification results in the job’s original selection
directive being ignored. Each vchunk must be sufficient to run the job’s corresponding chunk, otherwise
the job may not execute correctly.

If the job being run requests -l place=exclhost, take extra care to satisfy the exclhost request.
Make sure that if any vnodes are from a multi-vnoded host, all vnodes from that host are allocated. Other-
wise those vnodes can be allocated to other jobs.

-H -
Runs the job on the set of resources to which it is already assigned. You can run a job on the set of
resources already assigned to the job, without having to list the resources, by using the - (dash) argument to
the -H option.

--version

The qrun command returns its PBS version information and exits. This option can only be used alone.

2.53.4 Operands

Job ID

The qrun command accepts a list of job IDs, of the form:

<sequence number>[.<server name>][@<server name>]
<sequence number>[<index>][.<server name>][@<server name>]
<sequence number>[<index start>-<index end>][.<server name>][@<server name>]
Note that some shells require that you enclose a job array identifier in double quotes.
RG-184 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
vnode specification

The vnode specification without resources has this format:

(<vchunk>)[+(<vchunk>) ...]
where vchunk has the format

<vnode name>[+<vnode name> ...]
Example:

-H (VnodeA+VnodeB)+(VnodeC)

The vnode specification with resources has this format:

(<vchunk>)[+(<vchunk>) ...]
where vchunk has the format

<vnode name>:<vnode resources>[+<vnode name>:<vnode resources> ...]
and where vnode resources has the format

<resource name>=<value>[:<resource name>=<value> ...]
Example:

-H (VnodeA:mem=100kb:ncpus=1) +(VnodeB:mem=100kb:ncpus=2+VnodeC:mem=100kb)

A vnode name is the name of the vnode, not the name of the host.

2.53.5 Standard Error

The qrun command writes a diagnostic message to standard error for each error occurrence.

2.53.6 Exit Status

Zero

On success

Greater than zero

If the qrun command fails to process any operand

2.53.7 See Also

The PBS Professional Administrator’s Guide
PBS Professional 2020.1.1 Reference Guide RG-185

Chapter 2 PBS Commands
2.54 qselect

Selects specified PBS jobs

2.54.1 Synopsis

qselect [-a [<op>] <date and time>] [-A <account string>] [-c [<op>] <interval>] [-h <hold list>] [-H] [-J] [-l
<resource list>] [-N <name>] [-p [<op>] <priority>] [-P <project>] [-q <destination>] [-r <rerun>] [-s
<states>] [-t <time option> [<comparison>] <specified time>] [-T] [-u <user list>] [-x]

qselect --version

2.54.2 Description

The qselect command lists those jobs that meet the specified selection criteria. You can compare certain job attribute
values to specified values using a comparison operator shown as op in the option description.

You can select jobs, job arrays, or subjobs. You can select jobs from one server per call to the command.

Each option acts as a filter restricting which jobs are listed.

You can select jobs according to the values of some of the resources in the Resource_List job attribute. You can also
select jobs according the selection directive (although because this is a string, you can only check for equality or inequal-
ity.)

Jobs that are finished or moved are listed only when the -x or -H options are used. Otherwise, job selection is limited to
queued and running jobs.

2.54.2.1 Comparison Operations

You can select jobs by comparing the values of certain job attributes to values you specify. The following table lists the
comparison operations you can use:

For example, to select jobs whose Priority attribute has a value greater than 5:

qselect -p.gt.5

Where an optional comparison is not specified, the comparison operation defaults to .eq, meaning PBS checks whether
the value of the attribute is equal to the option argument.

Table 2-22: Comparison Operations

Operation Type of Comparison

.eq. The value of the job attribute is equal to the value of the option argument.

.ne. The value of the job attribute is not equal to the value of the option argument.

.ge. The value of the job attribute is greater than or equal to the value of the option argument.

.gt. The value of the job attribute is greater than the value of the option argument.

.le. The value of the job attribute is less than or equal to the value of the option argument.

.lt. The value of the job attribute is less than the value of the option argument.
RG-186 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.54.2.2 Required Permissions

When selecting jobs according to resource values, users without operator or manager privilege cannot specify custom
resources which were created to be invisible to unprivileged users.

2.54.3 Options to qselect

(no options)

Lists all jobs at the server which the user is authorized to list (query status of).

-a [<op>] <date and time>

Deprecated. Restricts selection to those jobs whose Execution_Time attribute qualifies when compared to the
date and time argument. You can select a range of execution times by using this option twice, to compare to a
minimum time and a maximum time.

The date and time argument has the format:

[[CC]YY]MMDDhhmm[.SS]
where MM is the two digits for the month, DD is the day of the month, hh is the hour, mm is the minute, and the
optional SS is the seconds. CC is the century and YY the year.

-A <account string>

Restricts selection to jobs whose Account_Name attribute matches the specified account string .

-c [<op>] <interval>

Restricts selection to jobs whose Checkpoint interval attribute meets the comparison criteria.

The interval argument can take one of the following values:

c

c=<minutes>

n

s

w

w=<minutes>

We give the range of interval values for the Checkpoint attribute the following ordered relationship:

n > s > c=<minutes> > c > u
(Information about w and w=<minutes> is not available.)

For an interval value of “u”, only “.eq.” and “.ne.” are valid.
PBS Professional 2020.1.1 Reference Guide RG-187

Chapter 2 PBS Commands
-h <hold list>

Restricts the selection of jobs to those with a specific set of hold types. The holds in the Hold_Types job
attribute must be the same as those in the hold list argument, but can be in a different order.

The hold list argument is a string consisting of the single letter n, or one or more of the letters u, o, p, or s in
any combination. If letters are duplicated, they are treated as if they occurred once. The letters represent the
hold types:

-H

Restricts selection to finished and moved jobs.

-J

Limits selection to job arrays only.

-l <resource list>

Restricts selection of jobs to those with specified resource amounts. Resource must be job-wide, or be mem,
ncpus, or vmem.

The resource list is in the following format:

<resource name> <op> <value>[,<resource name> <op> <value> ...]

You must specify op, and you can use any of the comparison operators.

Because resource specifications for chunks using the select statement, and placement using the place statement,
are stored as strings, the only useful operators for these are .eq. and .ne.

Unprivileged users cannot specify custom resources which were created to be invisible to unprivileged users.

-N <name>

Restricts selection of jobs to those with the specified value for the Job_Name attribute.

-p [<op>]<priority>

Restricts selection of jobs to those with the specified Priority value(s).

-P <project>

Restricts selection of jobs to those matching the specified value for the project attribute.

Format: Project Name; see "Project Name” on page 357

-q <destination>

Restricts selection to those jobs at the specified destination.

The destination may take of one of the following forms:

<queue name>

Restricts selection to the specified queue at the default server.

@<server name>

Table 2-23: Hold Types

Letter Hold Type

n None

u User

o Other

p Bad password

s System
RG-188 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
Restricts selection to the specified server.

<queue name>@<server name>

Restricts selection to the specified queue at the specified server.

If the -q option is not specified, jobs are selected from the default server.

-r <rerun>

Restricts selection of jobs to those with the specified value for the Rerunable attribute . The option argument
rerun must be a single character, either y or n .

-s <states>

Restricts job selection to those whose job_state attribute has the specified value(s).

The states argument is a character string consisting of any combination of these characters: B, E, F, H, M, Q,

R, S, T, U, W, and X. (A repeated character is accepted, but no additional meaning is assigned to it.)

Jobs in any of the specified states are selected.

Job arrays are never in states R, S, T, or U. Subjobs may be in those states.

Table 2-24: Job States

State Meaning

B Job array has started execution

E The Exiting state

F The Finished state

H The Held state

M The Moved state

Q The Queued state

R The Running state

S The Suspended state

T The Transiting state

U Job suspended due to workstation user activity

W The Waiting state

X The eXited state. Subjobs only
PBS Professional 2020.1.1 Reference Guide RG-189

Chapter 2 PBS Commands
-t <time option> [<op>] <specified time>

Jobs are selected according to one of their time-based attributes. The time option specifies which time-based
attribute is tested. You give the specified time in datetime format. See Chapter 7, "Formats", on page 353.

The time option is one of the following:

To bracket a time period, use the -t option twice. For example, to select jobs using stime between noon and 3
p.m.:

qselect -ts.gt.09251200 -ts.lt.09251500

-T

Limits selection to jobs and subjobs.

Table 2-25: Sub-options to the -t Option

Time
Option

Time Attribute Option Format(s) Attribute Description

a Execution_Time Timestamp

Use datetime format to specify.

Time at which the job is eligible
for execution.

c ctime Timestamp

Printed by qstat in human-read-
able Date format. Output in
hooks as seconds since epoch.

Time at which the job was created.

e etime Timestamp

Printed by qstat in human-read-
able Date format. Output in
hooks as seconds since epoch.

Time when job became eligible to
run, i.e. was enqueued in an exe-
cution queue and was in the “Q”
state. Reset when a job moves
queues, or is held then released.
Not affected by qaltering.

g eligible_time Use duration format to specify. Amount of eligible time job
accrued waiting to run.

m mtime Timestamp

Printed by qstat in human-read-
able Date format. Output in
hooks as seconds since epoch.

Time that the job was last modified,
changed state, or changed locations.

q qtime Timestamp

Printed by qstat in human-read-
able Date format. Output in
hooks as seconds since epoch.

Time that the job entered the current
queue.

s stime Timestamp

Printed by qstat in human-read-
able Date format. Output in
hooks as seconds since epoch

Time the job started. Updated when
job is restarted. .

t estimated.start_time Use datetime format to specify.
Printed by qstat in human-read-
able Date format. Output in
hooks as seconds since epoch.

Job’s estimated start time.
RG-190 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
-u <user list>

Restricts selection to jobs owned by the specified usernames.

Syntax of user list:

<username>[@<hostname>][,<username>[@<hostname>],...]

Selects jobs which are owned by the listed users at the corresponding hosts. Hostnames may be wildcarded on
the left end, e.g. “*.nasa.gov”. A username without a “@<hostname>” is equivalent to “<username>@*”,
meaning that it is valid at any host.

-x

Selects finished and moved jobs in addition to queued and running jobs.

--version

The qselect command returns its PBS version information and exits. This option can only be used alone.

2.54.4 Standard Output

PBS writes a list of the selected job IDs to standard output. Each job ID is separated by white space. A job ID can repre-
sent a job, a job array, or a subjob. Each job ID has one of the forms:

<sequence number>.<server name>[@<server name>]

<sequence number>[].<server name>[@<server name>]

<sequence number>[<index>].<server name>[@<server name>]

@<server name> identifies the server which currently owns the job.

2.54.5 Standard Error

The qselect command writes a diagnostic message to standard error for each error occurrence.

2.54.6 Exit Status

Zero

Upon successful processing of all options presented to the qselect command

Greater than zero

If the qselect command fails to process any option

2.54.7 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide, section 6.11, “Job Attributes”, on page
328, Chapter 5, "List of Built-in Resources", on page 259
PBS Professional 2020.1.1 Reference Guide RG-191

Chapter 2 PBS Commands
2.55 qsig

Send signal to PBS job

2.55.1 Synopsis

qsig [-s <signal>] <job ID> [<job ID> ...]

qsig --version

2.55.2 Description

The qsig command sends a signal to all the processes of the specified job(s). The qsig command sends a Signal Job
batch request to the server which owns the job.

The qsig command can be used for jobs, job arrays, subjobs, and ranges of subjobs. If it is used on a range of subjobs,
the running subjobs in the range are signaled.

Not all signal names are recognized by qsig; if using a signal name does not work, try issuing the signal number
instead.

2.55.2.1 Using admin-suspend and admin-resume

If you have a vnode requiring maintenance while remaining powered up, where you don’t want jobs running during the
maintenance, you can use the special signals admin-suspend and admin-resume to suspend and resume the jobs on the
vnode. When you use admin-suspend on a vnode’s job(s), the vnode goes into the maintenance state, and its sched-
uler does not schedule jobs on it. You must separately admin-suspend each job on the vnode. When its last admin-

suspended job is admin-resumed, a vnode leaves the maintenance state.

2.55.2.2 Restrictions

The request to signal a job is rejected if:

• The user is not authorized to signal the job

• The job is not in the running or suspended state

• The requested signal is not supported by the system upon which the job is executing

• The job is in the process of provisioning

• You attempt to use admin-resume on a job that was suspended

• You attempt to use resume on a job that was admin-suspended

2.55.2.3 Required Privilege

Manager or Operator privilege is required to use the admin-suspend, admin-resume, suspend, or resume signals.
Unprivileged users can use other signals.

2.55.3 Options to qsig

(no options)

PBS sends SIGTERM to the job.
RG-192 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
-s <signal>

PBS sends signal signal to the job.

--version

The qsig command returns its PBS version information and exits. This option can only be used alone.

2.55.3.1 Signals

You can send standard signals to a job, or the special signals described below. The signal argument can be in any of the
following formats:

• A signal name, e.g. SIGKILL

• A signal name without the SIG prefix, e.g. KILL

• An unsigned signal number, e.g. 9

The signal name SIGNULL is allowed; in this case the server sends the signal 0 to the job, which has no effect.

2.55.3.1.i Special Signals

The following special signals are all lower-case, and have no associated signal number:

admin-suspend

Suspends a job and puts its vnodes into the maintenance state. The job is put into the S state and its processes
are suspended. When suspended, a job is not executing and is not charged for walltime.

Syntax: qsig -s admin-suspend <job ID>

admin-resume

Resumes a job that was suspended using the admin-suspend signal, without waiting for its scheduler. Cannot
be used on jobs that were suspended with the suspend signal. When the last admin-suspended job has been
admin-resumed, the vnode leaves the maintenance state.

 Syntax: qsig -s admin-resume <job ID>

suspend

Suspends specified job(s). Job goes into suspended (S) state. When suspended, a job is not executing and is
not charged for walltime.

resume

Marks specified job(s) for resumption by its scheduler when there are sufficient resources. If you use qsig -
s resume on a job that was suspended using qsig -s suspend, the job is resumed when there are suffi-
cient resources. Cannot be used on jobs that were suspended with the admin_suspend signal.

2.55.4 Operands

The qsig command accepts one or more job ID operands. For a job, this has the form:

<sequence number>[.<server name>][@<server name>]

For a job array, job ID takes this form:

<sequence number>[][.<server name>][@<server name>]

Note that some shells require that you enclose a job array identifier in double quotes.

2.55.5 Standard Error

The qsig command writes a diagnostic message to standard error for each error occurrence.
PBS Professional 2020.1.1 Reference Guide RG-193

Chapter 2 PBS Commands
2.55.6 Exit Status

Zero

Upon successful processing of all the operands presented to the qsig command

Greater than zero

If the qsig command fails to process any operand

2.55.7 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide
RG-194 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.56 qstart

Turns on scheduling or routing for the jobs in a PBS queue

2.56.1 Synopsis

qstart <destination> [<destination> ...]

qstart --version

2.56.2 Description

If destination is an execution queue, the qstart command allows a PBS scheduler to schedule jobs residing in the spec-
ified queue. If destination is a routing queue, the server can begin routing jobs from that queue. Sets the value of the
queue’s started attribute to True.

2.56.2.1 Required Privilege

In order to execute qstart, you must have PBS Operator or Manager privilege.

2.56.3 Options

--version

The qstart command returns its PBS version information and exits. This option can only be used alone.

2.56.4 Operands

The qstart command accepts one or more space-separated destination operands. The operands take one of three
forms:

<queue name>

Starts scheduling or routing from the specified queue.

@<server name>

Starts scheduling or routing from all queues at the specified server.

<queue name>@<server name>

Starts scheduling or routing from the specified queue at the specified server.

To start scheduling at all queues at the default server, use the qmgr command:

Qmgr: set queue @default started=true

2.56.5 Standard Error

The qstart command writes a diagnostic message to standard error for each error occurrence.
PBS Professional 2020.1.1 Reference Guide RG-195

Chapter 2 PBS Commands
2.56.6 Exit Status

Zero

Upon successful processing of all the operands presented to the qstart command

Greater than zero

If the qstart command fails to process any operand

2.56.7 See Also

The PBS Professional Administrator’s Guide, "qmgr” on page 149, "qstop” on page 211
RG-196 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.57 qstat

Displays status of PBS jobs, queues, or servers

2.57.1 Synopsis

2.57.1.1 Displaying Job Status

Default format:

qstat [-E] [-J] [-p] [-t] [-w] [-x] [[<job ID> | <destination>] ...]

Long format:

qstat -f [-F json|dsv [-D <delimiter>]] [-E] [-J] [-p] [-t] [-w] [-x] [[<job ID> | <destination>] ...]

Alternate format:

qstat [-a | -H | -i | -r] [-E] [-G | -M] [-J] [-n [-1]] [-s [-1]] [-t] [-T] [-u <user list>] [-w] [[<job ID> | <destination>]
...]

2.57.1.2 Displaying Queue Status

Default format:

qstat -Q [<destination> ...]

Long format:

qstat -Q -f [-F json|dsv [-D <delimiter>]] [-w] [<destination> ...]

Alternate format:

qstat -q [-G | -M] [<destination> ...]

2.57.1.3 Displaying Server Status

Default format:

qstat -B [<server name> ...]

Long format:

qstat -B -f [-F json|dsv [-D <delimiter>]] [-w] [<server name> ...]

2.57.1.4 Displaying Version Information

qstat --version

2.57.2 Description

The qstat command displays the status of jobs, queues, or servers, writing the status information to standard output.

When displaying job status information, the qstat command displays status information about all specified jobs, job
arrays, and subjobs. You can specify jobs by ID, or by destination, for example all jobs at a specified queue or server.
PBS Professional 2020.1.1 Reference Guide RG-197

Chapter 2 PBS Commands
2.57.2.1 Display Formats

You can use particular options to display status information in a default format, an alternate format, or a long format.
Default and alternate formats display all status information for a job, queue, or server with one line per object, in col-
umns. Long formats display status information showing all attributes, one attribute to a line.

2.57.2.2 Displaying Information for Finished and Moved Jobs

You can display status information for finished and moved jobs by using the -x and -H options.

If your job has been moved to another server through peer scheduling, give the job ID as an argument to qstat. If you
do not specify the job ID, your job will not appear to exist. For example, your job 123.ServerA is moved to ServerB. In
this case, you can use:

qstat 123

or

qstat 123.ServerA

Specifying the full job name, including the server, avoids the possibility that qstat will report on a job named 123.Ser-
verB that was moved to ServerA.

To list all jobs at ServerB, you can use:

qstat @ServerB

2.57.2.3 Displaying Truncated Data

When the number of characters required would exceed the space available, qstat truncates the output and puts an aster-
isk (“*”) in the last position. For example, in default job display format, there are three characters allowed for the num-
ber of cores. If the actual output were 1234, the value displayed would be 12* instead.

2.57.2.4 Required Privilege

Users without Manager or Operator privilege cannot view resources or attributes that are invisible to unprivileged users.

2.57.3 Displaying Job Status

2.57.3.1 Job Status in Default Format

Triggers: no options, or any of the -J, -p, -t, or -x options.

The qstat command displays job status in default format when you specify no options, or any of the -J, -p, -t, or -x
options. Jobs are displayed one to a line, with these column headers:

Job id Name User Time Use S Queue

-------- ---------- --------- -------- - -----
RG-198 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
Description of columns:

Table 2-26: Description of Default Job Status Columns

Column Width without -w
Width

with -w
Description

Job ID 17 (22 when
max_job_sequence_id
> 10 million

30 Job ID assigned by PBS

Name 16 15 Job name specified by submitter

User 16 15 Username of job owner

Time Use

or

Percent
Complete

8 8 The CPU time used by the job. Before the application has actually
started running, for example during stage-in, this field is "0". At
the point where the application starts accumulating cput, this field
changes to "00:00:00". After that, every time the MoM polls for
resource usage, the field is updated.

The MoM on each execution host polls for the usage of all pro-
cesses on her host belonging to the job. Usage is summed. The
polling interval is short when a job first starts running and length-
ens to a maximum of 2 minutes. See "Configuring MoM Polling
Cycle" on page 34 in the PBS Professional Administrator’s Guide.

If you specify -p, the Time Use column is replaced with the per-
centage completed for the job. For a job array this is the percent-
age of subjobs completed. For a normal job, it is the percentage of
allocated CPU time used.

S 1 1 The job’s state. See section 8.1, “Job States”, on page 361

B Array job has at least one subjob running

E Job is exiting after having run

F Job is finished

H Job is held

M Job was moved to another server

Q Job is queued

R Job is running

S Job is suspended

T Job is being moved to new location

U Cycle-harvesting job is suspended due to keyboard
activity

W Job is waiting for its submitter-assigned start time to be
reached

X Subjob has completed execution or has been deleted

Queue 16 15 The queue in which the job resides
PBS Professional 2020.1.1 Reference Guide RG-199

Chapter 2 PBS Commands
2.57.3.2 Job Status in Long Format

Trigger: the -f option.

If you specify the -f (full) option, full job status information for each job is displayed in this order:

• The job ID

• Each job attribute, one to a line

• The job’s submission arguments

• The job’s executable, in JSDL format

• The executable’s argument list, in JSDL format

The job attributes are listed as <name> = <value> pairs. This includes the exec_host and exec_vnode strings. The full
output can be very large.

The exec_host string has this format:

<host1>/<T1>*<P1>[+<host2>/<T2>*<P2>+...]

where

T1 is the task slot number (the index) of the job on host1.

P1 is the number of processors allocated to the job from host1. The number of processors allocated does not appear if it
is 1.

The exec_vnode string has the format:

(<vnode1>:ncpus=<N1>:mem=<M1>)[+(<vnode2>:ncpus=<N2>:mem=<M2>)+...]

where

N1 is the number of CPUs allocated to that job on vnode1.

M1 is the amount of memory allocated to that job on vnode1.

2.57.3.3 Job Status in Alternate Format

Triggers: any of the -a, -i, -G, -H, -M, -n, -r, -s, -T, or -u <user list> options.

The qstat command displays job status in alternate format if you specify any of the -a, -i, -G, -H, -M, -n,
-r, -s, -T, or -u <user list> options. Jobs are displayed one to a line. If jobs are running and the -n option is
specified, or if jobs are finished or moved and the -H and -n options are specified, there is a second line for the
exec_host string.

2.57.3.3.i Job Status Alternate Format Output Columns

Alternate format job status output contains the following columns:

 Req’d Req’d Elap

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

------ -------- ----- ------- ------ --- --- ------ ----- - ----
RG-200 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
Description of columns:

2.57.3.4 Grouping Jobs and Sorting by ID

Trigger: the -E option.

You can use the -E option to sort and group jobs in the output of qstat. The -E option groups jobs by server and dis-
plays each group by ascending ID. This option also improves qstat performance. The following table shows how the
-E option affects the behavior of qstat:

Table 2-27: Description of Alternate Format Job Status Columns

Column Width without -w
Width

with -w
Description

Job ID 15 (20 when
max_job_sequence_id
> 10 million)

30 The job ID assigned by PBS

Username 8 15 Username of job owner

Queue 8 15 Queue in which the job resides

Jobname 10 15 Job name specified by submitter

SessID 6 8 Session ID. Appears only if the job is running

NDS 3 4 Number of chunks or vnodes requested by the job

TSK 3 5 Number of CPUs requested by the job

Req’d Memory 6 6 Amount of memory requested by the job

Req’d Time 5 5 If CPU time is requested, shows CPU time. Otherwise,
shows walltime

S 1 1 The job’s state; see "States” on page 361 for states

Elap Time

or

Est Start Time

5 5 If CPU time is requested, shows CPU time. Otherwise,
shows walltime.

If you use the -P option, displays estimated start time for
queued jobs, replacing the Elap Time field with the Est

Start Time field.

Table 2-28: How -E Option Affects qstat Output

How qstat is Used Result Without -E Result With -E

qstat (no job ID specified) Queries the default server and displays
result

No change in behavior; same as with-
out -E option

qstat <list of job IDs
from single server>

Displays results in the order specified Displays results in ascending ID order

qstat <job IDs at multiple
servers>

Displays results in the order they are
specified

Groups jobs by server. Displays each
group in ascending order
PBS Professional 2020.1.1 Reference Guide RG-201

Chapter 2 PBS Commands
2.57.4 Displaying Queue Status

2.57.4.1 Queue Status in Default Format

Trigger: the -Q option by itself.

The qstat command displays queue status in default format if the only option is -Q. Queue status is displayed one
queue to a line, with these column headers:

Queue Max Tot Ena Str Que Run Hld Wat Trn Ext Type

----------- ---- ---- ---- --- ---- ---- ---- ---- ---- ---- ----

Description of columns:

2.57.4.2 Queue Status in Long Format

Trigger: the -q and -f options together.

If you specify the -f (full) option with the -q option, full queue status information for each queue is displayed starting
with the queue name, followed by each attribute, one to a line, as <name> = <value> pairs.

2.57.4.2.i Queue Status: Alternate Format

Triggers: any of the -q, -G, or -M options.

 The qstat command displays queue status in the alternate format if you specify any of the -q, -G, or -M options. Queue
status is displayed one queue to a line, and the lowest line contains totals for some columns.

These are the alternate format queue status column headers:

Queue Memory CPU Time Walltime Node Run Que Lm State

------- ------ -------- -------- ---- --- --- -- -----

Table 2-29: Description of Default Queue Status Columns

Column Description

Queue Queue name

Max Maximum number of jobs allowed to run concurrently in this queue

Tot Total number of jobs in the queue

Ena Whether the queue is enabled or disabled

Str Whether the queue is started or stopped

Que Number of queued jobs

Run Number of running jobs

Hld Number of held jobs

Wat Number of waiting jobs

Trn Number of jobs being moved (transiting)

Ext Number of exiting jobs

Type Type of queue: execution or routing
RG-202 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
Description of columns:

2.57.5 Displaying Server Status

2.57.5.1 Server Status in Default Format:

Trigger: the -B option.

The qstat command displays server status if the only option given is -B.

Column headers for default server status output:

Server Max Tot Que Run Hld Wat Trn Ext Status

-------- ----- ----- ----- ----- ----- ----- ----- ----- ------

Description of columns:

Table 2-30: Description of Queue Alternate Status Columns

Column Description

Queue Queue name

Memory Maximum amount of memory that can be requested by a job in this queue

CPU Time Maximum amount of CPU time that can be requested by a job in this queue

Walltime Maximum amount of walltime that can be requested by a job in this queue

Node Maximum number of vnodes that can be requested by a job in this queue

Run Number of running and suspended jobs. Lowest row is total number of running and suspended
jobs in all the queues shown

Que Number of queued, waiting, and held jobs. Lowest row is total number of queued, waiting, and
held jobs in all the queues shown

Lm Maximum number of jobs allowed to run concurrently in this queue

State State of this queue: E (enabled) or D (disabled), and R (running) or S (stopped)

Table 2-31: Description of Server Status Default Display Columns

Column Description

Server Name of server

Max Maximum number of jobs allowed to be running concurrently on the server

Tot Total number of jobs currently managed by the server

Que Number of queued jobs

Run Number of running jobs

Hld Number of held jobs

Wat Number of waiting jobs
PBS Professional 2020.1.1 Reference Guide RG-203

Chapter 2 PBS Commands
2.57.5.2 Server Status in Long Format

Trigger: the -f option.

If you specify the -f (full) option, displays full server status information starting with the server name, followed by each
server attribute, one to a line, as <name> = <value> pairs. Includes PBS version information.

2.57.6 Options to qstat

2.57.6.1 Generic Job Status Options

-E

Groups jobs by server and displays jobs sorted by ascending ID. When qstat is presented with a list of jobs,
jobs are grouped by server and each group is displayed by ascending ID. This option also improves qstat per-
formance. See section 2.57.3.4, “Grouping Jobs and Sorting by ID”, on page 201.

2.57.6.2 Default Job Status Options

The following options cause job status information to be displayed in default format:

-J

Displays status information for job arrays (not subjobs).

-t

Displays status information for jobs, job arrays, and subjobs. When used with -J option, displays status infor-
mation for subjobs only.

-p

The Time Use column is replaced with the percentage completed for the job. For a job array this is the percent-
age of subjobs completed. For a normal job, it is the percentage of allocated CPU time used.

-x

Displays status information for finished and moved jobs in addition to queued and running jobs.

2.57.6.3 Alternate Job Status Options

The following options cause job status information to be displayed in alternate format:

-a

All queued and running jobs are displayed. If a destination is specified, information for all jobs at that destina-
tion is displayed. If a job ID is specified, information about that job is displayed. Always specify this option
before the -n or -s options, otherwise they will not take effect.

Trn Number of transiting jobs

Ext Number of exiting jobs

Status Status of the server

Table 2-31: Description of Server Status Default Display Columns

Column Description
RG-204 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
-H

Without a job identifier, displays information for all finished or moved jobs. If a job ID is given, displays infor-
mation for that job regardless of its state. If a destination is specified, displays information for finished or
moved jobs, or specified job(s), at destination.

-i

If a destination is given, information for queued, held or waiting jobs at that destination is displayed. If a job ID
is given, information about that job is displayed regardless of its state.

-n

The exec_host string is listed on the line below the basic information. If the -1 option is given, the exec_host
string is listed on the end of the same line. If using the -a option, always specify the -n option after -a, other-
wise the -n option does not take effect.

-r

If a destination is given, information for running or suspended jobs at that destination is displayed. If a job ID
is given, information about that job is displayed regardless of its state.

-s

Any comment added by the administrator or scheduler is shown on the line below the basic information. If the
-1 option is given, the comment string is listed on the end of the same line. If using the -a option, always spec-
ify the -s option after -a, otherwise the -s option does not take effect.
PBS Professional 2020.1.1 Reference Guide RG-205

Chapter 2 PBS Commands
-T

Displays estimated start time for queued jobs, replacing the Elap Time field with the Est Start Time field.
Jobs with earlier estimated start times are displayed before those with later estimated start times.

Running jobs are displayed before other jobs. Running jobs are sorted by their stime attribute (start time).

Queued jobs whose estimated start times are unset (estimated.start_time = unset) are displayed after those
with estimated start times, with the unset value shown as a double dash (“--”). Queued jobs with estimated start
times in the past are treated as if their estimated start times are unset.

If a job’s estimated start time cannot be calculated, the start time is shown as a question mark (“?”).

Time displayed is local to the qstat command. Current week begins on Sunday.

The following table shows the format for the Est Start Time field when the -w option is not used:

The following table shows the format for the Est Start Time field when the -w option is used:

When used with the -f option, prints the full timezone-qualified start time.

Estimated start time information can be made unavailable to unprivileged users; in this case, the estimated start
time appears to be unset.

-u <user list>

If a destination is given, status for jobs at that destination owned by users in user list is displayed. If a job ID is
given, status information for that job is displayed regardless of the job’s ownership.

Format: <username>[@<hostname>][, <username>[@<hostname>], ...] in comma-separated list.

Hostnames may be wildcarded, but not domain names. When no hostname is specified, username is for any
host.

Table 2-32: Format for Estimated Start Time Field without -w Option

Format Job Estimated Start Time Example

<HH>:<MM> Today 15:34

<2-letter weekday> <HH> Within 7 days, but after today We 15

<3-letter month name> This calendar year, but after this week Feb

<YYYY> Less than or equal to 5 years from today, after this year 2018

>5yrs More than 5 years from today >5yrs

Table 2-33: Format for Estimated Start Time Field with -w Option

Format Job Estimated Start Time Example

Today <HH>:<MM> Today Today 13:34

<Day> <HH>:<MM> This week, but after today Wed 15:34

<Day> <Month> <Daynum>
<HH>:<MM>

This year, but after this week Wed Feb 10 15:34

<Day> <Month> <Daynum>
<YYYY> <HH>:<MM>

After this year Wed Feb 10 2011 15:34
RG-206 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
-w

Can be used with job status in default and alternate formats. Allows display of wider fields up to 120 characters.
See section 2.57.3.1, “Job Status in Default Format”, on page 198 and section 2.57.3.3, “Job Status in Alternate
Format”, on page 200 for column widths.

This option is different from the -w option used with the -f long-format option.

-1 (hyphen one)

Reformats qstat output to a single line. Can be used only in conjunction with the -n and/or -s options.

2.57.6.4 Queue Status Options

-Q

Displays queue status in default format. Operands must be destinations.

-q

Displays queue status in alternate format. Operands must be destinations.

2.57.6.5 Server Status Options

-B

Display server status. Operands must be names of servers.

2.57.6.6 Job, Queue, and Server Status Options

-f [-w]

Full display for long format. Job, subjob, queue, or server attributes displayed one to a line.

JSON output:

PBS reports resources_used values for resources that are created or set in a hook as JSON strings in the
output of qstat -f.

If MoM returns a JSON object (a Python dictionary), PBS reports the value as a string in single quotes:

resources_used.<resource_name> = '{ <MoM JSON item value>, <MoM JSON item value>, <MoM JSON item
value>, ..}'

Example: MoM returns { "a":1, "b":2, "c":1,"d": 4} for resources_used.foo_str. We get:

resources_used.foo_str='{"a": 1, "b": 2, "c":1,"d": 4}'

If MoM returns a value that is not a valid JSON object, the value is reported verbatim.

Example: MoM returns "hello" for resources_used.foo_str. We get:

resources_used.foo_str="hello"

Optional -w prints each attribute on one unbroken line. Feed characters are converted:

• Newline is converted to backslash concatenated with “n”, resulting in “\n”

• Form feed is converted to backslash concatenated with “f”, resulting in “\f”

This -w is independent of the -w job output option used with default and alternate formats.
PBS Professional 2020.1.1 Reference Guide RG-207

Chapter 2 PBS Commands
-F dsv [-D <delimiter>]

Prints output in delimiter-separated value format. The default delimiter is a pipe (“|”). You can specify a char-
acter or a string delimiter using the -D argument to the -F dsv option. For example, to use a comma as the
delimiter:

qstat -f -F dsv -D,

If the delimiter itself appears in a value, it is escaped:

• On Linux, the delimiter is escaped with a backslash (“\”).

• On Windows, the delimiter is escaped with a caret (“^”).

Feed characters are converted:

• Newline is converted to backslash concatenated with “n”, resulting in “\n”

• Form feed is converted to backslash concatenated with “f”, resulting in “\f”

A newline separates each job from the next. Using newline as the delimiter leads to undefined behavior.

Example of getting output in delimiter-separated value format:

qstat -f -Fdsv

Job Id: 1.vbox|Job_Name = STDIN|Job_Owner = root@vbox|job_state = Q|queue = workq|server =
vbox|Checkpoint = u|ctime = Fri Nov 11 17:57:05 2016|Error_Path = ...

-F json

Prints output in JSON format (http://www.json.org/).

Attribute output is preceded by timestamp, PBS version, and PBS server hostname.

Example:

qstat -f -F json

{

"timestamp":1479277336,

"pbs_version":"14.1",

"pbs_server":"vbox",

"Jobs":{

"1.vbox":{

"Job_Name":"STDIN",

"Job_Owner":"root@vbox",

"job_state":"Q",

...

-G

Shows size in gigabytes. Triggers alternate format.

-M

Shows size in megawords. A word is considered to be 8 bytes. Triggers alternate format.

2.57.6.7 Version Information

--version

The qstat command returns its PBS version information and exits. This option can only be used alone.
RG-208 PBS Professional 2020.1.1 Reference Guide

http://www.json.org/

PBS Commands Chapter 2
2.57.7 Operands

2.57.7.1 Job Identifier Operands

The job ID is assigned by PBS at submission. Job IDs are used only with job status requests. Status information for
specified job(s) is displayed. Formats:

Job ID:

<sequence number>[.<server name>][@<server name>]

Job array ID:

<sequence number>[][.<server name>][@<server name>]

Subjob ID:

<sequence number>[<index>][.<server name>][@<server name>]

Range of subjobs:

<sequence number>[<index start>-<index end>][.<server name>][@<server name>]
Note that some shells require that you enclose a job array identifier in double quotes.

2.57.7.2 Destination Operands

Name of queue, name of server, or name of queue at a specific server. Formats:

queue name

Specifies name of queue for job or queue display.

• When displaying job status, PBS displays status for all jobs in the specified queue at the default server.

• When displaying queue status, PBS displays status for the specified queue at the default server.

queue name@server name

Specifies name of queue at server for job or queue display.

• When displaying job status, PBS displays status for all jobs in the specified queue at the specified server.

• When displaying queue status, PBS displays status for the specified queue at the specified server.

@server name

Specifies server name for job or queue display.

• When displaying job status, PBS displays status for all jobs at all queues at the specified server.

• When displaying queue status, PBS displays status for all queues at the specified server.

server name

Specifies server name for server display.

• When displaying server status (with the -B option) PBS displays status for the specified server.

2.57.8 Standard Error

The qstat command writes a diagnostic message to standard error for each error occurrence.

2.57.9 Exit Status

Zero

Upon successful processing of all operands
PBS Professional 2020.1.1 Reference Guide RG-209

Chapter 2 PBS Commands
Greater than zero

If any operands could not be processed

2.57.10 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide, "Attributes” on page 277
RG-210 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.58 qstop

Prevents PBS jobs in the specified queue from being scheduled or routed

2.58.1 Synopsis

qstop <destination> [<destination> ...]

qstop --version

2.58.2 Description

If destination is an execution queue, the qstop command stops a scheduler from scheduling jobs residing in destination.
If destination is a routing queue, the server stops routing jobs from that queue. Sets the value of the queue’s started
attribute to False.

2.58.2.1 Required Privilege

You must have PBS Operator or Manager privilege to run this command.

2.58.3 Options

--version

The qstop command returns its PBS version information and exits. This option can only be used alone

2.58.4 Operands

The qstop command accepts one or more space-separated destination operands. The operands take one of three forms:

<queue name>

Stops scheduling or routing from the specified queue.

@<server name>

Stops scheduling or routing from all queues at the specified server.

<queue name>@<server name>

Stops scheduling or routing from the specified queue at the specified server.

To stop scheduling at all queues at the default server, use the qmgr command:

Qmgr: set queue @default started=false

2.58.5 Standard Error

The qstop command writes a diagnostic message to standard error for each error occurrence.

2.58.6 Exit Status

Zero

Upon successful processing of all operands presented to the qstop command
PBS Professional 2020.1.1 Reference Guide RG-211

Chapter 2 PBS Commands
Greater than zero

If the qstop command fails to process any operand

2.58.7 See Also

The PBS Professional Administrator’s Guide, "qmgr” on page 149, "qstart” on page 195
RG-212 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.59 qsub

Submits a job to PBS

2.59.1 Synopsis

qsub [-a <date and time>] [-A <account string>] [-c <checkpoint spec>] [-C <directive prefix>] [-e <path>] [-f] [-h]
[-I [-G [-- <GUI application/script>]] | [-X]] [-j <join>] [-J <range>] [-k <discard>] [-l <resource list>] [-m
<mail events>] [-M <user list>] [-N <name>] [-o <path>] [-p <priority>] [-P <project>] [-q <destination>] [-r
<y | n>] [-R <remove options>] [-S <path list>] [-u <user list>] [-v <variable list>] [-V] [-W <additional
attributes>] [-z] [- | <script> | -- <executable> [<arguments to executable>]]

qsub --version

2.59.2 Description

You use the qsub command to submit a batch job to PBS. Submitting a PBS job specifies a task, requests resources, and
sets job attributes.

The qsub command can read from a job script, from standard input, or from the command line. When the user has sub-
mitted the job, PBS returns the job identifier for that job. For a job, this is of the form:

<sequence number>.<server name>

For an array job, this is of the form:

<sequence number>[].<server name>

During execution, jobs can be interactive or non-interactive. Interactive jobs are not rerunnable, and if they are blocking,
you cannot use their exit status.

Jobs are run as the user and group who submitted the job.

2.59.2.1 Background Process

By default, on the first invocation, qsub spawns a background process to manage communication with the PBS server.
Later invocations of qsub attempt to communicate with this background process. Under certain circumstances, calls to
qsub when it uses the background process can result in communication problems. You can prevent qsub from spawn-
ing a background process by using the -f option, although this can degrade performance.

2.59.2.2 Where PBS Puts Job Files

By default, PBS copies the stdout and stderr files from the job back to the current working directory where the
qsub command is executed. However, you can specify the output paths using the -o and -e options. You can also spec-
ify which and whether these files should be kept on the execution host via the -k option, or deleted, using the -R option.

See the -k, -o, -e, and -R options, and "Managing Output and Error Files", on page 39 of the PBS Professional User’s
Guide.

2.59.2.3 Submitting Jobs By Using Job Scripts

To submit a PBS job by using a script, you specify a job script on the command line:

qsub [<options>] <script name>
PBS Professional 2020.1.1 Reference Guide RG-213

Chapter 2 PBS Commands
For example:

qsub myscript.sh

Job scripts are run as the user and group who submitted the job. Job scripts can be written in Python, Linux shells such
as csh and sh, the Windows command batch language, Perl, etc.

A PBS job script consists of the following:

• Optional shell specification

• Any PBS directives

• The user’s tasks: programs, commands, or applications

• Optional comments

Under Windows, comments can contain only ASCII characters. See the PBS Professional User’s Guide.

2.59.2.3.i Using Shells and Interpreters

By default, PBS uses your login shell to run your script. You can optionally specify a different shell or interpreter to run
your script:

• Via the -S option to qsub:

qsub -S <path to shell> <script name>

For example:

qsub -S /bin/bash myscript.sh

• In the first line of your script. For example:
cat myscript.sh

#!/bin/sh

#PBS -N MyHelloJob

print "Hello"

2.59.2.3.ii Python Job Scripts

You can use the same Python script under Linux or under Windows, if the script is written to be portable. PBS includes a
Python package, allowing Python job scripts to run; you do not need to install Python. You can include PBS directives in
a Python job script as you would in a Linux shell script. Python job scripts can access Win32 APIs, including the follow-
ing modules:

Win32api

Win32con

Pywintypes

Example 2-25: We have a Python job script that includes PBS directives:

cat myjob.py

#!/usr/bin/python

#PBS -l select=1:ncpus=3:mem=1gb

#PBS -N HelloJob

print "Hello"

To run a Python job script under Linux, use the Python path on the execution host:

qsub -S <Python path on execution host> <script name>

For example,

qsub -S $PBS_EXEC/bin/pbs_python <script name>

To run a Python job script under Windows, use the Python path on the execution host:
RG-214 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
qsub -S <Python path on execution host> <script name>

For example:

qsub -S %PBS_EXEC%\bin\pbs_python.exe <script name>

If the script pathname contains spaces, it must be quoted, for example:

qsub -S “C:\Program Files\PBS\bin\pbs_python.exe” <script name>

2.59.2.3.iii Linux Shell Job Scripts

Example 2-26: We have a Linux job script named "weatherscript" for a job named "Weather1" which runs the executable
"weathersim" on Linux:

#!/bin/sh

#PBS -N Weather1

#PBS -l walltime=1:00:00

/usr/local/weathersim

To submit the job, the user types:

qsub weatherscript <return>

2.59.2.3.iv Windows Command Job Scripts

Example 2-27: We have a script named "weather.exe" for a job named "Weather1" which runs under Windows:

#PBS -N Weather1

#PBS -l walltime=1:00:00

weathersim.exe

To submit the job, the user types:

qsub weather.exe <return>

In Windows, if you use notepad to create a job script, the last line does not automatically get newline-terminated. Be
sure to put one explicitly, otherwise, PBS job will get the following error message:

More?

when the Windows command interpreter tries to execute that last line.

2.59.2.4 Submitting Jobs From Standard Input

To submit a PBS job by typing job specifications at the command line, you type:

qsub [<options>] [-] <return>

then type any directives, then any tasks, followed by:

• Linux: CTRL-D on a line by itself

• Windows: CTRL-Z <return>

to terminate the input.

The qsub command behaves the same both with and without the dash operand.

For example, on Linux:

qsub <return>

#PBS -N StdInJob

sleep 100

<CTRL-D>
PBS Professional 2020.1.1 Reference Guide RG-215

Chapter 2 PBS Commands
2.59.2.5 Submitting Job Directly by Specifying Executable on

Command Line

To submit a job directly, you specify the executable on the command line:

qsub [<options>] -- <executable> [<arguments to executable>] <return>

When you run qsub this way, it runs the executable directly. It does not start a shell, so no shell initialization scripts are
run, and execution paths and other environment variables are not set. There is not an easy way to run your command in a
different directory. You should make sure that environment variables are set correctly, and you will usually have to spec-
ify the full path to the command.

Example 2-28: To run myprog with the arguments a and b:

qsub -- myprog a b <return>

Example 2-29: To run myprog with the arguments a and b, naming the job “JobA”:

qsub -N JobA -- myprog a b <return>

2.59.2.6 Requesting Resources and Placing Jobs

Requesting resources includes setting limits on resource usage and controlling how the job is placed on vnodes.

Resources are requested by using the -l option, either in job-wide requests using <resource name>=<value> pairs, or in
chunks inside of selection statements. See Chapter 5, "List of Built-in Resources", on page 259.

Job-wide <resource name>=<value> requests are of the form:

-l <resource name>=<value>[,<resource name>=<value> ...]

The selection statement is of the form:

-l select=[<N>:]<chunk>[+[<N>:]<chunk> ...]

where N specifies how many of that chunk, and a chunk is of the form:

<resource name>=<value>[:<resource name>=<value> ...]

You choose how your chunks are placed using the place statement. The place statement can contain the following ele-
ments, in any order:

-l place=[<arrangement>][: <sharing>][: <grouping>]

where

arrangement

Whether this chunk is willing to share this vnode or host with other chunks from the same job. One of free |

pack | scatter | vscatter

sharing

Whether this this chunk is willing to share this vnode or host with other jobs. One of excl | shared | exclhost

grouping

Whether the chunks from this job should be placed on vnodes that all have the same value for a resource. Can
have only one instance of group=<resource name>

free

Place job on any vnode(s).

pack

All chunks are taken from one host.
RG-216 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
scatter

Only one chunk with any MPI processes is taken from a host. A chunk with no MPI processes may be taken
from the same vnode as another chunk.

vscatter

Only one chunk is taken from any vnode. Each chunk must fit on a vnode.

excl

Only this job uses the vnodes chosen.

shared

This job can share the vnodes chosen.

exclhost

The entire host is allocated to the job.

group=<resource name>

Chunks are grouped according to a resource. All vnodes in the group must have a common value for resource,
which can be either the built-in resource host or a custom vnode-level resource.

resource name must be a string or a string array.

The place statement cannot begin with a colon. Colons are delimiters; use them only to separate parts of a place
statement, unless they are quoted inside resource values.

Note that vnodes can have sharing attributes that override job placement requests. See section 6.10, “Vnode Attributes”,
on page 320.

For more on resources, resource requests, usage limits, and job placement, see "Using PBS Resources" on page 229 in
the PBS Professional Administrator’s Guide and "Allocating Resources & Placing Jobs", on page 49 of the PBS Profes-
sional User’s Guide.

2.59.2.6.i Caveats for Requesting Resources

Do not mix old-style resource or vnode specifications with the new select and place statements. Do not use one in a job
script and the other on the command line. Mixing the two will result in an error.

You cannot submit a job requesting a custom resource which has been created to be invisible or read-only for unprivi-
leged users, regardless of your privilege. A Manager or Operator can use the qalter command to change a job’s
request for this kind of custom resource.

2.59.2.7 Setting Attributes

The job submitter sets job attributes by giving options to the qsub command or by using PBS directives. Most qsub
options set a job attribute, and have a corresponding PBS directive with the same syntax as the option. Attributes set via
command-line options take precedence over those set using PBS directives. See the PBS Professional User’s Guide, or
section 6.11, “Job Attributes”, on page 328.

2.59.2.8 Running Your Job on First Available Resources (2020.1 Beta)

2020.1 Beta. This feature is subject to drastic change or removal without notice in future releases.

You may want to run a job on whichever resources become available first, even if the job could run on other sets of
resources. You may want to start a flexible job as soon as possible on a smaller set of resources rather than waiting
longer for a larger set of resources, or you may prefer certain resources but be able to use others (for example, you might
prefer a specific processor, but still be able to run on another if that is all that’s available).

If you submit a set of jobs where each job has a “runone” dependency on the others, PBS runs only one of the jobs in the
“runone set”. PBS automatically groups the jobs into a runone set. The jobs in a runone set can run different scripts.
PBS Professional 2020.1.1 Reference Guide RG-217

Chapter 2 PBS Commands
When any of the jobs in the set starts, PBS applies a system hold to the others. The hold on the other jobs is released
when the running job is requeued:

• Via qrerun

• When node fail requeue is triggered

The other jobs in the set are deleted:

• When a job ends, regardless of its exit status

• When the running job is deleted

To identify a job as a member of the set, give it a “runone” dependency on the previously-submitted member of the set.
For example, we have three jobs, each of which runs on different resources. To submit these three jobs as a runone set:

qsub -lselect=200:ncpus=16 -lwalltime=1:00:00 myscript.sh

10.myserver

qsub -lselect=100:ncpus=16 -lwalltime=2:00:00 -Wdepend=runone:10 myscript.sh

11.myserver

qsub -lselect=50:ncpus=16 -lwalltime=4:00:00 -Wdepend=runone:10 myscript.sh

12.myserver

2.59.2.9 Changing qsub Behavior

The behavior of the qsub command may be affected by the server’s default_qsub_arguments attribute. This attribute
can set the default for any job attribute. The default_qsub_arguments server attribute is settable by the administrator,
and is overridden by command-line arguments and script directives. See section 6.6, “Server Attributes”, on page 281.

The behavior of the qsub command may also be affected by any site hooks. Site hooks can modify the job’s attributes,
change its routing, etc.

2.59.3 Options to qsub

-a <date and time>

Point in time after which the job is eligible for execution. Given in pairs of digits. Sets job’s Execution_Time
attribute to date and time.

Format: datetime, expressed as [[[[CC]YY]MM]DD]hhmm[.SS]

where CC is the century, YY is the year, MM is the month, DD is the day of the month, hh is the hour, mm is the
minute, and SS is the seconds.

Each portion of the date defaults to the current date, as long as the next-smaller portion is in the future. For
example, if today is the 3rd of the month and the specified day DD is the 5th, the month MM is set to the current
month.

If a specified portion has already passed, the next-larger portion is set to one after the current date. For example,
if the day DD is not specified, but the hour hh is specified to be 10:00 a.m. and the current time is 11:00 a.m.,
the day DD is set to tomorrow.

-A <account string>

Accounting string associated with the job. Used for labeling accounting data. Sets job’s Account_Name
attribute to account string.

Format: String
RG-218 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
-c <checkpoint spec>

Determines when the job will be checkpointed. Sets job’s Checkpoint attribute to checkpoint spec. An $action
script is required to checkpoint the job.

See "Using Checkpointing", on page 113 of the PBS Professional User’s Guide.

The argument checkpoint spec can take one of the following values:

c
Checkpoint at intervals, measured in CPU time, set on job’s execution queue. If there is no interval set at
the queue, the job is not checkpointed

c=<minutes of CPU time>
Checkpoint at intervals of specified number of minutes of job CPU time. This value must be greater than
zero. If the interval specified is less than that set on the job’s execution queue, the queue's interval is used.

Format: Integer

w
Checkpoint at intervals, measured in walltime, set on job’s execution queue. If there is no interval set at the
queue, the job is not checkpointed.

w=<minutes of walltime>

Checkpoint at intervals of the specified number of minutes of job walltime. This value must be greater
than zero. If the interval specified is less than that set on the job’s execution queue, the queue's interval is
used.

Format: Integer

n
No checkpointing.

s
Checkpoint only when the server is shut down.

u
Unset. Defaults to behavior when interval argument is set to s.

Default: u

Format: String

-C <directive prefix>

Defines the prefix identifying a PBS directive. Default prefix is “#PBS”.

If the directive prefix argument is a null string, qsub does not scan the script file for directives. Overrides the
PBS_DPREFIX environment variable and the default. The string “PBS_DPREFIX” cannot be used as a PBS
directive. Length limit: 4096 characters.

-e <path>

Path to be used for the job’s standard error stream. Sets job’s Error_Path attribute to path. The path argument
is of the form:

[<hostname>:]<path>
The path is interpreted as follows:

path
If path is relative, it is taken to be relative to the current working directory of the qsub command, where it
is executing on the current host.

If path is absolute, it is taken to be an absolute path on the current host where the qsub command is exe-
cuting.

hostname:path
If path is relative, it is taken to be relative to the user’s home directory on the host named hostname.
PBS Professional 2020.1.1 Reference Guide RG-219

Chapter 2 PBS Commands
If path is absolute, it is an absolute path on the host named hostname.

If path does not include a filename, the default filename has the form <job ID>.ER

If the -e option is not specified, PBS copies the standard error to the current working directory where the qsub
command was executed, and writes standard error to the default filename, which has this form:

<job name>.e<sequence number>
If you use a UNC path for output or error files, the hostname is optional. If you use a non-UNC path, the host-
name is required.

This option is overridden by the -k option.

-f

Prevents qsub from spawning a background process. By default, qsub spawns a background process to man-
age communication with the PBS server. When this option is specified, the qsub process connects directly to
the server and no background process is created.

NOTE: Use of this option degrades performance of qsub when calls to qsub are made in rapid succession.

-G [<path to GUI application or script>]

Starts a GUI session. When no application or script is provided, starts a GUI-enabled interactive shell. When
an application or script is provided, starts the GUI application or script. Use full path to application or script
unless the path is part of the user’s PATH environment variable on the execution host. When submission and
execution hosts are different, this uses a remote viewer.

Session is terminated when remote viewer, GUI application, or interactive shell is terminated, or when job is
deleted.

Can be used only with interactive jobs (the -I option).

Available only under Windows.

-h

Applies a User hold to the job. Sets the job’s Hold_Types attribute to “u”.

-I

Job is to be run interactively. Sets job’s interactive attribute to True. The job is queued and scheduled as any
PBS batch job, but when executed, the standard input, output, and error streams of the job are connected to the
terminal session in which qsub is running. If a job script is given, only its directives are processed. When the
job begins execution, all input to the job is taken from the terminal session. See the PBS Professional User’s
Guide for additional information on interactive jobs.

Interactive jobs are not rerunnable.

Job arrays cannot be interactive.

When used with -Wblock=true, no exit status is returned.
RG-220 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
-j <join>

Specifies whether and how to join the job’s standard error and standard output streams. Sets job’s Join_Path
attribute to join.

Default: n; not merged

The join argument can take the following values:

-J <range>

Makes this job an array job. Sets job’s array attribute to True. Use the range argument to specify the indices of
the subjobs of the array. range is specified in the form X-Y[:Z] where X is the first index, Y is the upper bound
on the indices, and Z is the stepping factor. For example, 2-7:2 will produce indices of 2, 4, and 6. If Z is not
specified, it is taken to be 1. Indices must be greater than or equal to zero.

Job arrays are always rerunnable.

-k <discard>

Specifies whether and which of the standard output and standard error streams is left behind on the execution
host, or written to their final destination. Sets the job’s Keep_Files attribute to discard. Overrides default path
names for these streams. Overrides -o and -e options.

Default: n; neither is retained, and files are not written directly to final destinations.

In the case where output and/or error is retained on the execution host in a job-specific staging and execution
directory created by PBS, these files are deleted when PBS deletes the directory.

The discard argument can take the following values:

Table 2-34: Sub-options to -j Option

Suboption Meaning

oe Standard error and standard output are merged into standard output.

eo Standard error and standard output are merged into standard error.

n Standard error and standard output are not merged.

Table 2-35: Sub-options to discard Option

Suboption Meaning

e The standard error stream is retained on the execution host, in the job’s staging and execu-
tion directory. The filename is <job name>.e<sequence number>

o The standard output stream is retained on the execution host, in the job’s staging and execu-
tion directory. The filename is <job name>.o<sequence number>

eo, oe Both standard output and standard error streams are retained on the execution host, in the
job’s staging and execution directory.

d Output and/or error are written directly to their final destination. Overrides action of leav-
ing files on execution host.

n Neither stream is retained.
PBS Professional 2020.1.1 Reference Guide RG-221

Chapter 2 PBS Commands
-l <resource list>

Allows the user to request resources and specify job placement. Sets job’s Resource_list attribute to resource
list. Requesting a resource places a limit on its usage.

For how to request resources and place jobs, see section 2.59.2.6, “Requesting Resources and Placing Jobs”, on
page 216.

-m <mail events>

Specifies the set of conditions under which mail about the job is sent. Sets job’s Mail_Points attribute to mail
events. The mail events argument can be one of the following:

• The single character “n”

• Any combination of “a”, “b”, and “e”, with optional “j”

The following table lists the sub-options to the -m option:

Format: String

Syntax: n | [j](one or more of a, b, e)

Example: -m ja

Default value: a

-M <user list>

List of users to whom mail about the job is sent. Sets job’s Mail_Users attribute to user list.

The user list argument has the form:

<username>[@<hostname>][,<username>[@<hostname>],...]
Default: Job owner

-N <name>

Sets job’s Job_Name attribute and name to name.

Format: Job Name; see "Job Name, Job Array Name” on page 355

Default: if a script is used to submit the job, the job’s name is the name of the script. If no script is used, the
job’s name is “STDIN”.

-o <path>

Path to be used for the job’s standard output stream. Sets job’s Output_Path attribute to path. The path argu-
ment has the form:

[<hostname>:]<path>
The path is interpreted as follows:

path

Table 2-36: Sub-options to m Option

Suboption Meaning

n No mail is sent.

a Mail is sent when the job is aborted by PBS.

b Mail is sent when the job begins execution.

e Mail is sent when the job terminates.

j Mail is sent for subjobs. Must be combined with one or more of a, b, or e options
RG-222 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
If path is relative, it is taken to be relative to the current working directory of the command, where it is exe-
cuting on the current host.

If path is absolute, it is taken to be an absolute path on the current host where the command is executing.

hostname:path
If path is relative, it is taken to be relative to the user’s home directory on the host named hostname.

If path is absolute, it is an absolute path on the host named hostname.

If path does not include a filename, the default filename has the form <job ID>.OU

If the -o option is not specified, PBS copies the standard output to the current working directory where the
qsub command was executed, and writes standard output to the default filename, which has this form:

<job name>.o<sequence number>
If you use a UNC path, the hostname is optional. If you use a non-UNC path, the hostname is required.

This option is overridden by the -k option.

-p <priority>

Priority of the job. Sets job’s Priority attribute to priority.

Format: Host-dependent integer

Range: [-1024, +1023] inclusive

Default: Zero

-P <project>

Specifies a project for the job. Sets job's project attribute to project.

Format: Project Name; see "Project Name” on page 357

Default value: "_pbs_project_default".

-q <destination>

Where the job is sent upon submission.

Specifies a queue, a server, or a queue at a server. The destination argument can have one of these formats:

<queue name>
Job is submitted to the specified queue at the default server.

@<server name>
Job is submitted to the default queue at the specified server.

<queue name>@<server name>
Job is submitted to the specified queue at the specified server.

Default: Default queue at default server
PBS Professional 2020.1.1 Reference Guide RG-223

Chapter 2 PBS Commands
-r <y|n>

Declares whether the job is rerunnable. Sets job’s Rerunable attribute to the argument value. Does not affect
how the job is handled in the case where the job was unable to begin execution.

Format: Single character, “y” or “n”

Default: “y”

Interactive jobs are not rerunnable. Job arrays are always rerunnable. See "qrerun” on page 178.

-R <remove options>

Specifies whether standard output and/or standard error files are automatically removed (deleted) upon job com-
pletion.

Sets the job’s Remove_Files attribute to remove options. Overrides default path names for these streams.
Overrides -o and -e options.

This attribute cannot be altered once the job has begun execution.

Default: Unset; neither is removed

The remove options argument can take the following values:

Table 2-37: Sub-options to r Option

Suboption Meaning

y Job is rerunnable.

n Job is not rerunnable.

Table 2-38: discard Argument Values

Option Meaning

e The standard error stream is removed (deleted) upon job completion

o The standard output stream is removed (deleted) upon job completion

eo, oe Both standard output and standard error streams are removed (deleted) upon job completion

unset Neither stream is removed.
RG-224 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
-S <path list>

Specifies the interpreter or shell path for the job script. Sets job’s Shell_Path_List attribute to path list.

The path list argument is the full path to the interpreter or shell including the executable name.

Only one path may be specified without a hostname. Only one path may be specified per named host. The path
selected is the one whose hostname is that of the server on which the job resides.

Format: <path>[@<hostname>][,<path>@<hostname> ...]

Default: User’s login shell on execution host

Example of using bash via a directive:

#PBS -S /bin/bash@mars,/usr/bin/bash@jupiter

Example of running a Python script from the command line on Linux:

qsub -S $PBS_EXEC/bin/pbs_python <script name>

Example of running a Python script from the command line on Windows:

qsub -S %PBS_EXEC%\bin\pbs_python.exe <script name>

-u <user list>

List of usernames. Job is run under a username from this list. Sets job’s User_List attribute to user list.

Only one username may be specified without a hostname. Only one username may be specified per named host.
The server on which the job resides will select first the username whose hostname is the same as the server
name. Failing that, the next selection is the username with no specified hostname. The usernames on the server
and execution hosts must be the same. The job owner must have authorization to run as the specified user.

Format of user list: <username>[@<hostname>][,<username>@<hostname> ...]

Default: Job owner (username on submission host)

-v <variable list>

Specifies environment variables and shell functions to be exported to the job. This is the list of environment
variables which is added to those already automatically exported. These variables exist in the user’s login envi-
ronment, from which qsub is run. The job’s Variable_List attribute is appended with the variables in variable
list and their values. See section 2.59.7, “Environment Variables”, on page 230.

Format: comma-separated list of strings in the form:

<variable>
or

<variable>=<value>
If a <variable>=<value> pair contains any commas, the value must be enclosed in single or double quotes, and
the <variable>=<value> pair must be enclosed in the kind of quotes not used to enclose the value. For exam-
ple:

qsub -v “var1=’A,B,C,D’” job.sh

qsub -v a=10, “var2=’A,B’”, c=20, HOME=/home/zzz job.sh

Default: No environment variables are added to job’s variable list.

-V

All environment variables and shell functions in the user’s login environment where qsub is run are exported
to the job. The job’s Variable_List attribute is appended with all of these environment variables and their val-
ues.

-W <additional attributes>

The -W option allows specification of some job attributes. Some job attributes must be specified using this
option. Those attributes are listed below. Format:
PBS Professional 2020.1.1 Reference Guide RG-225

Chapter 2 PBS Commands
-W <attribute name>=<value>[,<attribute name>=<value>...]
If white space occurs within the additional attributes argument, or the equal sign “=” occurs within a value
string, it must be enclosed with single quotes or double quotes.

The following attributes can be set using the -W option only:

block=true
The qsub command waits for the job to terminate, then returns the job’s exit value. Sets job’s block
attribute to True. When used with X11 forwarding or interactive jobs, no exit value is returned. See sec-
tion 2.59.8, “Exit Status”, on page 231.

create_resv_from_job=<value>
When this job starts, immediately creates and confirms a job-specific start reservation on the same
resources as the job (including resources inherited by the job), and places the job in the job-specific reserva-
tion queue. Sets the job’s create_resv_from_job attribute to True. Sets the job-specific reservation’s
reserve_job attribute to the ID of the job from which the reservation was created. The new reservation’s
duration and start time are the same as the job’s walltime and start time. If the job is peer scheduled, the
job-specific reservation is created in the pulling complex.

Format: Boolean

Example:

qsub myscript.sh -Wcreate_resv_from_job=1

Cannot be used with job arrays or jobs being submitted into a reservation.
RG-226 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
depend=<dependency list>
Defines dependencies between this and other jobs. Sets the job’s depend attribute to dependency list. The
dependency list has the form:

<type>:<arg list>[,<type>:<arg list> ...]
where except for the on type, the arg list is one or more PBS job IDs, and has the form:

<job ID>[:<job ID> ...]
The type can be:

after: <arg list>
This job may be scheduled for execution at any point after all jobs in arg list have started execution.

afterok: <arg list>
This job may be scheduled for execution only after all jobs in arg list have terminated with no errors.
See section 2.59.8.1, “Warning About Exit Status with csh”, on page 232.

afternotok: <arg list>
This job may be scheduled for execution only after all jobs in arg list have terminated with errors. See
section 2.59.8.1, “Warning About Exit Status with csh”, on page 232.

afterany: <arg list>
This job may be scheduled for execution after all jobs in arg list have finished execution, with any exit
status (with or without errors.) This job will not run if a job in the arg list was deleted without ever hav-
ing been run.

before: <arg list>
Jobs in arg list may begin execution once this job has begun execution.

beforeok: <arg list>
Jobs in arg list may begin execution once this job terminates without errors. See section 2.59.8.1,
“Warning About Exit Status with csh”, on page 232.

beforenotok: <arg list>
If this job terminates execution with errors, jobs in arg list may begin. See section 2.59.8.1, “Warning
About Exit Status with csh”, on page 232.

beforeany: <arg list>
Jobs in arg list may begin execution once this job terminates execution, with or without errors.

on: <count>
This job may be scheduled for execution after count dependencies on other jobs have been satisfied.
This type is used in conjunction with one of the before types listed. count is an integer greater than 0.

runone:<job ID>
(2020.1 Beta) Puts the current job and the job with job ID in a set of jobs out of which PBS will even-
tually run just one. To add a job to a set, specify the job ID of another job already in the set.

Job IDs in the arg list of before types must have been submitted with a type of on.

To use the before types, the user must have the authority to alter the jobs in arg list. Otherwise, the depen-
dency is rejected and the new job aborted.

Error processing of the existence, state, or condition of the job on which the newly submitted job is per-
formed after the job is queued. If an error is detected, the new job is deleted by the server. Mail is sent to
the job submitter stating the error.

Dependency examples:

qsub -W depend=afterok:123.host1.domain.com /tmp/script

qsub -W depend=before:234.host1.com:235.host1.com /tmp/script
PBS Professional 2020.1.1 Reference Guide RG-227

Chapter 2 PBS Commands
group_list=<group list>
List of group names. Job is run under a group name from this list. Sets job’s group_list attribute to group
list.

Only one group name may be specified without a hostname. Only one group name may be specified per
named host. The server on which the job resides will select first the group name whose hostname is the
same as the server name. Failing that, the next selection is the group name with no specified hostname.
The group names on the server and execution hosts must be the same. The job submitter’s primary group is
automatically added to the list.

Under Windows, the primary group is the first group found for the user by PBS when it queries the
accounts database.

Format of group list: <group name>[@<hostname>][,<group name>@<hostname> ...]

Default: Login group name of job owner

pwd

pwd=

pwd=
These forms prompt the user for a password. A space between W and pwd is optional. Spaces between the
quotes are optional. Examples:

qsub ... -Wpwd <return>

qsub ... -W pwd=’’ <return>

qsub ... -W pwd=” “ <return>

Available on supported Linux platforms only.

release_nodes_on_stageout=<value>
When set to True, all of the job’s vnodes not on the primary execution host are released when stageout
begins.

Cannot be used with vnodes tied to Cray X* series systems.

When cgroups is enabled and this is used with some but not all vnodes from one MoM, resources on those
vnodes that are part of a cgroup are not released until the entire cgroup is released.

The job’s stageout attribute must be set for the release_nodes_on_stageout attribute to take effect.

Format: Boolean

Default: False

 run_count=<value>
Sets the number of times the server thinks it has run the job. Sets the value of the job’s run_count attribute
to value.

Format: Integer greater than or equal to zero

sandbox=<sandbox spec>
Determines which directory PBS uses for the job’s staging and execution. Sets job’s sandbox attribute to
the value of sandbox spec.

Allowed values for sandbox spec:

PRIVATE
PBS creates a job-specific directory for staging and execution.

HOME or unset
PBS uses the user’s home directory for staging and execution.

Format: String
RG-228 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
stagein=<path list>

stageout=<path list>
Specifies files or directories to be staged in before execution or staged out after execution is complete. Sets
the job’s stagein and stageout attributes to the specified path lists. On completion of the job, all staged-in
and staged-out files and directories are removed from the execution host(s). The path list has the form:

<file spec>[,<file spec>]
where <file spec> is

<execution path>@<hostname>:<storage path>
regardless of the direction of the copy. The name execution path is the name of the file or directory on the
primary execution host. It can be relative to the staging and execution directory on the execution host, or it
can be an absolute path.

The “@” character separates execution path from storage path.

The name storage path is the path on hostname. The name can be relative to the staging and execution
directory on the primary execution host, or it can be an absolute path.

If path list has more than one file spec, i.e. it contains commas, it must be enclosed in double quotes.

If you use a UNC path, the hostname is optional. If you use a non-UNC path, the hostname is required.

umask=<mask value>
The umask with which the job is started. Sets job’s umask attribute to mask value. Controls umask of
job’s standard output and standard error.

The following example allows group and world read of the job’s output and error:

-W umask=33

Format: one to four digits; typically two

Default: 077

-X

Allows user to receive X output from interactive job.

DISPLAY variable in submission environment must be set to desired display.

Can be used only with interactive jobs: must be used with one of the following:

-I

-W interactive=true (deprecated)
Cannot be used with -v DISPLAY.

When used with -Wblock=true, no exit status is returned.

Can be used with -V option.

Not available under Windows.

-z

Job identifier is not written to standard output.

--version

The qsub command returns its PBS version information and exits. This option can only be used alone.

2.59.4 Operands

The qsub command accepts as operands one of the following:

(no operands)

Same as with a dash. Any PBS directives and user tasks are read from the command line.
PBS Professional 2020.1.1 Reference Guide RG-229

Chapter 2 PBS Commands
<script>

Path to script. Can be absolute or relative to current directory where qsub is run.

-

When you use a dash, any PBS directives and user tasks are read from the command line.

-- <executable> [<arguments to executable>]

A single executable (preceded by two dashes) and its arguments

The executable, and any arguments to the executable, are given on the qsub command line. The executable is
preceded by two dashes, “--”.

If a script or executable is specified, it must be the last argument to qsub. The arguments to an executable must
follow the name of the executable.

When you run qsub this way, it runs the executable directly. It does not start a shell, so no shell initialization
scripts are run, and execution paths and other environment variables are not set. You should make sure that
environment variables are set correctly.

2.59.5 Standard Output

Job ID for submitted job

If the job is successfully created

(No output)

If the -z option is set

2.59.6 Standard Error

The qsub command writes a diagnostic message to standard error for each error occurrence.

2.59.7 Environment Variables

The qsub command uses the following environment variables:

PBS_DEFAULT

Name of default server.

PBS_DPREFIX

Prefix string which identifies PBS directives.

Environment variables beginning with “PBS_O_” are created by qsub. PBS automatically exports the following envi-
ronment variables to the job, and the job’s Variable_List attribute is set to this list:

PBS_ENVIRONMENT

Set to PBS_BATCH for a batch job. Set to PBS_INTERACTIVE for an interactive job. Created when qsub
is run.

PBS_JOBDIR

Pathname of job’s staging and execution directory on the primary execution host.

PBS_JOBID

Job identifier given by PBS when the job is submitted. Created when qsub is run.

PBS_JOBNAME

Job name specified by submitter. Created when qsub is run.
RG-230 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
PBS_NODEFILE

Name of file containing the list of vnodes assigned to the job. Created when qsub is run.

PBS_O_HOME

User’s home directory. Value of HOME taken from user’s submission environment.

PBS_O_HOST

Name of submit host. Value taken from user’s submission environment.

PBS_O_LANG

Value of LANG taken from user’s submission environment.

PBS_O_LOGNAME

User’s login name. Value of LOGNAME taken from user’s submission environment.

PBS_O_MAIL

Value of MAIL taken from user’s submission environment.

PBS_O_PATH

User’s PATH. Value of PATH taken from user’s submission environment.

PBS_O_QUEUE

Name of the queue to which the job was submitted. Value is taken from job submission, otherwise default
queue.

PBS_O_SHELL

Value taken from user’s submission environment.

PBS_O_SYSTEM

Operating system, from uname -s, on submit host. Value taken from user’s submission environment.

PBS_O_TZ

Timezone. Value taken from user’s submission environment.

PBS_O_WORKDIR

Absolute path to directory where qsub is run. Value taken from user’s submission environment.

PBS_QUEUE

Name of the queue from which the job is executed. Created when qsub is run.

PBS_TMPDIR

Pathname of scratch directory for PBS components. Set when PBS assigns it.

2.59.8 Exit Status

For non-blocking jobs:

Zero

Upon successful processing of input

Greater than zero

Upon failure of qsub

For blocking jobs:

Exit value of job

When job runs successfully

3

If the job is deleted without being run
PBS Professional 2020.1.1 Reference Guide RG-231

Chapter 2 PBS Commands
2.59.8.1 Warning About Exit Status with csh

If a job is run in csh and a .logout file exists in the home directory in which the job executes, the exit status of the job is
that of the .logout script, not the job script. This may impact any inter-job dependencies.

2.59.9 See Also

"Submitting a PBS Job", on page 11 of the PBS Professional User’s Guide, "Job Attributes” on page 328, "Resources
Built Into PBS” on page 265, and "Requesting Resources", on page 51 of the PBS Professional User’s Guide.
RG-232 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.60 qterm

Terminates one or both PBS servers, and optionally terminates scheduler(s) and/or MoMs

2.60.1 Synopsis

qterm [-f | -F | -i] [-m] [-s] [-t <type>] [<server name>[<server name> ...]]

qterm --version

2.60.2 Description

The qterm command terminates a PBS batch server.

Once the server is terminating, no new jobs are accepted by the server, and no jobs are allowed to begin execution. The
impact on running jobs depends on the way the server is shut down.

The qterm command does not exit until the server has completed its shutdown procedure.

If the complex is configured for failover, and the primary server is shut down, the normal behavior for the secondary
server is to become active. The qterm command provides options to manage the behavior of the secondary server; it
can be shut down, forced to remain idle, or shut down in place of the primary server.

2.60.2.1 Required Privilege

In order to run the qterm command, you must have PBS Operator or Manager privilege.

2.60.3 Options to qterm

(no options)

The qterm command defaults to qterm -t quick.

-f

If the complex is configured for failover, shuts down both the primary and secondary servers.

Without the -f option, qterm shuts down the primary server and makes the secondary server active.

The -f option cannot be used with the -i or -F options.

-F

If the complex is configured for failover, shuts down only the secondary server, leaving the primary server
active.

The -F option cannot be used with the -f or -i options.

-i

If the complex is configured for failover, leaves the secondary server idle when the primary server is shut down.

The -i option cannot be used with the -f or -F options.

-m

Shuts down the primary server and all MoMs (pbs_mom). This option does not cause jobs or subjobs to be
killed. Jobs are left running subject to other options to the qterm command.

-s

Shuts down the primary server and the scheduler (pbs_sched).
PBS Professional 2020.1.1 Reference Guide RG-233

Chapter 2 PBS Commands
-t <type>

immediate
Shuts down the primary server. Immediately stops all running jobs. Any running jobs that can be check-
pointed are checkpointed, terminated, and requeued. Jobs that cannot be checkpointed are terminated and
requeued if they are rerunnable, otherwise they are killed.

If any job cannot be terminated, for example the server cannot contact the MoM of a running job, the server
continues to execute and the job is listed as running. The server can be terminated by a second qterm -t
immediate command.

While terminating, the server is in the Terminating state.

delay
Shuts down the primary server. The server waits to terminate until all non-checkpointable, non-rerunnable
jobs are finished executing. Any running jobs that can be checkpointed are checkpointed, terminated, and
requeued. Jobs that cannot be checkpointed are terminated and requeued if they are rerunnable, otherwise
they are allowed to continue to run.

While terminating, the server is in the Terminating-Delayed state.

quick
Shuts down the primary server. Running jobs and subjobs are left running.

This is the default behavior when no options are given to the qterm command.

While terminating, the server is in the Terminating state.

--version

The qterm command returns its PBS version information and exits. This option can only be used alone.

2.60.4 Operands

You optionally specify the list of servers to shut down using [<server name>[<server name> ...]].

If you do not specify any servers, the qterm command shuts down the default server.

2.60.4.1 Standard Error

The qterm command writes a diagnostic message to standard error for each error occurrence.

2.60.4.2 Exit Status

Zero

Upon successful processing of all operands presented to the qterm command

Greater than zero

If the qterm command fails to process any operand

2.60.4.3 See Also

The PBS Professional Administrator's Guide, "pbs_server” on page 108, "pbs_sched” on page 105, "pbs_mom” on
page 71
RG-234 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.61 tracejob

Extracts and prints log messages for a PBS job

2.61.1 Synopsis

tracejob [-a] [-c <count>] [-f <filter>] [-l] [-m] [-n <days>] [-p <path>] [-s] [-v] [-w <cols>] [-z] <job ID>

tracejob --version

2.61.2 Description

The tracejob command extracts log messages for a given job ID and prints them in chronological order.

The tracejob command extracts information from server, default scheduler, accounting, and MoM logs. Server logs
contain information such as when a job was queued or modified. Scheduler logs contain clues as to why a job is not run-
ning. Accounting logs contain accounting records for when a job was queued, started, ended, or deleted. MoM logs con-
tain information about what happened to a job while it was running.

To get MoM log messages for a job, tracejob must be run on the machine on which the job ran. If the job ran on mul-
tiple hosts, you must run tracejob on each of those hosts.

Some log messages appear many times. In order to make the output of tracejob more readable, messages that appear
over a certain number of times (see option -c below) are restricted to only the most recent message.

2.61.3 Using tracejob on Job Arrays

If tracejob is run on a job array, the information returned is about the job array itself, and not its subjobs. Job arrays
do not have associated MoM log messages. If tracejob is run on a subjob, the same types of log messages are avail-
able as for a job. Certain log messages that occur for a regular job will not occur for a subjob.

2.61.4 Required Privilege

All users have access to server, scheduler, and MoM information. Only Administrator or root can access accounting
information.

2.61.5 Options to tracejob

-a

Do not report accounting information.

-c <count>

Set excessive message limit to count. If a message is logged at least count times, only the most recent message
is printed.

The default for count is 15.
PBS Professional 2020.1.1 Reference Guide RG-235

Chapter 2 PBS Commands
-f <filter>

Do not include log events of type filter. The -f option can be used more than once on the command line. The
following table shows each filter with its hex value and category:

-l

Do not report scheduler information.

-m

Do not report MoM information.

-n <days>

Report information from up to days days in the past.

Default number of days: 1 = today

-p <path>

Use path as path to PBS_HOME on machine being queried.

-s

Do not report server information.

-w <cols>

Width of current terminal. If cols is not specified, tracejob queries OS to get terminal width. If OS doesn’t
return anything, defaults to 80.

-v

Verbose. Report more of tracejob’s errors than default.

-z

Suppresses printing of duplicate messages.

--version

The tracejob command returns its PBS version information and exits. This option can only be used alone.

Table 2-39: tracejob Filters

Filter Hex Value Message Category

error 0x0001 Internal errors

system 0x0002 System errors

admin 0x0004 Administrative events

job 0x0008 Job-related events

job_usage 0x0010 Job accounting info

security 0x0020 Security violations

sched 0x0040 Scheduler events

debug 0x0080 Common debug messages

debug2 0x0100 Uncommon debug messages

resv 0x0200 Reservation debug messages

debug3 0x0400 Less common than debug2

debug4 0x0800 Less common than debug3
RG-236 PBS Professional 2020.1.1 Reference Guide

PBS Commands Chapter 2
2.61.6 Operands

The tracejob command accepts one job ID operand.

For a job, this has the form:

<sequence number>[.<server name>][@<server name>]

For a job array, the form is:

<sequence number>[][.<server name>][@<server name>]

For a subjob, the form is:

<sequence number>[<index>][.<server name>][@<server name>]

Note that some shells require that you enclose a job array identifier in double quotes.

2.61.7 Exit Status

Zero

Upon successful processing of all options

Greater than zero

If tracejob is unable to process any options

2.61.8 See Also

The PBS Professional Administrator’s Guide
PBS Professional 2020.1.1 Reference Guide RG-237

Chapter 2 PBS Commands
2.62 win_postinstall.py

For Windows. Configures PBS MoM or client

2.62.1 Synopsis

<PBS_EXEC>\etc\python win_postinstall.py -u <PBS service account> -p <PBS service account password> -t
<installation type> -s <server name> [-c <path to scp command>]

2.62.2 Description

The win_postinstall.py command configures the PBS MoM and commands. It performs post-installation steps
such as validating the PBS service account username and password, installing the Visual C++ redistributable binary, and
creating the pbs.conf file in the PBS destination folder.

For an “execution” type of installation, it creates PBS_HOME, and registers and starts the PBS_MOM service.

When you use this command during an “execution” type installation of PBS, the command automatically un-registers
any old PBS MoM.

Available on Windows only.

2.62.2.1 Required Privilege

You must have Administrator privilege to run this command.

2.62.3 Options to win_postinstall.py

-c, --scp-path <path to scp command>

Specifies path to scp command.

-p, --passwd <PBS service account password>

Specifies password for PBS service account.

-s, --server <server name>

Specifies the hostname on which the PBS server will run; required when the installation type is one of "execu-
tion" or "client".

-t, --type <installation type>

Specifies type of installation. Type can be one of "execution" or "client".

-u, --user <PBS service account>

Specifies PBS service account. When you specify the PBS service account, whether or not you are on a domain
machine, include only the username, not the domain. For example, if the full username on a domain machine is
<domain>\<username>, pass only <username> as an argument.
RG-238 PBS Professional 2020.1.1 Reference Guide

3

MoM Parameters

This chapter describes the configuration files used by MoM and lists the MoM configuration parameters that are found in
the Version 1 MoM configuration file, PBS_HOME/mom_priv/config.

3.1 Syntax of MoM Configuration File

The Version 1 MoM configuration file contains parameter settings for the MoM on the local host.

Version 1 configuration files list local resources and initialization values for MoM. Local resources are either static,
listed by name and value, or externally-provided, listed by name and command path. Local static resources are for use
only by the scheduler for MoM’s partition. They do not appear in a pbsnodes -a query. See the -c option to the
pbs_mom command. Do not change the syntax of the Version 1 configuration file.

Each configuration item is listed on a single line, with its parts separated by white space. Comments begin with a hash-
mark ("#").

3.1.1 Externally-provided Resources

Externally-provided resources, for example dynamic resources such as scratch space, use a shell escape to run a com-
mand. These resources are described with a name and value, where the first character of the value is an exclamation
mark ("!"). The remainder of the value is the path and command to execute.

Parameters in the command beginning with a percent sign ("%") can be replaced when the command is executed. For
example, this line in a configuration file describes a resource named "escape":

escape !echo %xxx %yyy

If a query for the "escape" resource is sent with no parameter replacements, the command executed is "echo %xxx
%yyy". If one parameter replacement is sent, "escape[xxx=hi there]", the command executed is "echo hi there %yyy". If
two parameter replacements are sent, "escape[xxx=hi][yyy=there]", the command executed is "echo hi there". If a
parameter replacement is sent with no matching token in the command line, "escape[zzz=snafu]", an error is reported.

3.1.2 Windows Notes

If the argument to a MoM option is a pathname containing a space, enclose it in double quotes as in the following:

hostn !"\Program Files\PBS\exec\bin\hostn" host

When you edit any PBS configuration file, make sure that you put a newline at the end of the file. The Notepad applica-
tion does not automatically add a newline at the end of a file; you must explicitly add the newline.
PBS Professional 2020.1.1 Reference Guide RG-239

Chapter 3 MoM Parameters
3.2 Contents of MoM Configuration File

3.2.1 Replacing Actions

$action <default action> <timeout> <new action>

Replaces the default action for an event with the site-specified new action. timeout is the time allowed for new
action to run. new action is the site-supplied script that replaces default action. This is the complete list of val-
ues for default action:

3.2.2 MoM Parameters

$alps_client <path>

Cray only. Path to the Cray apbasil command. Must be full path to command.

Format: path to command

Default: None

$alps_release_jitter <maximum jitter>

Cray only. PBS sends requests to ALPS to release a finished job at intervals specified by the sum of
$alps_release_wait_time and a randomly generated value between zero and maximum jitter, in seconds.

Format: Float

Default: 0.12 seconds

$alps_release_timeout <timeout>

Cray only. Specifies the amount of time that PBS tries to release an ALPS reservation before giving up. After
this amount of time has passed, PBS stops trying to release the ALPS reservation, the job exits, and the job’s
resources are released. PBS sends a HUP to the MoM so that she rereads the ALPS inventory to get the current
available ALPS resources.

We recommend that the value for this parameter be twice the value for suspectbegin.

Format: Seconds, specified as positive integer

Default: 600 (10 minutes)

Table 3-1: How $action is Used

default action Result

checkpoint Run new action in place of the periodic job checkpoint, after which the
job continues to run.

checkpoint_abort Run new action to checkpoint the job, after which the job must be ter-
minated by the script.

multinodebusy <timeout>

requeue

Used with cycle harvesting and multi-vnode jobs. Changes default
behavior when a vnode becomes busy. Instead of allowing the job to
run, the job is requeued. Timeout is ignored. The only new action is
requeue.

restart Runs new action in place of restart.

terminate Runs new action in place of SIGTERM or SIGKILL when MoM ter-
minates a job.
RG-240 PBS Professional 2020.1.1 Reference Guide

MoM Parameters Chapter 3
$alps_release_wait_time <wait time>

Cray only. PBS sends requests to ALPS to release a finished job at intervals specified by the sum of wait time
and a randomly generated value between zero and the maximum specified in $alps_release_jitter, in seconds.

Format: Float

Default: 0.4 seconds

$checkpoint_path <path>

MoM passes this parameter to the checkpoint and restart scripts. This path can be absolute or relative to
PBS_HOME/mom_priv. Overrides default. Overridden by path specified in the pbs_mom -C option and by
PBS_CHECKPOINT_PATH environment variable. See "Specifying Checkpoint Path" on page 422 in the PBS
Professional Administrator’s Guide.

$clienthost <hostname>

hostname is added to the list of hosts which are allowed to connect to MoM as long as they are using a privi-
leged port. For example, this allows the hosts “fred” and “wilma” to connect to MoM:

$clienthost fred

$clienthost wilma

The following hostnames are added to $clienthost automatically: the server, the localhost, and if configured, the
secondary server. The server sends each MoM a list of the hosts in the nodes file, and these are added internally
to $clienthost. None of these hostnames need to be listed in the configuration file.

Two hostnames are always allowed to connect to pbs_mom, “localhost” and the name returned to MoM by
the system call gethostname(). These hostnames do not need to be added to the MoM configuration file.

The hosts listed as “clienthosts” make up a “sisterhood” of machines. Any one of the sisterhood will accept
connections from within the sisterhood. The sisterhood must all use the same port number.

$cputmult <factor>

This sets a factor used to adjust CPU time used by each job. This allows adjustment of time charged and limits
enforced where jobs run on a system with different CPU performance. If MoM’s system is faster than the refer-
ence system, set factor to a decimal value greater than 1.0. For example:

$cputmult 1.5

If MoM’s system is slower, set factor to a value between 1.0 and 0.0. For example:

$cputmult 0.75

$dce_refresh_delta <delta>

Obsolete (2020.1)

Defines the number of seconds between successive refreshings of a job’s DCE login context. For example:

$dce_refresh_delta 18000

$enforce <limit>

MoM will enforce the given limit. Some limits have associated values. Syntax:

$enforce <variable name> <value>
$enforce mem

MoM will enforce each job’s memory limit.

$enforce cpuaverage
MoM will enforce ncpus when the average CPU usage over a job’s lifetime usage is greater than the job’s
limit.

$enforce average_trialperiod <seconds>
Modifies cpuaverage. Minimum number of seconds of job walltime before enforcement begins.

Format: Integer

Default: 120
PBS Professional 2020.1.1 Reference Guide RG-241

Chapter 3 MoM Parameters
$enforce average_percent_over <percentage>
Modifies cpuaverage. Gives percentage by which a job may exceed its ncpus limit.

Format: Integer

Default: 50

$enforce average_cpufactor <factor>
Modifies cpuaverage. The ncpus limit is multiplied by factor to produce actual limit.

Format: Float

Default: 1.025

$enforce cpuburst
MoM will enforce the ncpus limit when CPU burst usage exceeds the job’s limit.

$enforce delta_percent_over <percentage>
Modifies cpuburst. Gives percentage over limit to be allowed.

Format: Integer

Default: 50

$enforce delta_cpufactor <factor>
Modifies cpuburst. The ncpus limit is multiplied by factor to produce actual limit.

Format: Float

Default: 1.5

$enforce delta_weightup <factor>
Modifies cpuburst. Weighting factor for smoothing burst usage when average is increasing.

Format: Float

Default: 0.4

$enforce delta_weightdown <factor>
Modifies cpuburst. Weighting factor for smoothing burst usage when average is decreasing.

Format: Float

Default: 0.4

$ideal_load <load>

Defines the load below which the vnode is not considered to be busy. Used with the $max_load directive.

Example:

$ideal_load 1.8

Format: Float

No default

$jobdir_root <stage directory root>

Directory under which PBS creates job-specific staging and execution directories. PBS creates a job’s staging
and execution directory when the job’s sandbox attribute is set to PRIVATE. If $jobdir_root is unset, it
defaults to the job owner’s home directory. In this case the user’s home directory must exist. If stage directory
root does not exist when MoM starts up, MoM will abort. If stage directory root does not exist when MoM tries
to run a job, MoM will kill the job. Path must be owned by root, and permissions must be 1777. On Windows,
this directory should have Full Control Permission for the local Administrators group.

Example:

$jobdir_root /scratch/foo
RG-242 PBS Professional 2020.1.1 Reference Guide

MoM Parameters Chapter 3
$job_launch_delay

When the primary MoM gets a job whose tolerate_node_failures attribute is set to all or job_start, the pri-
mary MoM can wait to start the job (running the job script or executable) for up to a configured number of sec-
onds. During this time, execjob_prologue hooks can finish and the primary MoM can check for
communication problems with sister MoMs. You configure the number of seconds for the primary MoM to wait
for hooks via the job_launch_delay configuration parameter in MoM’s config file:

$job_launch_delay <number of seconds to wait>

Default: the sum of the values of the alarm attributes of any enabled execjob_prologue hooks. If there are no
enabled execjob_prologue hooks, the default value is 30 seconds. For example, if there are two enabled
execjob_prologue hooks, one with alarm = 30 and one with alarm = 60, the default value of MoM’s
job_launch_delay is 90 seconds.

After all the execjob_prologue hooks have finished, or MoM has waited for the value of the
job_launch_delay parameter, she starts the job.

$kbd_idle <idle wait> <min use> <poll interval>

Declares that the vnode will be used for batch jobs during periods when the keyboard and mouse are not in use.

idle wait
Time, in seconds, that the workstation keyboard and mouse must be idle before being considered available
for batch jobs.

Must be set to non-zero value for cycle harvesting to be enabled.

Format: Integer

No default

min use
Time, in seconds, during which the workstation keyboard or mouse must continue to be in use before the
workstation is determined to be unavailable for batch jobs.

Format: Integer

Default: 10

poll interval
Interval, in seconds, at which MoM checks for keyboard and mouse activity.

Format: Integer

Default: 1

Example:

$kbd_idle 1800 10 5

$logevent <mask>

Sets the mask that determines which event types are logged by pbs_mom. To include all debug events, use
0xffffffff. See "Log Levels" on page 537 in the PBS Professional Administrator’s Guide.

Default: 975

$max_check_poll <seconds>

Maximum time between polling cycles, in seconds. See "Configuring MoM Polling Cycle" on page 34 in the
PBS Professional Administrator’s Guide. Minimum recommended value: 30 seconds.

Minimum value: 1 second

Default: 120 seconds

Format: Integer
PBS Professional 2020.1.1 Reference Guide RG-243

Chapter 3 MoM Parameters
$max_load <load> [suspend]

Defines the load above which the vnode is considered to be busy. Used with the $ideal_load directive. No
new jobs are started on a busy vnode.

The optional suspend directive tells PBS to suspend jobs running on the vnode if the load average exceeds the
$max_load number, regardless of the source of the load (PBS and/or logged-in users). Without this directive,
PBS will not suspend jobs due to load.

We recommend setting load to a value that is slightly higher than the number of CPUs, for example .25 +

ncpus.

Example:

$max_load 3.5

Format: Float

Default: number of CPUs on machine

$max_poll_downtime <downtime>

When mother superior detects that a sister mom has lost connectivity (e.g. MoM went down or the network is
having problems) it waits downtime seconds for the sister to reconnect before it gives up and kills the job.

Format: Integer

Default: five minutes

memreserved <megabytes>

Deprecated. The amount of per-vnode memory reserved for system overhead. This much memory is deducted
from the value of resources_available.mem for each vnode managed by this MoM.

For example,

memreserved 16

Default: 0MB

$min_check_poll <seconds>

Minimum time between polling cycles, in seconds. Must be greater than zero and less than $max_check_poll.
See "Configuring MoM Polling Cycle" on page 34 in the PBS Professional Administrator’s Guide. Minimum
recommended value: 10 seconds.

Format: Integer

Minimum value: 1 second

Default: 10 seconds

pbs_accounting_workload_mgmt <value>

Controls whether CSA accounting is enabled. Name does not start with dollar sign. If set to “1”, “on”, or
“true”, CSA accounting is enabled. If set to “0”, “off”, or “false”, accounting is disabled. Cray only. Requires
CLE 5.2.

Default: “true”; enabled

$prologalarm <timeout>

Defines the maximum number of seconds the prologue and epilogue may run before timing out.

Example:

$prologalarm 30

Format: Integer

Default: 30 seconds

$reject_root_scripts <True|False>

When set to True, MoM won’t acquire any new hook scripts, and MoM won’t run job scripts that would execute
as root or Admin. However, MoM will run previously-acquired hooks that run as root.
RG-244 PBS Professional 2020.1.1 Reference Guide

MoM Parameters Chapter 3
Format: Boolean

Default: False

$restart_background <True|False>

Controls how MoM runs a restart script after checkpointing a job. When this option is set to True, MoM forks a
child which runs the restart script. The child returns when all restarts for all the local tasks of the job are done.
MoM does not block on the restart. When this option is set to False, MoM runs the restart script and waits for
the result.

Format: Boolean

Default: False

$restart_transmogrify <True | False>

Controls how MoM runs a restart script after checkpointing a job.

When this option is set to True, MoM runs the restart script, replacing the session ID of the original task’s top
process with the session ID of the script.

When this option is set to False, MoM runs the restart script and waits for the result. The restart script must
restore the original session ID for all the processes of each task so that MoM can continue to track the job.

When this option is set to False and the restart uses an external command, the configuration parameter
restart_background is ignored and treated as if it were set to True, preventing MoM from blocking on the
restart.

Format: Boolean

Default: False

$restrict_user <True | False>

Controls whether users not submitting jobs have access to this machine. If value is True, restrictions are
applied.

See $restrict_user_exceptions and $restrict_user_maxsysid.

Not supported on Windows.

Format: Boolean

Default: False

$restrict_user_exceptions <user list>

Comma-separated list of users who are exempt from access restrictions applied by $restrict_user. Leading
spaces within each entry are allowed. Maximum of 10 names.

$restrict_user_maxsysid <value>

Any user with a numeric user ID less than or equal to value is exempt from restrictions applied by
$restrict_user.

If $restrict_user is True and no value exists for $restrict_user_maxsysid, PBS looks in /etc/login.defs,
if it exists, for the value. Otherwise the default is used.

Format: Integer

Default: 999

$restricted <hostname>

The hostname is added to the list of hosts which are allowed to connect to MoM without being required to use a
privileged port. Queries from the hosts in the restricted list are only allowed access to information internal to
this host, such as load average, memory available, etc. They may not run shell commands.

Hostnames can be wildcarded. For example, to allow queries from any host from the domain “xyz.com”:

$restricted *.xyz.com
PBS Professional 2020.1.1 Reference Guide RG-245

Chapter 3 MoM Parameters
$sister_join_job_alarm

When the primary MoM gets a job whose tolerate_node_failures attribute is set to all or job_start, the pri-
mary MoM can wait to start the job for up to a configured number of seconds if the sister MoMs do not immedi-
ately acknowledge joining the job. This gives the sister MoMs more time to join the job. You configure the
number of seconds for the primary MoM to wait for sister MoMs via the sister_join_job_alarm configuration
parameter in MoM’s config file:

$sister_join_job_alarm <number of seconds to wait>

Default: the sum of the values of the alarm attributes of any enabled execjob_begin hooks. If there are no
enabled execjob_begin hooks, the default value is 30 seconds. For example, if there are two enabled
execjob_begin hooks, one with alarm = 30 and one with alarm = 20, the default value of MoM’s
sister_join_job_alarm is 50 seconds.

After all the sister MoMs have joined the job, or MoM has waited for the value of the $sister_join_job_alarm
parameter, she starts the job.

$suspendsig <suspend signal> [resume signal]

Alternate signal suspend signal is used to suspend jobs instead of SIGSTOP. Optional resume signal is used to
resume jobs instead of SIGCONT.

$tmpdir <directory>

Location where each job’s scratch directory will be created.

PBS creates a temporary directory for use by the job, not by PBS. PBS creates the directory before the job is
run and removes the directory and its contents when the job is finished. It is scratch space for use by the job.
Permission must be 1777 on Linux, writable by Everyone on Windows.

Example:

$tmpdir /memfs

Default on Linux: /var/tmp

Default on Windows: value of the TMP environment variable

$usecp <hostname:source directory> <destination directory>

MoM uses /bin/cp to deliver output files when the destination is a network mounted file system, or when the
source and destination are both on the local host, or when the source directory can be replaced with the destina-
tion directory on hostname. Both source directory and destination directory are absolute pathnames of directo-
ries, not files.

Overrides PBS_RCP and PBS_SCP.

Use trailing slashes on both the source and destination. For example:

$usecp HostA:/users/work/myproj/ /sharedwork/proj_results/

$vnodedef_additive

Specifies whether MoM considers a vnode that appeared previously either in the inventory or in a vnode defini-
tion file, but that does not appear now, to be in her list of vnodes.

When $vnodedef_additive is True, MoM treats missing vnodes as if they are still present, and continues to
report them as if they are present. This means that the server does not mark missing vnodes as stale.

When $vnodedef_additive is False, MoM does not list missing vnodes, the server’s information is brought up
to date with the inventory and vnode definition files, and the server marks missing vnodes as stale.

PBS automatically sets the value of the $vnodedef_additive MoM configuration option to False on any MoM
on a login node.

Visible in configuration file on Cray only.

Format: Boolean

Default for MoM on Cray login node: False
RG-246 PBS Professional 2020.1.1 Reference Guide

MoM Parameters Chapter 3
$wallmult <factor>

Each job’s walltime usage is multiplied by factor. For example:

$wallmult 1.5

3.2.3 Static MoM Resources

Static resources local to the vnode are described one resource to a line, with a name and value separated by white space.
For example, tape drives of different types could be specified by:

tape3480 4

tape3420 2

tapedat 1

tape8mm 1
PBS Professional 2020.1.1 Reference Guide RG-247

Chapter 3 MoM Parameters
RG-248 PBS Professional 2020.1.1 Reference Guide

4

Scheduler Parameters

This chapter lists scheduler configuration parameters. These parameters are found in each scheduler’s configuration file,
PBS_HOME/sched_priv/sched_config.

4.1 Format of Scheduler Configuration File

4.1.1 Parameters with Separate Primetime and Non-
primetime Specification

If a scheduler parameter can be specified separately for primetime and non-primetime, the format for the parameter is the
following:

name: value [prime | non_prime | all | none]

• The name field cannot contain any whitespace.

• The value field may contain whitespace if the string is double-quoted. value can be: True | False | <number> |
<string>. “True” and “False” are not case-sensitive.

• The third field allows you to specify that the setting is to apply during primetime, non-primetime, all the time, or
none of the time. A blank third field is equivalent to “all” which means that it applies to both primetime and non-
primetime.

Acceptable values: “all”, “ALL”, “none”, “NONE”, “prime”, “PRIME”, “non_prime”, “NON_PRIME”

4.1.2 Parameters without Separate Primetime and Non-
primetime Specification

If a scheduler parameter cannot be specified separately for primetime and non-primetime, the format for the parameter is
the same as the above, except that there is no third field.

4.1.3 Format Details

• Each entry must be a single, unbroken line.

• Entries must be quoted if they contain whitespace.

• Any line starting with a “#” is a comment, and is ignored.
PBS Professional 2020.1.1 Reference Guide RG-249

Chapter 4 Scheduler Parameters
4.2 Configuration Parameters

backfill

Deprecated. Use the backfill_depth queue/server attribute instead. Toggle that controls whether PBS uses
backfilling. If this is set to True, this scheduler attempts to schedule smaller jobs around higher-priority jobs
when using strict_ordering, as long as running the smaller jobs won’t change the start time of the jobs they were
scheduled around. This scheduler chooses jobs in the standard order, so other high-priority jobs will be consid-
ered first in the set to fit around the highest-priority job.

When this parameter is True and help_starving_jobs is True, this scheduler backfills around starving jobs.

Can be used with strict_ordering and help_starving_jobs

Format: Boolean

Default: True all

backfill_prime

This scheduler will not run jobs which would overlap the boundary between primetime and non-primetime.
This assures that jobs restricted to running in either primetime or non-primetime can start as soon as the time
boundary happens.

See also prime_spill, prime_exempt_anytime_queues.

Format: Boolean

Default: False all

by_queue

If set to True, all jobs that can be run from the highest-priority queue are run, then any jobs that can be run from
the next queue are run, and so on. Queues are ordered highest-priority first. If by_queue is set to False, all
jobs are treated as if they are in one large queue. The by_queue parameter is overridden by the round_robin
parameter when round_robin is set to True.

See "Examining Jobs Queue by Queue" on page 110 in the PBS Professional Administrator’s Guide.

Format: Boolean

Default: True all

cpus_per_ssinode

Obsolete.

dedicated_prefix

Queue names with this prefix are treated as dedicated queues, meaning jobs in that queue are considered for
execution only when the system is in dedicated time as specified in the configuration file PBS_HOME/
sched_priv/dedicated_time.

See "Dedicated Time" on page 125 in the PBS Professional Administrator’s Guide.

Format: String

Default: ded

fair_share

Enables the fairshare algorithm, and turns on usage collecting. Jobs will be selected based on a function of their
recent usage and priority (shares). Not a prime option.

See "Using Fairshare" on page 138 in the PBS Professional Administrator’s Guide.

Format: Boolean

Default: False all
RG-250 PBS Professional 2020.1.1 Reference Guide

Scheduler Parameters Chapter 4
fairshare_decay_factor

Decay multiplier for fairshare usage reduction. Each decay period, the usage is multiplied by this value. Valid
values: between 0 and 1, not inclusive. Not a prime option.

Format: Float

Default: 0.5

fairshare_decay_time

Time between fairshare usage decay operations. Not a prime option.

Format: Duration

Default: 24:00:00

fairshare_entity

Specifies the entity for which fairshare usage data will be collected. Can be one of “euser”, “egroup”,
“Account_Name”, “queue”, or “egroup:euser”. Not a prime option.

Format: String

Default: euser

fairshare_enforce_no_shares

If this option is enabled, jobs whose entity has zero shares will never run. Requires fair_share parameter to be
enabled. Not a prime option.

Format: Boolean

Default: False

fairshare_usage_res

Specifies the mathematical formula to use in fairshare calculations. Is composed of PBS resources as well as
mathematical operators that are standard Python operators and/or those in the Python math module. When
using a PBS resource, if resources_used.<resource name> exists, that value is used. Otherwise, the value is
taken from Resource_List.<resource name>. Not a prime option.

See "Tracking Resource Usage" on page 141 in the PBS Professional Administrator’s Guide.

Format: String

Default: cput

half_life

Deprecated (as of 13.0).

The half-life for fairshare usage; after the amount of time specified, the fairshare usage is halved. Requires that
fair_share parameter be enabled. Not a prime option.

See "Using Fairshare" on page 138 in the PBS Professional Administrator’s Guide.

Format: Duration

Default: 24:00:00

help_starving_jobs

Setting this option enables starving job support. Once jobs have waited for the amount of time given by
max_starve they are considered starving. If a job is considered starving, no lower-priority jobs will run until the
starving job can be run, unless backfilling is also used. To use this option, the max_starve configuration param-
eter needs to be set as well. See also max_starve, and the server’s backfill_depth and eligible_time_enable
attributes.

At each scheduler iteration, PBS calculates estimated.start_time and estimated.exec_vnode for starving jobs
being backfilled around.

Format: Boolean

Default: True all
PBS Professional 2020.1.1 Reference Guide RG-251

Chapter 4 Scheduler Parameters
job_sort_key

Specifies how jobs should be sorted. job_sort_key can be used to sort using either (a) resources or (b) special
case sorting routines. Multiple job_sort_key entries can be used, one to a line, in which case the first entry will
be the primary sort key, the second will be used to sort equivalent items from the first sort, etc. This attribute is
overridden by the job_sort_formula attribute. If both are set, job_sort_key is ignored and an error message is
printed.

Syntax:

job_sort_key: “<resource name> HIGH|LOW”

job_sort_key: “fairshare_perc HIGH|LOW”

job_sort_key: “job_priority HIGH|LOW”

Options: One of the following is required.

HIGH
Specifies descending sort.

LOW
Specifies ascending sort.

There are three special case sorting routines, which can be used instead of resource name:

The following example illustrates how to sort jobs so that those with high CPU count come first:

job_sort_key: “ncpus HIGH” all

The following example shows how to sort jobs so that those with lower memory come first:

job_sort_key: “mem LOW” prime

Format: Quoted string

Default: Not enforced

Table 4-1: Special Sorting in job_sort_key

Special Sort Description

fairshare_perc HIGH Sort based on how much fairshare percentage the entity deserves, based on the
values in the resource_group file. If user A has more priority than user B,
all of user A's jobs will always be run first. Past history is not used. For cal-
culation, see "Computing Target Usage for Each Vertex (fairshare_perc)" on
page 143 in the PBS Professional Administrator’s Guide.

This should only be used if entity share (strict priority) sorting is needed. See
"Sorting Jobs by Entity Shares (Was Strict Priority)" on page 131 in the PBS
Professional Administrator’s Guide

Incompatible with fair_share scheduling parameter being True.

job_priority HIGH|LOW Sort jobs by the job priority attribute regardless of job owner.

sort_priority HIGH|LOW Deprecated. See job_priority above.
RG-252 PBS Professional 2020.1.1 Reference Guide

Scheduler Parameters Chapter 4
load_balancing

Deprecated (2020.1).

When set to True, this scheduler takes into account the load average on vnodes as well as the resources listed in
the resources line in sched_config. Load balancing can result in overloaded CPUs.

See "Using Load Balancing" on page 156 in the PBS Professional Administrator’s Guide.

Format: Boolean

Default: False all

load_balancing_rr

Deprecated. To duplicate this setting, enable load_balancing and set smp_cluster_dist to round_robin.

See "Using Load Balancing" on page 156 in the PBS Professional Administrator’s Guide.

log_filter

Obsolete. See “log_events” on page 298 of the PBS Professional Reference Guide.

max_starve

The amount of time before a job is considered starving. This variable is used only if help_starving_jobs is set.

Upper limit: None

Format: Duration

Default: 24:00:00

mem_per_ssinode

Obsolete.

mom_resources

Deprecated as of 18.2.1.

This option is used to query the MoMs to set the value of resources_available.<resource name> where
resource name is a site-defined resource. Each MoM is queried with the resource name and the return value is
used to replace resources_available.<resource name> on that vnode. On a multi-vnoded machine with a
parent vnode, all vnodes share anything set in mom_resources.

Format: String

Default: Unset

node_sort_key

Defines sorting on resource or priority values on vnodes. Resource must be numerical, for example, long or
float. Up to 20 node_sort_key entries can be used, in which case the first entry will be the primary sort key, the
second will be used to sort equivalent items from the first sort, etc.

Syntax:

node_sort_key: <resource name> | sort_priority <HIGH | LOW>
node_sort_key: <resource name> <HIGH | LOW> <total | assigned | unused>
where

total
Use the resources_available value. This is the default setting when sorting on a resource.

assigned
Use the resources_assigned value.

unused
Use the value given by resources_available - resources_assigned.
PBS Professional 2020.1.1 Reference Guide RG-253

Chapter 4 Scheduler Parameters
sort_priority
Sort vnodes by the value of the vnode priority attribute.

When sorting on a resource, the default third field is “total”.

See "Sorting Vnodes on a Key" on page 225 in the PBS Professional Administrator’s Guide.

Format: String

Default: node_sort_key: sort_priority HIGH all

nonprimetime_prefix

Queue names which start with this prefix are treated as non-primetime queues. Jobs in these queues run only
during non-primetime. Primetime and non-primetime are defined in the holidays file.

See "Using Primetime and Holidays" on page 191 in the PBS Professional Administrator’s Guide.

Format: String

Default: np_

peer_queue

Defines the mapping of a pulling queue to a furnishing queue for peer scheduling. Maximum number is 50 peer
queues per scheduler.

 See "Peer Scheduling" on page 165 in the PBS Professional Administrator’s Guide.

Format: String

Default: Unset

preemptive_sched

Enables job preemption.

See preempt_order and "Using Preemption" on page 180 in the PBS Professional Administrator’s Guide for
details.

Format: String

Default: True all

preempt_order

No longer available. Use the preempt_sort scheduler attribute. See “preempt_order” on page 299..

preempt_prio

No longer available. Use the preempt_sort scheduler attribute. See “preempt_prio” on page 300..

preempt_queue_prio

No longer available. Use the preempt_sort scheduler attribute. See “preempt_queue_prio” on page 300..

preempt_sort

No longer available. Use the preempt_sort scheduler attribute. See “preempt_sort” on page 300..

primetime_prefix

Queue names starting with this prefix are treated as primetime queues. Jobs in these queues run only during
primetime. Primetime and non-primetime are defined in the holidays file.

See "Using Primetime and Holidays" on page 191 in the PBS Professional Administrator’s Guide.

Format: String

Default: p_
RG-254 PBS Professional 2020.1.1 Reference Guide

Scheduler Parameters Chapter 4
prime_exempt_anytime_queues

Determines whether anytime queues are controlled by backfill_prime.

If set to True, jobs in an anytime queue are not prevented from running across a primetime/non-primetime or
non-primetime/primetime boundary.

If set to False, the jobs in an anytime queue may not cross this boundary, except for the amount specified by
their prime_spill setting.

See also backfill_prime, prime_spill.

Format: Boolean

Default: False

prime_spill

Specifies the amount of time a job can spill over from non-primetime into primetime or from primetime into
non-primetime. This option can be separately specified for primetime and non-primetime. This option is only
meaningful if backfill_prime is True.

See also backfill_prime, prime_exempt_anytime_queues.

For example, non-primetime jobs can spill into primetime by 1 hour:

prime_spill: 1:00:00 prime

For example, jobs in either prime/non-prime can spill into the other by 1 hour:

prime_spill: 1:00:00 all

Format: Duration

Default: 00:00:00

provision_policy

Specifies how vnodes are selected for provisioning. Can be set by Manager only; readable by all. Can be set to
one of the following:

avoid_provision
PBS first tries to satisfy the job's request from free vnodes that already have the requested AOE instanti-
ated. PBS uses node_sort_key to sort these vnodes.

If PBS cannot satisfy the job's request using vnodes that already have the requested AOE instantiated, PBS
uses the server's node_sort_key to select the free vnodes that must be provisioned in order to run the job,
choosing from any free vnodes, regardless of which AOE is instantiated on them.

Of the selected vnodes, PBS provisions any that do not have the requested AOE instantiated on them.

aggressive_provision
PBS selects vnodes to be provisioned without considering which AOE is currently instantiated.

PBS uses the server's node_sort_key to select the vnodes on which to run the job, choosing from any free
vnodes, regardless of which AOE is instantiated on them. Of the selected vnodes, PBS provisions any that
do not have the requested AOE instantiated on them.

Format: String

Default: aggressive_provision
PBS Professional 2020.1.1 Reference Guide RG-255

Chapter 4 Scheduler Parameters
resources

Specifies those resources which are not to be over-allocated, or if Boolean are to be honored, when scheduling
jobs. Vnode-level Boolean resources are automatically honored and do not need to be listed here. Limits are set
by setting resources_available.<resource name> on vnodes, queues, and the server. A scheduler considers
numeric (integer or float) items as consumable resources and ensures that no more are assigned than are avail-
able (e.g. ncpus or mem). Any string resources are compared using string comparisons. If “host” is not
added to the resources line, when the user submits a job requesting a specific vnode in the following syntax:

qsub -l select=host=vnodeName

the job will run on any host.

Format: String

Default: ncpus, mem, arch, host, vnode, aoe

resource_unset_infinite

Resources in this list are treated as infinite if they are unset. Cannot be set differently for primetime and non-
primetime.

Example:

resource_unset_infinite: “vmem, foo_licenses”

Format: Comma-delimited list of resources

Default: Empty list

round_robin

If set to True, this scheduler considers one job from the first queue, then one job from the second queue, and so
on in a circular fashion. The queues are ordered with the highest-priority queue first. Each scheduling cycle
starts with the same highest-priority queue, which will therefore get preferential treatment.

If there are groups of queues with the same priority, and this parameter is set to True, this scheduler round-rob-
ins through each group of queues before moving to the next group.

If round_robin is set to False, this scheduler considers jobs according to the setting of the by_queue parame-
ter.

When True, overrides the by_queue parameter.

Format: Boolean

Default: False all

server_dyn_res

Directs this scheduler to replace the server’s resources_available values with new values returned by a site-
specific external script or program.

 See "Dynamic Server-level Resources" on page 267 in the PBS Professional Administrator’s Guide for details
of usage.

Default timeout for server dynamic resource scripts is 30 seconds. You can configure this in the scheduler
server_dyn_res_alarm attribute.

Format: String

Default: Unset

smp_cluster_dist

Deprecated (12.2). Specifies how single-host jobs should be distributed to all hosts of the complex.

Options:

pack
Keep putting jobs onto one host until it is full and then move on to the next.

round_robin
Put one job on each vnode in turn before cycling back to the first one.
RG-256 PBS Professional 2020.1.1 Reference Guide

Scheduler Parameters Chapter 4
lowest_load
Put the job on the lowest-loaded host.

See "SMP Cluster Distribution" on page 217 in the PBS Professional Administrator’s Guide and "Using Load
Balancing" on page 156 in the PBS Professional Administrator’s Guide.

Format: String

Default: pack all

sort_queues

Obsolete

strict_fifo

Deprecated. Use strict_ordering.

strict_ordering

Specifies that jobs must be run in the order determined by whatever sorting parameters are being used. This
means that a job cannot be skipped due to resources required not being available. If a job due to run next cannot
run, no job will run, unless backfilling is used, in which case jobs can be backfilled around the job that is due to
run next.

See "FIFO with Strict Ordering" on page 149 in the PBS Professional Administrator’s Guide.

Example line in PBS_HOME/sched_priv/sched_config:

strict_ordering: True ALL

Format: Boolean

Default: False all

sync_time

Removed. Do not use; this will cause an error.

unknown_shares

The number of shares for the unknown group. These shares determine the portion of a resource to be allotted
to that group via fairshare. Requires fair_share to be enabled.

See "Using Fairshare" on page 138 in the PBS Professional Administrator’s Guide.

Format: Integer

Default: The unknown group gets 0 shares
PBS Professional 2020.1.1 Reference Guide RG-257

Chapter 4 Scheduler Parameters
RG-258 PBS Professional 2020.1.1 Reference Guide

5

PBS Pro RG-259

 Resources

This chap Resources" on page 229 in the PBS Profes-
sional Ad

5.1

Data type

Boo

N

V

Dura

A

o

M

Floa

F

Lon

L

fessional 2020.1.1 Reference Guide

List of Built-in

ter lists all of the built-in PBS resources. For information on setting, viewing, and using resources, see "Using PBS
ministrator’s Guide.

Resource Data Types

s for resources are described in section 7.2, “Resource Formats”, on page 359.

lean

ame of Boolean resource is a string.

alues:

TRUE, True, true, T, t, Y, y, 1

FALSE, False, false, F, f, N, n, 0

tion

 period of time, expressed either as

An integer whose units are seconds
r

[[hours:]minutes:]seconds[.milliseconds]
in the form:

[[HH:]MM:]SS[.milliseconds]
illiseconds are rounded to the nearest second.

t

loating point. Allowable values: [+-] 0-9 [[0-9] ...][.][[0-9] ...]

g

ong integer. Allowable values: 0-9 [[0-9] ...], and + and -

Chap

RG Professional 2020.1.1 Reference Guide

S

S

S

ter 5 List of Built-in Resources

-260 PBS

<queue name>@<server name>

ize

Number of bytes or words. The size of a word is 64 bits.

Format: <integer>[<suffix>]

where suffix can be one of the following:

Default: bytes

Note that a scheduler rounds all resources of type size up to the nearest kb.

tring

Any character, including the space character.

Only one of the two types of quote characters, " or ', may appear in any given value.

Values:[_a-zA-Z0-9][[-_a-zA-Z0-9 ! " # $ % ´ () * + , - . / : ; < = > ? @ [\] ^ _ ' { | } ~] ...]

String resource values are case-sensitive. No limit on length.

tring Array

Comma-separated list of strings.

Strings in string_array may not contain commas. No limit on length.

Python type is str.

A string array resource with one value works exactly like a string resource.

Table 5-1: Size in Bytes

Suffix Meaning Size

b or w Bytes or words 1

kb or kw Kilobytes or kilowords 2 to the 10th, or 1024

mb or mw Megabytes or megawords 2 to the 20th, or 1,048,576

gb or gw Gigabytes or gigawords 2 to the 30th, or 1,073,741,824

tb or tw Terabytes or terawords 2 to the 40th, or 1024 gigabytes

pb or pw Petabytes or petawords 2 to the 50th, or 1,048,576 gigabytes

Chap

RG Professional 2020.1.1 Reference Guide

5.2

You c lue in the server, queue, or vnode
resou rted reservations.

You c icitly requested by the job. See "Resources
Requ

The f

L

serve

sche

queu

MoM

job

reser

acco
ter 5 List of Built-in Resources

-261 PBS

Viewing Resource Information

an see attribute values of resources for the server, queues, and vnodes using the qmgr or pbsnodes commands. The va
rces_assigned attribute is the amount explicitly requested by running and exiting jobs and, at the server and vnodes, sta

an see job attribute values using the qstat command. The value in the job’s Resource_List attribute is the amount expl
ested by Job" on page 245 in the PBS Professional Administrator’s Guide.

ollowing table summarizes how to find resource information:

Table 5-2: How to View Resource Information

ocation Item to View Command

r default_chunk, default_qsub_arguments,

resources_available, resources_assigned,

resources_default

qmgr, qstat, pbsnodes

duler sched_config file Favorite editor or viewer

es default_chunk, resources_available, resources_assigned,

resources_default

qmgr, qstat

 and vnodes resources_available, sharing, pcpus, resources_assigned qmgr, pbsnodes

mom_config file Favorite editor or viewer

Resource_List qstat

vation Resource_List pbs_rstat -f

unting resources_assigned entry in accounting log Favorite editor or viewer

Chap

RG Professional 2020.1.1 Reference Guide

Every ements of PBS:

5.3

Reso

reso

reso

reso

Res
ter 5 List of Built-in Resources

-262 PBS

 consumable resource, for example mem, can appear in four PBS attributes. These attributes are used in the following el

Resource Flags

urce flags are described and listed in "Resource Flags" on page 258 in the PBS Professional Administrator’s Guide.

Table 5-3: Values Associated with Consumable Resources

Attribute Vnode Queue Server Accounting Log Job Scheduler

urces_available Yes Yes Yes Yes

urces_assigned Yes Yes Yes Yes

urces_used Yes Yes Yes

ource_List Yes Yes

Chap

RG Professional 2020.1.1 Reference Guide

5.4

Reso

Amo
able
(serv

Amo
cate
ing a
vnod

Amo
by th

Amo
reso
job t
requ

Amo
reso
each
that
the r
ter 5 List of Built-in Resources

-263 PBS

Attributes where Resources Are Tracked

urces are tracked in the following attributes:

Table 5-4: Attributes Where Resources Are Tracked

Resource Being
Tracked

Attribute Name

Server and
Queue

Vnode Job Reservation

unt of each resource avail-
 for use at the object
er, queue, vnode)

resources_available
.<resource name>

resources_available.
<resource name>

unt of each resource allo-
d to jobs running and exit-
t the object (server, queue,
e)

resources_assigned
.<resource name>

resources_assigned
.<resource name>

unt of each resource used
e job

resources_used
.<resource
name>

unt of each job-wide
urce that is assigned to any
hat does not explicitly
est the resource

resources_default.<
resource name>

unt of each host-level
urce that is assigned to
 chunk of any job where
does not explicitly request
esource

default_chunk.<reso
urce name>

Chap

RG Professional 2020.1.1 Reference Guide

5.5

In the

N

D

F

List
the o

List
Each
the v
take
cons
from

List
alloc
chun
vatio
ter 5 List of Built-in Resources

-264 PBS

Resource Table Format

 following tables, the columns contain the following information:

ame

The name of the resource

escription

A description of the resource’s function

ormat

The resource’s format

of resources requested by
bject (job or reservation)

Resource_List.
<resource
name>

Resource_List
.<resource
name>

of chunks for the job.
 chunk shows the name of
node from which it is

n along with the host-level,
umable resources allocated
 that vnode.

exec_vnode

of vnodes and resources
ated to them to satisfy the
ks requested for this reser-
n or occurrence

resv_nodes

Table 5-4: Attributes Where Resources Are Tracked

Resource Being
Tracked

Attribute Name

Server and
Queue

Vnode Job Reservation

Chap

RG Professional 2020.1.1 Reference Guide

S

C

V

V

D

P

P

5.6

Nam

D
Default
 Value Python Type Platform

acce

In
ci
re
O
on
at

e bool
ter 5 List of Built-in Resources

-265 PBS

cope

Some resources are either:

• Job-wide and can be requested only outside of a select statement

• Host-level and can be requested only inside of a select statement

onsumable

A resource is consumable if use of this resource by a job reduces the amount available to other jobs

al/Opt

If the resource can take only specific values or options, each is listed here

alue/Option Description

If the resource can take only specific values or options, the behavior of each value or option is described here

efault Value

The resource’s default value, if any

ython Type

The resource’s Python type

latform

Platform where available

Resources Built Into PBS

Resources

e

escription
Format Scope Consu

mable Val / Opt Value/Option
Description

lerator

dicates whether this vnode is asso-
ated with an accelerator. Used for
questing accelerators.
n Cray XC, this resource exists
ly when there is at least one associ-

ed accelerator.

Boolean Host-level No True On Cray XC, this is
set to True when
there is at least one
associated acceler-
ator whose state is
UP.

Fals

False On Cray XC, set to
False when all
associated acceler-
ators are in state
DOWN.

Chap

RG Professional 2020.1.1 Reference Guide

acce

In
ac
vn
O
on
ac
C
th
P
sh
pu
Fo
re
m
O
re
m
A
ty

efault pbs.size

acce

In
as
O
on
ac

efault str

aoe

Li
En
at
A
re
Ea
A

efault str

Nam

D
Default
 Value Python Type Platform
ter 5 List of Built-in Resources

-266 PBS

lerator_memory

dicates amount of memory for
celerator(s) associated with this
ode.

n Cray XC, PBS sets this resource
ly on vnodes with at least one
celerator with state = UP. For
ray XC, PBS sets this resource on
e 0th NUMA node (the vnode with
BScrayseg=0), and the resource is
ared by other vnodes on the com-
te node.
r example, on vnodeA_2_0:

sources_available.accelerator_me
ory=4196mb
n vnodeA_2_1:
sources_available.accelerator_me
ory=@vnodeA_2_0
 scheduler rounds all resources of
pe size up to the nearest kb.

Size Host-level Yes No d

lerator_model

dicates model of the accelerator(s)
sociated with this vnode.
n Cray XC, PBS sets this resource
ly on vnodes with at least one
celerator with state = UP.

String Host-level No No d

st of AOEs (Application Operating
vironments) that can be instanti-

ed on this vnode. Case-sensitive.
n AOE is the environment that
sults from provisioning a vnode.
ch job can request at most one

OE. Cannot be set on server's host.

string array Host-level No Allowable
values are
site-depen-
dent.

No d

Resources

e

escription
Format Scope Consu

mable Val / Opt Value/Option
Description

Chap

RG Professional 2020.1.1 Reference Guide

arch

Sy
tu
ar
vn
on
Th
re
M
ad

efault str Linux
Linux
with
cpusets
CLE
Windows

cput

A
fo
Es

efault pbs.dura-
tion

ener

Th
PB

efault

eoe

St
En
W
re
th
W
R
m
re
A
lin

urces_availabl
e: unset

ource_List.eoe:
efault

str

exec

Th
jo
Th
at
es

C
fo

efault str

Nam

D
Default
 Value Python Type Platform
ter 5 List of Built-in Resources

-267 PBS

stem architecture. One architec-
re can be defined for a vnode. One
chitecture can be requested per
ode. Allowable values and effect
 job placement are site-dependent.
e resources_available.arch

source is the value reported by
oM unless explicitly set by the
ministrator.

String Host-level No linux Linux No d
linux_cpuse
t

Linux with cpusets

XT CLE
windows Windows

mount of CPU time used by the job
r all processes on all vnodes.
tablishes a job-wide resource limit.

Duration Job-wide No No d

gy

e energy used by a job. Set by
S.

Float. Units: kWh Yes No d

ands for “Energy Operational
vironment”.
hen set on a vnode in
sources_available.eoe, contains
e list of available power profiles.
hen set for a job in
esource_List.eoe, can contain at
ost one power profile. (A job can
quest only one power profile.)
utomatically added to resources:
e in sched_config.

string array No For
reso
e.eo

For
Res
no d

_vnode

e vnodes that PBS estimates this
b will use.
is is not the job’s exec_vnode

tribute. This appears only in job’s
timated attribute.

annot be requested for a job; used
r reporting only. Read-only.

String No d

Resources

e

escription
Format Scope Consu

mable Val / Opt Value/Option
Description

Chap

RG Professional 2020.1.1 Reference Guide

file

Si
cr
A
ty

efault pbs.size

hbm

H
on
X

efault pbs.size Xeon Phi
KNL

host

N
de

matically set to
hort form of the
name in the Mom
ute. On Cray XC

pute node, set to
p_host>_<nid>.

str

max

M
sh
tim
m
fo
m
m
fie
re
re
jo

ars pbs.dura-
tion

mem

A
w
jo
A
ty

efault pbs.size

Nam

D
Default
 Value Python Type Platform
ter 5 List of Built-in Resources

-268 PBS

ze of any single file that may be
eated by the job.
 scheduler rounds all resources of
pe size up to the nearest kb.

Size Job-wide No d

em

igh-bandwidth memory. Available
ly on some architectures such as

eon Phi KNL.

Size Host-level Yes Values must be
greater than or
equal to zero.

No d

ame of execution host. Site-depen-
nt.

String Host-level Auto
the s
host
attrib
com
<mp

_walltime

aximum walltime allowed for a
rink-to-fit job. Job’s actual wall-
e is between max_walltime and

in_walltime. PBS sets walltime
r a shrink-to-fit job. If
ax_walltime is specified,
in_walltime must also be speci-
d. Cannot be used for
sources_min or
sources_max. Cannot be set on
b arrays or reservations.

Duration Job-wide No Must be
greater than
or equal to
min_walltim
e.

5 ye

mount of physical memory i.e.
orkingset allocated to the job, either
b-wide or host-level.
 scheduler rounds all resources of
pe size up to the nearest kb.

Size Either job-
wide or
host-level.
Can be
requested
only
inside of a
select
statement.

Yes No d

Resources

e

escription
Format Scope Consu

mable Val / Opt Value/Option
Description

Chap

RG Professional 2020.1.1 Reference Guide

min_

M
sh
m
sh
se
Jo
m
C
or
on

efault pbs.dura-
tion

mpip

N
ch
ch
Th
PB
va
re
ch
na
th

pus >0: 1
rwise: 0

int

nacc

N
PB
of
O
on
le
Fo
on
w
re
th
Fo
re
O
re
to

efault int

Nam

D
Default
 Value Python Type Platform
ter 5 List of Built-in Resources

-269 PBS

walltime

inimum walltime allowed for a
rink-to-fit job. When
in_walltime is specified, job is a
rink-to-fit job. If this attribute is
t, PBS sets the job’s walltime.
b’s actual walltime is between
ax_walltime and min_walltime.
annot be used for resources_min
 resources_max. Cannot be set
 job arrays or reservations.

Duration Job-wide No Must be less
than or equal
to
max_wallti
me.

No d

rocs

umber of MPI processes for this
unk. Cannot use sum from
unks as job-wide limit.
e number of lines in
S_NODEFILE is the sum of the
lues of mpiprocs for all chunks
quested by the job. For each
unk with mpiprocs=P, the host
me for that chunk is written to
e PBS_NODEFILE P times.

Integer Host-level If nc

Othe

elerators

umber of accelerators on the host.
S sets this resource to the number

 accelerators with state = UP.
n Cray XC, PBS sets this resource
ly on vnodes whose hosts have at

ast one accelerator with state = UP.
r Cray XC, PBS sets this resource
 the 0th NUMA node (the vnode

ith PBScrayseg=0), and the
source is shared by other vnodes on
e compute node.
r example, on vnodeA_2_0:

sources_available.naccelerators=1
n vnodeA_2_1:
sources_available.naccelera-
rs=@vnodeA_2_0

Integer Host-level Yes No d

Resources

e

escription
Format Scope Consu

mable Val / Opt Value/Option
Description

Chap

RG Professional 2020.1.1 Reference Guide

nchu

N
be
sta
sta
4:
va
4,
Th
na
on
be
ex
te
Th
th
se
qu
de
Th
se
an

int

ncpu

N
efault int

nice

N
ru

efault int

node

D
re
di
re
R

int

node

D
re

efault

Nam

D
Default
 Value Python Type Platform
ter 5 List of Built-in Resources

-270 PBS

nk

umber of chunks requested
tween plus symbols in a select
tement. For example, if the select
tement is -lselect
ncpus=2+12:ncpus=8, the

lue of nchunk for the first part is
 and for the second part it is 12.
e nchunk resource cannot be
med in a select statement; it can
ly be specified by placing a num-
r before the colon, as in the above
ample. When the number is omit-
d, nchunk is 1.
is resource can be used to specify

e default number of chunks at the
rver or queue. Example: set
eue myqueue
fault_chunk.nchunk=2
is resource cannot be used in

rver and queue resources_min
d resources_max.

Integer No 1

s

umber of processors.
Integer Host-level Yes No d

ice value with which the job is to be
n. Host-dependent.

Integer Job-wide No d

ct

eprecated. Number of chunks in
source request from selection
rective, or number of hosts
quested from node specification.
ead-only.

Integer Job-wide 1

s

eprecated. Number of hosts
quested.

Integer No d

Resources

e

escription
Format Scope Consu

mable Val / Opt Value/Option
Description

Chap

RG Professional 2020.1.1 Reference Guide

omp

N
ch
C
w
Fo
th
an
se
Fo
is
tio

e of ncpus int

PBS

U
te
ru
no
te

e of mpp_host
his system

str Cray XC
only

PBS

Tr
no
Fo
PB
w
P
la
PB
Fo
B
P

 sets the value of
esource to True
ll vnodes repre-
ng the compute
.

bool Cray XC
only

PBS

Tr
co
in
va

value of
craynid is set to
alue of node_id

his compute
.

str Cray XC
only

Nam

D
Default
 Value Python Type Platform
ter 5 List of Built-in Resources

-271 PBS

threads

umber of OpenMP threads for this
unk.

annot use sum from chunks as job-
ide limit.
r the MPI process with rank 0,

e environment variables NCPUS
d OMP_NUM_THREADS are
t to the value of ompthreads.
r other MPI processes, behavior

 dependent on MPI implementa-
n.

Integer Host-level No Valu

crayhost

sed to differentiate a Cray XC sys-
m, containing ALPS, login nodes
nning PBS MoMs, and compute
des, from a separate Cray XC sys-

m with a separate ALPS.

String No Valu
for t

craylabel_<label name>

acks labels applied to compute
des.
r each label on a compute node,
S creates a custom resource

hose name is a concatenation of
BScraylabel_ and the name of the
bel. Name format:
Scraylabel_<label name>
r example, if the label name is

lue, the name of this resource is
BScraylabel_Blue.

Boolean PBS
the r
on a
senti
node

craynid

acks the node ID of the associated
mpute node. All vnodes represent-
g a particular compute node share a
lue for PBScraynid.

String No The
PBS
the v
for t
node

Resources

e

escription
Format Scope Consu

mable Val / Opt Value/Option
Description

Chap

RG Professional 2020.1.1 Reference Guide

PBS

Tr
no
in
w
a
D
re

des for the first
pute node listed
ssigned a value
for PBScray-
r. The vnodes
ach subsequent
pute node listed
ssigned a value
greater than the
ious value.

int Cray XC
only

PBS

N
efault str Cray XC

only

pcpu

A
an
lis

efault pbs.dura-
tion

pme

A
in
of
re
A
ty

efault pbs.size

Nam

D
Default
 Value Python Type Platform
ter 5 List of Built-in Resources

-272 PBS

crayorder

acks the order in which compute
des are listed in the Cray XC
ventory. All vnodes associated
ith a particular compute node share
value for PBScrayorder.
o not use this resource in a resource
quest.

Integer No Vno
com
are a
of 1
orde
for e
com
are a
one
prev

crayseg

ot used.
String No d

t

mount of CPU time allocated to
y single process in the job. Estab-
hes a per-process resource limit.

Duration Job-wide No No d

m

mount of physical memory (work-
gset) for use by any single process
 the job. Establishes a per-process
source limit.
 scheduler rounds all resources of
pe size up to the nearest kb.

Size Job-wide No No d

Resources

e

escription
Format Scope Consu

mable Val / Opt Value/Option
Description

Chap

RG Professional 2020.1.1 Reference Guide

pree

Li
re
qu

efault str

pvm

A
an
lis
A
ty

efault pbs.size

site

A
efault str

softw

Si
efault pbs.soft-

ware

Nam

D
Default
 Value Python Type Platform
ter 5 List of Built-in Resources

-273 PBS

mpt_targets

st of resources and/or queues. Jobs
questing those resources or in those
eues are preemption targets.

string array

Syntax:
preempt_targets="Queu
e=<queue
name>[,Queue=<queue
name>],Resource_List.<
resource>=
<value>[,Resource_List.
<resource>= <value>]
"
or
preempt_targets=None
Keywords “queue” and
“none” are case-insensi-
tive. You can list multi-
ple comma-separated
targets.

Job-wide No No d

em

mount of virtual memory for use by
y single process in the job. Estab-
hes a per-process resource limit.
 scheduler rounds all resources of
pe size up to the nearest kb.

Size Job-wide No No d

rbitrary string resource.
String Job-wide No No d

are

te-specific software specification.
String Job-wide Allowable

values and
effect on job
placement
are site-
dependent.

No d

Resources

e

escription
Format Scope Consu

mable Val / Opt Value/Option
Description

Chap

RG Professional 2020.1.1 Reference Guide

soft_

So
w
un
ki
A
its
on

efault pbs.dura-
tion

start

Th
C
fo
A
at

efault int

vme

A
al
Es
lim
A
ty

efault pbs.size

vnod

N
w
Se
of
G

efault str

vnty

Th
ca
ci
H
vn
O
re
M
re
sc

matically set for
 XC; none for
Cray XC

str all

Nam

D
Default
 Value Python Type Platform
ter 5 List of Built-in Resources

-274 PBS

walltime

ft limit on walltime. Similar to
alltime, but cannot be requested by
privileged users, and job is not
lled if it exceeds its soft_walltime.
 job’s soft_walltime cannot exceed
 walltime. Can be set by Manager
ly.

Duration No d

_time

e estimated start time for this job.
annot be requested for a job; used
r reporting only.
ppears only in job’s estimated
tribute. Read-only.

Integer No d

m

mount of virtual memory for use by
l concurrent processes in the job.
tablishes a per-chunk resource
it.

 scheduler rounds all resources of
pe size up to the nearest kb.

Size Host-level Yes No d

e

ame of virtual node (vnode) on
hich to execute. Site-dependent.
e “Vnode Attributes” on page 320
 the PBS Professional Reference
uide.

String Host-level No d

pe

e type of the vnode. Automati-
lly set by PBS to one of two spe-
fic values for Cray XC vnodes.
as no meaning for non-Cray XC
odes.

n CLE, automatically added to
sources: line in sched_config.
ust be manually added to
sources: line when your server/
heduler runs on non-CLE host.

string array Host-level No cray_comp
ute

This vnode repre-
sents part of a com-
pute node.

Auto
Cray
non-

cray_login This vnode repre-
sents a login node.

Resources

e

escription
Format Scope Consu

mable Val / Opt Value/Option
Description

PBS RG-275

Chapter 5

wallt

A
lis
A
w
tra

ars pbs.dura-
tion

Nam

D
Default
 Value Python Type Platform
 Professional 2020.1.1 Reference Guide

List of Built-in Resources

ime

mount of wall-clock time. Estab-
hes a job-wide resource limit.
ctual elapsed time may differ from
alltime during Daylight Savings
nsitions.

Duration Job-wide No 5 ye

Resources

e

escription
Format Scope Consu

mable Val / Opt Value/Option
Description

Chap

RG Professional 2020.1.1 Reference Guide
ter 5 List of Built-in Resources

-276 PBS

6

PBS Pro RG-277

Attributes

This chap orted attributes of jobs are listed in section
6.11, “Job

6.1

• When order to make the change.

• When

6.2

You set m age 38 in the PBS Professional Administra-
tor’s Guid ributes can be set at submission via the qsub
command

The follow

To set the

qmgr

Qmgr
fessional 2020.1.1 Reference Guide

ter lists all of the supported PBS attributes. Attributes are listed by the PBS object they modify. For example, all supp
 Attributes”, on page 328. Attributes are case-sensitive.

Attribute Behavior

 you set the value of most attributes, the change takes place immediately. You do not need to restart any daemons in

 an attribute is unset, it behaves as if it is at its default value.

How To Set Attributes

ost attributes via the qmgr command. You can set vnode attributes during vnode creation (see "Creating Vnodes" on p
e), or afterward (see "Configuring Vnodes" on page 41 in the PBS Professional Administrator’s Guide). Many job att
.

ing are the instructions for setting most attributes.

 value of a non-string_array attribute, use the qmgr command, either from the command line or within qmgr:

-c "set <object> <attribute> = <value>"

: set <object> <attribute> = <value>

Chap

RG Professional 2020.1.1 Reference Guide

To se

q

q

q

q

Q
Q
Q
Q

To un

q

Q

where

For e

Q

See “

6.3

If you

q

q

ter 6 Attributes

-278 PBS

t or change the value of a string_array attribute, use the qmgr command, either from the command line or within qmgr:

mgr -c "set <object> <attribute> = <value>"

mgr -c 'set <object> <attribute> = "<value,value>"'

mgr -c 'set <object> <attribute> += <value>'

mgr -c 'set <object> <attribute> -= <value>'

mgr: set <object> <attribute> = <value>
mgr: set <object> <attribute> = '<value,value>'
mgr: set <object> <attribute> += <value>
mgr: set <object> <attribute> -= <value>

set the value of an attribute:

mgr -c "unset <object> <attribute>"

mgr: unset <object> <attribute>

 <object> is one of server, queue, hook, node, or sched.

xample, to set resources_max.walltime at the server to be 24 hours:

mgr: set server resources_max.walltime = 24:00:00

qmgr” on page 149.

Viewing Attribute Values

 want to view attribute values, the following commands are helpful:

stat; see section 2.57, “qstat”, on page 197

mgr; see section 2.47, “qmgr”, on page 149

PBS RG-279

Chapter 6

p

• T
q

Q

• T
q

Q

• T
q

• T
Q

• T
Q

• T
Q

• T
p

6.4

In the

N

D

F

V

 Professional 2020.1.1 Reference Guide

Attributes

bs_rstat; see section 2.32, “pbs_rstat”, on page 94

o see server attributes, use one of the following:
stat -B -f

mgr: list server

o see queue attributes, use one of the following:
stat -Q -f <queue name>

mgr: list queue <queue name>

o see job attributes:
stat -f <job ID>

o see hook attributes:
mgr: list hook <hook name>

o see scheduler attributes:
mgr: list sched

o see vnode attributes:
mgr: list node <node name>

o see reservation attributes:
bs_rstat -F

Attribute Table Format

 following tables, the columns contain the following information:

ame

The name of the attribute

escription

A description of the attribute’s function

ormat

The attribute’s format

al/Opt

If the attribute can take only specific values or options, each is listed here

Chap

RG Professional 2020.1.1 Reference Guide

V

D

P

U

6.5

• T Other features, such as has_key(), are not
a

• D
ter 6 Attributes

-280 PBS

alue/Option Description

If the attribute can take only specific values or options, the behavior of each value or option is described here

efault Value, Def Val

The attribute’s default value, if any

ython Type

The attribute’s Python type

ser, Oper, Mgr

Indicates the actions allowed for unprivileged users, Operators, and Managers

The following table shows the operations allowed and their symbols:

Caveats

he Python types listed as Python dictionaries support a restricted set of operations. They can reference values by index.
vailable.

o not use qmgr to set attributes for reservation queues.

Table 6-1: User, Operator, Manager Actions

Symbol Explanation

r Entity can read attribute

w Entity can directly set or alter attribute

s Entity can set but not alter attribute

a Entity can alter but not set attribute

i Entity can indirectly set attribute

- Entity cannot set or alter attribute, whether directly or indirectly

PBS RG-281

Chapter 6

6.6

Nam

D
Default
 Value Python Type

U
se

r
O

pe
r

M
gr

acl_

Sp
co

False; all
hosts allowed
access

bool r r r,
w

acl_

Sp
al
as

False bool r r r,
w

acl_

Li
of
al
Th
of
m

No default pbs.acl r r r,
w

acl_

Sp
va
se

False; all
groups
allowed
access

bool r r r,
w

acl_

Li
at
th
ho
lis

pbs.acl r r r,
w

acl_

Sp
tio
at

False; access
allowed from
all hosts

bool r r r,
w

 Professional 2020.1.1 Reference Guide

Attributes

Server Attributes

Server Attributes

e

escription
Format Val / Opt Value/Option Description

host_enable

ecifies whether the server obeys the host access
ntrol list in the acl_hosts server attribute.

Boolean. When this attribute is True, the
server limits host access according
to the access control list.

host_moms_enable

ecifies whether all MoMs are automatically
lowed to contact the server with the same privilege
 hosts listed in the acl_hosts server attribute.

Boolean True All MoMs are automatically
allowed to contact the server with
the same privilege as hosts listed in
the acl_hosts server attribute.

False MoMs are not automatically
allowed to contact the server with
the same privilege as hosts listed in
the acl_hosts server attribute.

hosts

st of hosts from which services can be requested
 this server. Requests from the server host are
ways honored whether or not that host is in the list.
is list contains the fully qualified domain names

 the hosts. List is evaluated left-to-right; first
atch in list is used.

String. Syntax:
“[+|-]<host-
name>.<domain>[,
...]”

resv_group_enable

ecifies whether the server obeys the group reser-
tion access control list in the acl_resv_groups
rver attribute.

Boolean When this attribute is True, the
server limits group access accord-
ing to the access control list.

resv_groups

st of groups allowed or denied permission to cre-
e reservations in this PBS complex. The groups in
e list are groups on the server host, not submission
sts. List is evaluated left-to-right; first match in
t is used.

String. Syntax:
“[+|-]<group
name>[, ...]”

resv_host_enable

ecifies whether the server obeys the host reserva-
n access control list in the acl_resv_hosts server

tribute.

Boolean When this attribute is True, the
server limits host access according
to the access control list.

Chap

RG Professional 2020.1.1 Reference Guide

acl_

Li
in
fu
ev

No default pbs.acl r r r,
w

acl_

Sp
al
ac
at

False; all
users are
allowed to
create reserva-
tions

bool r r r,
w

acl_

Li
re
le

No default pbs.acl r r r,
w

acl_

Li
ru
ow
be
re
lis
C
se

No default; no
root jobs
allowed

pbs.acl r r r

acl_

Sp
al
th

False; all
users have
access

bool r r r,
w

acl_

Li
co
rig

No default pbs.acl r r r,
w

back

Sp
jo
ba

R

 Unset. When
unset, backfill
depth is 1

int r r,
w

r,
w

Nam

D
Default
 Value Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-282 PBS

resv_hosts

st of hosts from which reservations can be created
 this PBS complex. This list is made up of the
lly-qualified domain names of the hosts. List is
aluated left-to-right; first match in list is used.

String.

Syntax: “[+|-
]<host-
name>.<domain>[,
...]”

resv_user_enable

ecifies whether the server limits which users are
lowed to create reservations, according to the
cess control list in the acl_resv_users server
tribute.

Boolean When this attribute is True, the
server limits user reservation cre-
ation according to the access con-
trol list.

resv_users

st of users allowed or denied permission to create
servations in this PBS complex. List is evaluated
ft-to-right; first match in list is used.

String.

Syntax:”[+|-]<user-
name>[@<host-
name>][, ...]”

roots

st of users with root privilege who can submit and
n jobs in this PBS complex. For any job whose
ner is root or Administrator, the job owner must

 listed in this access control list, or the job is
jected. List is evaluated left-to-right; first match in
t is used.
an be set or altered by root only, and only at the
rver host.

String.

Syntax:”[+|-]<user-
name>[@<host-
name>][, ...]”

user_enable

ecifies whether the server limits which users are
lowed to run commands at the server, according to
e control list in the acl_users server attribute.

Boolean When this attribute is True, the
server limits user access according
to the access control list.

users

st of users allowed or denied permission to run
mmands at this server. List is evaluated left-to-
ht; first match in list is used.

String.

Syntax:”[+|-]<user-
name>[@<host-
name>][, ...]”

fill_depth

ecifies backfilling behavior. Sets the number of
bs that are to be backfilled around. Overridden by
ckfill_depth queue attribute.

ecommendation: set this to less than 100.

Integer.
Must be >=0

>=0 PBS backfills around the specified
number of jobs.

Unset Backfill depth is set to 1.

Server Attributes

e

escription
Format Val / Opt Value/Option Description

PBS RG-283

Chapter 6

com

In
ot

No default str r r,
w

r,
w

defa

Th
ch
sp
pr
re
fie

No default pbs.pbs_resour
ce

Syntax:
default_chunk[“
<resource
name>”]=<valu
e> where
resource name is
any built-in or
custom resource

r r,
w

r,
w

defa

N
- - -

defa

A
to
rid
gi

No default pbs.args r r,
w

r,
w

defa

A
qs
co
at
at
rid
to
de
co

No default pbs.args r r,
w

r,
w

defa

Th
re
se

workq pbs.queue r r,
w

r,
w

Nam

D
Default
 Value Python Type

U
se

r
O

pe
r

M
gr
 Professional 2020.1.1 Reference Guide

Attributes

ment

formational text. Can be set by a scheduler or
her privileged client.

String of any form

ult_chunk

e list of resources which will be inserted into each
unk of a job’s select specification if the corre-
onding resource is not specified by the user. This
ovides a means for a site to be sure a given
source is properly accounted for even if not speci-
d by the user.

String. Syntax:
default_chunk.<reso
urce
name>=<value>,def
ault_chunk.<resourc
e name>=<value>,
...

ult_node

o longer used.
ult_qdel_arguments

rgument to qdel command. Automatically added
 all qdel commands. See qdel(1B). Over-
es standard defaults. Overridden by arguments

ven on the command line.

String. Syntax: “-
Wsuppress_mail=<N
>”

ult_qsub_arguments

rguments that are automatically added to the
ub command. Any valid arguments to qsub

mmand, such as job attributes. Setting a job
tribute via default_qsub_arguments sets that
tribute for each job which does not explicitly over-
e it. See qsub(1B). Settable by the administra-

r via the qmgr command. Overrides standard
faults. Overridden by arguments given on the
mmand line and in script directives.

String. Syntax:
“<option> <value>
<option> <value>”,
e.g. “-r y -N MyJob”
To add to existing:
Qmgr: s s
default_qsub_argu
ments +=”<option>
<value>”

ult_queue

e name of the default target queue. Used for
quests that do not specify a queue name. Must be
t to an existing queue.

Queue name

Server Attributes

e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2020.1.1 Reference Guide

eligib

C
th
va
sta

False bool r r r,
w

est_

O
flatu

U
al
as
m
al
su
If
re
sa

.

False; autho-
rization is
required

bool r r r,
w

FLic

Th
ca

No default int r r r

job_

Th
Two weeks pbs.duration r r r,

w

Nam

D
Default
 Value Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-284 PBS

le_time_enable

ontrols starving behavior. Toggles between using
e value of the job's eligible_time attribute and the
lue of now() - etime to evaluate whether job is
rving.

Boolean True The value of the job’s
eligible_time attribute is used for
its starving time.

False The value of now() - etime is used
for the job’s starving time.

start_time_freq

bsolete. No longer used.
id

sed for authorization allowing users to submit and
ter jobs. Specifies whether user names are treated
 being the same across the PBS server and all sub-
ission hosts in the PBS complex. Can be used to
low users without accounts at the server host to
bmit jobs.
UserA has an account at the server host, PBS
quires that UserA@<server host> is the
me as UserA@<execution host>.

Boolean True PBS assumes that
UserA@<submithost> is same
user as UserA@<server name>
Jobs that run under the name of the
job owner do not need authoriza-
tion.
A job submitted under a different
username, by using the u option to
the qsub command, requires
authorization.
Entries in .rhosts or
hosts.equiv are not checked, so
even if UserA@host1 has an entry
for UserB@host2, UserB@host2
cannot operate on UserA@host1’s
jobs.
User without account on server can
submit jobs.

False PBS does not assume that
UserA@<submission host> is
the same user as UserA@<server
host>.
Jobs that run under the name of the
job owner need authorization.
Users must have accounts on the
server host to submit jobs.

enses

e number of licenses currently available for allo-
tion to unlicensed hosts.

Integer

history_duration

e length of time PBS will keep each job's history.
Duration

Server Attributes

e

escription
Format Val / Opt Value/Option Description

PBS RG-285

Chapter 6

job_

En
at

False bool r r r,
w

job_

Th
in
M
al

45 seconds pbs.duration r r,
w

r,
w

job_

Fo
th
at
th
th
co
is
hi

Unset pbs.job_sort_fo
rmula

r r r,
w

jobs

Li
100MB pbs.size r r r,

w

licen

Th
el
Av

 Avail_Global
:0
Avail_Local:
0 Used:0
High_Use:0

pbs.license_co
unt

r r r

log_

Th
511 int r r,

w
r,
w

Nam

D
Default
 Value Python Type

U
se

r
O

pe
r

M
gr
 Professional 2020.1.1 Reference Guide

Attributes

history_enable

ables job history management. Setting this
tribute to True enables job history management.

Boolean

requeue_timeout

e amount of time that can be taken while requeue-
g a job.
inimum allowed value: 1 second. Maximum
lowed value: 3 hours.

Duration

sort_formula

rmula for computing job priorities. Described in
e PBS Professional Administrator’s Guide. If the
tribute job_sort_formula is set, all schedulers use
e formula in it to compute job priorities. When
is scheduler sorts jobs according to the formula, it
mputes a priority for each job, where that priority
the value produced by the formula. Jobs with a
gher value get higher priority.

String. Syntax:
mathematical for-
mula; can be made
up of expressions,
where expressions
contain terms which
are added, sub-
tracted, multiplied, or
divided, and which
can contain parenthe-
ses, exponents, unary
plus and minus, the
ternary operator, and
Python math module
functions.

cript_max_size

mit on the size of any job script.
size

Units default to bytes
se_count

e license_count attribute contains the following
ements with their values: Avail_Global,
ail_Local, Used, High_Use.

String.

Syntax:
Avail_Global:<value
>
Avail_Local:<value
> Used:<value>
High_Use:<value>

Avail_Global The number of licenses available at
ALM license server (checked in.)

Avail_Local The number of licenses kept by
PBS (checked out.)

Used The number of licenses currently in
use.

High_Use The highest number of licenses
ever checked out and used by the
current instance of the PBS server.

events

e types of events the server logs.
Integer representa-
tion of bit string

Server Attributes

e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2020.1.1 Reference Guide

mail

Th
se
fa

adm str r r r,
w

man

Li
Root on the
server host

pbs.acl r r r,
w

max

Th
ar

10000 int r r,
w

r,
w

max

Th
nu
be
un

5 int r r r,
w

max

O
at
re
PB

No default pbs.pbs_resour
ce

Syntax:
max_group_res[
“<resource
name>”]=<valu
e> where
resource name is
any built-in or
custom resource

r r,
w

r,
w

Nam

D
Default
 Value Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-286 PBS

_from

e username from which server-generated mail is
nt to users. Mail is sent to this address upon
ilover.

String

agers

st of PBS Managers.
String. Syntax:
“<user-
name>@<host-
name>.<subdomain
>.<domain>[,<user
name>@<host-
name>.<subdo-
main>.<domain>
...]”. The host, sub-
domain, or domain
name may be wild-
carded with an aster-
isk (*).

_array_size

e maximum number of subjobs allowed in any
ray job.

Integer

_concurrent_provision

e max_concurrent_provision attribute is the
mber of vnodes allowed to be in the process of
ing provisioned. Cannot be set to zero. When
set, default value is used.

Integer >0

_group_res

ld limit attribute. Incompatible with new limit
tributes. The maximum amount of the specified
source that any single group may consume in this
S complex.

String. Syntax:
max_group_res.<res
ource
name>=<value>

Any PBS
resource, e.g.
“ncpus”,
“mem”,
“pmem”

Server Attributes

e

escription
Format Val / Opt Value/Option Description

PBS RG-287

Chapter 6

max

O
at
th
If
th
pr
th

No ne pbs.pbs_resour
ce

Syntax:
max_group_res_
soft[“<resource
name>”]=<valu
e> where
resource name is
any built-in or
custom resource

r r,
w

r,
w

max

O
at
th
th

No default int r r,
w

r,
w

max

O
at
th
co
nu
pr
th

No default int r r,
w

r,
w

max

M
jo
M
is
A
be

9999999 int r r r,
w

max

Li
al
C
C

No default str r r,
w

r,
w

Nam

D
Default
 Value Python Type

U
se

r
O

pe
r

M
gr
 Professional 2020.1.1 Reference Guide

Attributes

_group_res_soft

ld limit attribute. Incompatible with new limit
tributes. The soft limit for the specified resource
at any single group may consume in this complex.
a group is consuming more than this amount of
e specified resource, their jobs are eligible to be
eempted by jobs from groups who are not over
eir soft limit.

String. Syntax:
max_group_res_soft.
<resource
name>=<value>

Any PBS
resource, e.g.
“ncpus”,
“mem”,
“pmem”, etc.

_group_run

ld limit attribute. Incompatible with new limit
tributes. The maximum number of jobs owned by
e users in one group allowed to be running within
is complex at one time.

Integer

_group_run_soft

ld limit attribute. Incompatible with new limit
tributes. The maximum number of jobs owned by
e users in one group allowed to be running in this
mplex at one time. If a group has more than this
mber of jobs running, their jobs are eligible to be
eempted by jobs from groups who are not over
eir soft limit.

Integer

_job_sequence_id

aximum value of sequence number in a job ID,
b array ID, or reservation ID.
inimum allowed is 9999999. Maximum allowed
999999999999.

fter specified maximum for sequence number has
en reached, job IDs start again at 0.

Integer

_queued

mit attribute. The maximum number of jobs
lowed to be queued or running in the complex.
an be specified for projects, users, groups, or all.
annot be used with old limit attributes.

Limit specification.
See Chapter 7, "For-
mats", on page 353.

Server Attributes

e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2020.1.1 Reference Guide

max

Li
fie
or
pr
ol

No default pbs.pbs_resour
ce

Syntax:
max_queued_res
[“<resource
name>”]=<valu
e> where
resource name is
any built-in or
custom resource

r r,
w

r,
w

max

Li
al
ifi
us

No default str r r,
w

r,
w

max

Li
fie
in
gr
at

No default pbs.pbs_resour
ce

Syntax:
max_run_res[“<
resource
name>”]=<valu
e> where
resource name is
any built-in or
custom resource

r r,
w

r,
w

max

Li
ifi
ni
us
at

No default pbs.pbs_resour
ce

Syntax:
max_run_res_sof
t[“<resource
name>”]=<valu
e> where
resource name is
any built-in or
custom resource

r r,
w

r,
w

Nam

D
Default
 Value Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-288 PBS

_queued_res

mit attribute. The maximum amount of the speci-
d resource allowed to be allocated to jobs queued
 running in the complex. Can be specified for
ojects, users, groups, or all. Cannot be used with
d limit attributes.

Limit specification.
See Chapter 7, "For-
mats", on page 353.
Syntax:
max_queued_res.<re
source name> =
<.limit>

_run

mit attribute. The maximum number of jobs
lowed to be running in the complex. Can be spec-
ed for projects, users, groups, or all. Cannot be
ed with old limit attributes.

Limit specification.
See Chapter 7, "For-
mats", on page 353.

_run_res

mit attribute. The maximum amount of the speci-
d resource allowed to be allocated to jobs running

 the complex. Can be specified for projects, users,
oups, or all. Cannot be used with old limit
tributes.

Limit specification.
See Chapter 7, "For-
mats", on page 353
Syntax:
max_run_res.<resou
rce name> =
<.limit>

_run_res_soft

mit attribute. Soft limit on the amount of the spec-
ed resource allowed to be allocated to jobs run-
ng in the complex. Can be specified for projects,
ers, groups, or all. Cannot be used with old limit
tributes.

Limit specification.
See Chapter 7, "For-
mats", on page 353
max_run_res_soft.<r
esource name> =
<.limit>

Server Attributes

e

escription
Format Val / Opt Value/Option Description

PBS RG-289

Chapter 6

max

Li
al
ifi
us

No default str r r,
w

r,
w

max

O
at
co

No default int r r,
w

r,
w

max

O
at
re
th

No default pbs.pbs_resour
ce

Syntax:
max_user_res[“
<resource
name>”]=
<value> where
resource name is
any built-in or
custom resource

r r,
w

r,
w

max

O
at
fie
w
th
ar
ar

No default pbs.pbs_resour
ce

Syntax:
max_user_res_s
oft[“<resource
name>”]=<valu
e> where
resource name is
any built-in or
custom resource

r r,
w

r,
w

max

O
at
a
pl

No default int r r,
w

r,
w

Nam

D
Default
 Value Python Type

U
se

r
O

pe
r

M
gr
 Professional 2020.1.1 Reference Guide

Attributes

_run_soft

mit attribute. Soft limit on the number of jobs
lowed to be running in the complex. Can be spec-
ed for projects, users, groups, or all. Cannot be
ed with old limit attributes.

Limit specification.
See Chapter 7, "For-
mats", on page 353.

_running

ld limit attribute. Incompatible with new limit
tributes. The maximum number of jobs in this
mplex allowed to be running at any given time.

Integer

_user_res

ld limit attribute. Incompatible with new limit
tributes. The maximum amount of the specified
source that any single user may consume within
is complex.

String. Syntax:
max_user_res.<reso
urce
name>=<value>

Any PBS
resource, e.g.
“ncpus”,
“mem”,
“pmem”, etc.

_user_res_soft

ld limit attribute. Incompatible with new limit
tributes. The soft limit on the amount of the speci-
d resource that any single user may consume

ithin this complex. If a user is consuming more
an this amount of the specified resource, their jobs
e eligible to be preempted by jobs from users who
e not over their soft limit.

String. Syntax:
max_user_res_soft.<
resource
name>=<value>

Any valid
PBS resource,
e.g. “ncpus”,
“mem”,
“pmem”, etc

_user_run

ld limit attribute. Incompatible with new limit
tributes. The maximum number of jobs owned by
single user allowed to be running within this com-
ex at one time.

Integer

Server Attributes

e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2020.1.1 Reference Guide

max

O
at
ow
ni
m
el
no

No default int r r,
w

r,
w

node

C
re
ho
co
de
R

310 int r r,
w

r,
w

node

Sp
no
se

False bool r r,
w

r,
w

node

Sp
(n
no
no

Unset pbs.node_grou
p_key

r r,
w

r,
w

Nam

D
Default
 Value Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-290 PBS

_user_run_soft

ld limit attribute. Incompatible with new limit
tributes. The soft limit on the number of jobs
ned by a single user that are allowed to be run-

ng within this complex at one time. If a user has
ore than this number of jobs running, their jobs are
igible to be preempted by jobs from users who are
t over their soft limit.

Integer

_fail_requeue

ontrols whether running jobs are automatically
queued or are deleted when the primary execution
st fails. Number of seconds to wait after losing
ntact with Mother Superior before requeueing or
leting jobs.

everts to default value when server is restarted.

Integer.

Units: Seconds.

<0 Behaves as if set to 1.
0 Jobs are not requeued; they are left

in the Running state until the exe-
cution host is recovered.

>0 When the host has been down for
the specified number of seconds,
jobs are requeued if they are
marked as rerunnable, or are
deleted.

Unset Behaves as if set to default value of
310.

_group_enable

ecifies whether placement sets (which includes
de grouping) are enabled. See node_group_key
rver attribute.

Boolean When set to True, placement sets
are enabled.

_group_key

ecifies the resources to use for placement sets
ode grouping). Overridden by queue’s
de_group_key attribute. See
de_group_enable server attribute.

String_array

When specifying
multiple resources,
separate them with
commas and enclose
the value in double
quotes.

Server Attributes

e

escription
Format Val / Opt Value/Option Description

PBS RG-291

Chapter 6

oper

Li
No default pbs.acl r r r,

w

pbs_

D
- - - - -

pbs_

Lo
No default str r r r,

w

pbs_

Th
w
gi

31536000
seconds (1
year).

pbs.duration r r r,
w

pbs_

M
an
in
be
tim

Maximum
value for an
integer

int r r r,
w

Nam

D
Default
 Value Python Type

U
se

r
O

pe
r

M
gr
 Professional 2020.1.1 Reference Guide

Attributes

ators

st of PBS Operators.
String. Syntax:
<user-
name>@<host-
name>.<subdomain
>.<domain
name>[,<user-
name>@<host-
name>.<subdomain
>.<domain name>
...]. The host, subdo-
main, or domain
name may be wild-
carded with an aster-
isk (*).

license_file_location

eprecated. Do not use.
- - -

license_info

cation of license server(s).
String. Syntax:
One or more port
number and host-
name combinations:
<port1>@<host1>[
:<port2>@<host2>:
...:<portN>@<host
N>] where host1,
host2, ... hostN can
be IP addresses.
Delimiter between
items is colon (“:”).

license_linger_time

e number of seconds to keep an unused license,
hen the number of licenses is above the value
ven by pbs_license_min.

Integer.
Units: seconds.

license_max

aximum number of licenses to be checked out at
y time, i.e maximum number of licenses to keep
 the PBS local license pool. Sets a cap on the num-
r of nodes or sockets that can be licensed at one
e.

Integer

Server Attributes

e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2020.1.1 Reference Guide

pbs_

M
ne
lic
is
ou
If

0 int r r r,
w

pbs_

Th
No default pbs.version r r r

pow

R
to

False bool r r r,
w

pyth

Th
be
nu
py
Py

100 int r r r,
w

pyth

Th
be
nu
py
Py

1000 int r r r,
w

pyth

Th
pr
ei
(s
ex
cr
be

30 pbs.duration r r r,
w

quer

C
se
us

- On installa-
tion: True

After being
unset: False

bool r r r,
w

Nam

D
Default
 Value Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-292 PBS

license_min

inimum number of nodes or sockets to perma-
ntly keep licensed, i.e. the minimum number of
enses to keep in the PBS local license pool. This
the minimum number of licenses to keep checked
t.
unset, PBS automatically sets the value to 0.

Integer

version

e version of PBS for this server.
String

er_provisioning

eflects use of power profiles via PBS. Set by PBS
 True when PBS_power hook is enabled.

Boolean True Power provisioning is enabled.
False Power provisioning is disabled.

on_restart_max_hooks

e maximum number of hooks to be serviced
fore the Python interpreter is restarted. If this
mber is exceeded, and the time limit set in
thon_restart_min_interval has elapsed, the
thon interpreter is restarted.

Integer

on_restart_max_objects

e maximum number of objects to be created
fore the Python interpreter is restarted. If this
mber is exceeded, and the time limit set in
thon_restart_min_interval has elapsed, the
thon interpreter is restarted.

Integer

on_restart_min_interval

e minimum time interval before the Python inter-
eter is restarted. If this interval has elapsed, and
ther the maximum number of hooks to be serviced
et in python_restart_max_hooks) has been
ceeded or the maximum number of objects to be
eated (set in python_restart_max_objects) has
en exceeded, the Python interpreter is restarted.

Integer.
Units: Seconds

or
[[HH:]MM:]SS
(duration)

y_other_jobs

ontrols whether unprivileged users are allowed to
lect or query the status of jobs owned by other
ers.

Boolean When this attribute is True, unpriv
ileged users can query or select
other users’ jobs.

Server Attributes

e

escription
Format Val / Opt Value/Option Description

PBS RG-293

Chapter 6

queu

Li
al
fie
us

No default str r r,
w

r,
w

queu

Li
fie
in
gr
at

No default pbs.pbs_resour
ce

Syntax:
queued_jobs_thr
eshold_res[“<re
source
name>”]=<valu
e> where
resource name is
any built-in or
custom resource

r r,
w

r,
w

rese

O
rese

D
be
to
ch
af
th

7200 (2
hours)

int - - r,
w

rese

Th
de
fir
be
tio
ne
gr

600 (10 min-
utes)

int r r r,
w

Nam

D
Default
 Value Python Type

U
se

r
O

pe
r

M
gr
 Professional 2020.1.1 Reference Guide

Attributes

ed_jobs_threshold

mit attribute. The maximum number of jobs
lowed to be queued in the complex. Can be speci-
d for projects, users, groups, or all. Cannot be
ed with old limit attributes.

Limit specification.
See Chapter 7, "For-
mats", on page 353.

ed_jobs_threshold_res

mit attribute. The maximum amount of the speci-
d resource allowed to be allocated to jobs queued

 the complex. Can be specified for projects, users,
oups, or all. Cannot be used with old limit
tributes.

Limit specification.
See Chapter 7, "For-
mats", on page 353.
queued_jobs_thresho
ld_res.<resource
name> = <.limit>

rve_retry_cutoff

bsolete. No longer used.
rve_retry_init

eprecated. The amount of time after a reservation
comes degraded that PBS waits before attempting
 reconfirm the reservation. When this value is
anged, only reservations that become degraded
ter the change use the new value. Must be greater
an zero.

Integer.

Units: Seconds

rve_retry_time

e amount of time after a reservation becomes
graded that PBS waits before attempting to recon-
m the reservation, as well as amount of time
tween attempts to reconfirm degraded reserva-
ns. When this value is changed, PBS uses the
w value for any subsequent attempts. Must be
eater than zero.

Integer.

Units: Seconds

Server Attributes

e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2020.1.1 Reference Guide

reso

Th
ru
ea
R
tio

No default pbs.pbs_resour
ce

Syntax:
resources_assign
ed[“<resource
name>”]=<valu
e> where
resource name is
any built-in or
custom resource

r r r

reso

Th
de
se

No default pbs.pbs_resour
ce

Syntax:
resources_availa
ble[“<resource
name>”]=<valu
e> where
resource name is
any built-in or
custom resource

r r,
w

r,
w

reso

N
- - -

reso

Th
se
do
de
Th
re
co
Fo
de

No limit pbs.pbs_resour
ce

Syntax:
resources_defaul
t[“<resource
name>”]=<valu
e> where
resource name is
any built-in or
custom resource

r r,
w

r,
w

Nam

D
Default
 Value Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-294 PBS

urces_assigned

e total of each type of resource allocated to jobs
nning and exiting in this complex, plus the total of
ch type of resource allocated to any reservation.
eservation resources are added when the reserva-
n starts.

String. Syntax:
resources_assigned.
<resource
name>=<value>[,re
sources_assigned.<r
esource
name>=<value>,...]

urces_available

e list of available resources and their values
fined on the server. Each resource is listed on a
parate line.

String. Syntax:
resources_available.
<resource
name>=<value>

urces_cost

o longer used.
urces_default

e list of default job-wide resource values that are
t as limits for jobs in this complex when a) the job
es not specify a limit, and b) there is no queue
fault.
e value for a string array, e.g.
sources_default.<string array resource>, can
ntain only one string.
r host-level resources, see the
fault_chunk.<resource name> server attribute.

String

Syntax:
resources_default.<r
esource
name>=<value>[,
...]

Server Attributes

e

escription
Format Val / Opt Value/Option Description

PBS RG-295

Chapter 6

reso

Th
re
is
qu
fu
co

No limit pbs.pbs_resour
ce

Syntax:
resources_max[“
<resource
name>”]=<valu
e> where
resource name is
any built-in or
custom resource

r r,
w

r,
w

restr

C
be
co

unset Python list r r r,
w

resv

Sp
va

True bool r r r,
w

resv

Th
cl
R
th
in

Unset;
behaves as if
zero

int r r,
w

r,
w

rpp_

Th
1024 int r r r,

w

rpp_

M
th

64 int r r r,
w

rpp_

In
w
m
fir

10 int r r r,
w

Nam

D
Default
 Value Python Type

U
se

r
O

pe
r

M
gr
 Professional 2020.1.1 Reference Guide

Attributes

urces_max

e maximum amount of each resource that can be
quested by any single job in this complex, if there
not a resources_max value defined for the
eue at which the job is targeted. This attribute
nctions as a gating value for jobs entering the PBS
mplex.

String

Syntax:
resources_max.<reso
urce
name>=<value>[,
...]

ict_res_to_release_on_suspend

omma-separated list of consumable resources to
 released when jobs are suspended. If unset, all
nsumable resources are released on suspension.

String_array

Syntax: comma-sep-
arated list

_enable

ecifies whether or not advance and standing reser-
tions can be created in this complex.

Boolean When set to True, new reservations
can be created. When changed
from True to False, new reserva-
tions cannot be created, but existing
reservations are honored.

_post_processing_time

e amount of time allowed for reservations to
ean up after running jobs.
eservation duration and end time are extended by
is amount of time. Jobs are not allowed to run dur-
g the cleanup period.

Duration

highwater

e maximum number of messages.
Integer Greater than

or equal to
one

max_pkt_check

aximum number of TPP messages processed by
e main server thread per iteration.

Integer

retry

 a fault-tolerant setup (multiple pbs_comms),
hen the first pbs_comm fails partway through a
essage, this is number of times TPP tries to use the
st pbs_comm.

Integer Greater than
or equal to
zero

Server Attributes

e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2020.1.1 Reference Guide

sche

Th
10 minutes
(600 sec-
onds)

pbs.duration r r,
w

r,
w

sche

En
op
sp
pb

False if never
set via
pbs_serve
r command.

bool r r,
w

r,
w

serv

Th
ru
If
to
th
sh

No default str r r r

Nam

D
Default
 Value Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-296 PBS

duler_iteration

e time between scheduling iterations.
Integer.
Units: Seconds.

duling

ables scheduling of jobs. Specified by value of -a
tion to pbs_server command. If -a is not
ecified, value is taken from previous invocation of
s_server.

Boolean When this attribute is set to True,
scheduling is enabled.

er_host

e name of the host on which the active server is
nning.
the secondary server takes over, this attribute is set
 the name of the secondary server's host. When
e primary server takes control again, this attribute
ows the name of the primary server's host.

String. Syntax:
<host-
name>.<domain
name>
If the server is listen-
ing to a non-standard
port, the port num-
ber is appended, with
a colon, to the host-
name: <host-
name>.<domain
name>:<port num-
ber>

Server Attributes

e

escription
Format Val / Opt Value/Option Description

PBS RG-297

Chapter 6

serv

Th
No default Server state con-

stant
pbs.SV_STATE
_ACTIVE

r r r

Server state con-
stant
pbs.SV_STATE
_HOT

Server state con-
stant
pbs.SV_STATE
_IDLE

Server state con-
stant
pbs.SV_STATE
_ACTIVE

Server state con-
stant
pbs.SV_STATE
_SHUTIMM or
pbs.SV_STATE
_SHUTSIG

Server state con-
stant
pbs.SV_STATE
_SHUTDEL

sing

R
state

Li
pl

No default pbs.state_coun
t

r r r

syste

N
- - -

total

Th
jo
in

No default int r r r

Nam

D
Default
 Value Python Type

U
se

r
O

pe
r

M
gr
 Professional 2020.1.1 Reference Guide

Attributes

er_state

e current state of the server:
String Active The server is running. The sched-

uler is not in a scheduling cycle.

Hot_Start The server will run first any jobs
that were running when it was shut
down.

Idle The server is running. The default
scheduler’s scheduling attribute is
False.

Scheduling The server is running. The sched-
uler is in a scheduling cycle.

Terminating The server is terminating. No addi-
tional jobs will be run.

Terminating
_Delayed

Server is terminating in delayed
mode. No new jobs will be run.
server will shut down after all run-
ning jobs are finished.

le_signon_password_enable

emoved. (2020.1)
_count

st of the number of jobs in each state in the com-
ex. Suspended jobs are counted as running.

String. Syntax:
transiting=<value>,
queued=<value>, ...

m_cost

o longer used.
_jobs

e total number of jobs in the complex. If the
b_history_enable attribute is set to True, this
cludes jobs that are finished, deleted, and moved.

Integer

Server Attributes

e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2020.1.1 Reference Guide

6.7

Nam

D ption Default
Value

Pyth
on

Type U
se

r

O
pe

r
M

gr

com

Fo
at
at
do
sta

No default None r r r,
w

do_n

Sp
w

g placement
ets are
occupied
r the place-

e job can’t fit
 it won’t run.

False None r r,
w

r,
w

o place the
 All existing
f the job fits
 the job waits
ailable. If
 set, occupied
ould fit, the
ent sets, run-
 satisfy the

job_

Lo
or
sc

No default None - r r,
w

log_

Ty
767 None r r,

w
r,
w

only

Sp
 from vnodes
unset.

False None r r,
w

r,
w

m vnodes
unset.
ter 6 Attributes

-298 PBS

Scheduler Attributes

Scheduler Attributes

e

escription Format Val / Opt Value/Option Descri

ment

r certain scheduler errors, PBS sets the scheduler’s comment
tribute to specific error messages. You can use the comment
tribute to notify another administrator of something, but PBS
es overwrite the value of comment under certain circum-
nces.

String

ot_span_psets

ecifies whether or not this scheduler requires the job to fit
ithin one existing placement set.

Boolean True The job must fit in one existin
set. All existing placement s
checked. If the job fits in an
placement set, the job waits fo
ment set to be available. If th
within a single placement set,

False This scheduler first attempts t
job in a single placement set.
placement sets are checked. I
in an occupied placement set,
for the placement set to be av
there is no existing placement
or empty, into which the job c
job runs regardless of placem
ning on whichever vnodes can
job’s resource request.

sort_formula_threshold

wer bound for calculated priority for job. If job priority is at
 below this value, the job is not eligible to run in the current
heduler cycle.

Float

events

pes of events logged by this scheduler.
Integer
represen-
tation of
bit string

_explicit_psets

ecifies whether placement sets are created for unset resources.
Boolean True Placement sets are not created

whose value for a resource is
False Placement sets are created fro

whose value for a resource is

PBS RG-299

Chapter 6

opt_

Se
ity

unset;
behaves
like low

None r r r,
wpeedup

 speedup
eedup

parti

N
be

“None” None r r r,
w

pbs_

Th
No default None - r r

pree

D
ul
pe
be
U
of
Fo
em

Fo
tim
th
tim
50

Fo
on
on

“SCR” r r r,
w

Nam

D ption Default
Value

Pyth
on

Type U
se

r

O
pe

r
M

gr
 Professional 2020.1.1 Reference Guide

Attributes

backfill_fuzzy

ts the trade-off between scheduling cycle speed and granular-
 of estimated start time calculation.

String off Finest granularity, no speedup
low Fairly fine granularity, some s
medium Medium granularity, medium
high Coarse granularity, greatest sp

tion

ame of partition for which this scheduler is to run jobs. Cannot
 set on default scheduler.

String

version

e version of PBS for this scheduler.
String

mpt_order

efines the order of preemption methods which this sched-
er uses on jobs. This order can change depending on the
rcentage of time remaining on the job. The ordering can
 any combination of S, C, R, and D.

sage: an ordering (SCR) optionally followed by a percentage
 time remaining and another ordering.
r example, PBS should first attempt to use suspension to pre-
pt a job, and if that is unsuccessful, requeue the job:
preempt_order: "SR"

r example, if the job has between 100% and 81% of requested
e remaining, first try to suspend the job, then try checkpoint,

en requeue. If the job has between 80% and 51% of requested
e remaining, attempt suspend, then checkpoint. Between

% and 0% time remaining, just attempt to suspend the job:
preempt_order: "SCR 80 SC 50 S"

r each job percentage, each method can be used only
ce. Note that in the example above, the S method appears
ly once per percentage.

String, as
a quoted
list

C Checkpoint job
D Delete job
R Requeue job
S Suspend job

Scheduler Attributes

e

escription Format Val / Opt Value/Option Descri

Chap

RG Professional 2020.1.1 Reference Guide

pree

Sp
le
pr
w
at
no
Fo
jo
th

Fo
sh

pt other jobs.
oes not

.

“express_
queue,
normal_jo
bs”

None r r r,
w

 it can pre-

 exceeds its

ue soft limits
er soft limits
ich a job falls
 specified

pree

Sp
cl
by

150 None r r r,
w

pree

Sp
Se
Pr

 with most min_time
_since_st
art

None r r r,
w

sche

Ti
se
th
ve

600 None r r r,
w

sche

En
at
ul

For default
scheduler:
True

For multi-
scheds:
False

None r r r,
w

Nam

D ption Default
Value

Pyth
on

Type U
se

r

O
pe

r
M

gr
ter 6 Attributes

-300 PBS

mpt_prio

ecifies the ordering of priority for different preemption
vels. Two or more job types may be combined at the same
iority level with a plus sign (“+”) between them, using no
hitespace. Comma-separated preemption levels are evalu-
ed left to right, with higher priority to the left. Any level
t specified in the preempt_prio list is ignored.
r example, starving jobs have the highest priority, then normal

bs, and jobs whose entities are over their fairshare limit are
ird highest:
preempt_prio: "starving_jobs, normal_jobs,

fairshare"

r example, starving jobs whose entities are also over their fair-
are limit are lower priority than normal jobs:
preempt_prio: "normal_jobs,

starving_jobs+fairshare"

string_arr
ay, as
quoted
list

express_queue Jobs in express queues preem
See preempt_queue_prio. D
require by_queue to be True

starving_jobs When a job becomes starving
empt other jobs.

fairshare When the entity owning a job
fairshare limit.

queue_softlimits Jobs which are over their que
server_softlimits Jobs which are over their serv
normal_jobs The preemption level into wh

if it does not fit into any other
level.

mpt_queue_prio

ecifies the minimum queue priority required for a queue to be
assified as an express queue. Express queues do not require
_queue to be True.

Integer

mpt_sort

ecifies how jobs most eligible for preemption are sorted.
e "Sorting Within Preemption Level" on page 187 in the PBS
ofessional Administrator’s Guide.

String min_time_since_
start

First job preempted will be that
recent start time

duler_iteration

me in seconds between scheduling iterations. If you set the
rver’s scheduler_iteration attribute, that value is assigned to
e default scheduler’s scheduler_iteration attribute, and vice
rsa.

Integer.
Units:
Seconds

duling

ables scheduling of jobs. If you set the server’s scheduling
tribute, that value is assigned to the default scheduler’s sched-
ing attribute, and vice versa.

Boolean

Scheduler Attributes

e

escription Format Val / Opt Value/Option Descri

PBS RG-301

Chapter 6

sche

Th
al

20:00 (20
minutes)

None r r,
w

r,
w

sche

Th
C
se

Server s
host

None - r r

sche

D
sh
w
al

$PBS_H
OME/
sched_lo
gs_<sche
duler
name>

None r r r,
w

sche

Po
sc

No default None r r r,
w

sche

C
jo

False None r r r,
w

sche

D
re
be
PB

$PBS_H
OME/
sched_pri
v_<sched
uler
name>

None r r r,
w

serv

Sp
sc
th
re

30 sec-
onds

None r r r,
w

ny
wed to run

state

St
For default
scheduler:
idle
For multi-
sched:
down

None r r r
aiting for a
ed
 a scheduling

Nam

D ption Default
Value

Pyth
on

Type U
se

r

O
pe

r
M

gr
 Professional 2020.1.1 Reference Guide

Attributes

d_cycle_length

is scheduler’s maximum cycle length. Overwritten by the -a
arm option to pbs_sched command.

Duration

d_host

e hostname of the machine on which this scheduler runs.
annot be set on default scheduler; value for default scheduler is
rver hostname. Must be set by administrator.

String

d_log

irectory where this scheduler writes its logs. Permissions
ould be 755. Must be owned by root. Cannot be shared
ith another scheduler. For default scheduler, directory is
ways PBS_HOME/sched_log. Settable for multischeds.

String

d_port

rt on which this scheduler listens. Cannot be set on default
heduler. Must be set by administrator.

String

d_preempt_enforce_resumption

ontrols whether this scheduler treats preempted jobs as top
bs. When True, preempted jobs are treated as top jobs.

Boolean

d_priv

irectory where this scheduler keeps fairshare usage,
source_group, holidays, and sched_config files. Must
 owned by root. For default scheduler, directory is always
S_HOME/sched_priv. Settable for multischeds.

String

er_dyn_res_alarm

ecifies how long this scheduler allows any server_dyn_res
ript to run. If the script times out, the script is terminated and
e scheduler uses zero as the value that would have been
turned by the script.

Integer 0 (zero) No time limit is enforced for
server_dyn_res scripts

>0 (greater than
zero)

Value is number of seconds a
server_dyn_res script is allo

ate of this scheduler. Set by server.
String down Scheduler is not running

idle Scheduler is running and is w
scheduling cycle to be trigger

scheduling Scheduler is running and is in
cycle

Scheduler Attributes

e

escription Format Val / Opt Value/Option Descri

Chap

RG Professional 2020.1.1 Reference Guide

throu

A
jo
fin
A
se
in

ly and faster.
plex is in

True None r r,
w

r,
w

hronously

Nam

D ption Default
Value

Pyth
on

Type U
se

r

O
pe

r
M

gr
ter 6 Attributes

-302 PBS

ghput_mode

llows scheduler to run faster; it doesn’t have to wait for each
b to be accepted, and doesn’t wait for execjob_begin hooks to
ish.

lso allows jobs that were changed via qalter,
rver_dyn_res scripts, or peering to run in the same schedul-

g cycle where they were changed.

Boolean True Scheduler runs asynchronous
Only available when PBS com
TPP mode.

False Scheduler does not run async

Scheduler Attributes

e

escription Format Val / Opt Value/Option Descri

PBS RG-303

Chapter 6

6.8

Nam

D
Python Type

U
se

r
O

pe
r

M
gr

Acco

N
- - -

Auth

Li
no
tio
in
se
Li
fir
lis
qu
Se
pb

cl r,
w

r,
w

r,
w

Auth

Th
jo
te
ev
m
us
qu
Se
pb

cl r,
w

r,
w

r,
w

 Professional 2020.1.1 Reference Guide

Attributes

Reservation Attributes

Reservation Attributes

e

escription
Format Val / Opt Value/Option

Description Def Val

unt_Name

o longer used.
orized_Groups

st of groups who can or can-
t submit jobs to this reserva-
n. Group names are

terpreted relative to the
rver, not the submission host.
st is evaluated left-to-right;
st match in list is used. This
t is used to set the reservation
eue’s acl_groups attribute.
e the G option to the
s_rsub command.

String. Syntax:
[+|-]<group name> [,
[+|-]<group name> ...]
where ‘-’ means “deny”
and ‘+’ means “allow”.

No
default.
(Jobs
can be
submit-
ted by
all
groups)

pbs.a

orized_Hosts

e list of hosts from which
bs can and cannot be submit-
d to this reservation. List is
aluated left-to-right; first
atch in list is used. This list is
ed to set the reservation
eue’s acl_hosts attribute.
e the H option to the
s_rsub command.

String. Syntax:
[+|-]<hostname> [, [+|-
]<hostname> ...] where
‘-’ means “deny” and ‘+’
means “allow”.
Hostnames may be wild-
carded using an asterisk,
according to the follow-
ing rules:

A hostname can contain
at most one asterisk
The asterisk must be the
leftmost label

Examples:
*.test.example.com
*.example.com
*.com

No
default.
(Jobs
can be
submit-
ted
from all
hosts)

pbs.a

Chap

RG Professional 2020.1.1 Reference Guide

Auth

Th
ca
er
to
us
re
at
th

cl r,
w

r,
w

r,
w

ctim

Ti
re

r r r

dele

A
ca
A
sta

uration r,
w

r,
w

r,
w

Nam

D
Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-304 PBS

orized_Users

e list of users who can or
nnot submit jobs to this res-
vation. List is evaluated left-
-right; first match in list is
ed. This list is used to set the
servation queue’s acl_users
tribute. See the U option to
e pbs_rsub command.

String. Syntax:
[+|-]<user-
name>[@<host-
name>.<domain>] [,
[+|-]<user-
name>[@<host-
name>.<domain>] ...]
where ‘-’ means “deny”
and ‘+’ means “allow”.
Hostnames may be wild-
carded using an asterisk,
according to the follow-
ing rules:

A hostname can contain
at most one asterisk
The asterisk must be the
leftmost label in the
hostname

Examples:
*.test.example.com
*.example.com
*.com

Reser-
vation
owner
only

pbs.a

e

mestamp; time at which the
servation was created.

Timestamp.

Printed by qstat in
human-readable Date
format.
Output in hooks as sec-
onds since epoch.

No
default

int

te_idle_time

mount of time a reservation
n sit idle before it is deleted.
pplies to each instance of a
nding reservation.

Duration. Syntax: either
integer seconds or
HHHH:MM:SS

None
except
for
ASAP
reserva-
tions:
10
min-
utes

pbs.d

Reservation Attributes

e

escription
Format Val / Opt Value/Option

Description Def Val

PBS RG-305

Chapter 6

grou

N
- - -

hash

N
- - -

inter

N
pb
bl
m
tio
bl
pb

r,
w

r,
w

r,
w

Mail

Se
m
is
fie
at
ma
pb

ail_points r,
w

r,
w

r,
w

Mail

Th
is
ev
M
M
pb

ser_list r,
w

r,
w

r,
w

Nam

D
Python Type

U
se

r
O

pe
r

M
gr
 Professional 2020.1.1 Reference Guide

Attributes

p_list

o longer used.
name

o longer used.
active

umber of seconds that the
s_rsub command will

ock while waiting for confir-
ation or denial of the reserva-
n. See the -I
ock_time option to the
s_rsub command.

Integer Less than zero The reservation is
automatically
deleted if it cannot
be confirmed in the
time specified.

Zero int

Zero or greater than zero The reservation is
not automatically
deleted if it cannot
be confirmed in the
time specified.

_Points

ts the list of events for which
ail is sent by the server. Mail
sent to the list of users speci-
d in the Mail_Users

tribute. See the m
il_points option to the
s_rsub command.

String consisting of 1)
one or more of the letters
“a”, “b”, “c”, “e”, or 2)
the string “n”. Cannot use
“n” with any other letter

a Notify when reser-
vation is terminated

 “ac” pbs.m

b Notify when reser-
vation period begins

c Notify when reser-
vation is confirmed

e Notify when reser-
vation period ends

n Do not send mail.
Cannot be used with
other letters.

_Users

e set of users to whom mail
sent for the reservation
ents specified in the
ail_Points attribute. See the
mail_list option to the
s_rsub command.

String. Syntax: <user-
name>@<host-
name>[,<username>@<
hostname>, ...]

Reser-
vation
owner
only

pbs.u

Reservation Attributes

e

escription
Format Val / Opt Value/Option

Description Def Val

Chap

RG Professional 2020.1.1 Reference Guide

mtim

Ti
re

r r r

Prior

N
- - -

queu

N
Jo
be
ar

ueue r r r

rese

Th
sta

r,
w

r,
w

r,
w

rese

R
on
tio
oc

uration r,
w

r,
w

r,
w

rese

Th
ad
so
in

r,
w

r,
w

r,
w

rese

Th
r r r

Nam

D
Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-306 PBS

e

mestamp: the time that the
servation was last modified.

Timestamp.
Printed by qstat in
human-readable Date
format.
Output in hooks as sec-
onds since epoch.

int

ity

o longer used.
e

ame of the reservation queue.
bs that are to use resources
longing to this reservation
e submitted to this queue.

String. Format for an
advance or job-specific
reservation: R<sequence
number>
Format for a standing res-
ervation: S<sequence
number>

pbs.q

rve_count

e count of occurrences in a
nding reservation.

Integer int

rve_duration

eservation duration in sec-
ds. For a standing reserva-
n, this is the duration for one
currence.

Integer pbs.d

rve_end

e date and time when an
vance reservation or the
onest occurrence of a stand-
g reservation ends.

Timestamp.
Printed by qstat in
human-readable Date
format.
Output in hooks as sec-
onds since epoch.

int

rve_ID

e reservation identifier.
String. For an advance
or job-specific reserva-
tion: string of the form
R<sequence num-
ber>.<server name>
For a standing reserva-
tion: string of the form
S<sequence num-
ber>.<server name>

str

Reservation Attributes

e

escription
Format Val / Opt Value/Option

Description Def Val

PBS RG-307

Chapter 6

rese

Th
re

r r r

rese

If
ci
sh
w
at

r r r

Rese

Th
er
sp
th

r,
w

r,
w

r,
w

Rese

Th
sio
at

r r r

rese

If
de
th
fir

r r r

Nam

D
Python Type

U
se

r
O

pe
r

M
gr
 Professional 2020.1.1 Reference Guide

Attributes

rve_index

e index of the soonest occur-
nce of a standing reservation.

Integer int

rve_job

this reservation is a job-spe-
fic start or now reservation,
ows the ID of the job from
hich the reservation was cre-
ed.

String No
default

str

rve_Name

e name assigned to the res-
vation during creation, if
ecified. See the N option to
e pbs_rsub command.

String. Syntax: up to 236
characters. First charac-
ter is alphabetic

No
default

str

rve_Owner

e login name on the submis-
n host of the user who cre-

ed the reservation.

String. Syntax: <user-
name>@<hostname>

Login
name of
creator

str

rve_retry

this reservation becomes
graded, this is the next time
at PBS will attempt to recon-
m this reservation.

Timestamp.
Printed by qstat in
human-readable Date
format.
Output in hooks as sec-
onds since epoch.

No
default

int

Reservation Attributes

e

escription
Format Val / Opt Value/Option

Description Def Val

Chap

RG Professional 2020.1.1 Reference Guide

rese

Th
re
re
th

r,
s

r,
w

r,
w

rese

Th
re
va
be

r,
w

r,
w

r,
w

Nam

D
Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-308 PBS

rve_rrule

e rule that describes the
currence pattern of a standing
servation. See the r option to
e pbs_rsub command.

String. Syntax: either of
two forms:
“FREQ= <freq_spec>;
COUNT=
<count_spec>;
<interval_spec>”
or
“FREQ= <freq_spec>;
UNTIL= <until_spec>;
<interval_spec>”

freq_spec Frequency with
which the standing
reservation repeats.
Valid values are:
WEEKLY|DAILY|H
OURLY

No
default

str

count_spec The exact number of
occurrences. Num-
ber up to 4 digits in
length. Format: inte-
ger.

No
default

interval_spec Specifies interval.
Format is one or
both of: BYDAY =
MO|TU|WE|TH|FR
|SA|SU or
BYHOUR =
0|1|2|...|23

No
default

until_spec Occurrences will
start up to but not
after date and time
specified.
Format: YYYYM-
MDD[THHMMSS]

Year-month-day part
and hour-minute-
second part sepa-
rated by a capital T.

No
default

rve_start

e date and time when the
servation period for the reser-
tion or soonest occurrence
gins.

Timestamp.
Printed by qstat in
human-readable Date
format.
Output in hooks as sec-
onds since epoch.

No
default

int

Reservation Attributes

e

escription
Format Val / Opt Value/Option

Description Def Val

PBS RG-309

Chapter 6

rese

Th
vation state constant:
ESV_STATE_NONE

r r r

vation state constant:
ESV_STATE_UNCONFIRMED

vation state constant:
ESV_STATE_CONFIRMED

vation state constant:
ESV_STATE_WAIT

vation state constant:
ESV_STATE_TIME_TO_RUN

vation state constant:
ESV_STATE_RUNNING

vation state constant:
ESV_STATE_FINISHED

vation state constant:
ESV_STATE_BEING_DELETE

vation state constant:
ESV_STATE_DELETED

vation state constant:
ESV_STATE_DELETING_JOB

vation state constant:
ESV_STATE_DEGRADED

rese

Th
or
us

r r r

rese

N
- - -

Nam

D
Python Type

U
se

r
O

pe
r

M
gr
 Professional 2020.1.1 Reference Guide

Attributes

rve_state

e state of the reservation.
String NO RESV_NONE No reservation yet. No

default
Reser
pbs.R

UN
RESV_UNCONFIRMED

Reservation request
is awaiting confir-
mation.

Reser
pbs.R

CO
RESV_CONFIRMED

Resv. confirmed. All
occurrences of
standing resv. con-
firmed.

Reser
pbs.R

WT RESV_WAIT Unused. Reser
pbs.R

TR
RESV_TIME_TO_RUN

Start of the reserva-
tion period.

Reser
pbs.R

RN RESV_RUNNING Resv. period has
started; reservation
is running.

Reser
pbs.R

FN RESV_FINISHED End of the reserva-
tion period.

Reser
pbs.R

BD
RESV_BEING_DELETE
D

Reservation is being
deleted.

Reser
pbs.R
D

DE RESV_DELETED Reservation has
been deleted.

Reser
pbs.R

DJ
RESV_DELETING_JOB
S

Jobs belonging to
the reservation are
being deleted

Reser
pbs.R
S

DG DEGRADED Reservation is
degraded.

Reser
pbs.R

rve_substate

e substate of the reservation
 occurrence. The substate is
ed internally by PBS.

Integer No
default

int

rve_type

o longer used.

Reservation Attributes

e

escription
Format Val / Opt Value/Option

Description Def Val

Chap

RG Professional 2020.1.1 Reference Guide

Reso

Th
to
in
ag
fie

bs_resource

x: Resource_List[“<resource
>”]=<value> where resource
 is any built-in or custom resource

r,
w

r,
w

r,
w

resv

Th
re
sa
th
Fo
va

xec_vnode r r r

serv

N
erver r r r

User

N
- - -

Varia

N
- - -

Nam

D
Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-310 PBS

urce_List

e list of resources allocated
 the reservation. Jobs running
 the reservation cannot use in
gregate more than the speci-
d amount of a resource.

String. Syntax:
Resource_List.<resource
name>=<value>[,
Resource_List.<resource
name>=<value>, ...]

No
default

pbs.p

Synta
name
name

_nodes

e list of each vnode and the
sources allocated from it to
tisfy the chunks requested for
is reservation or occurrence.
r a maintenance reservation,
lue is set by PBS.

String. Syntax: (<vnode
name>:<resource
name>=<value>[:<reso
urce
name>=<value>]...)
[+(<vnode
name>:<resource
name>=<value>[:<reso
urce
name>=<value>])+...]

No
default

pbs.e

er

ame of server.
String No

default
pbs.s

_List

o longer used.
ble_List

ot used

Reservation Attributes

e

escription
Format Val / Opt Value/Option

Description Def Val

PBS RG-311

Chapter 6

6.9

In the

Nam

D
Default
Value Python Type

U
se

r
O

pe
r

M
gr

acl_

C
ac
at

False;
all
groups
allowed
access

bool r r,
w

r,
w

acl_

Li
qu
ho
fir

No
default

pbs.acl r r,
w

r,
w

acl_

C
ac
at

False;
all hosts
allowed
access.

bool r r,
w

r,
w

acl_

Li
qu
us

No
default

pbs.acl r r,
w

r,
w

acl_

C
ac
at

False;
all users
allowed
access

bool r r,
w

r,
w

acl_

Li
is

No
default

pbs.acl r r,
w

r,
w

alt_r

N
- - -

back

Sp
nu
qu
R

Unset.
When
unset,
backfill
depth is
1

int r,
w

r,
w

r,
w

 Professional 2020.1.1 Reference Guide

Attributes

Queue Attributes

 following table, Queue Type indicates the type of queue to which the attribute applies: R (routing), E (execution):

Queue Attributes

e

escription
Format Queue

Type
Value or
Option

Value or Option
Description

group_enable

ontrols whether group access to the queue obeys the
cess control list defined in the acl_groups queue
tribute.

Boolean R, E When set to True,
group access to the
queue is limited
according to the group
access control list.

groups

st of groups which are allowed or denied access to this
eue. The groups in the list are groups on the server
st, not submitting hosts. List is evaluated left-to-right;
st match in list is used.

String. Syntax:
[+|-] <group name>[,
...]

R, E

host_enable

ontrols whether host access to the queue obeys the
cess control list defined in the acl_hosts queue
tribute.

Boolean R, E When set to True, host
access to the queue is
limited according to the
host access control list.

hosts

st of hosts from which jobs may be submitted to this
eue. List is evaluated left-to-right; first match in list is
ed.

String. Syntax:
[+|-]<hostname>[. ...]

R, E

user_enable

ontrols whether user access to the queue obeys the
cess control list defined in the acl_users queue
tribute.

Boolean R, E When set to True, user
access to the queue is
limited according to the
user access control list.

users

st of users allowed or denied access to this queue. List
evaluated left-to-right; first match in list is used.

String. Syntax: [+|-
]<username>
[@<hostname>][, ...]

R, E

outer

o longer used.
fill_depth

ecifies backfilling behavior for this queue. Sets the
mber of jobs that are to be backfilled around in this
eue. Overrides backfill_depth server attribute.

ecommendation: set this to less than 100.

Integer.
Must be >=0.

E >=0 PBS backfills around
the specified number of
jobs.

Unset Backfill depth is set to
1

Chap

RG Professional 2020.1.1 Reference Guide

chec

M
al
a
va
m

No
default

pbs.duration r r,
w

r,
w

defa

Th
ch
re
m
ac

No
default

pbs.pbs_resource

Syntax:
default_chunk[“<res
ource
name>”]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

enab

Sp

False bool r r,
w

r,
w

from

Sp
in

 False bool r r r,
w

hasn

In
Se

False;
no
vnodes
are asso-
ciated
with this
queue

bool r r r,
i

Nam

D
Default
Value Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-312 PBS

kpoint_min

inimum number of minutes of CPU time or walltime
lowed between checkpoints of a job. If a user specifies
time less than this value, this value is used instead. The
lue given in checkpoint_min is used for both CPU
inutes and walltime minutes.

Integer E

ult_chunk

e list of resources which will be inserted into each
unk of a job’s select specification if the corresponding
source is not specified by the user. This provides a
eans for a site to be sure a given resource is properly
counted for even if not specified by the user.

String. Syntax:
default_chunk.<resour
ce name>=<value>[,
default_chunk.<resour
ce name>=<value>,
...]

E

led

ecifies whether this queue accepts new jobs.
Boolean R, E True This queue is enabled.

This queue accepts new
jobs; new jobs can be
enqueued.

False This queue does not
accept new jobs.

_route_only

ecifies whether this queue accepts jobs only from rout-
g queues, or from both execution and routing queues.

Boolean R, E True This queue accepts jobs
only from routing
queues.

False This queue accepts jobs
from both execution
and routing queues as
well as directly from
submitter.

odes

dicates whether vnodes are associated with this queue.
t by PBS.

Boolean E This attribute is set to
True if there are
vnodes associated with
this queue.

Queue Attributes

e

escription
Format Queue

Type
Value or
Option

Value or Option
Description

PBS RG-313

Chapter 6

kill_d

Th
SI
ru

10 sec-
onds

pbs.duration r r,
w

r,
w

max

Th
ar

No
default

int r r,
w

r,
w

max

O
at
re
pl

No
default

pbs.pbs_resource

Syntax:
max_group_res[“<re
source
name>”]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

max

O
at
re
pl
th
em
lim

No
default

pbs.pbs_resource

Syntax:
max_group_res_soft[
“<resource
name>”]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

max

O
at
in
qu

No
default

int r r,
w

r,
w

max

O
at
in
qu
of
jo

No
default

int r r,
w

r,
w

Nam

D
Default
Value Python Type

U
se

r
O

pe
r

M
gr
 Professional 2020.1.1 Reference Guide

Attributes

elay

e time delay between sending SIGTERM and
GKILL when a qdel command is issued against a
nning job.

Integer. Units: Sec-
onds. Must be greater
than or equal to zero.

E

_array_size

e maximum number of subjobs that are allowed in an
ray job.

Integer R, E

_group_res

ld limit attribute. Incompatible with new limit
tributes. The maximum amount of the specified
source that any single group may consume in a com-
ex.

String. Syntax:
max_group_res.<resou
rce name>=<value>
Example: set queue
workq
max_group_res.ncpus
=6

E Any PBS
resource,
e.g.
“ncpus”,
“mem”,
“pmem”,
etc.

_group_res_soft

ld limit attribute. Incompatible with new limit
tributes. The soft limit on the amount of the specified
source that any single group may consume in a com-
ex. If a group is consuming more than this amount of
e specified resource, their jobs are eligible to be pre-
pted by jobs from groups who are not over their soft
it.

String. Syntax:
max_group_res_soft.<r
esource
name>=<value>
Example: set queue
workq
max_group_res_soft.
ncpus=3

E Any valid
PBS
resource,
e.g.
“ncpus”,
“mem”,
“pmem”,
etc.

_group_run

ld limit attribute. Incompatible with new limit
tributes. The maximum number of jobs owned by users
 a single group that are allowed to be running from this
eue at one time.

Integer E

_group_run_soft

ld limit attribute. Incompatible with new limit
tributes. The maximum number of jobs owned by users
 a single group that are allowed to be running from this
eue at one time. If a group has more than this number
 jobs running, their jobs are eligible to be preempted by
bs from groups who are not over their soft limit.

Integer E

Queue Attributes

e

escription
Format Queue

Type
Value or
Option

Value or Option
Description

Chap

RG Professional 2020.1.1 Reference Guide

max

O
at
re

No
default
(no
limit)

int r r,
w

r,
w

max

Li
be
fie
w

No
default

pbs.pbs_resource

Syntax:
max_queued[“<resou
rce
name>”]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

max

Li
re
ni
us
at

No
default

pbs.pbs_resource

Syntax:
max_queued_res[“<r
esource
name>”]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

max

Li
to
pr
lim

No
default

pbs.pbs_resource

Syntax:
max_run[“<resource
name>”]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

max

Li
re
qu
al

No
default

pbs.pbs_resource

Syntax:
max_run_res[“<reso
urce
name>”]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

Nam

D
Default
Value Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-314 PBS

_queuable

ld limit attribute. Incompatible with new limit
tributes. The maximum number of jobs allowed to
side in this queue at any given time.

Integer R, E

_queued

mit attribute. The maximum number of jobs allowed to
 queued in or running from this queue. Can be speci-
d for projects, users, groups, or all. Cannot be used

ith old limit attributes.

Limit specification.
See Chapter 7, "For-
mats", on page 353

R, E

_queued_res

mit attribute. The maximum amount of the specified
source allowed to be allocated to jobs queued in or run-
ng from this queue. Can be specified for projects,
ers, groups, or all. Cannot be used with old limit
tributes.

Limit specification.
See Chapter 7, "For-
mats", on page 353
Syntax:
max_queued_res.<reso
urce name>=<value>

R, E

_run

mit attribute. The maximum number of jobs allowed
 be running from this queue. Can be specified for
ojects, users, groups, or all. Cannot be used with old
it attributes.

Format: Limit specifi-
cation. See Chapter 7,
"Formats", on page 353

E

_run_res

mit attribute. The maximum amount of the specified
source allowed to be allocated to jobs running from this
eue. Can be specified for projects, users, groups, or

l. Cannot be used with old limit attributes.

Format: Limit specifi-
cation. See Chapter 7,
"Formats", on page
353.
Syntax:
max_run_res.<resourc
e name>=<value>

E

Queue Attributes

e

escription
Format Queue

Type
Value or
Option

Value or Option
Description

PBS RG-315

Chapter 6

max

Li
re
qu
al

No
default

pbs.pbs_resource

Syntax:
max_run_res_soft[“<
resource
name>”]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

max

Li
to
pr
lim

No
default

pbs.pbs_resource

Syntax:
max_run_soft[“<reso
urce
name>”]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

max

O
at
be
ro
to

No
default

int r r,
w

r,
w

max

O
at
re

No
default

pbs.pbs_resource

Syntax:
max_user_res[“<reso
urce
name>”]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

max

O
at
re
co
re
fro

No
default

pbs.pbs_resource

Syntax:
max_user_res_soft[“
<resource
name>”]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

Nam

D
Default
Value Python Type

U
se

r
O

pe
r

M
gr
 Professional 2020.1.1 Reference Guide

Attributes

_run_res_soft

mit attribute. Soft limit on the amount of the specified
source allowed to be allocated to jobs running from this
eue. Can be specified for projects, users, groups, or

l. Cannot be used with old limit attributes.

Format: Limit specifi-
cation. See Chapter 7,
"Formats", on page
353.
Syntax:
max_run_res_soft.<res
ource
name>=<value>

E

_run_soft

mit attribute. Soft limit on the number of jobs allowed
 be running from this queue. Can be specified for
ojects, users, groups, or all. Cannot be used with old
it attributes.

Limit specification.
See Chapter 7, "For-
mats", on page 353.

E

_running

ld limit attribute. Incompatible with new limit
tributes.For an execution queue, this is the largest num-
r of jobs allowed to be running at any given time. For a
uting queue, this is the largest number of jobs allowed
 be transiting from this queue at any given time.

Integer R, E

_user_res

ld limit attribute. Incompatible with new limit
tributes. The maximum amount of the specified
source that any single user may consume.

String. Syntax:
max_user_res.<resourc
e name>=<value>
Example: set queue
workq
max_user_res.ncpus=
6

E any PBS
resource,
e.g.
“ncpus”,
“mem”,
“pmem”,
etc

_user_res_soft

ld limit attribute. Incompatible with new limit
tributes. The soft limit on the amount of the specified
source that any single user may consume. If a user is
nsuming more than this amount of the specified
source, their jobs are eligible to be preempted by jobs
m users who are not over their soft limit.

String. Syntax:
max_user_res_soft.<re
source
name>=<value>
Example: set queue
workq
max_user_res_soft.n
cpus=3

E any valid
PBS
resource,
e.g.
“ncpus”,
“mem”,
“pmem”,
etc

Queue Attributes

e

escription
Format Queue

Type
Value or
Option

Value or Option
Description

Chap

RG Professional 2020.1.1 Reference Guide

max

O
at
sin
at

No
default

int r r,
w

r,
w

max

O
at
an
qu
jo
jo

No
default

int r r,
w

r,
w

node

Sp
gr
at
st

No
default

pbs.node_group_ke
y

r r,
w

r,
w

parti

N
no
be

No
default

str r r r,
w

Prior

Th
th
qu
C
U
no

No
default

int r r,
w

r,
w

queu

Li
be
us
at

No
default

pbs.pbs_resource

Syntax:
queued_jobs_threshol
d[“<resource
name>”]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

Nam

D
Default
Value Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-316 PBS

_user_run

ld limit attribute. Incompatible with new limit
tributes. The maximum number of jobs owned by a
gle user that are allowed to be running from this queue

 one time.

Integer E

_user_run_soft

ld limit attribute. Incompatible with new limit
tributes. The soft limit on the number of jobs owned by
y single user that are allowed to be running from this
eue at one time. If a user has more than this number of
bs running, their jobs are eligible to be preempted by
bs from users who are not over their soft limit.

Integer E

_group_key

ecifies the resources to use for placement sets (node
ouping). Overrides server’s node_group_key
tribute. Specified resources must be of type
ring_array.

String_array. Syntax:
Comma-separated list
of resource names.
When specifying multi-
ple resources, enclose
value in double quotes.

R, E

tion

ame of partition to which this queue is assigned. Can-
t be set for routing queue. An execution queue cannot
 changed to a routing queue while this attribute is set.

String E

ity

e priority of this queue compared to other queues of
e same type in this PBS complex. Priority can define a
eue as an express queue. See preempt_queue_prio in

hapter 4, "Scheduler Parameters", on page 249.
sed for execution queues only; the value of Priority has
 meaning for routing queues.

Integer E Valid val-
ues: -
1024 to
1023

ed_jobs_threshold

mit attribute. The maximum number of jobs allowed to
 queued in this queue. Can be specified for projects,
ers, groups, or all. Cannot be used with old limit
tributes.

Limit specification.
See Chapter 7, "For-
mats", on page 353.

R, E

Queue Attributes

e

escription
Format Queue

Type
Value or
Option

Value or Option
Description

PBS RG-317

Chapter 6

queu

Li
re
qu
al

No
default

pbs.pbs_resource

Syntax:
queued_jobs_threshol
d_res[“<resource
name>”]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

queu

Th
se

No
default

PBS queue type con-
stant:
pbs.QUEUETYPE_
EXECUTION

r r,
w

r,
w

PBS queue type con-
stant:
pbs.QUEUETYPE_
ROUTE

requ

O
Sp
to
be

unset str r r r,
w

requ

O
Sp
sp
fo

.

False bool r r r,
w

reso

Th
an

No
default

pbs.pbs_resource

Syntax:
resources_assigned[“
<resource
name>”]=<value>
where resource name
is any built-in or cus-
tom resource

r r r

Nam

D
Default
Value Python Type

U
se

r
O

pe
r

M
gr
 Professional 2020.1.1 Reference Guide

Attributes

ed_jobs_threshold_res

mit attribute. The maximum amount of the specified
source allowed to be allocated to jobs queued in this
eue. Can be specified for projects, users, groups, or

l. Cannot be used with old limit attributes.

Limit specification.
See Chapter 7, "For-
mats", on page 353.
Syntax:
“queued_jobs_threshol
d_res.<resource
name>=<value>”

R, E

e_type

e type of this queue. This attribute must be explicitly
t at queue creation.

String R, E e ,
execu-
tion

Execution queue

r ,
route

Routing queue

ire_cred

bsolete (2020.1)
ecifies the credential type required. All jobs submitted

 the named queue without the specified credential will
 rejected.

String R, E krb5

dce

ire_cred_enable

bsolete (2020.1)
ecifies whether the credential authentication method
ecified in the require_cred queue attribute is required
r this queue.

Boolean R, E When set to True, the
credential authentica-
tion method is required

urces_assigned

e total for each kind of resource allocated to running
d exiting jobs in this queue.

String. Syntax:
resources_assigned.<r
esource
name>=<value><new
line>resources_assign
ed.<resource
name>=<value><new
line>...

E

Queue Attributes

e

escription
Format Queue

Type
Value or
Option

Value or Option
Description

Chap

RG Professional 2020.1.1 Reference Guide

reso

Th
ni
us
th

No
default

pbs.pbs_resource

Syntax:
resources_available[
“<resource
name>”]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

reso

Th
fo
no
de
is
re
th

No
default

pbs.pbs_resource

Syntax:
resources_default[“<
resource
name>”]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

reso

Th
re
su

No
default;
infinite
usage

pbs.pbs_resource

Syntax:
resources_max[“<res
ource
name>”]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

reso

Th
re

No
default;
zero
usage

pbs.pbs_resource

Syntax:
resources_min[“<res
ource
name>”]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

Nam

D
Default
Value Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-318 PBS

urces_available

e list of resources and amounts available to jobs run-
ng in this queue. The sum of the resource of each type
ed by all jobs running from this queue cannot exceed
e total amount listed here.

String. Syntax:
resources_available.<r
esource
name>=<value><new
line>
resources_available.<r
esource
name>=<value><new
line>...

E

urces_default

e list of default resource values which are set as limits
r a job residing in this queue and for which the job did
t specify a limit. If not set, the default limit for a job is
termined by the first of the following attributes which
set: server’s resources_default, queue’s
sources_max, server’s resources_max. If none of
ese is set, the job gets unlimited resource usage.

String. Syntax:
resources_default.<res
ource
name>=<value>,
resources_default.<res
ource_name>=<value
>, ...

R, E

urces_max

e maximum amount of each resource that can be
quested by a single job in this queue. This queue value
persedes any server wide maximum limit.

String. Syntax:
resources_max.<resour
ce name>=<value>,
resources_max.<resour
ce name>=<value>, ...

R, E

urces_min

e minimum amount of each resource that can be
quested by a single job in this queue.

String. Syntax:
resources_max.<resour
ce_name>=<value>,
resources_max.<resour
ce name>=<value>, ...

R, E

Queue Attributes

e

escription
Format Queue

Type
Value or
Option

Value or Option
Description

PBS RG-319

Chapter 6

route

Th
M

No
default

pbs.route_destinati
ons

r r r,
w

route

Sp
fro

False bool r r,
w

r,
w

route

Th
in
tim

Unset;
infinite

pbs.duration r r,
w

r,
w

route

Ti
th

30 sec-
onds

pbs.duration r r,
w

r,
w

route

Sp
va

 False bool r r,
w

r,
w

start

If
th
ro

 False bool r r,
w

r,
w

state

Th
qu

No
default

pbs.state_count r r r

total

Th
No
default

int r r r

Nam

D
Default
Value Python Type

U
se

r
O

pe
r

M
gr
 Professional 2020.1.1 Reference Guide

Attributes

_destinations

e list of destinations to which jobs may be routed.
ust be set to at least one valid destination.

String. Syntax:
comma-separated
strings:
<queue name>
[@<server host>
[:port]]
Example: Q1,
Q2@remote,
Q3@remote:15501

R

_held_jobs

ecifies whether jobs in the held state can be routed
m this queue.

Boolean R When True, jobs with a
hold can be routed from
this queue.

_lifetime

e maximum time a job is allowed to reside in this rout-
g queue. If a job cannot be routed in this amount of

e, the job is aborted.

Integer.

Units: Seconds

R >0 Jobs can reside for
specified number of
seconds

0 Infinite
unset Infinite

_retry_time

me delay between routing retries. Typically used when
e network between servers is down.

Integer.

Units: Seconds

R

_waiting_jobs

ecifies whether jobs whose Execution_Time attribute
lue is in the future can be routed from this queue.

Boolean R When True, jobs with a
future
Execution_Time
attribute can be routed
from this queue.

ed

this is an execution queue, specifies whether jobs in
is queue can be scheduled for execution, or if this is a
uting queue, whether jobs can be routed.

Boolean R, E When True, jobs in this
queue can run or be
routed

_count

e number of jobs in each state currently residing in this
eue.

String. Syntax: tran-
siting=<value>, exit-
ing=<value>, ...

R, E

_jobs

e number of jobs currently residing in this queue.
Integer R, E

Queue Attributes

e

escription
Format Queue

Type
Value or
Option

Value or Option
Description

Chap

RG Professional 2020.1.1 Reference Guide

6.1

Nam

D
Def Val Python Type

U
sr

O
pr

M
gr

com

In
at
str
re
ex
at
no
do
th
se

No
default

str r r r,
w

curre

Th
vn
se

Unset str r r r,
w

curre

C
W
at

Unset str r r r,
w

in_m

Sp
m
no

int r,
w

jobs

Li
str r r r

last_

R
no

No
default

int r r,
w

r,
w

ter 6 Attributes

-320 PBS

0 Vnode Attributes

Vnode Attributes

e

escription
Format Val / Opt Value/Option Description

ment

formation about this vnode. This
tribute may be set by the manager to any
ing to inform users of any information
lating to the node. If this attribute is not
plicitly set, the PBS server will use the
tribute to pass information about the
de status, specifically why the node is
wn. If the attribute is explicitly set by
e manager, it will not be modified by the
rver.

String

Limit: 80 charac-
ters

nt_aoe

e AOE currently instantiated on this
ode. Case-sensitive. Cannot be set on
rver's host.

String

nt_eoe

urrent value of eoe on this vnode.
e do not recommend setting this
tribute manually.

String

ultivnode_host

ecifies whether a vnode is part of a
ulti-vnoded host. Used internally. Do
t set.

Integer Unset Not part of a multi-vnode host
1 Part of a multi-vnode host

st of jobs running on this vnode.
String. Syntax:
<processor num-
ber>/<job ID>,
...

state_change_time

ecords the most recent time that this
de changed state.

Timestamp.
Printed by
qstat in
human-readable
Date format.
Output in hooks
as seconds since
epoch.

PBS RG-321

Chapter 6

last_

R
no
re
Se
w
ni

Time of
vnode
creation
or node
reboot.

int r r,
w

r,
w

licen

In
Se

Unset str r r r

licen

N
vn

Unset int r r r

lictyp

N
none - - -

main

Li
vn
ad
se

No
default

str - - r

Mom

H
ho
ca
un
at
C
qm
se
on
th

Value of
vnode
resource
(vnode
name)

str r r r,
w

nam

Th
No
default

str r r r,
w

Nam

D
Def Val Python Type

U
sr

O
pr

M
gr
 Professional 2020.1.1 Reference Guide

Attributes

used_time

ecords the most recent time that this
de finished being used for a job or
servation.
t at creation or reboot time. Updated

hen node is released early from a run-
ng job. Reset when node is ramped up.

Timestamp.
Printed by
qstat in
human-readable
Date format.
Output in hooks
as seconds since
epoch.

se

dicates whether this vnode is licensed.
t by PBS.

Character l This vnode is licensed.

se_info

umber of licenses assigned to this
ode. Set by PBS.

Integer

e

o longer used.
tenance_jobs

st of jobs that were running on this
ode, but have been suspended via the
min-suspend signal to qsig. Set by

rver.

String_array

ostname where server queries for MoM
st. By default the server queries the
nonicalized name of the MoM host,
less you set this attribute when you cre-

e the vnode.
an be explicitly set by Manager only via
gr, and only at vnode creation. The

rver can set this to the FQDN of the host
 which MoM runs, if the vnode name is
e same as the hostname.

String .

e

e name of this vnode.
String

Vnode Attributes

e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2020.1.1 Reference Guide

no_m

C
th
th

ne False bool r r r,
w

ntyp

Th
PBS pbs.ND_PBS r r r,

w

parti

N
as
m

No
default

str r r,
w

r,
w

pbs_

Th
No
default

str r r r

pcpu

D
Th
vn
av
pl
ha

Number
of CPUs
on star-
tup

int r r r

pnam

Th
m
so

No
default

str r r r,
w

Port

Po
te
an

15002 int - r,
w

r,
w

pow

En
by

False bool r r r,
w

pow

Sp
to
in
fil

False bool r r r,
w

Nam

D
Def Val Python Type

U
sr

O
pr

M
gr
ter 6 Attributes

-322 PBS

ultinode_jobs

ontrols whether jobs which request more
an one chunk are allowed to execute on
is vnode. Used for cycle harvesting.

Boolean When set to True, jobs requesting more than o
chunk are not allowed to execute on this vnode

e

e type of this vnode.
String PBS Normal vnode

tion

ame of partition to which this vnode is
signed. A vnode can be assigned to at
ost one partition.

String

version

e version of PBS for this MoM
String

s

eprecated.
e number of physical CPUs on this
ode. This is set to the number of CPUs
ailable when MoM starts. For a multi-
e-vnode MoM, only the parent vnode
s pcpus.

Integer

es

e list of resources being used for place-
ent sets. Not used for scheduling; advi-
ry only.

String. Syntax:
comma-sepa-
rated list of
resource names.

rt number on which MoM daemon lis-
ns. Can be explicitly set only via qmgr,
d only at vnode creation.

Integer

eroff_eligible

ables powering this vnode up and down
 PBS.

Boolean True PBS can power this vnode on and off.
False PBS cannot power this vnode on and off.

er_provisioning

ecifies whether this node is eligible
 have its power managed by PBS,
cluding whether it can use power pro-
es.

Boolean True Power provisioning is enabled at this vnode.
False Power provisioning is disabled at this vnode.

Vnode Attributes

e

escription
Format Val / Opt Value/Option Description

PBS RG-323

Chapter 6

Prior

Th
ot

No
default

int r r,
w

r,
w

prov

C
sio

False bool r r r,
w

queu

D
vn
as
ca
A
vn
vn
in

node. No
default

pbs.queue r r r,
w

iated

reso

Th
ca
sta

No
default

pbs.pbs_resou
rce

Syntax:
resources_assig
ned['<resource
name>'] = <
val>
where resource
name is any
built-in or cus-
tom resource

r r r

reso

Th
av
se
th
re
is

No
default

pbs.pbs_resou
rce

Syntax:
resources_avail
able['<resource
name>'] = <
val>
where resource
name is any
built-in or cus-
tom resource

r r,
w

r,
w

Nam

D
Def Val Python Type

U
sr

O
pr

M
gr
 Professional 2020.1.1 Reference Guide

Attributes

ity

e priority of this vnode compared with
her vnodes.

Integer [-1024,
+1023] inclu-
sive

ision_enable

ontrols whether this vnode can be provi-
ned. Cannot be set on server's host.

Boolean True This vnode may be provisioned.
False This vnode may not be provisioned.

e

eprecated. The queue with which this
ode is associated. Each vnode can be
sociated with at most 1 queue. Queues
n be associated with multiple vnodes.
ny jobs in a queue that has associated
odes can run only on those vnodes. If a
ode has an associated queue, only jobs
 that queue can run on that vnode.

String <name of
queue>

Only jobs in specified queue may run on this v

Unset Any job in any queue that does not have assoc
vnodes can run on this vnode.

urces_assigned

e total amount of each resource allo-
ted to running and exiting jobs and
rted reservations on this vnode.

String. Syntax:
resources_assign
ed.<resource
name>=<value>
[,resources_assig
ned.<resource
name>=<value>

urces_available

e list of resources and the amounts
ailable on this vnode. If not explicitly
t, the amount shown is that reported by
e pbs_mom running on this vnode. If a
source value is explicitly set, that value
retained across restarts.

String. Syntax:
resources_availa
ble.<resource
name>=<value>
,
resources_availa
ble.<resource
name> =
<value>, ...

Vnode Attributes

e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2020.1.1 Reference Guide

resv

Li
pe

No
default

str r r r

resv

C
fo
R
ha

eserva-
this

True bool r r r,
w

shar

Sp
tim
th
ho
(2
ar
th
us
of
bi
jo
lo

default
_share
d

pbs.ND_DEFA
ULT_SHARED

r r,
w

r,
w

pbs.ND_DEFA

ULT_EXCL

’s shar- pbs.ND_DEFA

ULT_EXCLHOS

T

pbs.ND_IGNOR

E_EXCL

pbs.ND_FORC

E_EXCL

s of the pbs.ND_FORC

E_EXCLHOST

Nam

D
Def Val Python Type

U
sr

O
pr

M
gr
ter 6 Attributes

-324 PBS

st of advance and standing reservations
nding on this vnode.

String. Comma-
separated list of
reservation IDs.
Syntax:
<reservation
ID>[, <reserva-
tion ID>, ...]

_enable

ontrols whether the vnode can be used
r advance and standing reservations.
eservations are incompatible with cycle
rvesting.

Boolean When set to True, this vnode can be used for r
tions. Existing reservations are honored when
attribute is changed from True to False.

ing

ecifies whether more than one job at a
e can use the resources of the vnode or

e vnode’s host. Either (1) the vnode or
st is allocated exclusively to one job, or
) the vnode’s or host’s unused resources
e available to other jobs. Can be set in
e cgroups hook’s configuration file or by
ing pbs_mom -s insert. Behavior
 a vnode or host is determined by a com-
nation of the sharing attribute and a
b’s placement directive, defined as fol-
ws:

String. Exam-
ple: vnodename:
shar-
ing=force_excl

default_share
d

Defaults to shared

default_excl Defaults to exclusive

default_exclh
ost

Entire host is assigned to the job unless the job
ing request specifies otherwise

ignore_excl Overrides any job place=excl setting

force_excl Overrides any job place=shared setting

force_exclhos
t

The entire host is assigned to the job, regardles
job’s sharing request

Unset Defaults to shared

Vnode Attributes

e

escription
Format Val / Opt Value/Option Description

PBS RG-325

Chapter 6

Nam

D
Def Val Python Type

U
sr

O
pr

M
gr

=exclhost

on place
on place
on place
on place
sive
sive

e

 Professional 2020.1.1 Reference Guide

Attributes

Behavior of vnode:

Vnode Attributes

e

escription
Format Val / Opt Value/Option Description

Value of sharing

Placement Request (-lplace=)

Vnode Host

not specified place=shared place=excl place=exclhost place!

not set shared shared exclusive exclusive depends
default_shared shared shared exclusive exclusive depends
default_excl exclusive shared exclusive exclusive depends
default_exclhost exclusive shared exclusive exclusive depends
ignore_excl shared shared shared shared not exclu
force_excl exclusive exclusive exclusive exclusive not exclu
force_exclhost exclusive exclusive exclusive exclusive exclusiv

Chap

RG Professional 2020.1.1 Reference Guide

state

Sh
llowed No

default
int r r r

ver. r r r

(s). r r r

an r r r

b at the r r r

 com- r r,
w

r,
w

ned r r r

se of
ne

r r r

s no
h free,

r r r

node.
node
m.

r r r

de. r r r
t
annot

r r r

topo

C
in
on

Unset str - - -

Nam

D
Def Val Python Type

U
sr

O
pr

M
gr
ter 6 Attributes

-326 PBS

ows or sets the state of the vnode.
String. Comma-
separated list of
one or more
states: <state>[,
<state>, ...]

busy Vnode is reporting load average greater than a
max. Can combine with offline.

down Node is not responding to queries from the ser
Cannot be combined with free, provisioning

free Vnode is up and capable of accepting new job
Cannot be combined with other states.

job-busy All CPUs on the vnode are allocated to jobs. C
combine with: offline, resv_exclusive.

job-exclusive Entire vnode is exclusively allocated to one jo
job’s request. Can combine with offline,
resv_exclusive

offline Jobs are not to be assigned to this vnode. Can
bine: busy, job-busy, job-exclusive,
resv_exclusive.

provisioning Vnode is being provisioned. Cannot be combi
with any other states.

resv-exclusive Running reservation has requested exclusive u
vnode. Can combine with job-exclusive, offli

stale Vnode was previously reported to server, but i
longer reported to server. Cannot combine wit
provisioning

state-
unknown

The server has never been able to contact the v
Either MoM is not running on the vnode, the v
hardware is down, or there is a network proble

unresolvable The server cannot resolve the name of the vno
wait-provi-
sioning

Vnode needs to be provisioned, but can’t: limi
reached for concurrent provisioning vnodes. C
be combined with other states. See
max_concurrent_provision.

logy_info

ontains information intended to be used
 hooks. Visible in and usable by hooks
ly.

XML string

Vnode Attributes

e

escription
Format Val / Opt Value/Option Description

PBS RG-327

Chapter 6

vnod

C
of
al
co
re
M
at
C
on
N

0
(Unset)

int r r r,
w

Nam

D
Def Val Python Type

U
sr

O
pr

M
gr
 Professional 2020.1.1 Reference Guide

Attributes

e_pool

ray only. Allows just one MoM, instead
 all, to report inventory upon startup,
lowing faster startup and less network
mmunication between server and non-
porting MoMs. On each Cray, all
oMs must have same setting for this
tribute.
an be set only at vnode creation; valid
ly on login nodes running a MoM.

ot supported on non-Cray machines.

Integer 0 Unset; each MoM reports inventory separately
>0 Only one MoM per Cray reports inventory

Vnode Attributes

e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2020.1.1 Reference Guide

6.1

Nam

D
Def Val Python Type

U
sr

O
pr

M
gr

Acco

St
be

No default str r,
w

r,
w

r,
w

acco

A
da

No default str r r r

accr

In
ac

2
(eligible_ti
me)

int - - r

alt_id

Fo
fic
th
re
se
ac
O

No default str r r r
ter 6 Attributes

-328 PBS

1 Job Attributes

Job Attributes

e

escription
Format Val / Opt Value/Option Description

unt_Name

ring used for accounting purposes. Can
 used for fairshare.

String. Can contain
any character.

unting_id

ccounting ID for tracking accounting
ta not produced by PBS.

String

ue_type

dicates what kind of time the job is
cruing.

Integer 0 (initial_
time)

Job is accruing initial time. Can occur
when job is blocked by a runjob hook.

1
(ineligible_ti
me)

Job is accruing ineligible time. Occurs
when job or owner has hit limit.

2 (eligible_
time)

Job is accruing eligible time. Occurs
when job is blocked on resources.

3 (run_time) Job is accruing run time. Occurs when
job is running.

r a few systems, the session ID is insuf-
ient to track which processes belong to

e job. Where a different identifier is
quired, it is recorded in this attribute. If
t, it is also recorded in the end-of-job
counting record.
n Windows, holds PBS home directory.

String. May contain
white spaces.

PBS RG-329

Chapter 6

argu

Jo
jo
[<

No default str r,
w

r,
w

r,
w

array

In
False bool r,

s
r r

array

A
su

No default str r r r

array

A
su

No default int r r r

array

A
of

No default str r r r

array

A
in
tim

No default pbs.range r,
s

r r

array

A
su

No default pbs.state_count r r r

Nam

D
Def Val Python Type

U
sr

O
pr

M
gr
 Professional 2020.1.1 Reference Guide

Attributes

ment_list

b executable’s argument list. Shown if
b is submitted with “-- <executable>
argument list>]”

JSDL-encoded string.
<jsdl-hpcpa:Argu-
ment> <1st arg> </
jsdl-hpcpa:Argument>
<jsdl-hpcpa:Argu-
ment> <2nd arg> </
jsdl-hpcpa:Argument>
<jsdl-hpcpa:Argu-
ment> <nth arg> </
jsdl-hpcpa:Argument>
Example: if arguments
are “A B”: <jsdl-
hpcpa:Argu-
ment>A</jsdl-
hpcpa:Argument>
<jsdl-
hpcpa:Argu-
ment>B</jsdl-
hpcpa:Argument>

dicates whether this is a job array.
Boolean Set to True if this is an array job.

_id

pplies only to subjobs. Array identifier of
bjob.

String

_index

pplies only to subjobs. Index number of
bjob.

String

_indices_remaining

pplies only to job arrays. List of indices
 subjobs still queued.

String. Range or list of
ranges, e.g. 500,
552, 596-1000.

_indices_submitted

pplies only to job arrays. Complete list of
dices of subjobs given at submission

e.

String. Given as range,
e.g. 1-100

_state_count

pplies only to job arrays. Lists number of
bjobs in each state.

String

Job Attributes

e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2020.1.1 Reference Guide

bloc

Sp
jo
th
Fo
in
Tr

False int r,
s

r r

Che

D
po
ch

u pbs.checkpoint r,

w
r,
w

r,
w

com

C
No default str r r,

w
r,
w

Nam

D
Def Val Python Type

U
sr

O
pr

M
gr
ter 6 Attributes

-330 PBS

k

ecifies whether qsub will wait for the
b to complete and return the exit value of
e job.
r X11 forwarding jobs, and jobs with

teractive and/or block attributes set to
ue, the job's exit status is not returned.

Boolean

ckpoint

etermines when the job will be check-
inted. An $action script is required to
eckpoint the job.

String c Checkpoint at intervals, measured in
CPU time, set on job’s execution queue.
If no interval set at queue, job is not
checkpointed.

c = <minutes
of CPU time>

Checkpoint at intervals of specified
number of minutes of job CPU time.
This value must be > 0. If interval spec-
ified is less than that set on job’s execu-
tion queue, queue's interval is used.
Format: Integer

w Checkpoint at intervals, measured in
walltime, set on job’s execution queue.
If no interval set at queue, job is not
checkpointed.

w = <min-
utes of wall-
time>

Checkpoint at intervals of the specified
number of minutes of job walltime. This
value must be greater than zero. If the
interval specified is less that that set on
job’s execution queue, the queue's inter-
val is used.
Format: Integer

n No checkpointing.
s Checkpoint only when the server is shut

down.
u Unset. Defaults to behavior when inter-

val argument is set to s.
ment

omment about job. Informational only.
String

Job Attributes

e

escription
Format Val / Opt Value/Option Description

PBS RG-331

Chapter 6

crea

W
an
tio
(in
an
va
cr
Se
re
fro
Th
tim
sta
jo
pu

False bool r,
w

r,
w

r,
w.

ctim

Ti
at

No default int r r r

Nam

D
Def Val Python Type

U
sr

O
pr

M
gr
 Professional 2020.1.1 Reference Guide

Attributes

te_resv_from_job

hen this job is run, immediately creates
d confirms a job-specific start reserva-
n on the same resources as the job
cluding resources inherited by the job),
d places the job in the job-specific reser-
tion’s queue. Sets the job’s
eate_resv_from_job attribute to True.
ts the job-specific reservation’s
serve_job attribute to the ID of the job
m which the reservation was created.
e new reservation’s duration and start
e are the same as the job’s walltime and
rt time. If the job is peer scheduled, the

b-specific reservation is created in the
lling complex.

Boolean False Does not create a reservation.
True Creates the job-specific start reservation

e

mestamp; time at which the job was cre-
ed.

Timestamp.

Printed by qstat in
human-readable Date
format.
Output in hooks as sec-
onds since epoch.

Job Attributes

e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2020.1.1 Reference Guide

depe

Sp
N

.
No default;
no depen-
dencies

pbs.depend r,
w

r,
w

r,
w

egro

If
th
be

No default str - - r

Nam

D
Def Val Python Type

U
sr

O
pr

M
gr
ter 6 Attributes

-332 PBS

nd

ecifies inter-job dependencies.
o limit on number of dependencies.

String. Syntax:
<type>:<job
ID>[,<job ID>
...],[<type>:<job
ID>[,<job ID> ...] ...]
Must be enclosed in
double quotes if it con-
tains commas. Exam-
ple:
“before:123,456”

after:<job ID
list>

This job may run at any point after all
jobs in job ID list have started execution

afterok:<job
ID list>

This job may run only after all jobs in
job ID list have terminated with no
errors.

afterno-
tok:<job ID
list>

This job may run only after all jobs in
job ID list have terminated with errors.

after-
any:<job ID
list>

This job can run after all jobs in job ID
list have finished execution, with or
without errors. This job will not run if a
job in the job ID list was deleted without
ever having been run.

before:<job
ID list>

Jobs in job ID list may start once this job
has started.

befor-
eok:<job ID
list>

Jobs in job ID list may start once this job
terminates without errors.

beforeno-
tok:<job ID
list>

If this job terminates execution with
errors, jobs in job ID list may begin.

before-
any:<job ID
list>

Jobs in job ID list may begin execution
once this job terminates execution, with
or without errors.

on:<count> This job may run after count dependen-
cies on other jobs have been satisfied.
This type is used with one of the before
types listed. Count is an integer greater
than 0.

up

the job is queued, this attribute is set to
e group name under which the job is to
 run.

String

Job Attributes

e

escription
Format Val / Opt Value/Option Description

PBS RG-333

Chapter 6

eligib

Th
ha
in
in
en
jo
qs

Zero pbs.duration r r,
w

r,
w

Erro

Th
th
qs

Default path
is current
working
directory
where qsub
is run.
If the output
path is speci-
fied, but
does not
include a
filename, the
default file-
name is <job
ID>.ER. If
the path
name is not
specified,
the default
filename is
<job
name>.e<s
equence
number>.

str r,
w

r,
w

r,
w

Nam

D
Def Val Python Type

U
sr

O
pr

M
gr
 Professional 2020.1.1 Reference Guide

Attributes

le_time

e amount of wall clock wait time a job
s accrued while the job is blocked wait-
g for resources. For a job currently accru-
g eligible_time, if we were to add
ough of the right type of resources, the
b would start immediately. Viewable via
tat -f.

Duration

r_Path

e final path name for the file containing
e job’s standard error stream. See the
ub and qalter commands.

String. Syntax:
[<hostname>:]<path>

<relative
path>

Path is relative to the current working
directory of command executing on cur-
rent host.

<absolute
path>

Path is absolute path on current host
where command is executing.

<host-
name>:<rela-
tive path>

Path is relative to user’s home directory
on specified host.

<host-
name>:<abs
olute path>

Path is absolute path on named host.

No path Path is current working directory where
qsub is executed.

Job Attributes

e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2020.1.1 Reference Guide

estim

Li
U
st
in
ov

Unset pbs.pbs_resourc
e

Syntax: esti-
mated. [<resource
name>]=<value>
.
exec_vnode is a
pbs.exec_vnode
.
soft_walltime is a
duration.
start_time is an
int.

r r,
w

r,
w

 Unset r r r,
w

Unset r r,
w

r,
w

etim

Ti
to
qu
w
re

No default int r r r

euse

If
th
ru

No default str - - r

exec

JS
Sh
cu

No default str r,
w

r,
w

r,
w

Nam

D
Def Val Python Type

U
sr

O
pr

M
gr
ter 6 Attributes

-334 PBS

ated

st of estimated values for job.
sed to report job’s exec_vnode,
art_time, and soft_walltime. Can be set
 a hook or via qalter, but PBS will
erwrite the values.

Syntax: esti-
mated.<resource
name>=<value>, esti-
mated.<resource
name>=<value>.
exec_vnode is a string.
soft_walltime is a dura-
tion. start_time is
printed by qstat in
human-readable Date
format; start_time is
output in hooks as sec-
onds since epoch.

exec_vnode The estimated vnodes used by this job.

soft_walltime The estimated soft walltime for this job.
Calculated when a job exceeds its
soft_walltime resource.

start_time The estimated start time for this job.

e

mestamp; time when job became eligible
 run, i.e. was enqueued in an execution
eue and was in the “Q” state. Reset

hen a job moves queues, or is held then
leased. Not affected by qaltering.

Timestamp.

Printed by qstat in
human-readable Date
format.
Output in hooks as sec-
onds since epoch.

r

the job is queued, this attribute is set to
e user name under which the job is to be
n.

String

utable

DL-encoded listing of job’s executable.
own if job is submitted with “-- <exe-
table> [<arg list>]”.

JSDL-encoded string.

<jsdl-hpcpa:Execut-
able> <name of execut-
able>
Example: if the execut-
able is ping: <jsdl-
hpcpa:Execut-
able>ping</jsdl-
hpcpa:Execut-
able>

Job Attributes

e

escription
Format Val / Opt Value/Option Description

PBS RG-335

Chapter 6

Exec

Ti
ex
qu
C
m
al

Unset; no
delay

int r,
w

r,
w

r,
w

exec

If
of
cu

No default pbs.exec_host r r,
i

r,
i

exec

Li
sh
w
co
vn
vn
If
re
jo
If
of
in
a

No default pbs.exec_vnode r r,
w

r,
w

Nam

D
Def Val Python Type

U
sr

O
pr

M
gr
 Professional 2020.1.1 Reference Guide

Attributes

ution_Time

mestamp; time after which the job may
ecute. Before this time, the job remains
eued in the (W)ait state.

an be set when stage-in fails and PBS
oves job start time out 30 minutes to
low user to fix problem.

Datetime. See Chapter
7, "Formats", on page
353.

_host

the job is running, this is set to the name
 the host or hosts on which the job is exe-
ting.

String. Syntax: <host-
name>/N[*C][+...],
where N is task slot
number starting at 0, on
that host, and C is the
number of CPUs allo-
cated to the job. *C
does not appear if its
value is 1.

_vnode

st of chunks for the job. Each chunk
ows the name of the vnode(s) from
hich it is taken, along with the host-level,
nsumable resources allocated from that
ode, and any AOE provisioned on this
ode for this job.
a vnode is allocated to the job but no
sources from the vnode are used by the
b, the vnode name appears alone.
a chunk is split across vnodes, the name
 each vnode and its resources appear
side one pair of parentheses, joined with
plus (“+”) sign.

Each chunk is enclosed
in parentheses. Chunks
are connected by plus
signs. Example: For a
job which requested
two chunks satisfied by
resources from three
vnodes, exec_vnode is:
(vnodeA:ncpus=N:
mem=X)+
(nodeB:ncpus=P:m
em=Y+
nodeC:mem=Z).
For a job which
requested one chunk
and exclusive use of a
2-vnode host, where the
chunk was satisfied by
resources from one
vnode, exec_vnode is
(vnodeA:ncpus=N:mem=
X)+(vnodeB).

Job Attributes

e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2020.1.1 Reference Guide

Exit_

Ex
fu
jo
ha

No default int r r r

forw

C
No default str r r r

forw

C
te
m

No default int r r r

grou

A
th
a
fro
or
1.
as
th
2.
as
3.
un

No default pbs.group_list r,
w

r,
w

r,
w

hash

N
- - -

Hold

Th
jo
sc
th
de

n pbs.hold_types r,
w

r,
w

r,
w

Nam

D
Def Val Python Type

U
sr

O
pr

M
gr
ter 6 Attributes

-336 PBS

status

it status of job. Set to zero for success-
l execution. If any subjob of an array
b has non-zero exit status, the array job
s non-zero exit status.

Integer

ard_x11_cookie

ontains the X authorization cookie.
String

ard_x11_port

ontains the number of the port being lis-
ned to by the port forwarder on the sub-
ission host.

Integer

p_list

 list of group names used to determine
e group under which the job runs. When
job runs, the server selects a group name
m the list according to the following

dered set of rules:
 Select the group name for which the
sociated host name matches the name of
e server host.
 Select the group name which has no
sociated host name.
 Use the login group for the user name
der which the job will be run.

String. Syntax:
<group
name>[@<host-
name>] [,<group
name>[@<host-
name>]...]
Must be enclosed in
double quotes if it con-
tains commas.

name

o longer used.
_Types

e set of holds currently applied to the
b. If the set is not null, the job will not be
heduled for execution and is said to be in
e held state. The held state takes prece-
nce over the wait state.

String, made up of the
letters ‘n’, ‘o’, ‘p’, ‘s’,
‘u’

n No hold
o Other hold
p Bad password
s System hold
u User hold

Job Attributes

e

escription
Format Val / Opt Value/Option Description

PBS RG-337

Chapter 6

inter

Sp
C
us
W
at
re
Fo
tu
C
Jo

False int r,
w

r r

jobd

Pa
di
Ei
D
V

No default str r r r

Job_

Th
qs

Base name
of job script,
or STDIN

str r,
w

r,
w

r,
w

Job_

Th
th

No default str r r r

Nam

D
Def Val Python Type

U
sr

O
pr

M
gr
 Professional 2020.1.1 Reference Guide

Attributes

active

ecifies whether the job is interactive.
an be set, but not altered, by unprivileged
er.
hen both this attribute and the block
tribute are True, no exit status is
turned.
r X11 forwarding jobs, the job's exit sta-

s is not returned.
annot be set using a PBS directive.
b arrays cannot be interactive.

Boolean Set to True if this is an interactive job.

ir

th of the job’s staging and execution
rectory on the primary execution host.
ther user’s home, or private sandbox.
epends on value of sandbox attribute.
iewable via qstat -f.

String

Name

e job name. See the qalter and
ub commands.

String up to 236 char-
acters, first character
must be alphabetic or
numeric

Owner

e login name on the submitting host of
e user who submitted the batch job.

String. Syntax:
<Username>@<sub-
mission host>

Job Attributes

e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2020.1.1 Reference Guide

job_

Th
No default pbs.JOB_STAT

E_BEGUN
r,
i

r,
i

r,
i

pbs.JOB_STAT
E_EXITING

pbs.JOB_STAT
E_FINISHED

pbs.JOB_STAT
E_HELD

pbs.JOB_STAT
E_MOVED

pbs.JOB_STAT
E_QUEUED

pbs.JOB_STAT
E_RUNNING

pbs.JOB_STAT
E_SUSPEND

pbs.JOB_STAT
E_TRANSIT

pbs.JOB_STAT
E_SUSPEND_U
SERACTIVE

 pbs.JOB_STAT
E_WAITING

pbs.JOB_STAT
E_EXPIRED

Nam

D
Def Val Python Type

U
sr

O
pr

M
gr
ter 6 Attributes

-338 PBS

state

e state of the job.
Character B (Begun) Job arrays only. Job array has begun

execution.
E (Exiting) The job has finished, with or without

errors, and PBS is cleaning up post-exe-
cution.

F (Finished) Job is finished. Job has completed exe-
cution, job failed during execution, or
job was deleted.

H (Held) The job is held.

M (Moved) The job has been moved to another
server.

Q (Queued) The job resides in an execution or rout-
ing queue pending execution or routing.
It is not in held or waiting state.

R (Running) The job is in an execution queue and is
running.

S (Sus-
pended)

The job was executing and has been sus-
pended. The job does not use CPU
cycles or walltime.

T (Transit-
ing)

The job is being routed or moved to a
new destination.

U (User sus-
pended)

The job was running on a workstation
configured for cycle harvesting and the
keyboard/mouse is currently busy. The
job is suspended until the workstation
has been idle for a configured amount of
time.

W (Waiting) The Execution_Time attribute contains
a time in the future. Can be set when
stage-in fails and PBS moves job start
time out 30 minutes to allow user to fix
problem.

X (Expired) Subjobs only. Subjob is finished
(expired.)

Job Attributes

e

escription
Format Val / Opt Value/Option Description

PBS RG-339

Chapter 6

Join

Sp
an
m
th

n pbs.join_path r,

w
r,
w

r,
w

Keep

Sp
or
th
ex
cu
th
rid
at

n pbs.keep_files r,
w

r,
w

r,
w

Mail

Sp
se

a pbs.mail_points r,
w

r,
w

r,
w

Mail

Th
th
th

Job owner
only

pbs.email_list r,
w

r,
w

r,
w

Nam

D
Def Val Python Type

U
sr

O
pr

M
gr
 Professional 2020.1.1 Reference Guide

Attributes

_Path

ecifies whether the job’s standard error
d standard output streams are to be
erged and placed in the file specified in
e Output_Path job attribute.

String

One of “oe”, “eo”, or
“n”.

eo Standard output and standard error are
merged, intermixed, into a single stream,
which becomes standard error.

oe Standard output and standard error are
merged, intermixed, into a single stream,
which becomes standard output.

n Standard output and standard error are
not merged.

_Files

ecifies whether the standard output and/
 standard error streams are retained on
e execution host in the job’s staging and
ecution directory after the job has exe-
ted. Otherwise these files are returned to
e submission host. Keep_Files over-
es the Output_Path and Error_Path

tributes.

String

One of “o”, “e”, “oe”,
“eo”, or “n”.

o The standard output stream is retained.
The filename is:
<job name>.o<sequence number>

e The standard error stream is retained.
The filename is:
<job name>.e<sequence number>

eo, oe Both standard output and standard error
streams are retained.

d Output and error are written directly to
their final destination

n Neither stream is retained. Files are
returned to submission host.

_Points

ecifies state changes for which the
rver sends mail about the job.

String

Can be any of “a”, “b”,
“e”, with optional “j”,
or “n”.

a Mail is sent when job is aborted
b Mail is sent at beginning of job
e Mail is sent at end of job
j Mail is sent for subjobs. Must be com-

bined with one or more of a, b, and e
options

n No mail is sent. Cannot be combined
with other options.

_Users

e set of users to whom mail is sent when
e job makes state changes specified in
e Mail_Points job attribute.

String

Syntax: “<user-
name>@<host-
name>[,<username>
@<hostname>]” Must
be enclosed in double
quotes if it contains
commas.

Job Attributes

e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2020.1.1 Reference Guide

mtim

Ti
m
tio

No default int r r r

no_s

N
- - -

Outp

Th
th
qs

Default path
is current
working
directory
where qsub
is run.
If the output
path is speci-
fied, but
does not
include a
filename, the
default file-
name is <job
ID>.OU. If
the path
name is not
specified,
the default
filename is
<job
name>.o<se
quence num-
ber>.

str r,
w

r,
w

r,
w

pcap

Po
at
se
Se

Unset int r,
w

r,
w

r,
w

Nam

D
Def Val Python Type

U
sr

O
pr

M
gr
ter 6 Attributes

-340 PBS

e

mestamp; the time that the job was last
odified, changed state, or changed loca-
ns.

Timestamp.

Printed by qstat in
human-readable Date
format.
Output in hooks as sec-
onds since epoch.

tdio_sockets

ot used.
ut_Path

e final path name for the file containing
e job’s standard output stream. See the
ub and qalter commands.

String. Syntax:
[<hostname>:]<path>

<relative
path>

Path is relative to the current working
directory of command executing on cur-
rent host.

<absolute
path>

Path is absolute path on current host
where command is executing.

<host-
name>:<rela-
tive path>

Path is relative to user’s home directory
on specified host.

<host-
name>:<abs
olute path>

Path is absolute path on named host.

No path Path is current working directory where
qsub is executed.

_accelerator

wer attribute. Power cap for an acceler-
or. Corresponds to Cray capmc
t_power_cap --accel setting.
e capmc documentation.

Integer

Units: Watts

Job Attributes

e

escription
Format Val / Opt Value/Option Description

PBS RG-341

Chapter 6

pcap

Po
C
se
ca

Unset int r,
w

r,
w

r,
w

pgov

Po
se
p-
tio
at

Unset str r,
w

r,
w

r,
w

Prior

Th
va

Unset int r,
w

r,
w

r,
w

proje

Th
jo
pr

_pbs_proje
ct_default

str r,
w

r,
w

r,
w

pset

D
by

str r r r,
w

psta

Po
se
to
tio

Unset str r,
w

r,
w

r,
w

Nam

D
Def Val Python Type

U
sr

O
pr

M
gr
 Professional 2020.1.1 Reference Guide

Attributes

_node

wer attribute. Power cap for a node.
orresponds to Cray capmc
t_power_cap --node setting. See
pmc documentation.

Integer

Units: Watts

wer attribute. Cray ALPS reservation
tting for CPU throttling corresponding to
governor. See BASIL 1.4 documenta-
n. We do not recommend using this

tribute.

String

ity

e scheduling priority for the job. Higher
lue indicates greater priority.

Integer. Syntax:
[+|-]nnnn

[-1024,
+1023] inclu-
sive

ct

e job’s project. A project is a way to tag
bs. Each job can belong to at most one
oject.

String. Can contain
any characters except
for the following:
Slash ("/"), left bracket
("["), right bracket
("]"), double quote
("""), semicolon (";"),
colon (":"), vertical
bar ("|"), left angle
bracket ("<"), right
angle bracket (">"),
plus ("+"), comma (","),
question mark ("?"),
and asterisk ("*").

eprecated. Name of placement set used
 the job.

String

te

wer attribute. Cray ALPS reservation
tting for CPU frequency corresponding
 p-state. See BASIL 1.4 documenta-
n.

String

Units: Hertz

Job Attributes

e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2020.1.1 Reference Guide

qtim

Ti
th

No default int r r r

queu

Th
cu

No default pbs.queue r r r

queu

A
w
PB

No default int - - r

queu

Th
re

No default pbs.QTYPE_EX
ECUTION

- - r

pbs.QTYPE_RO
UTE

relea

C
w
C
X
W
w
M
ar
un
Th
fo
at

False bool r,
w

r,
w

r,
w

Nam

D
Def Val Python Type

U
sr

O
pr

M
gr
ter 6 Attributes

-342 PBS

e

mestamp; the time that the job entered
e current queue.

Timestamp.

Printed by qstat in
human-readable Date
format.
Output in hooks as sec-
onds since epoch.

e

e name of the queue in which the job
rrently resides.

String

e_rank

 number indicating the job’s position
ithin its queue. Only used internally by
S.

Integer

e_type

e type of queue in which the job is cur-
ntly residing.

Character E Execution queue

R Routing queue

se_nodes_on_stageout

ontrols whether job vnodes are released
hen stageout begins.
annot be used with vnodes tied to Cray
* series systems.
hen cgroups is enabled and this is used
ith some but not all vnodes from one
oM, resources on those vnodes that
e part of a cgroup are not released
til the entire cgroup is released.
e job’s stageout attribute must be set

r the release_nodes_on_stageout
tribute to take effect.

Boolean True All of the job’s vnodes not on the pri-
mary execution host are released when
stageout begins

False Job’s vnodes are released when the job
finishes and MoM cleans up the job

Job Attributes

e

escription
Format Val / Opt Value/Option Description

PBS RG-343

Chapter 6

Rem

Sp
sta
re

Unset str r,
w

r,
w

r,
w

Reru

Sp
D
jo
"A
11
Jo
an

y bool r,
w

r,
w

r,
w

Reso

Th
Li
str
de
va
re
m
de
Se
R

No default pbs.pbs_resourc
e

Syntax:
Resource_List[“<
resource
name>”]=<value
> where resource
name is any built-
in or custom
resource

r,
w

r,
w

r,
w

reso

Li
th
pe
re
se

No default str r r r

Nam

D
Def Val Python Type

U
sr

O
pr

M
gr
 Professional 2020.1.1 Reference Guide

Attributes

ove_Files

ecifies whether standard output and/or
ndard error files are automatically

moved upon job completion.

String e Standard error is removed upon job com-
pletion

o Standard output is removed upon job
completion

eo Standard output and standard error are
removed upon job completion

oe Standard output and standard error are
removed upon job completion

unset Neither is removed
nable

ecifies whether the job can be rerun.
oes not affect how a job is treated if the
b could not begin execution. See
llowing Your Job to be Re-run", on page
8 of the PBS Professional User’s Guide.
b arrays are required to be rerunnable
d are rerunnable by default.

Character y The job can be rerun.
n Once the job starts running, it can never

be rerun.

urce_List

e list of resources required by the job.
st is a set of <resource name>=<value>
ings. The meaning of name and value is
pendent upon defined resources. Each
lue establishes the limit of usage of that
source. If not set, the value for a resource
ay be determined by a queue or server
fault established by the administrator.
e Chapter 5, "List of Built-in

esources", on page 259.

String. Syntax:
Resource_List.<resourc
e name>=<value>],
Resource_List.<resourc
e name>=<value>, ...]

urces_released

sted by vnode, consumable resources
at were released when the job was sus-
nded. Populated only when
strict_res_to_release_on_suspend
rver attribute is set. Set by server.

String. Syntax:
(<vnode>:<resource
name>=<value>:<res
ource
name>=<value>:...)+(
<vnode>:<resource
name>=<value>:...)

Job Attributes

e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2020.1.1 Reference Guide

reso

Su
re
w
on
re
se

No default pbs.pbs_resourc
e

-- r r

reso

Th
jo

No default pbs.pbs_resourc
e

Syntax:
resources_used
[“<resource
name>”]=
<value> where
resource name is
any built-in or
custom resource

r r r

run_

Th
jo
Th
Jo
hi
en
C

Zero int - r,
w

r,
w

run_

U
in

int -- -- r

sand

Sp
sta
U
bo
Se
op

Unset str r,

w
r,
w

r,
w

Nam

D
Def Val Python Type

U
sr

O
pr

M
gr
ter 6 Attributes

-344 PBS

urce_released_list

m of each consumable resource
quested by the job that was released
hen the job was suspended. Populated
ly when
strict_res_to_release_on_suspend
rver attribute is set. Set by server.

String. Syntax:
resource_released_list.
<resource
name>=<value>,resou
rce_released_list.<reso
urce name>=<value>,
...

urces_used

e amount of each resource used by the
b.

String. Syntax: List of
resources_used.<resou
rce
name>=<value>,resou
rces_used.<resource
name>=<value> pairs.
Example:
resources_used.mem=2
mb

count

e number of times the server thinks the
b or subjob has been executed.
e run_count attribute starts at zero.

b is held after 21 tries. When a subjob
ts the run_count limit, it and its par-
t job array get a System hold.

an be set via qsub, qalter, or a hook.

Integer.

Must be greater than or
equal to zero.

version

sed internally by PBS to track the
stance of the job.

Integer

box

ecifies type of location PBS uses for job
ging and execution.

ser-settable via qsub -Wsand-
x=<value> or via a PBS directive.
e the $jobdir_root MoM configuration
tion in pbs_mom.8B.

String PRIVATE PBS creates job-specific staging and
execution directories under the directory
specified in the $jobdir_root MoM con-
figuration option.

HOME or
unset

PBS will use the job owner’s home
directory for staging and execution.

Job Attributes

e

escription
Format Val / Opt Value/Option Description

PBS RG-345

Chapter 6

sche

Th
jo
re

No default pbs.select - - r

sche

 N
- - -

serv

Th
m
se
na
m
or
ne

No default pbs.server r r r

sess

If
sio

No default int r r r

Shel

O
gr

User’s login
shell on exe-
cution host

pbs.path_list r,
w

r,
w

r,
w

stag

Th
ex

No default pbs.staging_list r,
w

r,
w

r,
w

Nam

D
Def Val Python Type

U
sr

O
pr

M
gr
 Professional 2020.1.1 Reference Guide

Attributes

dselect

e union of the select specification of the
b, and the queue and server defaults for
sources in a chunk.

String

d_hint

o longer used.
er

e name of the server which is currently
anaging the job. When the secondary
rver is running during failover, shows the
me of the primary server. After a job is
oved to another server, either via qmove
 peer scheduling, shows the name of the
w server.

String

ion_id

the job is running, this is set to the ses-
n ID of the first executing task.

l_Path_List

ne or more absolute paths to the pro-
am(s) to process the job’s script file.

String. Syntax:
“<path>[@<host-
name>][,<path>[@<h
ostname>]...]” Must
be enclosed in double
quotes if it contains
commas.

ein

e list of files to be staged in prior to job
ecution.

String. Syntax: “<exe-
cution path>@<stor-
age host>:<storage
path>[, <execution
path>@<storage
host>:<storage path>,
...]”
Must be enclosed in
double quotes if it con-
tains commas.

Job Attributes

e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2020.1.1 Reference Guide

stag

Th
ex

No default pbs.staging_list r,
w

r,
w

r,
w

Stag

St
th
to
pl
su
S
Av

No default int r r r

stim

Ti
cu

No default int r r r

Subm

Jo
qs
jo

No default str r,
w

r,
w

r,
w

subs

Th
us

No default int r r r

sw_i

N
- - -

Nam

D
Def Val Python Type

U
sr

O
pr

M
gr
ter 6 Attributes

-346 PBS

eout

e list of files to be staged out after job
ecution.

String. Syntax: “<exe-
cution path>@<stor-
age host>:<storage
path>[, <execution
path>@<storage
host>:<storage path>,
...]”
 Must be enclosed in
double quotes if it con-
tains commas.

eout_status

atus of stageout. If stageout succeeded,
is is set to 1. If stageout failed, this is set
 0. Available only for finished jobs. Dis-
ayed only if set. If stageout fails for any
bjob of an array job, the value of
tageout_status is zero for the array job.
ailable only for finished jobs.

Integer

e

mestamp; time when the job started exe-
tion. Changes when job is restarted.

Timestamp.

Printed by qstat in
human-readable Date
format.
Output in hooks as sec-
onds since epoch.

it_arguments

b submission arguments given on the
ub command line. Available for all

bs.

String

tate

e substate of the job. The substate is
ed internally by PBS.

Integer

ndex

o longer used.

Job Attributes

e

escription
Format Val / Opt Value/Option Description

PBS RG-347

Chapter 6

toler

Sp
vn
on

None str r,
s

r,
s

r,
s

topjo

A
in

Unset,
behaves like
False

bool - - r,
w

uma

Th
va
at
co
su

077 int r,
w

r,
w

r,
w

Nam

D
Def Val Python Type

U
sr

O
pr

M
gr
 Professional 2020.1.1 Reference Guide

Attributes

ate_node_failures

ecifies whether job can have extra
odes allocated, and whether for startup
ly or for the life of the job.

String none, unset No extra vnodes are allocated to the job.
job_start Extra vnodes are allocated only long

enough to start the job successfully.

Tolerate vnode failures that occur only
during job start, just before executing the
job’s top level shell or executable or any
execjob_launch hooks.

Failures tolerated are those such as an
assigned sister MoM failing to join the
job and communication errors between
MoMs.

all Extra vnodes are allocated for the life of
the job.

Tolerate all node failures resulting from
communication problems, such as poll-
ing problems, between the primary MoM
and the sister MoMs assigned to the job

Tolerate failures due to rejections from
execjob_begin or execjob_prologue
hooks run at sister MoMs.

b_ineligible

llows administrators to mark this job as
eligible to be a top job.

Boolean True This job is not eligible to be a top job.
False This job is eligible to be a top job.

sk

e initial umask of the job is set to the
lue of this attribute when the job is cre-
ed. This may be changed by umask
mmands in the shell initialization files
ch as .profile or .cshrc.

Decimal integer

Job Attributes

e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2020.1.1 Reference Guide

User

Th
na
ho
W
se
to
1.
w
th
2.
ci
3.
na

Value of
Job_Owner
job attribute

pbs.user_list r,
w

r,
w

r,
w

Varia

Li
jo
qs

No default pbs.pbs_resourc
e

Syntax:
Variable_List[“<
variable
name>”]=<value
>

r,
w

r,
w

r,
w

Nam

D
Def Val Python Type

U
sr

O
pr

M
gr
ter 6 Attributes

-348 PBS

_List

e list of users which determines the user
me under which the job is run on a given
st. No length limit.
hen a job is to be executed, the server
lects a user name from the list according
 the following ordered set of rules:
 Select the user name from the list for
hich the associated host name matches
e name of the server.
 Select the user name which has no asso-
ated host name; the wild card name.
 Use the value of Job_Owner as the user
me.

String. Syntax:
“<username>@<host-
name> [,<user-
name>@<hostname>..
.]” Must be enclosed in
double quotes if it con-
tains commas. May be
up to 256 characters in
length.

ble_List

st of environment variables set in the
b’s execution environment. See the
ub(1B) command.

String. Syntax:
“<variable
name>=<value>
[,<variable
name>=<value>...]”
Must be enclosed in
double quotes if it con-
tains commas.

Job Attributes

e

escription
Format Val / Opt Value/Option Description

PBS RG-349

Chapter 6

6.1

An un

Hook

Nam

D
tion Default

Value
Python
Type U

sr
O

pr
M

gr

alarm

Sp
to

30

debu

Sp
de
se
mo
ho
ID
D
H

when it runs. False

ng files when it

enab

D
tri

 occurs. True

g event occurs.
 Professional 2020.1.1 Reference Guide

Attributes

2 Hook Attributes

set hook attribute takes the default value for that attribute.

 attributes can be set by root or the Admin at the local server only.

Hook Attributes

e

escription
Format Val / Opt Value/Option Descrip

ecifies the number of seconds to allow a hook
 run before the hook times out.

Integer.
Must be
greater than
zero.

g

ecifies whether or not the hook produces
bugging files under PBS_HOME/
rver_priv/hooks/tmp or PBS_HOME/
m_priv/hooks/tmp. Files are named
ok_<hook event>_<hook name>_<unique
>.in, .data, and .out. See "Producing Files for

ebugging" on page 159 in the PBS Professional
ooks Guide.

Boolean True The hook leaves debugging files
False The hook does not leave debuggi

runs.

led

etermines whether or not a hook is run when its
ggering event occurs.

Boolean True Hook runs when triggering event
False Hook does not run when triggerin

Chap

RG Professional 2020.1.1 Reference Guide

even

Li
at
Th
an

““
mean-
ing
hook is
not
trig-
gered

str

ated

b
cess
ser’s program
cjob_prologue
_attach()

uspending a job
job
illed

essfully
execution hosts
r receives

Nam

D
tion Default

Value
Python
Type U

sr
O

pr
M

gr
ter 6 Attributes

-350 PBS

t

st of events that trigger the hook. Can be oper-
ed on with the "=", "+=", and "-=" operators.
e provision event cannot be combined with
y other events.

String_arra
y

queuejob Triggered when job is queued
modifyjob Triggered when job is modified
movejob Triggered when job is moved
resv_end Triggered when reservation ends
resvsub Triggered when reservation is cre
runjob Triggered when job is run
periodic Triggered periodically at server
provision Hook is master provisioning hook
execjob_begin Triggered when MoM receives jo
execjob_prologue Triggered just before first job pro
execjob_launch Triggered just before executing u
execjob_attach Triggered before running any exe

hooks, on each vnode where pbs
runs

execjob_postsuspend Triggered just after successfully s
execjob_preresume Triggered just before resuming a
execjob_end Triggered after job finishes or is k
execjob_preterm Triggered just before job is killed
execjob_epilogue Triggered just after job runs succ
exechost_periodic Triggered at periodic interval on
exechost_startup Triggered when MoM starts up o

SIGHUP (Linux)
"" Hook is not triggered

Hook Attributes

e

escription
Format Val / Opt Value/Option Descrip

PBS RG-351

Chapter 6

fail_a

Sp
du
in
m
be
be
“o
“c
“s

If
re
Se
fa
Pr
ul
PB

none

n, offlines the
cuting the

ogue,
begin hooks.
clears vnodes
nodes fail

rtup hooks.
n, restarts
 for
ologue hooks.

freq

N
ex

ers 120

orde

In
ho
w
hi
D
ex

1

type

Th
C

site

user

Sp
pbsad-
min

Nam

D
tion Default

Value
Python
Type U

sr
O

pr
M

gr
 Professional 2020.1.1 Reference Guide

Attributes

ction

ecifies the action to be taken when hook fails
e to alarm call or unhandled exception, or to an
ternal error such as not enough disk space or
emory. Can also specify a subsequent action to
 taken when hook runs successfully. Value can
 either “none” or one or more of
ffline_vnodes”,
lear_vnodes_upon_recovery”, and
cheduler_restart_cycle”.
this attribute is set to multiple values, scheduler
start happens last.
e "Offlining and Clearing Vnodes Using the
il_action Hook Attribute" on page 66 in the PBS
ofessional Hooks Guide and "Restarting Sched-
er Cycle After Hook Failure" on page 63 in the
S Professional Hooks Guide.

String_arra
y

none No action is taken.
offline_vnodes After unsuccessful hook executio

vnodes managed by the MoM exe
hook.
Only available for execjob_prol
exechost_startup and execjob_

clear_vnodes_upon_r
ecovery

After successful hook execution,
previously offlined via offline_v
action.
Only available for exechost_sta

scheduler_restart_cycl
e

After unsuccessful hook executio
scheduling cycle. Only available
execjob_begin and execjob_pr

umber of seconds between periodic or
echost_periodic triggers.

Integer Number of seconds between trigg

r

dicates relative order of hook execution, for
oks of the same type sharing a trigger. Hooks

ith lower order values execute before those with
gher values.
oes not apply to periodic or
echost_periodic hooks.

Integer Range:

built-in hooks: [-1000,
2000]

site hooks: [1,1000]

e type of the hook.
annot be set for a built-in hook.

String pbs Hook is built in
site Hook is custom (site-defined)

ecifies who executes the hook.
String pbsadmin Hook runs as root

pbsuser Hook runs as owner of job

Hook Attributes

e

escription
Format Val / Opt Value/Option Descrip

Chap

RG Professional 2020.1.1 Reference Guide
ter 6 Attributes

-352 PBS

7

Formats

This chapter describes the formats used in PBS Professional.

7.1 Non-resource Formats

Accounting Log Entry

logfile-date-time;record-type;id-string;message-text
where

logfile-date-time
Date and time stamp in the format:

mm/dd/yyyy hh:mm:ss
record-type

A single character indicating the type of record

id-string
The job or reservation identifier

message-text
Format: blank-separated keyword=value fields.

Message text is ASCII text.

Content depends on the record type.

Attribute Name

PBS NAME. Cannot be used for a vnode name.

Date

<Day of week> <Name of month> <Day of month> <HH:MM:SS> <YYYY>
PBS Professional 2020.1.1 Reference Guide RG-353

Chapter 7 Formats
Datetime

A datetime is

[[[[CC]YY]MM]DD]hhmm[.SS]

where

When setting the value, each portion of the date defaults to the current date, as long as the next-smaller portion
is in the future. For example, if today is the 3rd of the month and the specified day DD is the 5th, the month MM
will be set to the current month.

If a specified portion has already passed, the next-larger portion will be set to one after the current date. For
example, if the day DD is not specified, but the hour hh is specified to be 10:00 a.m. and the current time is
11:00 a.m., the day DD will be set to tomorrow.

Destination Identifier

String used to specify a particular destination. The identifier may be specified in one of three forms:

<queue name>@<server name>
<queue name>
@<server name>

where <queue name> is an ASCII character string of up to 15 characters.

Valid characters are alphanumerics, the hyphen and the underscore. The string must begin with a letter.

Hostname

String of the form

<machine name>.<domain name>
where domain name is a hierarchical, dot-separated list of subdomains.

A hostname cannot contain the following:

• A dot ("."), other than as a subdomain separator

• The commercial at sign, "@", as this is often used to separate a file from the host in a remote file name

• To prevent confusion with port numbers, a hostname cannot contain a colon (":")

The maximum length of a hostname supported by PBS is 255.

Job Array ID, Job Array Identifier

The identifier returned upon success when submitting a job array.

Job array identifiers are a sequence number followed by square brackets:

Table 7-1: Datetime Symbols

Symbol Meaning

CC Century

YY Year

MM Month

DD Day of month

hh Hour

mm Minute

SS Second
RG-354 PBS Professional 2020.1.1 Reference Guide

Formats Chapter 7
<sequence number>[][.<server name>][@<server name>]
Example:

1234[]

Note that some shells require that you enclose a job array ID in double quotes.

The largest value that sequence number can be is set in the max_job_sequence_id server attribute. This
attribute defaults to 9999999. Minimum value for this attribute is 9999999, and maximum is
999999999999. After maximum for sequence number has been reached, job array IDs start again at 0.

Job Array Range

<sequence number>[<first>-<last>][.<server name>][@<server name>]
first and last are the first and last indices of the subjobs.

Job ID, Job Identifier

When a job is successfully submitted to PBS, PBS returns a unique identifier for the job. Format:

<sequence number>[.<server>][@<new server>]
The <server> portion indicates the name of the original server where the job was submitted.

The @<new server> portion indicates the current location of the job if it is not at the original server.

The largest value that sequence number can be is set in the max_job_sequence_id server attribute. This
attribute defaults to 9999999. Minimum value for this attribute is 9999999, and maximum is
999999999999. After maximum for sequence number has been reached, job IDs start again at 0.

Job Name, Job Array Name

A job name or job array name can be at most 230 characters. It must consist only of alphabetic, numeric, plus
sign (“+”), dash or minus or hyphen (“-”), underscore (“_”), and dot or period (“.”) characters.

Default: if a script is used to submit the job, the job’s name is the name of the script. If no script is used, the
job’s name is “STDIN”.
PBS Professional 2020.1.1 Reference Guide RG-355

Chapter 7 Formats
Limit Specification

<limit specification>=<limit value>[, <limit specification>=<limit value>, ...]

where limit specification is:

• The limit specification can contain spaces anywhere except after the colon (“:”).

• If there are comma-separated limit specifications, the entire string must be enclosed in double quotes.

• A username, group name, or project name containing spaces must be enclosed in quotes.

• If a username, group name, or project name is quoted using double quotes, and the entire string requires
quotes, the outer enclosing quotes must be single quotes. Similarly, if the inner quotes are single quotes,
the outer quotes must be double quotes.

• PBS_ALL is a keyword which indicates that this limit applies to the usage total.

• PBS_GENERIC is a keyword which indicates that this limit applies to generic users, groups, or projects.

• When removing a limit, the limit value does not need to be specified.

• PBS_ALL and PBS_GENERIC are case-sensitive.

Format for setting a limit attribute:

set server <limit attribute> = “<limit specification>=<limit value>[, <limit specification>=<limit
value>], ...”

set queue <queue name> <limit attribute> = “<limit specification>=<limit value>[, <limit specifica-
tion>=<limit value>], ...”

For example, to set the max_queued limit on QueueA to 5 for total usage, and to limit user bill to 3:

Qmgr: s q QueueA max_queued = "[o:PBS_ALL=5], [u:bill =3]"

Examples of setting, adding, and removing:

Qmgr: set server max_run="[u:PBS_GENERIC=2], [g:group1=10], [o:PBS_ALL = 100]"

Qmgr: set server max_run+="[u:user1=3], [g:PBS_GENERIC=8]"

Qmgr: set server max_run-="[u:user2], [g:group3]"

Qmgr: set server max_run_res.ncpus="[u:PBS_GENERIC=2], [g:group1=8], [o:PBS_ALL = 64]"

See "How to Set Limits at Server and Queues" on page 296 in the PBS Professional Administrator’s Guide.

Event logfile-date-time

Date and time stamp in the format:

Table 7-2: Limit Specification Syntax

Limit Specification Limit

o:PBS_ALL Overall limit

u:PBS_GENERIC Generic users

u:<username> An individual user

g:PBS_GENERIC Generic groups

g:<group name> An individual group

p:PBS_GENERIC Generic projects

p:<project name> An individual project
RG-356 PBS Professional 2020.1.1 Reference Guide

Formats Chapter 7
mm/dd/yyyy hh:mm:ss[.xxxxxx]
If microsecond logging is enabled, microseconds are logged using the .xxxxxx portion. Microseconds may be
preceded by zeroes. Microsecond logging is controlled per host via the PBS_LOG_HIGHRES_TIMESTAMP
configuration parameter or environment variable.

pathname

All printable characters except for ampersand (“&”)

PBS NAME

This is a generic term, used to describe various PBS entities. For example, attribute names are PBS NAMEs.

Must start with an alphabetic character, and may contain only the following: alpha-numeric, underscore (“_”),
or dash (“-”).

Do not use PBS keywords as PBS NAMEs.

PBS Password

The pbs_ds_password command generates passwords containing the following characters:

0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!@#$%^&*()_+

When creating a password manually, do not use \ (backslash) or ‘ (backquote). This can prevent certain com-
mands such as pbs_server, pbs_ds_password, and printjob from functioning properly, as they rely
on connecting to the database.

Project Name

A project name can contain any characters except for the following: slash ("/"), left bracket ("["), right bracket
("]"), double quote ("""), semicolon (";"), colon (":"), vertical bar ("|"), left angle bracket ("<"), right angle
bracket (">"), plus ("+"), comma (","), question mark ("?"), and asterisk ("*").

Default value: "_pbs_project_default".

Queue ID, Queue Identifier

To specify a queue at the default server:

<queue name>
To specify all queues at a server:

@<server name>
To specify a queue at a specific server:

<queue name>@<server name>

Queue Name

PBS NAME up to 15 characters in length

Reservation ID, Reservation Identifier

Format for an advance reservation:

R<sequence number>[.<server name>][@<server name>]
Format for a standing reservation:

S<sequence number>[.<server name>][@<server name>]
Format for a maintenance reservation:

M<sequence number>[.<server name>][@<server name>]
The largest value that sequence number can be is set in the max_job_sequence_id server attribute. This
attribute defaults to 9999999. Minimum value for this attribute is 9999999, and maximum is
999999999999. After maximum for sequence number has been reached, reservation IDs start again at 0.
PBS Professional 2020.1.1 Reference Guide RG-357

Chapter 7 Formats
Reservation Name

Same as Job Name. See "Job Name, Job Array Name” on page 355.

Resource Name

PBS NAME up to 64 characters in length

Resource names are case-insensitive.

Subjob Identifier

Subjob identifiers are a sequence number followed by square brackets enclosing the subjob’s index:

<sequence number>[<index>][.<server name>][@<server name>]
Example:

1234[99]

Timestamp

Output format varies depending on context:

• Printed by qstat in human-readable Date format

• Output in hooks as seconds since epoch

Username

Linux username:

String up to 16 characters in length. PBS supports usernames containing any printable, non-whitespace charac-
ter except the at sign (“@”). Your platform may place additional limitations on usernames.

Windows username:

Must conform to the POSIX-1 standard for portability:

• The username must contain only alphanumeric characters, dot (.), underscore (_), and/or hyphen "-".

• The hyphen must not be the first letter of the username.

• If "@" appears in the username, it will assumed to be in the context of a Windows domain account: user-
name@domainname.

An exception to the above rule is the space character, which is allowed. If a space character appears in a user-
name string, it will be displayed quoted and must be specified in a quoted manner.

Vnode Name

Hostname, IP address, or other legal string, according to the following:

• For the parent vnode, the vnode name must conform to legal name for a host; see Hostname

• For other vnodes, the vnode name can be alphanumeric and any of these:

- (dash)

_ (underscore)

@ (at sign)

[(left bracket)

] (right bracket)

(hash)

^ (caret)

/ (slash)

\ (backslash)
RG-358 PBS Professional 2020.1.1 Reference Guide

Formats Chapter 7
. (period)

• Cannot be the same as an attribute name

• Vnode names are case-insensitive

7.2 Resource Formats

Boolean

Name of Boolean resource is a string.

Values:

TRUE, True, true, T, t, Y, y, 1

FALSE, False, false, F, f, N, n, 0

Duration

A period of time, expressed either as

An integer whose units are seconds
or

[[hours:]minutes:]seconds[.milliseconds]
in the form:

[[HH:]MM:]SS[.milliseconds]
Milliseconds are rounded to the nearest second.

Float

Floating point. Allowable values: [+-] 0-9 [[0-9] ...][.][[0-9] ...]

Long

Long integer. Allowable values: 0-9 [[0-9] ...], and + and -
PBS Professional 2020.1.1 Reference Guide RG-359

Chapter 7 Formats
<queue name>@<server name>

Size

Number of bytes or words. The size of a word is 64 bits.

Format: <integer>[<suffix>]

where suffix can be one of the following:

Default: bytes

Note that a scheduler rounds all resources of type size up to the nearest kb.

String

Any character, including the space character.

Only one of the two types of quote characters, " or ', may appear in any given value.

Values:[_a-zA-Z0-9][[-_a-zA-Z0-9 ! " # $ % ´ () * + , - . / : ; < = > ? @ [\] ^ _ ' { | } ~] ...]

String resource values are case-sensitive. No limit on length.

String Array

Comma-separated list of strings.

Strings in string_array may not contain commas. No limit on length.

Python type is str.

A string array resource with one value works exactly like a string resource.

Table 7-3: Size in Bytes

Suffix Meaning Size

b or w Bytes or words 1

kb or kw Kilobytes or kilowords 2 to the 10th, or 1024

mb or mw Megabytes or megawords 2 to the 20th, or 1,048,576

gb or gw Gigabytes or gigawords 2 to the 30th, or 1,073,741,824

tb or tw Terabytes or terawords 2 to the 40th, or 1024 gigabytes

pb or pw Petabytes or petawords 2 to the 50th, or 1,048,576 gigabytes
RG-360 PBS Professional 2020.1.1 Reference Guide

8

States

This chapter lists and describes the states in PBS Professional.

8.1 Job States

Job states are abbreviated to one character.

Table 8-1: Job States

State Numeric Description

B 7 Job arrays only: job array is begun, meaning that at least one subjob has started

E 5 Job is exiting after having run

F 9 Job is finished. Job has completed execution, job failed during execution, or job was deleted.

H 2 Job is held. A job is put into a held state by the server or by a user or administrator. A job
stays in a held state until it is released by a user or administrator.

M 8 Job was moved to another server

Q 1 Job is queued, eligible to run or be routed

R 4 Job is running

S None; sub-

state of

Running

Job is suspended by scheduler. A job is put into the suspended state when a higher priority job
needs the resources.

T 0 Job is in transition to or from a server

U None; sub-

state of

Running

Job is suspended due to workstation becoming busy

W 3 Job is waiting for its requested execution time to be reached, or job is delayed due to stagein
failure.

X 6 Subjobs only; subjob is finished (expired.)
PBS Professional 2020.1.1 Reference Guide RG-361

Chapter 8 States
8.1.1 Job Substates

Job substates are numeric:

Table 8-2: Job Substates

Substate
Number

Substate Description

00 Transit in, prior to waiting for commit

01 Transit in, waiting for commit

02 transiting job outbound, not ready to commit

03 transiting outbound, ready to commit

10 job queued and ready for selection

11 job queued, has files to stage in

13 Job waiting on sync start ready

14 job staging in files before waiting

15 job staging in files before running

16 job stage in complete

20 job held - user or operator

21 job held waiting on sync regist

22 job held - waiting on dependency

30 job waiting until user-specified execution time

37 job held - file stage in failed

41 job sent to MoM to run

42 Running

43 Suspended by Operator or Manager

45 Suspended by scheduler

50 Server received job obit

51 Staging out stdout/err and other files

52 Deleting stdout/err files and staged-in files

53 Mom releasing resources

54 job is being aborted by server

56 (Set by MoM) Mother Superior telling sisters to kill everything

57 (Set by MoM) job epilogue running

58 (Set by MoM) job obit notice sent

59 Waiting for site "job termination" action script

60 Job to be rerun, MoM sending stdout/stderr back to server

61 Job to be rerun, staging out files
RG-362 PBS Professional 2020.1.1 Reference Guide

States Chapter 8
8.2 Job Array States

Job array states map closely to job states except for the ‘B’ state. The ‘B’ state applies to job arrays and indicates that at
least one subjob has left the queued state and is running or has run, but not all subjobs have run. Job arrays will never be
in the ‘R’, ‘S’ or ‘U’ states.

62 Job to be rerun, deleting files

63 Job to be rerun, freeing resources

69 subjob is gone

70 Array job has begun

71 Job is waiting for vnode(s) to be provisioned with its requested AOE.

91 Job is terminated

92 Job is finished

93 Job failed

94 Job was moved

153 (Set by MoM) Mother Superior waiting for delete ACK from sisters

Table 8-3: Job Array States

State Numeric Indication

B 7 The job array has started

E 5 All subjobs are finished and the server is cleaning up the job array

F 9 The job array is finished

H 2 The job array is held

Q 1 The job array is queued, or has been qrerun

T 0 The job array is in transit between servers

W 3 The job array is waiting for its execution time to be reached, or job array was delayed due to
stagein failure

Table 8-2: Job Substates

Substate
Number

Substate Description
PBS Professional 2020.1.1 Reference Guide RG-363

Chapter 8 States
8.3 Subjob States

Subjobs can be in one of six states, listed here.

8.4 Server States

The state of the server is shown in the server_state server attribute. Possible values are shown in the following table:

Table 8-4: Subjob States

State Numeric Indication

E 5 Ending

F 9 Finished

Q 1 Queued

R 4 Running

S None; sub-

state of Run-

ning

Suspended

U None; sub-

state of Run-

ning

Suspended by keyboard activity

X 6 Expired or deleted; subjob has completed execution or been deleted

Table 8-5: Server States

State Description

Hot_Start The server has been started so that it will run first any jobs that were running when the
server was shut down.

Python type: pbs.SV_STATE_HOT

Idle The server is running. The scheduler is between scheduling cycles.

Python type: pbs.SV_STATE_IDLE

Scheduling The server is running. The scheduler is in a scheduling cycle.

Python type: pbs.SV_STATE_ACTIVE

Terminating The server is terminating.

Python type: pbs.SV_STATE_SHUTIMM or pbs.SV_STATE_SHUTSIG

Terminating_Delayed The server is terminating in delayed mode. No new jobs will be run, and the server will shut
down when the last running job finishes.

Python type: pbs.SV_STATE_SHUTDEL
RG-364 PBS Professional 2020.1.1 Reference Guide

States Chapter 8
8.5 Vnode States

If a vnode’s state attribute is unset, that is equivalent to the state being free. A vnode’s state is shown in its state
attribute, which can take on zero or more of the values listed here. Some vnode state values can be set simultaneously.
Values are:

Table 8-6: Vnode States

State Set By Description

 Can
Combine

With these
States

busy Server Node is up and has load average greater than max_load, or is
showing keyboard or mouse activity. When the loadave is above
max_load, that node is marked busy. A scheduler won’t place
jobs on a node marked busy. When the loadave drops below
ideal_load, or when the mouse and keyboard have not shown
any activity for a specified amount of time, the busy mark is
removed. Consult your OS documentation to determine values
that make sense.

offline

maintenance

down Server Node is not usable. Existing communication lost between server
and MoM.

maintenance

Cannot be set
with free

free Server Node is up and has available CPU(s). Server will mark a vnode
“free” on first successful ping after vnode was “down”.

None

job-busy Server Node is up and all CPUs are allocated to jobs. offline

resv-exclusive

job-exclusive Server Node is up and has been allocated exclusively to a single job. offline

resv-exclusive

maintenance Server A vnode enters the maintenance state when any of its jobs is
suspended with the admin-suspend signal. Other jobs running
on this vnode continue to run; each job must be admin-sus-

pended. The vnode leaves the maintenance state when the last
job is resumed with the admin-resume signal. A scheduler does
not start or resume jobs on a node in the maintenance state.

Any reservations on vnodes in the maintenance state are
marked degraded. PBS searches for alternate vnodes for those
reservations.

down

offline

offline Manager

Operator

Node is not usable. Jobs running on this vnode will continue to
run. Used by Manager/Operator to mark a vnode not to be used
for jobs.

busy

job-busy

job-exclusive

resv-exclusive

powered-off Indicates that this vnode was powered off by PBS via power pro-
visioning. This tells the scheduler that it can schedule jobs on
this vnode; in that case PBS powers the vnode back up.
PBS Professional 2020.1.1 Reference Guide RG-365

Chapter 8 States
powering-down Indicates that this vnode is in the process of being powered down
by PBS via power provisioning.

powering-on Indicates that this vnode is in the process of being powered up by
PBS via power provisioning.

provisioning Server A vnode is in the provisioning state while it is in the process of
being provisioned. No jobs are run on vnodes in the provisioning
state.

Cannot be set
with any other
states

resv-exclusive Server Reservation has requested exclusive use of vnode, and reserva-
tion is running.

job-exclusive,

offline

sleep Server Indicates that this vnode was ramped down or powered off via
PBS power management. This tells the scheduler that it can
schedule jobs on this vnode; in that case PBS powers the vnode
back up.

stale Server MoM managing vnode is not reporting any information about
this vnode, but was reporting it previously. Server can still com-
municate with MoM.

A vnode becomes stale when:

1. A vnode is defined in the server

2. MoM starts or restarts and reports a set of vnodes according to
her configuration

3. A vnode which existed in the server earlier is not in the set
being reported now by MoM

4. That vnode is marked "stale"

Cannot be set
with free

state-unknown,

down

Server Node is not usable. Since server’s latest start, no communication
with this vnode. May be network or hardware problem, or no
MoM on vnode.

unresolvable Server Server cannot resolve name of vnode

wait-provisioning Server There is a limit on the maximum number of vnodes that can be in
the provisioning state. This limit is specified in the server’s
max_concurrent_provision attribute. If a vnode is to be provi-
sioned, but cannot because the number of concurrently provi-
sioning vnodes has reached the specified maximum, the vnode
goes into the wait-provisioning state. No jobs are run on
vnodes in the wait-provisioning state.

Cannot be set
with any other
states

Table 8-6: Vnode States

State Set By Description

 Can
Combine

With these
States
RG-366 PBS Professional 2020.1.1 Reference Guide

States Chapter 8
8.6 Reservation States

The following table shows the list of possible states for a reservation. The states that you will usually see are CO, UN,
BD, and RN, although a reservation usually remains unconfirmed for too short a time to see that state.

Table 8-7: Reservation States

Code Numeric State Description

AL 11 RESV_BEING_ALTERED Transitory state; reservation is being altered

BD 7 RESV_BEING_DELETED Transitory state; reservation is being deleted

CO 2 RESV_CONFIRMED Reservation confirmed

DG 10 RESV_DEGRADED Vnode(s) allocated to reservation unavailable

DE 8 RESV_DELETED Transitory state; reservation has been deleted

DJ 9 RESV_DELETING_JOBS Jobs remaining after reservation’s end time being deleted

FN 6 RESV_FINISHED Transitory state; reservation’s end time has arrived and reser-
vation will be deleted

IC 12 RESV_IN_CONFLICT This reservation conflicts with a maintenance reservation

NO 0 RESV_NONE No reservation yet

RN 5 RESV_RUNNING Time period from reservation’s start time to end time is
being traversed

TR 4 RESV_TIME_TO_RUN Transitory state; reservation’s start time has arrived

UN 1 RESV_UNCONFIRMED Reservation not confirmed

WT 3 RESV_WAIT Unused
PBS Professional 2020.1.1 Reference Guide RG-367

Chapter 8 States
8.6.1 Degraded Reservation Substates

The following table shows states and substates for degraded reservations:

Table 8-8: Degraded Reservation States and Substates

Occurrence
Type

Reservation Time Is Now Reservation Time in Future

State Substate State Substate

Advance and
job-specific res-
ervation: run-
ning

RESV_RUNNING RESV_DEGRADED RESV_DEGRADED RESV_DEGRADED

Advance and
job-specific res-
ervation: con-
flicts with
maintenance
reservation

RESV_DEGRADED RESV_IN_CONFLICT RESV_DEGRADED RESV_IN_CONFLICT

Standing reser-
vation soonest
occurrence: run-
ning

RESV_RUNNING RESV_DEGRADED RESV_DEGRADED RESV_DEGRADED

Standing reser-
vation soonest
occurrence: con-
flicts with main-
tenance
reservation

RESV_DEGRADED RESV_IN_CONFLICT RESV_DEGRADED RESV_IN_CONFLICT

Standing reser-
vation non-
soonest occur-
rence only: con-
flicts with
maintenance
reservation

N/A N/A RESV_CONFIRMED RESV_DEGRADED

N/A N/A RESV_RUNNING RESV_RUNNING
RG-368 PBS Professional 2020.1.1 Reference Guide

9

The PBS Configuration File

9.1 Format of Configuration File

Each line in the /etc/pbs.conf file gives a value for one parameter, or is a comment, or is blank. The order of the ele-
ments is not important.

9.1.1 Specifying Parameters

When you specify a parameter value, do not include any spaces in the line. Format for specifying a parameter value:

<parameter>=<value>

For example, to specify a value for PBS_START_MOM on the local host:

PBS_START_MOM=1

9.1.2 Comment Lines in Configuration File

You can comment out lines you are not using. Precede a comment with the hashmark (“#”). For example:

#This is a comment line

9.2 Contents of Configuration File

The /etc/pbs.conf file contains configuration parameters for PBS. The following table describes the parameters you
can use in the pbs.conf configuration file:

Table 9-1: Parameters in pbs.conf

Parameter Description

PBS_AUTH_METHOD Specifies default authentication method and library to be used by PBS.
Used only at authenticating client. Case-insensitive.

Default value: resvport

To use MUNGE, set to munge

PBS_BATCH_SERVICE_PORT Port on which server listens. Default: 15001

PBS_BATCH_SERVICE_PORT_DIS DIS port on which server listens.

PBS_COMM_LOG_EVENTS Communication daemon log mask. Default: 511

PBS_COMM_ROUTERS Tells a pbs_comm the location of the other pbs_comms.

PBS_COMM_THREADS Number of threads for communication daemon.
PBS Professional 2020.1.1 Reference Guide RG-369

Chapter 9 The PBS Configuration File
PBS_CONF_REMOTE_VIEWER Specifies remote viewer client.

If not specified, PBS uses native Remote Desktop client for remote
viewer.

Set on submission host(s).

Supported on Windows only.

PBS_CORE_LIMIT Limit on corefile size for PBS daemons. Can be set to an integer num-
ber of bytes or to the string "unlimited". If unset, core file size limit is
inherited from the shell environment.

PBS_DATA_SERVICE_PORT Used to specify non-default port for connecting to data service. Default:
15007

PBS_ENCRYPT_METHOD Specifies method and library for encrypting and decrypting data in cli-
ent-server communication. Used only at authentication client side.
Case-insensitive.

To use TLS encryption in client-server communication, set this parame-
ter to tls.

No default; if this is not set, PBS does not encrypt or decrypt data.

PBS_ENVIRONMENT Location of pbs_environment file.

PBS_EXEC Location of PBS bin and sbin directories.

PBS_HOME Location of PBS working directories.

PBS_LEAF_NAME Tells endpoint what hostname to use for network.

The value does not include a port, since that is usually set by the dae-
mon.

By default, the name of the endpoint’s host is the hostname of the
machine. You can set the name where an endpoint runs. This is useful
when you have multiple networks configured, and you want PBS to use
a particular network.

The server only queries for the canonicalized address of the MoM host,
unless you let it know via the Mom attribute; if you have set
PBS_LEAF_NAME in /etc/pbs.conf to something else, make sure
you set the Mom attribute at vnode creation.

TPP internally resolves the name to a set of IP addresses, so you do not
affect how pbs_comm works.

PBS_LEAF_ROUTERS Location of endpoint’s pbs_comm daemon(s).

PBS_LOCALLOG=<value> Enables logging to local PBS log files. Valid values:

0: no local logging

1: local logging enabled

Only available when using syslog.

Table 9-1: Parameters in pbs.conf

Parameter Description
RG-370 PBS Professional 2020.1.1 Reference Guide

The PBS Configuration File Chapter 9
PBS_LOG_HIGHRES_TIMESTAMP Controls whether daemons on this host log timestamps in microseconds.

Default timestamp log format is HH:MM:SS. With microsecond log-
ging, format is HH:MM:SS:XXXXXX.

Does not affect accounting log. Not applicable when using syslog.

Overridden by environment variable of the same name.

Valid values: 0, 1. Default: 0 (no microsecond logging)

PBS_LR_SAVE_PATH Path where Undo Live Recorder stores daemon execution recordings.
Default: $PBS_HOME/spool. See "Sending Daemon Execution Record-
ings to Altair" on page 643 in the PBS Professional Administrator’s
Guide

PBS_MAIL_HOST_NAME Used in addressing mail regarding jobs and reservations that is sent to
users specified in a job or reservation’s Mail_Users attribute.

Optional. If specified, must be a fully qualified domain name. Cannot
contain a colon (“:”). For how this is used in email address, see section
2.2.2, “Specifying Mail Delivery Domain”, on page 20.

PBS_MANAGER_SERVICE_PORT Port on which MoM listens. Default: 15003

PBS_MOM_HOME Location of MoM working directories.

PBS_MOM_NODE_NAME Name that MoM should use for parent vnode, and if they exist, child
vnodes. If this is not set, MoM defaults to using the non-canonicalized
hostname returned by gethostname().

If you use the IP address for a vnode name, set PBS_MOM_NODE_NAME=<IP
address> in pbs.conf on the execution host.

Dots are not allowed in this parameter unless they are part of an IP
address.

PBS_MOM_SERVICE_PORT Port on which MoM listens. Default: 15002

PBS_OUTPUT_HOST_NAME Host to which all job standard output and standard error are delivered.
If specified in pbs.conf on a job submission host, the value of
PBS_OUTPUT_HOST_NAME is used in the host portion of the job’s
Output_Path and Error_Path attributes. If the job submitter does not
specify paths for standard output and standard error, the current working
directory for the qsub command is used, and the value of
PBS_OUTPUT_HOST_NAME is appended after an at sign (“@”). If
the job submitter specifies only a file path for standard output and stan-
dard error, the value of PBS_OUTPUT_HOST_NAME is appended
after an at sign (“@”). If the job submitter specifies paths for standard
output and standard error that include host names, the specified paths
are used.

Optional. If specified, must be a fully qualified domain name. Cannot
contain a colon (“:”). See "Delivering Output and Error Files" on page
60 in the PBS Professional Administrator’s Guide.

Table 9-1: Parameters in pbs.conf

Parameter Description
PBS Professional 2020.1.1 Reference Guide RG-371

Chapter 9 The PBS Configuration File
PBS_PRIMARY Hostname of primary server. Used only for failover configuration.
Overrides PBS_SERVER_HOST_NAME.

If you set PBS_LEAF_NAME on the primary server host, make sure
that PBS_PRIMARY matches PBS_LEAF_NAME on the correspond-
ing host. If you do not set PBS_LEAF_NAME on the server host,
make sure that PBS_PRIMARY matches the hostname of the server
host.

PBS_RCP Location of rcp command if rcp is used.

PBS_SCHEDULER_SERVICE_PORT Port on which default scheduler listens. Default value: 15004

PBS_SCHED_THREADS Maximum number of scheduler threads. By default, scheduler starts a
number of threads that is half the number of cores (or hyperthreads, if
applicable) on its host. Scheduler automatically caps number of threads
at the number of cores (or hyperthreads if applicable), regardless of
value of this variable.

Overridden by pbs_sched -t option and
PBS_SCHED_THREADS environment variable.

PBS_SCP Location of scp command if scp is used; setting this parameter causes
PBS to first try scp rather than rcp for file transport.

PBS_SECONDARY Hostname of secondary server. Used only for failover configuration.
Overrides PBS_SERVER_HOST_NAME.

If you set PBS_LEAF_NAME on the secondary server host, make sure
that PBS_SECONDARY matches PBS_LEAF_NAME on the corre-
sponding host. If you do not set PBS_LEAF_NAME on the server
host, make sure that PBS_SECONDARY matches the hostname of the
server host.

PBS_SERVER Hostname of host running the server. Cannot be longer than 255 charac-
ters. If the short name of the server host resolves to the correct IP
address, you can use the short name for the value of the PBS_SERVER
entry in pbs.conf. If only the FQDN of the server host resolves to the
correct IP address, you must use the FQDN for the value of
PBS_SERVER.

Overridden by PBS_SERVER_HOST_NAME and PBS_PRIMARY.

PBS_SERVER_HOST_NAME The FQDN of the server host. Used by clients to contact server. Over-
ridden by PBS_PRIMARY and PBS_SECONDARY failover parame-
ters. Overrides PBS_SERVER parameter. Optional. If specified, must
be a fully qualified domain name. Cannot contain a colon (“:”). See
"Contacting the Server" on page 60 in the PBS Professional Administra-
tor’s Guide.

PBS_START_COMM Set this to 1 if a communication daemon is to run on this host.

PBS_START_MOM Default is 0. Set this to 1 if a MoM is to run on this host.

PBS_START_SCHED Deprecated. Set this to 1 if default scheduler is to run on this host.
Overridden by scheduler’s scheduling attribute.

PBS_START_SERVER Set this to 1 if server is to run on this host.

Table 9-1: Parameters in pbs.conf

Parameter Description
RG-372 PBS Professional 2020.1.1 Reference Guide

The PBS Configuration File Chapter 9
PBS_SUPPORTED_AUTH_METHODS Specifies supported authentication methods for client-server communi-
cation. Used by authenticating server (PBS server, scheduler, MoM, or
comm); ignored at client. Case-insensitive.

If this parameter is set, PBS accepts only the methods listed.

Format: comma-separated list of authentication methods.

Default value: resvport

Example: munge,GSS

PBS_SYSLOG=<value> Controls use of syslog facility under which the entries are logged.

Valid values:

0: no syslogging

1: logged via LOG_DAEMON facility

2: logged via LOG_LOCAL0 facility

3: logged via LOG_LOCAL1 facility

...

9: logged via LOG_LOCAL7 facility

PBS_SYSLOGSEVR=<value> Filters syslog messages by severity. Valid values:

0: only LOG_EMERG messages are logged

1: messages up to LOG_ALERT are logged

...

7: messages up to LOG_DEBUG are logged

PBS_TMPDIR Location of temporary files/directories used by PBS components.

Table 9-1: Parameters in pbs.conf

Parameter Description
PBS Professional 2020.1.1 Reference Guide RG-373

Chapter 9 The PBS Configuration File
RG-374 PBS Professional 2020.1.1 Reference Guide

10

Log Levels

10.1 Log Levels

PBS allows specification of the types of events that are logged for each daemon. Each type of log event has a different
log level. All daemons use the same log level for the same type of event.

The following table lists the log level for each type of event.

Table 10-1: PBS Events and Log Levels

Name Decimal Hex Event Description

PBSEVENT_ERROR 1 0x0001 Internal PBS errors

PBSEVENT_SYSTEM 2 0x0002 System (OS) errors, such as malloc failure

PBSEVENT_ADMIN 4 0x0004 Administrator-controlled events, such as changing queue
attributes

PBSEVENT_JOB 8 0x0008 Job related events, e.g. submitted, ran, deleted

PBSEVENT_JOB_USAGE 16 0x0010 Job resource usage

PBSEVENT_SECURITY 32 0x0020 Security related events

PBSEVENT_SCHED 64 0x0040 When the scheduler was called and why

PBSEVENT_DEBUG 128 0x0080 Common debug messages

PBSEVENT_DEBUG2 256 0x0100 Debug event class 2

PBSEVENT_RESV 512 0x0200 Reservation-related messages

PBSEVENT_DEBUG3 1024 0x0400 Debug event class 3. Debug messages rarer than event class 2.

PBSEVENT_DEBUG4 2048 0x0800 Debug event class 4. Limit-related messages.
PBS Professional 2020.1.1 Reference Guide RG-375

Chapter 10 Log Levels
RG-376 PBS Professional 2020.1.1 Reference Guide

11

Job Exit Status

11.1 Job Exit Status

The exit status of a job may fall in one of three ranges, listed in the following table:

The exit status of jobs is recorded in the PBS server logs and the accounting logs.

Negative exit status indicates that the job could not be executed. Negative exit values are listed in the table below:

Table 11-1: Job Exit Status Ranges

Exit Status
Range

Reason Description

X < 0 The job could not be executed See Table 11-2, “Job Exit Codes,” on page 377

0 <=X < 128 Exit value of shell or top pro-
cess

This is the exit value of the top process in the job, typically the
shell. This may be the exit value of the last command executed in
the shell or the .logout script if the user has such a script (csh).

The exit status of an interactive job is always recorded as 0 (zero),
regardless of the actual exit status.

X >=128 Job was killed with a signal This means the job was killed with a signal. The signal is given by
X modulo 128 (or 256). For example an exit value of 137 means the
job's top process was killed with signal 9 (137 % 128 = 9).

The exit status values greater than 128 (or 256) indicate which sig-
nal killed the job. Depending on the system, values greater than 128
(or on some systems 256; see wait(2) or waitpid(2) for more
information), are the value of the signal that killed the job.

To interpret (or “decode”) the signal contained in the exit status
value, subtract the base value from the exit status. For example, if a
job had an exit status of 143, that indicates the job was killed via a
SIGTERM (e.g. 143 - 128 = 15, signal 15 is SIGTERM). See the
kill(1) manual page for a mapping of signal numbers to signal
name on your operating system.

Table 11-2: Job Exit Codes

Exit
Code

Name Description

 0 JOB_EXEC_OK Job execution was successful

-1 JOB_EXEC_FAIL1 Job execution failed, before files, no retry

-2 JOB_EXEC_FAIL2 Job execution failed, after files, no retry
PBS Professional 2020.1.1 Reference Guide RG-377

Chapter 11 Job Exit Status
-3 JOB_EXEC_RETRY Job execution failed, do retry

-4 JOB_EXEC_INITABT Job aborted on MoM initialization

-5 JOB_EXEC_INITRST Job aborted on MoM initialization, checkpoint, no migrate

-6 JOB_EXEC_INITRMG Job aborted on MoM initialization, checkpoint, ok migrate

-7 JOB_EXEC_BADRESRT Job restart failed

-10 JOB_EXEC_FAILUID Invalid UID/GID for job

-11 JOB_EXEC_RERUN Job was rerun

-12 JOB_EXEC_CHKP Job was checkpointed and killed

-13 JOB_EXEC_FAIL_PASSWORD Job failed due to a bad password

-14 JOB_EXEC_RERUN_

ON_SIS_FAIL

Job was requeued (if rerunnable) or deleted (if not) due to a
communication failure between the primary execution host
MoM and a Sister

-15 JOB_EXEC_QUERST Requeue job for restart from checkpoint

-16 JOB_EXEC_FAILHOOK_RERUN Job execution failed due to hook rejection; requeue for later
retry

-17 JOB_EXEC_FAILHOOK_DELETE Job execution failed due to hook rejection; delete the job at end

-18 JOB_EXEC_HOOK_RERUN A hook requested for job to be requeued

-19 JOB_EXEC_HOOK_DELETE A hook requested for job to be deleted

-20 JOB_EXEC_RERUN_MS_FAIL Job requeued because server couldn’t contact the primary exe-
cution host MoM

Table 11-2: Job Exit Codes

Exit
Code

Name Description
RG-378 PBS Professional 2020.1.1 Reference Guide

12

Example Configurations

This chapter shows some configuration-specific scenarios which will hopefully clarify any configuration questions. Sev-
eral configuration models are discussed, followed by several complex examples of specific features.

Single Vnode System

Single Vnode System with Separate PBS server

Multi-vnode complex

Complex Multi-level Route Queues (including group ACLs)

Multiple User ACLs

For each of these possible configuration models, the following information is provided:

General description for the configuration model

Type of system for which the model is well suited

Contents of server nodes file

Any required server configuration

Any required MoM configuration

Any required scheduler configuration

12.1 Single Vnode System

Running PBS on a single vnode/host as a standalone system is the least complex configuration. This model is most appli-
cable to sites who have a single large server system. In this model, all PBS components run on the same host, which is the
same host on which jobs will be executed. The following illustration shows how communication works when PBS is on
a single host in TPP mode. For more on TPP mode, see Chapter 4, "Communication", on page 45.

Figure 12-1:PBS daemons on a single execution host

 All PBS components on a single host

Scheduler

MoM

ServerJobs

Commands
Kernel

Communication

Job
processes
PBS Professional 2020.1.1 Reference Guide RG-379

Chapter 12 Example Configurations
For this example, let’s assume we have a 32-CPU server machine named “mars”. We want users to log into mars and jobs
will be run via PBS on mars.

In this configuration, the server’s default nodes file (which should contain the name of the host on which the server was
installed) is sufficient. Our example nodes file would contain only one entry: mars

The default MoM and scheduler config files, as well as the default queue/Server limits are also sufficient in order to
run jobs. No changes are required from the default configuration, however, you may wish to customize PBS to your site.

12.2 Separate Server and Execution Host

A variation on the model presented above would be to provide a “front-end” system that ran the PBS server, scheduler,
and communication daemons, and from which users submitted their jobs. Only the MoM would run on our execution
server, mars. This model is recommended when the user load would otherwise interfere with the computational load on
the server. The following illustration shows how communication works when the PBS server and scheduler are on a
front-end system and MoM is on a separate host, in TPP mode. For more on TPP mode, see Chapter 4, "Communica-
tion", on page 45.

Figure 12-2:PBS daemons on single execution system with front end

In this case, the PBS server_priv/nodes file would contain the name of our execution server mars, but this may not
be what was written to the file during installation, depending on which options were selected. It is possible the hostname
of the machine on which the server was installed was added to the file, in which case you would need to use qmgr(1B)
to manipulate the contents to contain one vnode: mars. If the default scheduling policy, based on available CPUs and
memory, meets your requirements, no changes are required in either the MoM or scheduler configuration files.

However, if you wish the execution host (mars) to be scheduled based on load average, the following changes are
needed. Edit MoM’s mom_priv/config file so that it contains the target and maximum load averages:

$ideal_load 30

$max_load 32

12.3 Multiple Execution Hosts

The multi-vnode complex model is a very common configuration for PBS. In this model, there is typically a front-end
system as we saw in the previous example, with a number of back-end execution hosts. The PBS server, scheduler, and
communication daemons are typically run on the front-end system, and a MoM is run on each of the execution hosts, as
shown in the diagram to the right.

In this model, the server’s nodes file will need to contain the list of all the vnodes in the complex.

Scheduler

MoM
Server

Jobs

Kernel

Single execution host

Commands

Front-end system

Communication

Job processes
RG-380 PBS Professional 2020.1.1 Reference Guide

Example Configurations Chapter 12
The MoM config file on each vnode will need two static resources added, to specify the target load for each vnode. If
we assume each of the vnodes in our “planets” cluster is a 32-processor system, the following example shows what might
be desirable ideal and maximum load values to add to the MoM config files:

$ideal_load 30

$max_load 32

Furthermore, suppose we want the partition scheduler to load balance the workload across the available vnodes, making
sure not to run two jobs in a row on the same vnode . We accomplish this by editing the scheduler configuration file and
enabling load balancing:

load_balancing: True all

smp_cluster_dist: round_robin

The following diagram illustrates this for an eight-host complex in TPP mode.

Figure 12-3:Typical PBS daemon locations for multiple execution hosts

This diagram illustrates a multi-vnode complex TPP configuration wherein the server and scheduler daemons communi-
cate with the MoMs on the execution hosts via the communication daemon. Jobs are submitted to the server, scheduled
for execution by the partition scheduler, and then transferred to a MoM when it’s time to be run. MoM periodically sends
status information back to the server, and answers resource requests from the scheduler.

Scheduler

MoM

Server
Jobs

 PBS
Commands

Execution Host

MoM

 Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

Communication
PBS Professional 2020.1.1 Reference Guide RG-381

Chapter 12 Example Configurations
12.4 Complex Multi-level Route Queues

There are times when a site may wish to create a series of route queues in order to filter jobs, based on specific resources,
or possibly to different destinations. For this example, consider a site that has two large server systems, and a Linux clus-
ter. The Administrator wants to configure route queues such that everyone submits jobs to a single queue, but the jobs get
routed based on (1) requested architecture and (2) individual group IDs. In other words, users request the architecture
they want, and PBS finds the right queue for them. Only groups “math”, “chemistry”, and “physics” are permitted to use
either server systems; while anyone can use the cluster. Lastly, the jobs coming into the cluster should be divided into
three separate queues for long, short, and normal jobs. But the “long” queue was created for the astronomy department,
so only members of that group should be permitted into that queue. Given these requirements, let’s look at how we would
set up such a collection of route queues. (Note that this is only one way to accomplish this task. There are various other
ways too.)

First we create a queue to which everyone will submit their jobs. Let’s call it “submit”. It will need to be a route queue
with three destinations, as shown:

Qmgr: create queue submit
Qmgr: set queue submit queue_type = Route
Qmgr: set queue submit route_destinations = server_1
Qmgr: set queue submit route_destinations += server_2
Qmgr: set queue submit route_destinations += cluster
Qmgr: set queue submit enabled = True
Qmgr: set queue submit started = True

Now we need to create the destination queues. (Notice in the above example, we have already decided what to call the
three destinations: server_1, server_2, cluster.) First we create the server_1 queue, complete with a group
ACL, and a specific architecture limit.

Qmgr: create queue server_1
Qmgr: set queue server_1 queue_type = Execution
Qmgr: set queue server_1 from_route_only = True
Qmgr: set queue server_1 resources_max.arch = linux
Qmgr: set queue server_1 resources_min.arch = linux
Qmgr: set queue server_1 acl_group_enable = True
Qmgr: set queue server_1 acl_groups = math
Qmgr: set queue server_1 acl_groups += chemistry
Qmgr: set queue server_1 acl_groups += physics
Qmgr: set queue server_1 enabled = True
Qmgr: set queue server_1 started = True
RG-382 PBS Professional 2020.1.1 Reference Guide

Example Configurations Chapter 12
Next we create the queues for server_2 and cluster. Note that the server_2 queue is very similar to the
server_1 queue, only the architecture differs. Also notice that the cluster queue is another route queue, with multi-
ple destinations.

Qmgr: create queue server_2
Qmgr: set queue server_2 queue_type = Execution
Qmgr: set queue server_2 from_route_only = True
Qmgr: set queue server_2 resources_max.arch = sv2
Qmgr: set queue server_2 resources_min.arch = sv2
Qmgr: set queue server_2 acl_group_enable = True
Qmgr: set queue server_2 acl_groups = math
Qmgr: set queue server_2 acl_groups += chemistry
Qmgr: set queue server_2 acl_groups += physics
Qmgr: set queue server_2 enabled = True
Qmgr: set queue server_2 started = True
Qmgr: create queue cluster
Qmgr: set queue cluster queue_type = Route
Qmgr: set queue cluster from_route_only = True
Qmgr: set queue cluster resources_max.arch = linux
Qmgr: set queue cluster resources_min.arch = linux
Qmgr: set queue cluster route_destinations = long
Qmgr: set queue cluster route_destinations += short
Qmgr: set queue cluster route_destinations += medium
Qmgr: set queue cluster enabled = True
Qmgr: set queue cluster started = True

In the cluster queue above, you will notice the particular order of the three destination queues (long, short, medium).
PBS will attempt to route a job into the destination queues in the order specified. Thus, we want PBS to first try the long
queue (which will have an ACL on it), then the short queue (with its short time limits). Thus any jobs that had not been
routed into any other queues (server or cluster) will end up in the medium cluster queue. Now to create the remaining
queues.

Qmgr: create queue long
Qmgr: set queue long queue_type = Execution
Qmgr: set queue long from_route_only = True
Qmgr: set queue long resources_max.cput = 20:00:00
Qmgr: set queue long resources_max.walltime = 20:00:00
Qmgr: set queue long resources_min.cput = 02:00:00
Qmgr: set queue long resources_min.walltime = 03:00:00
Qmgr: set queue long acl_group_enable = True
Qmgr: set queue long acl_groups = astronomy
Qmgr: set queue long enabled = True
Qmgr: set queue long started = True
PBS Professional 2020.1.1 Reference Guide RG-383

Chapter 12 Example Configurations
Qmgr: create queue short
Qmgr: set queue short queue_type = Execution
Qmgr: set queue short from_route_only = True
Qmgr: set queue short resources_max.cput = 01:00:00
Qmgr: set queue short resources_max.walltime = 01:00:00
Qmgr: set queue short enabled = True
Qmgr: set queue short started = True
Qmgr: create queue medium
Qmgr: set queue medium queue_type = Execution
Qmgr: set queue medium from_route_only = True
Qmgr: set queue medium enabled = True
Qmgr: set queue medium started = True
Qmgr: set server default_queue = submit

Notice that the long and short queues have time limits specified. This will ensure that jobs of certain sizes will enter
(or be prevented from entering) these queues. The last queue, medium, has no limits, thus it will be able to accept any
job that is not routed into any other queue.

Lastly, note the last line in the example above, which specified that the default queue is the new submit queue. This
way users will simply submit their jobs with the resource and architecture requests, without specifying a queue, and PBS
will route the job into the correct location. For example, if a user submitted a job with the following syntax, the job
would be routed into the server_2 queue:

qsub -l select=arch=sv2:ncpus=4 testjob

12.5 External Software License Management

PBS Professional can be configured to schedule jobs based on externally-controlled licensed software. A detailed exam-
ple is provided in "Example of Floating, Externally-managed License with Features" on page 276 in the PBS Profes-
sional Administrator’s Guide.
RG-384 PBS Professional 2020.1.1 Reference Guide

Example Configurations Chapter 12
12.6 Multiple User ACL Example

A site may have a need to restrict individual users to particular queues. In the previous example we set up queues with
group-based ACLs, in this example we show user-based ACLs. Say a site has two different groups of users, and wants to
limit them to two separate queues (perhaps with different resource limits). The following example illustrates this.

Qmgr: create queue structure
Qmgr: set queue structure queue_type = Execution
Qmgr: set queue structure acl_user_enable = True
Qmgr: set queue structure acl_users = curly
Qmgr: set queue structure acl_users += jerry
Qmgr: set queue structure acl_users += larry
Qmgr: set queue structure acl_users += moe
Qmgr: set queue structure acl_users += tom
Qmgr: set queue structure resources_max.nodes = 48
Qmgr: set queue structure enabled = True
Qmgr: set queue structure started = True

Qmgr: create queue engine
Qmgr: set queue engine queue_type = Execution
Qmgr: set queue engine acl_user_enable = True
Qmgr: set queue engine acl_users = bill
Qmgr: set queue engine acl_users += bobby
Qmgr: set queue engine acl_users += chris
Qmgr: set queue engine acl_users += jim
Qmgr: set queue engine acl_users += mike
Qmgr: set queue engine acl_users += rob
Qmgr: set queue engine acl_users += scott
Qmgr: set queue engine resources_max.nodes = 12
Qmgr: set queue engine resources_max.walltime=04:00:00
Qmgr: set queue engine enabled = True
Qmgr: set queue engine started = True
PBS Professional 2020.1.1 Reference Guide RG-385

Chapter 12 Example Configurations
RG-386 PBS Professional 2020.1.1 Reference Guide

13

Run Limit Error Messages

This chapter lists the error messages generated when limits are exceeded. See "Managing Resource Usage By Users,
Groups, and Projects, at Server & Queues" on page 287 in the PBS Professional Administrator’s Guide.

13.1 Run Limit Error Messages

When a job would exceed a limit by running, the job’s comment field is set to one of the following messages. The fol-
lowing table shows the limit attribute, where the limit is applied, to whom the limit is applied, and the message.

Table 13-1: Job Run Limit Error Messages

Attribute
Where

Applied
To What Applied Message

max_run queue o: PBS_ALL Not Running: Queue <queue name> job limit has been
reached.

max_run server o: PBS_ALL Not Running: Server job limit has been reached.

max_run server p:PBS_GENERIC Not Running: Project has reached server running limit.

max_run queue p:PBS_GENERIC Not Running: Project has reached queue<queue-name>'s run-
ning limit.

max_run server p:<project name> Not Running: Server job limit reached for project <project
name>

max_run queue p:<project name> Not Running: Queue <queue-name> job limit reached for
project <project name>

max_run queue g: PBS_GENERIC Not Running: Group has reached queue <queue name> run-
ning limit.

max_run server g: PBS_GENERIC Not Running: Group has reached server running limit.

max_run queue u: PBS_GENERIC Not Running: User has reached queue <queue name> running
job limit.

max_run server u: PBS_GENERIC Not Running: User has reached server running job limit.

max_run queue g:<group name> Queue <queue name> job limit reached for group <G>

max_run server g:<group name> Server job limit reached for group <G>

max_run queue u:<user name> Queue <queue name> job limit reached for user <U>

max_run server u:<user name> Server job limit reached for user <U>

max_run_res queue o: PBS_ALL Queue <queue name> job limit reached on resource <resource
name>

max_run_res server o: PBS_ALL Server job limit reached on resource <resource name>
PBS Professional 2020.1.1 Reference Guide RG-387

Chapter 13 Run Limit Error Messages
max_run_res queue p:PBS_GENERIC Not Running: Queue <queue name> per-project limit reached
on resource <resource name>

max_run_res server p:PBS_GENERIC Not Running: Server per-project limit reached on resource
<resource name>

max_run_res server p:<project name> Not Running: would exceed project <project_name>'s limit on
resource <resource name> in complex

max_run_res queue p:<project name> Not Running: would exceed project <project_name>'s limit on
resource <resource name> in queue <queue-name>

max_run_res queue g: PBS_GENERIC Queue <queue name> per-group limit reached on resource
<resource name>

max_run_res server g: PBS_GENERIC Server per-group limit reached on resource <resource name>

max_run_res queue u: PBS_GENERIC Queue <queue name> per-user limit reached on resource
<resource name>

max_run_res server u: PBS_GENERIC Server per-user limit reached on resource <resource name>

max_run_res queue g:<group name> would exceed group <G>'s limit on resource <resource name>
in queue <queue name>

max_run_res server g:<group name> would exceed group <G>'s limit on resource <resource name>
in complex

max_run_res queue u:<user name> would exceed user <U>'s limit on resource <resource name> in
queue <queue name>

max_run_res server u:<user name> would exceed user <U>'s limit on resource <resource name> in
complex

Table 13-1: Job Run Limit Error Messages

Attribute
Where

Applied
To What Applied Message
RG-388 PBS Professional 2020.1.1 Reference Guide

14

Error Codes

The following table lists all the PBS error codes, their textual names, and a description of each.

Table 14-1: Error Codes

Error Name
Error
Code

Description

PBSE_NONE 0 No error

PBSE_UNKJOBID 15001 Unknown Job Identifier

PBSE_NOATTR 15002 Undefined Attribute

PBSE_ATTRRO 15003 Attempt to set READ ONLY attribute

PBSE_IVALREQ 15004 Invalid request

PBSE_UNKREQ 15005 Unknown batch request

PBSE_TOOMANY 15006 Too many submit retries

PBSE_PERM 15007 No permission

PBSE_BADHOST 15008 Access from host not allowed

PBSE_JOBEXIST 15009 Job already exists

PBSE_SYSTEM 15010 System error occurred

PBSE_INTERNAL 15011 Internal server error occurred

PBSE_REGROUTE 15012 Parent job of dependent in route queue

PBSE_UNKSIG 15013 Unknown signal name

PBSE_BADATVAL 15014 Bad attribute value

PBSE_MODATRRUN 15015 Cannot modify attribute in run state

PBSE_BADSTATE 15016 Request invalid for job state

PBSE_UNKQUE 15018 Unknown queue name

PBSE_BADCRED 15019 Invalid Credential in request

PBSE_EXPIRED 15020 Expired Credential in request

PBSE_QUNOENB 15021 Queue not enabled

PBSE_QACESS 15022 No access permission for queue
PBS Professional 2020.1.1 Reference Guide RG-389

Chapter 14 Error Codes
PBSE_BADUSER 15023 Missing userID, username, or GID. Returned under follow-
ing conditions:

1. User does not have a password entry (getpwnam() returns
null).

2. User’s UID is zero and root isn’t allowed to run jobs
(acl_roots).

3. PBS_O_HOST is not set in the job.

PBSE_HOPCOUNT 15024 Max hop count exceeded

PBSE_QUEEXIST 15025 Queue already exists

PBSE_ATTRTYPE 15026 Incompatible queue attribute type

PBSE_OBJBUSY 15027 Object Busy

PBSE_QUENBIG 15028 Queue name too long

PBSE_NOSUP 15029 Feature/function not supported

PBSE_QUENOEN 15030 Can’t enable queue, lacking definition

PBSE_PROTOCOL 15031 Protocol (ASN.1) error. Message is distorted or truncated.

PBSE_BADATLST 15032 Bad attribute list structure

PBSE_NOCONNECTS 15033 No free connections

PBSE_NOSERVER 15034 No server to connect to

PBSE_UNKRESC 15035 Unknown resource

PBSE_EXCQRESC 15036 Job exceeds Queue resource limits

PBSE_QUENODFLT 15037 No Default Queue Defined

PBSE_NORERUN 15038 Job Not Rerunnable

PBSE_ROUTEREJ 15039 Route rejected by all destinations

PBSE_ROUTEEXPD 15040 Time in Route Queue Expired

PBSE_MOMREJECT 15041 Request to MoM failed

PBSE_BADSCRIPT 15042 (qsub) Cannot access script file

PBSE_STAGEIN 15043 Stage In of files failed

PBSE_RESCUNAV 15044 Resources temporarily unavailable

PBSE_BADGRP 15045 Bad Group specified

PBSE_MAXQUED 15046 Max number of jobs in queue

PBSE_CKPBSY 15047 Checkpoint Busy, may be retries

PBSE_EXLIMIT 15048 Limit exceeds allowable

PBSE_BADACCT 15049 Bad Account attribute value

PBSE_ALRDYEXIT 15050 Job already in exit state

Table 14-1: Error Codes

Error Name
Error
Code

Description
RG-390 PBS Professional 2020.1.1 Reference Guide

Error Codes Chapter 14
PBSE_NOCOPYFILE 15051 Job files not copied

PBSE_CLEANEDOUT 15052 Unknown job id after clean init

PBSE_NOSYNCMSTR 15053 No Master in Sync Set

PBSE_BADDEPEND 15054 Invalid dependency

PBSE_DUPLIST 15055 Duplicate entry in List

PBSE_DISPROTO 15056 Bad DIS based Request Protocol

PBSE_EXECTHERE (Obsolete) 15057 Cannot execute there

(Obsolete; no longer used.)

PBSE_SISREJECT 15058 Sister rejected

PBSE_SISCOMM 15059 Sister could not communicate

PBSE_SVRDOWN 15060 Request rejected -server shutting down

PBSE_CKPSHORT 15061 Not all tasks could checkpoint

PBSE_UNKNODE 15062 Named vnode is not in the list

PBSE_UNKNODEATR 15063 Vnode attribute not recognized

PBSE_NONODES 15064 Server has no vnode list

PBSE_NODENBIG 15065 Node name is too big

PBSE_NODEEXIST 15066 Node name already exists

PBSE_BADNDATVAL 15067 Bad vnode attribute value

PBSE_MUTUALEX 15068 State values are mutually exclusive

PBSE_GMODERR 15069 Error(s) during global mod of vnodes

PBSE_NORELYMOM 15070 Could not contact MoM

PBSE_REV_NO_WALLTIME 15075 Reservation lacks walltime

Reserved 15076 Not used.

PBSE_TOOLATE 15077 Reservation submitted with a start time that has already
passed

PBSE_IRESVE 15078 Internal reservation system error

PBSE_UNKRESVTYPE 15079 Unknown reservation type

PBSE_RESVEXIST 15080 Reservation already exists

PBSE_resvFail 15081 Reservation failed

PBSE_genBatchReq 15082 Batch request generation failed

PBSE_mgrBatchReq 15083 qmgr batch request failed

PBSE_UNKRESVID 15084 Unknown reservation ID

PBSE_delProgress 15085 Delete already in progress

Table 14-1: Error Codes

Error Name
Error
Code

Description
PBS Professional 2020.1.1 Reference Guide RG-391

Chapter 14 Error Codes
PBSE_BADTSPEC 15086 Bad time specification(s)

PBSE_RESVMSG 15087 So reply_text can return a msg

PBSE_BADNODESPEC 15089 Node(s) specification error

PBSE_LICENSEINV 15091 License is invalid

PBSE_RESVAUTH_H 15092 Host not authorized to make AR

PBSE_RESVAUTH_G 15093 Group not authorized to make AR

PBSE_RESVAUTH_U 15094 User not authorized to make AR

PBSE_R_UID 15095 Bad effective UID for reservation

PBSE_R_GID 15096 Bad effective GID for reservation

PBSE_IBMSPSWITCH 15097 IBM SP Switch error

PBSE_NOSCHEDULER 15099 Unable to contact scheduler

PBSE_RESCNOTSTR 15100 Resource is not of type string

PBSE_SSIGNON_UNSET_REJECT 15101 rejected if SVR_ssignon_enable not set

PBSE_SSIGNON_SET_REJECT 15102 rejected if SVR_ssignon_enable set

PBSE_SSIGNON_BAD_TRANSITION1 15103 bad attempt: true to false

PBSE_SSIGNON_NOCONNECT_DEST 15105 couldn't connect to destination host during a user migration
request

PBSE_SSIGNON_NO_PASSWORD 15106 no per-user/per-server password

PBSE_MaxArraySize 15107 max array size exceeded

PBSE_INVALSELECTRESC 15108 resource invalid in select spec

PBSE_INVALJOBRESC 15109 invalid job resource

PBSE_INVALNODEPLACE 15110 node invalid w/place|select

PBSE_PLACENOSELECT 15111 cannot have place w/o select

PBSE_INDIRECTHOP 15112 too many indirect resource levels

PBSE_INDIRECTBT 15113 target resource undefined

PBSE_NGBLUEGENE 15114 No node_group_enable on BlueGene

PBSE_NODESTALE 15115 Cannot change state of stale vnode

PBSE_DUPRESC 15116 cannot dupe resource within a chunk

PBSE_CONNFULL 15117 server connection table full

PBSE_LICENSE_MIN_BADVAL 15118 bad value for pbs_license_min

PBSE_LICENSE_MAX_BADVAL 15119 bad value for pbs_license_max

PBSE_LICENSE_LINGER_BADVAL 15120 bad value for pbs_license_linger_time

PBSE_LICENSE_BAD_ACTION 15122 Not allowed action with licensing

Table 14-1: Error Codes

Error Name
Error
Code

Description
RG-392 PBS Professional 2020.1.1 Reference Guide

Error Codes Chapter 14
PBSE_BAD_FORMULA 15123 invalid sort formula

PBSE_BAD_FORMULA_KW 15124 invalid keyword in formula

PBSE_BAD_FORMULA_TYPE 15125 invalid resource type in formula

PBSE_BAD_RRULE_YEARLY 15126 reservation duration exceeds 1 year

PBSE_BAD_RRULE_MONTHLY 15127 reservation duration exceeds 1 month

PBSE_BAD_RRULE_WEEKLY 15128 reservation duration exceeds 1 week

PBSE_BAD_RRULE_DAILY 15129 reservation duration exceeds 1 day

PBSE_BAD_RRULE_HOURLY 15130 reservation duration exceeds 1 hour

PBSE_BAD_RRULE_MINUTELY 15131 reservation duration exceeds 1 minute

PBSE_BAD_RRULE_SECONDLY 15132 reservation duration exceeds 1 second

PBSE_BAD_RRULE_SYNTAX 15133 invalid recurrence rule syntax

PBSE_BAD_RRULE_SYNTAX2 15134 invalid recurrence rule syntax

PBSE_BAD_ICAL_TZ 15135 Undefined timezone info directory

PBSE_HOOKERROR 15136 error encountered related to hooks

PBSE_NEEDQUET 15137 need queue type set

PBSE_ETEERROR 15138 not allowed to alter attribute when eligible_time_enable is
off

PBSE_HISTJOBID 15139 History job ID

PBSE_JOBHISTNOTSET 15140 job_history_enable not SET

PBSE_MIXENTLIMS 15141 mixing old and new limit enforcement

PBSE_HEADERROR 15145 Server host not allowed to be provisioned

PBSE_NODEPROV_NOACTION 15146 While provisioning, provisioning attributes can't be modified

PBSE_NODEPROV 15147 State of provisioning vnode can't be changed

PBSE_NODEPROV_NODEL 15148 Vnode can't be deleted while provisioning

PBSE_NODE_BAD_CURRENT_AOE 15149 Attempt to set an AOE that is not in
resources_available.aoe

PBSE_NOTLOCALNODE 15150 Non-local node not allowed in Personal Mode (not used)

PBSE_MOM_INCOMPLETE_HOOK 15167 Execution hooks not fully transferred to a particular MoM

PBSE_MOM_REJECT_ROOT_SCRIPTS 15168 A MoM has rejected a request to copy a hook-related file, or
a job script to be executed by root

PBSE_HOOK_REJECT 15169 A MoM received a reject result from a mom hook

PBSE_HOOK_REJECT_RERUNJOB 15170 Hook rejection requiring a job to be rerun

PBSE_HOOK_REJECT_DELETEJOB 15171 Hook rejection requiring a job to be deleted

Table 14-1: Error Codes

Error Name
Error
Code

Description
PBS Professional 2020.1.1 Reference Guide RG-393

Chapter 14 Error Codes
PBSE_JOBNBIG 15173 Submitted job or reservation name is too long

15178 Cannot alter start time of running, non-empty reservation

15179 Cannot alter current or next occurrence of a standing reserva-
tion so that it interferes with a later occurrence

Resource monitor specific error codes

PBSE_RMUNKNOWN 15201 Resource unknown

PBSE_RMBADPARAM 15202 Parameter could not be used

PBSE_RMNOPARAM 15203 A needed parameter did not exist

PBSE_RMEXIST 15204 Something specified didn't exist

PBSE_RMSYSTEM 15205 A system error occurred

PBSE_RMPART 15206 Only part of reservation made

PBSE_SSIGNON_BAD_TRANSITION2 15207 bad attempt: false to true

PBSE_TRYAGAIN 15208 Try the request again later

PBSE_ALPSRELERR 15209 PBS is unable to release the ALPS reservation

Table 14-1: Error Codes

Error Name
Error
Code

Description
RG-394 PBS Professional 2020.1.1 Reference Guide

15

Request Codes

When reading the PBS event logfiles, you may see messages of the form “Type 19 request received from PBS_Server...”.
These “type codes” correspond to different PBS batch requests. The following table lists all the PBS type codes and the
corresponding request of each.

Table 15-1: Request Codes

Numeric Value Name

0 PBS_BATCH_Connect

1 PBS_BATCH_QueueJob

2 UNUSED

3 PBS_BATCH_jobscript

4 PBS_BATCH_RdytoCommit

5 PBS_BATCH_Commit

6 PBS_BATCH_DeleteJob

7 PBS_BATCH_HoldJob

8 PBS_BATCH_LocateJob

9 PBS_BATCH_Manager

10 PBS_BATCH_MessJob

11 PBS_BATCH_ModifyJob

12 PBS_BATCH_MoveJob

13 PBS_BATCH_ReleaseJob

14 PBS_BATCH_Rerun

15 PBS_BATCH_RunJob

16 PBS_BATCH_SelectJobs

17 PBS_BATCH_Shutdown

18 PBS_BATCH_SignalJob

19 PBS_BATCH_StatusJob

20 PBS_BATCH_StatusQue

21 PBS_BATCH_StatusSvr

22 PBS_BATCH_TrackJob

23 PBS_BATCH_AsyrunJob

24 PBS_BATCH_Rescq

25 PBS_BATCH_ReserveResc
PBS Professional 2020.1.1 Reference Guide RG-395

Chapter 15 Request Codes
26 PBS_BATCH_ReleaseResc

27 PBS_BATCH_FailOver

48 PBS_BATCH_StageIn

49 PBS_BATCH_AuthenUser

50 PBS_BATCH_OrderJob

51 PBS_BATCH_SelStat

52 PBS_BATCH_RegistDep

54 PBS_BATCH_CopyFiles

55 PBS_BATCH_DelFiles

56 PBS_BATCH_JobObit

57 PBS_BATCH_MvJobFile

58 PBS_BATCH_StatusNode

59 PBS_BATCH_Disconnect

60 UNUSED

61 UNUSED

62 PBS_BATCH_JobCred

63 PBS_BATCH_CopyFiles_Cred

64 PBS_BATCH_DelFiles_Cred

65 PBS_BATCH_GSS_Context

66 UNUSED

67 UNUSED

68 UNUSED

69 UNUSED

70 PBS_BATCH_SubmitResv

71 PBS_BATCH_StatusResv

72 PBS_BATCH_DeleteResv

73 PBS_BATCH_UserCred

74 PBS_BATCH_UserMigrate

75 PBS_BATCH_ConfirmResv

80 PBS_BATCH_DefSchReply

81 PBS_BATCH_StatusSched

82 PBS_BATCH_StatusRsc

83 PBS_BATCH_StatusHook

Table 15-1: Request Codes

Numeric Value Name
RG-396 PBS Professional 2020.1.1 Reference Guide

Request Codes Chapter 15
84 PBS_BATCH_PySpawn

85 PBS_BATCH_CopyHookFile

86 PBS_BATCH_DelHookFile

87 PBS_BATCH_MomRestart

88 PBS_BATCH_AuthExternal

89 PBS_BATCH_HookPeriodic

90 PBS_BATCH_RelnodesJob

91 PBS_BATCH_ModifyResv

Table 15-1: Request Codes

Numeric Value Name
PBS Professional 2020.1.1 Reference Guide RG-397

Chapter 15 Request Codes
RG-398 PBS Professional 2020.1.1 Reference Guide

16

PBS Environment Variables

The following table lists the PBS environment variables:

Table 16-1: PBS Environment Variables

Variable Origin Meaning

CONTAINER_IMAGE Job submitter Name of container image in which job is to run

NCPUS Number of threads, defaulting to number of CPUs, on the
vnode

OMP_NUM_THREADS Same as NCPUS.

PBS_ARRAY_ID Server Identifier for job arrays. Consists of sequence number.

PBS_ARRAY_INDEX Server Index number of subjob in job array.

PBS_CONF_FILE Path to pbs.conf

PBS_CONTAINER_ARGS Job submitter Arguments to pass to container engine. Multiple argu-
ments are separated with a semicolon. When using this
environment variable, the -env and --entrypoint
arguments to docker run are not supported. To pass
environment variables directly to PBS, use qsub -v.

PBS_DEFAULT Name of default PBS server

PBS_DATA_SERVICE_USE

R

Admin, during installa-
tion

Account used by data service.

PBS_ENVIRONMENT Indicates job type: PBS_BATCH or
PBS_INTERACTIVE

PBS_JOBCOOKIE Unique identifier for inter-MoM job-based communica-
tion.

PBS_JOBDIR Pathname of job-specific staging and execution directory

PBS_JOBID Server The job identifier assigned to the job or job array by the
batch system.

PBS_JOBNAME User The job name supplied by the user.

PBS_LICENSE_INFO Admin Location of license server
PBS Professional 2020.1.1 Reference Guide RG-399

Chapter 16 PBS Environment Variables
PBS_LOG_HIGHRES_TIMES

TAMP

Controls whether daemons on this host log timestamps in
microseconds.

Default timestamp log format is HH:MM:SS. With
microsecond logging, format is HH:MM:SS:XXXXXX.

Does not affect accounting log. Not applicable when
using syslog.

Overrides configuration parameter in pbs.conf of the
same name.

Valid values: 0, 1. Default: 0 (no microsecond logging)

PBS_MOMPORT Port number on which this job’s MoMs will communi-
cate.

PBS_NODEFILE The filename containing a list of vnodes assigned to the
job.

PBS_NODENUM Index into $PBS_NODEFILE. Starts at zero.

PBS_O_HOME Submission environment Value of HOME from submission environment.

PBS_O_HOST Submission environ-
ment; set by PBS

The host name on which the qsub command was exe-
cuted.

PBS_O_LANG Submission environment Value of LANG from submission environment

PBS_O_LOGNAME Submission environment Value of LOGNAME from submission environment

PBS_O_MAIL Submission environment Value of MAIL from submission environment

PBS_O_PATH Submission environment Value of PATH from submission environment

PBS_O_QUEUE Submission environment The original queue name to which the job was submitted.

PBS_O_SHELL Submission environment Value of SHELL from submission environment

PBS_O_SYSTEM Submission environment The operating system name where qsub was executed.

PBS_O_TZ Submission environment Value of TZ from submission environment

PBS_O_WORKDIR Submission environment The absolute path of directory where qsub was executed.

PBS_QUEUE The name of the queue from which the job is executed.

PBS_SCHED_THREADS Maximum number of scheduler threads. By default,
scheduler starts a number of threads that is half the num-
ber of cores (or hyperthreads, if applicable) on its host.
Scheduler automatically caps number of threads at the
number of cores (or hyperthreads if applicable), regard-
less of value of this variable.

Overridden by pbs_sched -t option. Overrides
PBS_SCHED_THREADS parameter in pbs.conf.

PBS_SERVER Submission environment The name of the default PBS server.

PBS_SID Session ID

Table 16-1: PBS Environment Variables

Variable Origin Meaning
RG-400 PBS Professional 2020.1.1 Reference Guide

PBS Environment Variables Chapter 16
PBS_TASKNUM The task (process) number for the job on this vnode.

PBS_TMPDIR Root of temporary directories/files for PBS components.

TMPDIR The job-specific temporary directory for this job.

Table 16-1: PBS Environment Variables

Variable Origin Meaning
PBS Professional 2020.1.1 Reference Guide RG-401

Chapter 16 PBS Environment Variables
RG-402 PBS Professional 2020.1.1 Reference Guide

17

File Listing

The following table lists all the PBS files and directories; owner and permissions are specific to Linux systems.

Table 17-1: File Listing

Directory / File Owner Permission
Average

Size

/opt/pbs/default/etc/pbs_bootcheck.py root -rw-r--r-- 4111

/var/tmp/pbs_bootcheck.py root -rw-r--r-- 4111

/var/tmp/pbs_boot_check

See "Discovering Last Reboot Time of Server" on page 546 in the PBS
Professional Administrator’s Guide.

root -rw-r--r-- 188

PBS_EXEC/ root drwxr-xr-x 4096

PBS_EXEC/bin root drwxr-xr-x 4096

PBS_EXEC/bin/pbsdsh root -rwxr-xr-x 111837

PBS_EXEC/bin/pbsnodes root -rwxr-xr-x 153004

PBS_EXEC/bin/pbs_dataservice root -rwx------

PBS_EXEC/bin/pbs_hostn root -rwxr-xr-x 35493

PBS_EXEC/bin/pbs_rdel root -rwxr-xr-x 151973

PBS_EXEC/bin/pbs_rstat root -rwxr-xr-x 156884

PBS_EXEC/bin/pbs_rsub root -rwxr-xr-x 167446

PBS_EXEC/bin/pbs_tclsh root -rwxr-xr-x 857552

PBS_EXEC/bin/pbs_wish root -rwxr-xr-x 1592236

PBS_EXEC/bin/printjob root -rwxr-xr-x 42667

PBS_EXEC/bin/qalter root -rwxr-xr-x 210723

PBS_EXEC/bin/qdel root -rwxr-xr-x 164949

PBS_EXEC/bin/qdisable root -rwxr-xr-x 139559

PBS_EXEC/bin/qenable root -rwxr-xr-x 139558

PBS_EXEC/bin/qhold root -rwxr-xr-x 165368

PBS_EXEC/bin/qmgr root -rwxr-xr-x 202526

PBS_EXEC/bin/qmove root -rwxr-xr-x 160932

PBS_EXEC/bin/qmsg root -rwxr-xr-x 160408

PBS_EXEC/bin/qorder root -rwxr-xr-x 146393

PBS_EXEC/bin/qrerun root -rwxr-xr-x 157228
PBS Professional 2020.1.1 Reference Guide RG-403

Chapter 17 File Listing
PBS_EXEC/bin/qrls root -rwxr-xr-x 165361

PBS_EXEC/bin/qrun root -rwxr-xr-x 160978

PBS_EXEC/bin/qselect root -rwxr-xr-x 163266

PBS_EXEC/bin/qsig root -rwxr-xr-x 160083

PBS_EXEC/bin/qstart root -rwxr-xr-x 139589

PBS_EXEC/bin/qstat root -rwxr-xr-x 207532

PBS_EXEC/bin/qstop root -rwxr-xr-x 139584

PBS_EXEC/bin/qsub root -rwxr-xr-x 275460

PBS_EXEC/bin/qterm root -rwxr-xr-x 132188

PBS_EXEC/bin/tracejob root -rwxr-xr-x 64730

PBS_EXEC/etc root drwxr-xr-x 4096

PBS_EXEC/etc/modulefile root -rw-r--r-- 749

PBS_EXEC/etc/pbs_db_schema.sql root -rw-r--r-- 10522

PBS_EXEC/etc/pbs_dedicated root -rw-r--r-- 557

PBS_EXEC/etc/pbs_holidays root -rw-r--r-- 2612

PBS_EXEC/etc/pbs_holidays.<year> root -rw-r--r-- 2643

PBS_EXEC/etc/pbs_resource_group root -rw-r--r-- 657

PBS_EXEC/etc/pbs_sched_config root -r--r--r-- 9791

PBS_EXEC/include root drwxr-xr-x 4096

PBS_EXEC/include/pbs_error.h root -r--r--r-- 7543

PBS_EXEC/include/pbs_ifl.h root -r--r--r-- 17424

PBS_EXEC/include/rm.h root -r--r--r-- 740

PBS_EXEC/include/tm.h root -r--r--r-- 2518

PBS_EXEC/include/tm_.h root -r--r--r-- 2236

PBS_EXEC/lib root drwxr-xr-x 4096

PBS_EXEC/lib/libattr.a root -rw-r--r-- 390274

PBS_EXEC/lib/liblog.a root -rw-r--r-- 101230

PBS_EXEC/lib/libnet.a root -rw-r--r-- 145968

PBS_EXEC/lib/libpbs.a root -rw-r--r-- 1815486

PBS_EXEC/lib/libsite.a root -rw-r--r-- 132906

PBS_EXEC/lib/MPI root drwxr-xr-x 4096

PBS_EXEC/lib/MPI/pbsrun.ch_gm.init.in root -rw-r--r-- 9924

Table 17-1: File Listing

Directory / File Owner Permission
Average

Size
RG-404 PBS Professional 2020.1.1 Reference Guide

File Listing Chapter 17
PBS_EXEC/lib/MPI/pbsrun.ch_mx.init.in root -rw-r--r-- 9731

PBS_EXEC/lib/MPI/pbsrun.gm_mpd.init.in root -rw-r--r-- 10767

PBS_EXEC/lib/MPI/pbsrun.intelmpi.init.in root -rw-r--r-- 10634

PBS_EXEC/lib/MPI/pbsrun.mpich2.init.in root -rw-r--r-- 10694

PBS_EXEC/lib/MPI/pbsrun.mx_mpd.init.in root -rw-r--r-- 10770

PBS_EXEC/lib/MPI/sgiMPI.awk root -rw-r--r-- 6564

PBS_EXEC/lib/pbs_sched.a root -rw-r--r-- 822026

PBS_EXEC/lib/pm root drwxr--r-- 4096

PBS_EXEC/lib/pm/PBS.pm root -rw-r--r-- 3908

PBS_EXEC/libexec/au-nodeupdate.pl root -rw-r--r--

PBS_EXEC/libexec/install_db root -rwx------ 10506

PBS_EXEC/libexec/pbs_habitat root -rwx------ 10059

PBS_EXEC/libexec/pbs_init.d root -rwx------ 25568

PBS_EXEC/libexec/pbs_postinstall root -rwx------ 29104

PBS_EXEC/share/man root drwxr-xr-x 4096

PBS_EXEC/share/man/man1 root drwxr-xr-x 4096

PBS_EXEC/share/man/man1/pbs.1B root -rw-r--r-- 5376

PBS_EXEC/share/man/man1/pbsdsh.1B root -rw-r--r-- 2978

PBS_EXEC/share/man/man1/pbs_ralter.1B root -rw-r--r--

PBS_EXEC/share/man/man1/pbs_rdel.1B root -rw-r--r-- 2342

PBS_EXEC/share/man/man1/pbs_rstat.1B root -rw-r--r-- 2682

PBS_EXEC/share/man/man1/pbs_rsub.1B root -rw-r--r-- 9143

PBS_EXEC/share/man/man1/qalter.1B root -rw-r--r-- 21569

PBS_EXEC/share/man/man1/qdel.1B root -rw-r--r-- 3363

PBS_EXEC/share/man/man1/qhold.1B root -rw-r--r-- 4323

PBS_EXEC/share/man/man1/qmove.1B root -rw-r--r-- 3343

PBS_EXEC/share/man/man1/qmsg.1B root -rw-r--r-- 3244

PBS_EXEC/share/man/man1/qorder.1B root -rw-r--r-- 3028

PBS_EXEC/share/man/man1/qrerun.1B root -rw-r--r-- 2965

PBS_EXEC/share/man/man1/qrls.1B root -rw-r--r-- 3927

PBS_EXEC/share/man/man1/qselect.1B root -rw-r--r-- 12690

PBS_EXEC/share/man/man1/qsig.1B root -rw-r--r-- 3817

Table 17-1: File Listing

Directory / File Owner Permission
Average

Size
PBS Professional 2020.1.1 Reference Guide RG-405

Chapter 17 File Listing
PBS_EXEC/share/man/man1/qstat.1B root -rw-r--r-- 15274

PBS_EXEC/share/man/man1/qsub.1B root -rw-r--r-- 36435

PBS_EXEC/share/man/man3 root drwxr-xr-x 4096

PBS_EXEC/share/man/man3/pbs_alterjob.3B root -rw-r--r-- 5475

PBS_EXEC/share/man/man3/pbs_connect.3B root -rw-r--r-- 3493

PBS_EXEC/share/man/man3/pbs_default.3B root -rw-r--r-- 2150

PBS_EXEC/share/man/man3/pbs_deljob.3B root -rw-r--r-- 3081

PBS_EXEC/share/man/man3/pbs_disconnect.3B root -rw-r--r-- 1985

PBS_EXEC/share/man/man3/pbs_geterrmsg.3B root -rw-r--r-- 2473

PBS_EXEC/share/man/man3/pbs_holdjob.3B root -rw-r--r-- 3006

PBS_EXEC/share/man/man3/pbs_manager.3B root -rw-r--r-- 4337

PBS_EXEC/share/man/man3/pbs_movejob.3B root -rw-r--r-- 3220

PBS_EXEC/share/man/man3/pbs_msgjob.3B root -rw-r--r-- 2912

PBS_EXEC/share/man/man3/pbs_orderjob.3B root -rw-r--r-- 2526

PBS_EXEC/share/man/man3/pbs_rerunjob.3B root -rw-r--r-- 2531

PBS_EXEC/share/man/man3/pbs_rlsjob.3B root -rw-r--r-- 3043

PBS_EXEC/share/man/man3/pbs_runjob.3B root -rw-r--r-- 3484

PBS_EXEC/share/man/man3/pbs_selectjob.3B root -rw-r--r-- 7717

PBS_EXEC/share/man/man3/pbs_sigjob.3B root -rw-r--r-- 3108

PBS_EXEC/share/man/man3/pbs_statjob.3B root -rw-r--r-- 4618

PBS_EXEC/share/man/man3/pbs_statnode.3B root -rw-r--r-- 3925

PBS_EXEC/share/man/man3/pbs_statque.3B root -rw-r--r-- 4009

PBS_EXEC/share/man/man3/pbs_statserver.3B root -rw-r--r-- 3674

PBS_EXEC/share/man/man3/pbs_submit.3B root -rw-r--r-- 6320

PBS_EXEC/share/man/man3/pbs_submitresv.3B root -rw-r--r-- 3878

PBS_EXEC/share/man/man3/pbs_terminate.3B root -rw-r--r-- 3322

PBS_EXEC/share/man/man3/tm.3B root -rw-r--r-- 11062

PBS_EXEC/share/man/man7 root drwxr-xr-x 4096

PBS_EXEC/share/man/man7/pbs_job_attributes.7B root -rw-r--r-- 15920

PBS_EXEC/share/man/man7/pbs_node_attributes.7B root -rw-r--r-- 7973

PBS_EXEC/share/man/man7/pbs_queue_attributes.7B root -rw-r--r-- 11062

PBS_EXEC/share/man/man7/pbs_resources.7B root -rw-r--r-- 22124

Table 17-1: File Listing

Directory / File Owner Permission
Average

Size
RG-406 PBS Professional 2020.1.1 Reference Guide

File Listing Chapter 17
PBS_EXEC/share/man/man7/pbs_resv_attributes.7B root -rw-r--r-- 11662

PBS_EXEC/share/man/man7/pbs_server_attributes.7B root -rw-r--r-- 14327

PBS_EXEC/share/man/man8 root drwxr-xr-x 4096

PBS_EXEC/share/man/man8/mpiexec.8B root -rw-r--r-- 4701

PBS_EXEC/share/man/man8/pbs-report.8B root -rw-r--r-- 19221

PBS_EXEC/share/man/man8/pbsfs.8B root -rw-r--r-- 3703

PBS_EXEC/share/man/man8/pbsnodes.8B root -rw-r--r-- 3441

PBS_EXEC/share/man/man8/pbsrun.8B root -rw-r--r-- 20937

PBS_EXEC/share/man/man8/pbsrun_unwrap.8B root -rw-r--r-- 2554

PBS_EXEC/share/man/man8/pbsrun_wrap.8B root -rw-r--r-- 3855

PBS_EXEC/share/man/man8/pbs_attach.8B root -rw-r--r-- 3790

PBS_EXEC/share/man/man8/pbs_hostn.8B root -rw-r--r-- 2781

PBS_EXEC/share/man/man8/pbs_idled.8B root -rw-r--r-- 2628

PBS_EXEC/share/man/man8/pbs_lamboot.8B root -rw-r--r-- 2739

PBS_EXEC/share/man/man8/pbs_mom.8B root -rw-r--r-- 23496

PBS_EXEC/share/man/man8/pbs_mpihp.8B root -rw-r--r-- 4120

PBS_EXEC/share/man/man8/pbs_mpilam.8B root -rw-r--r-- 2647

PBS_EXEC/share/man/man8/pbs_mpirun.8B root -rw-r--r-- 3130

PBS_EXEC/share/man/man8/pbs_probe.8B root -rw-r--r-- 3344

PBS_EXEC/share/man/man8/pbs_sched_cc.8B root -rw-r--r-- 6731

PBS_EXEC/share/man/man8/pbs_server.8B root -rw-r--r-- 7914

PBS_EXEC/share/man/man8/pbs_tclsh.8B root -rw-r--r-- 2475

PBS_EXEC/share/man/man8/pbs_tmrsh.8B root -rw-r--r-- 3556

PBS_EXEC/share/man/man8/pbs_wish.8B root -rw-r--r-- 2123

PBS_EXEC/share/man/man8/printjob.8B root -rw-r--r-- 2823

PBS_EXEC/share/man/man8/qdisable.8B root -rw-r--r-- 3104

PBS_EXEC/share/man/man8/qenable.8B root -rw-r--r-- 2937

PBS_EXEC/share/man/man8/qmgr.8B root -rw-r--r-- 7282

PBS_EXEC/share/man/man8/qrun.8B root -rw-r--r-- 2850

PBS_EXEC/share/man/man8/qstart.8B root -rw-r--r-- 2966

PBS_EXEC/share/man/man8/qstop.8B root -rw-r--r-- 2963

PBS_EXEC/share/man/man8/qterm.8B root -rw-r--r-- 4839

Table 17-1: File Listing

Directory / File Owner Permission
Average

Size
PBS Professional 2020.1.1 Reference Guide RG-407

Chapter 17 File Listing
PBS_EXEC/share/man/man8/tracejob.8B root -rw-r--r-- 4664

PBS_EXEC/pgsql root -rwxr-xr-x

PBS_EXEC/sbin root drwxr-xr-x 4096

PBS_EXEC/sbin/pbs-report root -rwxr-xr-x 68296

PBS_EXEC/sbin/pbsfs root -rwxr-xr-x 663707

PBS_EXEC/sbin/pbs_demux root -rwxr-xr-x 38688

PBS_EXEC/sbin/pbs_idled root -rwxr-xr-x 99373

PBS_EXEC/sbin/pbs_iff root -rwsr-xr-x 133142

PBS_EXEC/sbin/pbs_mom root -rwx------ 839326

PBS_EXEC/sbin/pbs_probe root -rwsr-xr-x 83108

PBS_EXEC/sbin/pbs_rcp root -rwsr-xr-x 75274

PBS_EXEC/sbin/pbs_sched root -rwx------ 705478

PBS_EXEC/sbin/pbs_server root -rwx------ 1133650

PBS_EXEC/tcltk root drwxr-xr-x 4096

PBS_EXEC/tcltk/bin root drwxr-xr-x 4096

PBS_EXEC/tcltk/bin/tclsh8.3 root -rw-r--r-- 552763

PBS_EXEC/tcltk/bin/wish8.3 root -rw-r--r-- 1262257

PBS_EXEC/tcltk/include root drwxr-xr-x 4096

PBS_EXEC/tcltk/include/tcl.h root -rw-r--r-- 57222

PBS_EXEC/tcltk/include/tclDecls.h root -rw-r--r-- 123947

PBS_EXEC/tcltk/include/tk.h root -rw-r--r-- 47420

PBS_EXEC/tcltk/include/tkDecls.h root -rw-r--r-- 80181

PBS_EXEC/tcltk/lib root drwxr-xr-x 4096

PBS_EXEC/tcltk/lib/libtcl8.3.a root -rw-r--r-- 777558

PBS_EXEC/tcltk/lib/libtclstub8.3.a root -rw-r--r-- 1832

PBS_EXEC/tcltk/lib/libtk8.3.a root -rw-r--r-- 1021024

PBS_EXEC/tcltk/lib/libtkstub8.3.a root -rw-r--r-- 3302

PBS_EXEC/tcltk/lib/tcl8.3 root drwxr-xr-x 4096

PBS_EXEC/tcltk/lib/tclConfig.sh root -rw-r--r-- 7076

PBS_EXEC/tcltk/lib/tk8.3 root drwxr-xr-x 4096

PBS_EXEC/tcltk/lib/tkConfig.sh root -rw-r--r-- 3822

PBS_EXEC/tcltk/license.terms root -rw-r--r-- 2233

Table 17-1: File Listing

Directory / File Owner Permission
Average

Size
RG-408 PBS Professional 2020.1.1 Reference Guide

File Listing Chapter 17
PBS_HOME root drwxr-xr-x 4096

PBS_HOME/aux root drwxr-xr-x 4096

PBS_HOME/checkpoint root drwx------ 4096

PBS_HOME/datastore data ser-
vice
account

-rwx------

PBS_HOME/mom_logs root drwxr-xr-x 4096

PBS_HOME/mom_priv root drwxr-x--x 4096

PBS_HOME/mom_priv/config root -rw-r--r-- 18

PBS_HOME/mom_priv/jobs root drwxr-x--x 4096

PBS_HOME/mom_priv/mom.lock root -rw-r--r-- 4

PBS_HOME/pbs_environment root -rw-r--r-- 0

PBS_HOME/sched_log root drwxr-xr-x 4096

PBS_HOME/sched_priv root drwxr-x--- 4096

PBS_HOME/sched_priv/dedicated_time root -rw-r--r-- 557

PBS_HOME/sched_priv/holidays root -rw-r--r-- 1228

PBS_HOME/sched_priv/resource_group root -rw-r--r-- 0

PBS_HOME/sched_priv/sched.lock root -rw-r--r-- 4

PBS_HOME/sched_priv/sched_config root -rw-r--r-- 6370

PBS_HOME/sched_priv/sched_out root -rw-r--r-- 0

PBS_HOME/server_logs root drwxr-xr-x 4096

PBS_HOME/server_priv root drwxr-x--- 4096

PBS_HOME/server_priv/accounting root drwxr-xr-x 4096

PBS_HOME/server_priv/acl_groups root drwxr-x--- 4096

PBS_HOME/server_priv/acl_hosts root drwxr-x--- 4096

PBS_HOME/server_priv/acl_svr root drwxr-x--- 4096

PBS_HOME/server_priv/acl_svr/managers root -rw------- 13

PBS_HOME/server_priv/acl_users root drwxr-x--- 4096

PBS_HOME/server_priv/config

PBS_HOME/server_priv/db_user

PBS_HOME/server_priv/db_password

PBS_HOME/server_priv/hooks

PBS_HOME/server_priv/jobs root drwxr-x--- 4096

Table 17-1: File Listing

Directory / File Owner Permission
Average

Size
PBS Professional 2020.1.1 Reference Guide RG-409

Chapter 17 File Listing
PBS_HOME/server_priv/license_file root -rw-r--r-- 34

PBS_HOME/server_priv/nodes

PBS_HOME/server_priv/queues/newqueue root -rw------- 303

PBS_HOME/server_priv/queues/workq root -rw------- 303

PBS_HOME/server_priv/resourcedef root

PBS_HOME/server_priv/server.lock root -rw------- 4

PBS_HOME/server_priv/svrlive root -rw-------

PBS_HOME/server_priv/tracking root -rw------- 0

PBS_HOME/spool root drwxrwxrwt 4096

PBS_HOME/undelivered root drwxrwxrwt 4096

Table 17-1: File Listing

Directory / File Owner Permission
Average

Size
RG-410 PBS Professional 2020.1.1 Reference Guide

18

Introduction to PBS

18.1 Acknowledgements

PBS Professional is the enhanced commercial version of the PBS software originally developed for NASA. The NASA
version had a number of corporate and individual contributors over the years, for which the PBS developers and PBS
community is most grateful. Below we provide formal legal acknowledgements to corporate and government entities,
then special thanks to individuals.

The NASA version of PBS contained software developed by NASA Ames Research Center, Lawrence Livermore
National Laboratory, and MRJ Technology Solutions. In addition, it included software developed by the NetBSD Foun-
dation, Inc., and its contributors as well as software developed by the University of California, Berkeley and its contribu-
tors.

Other contributors to the NASA version of PBS include Bruce Kelly and Clark Streeter of NERSC; Kent Crispin and
Terry Heidelberg of LLNL; John Kochmar and Rob Pennington of Pittsburgh Supercomputing Center; and Dirk Grun-
wald of University of Colorado, Boulder. The ports of PBS to the Cray T3e and the IBM SP SMP were funded by DoD
USAERDC; the port of PBS to the Cray SV1 was funded by DoD MSIC.

No list of acknowledgements for PBS would possibly be complete without special recognition of the first two beta test
sites. Thomas Milliman of the Space Sciences Center of the University of New Hampshire was the first beta tester.
Wendy Lin of Purdue University was the second beta tester and holds the honor of submitting more problem reports than
anyone else outside of NASA.
PBS Professional 2020.1.1 Reference Guide RG-411

Chapter 18 Introduction to PBS
RG-412 PBS Professional 2020.1.1 Reference Guide

Index

$action RG-240
$alps_client RG-240
$alps_release_jitter RG-240
$alps_release_timeout RG-240
$alps_release_wait_time RG-241
$checkpoint_path RG-241
$clienthost RG-241
$cputmult RG-241
$dce_refresh_delta RG-241
$enforce RG-241
$job_launch_delay RG-243
$jobdir_root RG-242
$logevent RG-243
$max_check_poll RG-243
$max_load RG-244
$max_poll_downtime RG-244
$min_check_poll RG-244
$pbs_accounting_workload_mgmt RG-244
$prologalarm RG-244
$reject_root_scripts RG-244
$restart_background RG-245
$restart_transmogrify RG-245
$restrict_user RG-245
$restrict_user_exceptions RG-245
$restrict_user_maxsysid RG-245
$restricted RG-245
$sister_join_job_alarm RG-246
$suspendsig RG-246
$tmpdir RG-246
$usecp RG-246
$vnodedef_additive RG-246
$wallmult RG-247

A
accelerator RG-265
accelerator_memory RG-266
accelerator_model RG-266
accept an action RG-1
access

by group RG-8
by user RG-20
from host RG-8
to a queue RG-1
to a reservation RG-1
to the server RG-1

access control list RG-1

account string RG-1
Account_Name

job attribute RG-328
accounting

account string RG-1
accounting log entry

format RG-353
accounting_id

job attribute RG-328
accrue_type

job attribute RG-328
ACL RG-1, RG-379, RG-382, RG-383, RG-385
acl_group_enable

queue attribute RG-311
acl_groups

queue attribute RG-311
acl_host_enable RG-281

queue attribute RG-311
acl_host_moms_enable RG-281
acl_hosts

queue attribute RG-311
server attribute RG-281

acl_resv_group_enable
server attribute RG-281

acl_resv_groups
server attribute RG-281

acl_resv_host_enable
server attribute RG-281

acl_resv_hosts
server attribute RG-282

acl_resv_user_enable
server attribute RG-282

acl_resv_users
server attribute RG-282

acl_roots
server attribute RG-282

acl_user_enable
queue attribute RG-311
server attribute RG-282

acl_users
queue attribute RG-311
server attribute RG-282

action RG-1
accept RG-1
reject RG-16

active (failover) RG-1
Active Directory RG-1
PBS Professional 2020.1 Reference Guide RG-413

Index
Admin RG-1
administrator RG-2
Administrators RG-2
advance reservation RG-2, RG-392
aggressive_provision RG-255
alarm

hook attribute RG-349
ALM license server RG-2
alt_id

job attribute RG-328
Ames Research Center RG-409
AOE RG-2
aoe RG-266
API RG-2
application checkpoint RG-2
application operating environment RG-2
arch RG-267
argument_list

job attribute RG-329
array

job attribute RG-329
array job RG-2, RG-9
array_id

job attribute RG-329
array_index

job attribute RG-329
array_indices_remaining

job attribute RG-329
array_indices_submitted

job attribute RG-329
array_state_count

job attribute RG-329
ASAP reservation RG-2, RG-10
attribute

definition RG-2
log_events RG-298
rerunnable RG-16

attribute name
format RG-353

Authorized_Groups
reservation attribute RG-303

Authorized_Hosts
reservation attribute RG-303

Authorized_Users
reservation attribute RG-304

avoid_provision RG-255

B
backfill RG-250
backfill_depth

queue attribute RG-311
server attribute RG-282

backfill_prime RG-250

backfilling RG-2
batch job RG-9
batch processing RG-3
block

job attribute RG-330
Boolean

format RG-259, RG-359
borrowing vnode RG-3
built-in hook RG-3
built-in resource RG-3
busy RG-365
by_queue RG-250

C
Checkpoint

job attribute RG-330
checkpoint RG-240, RG-390, RG-407

restart RG-17
restart file RG-17
restart script RG-17

checkpoint and abort RG-3
checkpoint and restart RG-3
checkpoint/restart RG-3
checkpoint_abort RG-3, RG-240
checkpoint_min

queue attribute RG-312
child vnode RG-3
chunk RG-3
chunk set RG-3
chunk-level resource RG-3
cluster RG-3
comm RG-4
commands RG-4
comment

job attribute RG-330
scheduler attribute RG-298
server attribute RG-283
vnode attribute RG-320

communication daemon RG-4
complex RG-4

Linux-Windows RG-11
mixed-mode RG-12
Windows-Linux RG-20

configuration file
version 1 RG-20
version 2 RG-20

consumable resource RG-4
CPU RG-4
cpus_per_ssinode RG-250
cput RG-267
creating a hook RG-4
ctime

job attribute RG-331
RG-414 PBS Professional 2020.1 Reference Guide

Index
reservation attribute RG-304
current_aoe

vnode attribute RG-320
current_eoe RG-320
custom resource RG-4

D
data service account RG-4
data service management account RG-4
date

format RG-353
datetime

format RG-354
debug

hook attribute RG-349
dedicated_prefix RG-250
default server RG-5
default_chunk

queue attribute RG-312
server attribute RG-283

default_qdel_arguments
server attribute RG-283

default_qsub_arguments
server attribute RG-283

default_queue
server attribute RG-283

degraded reservation RG-16
delegation RG-5
delete_idle_time RG-304
depend

job attribute RG-332
destination

definition RG-5
destination identifier RG-5

format RG-354
destination queue RG-5
destination server RG-5
directive RG-6
directory

staging and execution RG-19
DIS RG-369
do_not_span_psets

scheduler attribute RG-298
Domain Admin Account RG-6
Domain Admins RG-6
Domain User Account RG-6
Domain Users RG-6
down RG-365

E
egroup

job attribute RG-332
eligible_time

job attribute RG-333
eligible_time_enable

server attribute RG-284
enabled

hook attribute RG-349
queue attribute RG-312

endpoint RG-6
energy RG-267
Enterprise Admins RG-6
entity RG-6
entity share RG-6
environment variables RG-399
eoe RG-267
error codes RG-389
Error_Path

job attribute RG-333
est_start_time_freq

server attribute RG-284
estimated

job attribute RG-334
etime

job attribute RG-334
euser

job attribute RG-334
event RG-6

hook attribute RG-350
exec_host

job attribute RG-335
exec_vnode RG-267

job attribute RG-335
executable

job attribute RG-334
execution event hooks RG-6
execution host RG-6
execution queue RG-6
Execution_Time

job attribute RG-335
Exit_status

job attribute RG-336
express_queue RG-300
externally-provided resources RG-239

F
fail_action

hook attribute RG-351
failover RG-7

idle RG-8
primary scheduler RG-15
primary server RG-15
secondary scheduler RG-17
secondary server RG-17

failure action RG-7
fair_share RG-250
PBS Professional 2020.1 Reference Guide RG-415

Index
fairshare RG-7, RG-300
fairshare_decay_factor RG-251
fairshare_decay_time RG-251
fairshare_enforce_no_shares RG-251
fairshare_entity RG-251
fairshare_perc RG-252
fairshare_usage_res RG-251
file RG-268

stage in RG-18
stage out RG-18
vnodedefs RG-20

file staging RG-7
files

MoM
config RG-381

nodes RG-380
finished jobs RG-7
flatuid

server attribute RG-284
FLicenses

server attribute RG-284
float

format RG-259, RG-359
floating license RG-7
format

accounting log entry RG-353
attribute name RG-353
Boolean RG-259, RG-359
date RG-353
datetime RG-354
destination identifier RG-354
float RG-259, RG-359
host name RG-354
job array identifier RG-354
job array name RG-355
job array range RG-355
job identifier RG-355, RG-357
job name RG-355
limit specification RG-356
logfile-date-time RG-356
pathname RG-357
PBS NAME RG-357
PBS password RG-357
project name RG-357
queue identifier RG-357
queue name RG-357
reservation name RG-358
size RG-260, RG-360
string resource value RG-260, RG-360
string_array RG-260, RG-360
subjob identifier RG-358
username RG-358

Windows RG-358
vnode name RG-358

forward_x11_cookie
job attribute RG-336

forward_x11_port
job attribute RG-336

free RG-365
freq

hook attribute RG-351
from_route_only

queue attribute RG-312
furnishing queue RG-7

G
global resource RG-7
group RG-8

access RG-8
ID (GID) RG-8

group limit RG-8
group_list

job attribute RG-336

H
half_life RG-251
hasnodes

queue attribute RG-312
hbmem RG-268
help_starving_jobs RG-251
history jobs RG-8
hold RG-8
Hold_Types

job attribute RG-336
hook RG-8

creating RG-4
importing RG-8, RG-9
provisioning RG-16

hooks
accept RG-1
action RG-1
execution event RG-6
non-job event RG-12
pre-execution event RG-15
reject action RG-16

host RG-8, RG-268
access RG-8

host name
format RG-354

hostname RG-8
Hot_Start

server state RG-364
HTT RG-8

I
Idle

server state RG-364
RG-416 PBS Professional 2020.1 Reference Guide

Index
idle (failover) RG-8
importing a hook RG-8, RG-9
in_multivnode_host

vnode attribute RG-320
index

subjob RG-19
indirect resource RG-9
InfiniBand RG-48, RG-49
installation account RG-9
instance RG-13
interactive

job attribute RG-337
reservation attribute RG-305

interactive job RG-9

J
job

attribute RG-16
batch RG-9
identifier RG-10
interactive RG-9
kill RG-11
owner RG-13
rerunnable RG-16
route RG-17
shrink-to-fit RG-18
state RG-10
states RG-361
substates RG-362

job array RG-9
identifier RG-9
range RG-10
subjob RG-19
subjob index RG-19

job array identifier
format RG-354

job array name RG-10
format RG-355

job array range
format RG-355

job ID RG-10
job identifier

format RG-355, RG-357
job name RG-10

format RG-355
Job Submission Description Language RG-10
job_history_duration

server attribute RG-284
job_history_enable

server attribute RG-285
Job_Name

job attribute RG-337
Job_Owner

job attribute RG-337
job_priority RG-252
job_requeue_timeout

server attribute RG-285
job_sort_formula

server attribute RG-285
job_sort_formula_threshold

scheduler attribute RG-298
job_sort_key RG-252
job_state

job attribute RG-338
job-busy RG-365
jobdir

job attribute RG-337
job-exclusive RG-365
jobs

moved RG-12
vnode attribute RG-320

jobscript_max_size
server attribute RG-285

job-specific ASAP reservation RG-2, RG-10
job-specific now reservation RG-10, RG-13
job-specific reservation RG-10
Job-specific start reservation RG-10
job-specific start reservation RG-19
job-wide resource RG-11
Join_Path

job attribute RG-339
JSDL RG-10

K
Keep_Files

job attribute RG-339
kill job RG-11
kill_delay

queue attribute RG-313

L
last_state_change_time RG-320
last_used_time RG-321
leaf RG-11
license

external RG-384
vnode attribute RG-321

license server RG-11
ALM RG-2

license server configuration
redundant RG-16

License Server List Configuration RG-11
license_info

vnode attribute RG-321
limit RG-11

generic group limit RG-7
PBS Professional 2020.1 Reference Guide RG-417

Index
generic project limit RG-7
generic user limit RG-7
group limit RG-8
individual group limit RG-9
individual project limit RG-9
individual user limit RG-9
overall RG-13
project RG-15
user limit RG-20

limit specification
format RG-356

Linux-Windows complex RG-11
load balance RG-11
load_balancing RG-253
load_balancing_rr RG-253
local resource RG-12
log_events

scheduler attribute RG-298
server attribute RG-285

log_filter RG-253
logfile-date-time

format RG-356

M
mail_from

server attribute RG-286
Mail_Points

job attribute RG-339
reservation attribute RG-305

Mail_Users
job attribute RG-339
reservation attribute RG-305

maintenance RG-365
maintenance_jobs RG-321
Manager RG-12
managers

server attribute RG-286
managing vnode RG-12
master provisioning script RG-12
master script RG-12
max_array_size

queue attribute RG-313
server attribute RG-286

max_concurrent_provision
server attribute RG-286

max_group_res
queue attribute RG-313

max_group_res_soft
queue attribute RG-313

max_group_run
queue attribute RG-313

max_group_run_soft
queue attribute RG-313

max_job_sequence_id RG-287
max_queuable

queue attribute RG-314
max_queued

queue attribute RG-314
max_queued_res

queue attribute RG-314
max_run

queue attribute RG-314
max_run_res

queue attribute RG-314
max_run_res_soft

queue attribute RG-315
max_run_soft

queue attribute RG-315
max_running

queue attribute RG-315
max_starve RG-253
max_user_res

queue attribute RG-315
max_user_res_soft

queue attribute RG-315
max_user_run

queue attribute RG-316
max_user_run_soft

queue attribute RG-316
max_walltime RG-268
mem RG-268
mem_per_ssinode RG-253
memory-only vnode RG-12
memreserved RG-244
min_walltime RG-269
mixed-mode complex RG-12
MoM RG-12

subordinate RG-19
Mom

vnode attribute RG-321
mom_resources RG-253
monitoring RG-12
Mother Superior RG-12
moved jobs RG-12
mpiprocs RG-269
MRJ Technology Solutions RG-409
mtime

job attribute RG-340
reservation attribute RG-306

multinodebusy RG-240
multi-vnode complex RG-380

N
naccelerators RG-269
name

vnode attribute RG-321
RG-418 PBS Professional 2020.1 Reference Guide

Index
NASA
and PBS RG-409

nchunk RG-270
NCPUS RG-399
ncpus RG-270
nice RG-270
no_multinode_jobs

vnode attribute RG-322
no_stdio_sockets

job attribute RG-340
node

definition RG-14
node_group_key

queue attribute RG-316
server attribute RG-290

node_sort_key RG-253
nodect RG-270
nodes RG-270
non-consumable resource RG-12
non-job event hooks RG-12
non-primetime RG-15
nonprimetime_prefix RG-254
normal_jobs RG-300
now reservation RG-10, RG-13
nppcu RG-13
ntype

vnode attribute RG-322

O
object RG-13
occurrence of a standing reservation RG-13
offline RG-365
OMP_NUM_THREADS RG-399
ompthreads RG-271
only_explicit_psets

scheduler attribute RG-298
Operator RG-13
operators

server attribute RG-291
opt_backfill_fuzzy

scheduler attribute RG-299
order

hook attribute RG-351
Output_Path

job attribute RG-340
overall limit RG-13
owner RG-13

P
parameter RG-13
parent vnode RG-13
partition RG-316, RG-322

scheduler attribute RG-299

pathname
format RG-357

PBS RG-399
pbs RG-28
PBS Administrator RG-14
PBS entity RG-6, RG-14
pbs module RG-14
PBS NAME

format RG-357
PBS object RG-13, RG-14
PBS password

format RG-357
PBS Professional RG-14
PBS_ARRAY_ID RG-399
PBS_ARRAY_INDEX RG-399
pbs_attach RG-55
PBS_AUTH_METHOD RG-369
PBS_BATCH_SERVICE_PORT RG-369
PBS_BATCH_SERVICE_PORT_DIS RG-369
pbs_comm RG-4, RG-57
PBS_COMM_LOG_EVENTS RG-369
PBS_COMM_ROUTERS RG-369
PBS_COMM_THREADS RG-369
PBS_CONF_FILE RG-399
PBS_CONF_REMOTE_VIEWER RG-370
PBS_CONF_SYSLOG RG-373
PBS_CONF_SYSLOGSEVR RG-373
PBS_CORE_LIMIT RG-370
PBS_DATA_SERVICE_PORT RG-370
pbs_dataservice RG-60
pbs_ds_password RG-61
PBS_ENCRYPT_METHOD RG-370
PBS_ENVIRONMENT RG-370, RG-399
PBS_EXEC RG-14, RG-370
PBS_HOME RG-14, RG-370
pbs_hostn RG-63
pbs_idled RG-64
pbs_interactive RG-67
PBS_JOBCOOKIE RG-399
PBS_JOBID RG-399
PBS_JOBNAME RG-399
pbs_lamboot RG-68
PBS_LEAF_NAME RG-370
PBS_LEAF_ROUTERS RG-370
pbs_license_info

server attribute RG-291
pbs_license_linger_time

server attribute RG-291
pbs_license_max

server attribute RG-291
pbs_license_min

server attribute RG-292
PBS_LOCALLOG RG-370
PBS_MAIL_HOST_NAME RG-371
PBS Professional 2020.1 Reference Guide RG-419

Index
PBS_MANAGER_SERVICE_PORT RG-371
pbs_mkdirs RG-70
pbs_mom RG-71
PBS_MOM_HOME RG-371
PBS_MOM_NODE_NAME RG-371
PBS_MOM_SERVICE_PORT RG-371
PBS_MOMPORT RG-399
pbs_mpihp RG-76
pbs_mpilam RG-78
pbs_mpirun RG-79
PBS_NODENUM RG-399
PBS_O_HOME RG-399
PBS_O_HOST RG-399
PBS_O_LANG RG-399
PBS_O_LOGNAME RG-399
PBS_O_MAIL RG-399
PBS_O_PATH RG-399
PBS_O_QUEUE RG-400
PBS_O_SHELL RG-400
PBS_O_SYSTEM RG-400
PBS_O_TZ RG-400
PBS_O_WORKDIR RG-400
PBS_OUTPUT_HOST_NAME RG-371
PBS_PRIMARY RG-371
pbs_probe RG-81
pbs_python RG-83
PBS_QUEUE RG-400
PBS_RCP RG-371
pbs_rdel RG-90
pbs_rstat RG-94
pbs_rsub RG-96
pbs_sched RG-105
PBS_SCHED_THREADS RG-372
PBS_SCHEDULER_SERVICE_PORT RG-371
PBS_SCP RG-372
PBS_SECONDARY RG-372
PBS_SERVER RG-372, RG-400
pbs_server RG-108
PBS_SERVER_HOST_NAME RG-372
PBS_SID RG-400
PBS_START_COMM RG-372
PBS_START_MOM RG-372
PBS_START_SCHED RG-372
PBS_START_SERVER RG-372
PBS_SUPPORTED_AUTH_METHODS RG-372
PBS_TASKNUM RG-400
pbs_tclsh RG-119
PBS_TMPDIR RG-373, RG-400
pbs_tmrsh RG-120
pbs_version

scheduler attribute RG-299
server attribute RG-292
vnode attribute RG-322

pbs_wish RG-122, RG-124

pbsadmin RG-14
PBScrayhost RG-271
PBScraylabel_ RG-271
PBScraynid RG-271
PBScrayorder RG-272
PBScrayseg RG-272
pbsdsh RG-29
pbsfs RG-31
pbshook RG-14
pbsnodes RG-35
pbsrun RG-40
pbsrun_unwrap RG-50
pbsrun_wrap RG-51
pcap_accelerator RG-340
pcap_node RG-341
pcpus

vnode attribute RG-322
pcput RG-272
peer scheduling RG-14
pgov RG-341
p-governor RG-341
placement pool RG-15
placement set RG-14
placement set series RG-14
pmem RG-272
pnames

vnode attribute RG-322
policy RG-15

scheduling RG-17
Port

vnode attribute RG-322
POSIX RG-15
power_provisioning

server attribute RG-292
vnode attribute RG-322

poweroff_eligible
vnode attribute RG-322

preempt RG-15
preempt_order RG-254
preempt_prio RG-254
preempt_queue_prio RG-254
preempt_sort RG-254
preempt_targets RG-273
preemption

level RG-15
method RG-15
target RG-15

preemptive_sched RG-254
pre-execution event hooks RG-15
primary execution host RG-15
primary scheduler RG-15
primary server RG-15, RG-371
prime_spill RG-255
primetime RG-15
RG-420 PBS Professional 2020.1 Reference Guide

Index
primetime_prefix RG-254
printjob RG-125
Priority

job attribute RG-341
queue attribute RG-316
vnode attribute RG-323

project RG-15
job attribute RG-341

project limit RG-15
project name

format RG-357
provision RG-16
provision_enable

vnode attribute RG-323
provision_policy RG-255
provisioned vnode RG-16
provisioning RG-366

hook RG-16
provisioning tool RG-16
pset

job attribute RG-341
pstate RG-341
pulling queue RG-16
pvmem RG-273
python_restart_max_hooks

server attribute RG-292
python_restart_max_objects

server attribute RG-292
python_restart_min_interval

server attribute RG-292

Q
qalter RG-127
qdel RG-140
qdisable RG-143
qenable RG-145
qhold RG-147
qmgr RG-149, RG-380
qmove RG-172
qmsg RG-174
qorder RG-176
qrerun RG-178
qrls RG-180
qrun RG-182
qselect RG-186
qsig RG-192
qstart RG-195
qstat RG-197
qstop RG-211
qsub RG-213
qterm RG-233
qtime

job attribute RG-342

query_other_jobs
server attribute RG-292

queue
access to a RG-1
definition RG-16
execution RG-6
furnishing RG-7
job attribute RG-342
pulling RG-16
reservation attribute RG-306
routing RG-17
vnode attribute RG-323

queue identifier
format RG-357

queue name
format RG-357

queue_rank
job attribute RG-342

queue_softlimits RG-300
queue_type

job attribute RG-342
queue attribute RG-317

queued_jobs_threshold
queue attribute RG-316

queued_jobs_threshold_res
queue attribute RG-317
server attribute RG-293

queuing RG-16

R
rcp RG-371
redundant license server configuration RG-16
reject an action RG-16
release_nodes_on_stageout RG-342
requeue RG-16
require_cred

queue attribute RG-317
require_cred_enable

queue attribute RG-317
Rerunable

job attribute RG-343
reservation

access to a RG-1
advance RG-2
ASAP RG-2, RG-10
degradation RG-16
degraded RG-5
instance RG-13
job-specific RG-10

ASAP RG-2, RG-10
now RG-10, RG-13
start RG-10, RG-19

now RG-10, RG-13
PBS Professional 2020.1 Reference Guide RG-421

Index
occurrence RG-13
soonest occurrence RG-18
standing RG-19

instance RG-13
soonest occurrence RG-18

start RG-10
reservation degradation RG-16
reservation ID RG-16
reservation identifier RG-16
reservation name

format RG-358
reserve_count

reservation attribute RG-306
reserve_duration

reservation attribute RG-306
reserve_end

reservation attribute RG-306
reserve_ID

reservation attribute RG-306
reserve_index

reservation attribute RG-307
reserve_job RG-307
Reserve_Name

reservation attribute RG-307
Reserve_Owner

reservation attribute RG-307
reserve_retry

reservation attribute RG-307
reserve_retry_cutoff

server attribute RG-293
reserve_retry_init

server attribute RG-293
reserve_retry_time

server attribute RG-293
reserve_rrule

reservation attribute RG-308
reserve_start

reservation attribute RG-308
reserve_state

reservation attribute RG-309
reserve_substate

reservation attribute RG-309
resource RG-17

built-in RG-3
consumable RG-4
custom RG-4
indirect RG-9
job-wide RG-11
non-consumable RG-12
shared RG-18

Resource_List
job attribute RG-343
reservation attribute RG-310

Resource_List.eoe RG-267

resource_unset_infinite RG-256
resources RG-256
resources_assigned

queue attribute RG-317
server attribute RG-294
vnode attribute RG-323

resources_available
queue attribute RG-318
server attribute RG-294
vnode attribute RG-323

resources_available.eoe RG-267
resources_default

queue attribute RG-318
server attribute RG-294

resources_max
queue attribute RG-318
server attribute RG-295

resources_min
queue attribute RG-318

resources_released RG-343
resources_released_list RG-344
resources_used

job attribute RG-344
restart RG-17, RG-240
restart file RG-17
restart script RG-17
restrict_res_to_release_on_suspend RG-295
resv

vnode attribute RG-324
RESV_BEING_DELETED RG-367
RESV_CONFIRMED RG-367
RESV_DEGRADED RG-367
RESV_DELETED RG-367
RESV_DELETING_JOBS RG-367
resv_enable

vnode attribute RG-324
RESV_FINISHED RG-367
RESV_IN_CONFLICT RG-367
resv_nodes

reservation attribute RG-310
RESV_NONE RG-367
resv_post_processing_time

server attribute RG-295
RESV_RUNNING RG-367
RESV_TIME_TO_RUN RG-367
RESV_UNCONFIRMED RG-367
RESV_WAIT RG-367
resv-exclusive RG-366
round_robin RG-256
route RG-17
route queue RG-379, RG-382
route_destinations

queue attribute RG-319
route_held_jobs
RG-422 PBS Professional 2020.1 Reference Guide

Index
queue attribute RG-319
route_lifetime

queue attribute RG-319
route_retry_time

queue attribute RG-319
route_waiting_jobs

queue attribute RG-319
routing queue RG-17
rpp_highwater

server attribute RG-295
rpp_max_pkt_check RG-295
rpp_retry

server attribute RG-295
run_count RG-137, RG-228

job attribute RG-344
run_version

job attribute RG-344

S
sandbox RG-228

job attribute RG-344
sched_cycle_length

scheduler attribute RG-301
sched_host

scheduler attribute RG-301
sched_log

scheduler attribute RG-301
sched_port

scheduler attribute RG-301
sched_preempt_enforce_resumption

scheduler attribute RG-301
sched_priv

scheduler attribute RG-301
schedselect

job attribute RG-345
scheduler RG-17
scheduler_iteration

scheduler attribute RG-300
server attribute RG-296

Scheduling
server state RG-364

scheduling
policy RG-15, RG-17
scheduler attribute RG-300
server attribute RG-296

scheduling jobs RG-17
Schema Admins RG-17
scp RG-372
secondary scheduler RG-17
secondary server RG-17, RG-372
sequence number RG-17
server RG-18

access to the RG-1

default RG-5
job attribute RG-345
name RG-18
primary RG-371
reservation attribute RG-310
secondary RG-372

server_dyn_res RG-256
server_dyn_res_alarm RG-301
server_softlimits RG-300
server_state

server attribute RG-297
session_id

job attribute RG-345
set_power_cap RG-341
shared resource RG-18
sharing

vnode attribute RG-324
Shell_Path_List

job attribute RG-345
shrink-to-fit job RG-18
single_signon_password_enable

server attribute RG-297
sister RG-18
sisterhood RG-18
site RG-273

definition RG-18
size

format RG-260, RG-360
smp_cluster_dist RG-256
snapshot checkpoint RG-18
soft_walltime RG-274
software RG-273
soonest occurrence RG-18
sort_priority RG-252
sort_queues RG-257
stage

in RG-18
out RG-18

stagein
job attribute RG-345

stageout
job attribute RG-346

Stageout_status
job attribute RG-346

staging and execution directory RG-19
stale RG-366
standing reservation RG-19
start reservation RG-10, RG-19
start_time RG-274
started

queue attribute RG-319
starving_jobs RG-251, RG-300
state RG-19

scheduler attribute RG-301
PBS Professional 2020.1 Reference Guide RG-423

Index
server
Hot_Start RG-364
Idle RG-364
Scheduling RG-364
Terminating RG-364
Terminating_Delayed RG-364

vnode attribute RG-326
state_count

queue attribute RG-319
server attribute RG-297

state-unknown, down RG-366
stime

job attribute RG-346
strict ordering RG-19
strict_fifo RG-257
strict_ordering RG-257
string resource value

format RG-260, RG-360
string_array

format RG-260, RG-360
subject RG-19
subjob RG-19
subjob identifier

format RG-358
subjob index RG-19
Submit_arguments

job attribute RG-346
subordinate MoM RG-19
substate

job attribute RG-346
sw_index

job attribute RG-346
sync_time RG-257

T
task RG-19
task placement RG-19
terminate RG-240
Terminating

server state RG-364
Terminating_Delayed

server state RG-364
three-server configuration RG-19
throughput_mode

scheduler attribute RG-302
time-sharing RG-379, RG-380
TMPDIR RG-400
tolerate_node_failures RG-347
topjob_ineligible

job attribute RG-347
topology_info

vnode attribute RG-326
total_jobs

queue attribute RG-319
server attribute RG-297

TPP RG-20
tracejob RG-235
type

hook attribute RG-351

U
UID RG-20
umask

job attribute RG-347
unknown_shares RG-257
user

access RG-20
definition RG-20
hook attribute RG-351
ID RG-20

user limit RG-20
User_List

job attribute RG-348
username

format RG-358
Windows

format RG-358

V
Variable_List

job attribute RG-348
vchunk RG-20
version 1 configuration file RG-20
version 2 configuration file RG-20
vmem RG-274
vnode RG-20, RG-274

borrowing RG-3
managing RG-12
memory-only RG-12

vnode name
format RG-358

vnode_pool RG-327
vnodedefs file RG-20
vntype RG-274
vp RG-20

W
wait-provisioning RG-366
walltime RG-275
Windows

mixed-mode complex RG-12
Windows-Linux complex RG-20
RG-424 PBS Professional 2020.1 Reference Guide

Altair®

PBS Professional®

2020.1.1

User’s Guide

You are reading the Altair PBS Professional 2020.1.1

User’s Guide (UG)

Updated 9/30/20

Copyright © 2003-2020 Altair Engineering, Inc. All rights reserved.

ALTAIR ENGINEERING INC. Proprietary and Confidential. Contains Trade Secret Information. Not for use or disclo-
sure outside of Licensee’s organization. The software and information contained herein may only be used internally and
are provided on a non-exclusive, non-transferable basis. Licensee may not sublicense, sell, lend, assign, rent, distribute,
publicly display or publicly perform the software or other information provided herein, nor is Licensee permitted to
decompile, reverse engineer, or disassemble the software. Usage of the software and other information provided by Altair
(or its resellers) is only as explicitly stated in the applicable end user license agreement between Altair and Licensee. In
the absence of such agreement, the Altair standard end user license agreement terms shall govern.

Use of Altair’s trademarks, including but not limited to “PBS™”, “PBS Professional®”, and “PBS Pro™”, “PBS
Works™”, “PBS Control™”, “PBS Access™”, “PBS Analytics™”, “PBScloud.io™”, and Altair’s logos is subject to
Altair's trademark licensing policies. For additional information, please contact Legal@altair.com and use the wording
“PBS Trademarks” in the subject line.

For a copy of the end user license agreement(s), log in to https://secure.altair.com/UserArea/agreement.html or contact
the Altair Legal Department. For information on the terms and conditions governing third party codes included in the
Altair Software, please see the Release Notes.

This document is proprietary information of Altair Engineering, Inc.

Contact Us

For the most recent information, go to the PBS Works website, www.pbsworks.com, select "My PBS", and log in with
your site ID and password.

Altair

Altair Engineering, Inc., 1820 E. Big Beaver Road, Troy, MI 48083-2031 USA www.pbsworks.com

Sales

pbssales@altair.com 248.614.2400

Please send any questions or suggestions for improvements to agu@altair.com.

https://secure.altair.com/UserArea/agreement.html
http://www.pbsworks.com
http://www.pbsworks.com

Technical Support

Need technical support? We are available from 8am to 5pm local times:

Location Telephone e-mail

Australia +1 800 174 396 anz-pbssupport@india.altair.com

China +86 (0)21 6117 1666 pbs@altair.com.cn

France +33 (0)1 4133 0992 pbssupport@europe.altair.com

Germany +49 (0)7031 6208 22 pbssupport@europe.altair.com

India +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

Italy +39 800 905595 pbssupport@europe.altair.com

Japan +81 3 6225 5821 pbs@altairjp.co.jp

Korea +82 70 4050 9200 support@altair.co.kr

Malaysia +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

North America +1 248 614 2425 pbssupport@altair.com

Russia +49 7031 6208 22 pbssupport@europe.altair.com

Scandinavia +46 (0)46 460 2828 pbssupport@europe.altair.com

Singapore +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

South Africa +27 21 831 1500 pbssupport@europe.altair.com

South America +55 11 3884 0414 br_support@altair.com

UK +44 (0)1926 468 600 pbssupport@europe.altair.com

Contents

1 Getting Started with PBS 1
1.1 Why Use PBS? . 1

1.2 PBS Tasks and Components . 1

1.3 Interfaces to PBS . 3

1.4 Setting Up Your Environment . 5

2 Submitting a PBS Job 11
2.1 Introduction to the PBS Job. 11

2.2 The PBS Job Script . 14

2.3 Submitting a PBS Job . 18

2.4 Job Submission Recommendations and Advice . 23

2.5 Job Submission Options . 24

2.6 Job Submission Caveats. 30

3 Job Input & Output Files 31
3.1 Introduction to Job File I/O in PBS . 31

3.2 Input/Output File Staging. 31

3.3 Managing Output and Error Files . 39

4 Allocating Resources & Placing Jobs 49
4.1 What is a Vnode? . 49

4.2 PBS Resources . 49

4.3 Requesting Resources . 51

4.4 How Resources are Allocated to Jobs . 59

4.5 Limits on Resource Usage . 61

4.6 Viewing Resources . 63

4.7 Specifying Job Placement . 64

4.8 Backward Compatibility . 70

5 Multiprocessor Jobs 77
5.1 Submitting Multiprocessor Jobs . 77

5.2 Using MPI with PBS . 81

5.3 Using PVM with PBS. 102

5.4 Using OpenMP with PBS . 103

5.5 Hybrid MPI-OpenMP Jobs. 105
PBS Professional 2020.1 User’s Guide UG-v

Contents
6 Controlling How Your Job Runs 107
6.1 Using Job Exit Status . 107

6.2 Using Job Dependencies . 107

6.3 Adjusting Job Running Time . 110

6.4 Using Checkpointing . 113

6.5 Holding and Releasing Jobs . 115

6.6 Allowing Your Job to be Re-run. 118

6.7 Controlling Number of Times Job is Re-run . 119

6.8 Deferring Execution. 119

6.9 Setting Priority for Your Job . 120

6.10 Making qsub Wait Until Job Ends. 120

6.11 Running Your Job Interactively . 121

6.12 Using Environment Variables . 126

6.13 Specifying Which Jobs to Preempt . 127

6.14 Releasing Unneeded Vnodes from Your Job . 127

6.15 Running Your Job in a Container . 130

6.16 Running Your Job in the Cloud . 131

6.17 Allowing Your Job to Tolerate Vnode Failures . 132

7 Reserving Resources 133
7.1 Glossary . 133

7.2 Quick Explanation of Reservations for Jobs . 134

7.3 Prerequisites for Reserving Resources. 134

7.4 Advance and Standing Reservations . 134

7.5 Job-specific Reservations . 138

7.6 Getting Confirmation of a Reservation . 140

7.7 Modifying Reservations . 140

7.8 Deleting Reservations . 140

7.9 Viewing the Status of a Reservation . 141

7.10 Submitting a Job to a Reservation . 144

7.11 Reservation Caveats and Errors . 145

8 Job Arrays 147
8.1 Advantages of Job Arrays . 147

8.2 Glossary . 147

8.3 Description of Job Arrays . 147

8.4 Submitting a Job Array . 150

8.5 Viewing Status of a Job Array . 154

8.6 Using PBS Commands with Job Arrays . 158

8.7 Job Array Caveats. 160

9 Working with PBS Jobs 161
9.1 Using Job History . 161

9.2 Modifying Job Attributes . 162

9.3 Deleting Jobs. 164

9.4 Sending Messages to Jobs . 165

9.5 Sending Signals to Jobs . 166

9.6 Changing Order of Jobs . 166

9.7 Moving Jobs Between Queues . 167
UG-vi PBS Professional 2020.1 User’s Guide

Contents
10 Checking Job & System Status 169
10.1 Checking Job Status . 169

10.2 Checking Server Status. 181

10.3 Checking Queue Status . 182

10.4 Full Display Options for Job, Queue, and Server Status. 184

10.5 Selecting a List of Jobs . 185

10.6 Checking License Availability . 187

11 Submitting Cray Jobs 189
11.1 PBS Jobs on Cray Shasta. 189

11.2 PBS Jobs on the Cray XC. 189

11.3 Resources for Cray XC . 189

11.4 Rules for Submitting Jobs on the Cray XC . 190

11.5 Techniques for Submitting Cray XC Jobs . 191

11.6 Using Xeon Phi Vnodes on Cray XC. 193

11.7 Using Hyperthreads on Cray XC. 193

11.8 Viewing Cray XC Job Information . 194

11.9 Caveats and Advice for Cray XC. 195

11.10 Errors and Logging on Cray XC . 197

12 Using Provisioning 199
12.1 Definitions . 199

12.2 How Provisioning Works . 199

12.3 Requirements and Restrictions . 200

12.4 Using Provisioning. 202

12.5 Caveats and Errors . 203

13 Using Accounting 205
13.1 Using Accounting . 205

Index 207
PBS Professional 2020.1 User’s Guide UG-vii

Contents
UG-viii PBS Professional 2020.1 User’s Guide

1

Getting Started with PBS

1.1 Why Use PBS?

PBS frees you from the mechanics of getting your work done; you don’t need to shepherd each job to the right machine,
get input and output copied back and forth, or wait until a particular machine is available. You need only specify require-
ments for the tasks you want executed, and hand the tasks off to PBS. PBS holds each task until a slot opens up, then
takes care of copying input files to the execution directory, executing the task, and returning the output to you.

PBS keeps track of which hardware is available, and all waiting and running tasks. PBS matches the requirements of
each of your tasks to the right hardware and time slot, and makes sure that tasks are run according to the site’s policy.
PBS also maximizes usage and throughput.

1.2 PBS Tasks and Components

1.2.1 PBS Tasks

PBS is a distributed workload management system. PBS manages and monitors the computational workload for one or
more computers. PBS does the following:

Queuing jobs

PBS collects jobs (work or tasks) to be run on one or more computers. Users submit jobs to PBS, where they are
queued up until PBS is ready to run them.

Scheduling jobs

PBS selects which jobs to run, and when and where to run them, according to the resources requested by the job,
and the policy specified by the site administrator. PBS allows the administrator to prioritize jobs and allocate
resources in a wide variety of ways, to maximize efficiency and/or throughput.

Monitoring jobs

PBS tracks system resources, enforces usage policy, and reports usage. PBS tracks job completion, ensuring
that jobs run despite system outages.
PBS Professional 2020.1.1 User’s Guide UG-1

Chapter 1 Getting Started with PBS
1.2.2 PBS Components

PBS consists of a set of commands and system daemons/services, shown here:

Figure 1-1: Jobs are submitted to the PBS server. The scheduler chooses where and when to run the

jobs, and the server sends the jobs to MoM. PBS commands communicate with the server.

The server, scheduler, and communication daemons run on the server host. A machine that executes jobs is called an
execution host. Each execution host runs a MoM daemon. The server host can run a MoM daemon. One server man-
ages any number of MoM daemons. Commands can be run from the server host, execution hosts, and command-only cli-
ent hosts. The server/scheduler/communication host, the execution hosts, and the client hosts are called a PBS complex.

Commands

PBS provides a set of commands that you can use to submit, monitor, alter, and delete jobs. The PBS com-
mands can be installed on any supported platform, with or without the other PBS components.

Some PBS commands can be run by any PBS user, while some require administrator or operator privilege.
Some commands provide extended features for administrators and operators.

Job

A PBS job is a task, in the form of a shell script, cmd batch file, Python script, etc. describing the commands
and/or applications you want to run. You hand your task off to PBS, where it becomes a PBS job.

Server

The PBS server manages jobs for the PBS complex. PBS commands talk to the PBS server, jobs are submitted
to the server, and the server queues the jobs and sends them to execution hosts.

Scheduler

The scheduler runs jobs according to the policy specified by the site administrator. The scheduler matches each
job’s requirements with available resources, and prioritizes jobs and allocates resources according to policy.

MoM

MoM manages jobs once they are sent to the execution host. One MoM manages the jobs on each execution
host. MoM stages files in, runs any prologue, starts each job, monitors the job, stages files out and returns out-
put to the job submitter, runs any epilogue, and cleans up after the job. MoM can also run any execution host
hooks.

MoM creates a new session that is as identical to your login session as is possible. For example, under Linux, if
the job submitter’s login shell is csh, then MoM creates a session in which .login is run as well as .cshrc.

MoM is a reverse-engineered acronym that stands for Machine-oriented Mini-server.

Batch
 JobsJobs

Kernel

PBS
Commands

Server

Scheduler

MoM
UG-2 PBS Professional 2020.1.1 User’s Guide

Getting Started with PBS Chapter 1
1.3 Interfaces to PBS

PBS provides a command-line interface, and Altair offers a web-based front end to PBS called Access, which is a sepa-
rate product. This document describes the PBS command-line interface. For information on Access, see
www.pbsworks.com.

1.3.1 PBS Commands

PBS provides a set of commands that allow you to submit, monitor, and manage your jobs. Some PBS commands can be
used by any PBS user; some can be used only by administrators, and some have different behavior depending on the role
of the person invoking them. In this document, we describe the commands that can be used by any PBS user. For a com-
plete description of all commands and their requirements, see “Requirements for Commands” on page 21 of the PBS Pro-
fessional Reference Guide.

Table 1-1: PBS Professional User Commands

PBS User Commands

Command Purpose

pbs_login Cache your password

pbs_rdel Delete a reservation

pbs_rstat Status a reservation

pbs_python Python interpreter

pbs_rsub Submit a reservation

pbsdsh PBS distributed shell

qalter Alter job

qdel Delete job

qhold Hold a job

qmove Move job

qmsg Send message to job

qorder Reorder jobs

qrls Release hold on job

qselect Select jobs by criteria

qsig Send signal to job

qstat Status job, queue, server

qsub Submit a job

tracejob Report job history
PBS Professional 2020.1.1 User’s Guide UG-3

Chapter 1 Getting Started with PBS
We also list the PBS administrator commands here:

Table 1-2: PBS Administrator Commands

 PBS Administrator Commands

Command Purpose

pbs-report Report job statistics

pbs_hostn Report host name(s)

pbs_probe PBS diagnostic tool

pbs_tclsh TCL with PBS API

pbsfs Show fairshare usage

pbsnodes Manage vnodes

printjob Report job details

qdisable Disable a queue

qenable Enable a queue

qmgr Manager interface

qrerun Requeue running job

qrun Manually start a job

qstart Start a queue

qstop Stop a queue

qterm Shutdown PBS
UG-4 PBS Professional 2020.1.1 User’s Guide

Getting Started with PBS Chapter 1
1.4 Setting Up Your Environment

1.4.1 Prerequisites for Account

Your account must have the following characteristics for PBS to work correctly:

• Account must have access to all PBS hosts

• Account must have valid username and group on all execution hosts and on the server

• Account must be able to transfer files between hosts using the file transfer mechanism chosen by the administrator.
This is described in section 14.6, "Setting File Transfer Mechanism", on page 549 of the PBS Professional Adminis-
trator’s Guide.

• The time zone environment variable must be set correctly in order to use advance and standing reservations. See
section 1.4.4, “Setting Time Zone for Submission Host”, on page 9.

• Username must be 256 characters or less in length.

• Your environment must be correctly configured:

• For Linux, see section 1.4.2, “Setting Up Your Linux Environment”, on page 5.

• For Windows, see section 1.4.3, “Setting Up Your Windows Environment”, on page 7.

• Account must have correct user authorization to run jobs.

• For Linux, see section 1.4.2.7, “User Authorization Under Linux”, on page 7.

• For Windows, see section 1.4.3.4, “User Authorization under Windows”, on page 8

1.4.2 Setting Up Your Linux Environment

1.4.2.1 Set Paths to PBS Commands

PBS commands reside in a directory pointed to by $PBS_EXEC/bin. This path may change from one installation of PBS
to the next, so use the variable instead of the absolute path. The location of $PBS_EXEC is given in /etc/pbs.conf.
Make it easy to use PBS commands by doing the following:

1. In your .login file, source /etc/pbs.conf:

If you are using bash or sh, do the following:

% . /etc/pbs.conf

If you are using csh, do the following:

%source /etc/pbs.conf

2. Add the path to PBS commands to your PATH environment variable. Use $PBS_EXEC, not the absolute path. For
example, where MY_PATH is your existing set of paths:

setenv PATH ${MY_PATH}:$PBS_EXEC/bin/

1.4.2.2 Set Paths to PBS Man Pages

Add the path to the PBS man pages to your MANPATH environment variable:

setenv MANPATH /usr/man:/usr/local/man:$PBS_EXEC/share/man/
PBS Professional 2020.1.1 User’s Guide UG-5

Chapter 1 Getting Started with PBS
1.4.2.3 Make Login and Logout Files Behave Properly for Jobs

By default, PBS runs your jobs under your login, meaning that your login and logout files are sourced for each job. If
your .cshrc, .login, .profile, or .logout contains commands that attempt to set terminal characteristics or pro-
duce output, such as by writing to stdout, jobs may not run. Make sure that any such command in these files is skipped
when the file is run inside a PBS job. PBS sets the PBS_ENVIRONMENT environment variable inside jobs. Test for
the PBS_ENVIRONMENT environment variable and run commands only when it is not set. For example, in a .login
file:

if (! $?PBS_ENVIRONMENT) then

do terminal settings here

run command with output here

endif

1.4.2.4 Capture Correct Job Exit Status

When a PBS job runs, the exit status of the last command executed in the job is reported by the job’s shell to PBS as the
exit status of the job. The exit status of the job is important for job dependencies and job chaining. Under Linux, the last
command executed might not be the last command in your job, if you have a .logout on the execution host. In that
case, the last command executed is from the .logout and not from your job. To prevent this, preserve the job’s exit sta-
tus in your .logout file by saving it at the top, then doing an explicit exit at the end, as shown below:

set EXITVAL = $status

previous contents of .logout here

exit $EXITVAL

Under Windows, you do not need to take special steps to preserve the job’s exit status.

1.4.2.5 Avoid Background Processes Inside Jobs

Make sure that your login file doesn’t run processes in the background when invoked inside a PBS job. If your login file
contains a command that runs in the background inside a PBS job, persistent processes can cause trouble.

1.4.2.6 Provide bash Functions to Jobs

If your jobs need to have exported bash functions available to them, you can put these functions in your .profile or
.login on the execution host(s). You can also use qsub -V or qsub -v <function name> to forward the func-
tion at job submission. Just make sure that you don’t have a function with the same name as an environment variable if
you use -v or -V. See section 6.12.4, “Forwarding Exported Shell Functions”, on page 127.
UG-6 PBS Professional 2020.1.1 User’s Guide

Getting Started with PBS Chapter 1
1.4.2.7 User Authorization Under Linux

The server’s flatuid attribute determines whether it assumes that identical user names mean identical users. If True, it
assumes that if UserS exists on both the submission host and the server host, then UserS can run jobs on that server. If
not True, the server calls ruserok() which uses /etc/hosts.equiv or .rhosts to authorize UserS to run as
UserS. In this case, the username you specify with the -u option must have a .rhosts file on the server host listing the
job owner, meaning that UserS at the server must have a .rhosts file listing UserS.

Example 1-1: Our user is UserA on the submission host, but is userB at the server. In order to submit jobs as UserA and
run jobs as UserB, UserB must have a .rhosts file on the server host that lists UserA.

Note that if different names are listed via the -u option, then they are checked regardless of the value of flatuid.

Using hosts.equiv is not recommended.

1.4.2.8 Submitting Linux Jobs from Linux Clients

If the authentication method at a Linux client host has been set to pwd, set it to munge before you submit a Linux job.
For example:

export PBS_AUTH_METHOD=munge; qsub -lselect=1:arch=linux -- sleep 100

1.4.3 Setting Up Your Windows Environment

1.4.3.1 HOMEDIR for Windows Users

PBS starts jobs in the job owner’s home directory, which is pointed to by HOMEDIR.

If you have not been explicitly assigned a home directory, PBS uses a Windows-assigned default as the base location for
your default home directory, and starts jobs there. Windows assigns the following default home path:

[PROFILE_PATH]\My Documents\PBS Pro

For example, if userA has not been assigned a home directory, the default home directory is the following:

\Documents and Settings\userA\My Documents\PBS Pro

Windows can return one PROFILE_PATH in one of the following forms:

\Documents and Settings\username

\Documents and Settings\username.local-hostname

\Documents and Settings\username.local-hostname.00N

where N is a number

\Documents and Settings\username.domain-name

Table 1-3: Linux User ID and flatuid

Value of
flatuid

Submission Host Username vs. Server Host Username

UserS Same as UserS UserS Different from UserA

True Server assumes user has permission to run job Server checks whether UserS can run job as UserA

False/

unset

Server checks whether UserS can run job as UserS Server checks whether UserS can run job as UserA
PBS Professional 2020.1.1 User’s Guide UG-7

Chapter 1 Getting Started with PBS
1.4.3.2 Requirements for Windows Username

• The username must contain only alphanumeric characters, dot (.), underscore (_), and/or hyphen “-”.

• The hyphen must not be the first letter of the username.

• If “@” appears in the username, then it is assumed to be in the context of a Windows domain account: user-
name@domainname.

• The space character is allowed. If a space character appears in a username string, then the string is displayed in
quotes, and must be specified in quotes.

1.4.3.3 Requirements for Windows User Account

Your Windows user account must be a normal user account. You cannot submit jobs from a SYSTEM account.

1.4.3.4 User Authorization under Windows

PBS runs your jobs under your account. When your job runs on a remote execution host, it needs to be able to log in and
transfer files using your account. If your system administrator has not set up access using hosts.equiv, you can set
up access using .rhosts files. A .rhosts file on the server allows you to submit jobs from a remote machine to the
server.

Set up the .rhosts file in your PROFILE_PATH, in your home directory, on the PBS server host and on each execution
host. For example:

\Documents and Settings\username\.rhosts

Format of .rhosts file:

hostname username

Be sure the .rhosts file is owned by you or an administrator-type group, and has write access granted only to you or an
administrator or group.

Add all PBS hosts to your .rhosts file:

Host1 user1

Host2 user1

Host3 user1

Make sure that you list all the names by which a host may be known. For instance, if Host4 is known as "Host4",
"Host4.<subdomain>", or "Host4.<subdomain>.<domain>" you should list all three in the .rhosts file:

Host4 user1

Host4.subdomain user1

Host4.subdomain.domain user1

If your username contains white space, quote it in the .rhosts file:

Host4.subdomain.domain “Bob Jones”

Example 1-2: The following entry in user user1’s .rhosts file on the server permits user user1 to run jobs submitted
from the workstation wks031:

wks031 user1

To allow user1’s output files from a job that runs on execution host Host1 to be returned to user1 automatically by
PBS, user1 adds an entry to the .rhosts file on the workstation naming the execution host Host1:

Host1 user1
UG-8 PBS Professional 2020.1.1 User’s Guide

Getting Started with PBS Chapter 1
1.4.3.5 Set up Paths

If you will use a mapped drive for submitting jobs, staging files in and out, or for output and error files, you must map
that drive with a local system account. We recommend using UNC paths. If you do not use a local system account, file
transfer behavior is undefined. To map a drive with global access using a local system account, use the psExec utility
from SysInternals:

<path to psexec binary> -s net use <mapped drive letter>: <UNC path to map>

For example:

psexec -s net use Z: \\examplehost\mapping_directory\mydirectory

To unmap a mapped drive:

<path to psexec binary> -s net use /delete <mapped drive letter>

For example:

psexec -s net use /delete Z:

PBS requires that your username be consistent across a server and its execution hosts, but not across a submission host
and a server. You may have access to more than one server, and may have a different username on each server. You can
change the user ID for a job; see section 2.5.4, “Specifying Job Username”, on page 28.

1.4.3.6 Password for Job Submission Authentication

Run the pbs_login command whenever your password changes. The new password is used for any job that is not
already running.

1.4.3.6.i Setting Password at Windows Clients

Run the pbs_login command once for each Windows submission host, so that you can submit jobs and run PBS client
commands.

echo <password>| pbs_login -p

Test whether you can run client commands:

qstat -Bf

The new password is used for any job that is not already running.

1.4.3.6.ii Setting Password at Linux Clients

Run the pbs_login command at any Linux client host where you want to submit a Windows job. Set
PBS_AUTH_METHOD to pwd:

export PBS_AUTH_METHOD=pwd; pbs_login

1.4.3.7 Authentication for Client Commands

You can run all client commands except qsub using either pwd or munge as the authentication method, so you don’t
need to make any changes for commands such as qstat, etc.

1.4.4 Setting Time Zone for Submission Host

Make sure that the environment variable PBS_TZID is set correctly at your submission host. Set this environment vari-
able to a timezone location known to PBS Professional. You can get the appropriate zone location from the PBS server
host.

On Linux, use the tzselect command if it is available, or get the zone location from /usr/share/zoneinfo/
zone.tab.
PBS Professional 2020.1.1 User’s Guide UG-9

Chapter 1 Getting Started with PBS
On all other platforms, use the list of libical supported zoneinfo locations available under $PBS_EXEC/lib/
ical/zoneinfo/zones.tab.

The format for PBS_TZID is a timezone location, rather than a timezone POSIX abbreviation. Examples of values for
PBS_TZID are:

America/Los_Angeles

America/Detroit

Europe/Berlin

Asia/Calcutta
UG-10 PBS Professional 2020.1.1 User’s Guide

2

Submitting a PBS Job

2.1 Introduction to the PBS Job

To use PBS, you create a batch job, usually just called a job, which you then hand off, or submit, to PBS. A batch job is a
set of commands and/or applications you want to run on one or more execution machines, contained in a file or typed at
the command line. You can include instructions which specify the characteristics such as job name, and resource require-
ments such as memory, CPU time, etc., that your job needs. The job file can be a shell script under Linux, a cmd batch
file under Windows, a Python script, a Perl script, etc.

For example, here is a simple PBS batch job file which requests one hour of time, 400MB of memory, 4 CPUs, and runs
my_application:

#!/bin/sh

#PBS -l walltime=1:00:00

#PBS -l mem=400mb,ncpus=4

./my_application

To submit the job to PBS, you use the qsub command, and give the job script as an argument to qsub. For example, to
submit the script named “my_script”:

qsub my_script

We will go into the details of job script creation in section 2.2, “The PBS Job Script”, on page 14, and job submission in
section 2.3, “Submitting a PBS Job”, on page 18.
PBS Professional 2020.1.1 User’s Guide UG-11

Chapter 2 Submitting a PBS Job
2.1.1 Lifecycle of a PBS Job, Briefly

Your PBS job has the following lifecycle:

1. You write a job script

2. You submit the job to PBS

3. PBS accepts the job and returns a job ID to you

4. The PBS scheduler finds the right place and time to run your job, and sends your job to the selected execution host(s)

5. Application licenses are checked out

6. On each execution host, PBS creates a job-specific staging and execution directory

7. PBS sets PBS_JOBDIR and the job’s jobdir attribute to the path of the job’s staging and execution directory.

8. On each execution host allocated to the job, PBS creates a job-specific temporary directory.

9. PBS sets the TMPDIR environment variable to the pathname of the temporary directory.

10. If any errors occur during directory creation or the setting of variables, the job is requeued.

11. Input files or directories are copied to the primary execution host

12. If needed, cpusets are created

• If it exists, the prologue runs on the primary execution host, with its current working directory set to PBS_HOME/
mom_priv, and with PBS_JOBDIR and TMPDIR set in its environment.

13. The job runs under your login

14. If it exists, the epilogue runs on the primary execution host, with its current working directory set to the path of the
job’s staging and execution directory, and with PBS_JOBDIR and TMPDIR set in its environment.

15. Output files or directories are copied to specified locations

16. Temporary files and directories are cleaned up

17. Application licenses are returned to pool

18. Any cpusets are deleted

For more detail about the lifecycle of a job, see section 3.2.7, “Summary of the Job Lifecycle”, on page 37 and section
3.2.8, “Detailed Description of Job Lifecycle”, on page 37.

2.1.2 Where and How Your PBS Job Runs

Your PBS jobs run on hosts that the administrator has designated to PBS as execution hosts. The PBS scheduler chooses
one or more execution hosts that have the resources that your job requires.

PBS runs your jobs under your user account. This means that your login and logout files are executed for each job, and
some of your environment goes with the job. It’s important to make sure that your login and logout files don’t interfere
with your jobs; see section 1.4.2, “Setting Up Your Linux Environment”, on page 5.

2.1.3 The Job Identifier

After you submit a job, PBS returns a job identifier. Format for a job:

<sequence number>.<server name>
UG-12 PBS Professional 2020.1.1 User’s Guide

Submitting a PBS Job Chapter 2
Format for a job array:

<sequence number>[].<server name>.<domain>

You’ll need the job identifier for any actions involving the job, such as checking job status, modifying the job, tracking
the job, or deleting the job.

The largest possible job ID is the 7-digit number 9,999,999. After this has been reached, job IDs start again at zero.

2.1.4 Shell Script(s) for Your Job

When PBS runs your job, PBS starts the top shell that you specify for the job. The top shell defaults to your login shell
on the execution host, but you can set another using the job’s Shell_Path_List attribute. See section 2.3.3.1, “Specify-
ing the Top Shell for Your Job”, on page 19.

Under Linux, if you do not specify a shell inside the job script, PBS defaults to using /bin/sh. If you specify a differ-
ent shell inside the job script, the top shell spawns that shell to run the script; see section 2.3.3.2, “Specifying Job Script
Shell or Interpreter”, on page 20.

Under Windows, the job shell is the same as the top shell.

2.1.5 Scratch Space for Jobs

When PBS runs your job, it creates a temporary scratch directory for the job on each execution host. If your administra-
tor has not specified a temporary directory, the root of the temporary directory is /var/tmp. Your administrator can
specify a root for the temporary directory on each execution host using the $tmpdir MoM parameter. PBS sets the TMP-

DIR environment variable to the full path to the temporary scratch directory.

Under Windows, PBS creates the temporary directory and sets TMP to the value of the Windows %TMPDIR% environ-
ment variable. If your administrator has not specified a temporary directory, PBS creates the temporary directory under
either \winnt\temp or \windows\temp.

PBS removes the directory when the job is finished. The location of the temporary directory is set by PBS; you should
not set TMPDIR.

Your job script can access the scratch space. For example:

Linux:

cd $TMPDIR

Windows:

cd %TMPDIR%

For scratch space for MPI jobs, see section 5.2.3, “Caveats for Using MPIs”, on page 84.

2.1.6 Types of Jobs

PBS allows you to submit standard batch jobs or interactive jobs. The difference is that while the interactive job runs,
you have an interactive session running, giving you interactive access to job processes. There is no interactive access to
a standard batch job. We cover interactive jobs in section 6.11, “Running Your Job Interactively”, on page 121.

2.1.7 Job Input and Output Files

You can tell PBS to copy files or directories from any accessible location to the execution host, and to copy output files
and directories from the execution host wherever you want. We describe how to do this in Chapter 3, "Job Input & Out-
put Files", on page 31.
PBS Professional 2020.1.1 User’s Guide UG-13

Chapter 2 Submitting a PBS Job
2.2 The PBS Job Script

2.2.1 Overview of a Job Script

A PBS job script consists of:

• An optional shell specification

• PBS directives

• Job tasks (programs or commands)

2.2.2 Types of Job Scripts

PBS allows you to use any of the following for job scripts:

• A Python, Perl, or other script that can run under Windows or Linux

• A shell script that runs under Linux

• Windows command or PowerShell batch script under Windows

2.2.2.1 Linux Shell Scripts

Since the job file can be a shell script, the first line of a shell script job file specifies which shell to use to execute the
script. Your login shell is the default, but you can change this. This first line can be omitted if it is acceptable for the job
file to be interpreted using the login shell. We recommend that you always specify the shell.

2.2.2.2 Python Job Scripts

PBS allows you to submit jobs using Python scripts under Windows or Linux. PBS includes a Python package, allowing
Python job scripts to run; you do not need to install Python. To run a Python job script:

Linux:

qsub <script name>

Windows:

qsub -S %PBS_EXEC%\bin\pbs_python.exe <script name>

If the path contains any spaces, it must be quoted, for example:

qsub -S "%PBS_EXEC%\bin\pbs_python.exe" <python job script>

You can include PBS directives in a Python job script as you would in a Linux shell script. For example:

% cat myjob.py

#!/usr/bin/python

#PBS -l select=1:ncpus=3:mem=1gb

#PBS -N HelloJob

print “Hello”

Python job scripts can access Win32 APIs, including the following modules:

• Win32api

• Win32con

• Pywintypes
UG-14 PBS Professional 2020.1.1 User’s Guide

Submitting a PBS Job Chapter 2
2.2.2.2.i Debugging Python Job Scripts

You can run Python interactively, outside of PBS, to debug a Python job script. You use the Python interpreter to test
parts of your script.

Under Linux, use the -i option to the pbs_python command, for example:

/opt/pbs/bin/pbs_python -i <return>

Under Windows, the -i option is not necessary, but can be used. For example, either of the following will work:

C:\Program Files\PBS\exec\bin\pbs_python.exe <return>

C:\Program Files\PBS\exec\bin\pbs_python.exe -i <return>

When the Python interpreter runs, it presents you with its own prompt. For example:

% /opt/pbs/bin/pbs_python -i <return>

>> print "hello"

hello

2.2.2.2.ii Python Windows Caveat

If you have Python natively installed, and you need to use the win32api, make sure that you import pywintypes
before win32api, otherwise you will get an error. Do the following:

cmd> pbs_python

>> import pywintypes

>> import win32api

2.2.2.3 Windows Job Scripts

The Windows script can be a .exe or .bat file, or a Python or Perl script.

2.2.2.3.i Requirements for Windows Command Scripts

• Under Windows, comments in the job script must be in ASCII characters.

• Any .bat files that are to be executed within a PBS job script have to be prefixed with "call" as in:
@echo off

call E:\step1.bat

call E:\step2.bat

Without the "call", only the first .bat file gets executed and it doesn't return control to the calling interpreter.

For example, an old job script that contains:

@echo off

E:\step1.bat

E:\step2.bat

should now be:

@echo off

call E:\step1.bat

call E:\step2.bat

2.2.2.3.ii Windows Advice and Caveats

• In Windows, if you use notepad to create a job script, the last line is not automatically newline-terminated. Be sure
to add one explicitly, otherwise, PBS job will get the following error message:
More?
PBS Professional 2020.1.1 User’s Guide UG-15

Chapter 2 Submitting a PBS Job
when the Windows command interpreter tries to execute that last line.

• Drive mapping commands are typically put in the job script.

• Do not use xcopy inside a job script. Use copy, robocopy, or pbs_rcp instead. The xcopy command some-
times expects input from the user. Because of this, it must be assigned an input handle. Since PBS does not create the
job process with an input handle assigned, xcopy can fail or behave abnormally if used inside a PBS job script.

• PBS jobs submitted from cygwin execute under the native cmd environment, and not under cygwin.

2.2.3 Setting Job Characteristics

2.2.3.1 Job Attributes

PBS represents the characteristics of a job as attributes. For example, the name of a job is an attribute of that job, stored
in the value of the job’s Job_Name attribute. Some job attributes can be set by you, some can be set only by adminis-
trators, and some are set only by PBS. For a complete list of PBS job attributes, see “Job Attributes” on page 328 of the
PBS Professional Reference Guide. Job attributes are case-insensitive.

2.2.3.2 Job Resources

PBS represents the things that a job might use as resources. For example, the number of CPUs and the amount of mem-
ory on an execution host are resources. PBS comes with a set of built-in resources, and your PBS administrator can
define resources. You can see a list of all built-in PBS resources in Chapter 5, "List of Built-in Resources", on page 259.
Resources are case-insensitive.

2.2.3.3 Setting Job Attributes

You can set job attributes and request resources using the following equivalent methods:

• Using specific options to the qsub command at the command line; for example, -e <path> to set the error path.

• Using PBS directives in the job script; for example, #PBS Error_Path=<path> to set the error path.

These methods have the same functionality. If you give conflicting options to qsub, the last option specified overrides
any others. Options to the qsub command override PBS directives, which override defaults. Some job attributes and
resources have default values; your administrator can set default values for some attributes and resources.

After the job is submitted, you can use the qalter command to change the job’s characteristics.

2.2.3.4 Using PBS Directives

A directive has the directive prefix as the first non-whitespace characters. The default for the prefix is #PBS.

Put all your PBS directives at the top of the script file, above any commands. Any directive after an executable line in the
script is ignored. For example, if your script contains “@echo”, put that line below all PBS directives.

2.2.3.4.i Changing the Directive Prefix

By default, the text string “#PBS” is used by PBS to determine which lines in the job file are PBS directives. The leading
“#” symbol was chosen because it is a comment delimiter to all shell scripting languages in common use on Linux sys-
tems. Because directives look like comments, the scripting language ignores them.
UG-16 PBS Professional 2020.1.1 User’s Guide

Submitting a PBS Job Chapter 2
Under Windows, however, the command interpreter does not recognize the ‘#’ symbol as a comment, and will generate a
benign, non-fatal warning when it encounters each “#PBS” string. While it does not cause a problem for the batch job, it
can be annoying or disconcerting to you. If you use Windows, you may wish to specify a different PBS directive, via
either the PBS_DPREFIX environment variable, or the “-C” option to qsub. The qsub option overrides the environ-
ment variable. For example, we can direct PBS to use the string “REM PBS” instead of “#PBS” and use this directive
string in our job script:

REM PBS -l walltime=1:00:00

REM PBS -l select=mem=400mb

REM PBS -j oe

date /t

.\my_application

date /t

Given the above job script, we can submit it to PBS in one of two ways:

set PBS_DPREFIX=REM PBS

qsub my_job_script

or

qsub -C "REM PBS" my_job_script

2.2.3.4.ii Caveats and Restrictions for PBS Directives

• You cannot use PBS_DPREFIX as the directive prefix.

• The limit on the length of a directive string is 4096 characters.

2.2.4 Job Tasks

These can be programs or commands. This is where you can specify an application to be run.

2.2.5 Job Script Names

We recommended that you avoid using special characters in job script names. If you must use them, on Linux you must
escape them using the backslash (“\”) character.

2.2.5.1 How PBS Parses a Job Script

PBS parses a job script in two parts. First, the qsub command scans the script looking for directives, and stops at the
first executable line it finds. This means that if you want qsub to use a directive, it must be above any executable lines.
Any directive below the first executable line is ignored. The first executable line is the first line that is not a directive,
whose first non-whitespace character is not “#”, and is not blank. For information on directives, see section 2.2.3.4,
“Using PBS Directives”, on page 16.

Second, lines in the script are processed by the job shell. PBS pipes the name of the job script file as input to the top
shell, and the top shell executes the job shell, which runs the script. You can specify which shell is the top shell; see sec-
tion 2.3.3.1, “Specifying the Top Shell for Your Job”, on page 19, and, under Linux, which shell you want to run the
script in the first executable line of the script; see section 2.3.3.2, “Specifying Job Script Shell or Interpreter”, on page
20.

2.2.5.1.i Comparison Between Equivalent Linux and Windows Job Scripts

The following Linux and Windows job scripts produce the same results.
PBS Professional 2020.1.1 User’s Guide UG-17

Chapter 2 Submitting a PBS Job
Linux:

#!/bin/sh

#PBS -l walltime=1:00:00

#PBS -l select=mem=400mb

#PBS -j oe

date

./my_application

date

Windows:

REM PBS -l walltime=1:00:00

REM PBS -l select=mem=400mb

REM PBS -j oe

date /t

my_application

date /t

The first line in the Windows script does not contain a path to a shell because you cannot specify the path to the shell or
interpreter inside a Windows job script. See section 2.3.3.2, “Specifying Job Script Shell or Interpreter”, on page 20.

The remaining lines of both files are almost identical. The primary differences are in file and directory path specifica-
tions, such as the use of drive letters, and slash vs. backslash as the path separator.

The lines beginning with “#PBS” and “REM PBS” are PBS directives. PBS reads down the job script until it finds the
first line that is not a valid PBS directive, then stops. From there on, the lines in the script are read by the job shell or
interpreter. In this case, PBS sees lines 6-8 as commands to be run by the job shell.

In our examples above, the “-l <resource>=<value>” lines request specific resources. Here, we request 1 hour of
wall-clock time as a job-wide request, and 400 megabytes (MB) of memory in a chunk. We will cover requesting
resources in Chapter 4, "Allocating Resources & Placing Jobs", on page 49.

The “-j oe” line requests that PBS join the stdout and stderr output streams of the job into a single stream. We
will cover merging output in "Merging Output and Error Files” on page 43.

The last three lines are the command lines for executing the programs we wish to run. You can specify as many programs,
tasks, or job steps as you need.

2.3 Submitting a PBS Job

2.3.1 Prerequisites for Submitting Jobs

Before you submit any jobs, set your environment appropriately. Follow the instructions in section 1.4, “Setting Up Your
Environment”, on page 5.
UG-18 PBS Professional 2020.1.1 User’s Guide

Submitting a PBS Job Chapter 2
2.3.2 Ways to Submit a PBS Job

You can use the qsub command to submit a normal or interactive job to PBS:

• You can call qsub with a job script; see section 2.3.3, “Submitting a Job Using a Script”, on page 19

• You can call qsub with an executable and its arguments; see section 2.3.4, “Submitting Jobs by Specifying Execut-
able on Command Line”, on page 22

• You can call qsub and give keyboard input; see section 2.3.5, “Submitting Jobs Using Keyboard Input”, on page 22

You can use an Altair front-end product to submit and monitor jobs; go to www.pbsworks.com.

2.3.3 Submitting a Job Using a Script

You submit a job to PBS using the qsub command. For details on qsub, see “qsub” on page 213 of the PBS Profes-
sional Reference Guide. To submit a PBS job, type the following:

• Linux shell script:
qsub <name of shell script>

• Linux Python or Perl script:
qsub <name of Python or Perl job script>

• Windows command script:
qsub <name of job script>

• Windows Python script:
qsub -S %PBS_EXEC%\bin\pbs_python.exe <name of python job script>

If the path contains any spaces, it must be quoted, for example:

qsub -S "%PBS_EXEC%\bin\pbs_python.exe" <name of python job script>

2.3.3.1 Specifying the Top Shell for Your Job

You can can specify the path and name of the shell to use as the top shell for your job. The rules for specifying the top
shell are different for Linux and Windows; do not skip the following subsections numbered 2.3.3.1.i and 2.3.3.1.ii.

The Shell_Path_List job attribute specifies the top shell; the default is your login shell on the execution host. You can
set this attribute using the the following:

• The “-S <path list>” option to qsub

• The #PBS Shell_Path_List=<path list> PBS directive

The option argument path list has this form:

<path>[@<hostname>][,<path>[@<hostname>],...]

You must supply a path list if you attempt to set Shell_Path_List, otherwise, you will get an error. You can specify only
one path for any host you name. You can specify only one path that doesn’t have a corresponding host name.

PBS chooses the path whose host name matches the name of the execution host. If no matching host is found, then PBS
chooses the path specified without a host, if one exists.

2.3.3.1.i Specifying Job Top Shell Under Linux

On Linux, the job’s top shell is the one MoM starts when she starts your job, and the job shell is the shell or interpreter
that runs your job script commands.
PBS Professional 2020.1.1 User’s Guide UG-19

Chapter 2 Submitting a PBS Job
Under Linux, you can use any shell such as csh or sh, by specifying qsub -S <path>. You cannot use Perl or
Python as your top shell.

Example 2-1: Using bash:

qsub -S /bin/bash <script name>

2.3.3.1.ii Specifying Job Top Shell Under Windows

On Windows, the job shell is the same as the top shell.

Under Windows, you can specify a shell or an interpreter such as Perl or Python, and if your job script is Perl or Python,
you must specify the language using an option to qsub; you cannot specify it in the job script.

Example 2-2: Running a Python script on Windows:

qsub -S "C:\Program Files\PBS\exec\bin\pbs_python.exe" <script name>

2.3.3.1.iii Caveats for Specifying Job Top Shell

If you specify a relative path for the top shell, the full path must be available in your PATH environment variable on the
execution host(s). We recommend specifying the full path.

2.3.3.2 Specifying Job Script Shell or Interpreter

2.3.3.2.i Specifying Job Script Shell or Interpreter Under Linux

If you don’t specify a shell for the job script, it defaults to /bin/sh. You can use any shell, and you can use an inter-
preter such as Perl or Python.

You specify the shell or interpreter in the first line of your job script. The top shell spawns the specified process, and this
process runs the job script. For example, to use /bin/sh to run the script, use the following as the first line in your job
script:

#!/bin/sh

To use Perl or Python to run your script, use the path to Perl or Python as the first line in your script:

#!/usr/bin/perl

or

#!/usr/bin/python

2.3.3.2.ii Specifying Job Script Shell or Interpreter Under Windows

Under Windows, the job shell or interpreter is the same as the top shell or interpreter. You can specify the top/job shell or
interpreter, but not a separate job shell or interpreter. To use a non-default shell or interpreter, you must specify it using
an option to qsub:

qsub -S <path to shell or interpreter> <script name>

2.3.3.3 Examples of Submitting Jobs Using Scripts

Example 2-3: Our job script is named “myjob”. We can submit it by typing:

qsub myjob
UG-20 PBS Professional 2020.1.1 User’s Guide

Submitting a PBS Job Chapter 2
and then PBS returns the job ID:

16387.exampleserver.exampledomain

Example 2-4: The following is the contents of the script named “myjob”. In it, we name the job “testjob”, and run a pro-
gram called “myprogram”:

#!/bin/sh

#PBS -N testjob

./myprogram

Example 2-5: The simplest way to submit a job is to give the script name as the argument to qsub, and hit return:

qsub <job script> <return>

If the script contains the following:

#!/bin/sh

./myapplication

you have simply told PBS to run myapplication.

2.3.3.4 Passing Arguments to Jobs

If you need to pass arguments to a job script, you can do the following:

• Use environment variables in your script, and pass values for the environment variables using -v or -V.

For example, to use myinfile as the input to a.out, your job script contains the following:

#PBS -N myjobname

a.out < $INFILE

You can then use the -V option:

qsub -v INFILE=/tmp/myinfile <job script>

For example, to use myinfile and mydata as the input to a.out, your job script contains the following:

#PBS -N myjobname

cat $INFILE $INDATA | a.out

You can then use the -V option:

qsub -v INFILE=/tmp/myinfile, INDATA=/tmp/mydata <job script>

You can export the environment variable first:

export INFILE=/tmp/myinfile

qsub -V <job script>

• Use a here document. For example:
qsub [option] [option] ... <return>

#PBS <directive>

./jobscript.sh arg1 <^d>

152.examplehost

If you need to pass arguments to a job, you can do any of the following:

• Pipe a shell command to qsub.

For example, to directly pass myinfile and mydata as the input to a.out, type the following, or make them into
a shell script:

echo "a.out myinfile mydata" | qsub -l select=...
PBS Professional 2020.1.1 User’s Guide UG-21

Chapter 2 Submitting a PBS Job
For example:

echo "jobscript.sh -a arg1 -b arg2" | qsub -l select=...

For example, to use an environment variable to pass myinfile as the input to a.out, type the following, or make
them into a shell script:

export INFILE=/tmp/myinfile

export INDATA=/tmp/mydata

echo "a.out $INFILE $INDATA" | qsub

• Use qsub --<executable> <arguments to executable>. See section 2.3.4, “Submitting Jobs by
Specifying Executable on Command Line”, on page 22.

2.3.4 Submitting Jobs by Specifying Executable on
Command Line

You can run a PBS job by specifying an executable and its arguments instead of a job script. When you run qsub this
way, it runs the executable directly. It does not start a shell, so no shell initialization scripts are run, and execution paths
and other environment variables are not set. There is not an easy way to run your command in a different directory. You
should make sure that environment variables are set correctly, and you will usually have to specify the full path to the
command.

To submit a job directly, you specify the executable on the command line:

qsub [<options>] -- <executable> [<arguments to executable>] <return>

For example, to run myprog with the arguments a and b:

qsub -- myprog a b <return>

To run myprog with the arguments a and b, naming the job JobA,

qsub -N JobA -- myprog a b <return>

To use environment variables you define earlier:

export INFILE=/tmp/myinfile

export INDATA=/tmp/mydata

qsub -- a.out $INFILE $INDATA

2.3.5 Submitting Jobs Using Keyboard Input

You can specify that qsub read input from the keyboard. If you run the qsub command, with the resource requests on
the command line, and then press “enter” without naming a job file, PBS will read input from the keyboard. (This is often
referred to as a “here document”.) You can direct qsub to stop reading input and submit the job by typing on a line by
itself a control-d (Linux) or control-z, then “enter” (Windows). You get the same behavior with and without a
dash operand.

Note that, under Linux, if you enter a control-c while qsub is reading input, qsub will terminate the process and
the job will not be submitted. Under Windows, however, often the control-c sequence will, depending on the com-
mand prompt used, cause qsub to submit the job to PBS. In such case, a control-break sequence will usually ter-
minate the qsub command.

qsub [<options>] [-] <return>

[<directives>]

[<tasks>]

ctrl-D
UG-22 PBS Professional 2020.1.1 User’s Guide

Submitting a PBS Job Chapter 2
2.3.6 Submitting Windows Jobs

Your PBS complex may have all Windows execution and client (submission) hosts, or it may have some Linux and some
Windows execution and client hosts. If your complex has some of each execution host, make sure that Windows jobs
land on Windows execution hosts, whether you are submitting from Linux or Windows clients.

2.3.6.1 Submitting Windows Jobs from Windows Clients

If you have not already, run the pbs_login command at each submission host, initially and once for each password
change:

echo <password>| pbs_login -p

When you submit a Windows job from a Windows client, make sure you request a Windows execution host. Request the
arch resource set to “windows”:

qsub -lselect=1:arch=windows

2.3.6.2 Submitting Windows Jobs from Linux Clients

If you have not already, run the pbs_login command at any Linux client host where you want to submit a Windows
job. Set PBS_AUTH_METHOD to pwd:

export PBS_AUTH_METHOD=pwd; pbs_login

In order to submit a Windows job from a Linux client, specify that the architecture is Windows. For example:

export PBS_AUTH_METHOD=pwd; qsub -lselect=1:arch=windows -- pbs-sleep 100

2.4 Job Submission Recommendations and Advice

2.4.1 Trapping Signals in Script

You can trap signals in your job script. For example, you can trap preemption and suspension signals.

If you want to trap the signal in your job script, the signal may need to be trapped by all of the job’s shells, depending on
the signal.

The signal TERM is useful, because it is ignored by shells, but you can trap it and do useful things such as write out sta-
tus.

Example 2-6: Ignore the listed signals:

trap "" 1 2 3 15

Example 2-7: Call the function “goodbye” for the listed signals:

trap goodbye 1 2 3 15
PBS Professional 2020.1.1 User’s Guide UG-23

Chapter 2 Submitting a PBS Job
2.5 Job Submission Options

The table below lists the options to the qsub command, and points to an explanation of each:

Table 2-1: Options to the qsub Command

Option Function and Page Reference

-A <account_string> "Specifying Accounting String” on page 29

-a <date_time> "Deferring Execution” on page 119

-C “<directive prefix>” "Changing the Directive Prefix” on page 16

-c <interval> "Using Checkpointing” on page 113

-e <path> "Paths for Output and Error Files” on page 42

-G "Submitting Interactive GUI Jobs on Windows” on page 125

-h "Holding and Releasing Jobs” on page 115

-I "Running Your Job Interactively” on page 121

-J X-Y[:Z] "Submitting a Job Array” on page 152

-j <join> "Merging Output and Error Files” on page 43

-k <keep> "Keeping Output and Error Files on Execution Host” on page 44

-l <resource list> "Requesting Resources” on page 51

-M <user list> "Setting Email Recipient List” on page 26

-m <mail options> "Specifying Email Notification” on page 25

-N <name> "Specifying Job Name” on page 27

-o <path> "Paths for Output and Error Files” on page 42

-p <priority> "Setting Priority for Your Job” on page 120

-P <project> "Specifying a Project for a Job” on page 27

-q <destination> "Specifying Server and/or Queue” on page 29

-r <value> "Allowing Your Job to be Re-run” on page 118

-R <remove options> "Avoiding Creation of stdout and/or stderr” on page 43

-S <path list "Specifying the Top Shell for Your Job” on page 19

-u <user list> "Specifying Job Username” on page 28

-V "Exporting All Environment Variables” on page 126

-v <variable list> "Exporting Specific Environment Variables” on page 126

-W <attribute>=<value> "Setting Job Attributes” on page 16

-W block=true "Making qsub Wait Until Job Ends” on page 120

-W depend=<list> "Using Job Dependencies” on page 107

-W group_list=<list> "Specifying Job Group ID” on page 28
UG-24 PBS Professional 2020.1.1 User’s Guide

Submitting a PBS Job Chapter 2
2.5.1 Specifying Email Notification

For each job, PBS can send mail to designated recipients when that job or subjob reaches specific points in its lifecycle.
There are points in the life of the job where PBS always sends email, and there are points where you can choose to
receive email; see the table below for a list.

PBS always sends you mail when your job or subjob is deleted. For job arrays, PBS sends one email per subjob.

You can restrict the number of job-related emails PBS sends when you delete jobs or subjobs; see section 2.5.1.3,
“Restricting Number of Job Deletion Emails”, on page 27.

-W
release_nodes_on_stageout=<value>

"Releasing Unneeded Vnodes from Your Job” on page 128

-W run_count=<value> "Controlling Number of Times Job is Re-run” on page 119

-W sandbox=<value> "Staging and Execution Directory: User Home vs. Job-specific”
on page 31

-W stagein=<list> "Input/Output File Staging” on page 31

-W stageout=<list> "Input/Output File Staging” on page 31

-W umask=<value> "Changing Linux Job umask” on page 45

-X "Receiving X Output from Interactive Linux Jobs” on page 124

-z "Suppressing Printing Job Identifier to stdout” on page 30

Table 2-2: Points in Job/Reservation Lifecycle when PBS Sends Mail

Point in Lifecycle Always Sent or Optional?

Job cannot be routed, either because the job makes
too many routing hops or because all destinations
reject it

Optional. Mail is sent when -m a is specified.

For subjobs, mail is sent when -m aj is specified.

Job is deleted by job owner Optional; depends on qdel -Wsuppress_email

Job is deleted by someone other than job owner Always

Job or subjob is aborted by PBS:

Job or subjob cannot be executed because of bad
user/group account, bad checkpoint/restart file, sys-
tem error, bad resource request, or bad dependency

Optional. Mail is sent when -m a is specified.

For subjobs, mail is sent when -m aj is specified.

Job is held by PBS with bad password hold Always

Job begins execution Optional

Job ends execution Optional

Stagein fails Always

All file stageout attempts fail Always

Reservation is confirmed or denied Always

Table 2-1: Options to the qsub Command

Option Function and Page Reference
PBS Professional 2020.1.1 User’s Guide UG-25

Chapter 2 Submitting a PBS Job
2.5.1.1 Specifying Job Lifecycle Email Points

The set of points where PBS sends mail is specified in the Mail_Points job attribute. When you use the -j suboption
with one or more of the other sub-options, PBS sends mail for each subjob; without this suboption, PBS sends mail only
for jobs and parent array jobs. You can set the Mail_Points attribute using the following methods:

• The -m <mail points> option to qsub

• The -m <mail points> option to qalter

• The #PBS -WMail_Points=<mail points> PBS directive

The mail points argument is a string which consists of either:

• The single character “n”

• One or more of the characters “a”, “b”, and “e” with optional “j”.

The following table lists the sub-options to the -m option:

Example 2-8: PBS sends mail when the job is aborted or ends:

qsub -m ae my_job

#PBS -m ae

2.5.1.2 Setting Email Recipient List

The list of recipients to whom PBS sends mail is specified in the Mail_Users job attribute. You can set the Mail_Users
attribute using the following methods:

• The -M <mail recipients> option to qsub

• The #PBS -WMail_Users=<mail recipients> PBS directive

The mail recipients argument is a list of user names with optional hostnames in this format:

<username>[@<hostname>][,<username>[@<hostname>],...]

For example:

qsub -M user1@mydomain.com my_job

When you set this option for a job array, PBS sets the option for each subjob, and sends mail for each subjob.

Table 2-3: Sub-options to m Option

Suboption Meaning

n Do not send mail

a Send mail when job or subjob is aborted by batch system. This is the default

b Send mail when job or subjob begins execution

Example:

Begun execution

e Send mail when job or subjob ends execution

j Send mail for subjobs. Must be combined with one or more of a, b, or e sub-options.
UG-26 PBS Professional 2020.1.1 User’s Guide

Submitting a PBS Job Chapter 2
2.5.1.3 Restricting Number of Job Deletion Emails

By default, when you delete a job or subjob, PBS sends you email. You can use qdel -
Wsuppress_email=<limit> to restrict the number of emails sent to you each time you use qdel. This option
behaves as follows:

limit >=1

You receive at most limit emails.

limit = 0

PBS ignores this option.

limit =-1

You receive no emails.

2.5.2 Specifying Job Name

If you submit a job using a script without specifying a name for the job, the name of the job defaults to the name of the
script. If you submit a job without using a script and without specifying a name for the job, the job name is STDIN.

You can specify the name of a job using the following methods:

• Using qsub -N <job name>

• Using #PBS -N <job name>

• Using #PBS -WJob_Name=<job name>

For example:

qsub -N myName my_job

#PBS -N myName

#PBS -WJob_Name=my_job

The job name can be up to 236 characters in length, and must consist of printable, non-whitespace characters. The first
character must be alphabetic, numeric, hyphen, underscore, or plus sign.

2.5.3 Specifying a Project for a Job

In PBS, a project is a way to organize jobs independently of users and groups. You can use a project as a tag to group a
set of jobs. Each job can be a member of up to one project.

Projects are not tied to users or groups. One user or group may run jobs in more than one project. For example, user Bob
runs JobA in ProjectA and JobB in ProjectB. User Bill runs JobC in ProjectA. User Tom runs JobD in ProjectB. Bob
and Tom are in Group1, and Bill is in Group2.

A job’s project attribute specifies the job’s project. See “project” on page 341 of the PBS Professional Reference Guide.
You can set the job’s project attribute in the following ways:

• At submission:

• Using qsub -P <project name>

• Via #PBS project=<project name>

• After submission, via qalter -P <project name>; see “qalter” on page 127 of the PBS Professional Refer-
ence Guide
PBS Professional 2020.1.1 User’s Guide UG-27

Chapter 2 Submitting a PBS Job
2.5.4 Specifying Job Username

By default PBS runs your job under the username with which you log in. You may need to run your job under a different
username depending on which PBS server runs the job. You can specify a list of user names under which the job can run.
All but one of the entries in the list must specify the PBS server hostname as well, so that PBS can choose which user-
name to use by looking at the hostname. You can include one entry in the list that does not specify a hostname; PBS uses
this in the case where the job was sent to a server that is not in your list.

The list of user names is stored in the User_List job attribute. The value of this attribute defaults to the user name under
which you logged in. There is no limit to the length of the attribute.

List entries are in the following format:

<username>@<hostname>[,<username>@<hostname> ...][,<username>]

You can set the value of User_List in the following ways:

• You can use qsub -u <username>

• You can use a directive: #PBS User_List=<username list>

Example 2-9: Our user is UserS on the submission host HostS, UserA on server ServerA, and UserB on server ServerB,
and is UserC everywhere else. Note that this user must be UserA on all ExecutionA and UserB on all ExecutionB
machines. Then our user can use “qsub -u UserA@ServerA,UserB@ServerB,UserC” for the job. The job
owner will always be UserS. On Linux, UserA, UserB, and UserC must each have .rhosts files at their servers
that list UserS.

2.5.4.1 Caveats for Changing Job Username

• Wherever your job runs, you must have permission to run the job under the specified username:

• For Linux, see section 1.4.2.7, “User Authorization Under Linux”, on page 7.

• For Windows, see section 1.4.3.4, “User Authorization under Windows”, on page 8.

• Usernames are limited to 256 characters.

2.5.5 Specifying Job Group ID

Your username can belong to more than one group, but each PBS job is only associated with one of those groups. By
default, the job runs under the primary group. The job’s group is specified in the group_list job attribute. You can
change the group under which your job runs on the execution host either on the command line or by using a PBS direc-
tive:

qsub -W group_list=<group list>

#PBS group_list=<group list>

For example:

qsub -W group_list=grpA,grpB@jupiter my_job

The <group list> argument has the following form:

<group>[@<hostname>][,<group>[@<hostname>],...]

You can specify only one group name per host.

You can specify only one group without a corresponding host; that group name is used for execution on any host not
named in the argument list.

The group_list defaults to the primary group of the username under which the job runs.
UG-28 PBS Professional 2020.1.1 User’s Guide

Submitting a PBS Job Chapter 2
2.5.5.1 Group Names Under Windows

Under Windows, the primary group is the first group found for the username by PBS when querying the accounts data-
base.

Under Windows, the default group assigned is determined by what the Windows API NetUserGetLocalGroup() and
NetUserGetGroup() return as first entry. PBS checks the former output (the local groups) and returns the first group it
finds. If the former call does not return any value, then it proceeds to the latter call (the Global groups). If PBS does not
find any output on the latter call, it uses the default “Everyone”.

We do not recommend depending on always getting “Users” in this case. Sometimes you may submit a job without the –
Wgroup_list option, and get a default group of “None” assigned to your job.

2.5.6 Specifying Accounting String

You can associate an accounting string with your job by setting the value of the Account_Name job attribute. This
attribute has no default value. You can set the value of Account_Name at the command line or in a PBS directive:

qsub -A <accounting string>

#PBS Account_Name=<accounting string>

The <accounting string> can be any string of characters; PBS does not attempt to interpret it.

2.5.7 Specifying Server and/or Queue

By default, PBS provides a default server and a default queue, so that jobs submitted without a server or queue specifica-
tion end up in the default queue at the default server.

If your administrator has configured the PBS server with more than one queue, and has configured those queues to accept
jobs from you, you can submit your job to a non-default queue.

• If you will submit jobs mainly to one non-default server, set the PBS_SERVER environment variable to the name
of your preferred server. Once this environment variable is set to your preferred server, you don’t need to specify
that server when you submit a job to it.

• If you will submit jobs mostly to the default server, and just want to submit this one to a specific queue at a non-
default server:

• Use qsub -q <queue name>@<server name>

• Use #PBS -q <queue name>@<server name>

• If you will submit jobs mostly to the default server, and just want to submit this one to the default queue at a non-
default server:

• Use qsub -q @<server name>

• Use #PBS -q @<server name>

• You can submit your job to a non-default queue at the default server, or the server given in the PBS_SERVER envi-
ronment variable if it is defined:

• Use qsub -q <queue name>

• Use #PBS -q <queue name>

If the PBS server has no default queue and you submit a job without specifying a queue, the qsub command will com-
plain.

PBS or your administrator may move your job from one queue to another. You can see which queue has your job using
qstat [job ID]. The job’s queue attribute contains the name of the queue where the job resides.
PBS Professional 2020.1.1 User’s Guide UG-29

Chapter 2 Submitting a PBS Job
Examples:

qsub -q queue my_job

qsub -q @server my_job

#PBS -q queue1

qsub -q queue1@myserver my_job

qsub -q queue1@myserver.mydomain.com my_job

2.5.7.1 Using or Avoiding Dedicated Time

Dedicated time is one or more specific time periods defined by the administrator. These are not repeating time periods.
Each one is individually defined.

During dedicated time, the only jobs PBS starts are those in special dedicated time queues. PBS schedules non-dedicated
jobs so that they will not run over into dedicated time. Jobs in dedicated time queues are also scheduled so that they will
not run over into non-dedicated time. PBS will attempt to backfill around the dedicated-non-dedicated time borders.

PBS uses walltime to schedule within and around dedicated time. If a job is submitted without a walltime to a non-dedi-
cated-time queue, it will not be started until all dedicated time periods are over. If a job is submitted to a dedicated-time
queue without a walltime, it will never run.

To submit a job to be run during dedicated time, use the -q <queue name> option to qsub and give the name of the
dedicated-time queue you wish to use as the queue name. Queues are created by the administrator; see your administra-
tor for queue name(s).

2.5.8 Suppressing Printing Job Identifier to stdout

To suppress printing the job identifier to standard output, use the -z option to qsub. You can use it at the command line
or in a PBS directive:

qsub -z my_job

#PBS -z

There is no associated job attribute for this option.

2.5.9 Running qsub in the Foreground

Normally, qsub runs in the background. You can run it in the foreground by using the -f option. By default, qsub
attempts to communicate with a background qsub daemon that may have been instantiated from an earlier invocation.
This background daemon can be holding onto an authenticated server connection, speeding up performance.

This option can be helpful when you are submitting a very short job which submits another job, or when you are running
codes written in-house for Windows.

2.6 Job Submission Caveats

2.6.1 Caveats for Mixed Linux-Windows Operation

• You cannot submit a Linux job from a Windows client
UG-30 PBS Professional 2020.1.1 User’s Guide

3

Job Input & Output Files

3.1 Introduction to Job File I/O in PBS

PBS allows you to manage input files, output files, standard output, and standard error. PBS has two mechanisms for
handling job files; you use staging for input and output files, and you select whether stdout and/or stderr are copied
back using the Keep_Files job attribute.

3.2 Input/Output File Staging

File staging is a way to specify which input files should be copied onto the execution host before the job starts, and which
output files should be copied off the execution host when it finishes.

3.2.1 Staging and Execution Directory: User Home vs. Job-
specific

The job’s staging and execution directory is the directory to which files are copied before the job runs, and from which
output files are copied after the job has finished. This directory is either your home directory or a job-specific directory
created by PBS just for this job. If you use job-specific staging and execution directories, you don’t need to have a home
directory on each execution host, as long as those hosts are configured properly. In addition, each job gets its own stag-
ing and execution directory, so you can more easily avoid filename collisions.

This table lists the differences between using your home directory for staging and execution and using a job-specific
staging and execution directory created by PBS.

Table 3-1: Differences Between User Home and Job-specific Directory for Staging
and Execution

Question Regarding Action,
Requirement, or Setting

User Home Directory
Job-specific

Directory

Does PBS create a job-specific staging and execution
directory?

No Yes

User’s home directory must exist on execution
host(s)?

Yes No

Standard out and standard error automatically deleted
when qsub -k option is used?

No Yes

When are staged-out files are deleted? Successfully staged-out files are
deleted; others go to “undelivered”

Only after all are suc-
cessfully staged out

Staging and execution directory deleted after job fin-
ishes?

No Yes

What is job’s sandbox attribute set to? HOME or not set PRIVATE
PBS Professional 2020.1.1 User’s Guide UG-31

Chapter 3 Job Input & Output Files
3.2.2 Using Job-specific Staging and Execution Directories

3.2.2.1 Setting the Job Staging and Execution Directory

The job’s sandbox attribute controls whether PBS creates a unique job-specific staging and execution directory for this
job. If the job’s sandbox attribute is set to PRIVATE, PBS creates a unique staging and execution directory for the job.
If sandbox is unset, or is set to HOME, PBS uses your home directory as the job’s staging and execution directory. By
default, the sandbox attribute is not set.

You can set the sandbox attribute via qsub, or through a PBS directive. For example:

qsub -Wsandbox=PRIVATE

The job’s sandbox attribute cannot be altered while the job is executing.

3.2.2.2 The jobdir Job Attribute and the PBS_JOBDIR Environment

Variable

The job’s jobdir attribute is a read-only attribute, set to the pathname of the job’s staging and execution directory on the
primary host. You can view this attribute by using qstat -f, only while the job is executing. The value of jobdir is
not retained if a job is rerun; it is undefined whether jobdir is visible or not when the job is not executing.

The environment variable PBS_JOBDIR is set to the pathname of the staging and execution directory on the primary
execution host. PBS_JOBDIR is added to the job script process, any job tasks, and the prologue and epilogue.

Table 3-2: Effect of Job sandbox Attribute on Location of Staging and Execution
Directory

Job s sandbox
attribute

Effect

not set Job’s staging and execution directory is your home directory

HOME Job’s staging and execution directory is your home directory

PRIVATE Job’s staging and execution directory is a job-specific directory created by PBS.

If the qsub -k option is used, output and error files are retained on the primary execution host
in the staging and execution directory. This directory is removed, along with all of its contents,
when the job finishes.
UG-32 PBS Professional 2020.1.1 User’s Guide

Job Input & Output Files Chapter 3
3.2.3 Attributes and Environment Variables Affecting
Staging

The following attributes and environment variables affect staging and execution.

3.2.4 Specifying Files To Be Staged In or Staged Out

You can specify files to be staged in before the job runs and staged out after the job runs by setting the job’s stagein and
stageout attributes. You can use options to qsub, or directives in the job script:

qsub -Wstagein=<execution path>@<input file storage host>:<input file storage path>[,...] -Wstageout=<execution
path>@<output file storage host>:<output file storage path>[,...]

#PBS -W stagein=<execution path>@<input file storage host>:<input file storage path>[,...]

#PBS -W stageout=<execution path>@<output file storage host>:<output file storage path>[,...]

The name execution path is the name of the file in the job’s staging and execution directory (on the execution host). The
execution path can be relative to the job’s staging and execution directory, or it can be an absolute path.

The ‘@’ character separates the execution specification from the storage specification.

The name storage path is the file name on the host specified by storage host. For stagein, this is the location where the
input files come from. For stageout, this is where the output files end up when the job is done. You must specify a host-
name. The name can be absolute, or it can be relative to your home directory on the machine named storage host.

Table 3-3: Attributes and Environment Variables Affecting Staging

Job s Attribute or
Environment

Variable
Effect

sandbox attribute Determines whether PBS uses user’s home directory or creates job-specific directory for
staging and execution. User-settable per job via qsub -W or through a PBS directive.

stagein attribute Sets list of files or directories to be staged in. User-settable per job via qsub -W or
through a PBS directive.

stageout attribute Sets list of files or directories to be staged out. User-settable per job via qsub -W or
through a PBS directive.

Keep_Files attribute Determines whether output and/or error files remain on execution host. User-settable per
job via qsub -k or through a PBS directive. If the Keep_Files attribute is set to o and/
or e (output and/or error files remain in the staging and execution directory) and the job’s
sandbox attribute is set to PRIVATE, standard out and/or error files are removed, when
the staging directory is removed at job end along with its contents.

jobdir attribute Set to pathname of staging and execution directory on primary execution host. Read-only;
viewable via qstat -f.

Remove_Files attribute Specifies whether standard output and/or standard error files are automatically removed
(deleted) upon job completion.

PBS_JOBDIR environ-
ment variable

Set to pathname of staging and execution directory on primary execution host. Added to
environments of job script process, job tasks, and prologue and epilogue.

TMPDIR environment
variable

Location of job-specific scratch directory.
PBS Professional 2020.1.1 User’s Guide UG-33

Chapter 3 Job Input & Output Files
For stagein, the direction of travel is from storage path to execution path.

For stageout, the direction of travel is from execution path to storage path.

The following example shows how to use a directive to stagein a file named grid.dat located in the directory /u/
user1 on the host called serverA. The staged-in file is copied to the staging and execution directory and given the name
dat1. Since execution path is evaluated relative to the staging and execution directory, it is not necessary to specify a
full pathname for data1.

#PBS -W stagein=data1@serverA:/u/user1/grid.dat ...

To use the qsub option to stage in the file residing on myhost, in /Users/myhome/mydata/data1, calling it
input_data1 in the staging and execution directory:

qsub -W stagein=input_data1@myhost:/Users/myhome/mydata/data1

To stage more than one file or directory, use a comma-separated list of paths, and enclose the list in double quotes. For
example, to stage two files data1 and data2 in:

qsub -W stagein="input1@hostA:/myhome/data1,input2@hostA:/myhome/data1"

3.2.5 Caveats and Requirements for Staging

3.2.5.1 Linux: Staging and Special Characters

If you need to use special characters, such as parentheses, in your file or directory names, enclose that part of the path in
an extra layer of quotes. Syntax:

-W stageout="<execution path> @<storage host>:'<storage path>'"

Example:

-W stageout="myoutfile@myhost:'/home/user1/outfile(1234)'"

3.2.5.2 Windows: Staging and Special Characters or Paths

3.2.5.2.i Special Characters

Under Windows, if your path contains special characters such as spaces, backslashes (\), colons (:), or drive letter specifi-
cations, enclose the staging specification in double quotes. For example, to stage the grid.dat file on drive D at hostB to
the execution file named “dat1” on drive C:

qsub -W stagein="dat1@hostB:D\Documents and Settings\grid.dat"

3.2.5.2.ii Using UNC Paths

If you use a UNC path to stage in or out, the hostname is optional. If you use a non-UNC path, the hostname is required.

3.2.5.3 Path Names for Staging

• It is advisable to use an absolute pathname for the storage path. Remember that the path to your home directory
may be different on each machine, and that when using sandbox = PRIVATE, you may or may not have a home
directory on all execution machines.

• Always use a relative pathname for execution path when the job’s staging and execution directory is created by PBS,
meaning when using a job-specific staging and execution directory, do not use an absolute path in execution
path.
UG-34 PBS Professional 2020.1.1 User’s Guide

Job Input & Output Files Chapter 3
3.2.5.4 Required Permissions

You must have read permission for any files or directories that you will stage in, and write permission for any files or
directories that you will stage out.

3.2.5.5 Warning About Ampersand

You cannot use the ampersand (“&”) in any staging path. Staging will fail.

3.2.5.6 Interactive Jobs and File I/O

When an interactive job finishes, staged files may not have been copied back yet.

3.2.5.7 Copying Directories Into and Out Of the Staging and

Execution Directory

You can stage directories into and out of the staging and execution directory the same way you stage files. The storage
path and execution path for both stagein and stageout can be a directory. If you stagein or stageout a directory, PBS cop-
ies that directory along with all of its files and subdirectories. At the end of the job, the directory, including all files and
subdirectories, is deleted. This can create a problem if multiple jobs are using the same directory.

3.2.5.8 Wildcards In File Staging

You can use wildcards when staging files and directories, according to the following rules.

• The asterisk “*” matches one or more characters.

• The question mark “?” matches a single character.

• All other characters match only themselves.

• Wildcards inside of quote marks are expanded.

• Wildcards cannot be used to match Linux files that begin with period “.” or Windows files that have the “SYSTEM”
or “HIDDEN” attributes.

• When using the qsub command line on Linux, you must prevent the shell from expanding wildcards. For some
shells, you can enclose the pathnames in double quotes. For some shells, you can use a backslash before the wild-
card.

• Wildcards can only be used in the source side of a staging specification. This means they can be used in the storage
path specification for stagein, and in the execution path specification for stageout.

• When staging using wildcards, the destination must be a directory. If the destination is not a directory, the result is
undefined. So for example, when staging out all .out files, you must specify a directory for storage path.

• Wildcards can only be used in the final path component, i.e. the basename.

• When wildcards are used during stagein, PBS will not automatically delete staged files at job end. Note that if PBS
created the staging and execution directory, that directory and all its contents are deleted at job end.

3.2.6 Examples of File Staging

Example 3-1: Stage out all files from the execution directory to a specific directory:

Linux

-W stageout=*@myworkstation:/user/project1/case1
PBS Professional 2020.1.1 User’s Guide UG-35

Chapter 3 Job Input & Output Files
Windows

-W stageout=*@mypc:E:\project1\case1

Example 3-2: Stage out specific types of result files and disregard the scratch and other temporary files after the job ter-
minates. The result files that are interesting for this example end in '.dat':

Linux

-W stageout=*.dat@myworkstation:project3/data

Windows

-W stageout=*.dat@mypc:C:\project\data

Example 3-3: Stage in all files from an application data directory to a subdirectory:

Linux

-W stagein=jobarea@myworkstation:crashtest1/*

Windows

-W stagein=jobarea@mypc:E:\crashtest1*

Example 3-4: Stage in data from files and directories matching “wing*”:

Linux

-W stagein=.@myworkstation:848/wing*

Windows

-W stagein=.@mypc:E:\flowcalc\wing*

Example 3-5: Stage in .bat and .dat files to job area:

Linux:

-W stagein=jobarea@myworkstation:/users/me/crash1.?at

Windows:

-W stagein=jobarea@myworkstation:C:\me\crash1.?at

3.2.6.1 Example of Using Job-specific Staging and Execution

Directories

In this example, you want the file “jay.fem” to be delivered to the job-specific staging and execution directory given in
PBS_JOBDIR, by being copied from the host “submithost”. The job script is executed in PBS_JOBDIR and “jay.out”
is staged out from PBS_JOBDIR to your home directory on the submission host (i.e., “storage host”):

qsub -Wsandbox=PRIVATE -Wstagein=jay.fem@submithost:jay.fem -Wstageout=jay.out@submithost:jay.out
UG-36 PBS Professional 2020.1.1 User’s Guide

Job Input & Output Files Chapter 3
3.2.7 Summary of the Job Lifecycle

This is a summary of the steps performed by PBS. The steps are not necessarily performed in this order.

• On each execution host, if specified, PBS creates a job-specific staging and execution directory.

• PBS sets PBS_JOBDIR and the job’s jobdir attribute to the path of the job’s staging and execution directory.

• On each execution host allocated to the job, PBS creates a job-specific temporary directory.

• PBS sets the TMPDIR environment variable to the pathname of the temporary directory.

• If any errors occur during directory creation or the setting of variables, the job is requeued.

• PBS stages in any files or directories.

• The prologue is run on the primary execution host, with its current working directory set to PBS_HOME/mom_priv,
and with PBS_JOBDIR and TMPDIR set in its environment.

• The job is run as you on the primary execution host.

• The job’s associated tasks are run as you on the execution host(s).

• The epilogue is run on the primary execution host, with its current working directory set to the path of the job’s stag-
ing and execution directory, and with PBS_JOBDIR and TMPDIR set in its environment.

• PBS stages out any files or directories.

• PBS removes standard error and/or standard output according to the value of the job’s Remove_Files attribute.

• PBS removes any staged files or directories.

• PBS removes any job-specific staging and execution directories and their contents, and all TMPDIRs and their con-
tents.

• PBS writes the final job accounting record and purges any job information from the server’s database.

3.2.8 Detailed Description of Job Lifecycle

3.2.8.1 Creation of TMPDIR

For each host allocated to the job, PBS creates a job-specific temporary scratch directory for the job. If the temporary
scratch directory cannot be created, the job is aborted.

3.2.8.2 Choice of Staging and Execution Directories

If the job’s sandbox attribute is set to PRIVATE, PBS creates job-specific staging and execution directories for the job.
If the job’s sandbox attribute is set to HOME, or is unset, PBS uses your home directory for staging and execution.

3.2.8.2.i Job-specific Staging and Execution Directories

If the staging and execution directory cannot be created the job is aborted. If PBS fails to create a staging and execution
directory, see the system administrator.

You should not depend on any particular naming scheme for the new directories that PBS creates for staging and execu-
tion.

3.2.8.2.ii User Home Directory as Staging and Execution Directory

You must have a home directory on each execution host. The absence of your home directory is an error and causes the
job to be aborted.
PBS Professional 2020.1.1 User’s Guide UG-37

Chapter 3 Job Input & Output Files
3.2.8.3 Setting Environment Variables and Attributes

PBS sets PBS_JOBDIR and the job’s jobdir attribute to the pathname of the staging and execution directory. The
TMPDIR environment variable is set to the pathname of the job-specific temporary scratch directory.

3.2.8.4 Staging Files Into Staging and Execution Directories

PBS evaluates execution path and storage path relative to the staging and execution directory given in
PBS_JOBDIR, whether this directory is your home directory or a job-specific directory created by PBS. PBS copies the
specified files and/or directories to the job’s staging and execution directory.

3.2.8.5 Running the Prologue

The MoM’s prologue is run on the primary host as root, with the current working directory set to PBS_HOME/
mom_priv, and with PBS_JOBDIR and TMPDIR set in its environment.

3.2.8.6 Job Execution

PBS runs the job script on the primary host as you. PBS also runs any tasks created by the job as you. The job script and
tasks are executed with their current working directory set to the job's staging and execution directory, and with
PBS_JOBDIR and TMPDIR set in their environment.

3.2.8.7 Standard Out and Standard Error

The job's stdout and stderr files are created directly in the job's staging and execution directory on the primary exe-
cution host.

3.2.8.7.i Job-specific Staging and Execution Directories

If the qsub -k option is used, the stdout and stderr files will not be automatically copied out of the staging and
execution directory at job end - they will be deleted when the directory is automatically removed.

3.2.8.7.ii User Home Directory as Staging and Execution Directory

If the -k option to qsub is used, standard out and/or standard error files are retained on the primary execution host
instead of being returned to the submission host, and are not deleted after job end.

3.2.8.8 Running the Epilogue

PBS runs the epilogue on the primary host as root. The epilogue is executed with its current working directory set to the
job's staging and execution directory, and with PBS_JOBDIR and TMPDIR set in its environment.

3.2.8.9 Staging Files Out and Removing Execution Directory

When PBS stages files out, it evaluates execution path and storage path relative to PBS_JOBDIR. Files that
cannot be staged out are saved in PBS_HOME/undelivered.

3.2.8.9.i Job-specific Staging and Execution Directories

If PBS created job-specific staging and execution directories for the job, it cleans up at the end of the job. The staging
and execution directory and all of its contents are removed, on all execution hosts.
UG-38 PBS Professional 2020.1.1 User’s Guide

Job Input & Output Files Chapter 3
3.2.8.10 Removing TMPDIRs and Files

PBS removes all TMPDIRs, along with their contents. If Remove_Files specifies output and/or error files, these files
are removed.

3.2.9 Staging with Job Arrays

File staging is supported for job arrays. See “File Staging for Job Arrays” on page 153.

3.2.10 Stagein and Stageout Failure

3.2.10.1 File Stagein Failure

When stagein fails, the job is placed in a 30-minute wait to allow you time to fix the problem. Typically this is a missing
file or a network outage. Email is sent to the job owner when the problem is detected. Once the problem has been
resolved, the job owner or a PBS Operator may remove the wait by resetting the time after which the job is eligible to be
run via the -a option to qalter. The server will update the job’s comment with information about why the job was put
in the wait state. When the job is eligible to run, it may run on different vnodes.

3.2.10.2 File Stageout Failure

When stageout encounters an error, there are three retries. PBS waits 1 second and tries again, then waits 11 seconds and
tries a third time, then finally waits another 21 seconds and tries a fourth time. Email is sent to the job owner if all
attempts fail. Files that cannot be staged out are saved in PBS_HOME/undelivered. See section 3.3.8.1, “Non-deliv-
ery of Output”, on page 46.

3.3 Managing Output and Error Files

3.3.1 Default Behavior For Output and Error Files

By default, PBS copies the standard output (stdout) and standard error (stderr) files back to $PBS_O_WORKDIR
on the submission host when a job finishes. When qsub is run, it sets $PBS_O_WORKDIR to the current working
directory where the qsub command is executed. This means that if you want your job’s stdout and stderr files to
be delivered to your submission directory, you do not need to do anything.

The following options to the qsub command control where stdout and stderr are created and whether and where
they are copied when the job is finished:

sandbox

By default, PBS runs the job script in the owner’s home directory. If sandbox is set to PRIVATE, PBS creates
a job-specific execution directory, and runs the job script there. See section 3.2.2.1, “Setting the Job Staging
and Execution Directory”, on page 32.

k

Specifies whether and which of stdout and stderr is retained in the job’s execution directory. When set,
this option overrides o and e. See section 3.3.5, “Keeping Output and Error Files on Execution Host”, on page
44.

You can also specify that output and/or error files are written directly to the final destination. See section 3.3.6,
“Writing Files Directly to Final Destination”, on page 45.
PBS Professional 2020.1.1 User’s Guide UG-39

Chapter 3 Job Input & Output Files
o

Specifies destination for stdout. Overridden by k when k is set. See section 3.3.2, “Paths for Output and
Error Files”, on page 42.

e
Specifies destination for stderr. Overridden by k when k is set. See section 3.3.2, “Paths for Output and
Error Files”, on page 42.

R

Specifies whether standard output and/or standard error are deleted upon job completion. See section 3.3.3,
“Avoiding Creation of stdout and/or stderr”, on page 43.
UG-40 PBS Professional 2020.1.1 User’s Guide

Job Input & Output Files Chapter 3
The following table shows how these options control creation and copying of stdout and stderr:

• You can specify a path for stdout and/or stderr: see section 3.3.2, “Paths for Output and Error Files”, on page
42.

• You can merge stdout and stderr: see section 3.3.4, “Merging Output and Error Files”, on page 43.

• You can prevent creation of stdout and/or stderr: see section 3.3.3, “Avoiding Creation of stdout and/or stderr”,
on page 43.

• You can choose whether to retain stdout and/or stderr on the execution host: see section 3.3.5, “Keeping Output
and Error Files on Execution Host”, on page 44.

• You can specify that output and/or error files are written directly to the final destination. See section 3.3.6, “Writing
Files Directly to Final Destination”, on page 45.

• You can specify that output and/or error files are deleted when the job finishes. See section 3.3.3, “Avoiding Cre-
ation of stdout and/or stderr”, on page 43.

Table 3-4: How k, sandbox, o, and e Options to qsub Affect stdout and stderr

sandbox
-k

(o, e,
eo, oe)

-e, -o -R -k d
Where stdout,

stderr Are Created
Where stdout, stderr Are

Copied

HOME or
unset

unset unset unset unset PBS_HOME/spool PBS_O_WORKDIR, which is job
submission directory

HOME or
unset

unset <path> unset unset PBS_HOME/spool Destination specified in -o <path>
and/or -e <path>

HOME or
unset

e, o,

eo, oe

unset unset unset Job submitter’s home direc-
tory on execution host

Not copied; left in submitter’s home
directory on execution host, and not
deleted

HOME or
unset

e, o,

eo, oe

<path> unset unset Job submitter’s home direc-
tory on execution host

Not copied; left in submitter’s home
directory on execution host, and not
deleted

PRIVATE unset unset unset unset Job-specific execution direc-
tory created by PBS

PBS_O_WORKDIR, which is job
submission directory

PRIVATE unset <path> unset unset Job-specific execution direc-
tory created by PBS

Destination specified in -o <path>
and/or -e <path>

PRIVATE e, o,

eo, oe

unset unset unset Job-specific execution direc-
tory created by PBS

Not copied; left in job-specific execu-
tion directory; deleted when job-spe-
cific execution directory is deleted

PRIVATE e, o,

eo, oe

<path> unset unset Job-specific execution direc-
tory created by PBS

Not copied; left in job-specific execu-
tion directory; deleted when job-spe-
cific execution directory is deleted

any any any -R e/o any Deleted regardless of where
created

Does not exist, so not copied

any any any unset -k d Final destination, if MoM
can reach it

Does not exist, so not copied
PBS Professional 2020.1.1 User’s Guide UG-41

Chapter 3 Job Input & Output Files
3.3.2 Paths for Output and Error Files

3.3.2.1 Default Paths for Output and Error Files

By default, PBS names the output and error files for your job using the job name and the job’s sequence number. The
output file name is specified in the Output_Path job attribute, and the error file name is specified in the Error_Path job
attribute.

The default output filename has this format:

<job name>.o<sequence number>

The default error filename has this format:

<job name>.e<sequence number>

The job name, if not specified, defaults to the script name. For example, if the job ID is 1234.exampleserver and
the script name is “myscript”, the error file is named myscript.e1234. If you specify a name for your job, the
script name is replaced with the job name. For example, if you name your job “fixgamma”, the output file is named
fixgamma.o1234.

For details on naming your job, see section 2.5.2, “Specifying Job Name”, on page 27.

3.3.2.2 Specifying Paths

You can specify the path and name for the output and error files for each job, by setting the value for the Output_Path
and Error_Path job attributes. You can set these attributes using the following methods:

• Use the -o <output path> and -e <error path> options to qsub

• Use #PBS Output_Path=<path> and #PBS Error_Path=<path> directives in the job script

The path argument has the following form:

[<hostname>:]<pathname>

where hostname is the name of a host and pathname is the path name on that host.

You can specify relative or absolute paths. If you specify only a file name, it is assumed to be relative to your home direc-
tory. Do not use variables in the path.

The following examples show how you can specify paths:

#PBS -o /u/user1/myOutputFile

#PBS -e /u/user1/myErrorFile

qsub -o myOutputFile my_job

qsub -o /u/user1/myOutputFile my_job

qsub -o myWorkstation:/u/user1/myOutputFile my_job

qsub -e myErrorFile my_job

qsub -e /u/user1/myErrorFile my_job

qsub -e myWorkstation:/u/user1/myErrorFile my_job
UG-42 PBS Professional 2020.1.1 User’s Guide

Job Input & Output Files Chapter 3
3.3.2.3 Specifying Paths from Windows Hosts

3.3.2.3.i Using Special Characters in Paths

If you submit your job from a Windows host, you may end up using special characters such as spaces, backslashes (“\”),
and colons (“:”) for specifying pathnames, and you may need drive letter specifications. The following examples are
allowed:

qsub -o \temp\my_out job.scr

qsub -e "myhost:e:\Documents and Settings\user\Desktop\output"

The error output of the example job is to be copied onto the e: drive on myhost using the path "\Documents and
Settings\user\Desktop\output".

3.3.2.3.ii Using UNC Paths

If you use a UNC path for output or error files, the hostname is optional. If you use a non-UNC path, the hostname is
required.

3.3.2.4 Caveats for Paths

Enclose arguments to qsub in quotes if the arguments contain spaces.

3.3.3 Avoiding Creation of stdout and/or stderr

For each job, PBS always creates the job’s output and error files. The location where files are created is listed in Table 3-
4, “How k, sandbox, o, and e Options to qsub Affect stdout and stderr,” on page 41.

If you do not want stdout and/or stderr, you can do either of the following:

• Specify that PBS deletes the file(s) when the job finishes, using the -R option to qsub or qalter. The -R option
takes o, e, eo, or oe as sub-options. For example, to have PBS delete the error file:
qsub -R e job.sh

• Redirect them to /dev/null within the job script. For example, to redirect stdout and stderr to /dev/null:
exec >&/dev/null 1>&2

• Standard output and standard error are normally written to a location such as /var/spool, then copied to their final
location. To avoid creating these files at all, and to avoid copying them, use direct write to send them to /dev/null:
qsub -koed -o /dev/null -e /dev/null

Your administrator must also set up the MoM’s configuration file to support this.

3.3.4 Merging Output and Error Files

By default, PBS creates separate standard output and standard error files for each job. You can specify that stdout and
stderr are to be joined by setting the job’s Join_Path attribute. The default for the attribute is n, meaning that no join-
ing takes place. You can set the attribute using the following methods:

• Use qsub -j <joining option>

• Use #PBS Join_Path=<joining option>

You can specify one of the following joining options:

oe

Standard output and standard error are merged, intermixed, into a single stream, which becomes standard out-
put.
PBS Professional 2020.1.1 User’s Guide UG-43

Chapter 3 Job Input & Output Files
eo

Standard output and standard error are merged, intermixed, into a single stream, which becomes standard error.

n

Standard output and standard error are not merged.

For example, to merge standard output and standard error for my_job into standard output:

qsub -j oe my_job

#PBS -j oe

3.3.5 Keeping Output and Error Files on Execution Host

By default, PBS copies stdout and stderr to the job’s submission directory. You can specify that PBS keeps std-
out, stderr, or both in the job’s execution directory on the execution host. This behavior is controlled by the job’s
Keep_Files attribute. You can set this attribute to one of the following values:

e

PBS keeps stderr in the job’s staging and execution directory on the primary execution host.

o

PBS keeps stdout in the job’s staging and execution directory on the primary execution host.

eo, oe

PBS keeps both standard output and standard error on the primary execution host, in the job's staging and execu-
tion directory.

n

PBS does not keep either file on the execution host.

d

PBS writes both stdout and stderr to their final destinations. Overrides o and e options. See section 3.3.6,
“Writing Files Directly to Final Destination”, on page 45.

The default value for Keep_Files is “n”.

You can set the value of the Keep_Files job attribute using the following methods:

• Use qsub -k <keep option>

• Use #PBS Keep_Files=<keep option>

For example, you can use either of the following to keep both standard output and standard error on the execution host:

qsub -k oe my_job

#PBS -k oe

3.3.5.1 Caveats for Keeping Files on Execution Host

• When a job finishes, its job-specific execution directory, and all files in that directory, are deleted. If you specified
that stdout and/or stderr should be kept on the execution host, any files you specified are deleted as well.

• The qsub -k option overrides the -o and -e options. For example, if you specify qsub -k o -o <path>,
stdout is kept on the execution host, and is not copied to the path you specified.
UG-44 PBS Professional 2020.1.1 User’s Guide

Job Input & Output Files Chapter 3
3.3.6 Writing Files Directly to Final Destination

If the MoM on the primary execution host can reach the final destination, she can write the job’s standard output and
standard error files to that destination. To be reachable, the final destination host and path must either be on the execu-
tion host, or be mapped from the primary execution host via the $usecp directive in the MoM configuration file. To
specify that standard output and/or standard error should be written directly to their final destinations, use the d sub-
option to the -k option to qsub or qalter.

For example, to directly write both output and error to their final destinations:

qsub -koed job.sh

To directly write output to its final destination, and let error go through normal spooling and staging:

qsub -kod job.sh

3.3.7 Changing Linux Job umask

On Linux, whenever your job copies or creates a file or directory on the execution host, MoM uses umask to determine
the permissions for the file or directory. If you do not specify a value for umask, MoM uses the system default. You can
specify a value using the following methods:

• Use qsub -W umask=<value>

• Use #PBS umask=<value>

This applies when staging or copying files or directories to the execution host, or writing stdout or stderr on the
execution host.

In the following example, we set umask to 022, to have files created with write permission for owner only. The desired
permissions are -rw-r--r--.

qsub -W umask=022 my_job

#PBS -W umask=022

3.3.7.1 Caveats

This feature does not apply to Windows.

3.3.8 Troubleshooting File Delivery

File delivery is handled by MoM on the execution host. For a description of how file delivery works, see "Setting File
Transfer Mechanism" on page 549 in the PBS Professional Administrator’s Guide.

For troubleshooting file delivery, see "Troubleshooting File Transfer" on page 554 in the PBS Professional Administra-
tor’s Guide.
PBS Professional 2020.1.1 User’s Guide UG-45

Chapter 3 Job Input & Output Files
3.3.8.1 Non-delivery of Output

If the output of a job cannot be delivered to you, it is saved in a special directory named PBS_HOME/undelivered and
mail is sent to you. The typical causes of non-delivery are:

1. The destination host is not trusted and you do not have a .rhosts file.

2. An improper path was specified.

3. A directory in the specified destination path is not writable.

4. Your .cshrc on the destination host generates output when executed.

5. The path specified by PBS_SCP in pbs.conf is incorrect.

6. The PBS_HOME/spool directory on the execution host does not have the correct permissions. This directory must
have mode 1777 drwxrwxrwxt (on Linux) or “Full Control” for “Everyone” (on Windows).

3.3.9 Caveats for Output and Error Files

3.3.9.1 Retaining Files on Execution Host

When PBS creates a job-specific staging and execution directory and you use the -k option to qsub or you specify o and/
or e in the Keep_Files attribute, the files you requested kept on the execution host are deleted when the job-specific
staging and execution directory is deleted at the end of the job.

3.3.9.2 Standard Output and Error Appended When Job is Rerun

If your job runs and writes to stdout or stderr, and then is rerun, meaning that another job with the same name is run,
PBS appends the stdout of the second run to that of the first, and appends the stderr of the second run to that of the
first.

3.3.9.3 Windows Mapped Drives and PBS

In Windows, when you map a drive, it is mapped locally to your session. The mapped drive cannot be seen by other pro-
cesses outside of your session. A drive mapped on one session cannot be un-mapped in another session even if the user
is the same. This has implications for running jobs under PBS. Specifically if you map a drive, chdir to it, and submit a
job from that location, the vnode that executes the job may not be able to deliver the files back to the same location from
which you issued qsub. The workaround is to tell PBS to deliver the files to a local, non-mapped, directory. Use the “-
o” or “-e” options to qsub to specify the directory location for the job output and error files. For details see section
3.3.2, “Paths for Output and Error Files”, on page 42.

3.3.9.4 Harmless csh Error Message

If your login shell is csh the following message may appear in the standard output of a job:

Warning: no access to tty, thus no job control in this shell

This message is produced by many csh versions when the shell determines that its input is not a terminal. Short of mod-
ifying csh, there is no way to eliminate the message. Fortunately, it is just an informative message and has no effect on
the job.

3.3.9.5 Interactive Jobs and File I/O

When an interactive job finishes, stdout and/or stderr may not have been copied back yet.
UG-46 PBS Professional 2020.1.1 User’s Guide

Job Input & Output Files Chapter 3
3.3.9.6 Write Permissions Required

• You must have write permission for any directory where you will copy stdout or stderr.

• Root must be able to write in PBS_HOME/spool.
PBS Professional 2020.1.1 User’s Guide UG-47

Chapter 3 Job Input & Output Files
UG-48 PBS Professional 2020.1.1 User’s Guide

4

Allocating Resources & Placing

Jobs

4.1 What is a Vnode?

A virtual node, or vnode, is an abstract object representing a set of resources which form a usable part of a machine. This
could be an entire host, or a nodeboard or a blade. A single host can be made up of multiple vnodes.

A host is any computer. Execution hosts used to be called nodes, and are still often called nodes outside of the PBS doc-
umentation. PBS views hosts as being composed of one or more vnodes.

PBS manages and schedules each vnode independently. Jobs run on one or more vnodes. Each vnode has its own set of
attributes; see “Vnode Attributes” on page 320 of the PBS Professional Reference Guide.

4.1.1 Deprecated Vnode Types

All vnodes are treated alike, and are treated the same as what were once called “time-shared nodes”. The types “time-
shared” and “cluster” are deprecated. The :ts suffix is deprecated. It is silently ignored, and not preserved during
rewrite.

The vnode attribute ntype was only used to distinguish between PBS and Globus vnodes. Globus can still send jobs to
PBS, but PBS no longer supports sending jobs to Globus. The ntype attribute is read-only.

4.2 PBS Resources

4.2.1 Introduction to PBS Resources

In this section, "Introduction to PBS Resources", we will briefly cover the basics of PBS resources. For a thorough dis-
cussion, see "Using PBS Resources" on page 229 in the PBS Professional Administrator’s Guide, especially sections 5.4
and 5.5. For a complete description of each PBS resource, see Chapter 5, "List of Built-in Resources", on page 259.

PBS resources represent things such as CPUs, memory, application licenses, switches, scratch space, and time. They can
also represent whether or not something is true, for example, whether a machine is dedicated to a particular project.

PBS provides a set of built-in resources, and allows the administrator to define additional custom resources. Custom
resources are used for application licenses, scratch space, etc., and are defined by the administrator. Custom resources
are used the same way built-in resources are used. PBS supplies the following types of resources:

Boolean

Name of Boolean resource is a string.

Values:

TRUE, True, true, T, t, Y, y, 1

FALSE, False, false, F, f, N, n, 0
PBS Professional 2020.1.1 User’s Guide UG-49

Chapter 4 Allocating Resources & Placing Jobs
Duration

A period of time, expressed either as

An integer whose units are seconds
or

[[hours:]minutes:]seconds[.milliseconds]
in the form:

[[HH:]MM:]SS[.milliseconds]
Milliseconds are rounded to the nearest second.

Float

Floating point. Allowable values: [+-] 0-9 [[0-9] ...][.][[0-9] ...]

Long

Long integer. Allowable values: 0-9 [[0-9] ...], and + and -

<queue name>@<server name>

Size

Number of bytes or words. The size of a word is 64 bits.

Format: <integer>[<suffix>]

where suffix can be one of the following:

Default: bytes

Note that a scheduler rounds all resources of type size up to the nearest kb.

String

Any character, including the space character.

Only one of the two types of quote characters, " or ', may appear in any given value.

Values:[_a-zA-Z0-9][[-_a-zA-Z0-9 ! " # $ % ´ () * + , - . / : ; < = > ? @ [\] ^ _ ' { | } ~] ...]

String resource values are case-sensitive. No limit on length.

Table 4-1: Size in Bytes

Suffix Meaning Size

b or w Bytes or words 1

kb or kw Kilobytes or kilowords 2 to the 10th, or 1024

mb or mw Megabytes or megawords 2 to the 20th, or 1,048,576

gb or gw Gigabytes or gigawords 2 to the 30th, or 1,073,741,824

tb or tw Terabytes or terawords 2 to the 40th, or 1024 gigabytes

pb or pw Petabytes or petawords 2 to the 50th, or 1,048,576 gigabytes
UG-50 PBS Professional 2020.1.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
String Array

Comma-separated list of strings.

Strings in string_array may not contain commas. No limit on length.

Python type is str.

A string array resource with one value works exactly like a string resource.

See “Resources Built Into PBS” on page 265 of the PBS Professional Reference Guide for a listing of built-in resources.

For some systems, PBS creates specific custom resources.

The administrator can specify which resources are available at the server, each queue, and each vnode. Resources
defined at the queue or server level apply to an entire job. Resources defined at the vnode level apply only to the part of
the job running on that vnode.

Jobs can request resources. The scheduler matches requested resources with available resources, according to rules
defined by the administrator. PBS always places jobs where it finds the resources requested by the job. PBS will not
place a job where that job would use more resources than PBS thinks are available. For example, if you have two jobs,
each requesting 1 CPU, and you have one vnode with 1 CPU, PBS will run only one job at a time on the vnode.

PBS can enforce limits on resource usage by jobs; see section 4.5, “Limits on Resource Usage”, on page 61.

4.2.2 Glossary

Chunk

A set of resources allocated as a unit to a job. Specified inside a selection directive. All parts of a chunk come
from the same host. In a typical MPI (Message-Passing Interface) job, there is one chunk per MPI process.

Chunk-level resource, host-level resource

A resource that is available at the host level, for example, CPUs or memory. Chunk resources are requested
inside of a selection statement. The resources of a chunk are to be applied to the portion of the job running in
that chunk.

Chunk resources are requested inside a select statement.

Job-wide resource, server resource, queue resource

A job-wide resource, also called a server-level or queue-level resource, is a resource that is available to the
entire job at the server or queue.

A job-wide resource is available to be consumed or matched at the server or queue if you set the server or queue
resources_available.<resource name> attribute to the available or matching value. For example, you can
define a custom resource called FloatingLicenses and set the server’s resources_available.FloatingLi-

censes attribute to the number of available floating licenses.

Examples of job-wide resources are shared scratch space, application licenses, or walltime.

A job can request a job-wide resource for the entire job, but not for individual chunks.

4.3 Requesting Resources

Your job can request resources that apply to the entire job, or resources that apply to job chunks. For example, if your
entire job needs an application license, your job can request one job-wide license. However, if one job process needs two
CPUs and another needs 8 CPUs, your job can request two chunks, one with two CPUs and one with eight CPUs. Your
job cannot request the same resource in a job-wide request and a chunk-level request.
PBS Professional 2020.1.1 User’s Guide UG-51

Chapter 4 Allocating Resources & Placing Jobs
PBS supplies resources such as walltime that can be used only as job-wide resources, and other resources, such as ncpus
and mem, that can be used only as chunk resources. A resource is either job-wide or chunk-level, but not both. The
description of each resource tells you which way to use the resource; see “List of Built-in Resources” on page 259 of the
PBS Professional Reference Guide.

We will cover the details of requesting resources in section 4.3.2, “Requesting Job-wide Resources”, on page 52 and sec-
tion 4.3.3, “Requesting Resources in Chunks”, on page 53.

4.3.1 Quick Summary of Requesting Resources

Job-wide resources are requested in <resource neme>=<value> pairs. You can request job-wide resources using any of
the following:

• The qsub -l <resource name>=<value> option

You can request multiple resources, using either format:

-l <resource>=<value>,<resource>=<value>

-l <resource>=<value> -l <resource>=<value>

• One or more #PBS -l <resource name>=<value> directives

Chunk resources are requested in chunk specifications in a select statement. You can request chunk resources using any
of the following:

• The qsub -l select=[N:][<chunk specification>][+[N:]<chunk specification>] option

• A #PBS -l select=[N:][<chunk specification>][+[N:]<chunk specification>] directive

Format for requesting both job-wide and chunk resources:

qsub ... (non-resource portion of job)
-l <resource>=<value> (this is the job-wide request)
-l select=<chunk>[+<chunk>] (this is the selection statement)

PBS supplies several commands that you can use to request resources or alter resource requests:

• The qsub command (both via command-line and in PBS directives)

• The pbs_rsub command (via command-line only)

• The qalter command (via command-line only)

4.3.2 Requesting Job-wide Resources

Your job can request resources that apply to the entire job in job-wide resource requests. A job-wide resource is
designed to be used by the entire job, and is available at the server or a queue, but not at the host level. Job-wide
resources are used for requesting floating application licenses or other resources not tied to specific vnodes, such as cput
and walltime.

Job-wide resources are requested outside of a selection statement, in this form:

-l <resource name>=<value>[,<resource name>=<value> ...]

A resource request “outside of a selection statement” means that the resource request comes after “-l”, but not after “-
lselect=”. In other words, you cannot request a job-wide resource in chunks.

For example, to request one hour of walltime for a job:

-l walltime=1:00:00

You can request job-wide resources using any of the following:

• The qsub -l <resource name>=<value> option
UG-52 PBS Professional 2020.1.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
You can request multiple resources, using either format:

-l <resource>=<value>,<resource>=<value>

-l <resource>=<value> -l <resource>=<value>

• One or more #PBS -l <resource name>=<value> directives

4.3.3 Requesting Resources in Chunks

A chunk specifies the value of each resource in a set of resources which are to be allocated as a unit to a job. It is the
smallest set of resources to be allocated to a job. All of a chunk is taken from a single host. One chunk may be broken
across vnodes, but all participating vnodes must be from the same host.

Your job can request chunk resources, which are resources that apply to the host-level parts of the job. Host-level
resources can only be requested as part of a chunk. Server or queue resources cannot be requested as part of a chunk. A
chunk resource is used by the part of the job running on that chunk, and is available at the host level. Chunks are used for
requesting host-related resources such as CPUs, memory, and architecture.

Chunk resources are requested inside a select statement. A select statement has this form:

-l select=[N:]<chunk>[+[N:]<chunk> ...]

Now, we’ll explain the details. A single chunk is requested using this form:

-l select=<resource name>=<value>[:<resource name>=<value>...]

For example, one chunk might have 2 CPUs and 4GB of memory:

-l select=ncpus=2:mem=4gb

To request multiples of a chunk, prefix the chunk specification by the number of chunks:

-l select=[<number of chunks>]<chunk specification>

For example, to request six of the previous chunk:

-l select=6:ncpus=2:mem=4gb

If you don’t specify N, the number of chunks, it is taken to be 1.

To request different chunks, concatenate the chunks using the plus sign (“+”):

-l select=[<number of chunks>]<chunk specification>+[<number of chunks>]<chunk specification>

For example, to request two sets of chunks where one set of 6 chunks has 2 CPUs per chunk, and one set of 3 chunks has
8 CPUs per chunk, and both sets have 4GB of memory per chunk:

-l select=6:ncpus=2:mem=4gb+3:ncpus=8:mem=4GB

No spaces are allowed between chunks.

You must specify all your chunks in a single select statement.

You can request chunk resources using any of the following:

• The qsub -l select=[N:][<chunk specification>][+[N:]<chunk specification>] option

• A #PBS -l select=[N:][<chunk specification>][+[N:]<chunk specification>] directive
PBS Professional 2020.1.1 User’s Guide UG-53

Chapter 4 Allocating Resources & Placing Jobs
4.3.4 Requesting Boolean Resources

A resource request can specify whether a Boolean resource should be True or False.

Example 4-1: Some vnodes have green=True and some have red=True, and you want to request two vnodes, each with
one CPU, all green and no red:

-l select=2:green=true:red=false:ncpus=1

Example 4-2: This job script snippet has a job-wide request for walltime and a chunk request for CPUs and memory
where the Boolean resource HasMyApp is True:

#PBS -l walltime=1:00:00

#PBS -l select=ncpus=4:mem=400mb:HasMyApp=true

Keep in mind the difference between requesting a vnode-level boolean and a job-wide boolean:

qsub -l select=1:green=True

requests a vnode with green set to True. However,

qsub -l green=True

requests green set to True on the server and/or queue.

4.3.5 Requesting Application Licenses

Application licenses are managed as resources defined by your PBS administrator. PBS doesn't actually check out the
licenses; the application being run inside the job's session does that.

4.3.5.1 Requesting Floating Application Licenses

A site-wide floating license is typically configured as a server-level, job-wide resource.

To request a job-wide application license called AppF, use:

qsub -l AppF=<number of licenses> <other qsub arguments>

If only certain hosts can run the application, they will typically have a host-level Boolean resource set to True.

The job-wide resource AppF is a numerical resource indicating the number of licenses available at the site. The host-
level Boolean resource haveAppF indicates whether a given host can run the application. To request the application
license and the vnodes on which to run the application:

qsub -l AppF=<number of licenses> <other qsub arguments>

 -l select=haveAppF=True

PBS queries the license server to find out how many floating licenses are available at the beginning of each scheduling
cycle. PBS doesn't actually check out the licenses, the application being run inside the job's session does that.

4.3.5.2 Requesting Node-locked Application Licenses

Node-locked application licenses are available at the vnode(s) that are licensed for the application. These are host-level
(chunk) resources that are requested inside of a select statement.

4.3.5.2.i Requesting Per-host Node-locked Application Licenses

Per-host node-locked application licenses are typically configured as a Boolean resource that indicates whether or not the
required license is available at that host.
UG-54 PBS Professional 2020.1.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
When requesting Boolean-valued per-host node-locked licenses, request one per host. Format:

qsub -l select=<Boolean resource name>=true:<rest of chunk specification>

Example 4-3: The Boolean resource runsAppA specifies whether this vnode has the necessary license. To request a host
with a per-host node-locked license for AppA in one chunk:

qsub -l select=1:runsAppA=1 <job script>

4.3.5.2.ii Requesting Per-use Node-locked Application Licenses

Per-use node-locked application licenses are typically configured as a consumable numeric resource so that the host(s)
that run the application have the number of licenses that can be used at one time.

When requesting numerical per-use node-locked licenses, request the required number of licenses for each host:

qsub -l select=<consumable resource name>=<required amount>:<rest of chunk specification>

Example 4-4: The consumable resource named AppB indicates the number of available per-use application licenses on a
host. To request a host with a per-use node-locked license for AppB, where you’ll run one instance of AppB on two
CPUs in one chunk:

qsub -l select=1:ncpus=2:AppB=1

4.3.5.2.iii Requesting Per-CPU Node-locked Application Licenses

Per-CPU node-locked licenses are typically arranged so that the host has one license for each licensed CPU. The PBS
administrator configures a consumable numerical resource indicating the number of available licenses.

You must request one license for each CPU. When requesting numerical per-use node-locked licenses, request the
required number of licenses for each host:

qsub -l select=<per-CPU resource name>=<required amount>:<rest of chunk specification>

Example 4-5: The numerical consumable resource named AppC indicates the number of available per-CPU licenses. To
request a host with two per-CPU node-locked licenses for AppC, where you’ll run a job using two CPUs in one
chunk:

qsub -l select=1:ncpus=2:AppC=2

4.3.6 Requesting Scratch Space

Scratch space on a machine is configured as a host-level dynamic resource. Ask your administrator for the name of the
scratch space resource.

When requesting scratch space, include the resource in your chunk request:

-l select=<scratch resource name>=<amount of scratch needed>:<rest of chunk specification>

Example 4-6: Your administrator has named the scratch resource “dynscratch”. To request 10MB of scratch space in
one chunk:

-l select=1:ncpus=N:dynscratch=10MB

4.3.7 Requesting GPUs

Your PBS job can request GPUs. How you request GPUs depends on whether PBS uses cgroups to manage GPUs; check
with your administrator.
PBS Professional 2020.1.1 User’s Guide UG-55

Chapter 4 Allocating Resources & Placing Jobs
4.3.7.1 Requesting GPUs Managed via Cgroups

Recommended: On Linux only, PBS can be configured to use cgroups to fence GPUs off, so that when your job requests
GPUs it automatically gets exclusive use of its GPUs. You don’t have to request exclusivity. When PBS uses cgroups to
manage GPUs, you request the number of GPUs you want via the ngpus resource:

qsub -l select=ngpus=<value>:<rest of chunk specification>

When GPUs are managed via cgroups, jobs requesting memory will use that amount both for physical memory and for
swap. For example, a job that requests 20GB and uses 16GB but reads a 50GB file can only swap 4GB at a time. So if a
job requires 32GB of application memory but also requires 5GB of private file cache to perform adequately, then it needs
to request 37GB.

4.3.7.2 Requesting GPUs Not Managed via Cgroups

On Windows or Linux, when PBS is not using cgroups to manage GPUs, your administrator can configure PBS to sup-
port any of the following:

• (“Basic GPU scheduling”) Job uses non-specific GPUs and exclusive use of a node

• (“Advanced GPU scheduling”) Job uses non-specific GPUs and shared use of a node

• (“Advanced GPU scheduling”) Job uses specific GPUs and either shared or exclusive use of a node

4.3.7.2.i Binding to GPUs

PBS Professional allocates GPUs, but does not bind jobs to any particular GPU; the application itself, or the CUDA
library, is responsible for the actual binding.

4.3.7.2.ii Requesting Non-specific GPUs and Exclusive Use of Node

When your site uses “basic GPU scheduling”, if your job needs GPUs, but does not require specific GPUs, and can
request exclusive use of GPU nodes, you can request GPUs the same way you request CPUs.

Your administrator can set up a resource to represent the GPUs on a node. We recommend that the GPU resource is
called ngpus.

When requesting GPUs in this manner, your job should request exclusive use of the node to prevent other jobs being
scheduled on its GPUs.

qsub -l select=ngpus=<value>:<rest of chunk specification> -lplace=excl

Example 4-7: To submit the job named “my_gpu_job”, requesting one node with two GPUs and one CPU, and exclu-
sive use of the node:

qsub -lselect=1:ncpus=1:ngpus=2 -lplace=excl my_gpu_job

It is up to the application or CUDA to bind the GPUs to the application processes.

4.3.7.2.iii Requesting Non-specific GPUs and Shared Use of Node

When your site uses “advanced GPU scheduling”, your administrator can configure PBS to allow your job to use non-
specific GPUs on a node while sharing GPU nodes. In this case, your administrator puts each GPU in its own vnode.

Your administrator can configure a resource to represent GPUs. We recommend that the GPU resource is called ngpus.

Your administrator can configure each GPU vnode so it has a resource containing the device number of the GPU. We
recommend that this resource is called gpu_id.

Example 4-8: To submit the job named “my_gpu_job”, requesting two GPUs and one CPU, and shared use of the node:

qsub -lselect=1:ncpus=1:ngpus=2 -lplace=shared my_gpu_job
UG-56 PBS Professional 2020.1.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
When a job is submitted requesting any GPU, the PBS scheduler looks for a vnode with an available GPU and assigns
that vnode to the job. Since there is a one-to-one correspondence between GPUs and vnodes, the job can determine the
gpu_id of that vnode. Finally, the application can use the appropriate CUDA call to bind the process to the allocated
GPU.

4.3.7.2.iv Requesting Specific GPUs

When your site uses “advanced GPU scheduling”, your job can request one or more specific GPUs. This allows you to
run applications on the GPUs for which the applications are written.

Your administrator can set up a resource to allow jobs to request specific GPUs. We recommend that the GPU resource
is called gpu_id.

When you request specific GPUs, specify the GPU that you want for each chunk:

qsub -l select=gpu_id=<GPU ID>:<rest of chunk specification>

Example 4-9: To request 4 vnodes, each with GPU with ID 0:

qsub -lselect=4:ncpus=1:ngpus=1:gpu_id=gpu0 my_gpu_job

When a job is submitted requesting specific GPUs, the PBS scheduler assigns the vnode with the resource containing that
gpu_id to the job. The application can use the appropriate CUDA call to bind the process to the allocated GPU.

4.3.7.3 Viewing GPU Information for Nodes

You can find the number of GPUs available and assigned on execution hosts via the pbsnodes command. See section
4.6, “Viewing Resources”, on page 63.

4.3.8 Caveats and Restrictions on Requesting Resources

4.3.8.1 Caveats and Restrictions for Specifying Resource Values

• Resource values which contain commas, quotes, plus signs, equal signs, colons, or parentheses must be quoted to
PBS. The string must be enclosed in quotes so that the command (e.g. qsub, qalter) will parse it correctly.

• When specifying resources via the command line, any quoted strings must be escaped or enclosed in another set of
quotes. This second set of quotes must be different from the first set, meaning that double quotes must be enclosed
in single quotes, and vice versa.

• If a string resource value contains spaces or shell metacharacters, enclose the string in quotes, or otherwise escape
the space and metacharacters. Be sure to use the correct quotes for your shell and the behavior you want.

4.3.8.2 Warning About NOT Requesting walltime

If your job does not request a walltime, and there is no default for walltime, your job is treated as if it had requested a
very, very long walltime. Translation: the scheduler will have a hard time finding a time slot for your job. Remember,
the administrator may schedule dedicated time for the entire PBS complex once a year, for upgrading, etc. In this case,
your job will never run. We recommend requesting a reasonable walltime for your job.

4.3.8.3 Caveats for Jobs Requesting Undefined Resources

If you submit a job that requests a job-wide or host-level resource that is undefined, the job is not rejected at submission;
instead, it is aborted upon being enqueued in an execution queue, if the resources are still undefined. This preserves
backward compatibility.
PBS Professional 2020.1.1 User’s Guide UG-57

Chapter 4 Allocating Resources & Placing Jobs
4.3.8.4 Matching Resource Requests with Unset Resources

When job resource requests are being matched with available resources, a numerical resource that is unset on a host is
treated as if it were zero, and an unset string cannot satisfy a request. An unset Boolean resource is treated as if it were
set to “False”. An unset resource at the server or queue is treated as if it were infinite.

4.3.8.5 Caveat for Invisible or Unrequestable Resources

Your administrator may define custom resources which restricted, so that they are invisible, or are visible but unrequest-
able. Custom resources which were created to be invisible or unrequestable cannot be requested or altered. The follow-
ing is a list of the commands normally used to view or request resources or modify resource requests, and their
limitations for restricted resources:

pbsnodes

Job submitters cannot view restricted host-level custom resources.

pbs_rstat

Job submitters cannot view restricted reservation resources.

pbs_rsub

Job submitters cannot request restricted custom resources for reservations.

qalter

Job submitters cannot alter a restricted resource.

qmgr

Job submitters cannot print or list a restricted resource.

qselect

Job submitters cannot specify restricted resources via -l Resource_List.

qsub

Job submitters cannot request a restricted resource.

qstat

Job submitters cannot view a restricted resource.

4.3.8.6 Warning About Requesting Tiny Amounts of Memory

The smallest unit of memory you can request is 1KB. If you request 400 bytes, you get 1KB. If you request 1400 bytes,
you get 2KB.

4.3.8.7 Maximum Length of Job Submission Command Line

The maximum length of a command line in PBS is 4095 characters. When you submit a job using the command line,
your select and place statements, and the rest of your command line, must fit within 4095 characters.

4.3.8.8 Only One select Statement Per Job

You can include at most one select statement per job submission.

4.3.8.9 The software Resource is Job-wide

The built-in resource "software" is not a vnode-level resource. See “Resources Built Into PBS” on page 265 of the PBS
Professional Reference Guide.
UG-58 PBS Professional 2020.1.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
4.3.8.10 Do Not Mix Old and New Syntax

Do not mix old and new syntax when requesting resources. See section 4.8, “Backward Compatibility”, on page 70 for a
description of old syntax.

4.4 How Resources are Allocated to Jobs

Resources are allocated to your job when the job explicitly requests them, and when PBS applies defaults.

Jobs explicitly request resources either at the vnode level in chunks defined in a selection statement, or in job-wide
resource requests. We will cover requesting resources in section 4.3.3, “Requesting Resources in Chunks”, on page 53
and section 4.3.2, “Requesting Job-wide Resources”, on page 52.

The administrator can set default resources at the server and at queues, so that a job that does not request a resource at
submission time ends up being allocated the default value for that resource. We will cover default resources in section
4.4.1, “Applying Default Resources”, on page 59.

The administrator can also specify default arguments for qsub so that jobs automatically request certain resources.
Resource values explicitly requested by your job override any qsub defaults. See “qsub” on page 213 of the PBS Pro-
fessional Reference Guide.

4.4.1 Applying Default Resources

PBS applies resource defaults only where the job has not explicitly requested a value for a resource.

Job-wide and per-chunk resources are applied, with the following order of precedence, via the following:

1. Resources that are explicitly requested via -l <resource>=<value> and -l select=<chunk>

2. Default qsub arguments

3. The queue’s default_chunk.<resource>

4. The server’s default_chunk.<resource>

5. The queue’s resources_default.<resource>

6. The server’s resources_default.<resource>

7. The queue’s resources_max.<resource>

8. The server’s resources_max.<resource>

4.4.1.1 Applying Job-wide Default Resources

The explicit job-wide resource request is checked first against default qsub arguments, then against queue resource
defaults, then against server resource defaults. Any default job-wide resources not already in the job’s resource request
are added. PBS applies job-wide default resources defined in the following places, in this order:

• Via qsub: The server’s default_qsub_arguments attribute can include any requestable job-wide resources.

• Via the queue: Each queue’s resources_default attribute defines each queue-level job-wide resource default in
resources_default.<resource>.

• Via the server: The server’s resources_default attribute defines each server-level job-wide resource default in
resources_default.<resource>.
PBS Professional 2020.1.1 User’s Guide UG-59

Chapter 4 Allocating Resources & Placing Jobs
4.4.1.2 Applying Per-chunk Default Resources

For each chunk in the job's selection statement, first qsub defaults are applied, then queue chunk defaults are applied,
then server chunk defaults are applied. If the chunk request does not include a resource listed in the defaults, the default
is added. PBS applies default chunk resources in the following order:

• Via qsub: The server’s default_qsub_arguments attribute can include any requestable chunk resources.

• Via the queue: Each queue’s default_chunk attribute defines each queue-level chunk resource default in
default_chunk.<resource>.

• Via the server: The server’s default_chunk attribute defines each server-level chunk resource default in
default_chunk.<resource>.

Example 4-10: Applying chunk defaults: if the queue in which the job is enqueued has the following defaults defined:

default_chunk.ncpus=1

default_chunk.mem=2gb

A job submitted with this selection statement:

select=2:ncpus=4+1:mem=9gb

The job has this specification after the default_chunk elements are applied:

select=2:ncpus=4:mem=2gb+1:ncpus=1:mem=9gb.

In this example, mem=2gb and ncpus=1 are inherited from default_chunk.

4.4.1.3 Caveat for Moving Jobs From One Queue to Another

If the job is moved from the current queue to a new queue, any default resources in the job's resource list that were con-
tributed by the current queue are removed. This includes a select specification and place directive generated by the rules
for conversion from the old syntax. If a job's resource is unset (undefined) and there exists a default value at the new
queue or server, that default value is applied to the job's resource list. If either select or place is missing from the job's
new resource list, it will be automatically generated, using any newly inherited default values.

Given the following set of queue and server default values:

Server

resources_default.ncpus=1

Queue QA

resources_default.ncpus=2

default_chunk.mem=2gb

Queue QB

default_chunk.mem=1gb

no default for ncpus

The following examples illustrate the equivalent select specification for jobs submitted into queue QA and then moved to
(or submitted directly to) queue QB:

qsub -l ncpus=1 -lmem=4gb

In QA: select=1:ncpus=1:mem=4gb

No defaults need be applied

In QB: select=1:ncpus=1:mem=4gb

No defaults need be applied

qsub -l ncpus=1

In QA: select=1:ncpus=1:mem=2gb
UG-60 PBS Professional 2020.1.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
Picks up 2gb from queue default chunk and 1 ncpus from qsub

In QB: select=1:ncpus=1:mem=1gb

Picks up 1gb from queue default chunk and 1 ncpus from qsub

qsub -lmem=4gb

In QA: select=1:ncpus=2:mem=4gb

Picks up 2 ncpus from queue level job-wide resource default and 4gb mem from qsub

In QB: select=1:ncpus=1:mem=4gb

Picks up 1 ncpus from server level job-wide default and 4gb mem from qsub

qsub -lnodes=4

In QA: select=4:ncpus=1:mem=2gb

Picks up a queue level default memory chunk of 2gb. (This is not 4:ncpus=2 because in prior versions,
"nodes=x" implied 1 CPU per node unless otherwise explicitly stated.)

In QB: select=4:ncpus=1:mem=1gb

(In prior versions, "nodes=x" implied 1 CPU per node unless otherwise explicitly stated, so the ncpus=1 is
not inherited from the server default.)

qsub -l mem=16gb -lnodes=4

In QA: select=4:ncpus=1:mem=4gb

(This is not 4:ncpus=2 because in prior versions, "nodes=x" implied 1 CPU per node unless otherwise
explicitly stated.)

In QB: select=4:ncpus=1:mem=4gb

(In prior versions, "nodes=x" implied 1 CPU per node unless otherwise explicitly stated, so the ncpus=1 is
not inherited from the server default.)

4.5 Limits on Resource Usage

Jobs are assigned limits on the amount of resources they can use. These limits apply to how much the whole job can use
(job-wide limit) and to how much the job can use at each host (host limit). Limits are applied only to resources the job
requests or inherits.

Your administrator can configure PBS to enforce limits on mem and ncpus, but the other limits are always enforced.

If you want to make sure that your job does not exceed a given amount of some resource, request that amount of the
resource.

4.5.1 Enforceable Resource Limits

Limits can be enforced on the following resources:

Table 4-2: Enforceable Resource Limits

Resource Name Where Specified Where Enforced Always Enforced?

cput Host Host Always

mem Host Host Optional

ncpus Host Host Optional
PBS Professional 2020.1.1 User’s Guide UG-61

Chapter 4 Allocating Resources & Placing Jobs
4.5.2 Origins of Resource Limits

Limits are derived from both requested resources and applied default resources. Resource limits are derived in the order
shown in section 4.4.1, “Applying Default Resources”, on page 59.

4.5.3 Job-wide Resource Limits

Job-wide resource limits set a limit for per-job resource usage. Job resource limits are derived from job-wide resources
and from totals of per-chunk consumable resources. Limits are derived from explicitly requested resources and default
resources.

Job-wide resource limits that are derived from from sums of all chunks override those that are derived from job-wide
resources.

Example 4-11: Job-wide limits are derived from sums of chunks. With the following chunk request:

qsub -lselect=2:ncpus=3:mem=4gb:arch=linux

The following job-wide limits are derived:

ncpus=6

mem=8gb

4.5.4 Per-chunk Resource Limits

Each chunk's per-chunk limits determine how much of any resource can be used at that host. PBS sums the chunk limits
at each host, and uses that sum as the limit at that resource. Per-chunk resource usage limits are the amount of per-chunk
resources allocated to the job, both from explicit requests and from defaults.

4.5.4.1 Effects of Limits

If a running job exceeds its limit for walltime, the job is terminated.

If any of the job’s processes exceed the limit for pcput, pmem, or pvmem, the job is terminated.

If any of the host limits for mem, ncpus, cput, or vmem is exceeded, the job is terminated. These are host-level limits,
so if for example your job has two chunks on one host, and the processes on one chunk exceed one of these limits, but the
processes on the other are under the chunk limit, the job can continue to run as long as the total used for both chunks is
less than the host limit.

pcput Job-wide Per-process Always

pmem Job-wide Per-process Always

pvmem Job-wide Per-process Always

vmem Host Host Always

walltime Job-wide Job-wide Always

Table 4-2: Enforceable Resource Limits

Resource Name Where Specified Where Enforced Always Enforced?
UG-62 PBS Professional 2020.1.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
4.5.5 Examples of Memory Limits

Your administrator may choose to enforce memory limits. If this is the case, the memory used by the entire job cannot
exceed the amount in Resource_List.mem, and the memory used at any host cannot exceed the sum of the chunks on
that host. For the following examples, assume the following:

The queue has these settings:

resources_default.mem=200mb

default_chunk.mem=100mb

Example 4-12: A job requesting -l select=2:ncpus=1:mem=345mb uses 345mb from each of two vnodes and has
a job-wide limit of 690mb (2 * 345). The job's Resource_List.mem shows 690mb.

Example 4-13: A job requesting -l select=2:ncpus=2 takes 100mb via default_chunk from each vnode and has a
job-wide limit of 200mb (2 * 100mb). The job's Resource_List.mem shows 200mb.

Example 4-14: A job requesting -l ncpus=2 takes 200mb (inherited from resources_default and used to create the
select specification) from one vnode and has a job-wide limit of 200mb. The job's Resource_List.mem shows
200mb.

Example 4-15: A job requesting -lnodes=2 inherits 200mb from resources_default.mem which becomes the job-
wide limit. The memory is taken from the two vnodes, half (100mb) from each. The generated select specification
is 2:ncpus=1:mem=100mb. The job's Resource_List.mem shows 200mb.

4.6 Viewing Resources

You can look at the resources on the server, queue, and vnodes. You can also see what resources are allocated to and used
by your job.

4.6.1 Viewing Server, Queue, and Vnode Resources

To see server resources:

qstat - Bf

To see queue resources:

qstat -Qf

To see vnode resources, use any of the following:

qmgr -c "list node <vnode name> <attribute name>"

pbsnodes -av

pbsnodes [<host list>]

Look at the following attributes:

resources_available.<resource name>

(Server, queue, vnode) Total amount of the resource available at the server, queue, or vnode; does not take into
account how much of the resource is in use.

resources_default.<resource name>

(Server, queue) Default value for job-wide resource. This amount is allocated to job if job does not request this
resource. Queue setting overrides server setting.

resources_max.<resource name>

(Server, queue) Maximum amount that a single job can request. Queue setting overrides server setting.
PBS Professional 2020.1.1 User’s Guide UG-63

Chapter 4 Allocating Resources & Placing Jobs
resources_min.<resource name>

(Queue) Minimum amount that a single job can request.

resources_assigned.<resource name>

(Server, queue, vnode) Total amount of the resource that has been allocated to running and exiting jobs and res-
ervations at the server, queue, or vnode.

4.6.2 Viewing Job Resources

To see the resources allocated to or used by your job:

qstat -f

Look at the following job attributes:

Resource_List.<resource name>

The amount of the resource that has been allocated to the job, including defaults.

resources_used.<resource name>

The amount of the resource used by the job.

4.6.2.1 Resources Shown in Resource_List Job Attribute

When your job requests a job-wide resource or any of certain built-in host-level resources, the value requested is stored
in the job’s Resource_List attribute, as Resource_List.<resource name>=<value>. When you request a built-in
host-level resource inside multiple chunks, the value in Resource_List is the sum over all of the chunks for that
resource. For a list of the resources that can appear in Resource_List, see section 5.9.2, "Resources Requested by Job",
on page 245 of the PBS Professional Administrator’s Guide.

If your administrator has defined default values for any of those resources, and your job has inherited any defaults, those
defaults control the value shown in the Resource_List attribute.

4.7 Specifying Job Placement

You can specify how your job should be placed on vnodes. You can choose to place each chunk on a different host, or a
different vnode, or your job can use chunks that are all on one host. You can specify that all of the job’s chunks should
share a value for some resource.

Your job can request exclusive use of each vnode, or shared use with other jobs. Your job can request exclusive use of its
hosts.

We will cover the basics of specifying job placement in the following sections. For details on placing chunks for an MPI
job, see "Submitting Multiprocessor Jobs".

4.7.1 Using the place Statement

You use the place statement to specify how the job’s chunks are placed.

The place statement can contain the following elements in any order:

-l place=[<arrangement>][: <sharing>][: <grouping>]

where
UG-64 PBS Professional 2020.1.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
arrangement

Whether this chunk is willing to share this vnode or host with other chunks from the same job. One of free |

pack | scatter | vscatter

sharing

Whether this this chunk is willing to share this vnode or host with other jobs. One of excl | shared | exclhost

grouping

Whether the chunks from this job should be placed on vnodes that all have the same value for a resource. Can
have only one instance of group=<resource name>

and where

The place statement may be not be used without the select statement.

The place statement may not begin with a colon.

4.7.1.1 Specifying Arrangement of Chunks

To place your job’s chunks wherever they fit:

-l place=free

To place all of the job’s chunks on a single host:

-l place=pack

To place each chunk on its own host:

-l place=scatter

To place each chunk on its own vnode:

-l place=vscatter

Table 4-3: Placement Modifiers

Modifier Meaning

free Place job on any vnode(s)

pack All chunks will be taken from one host

scatter Only one chunk is taken from any host

vscatter Only one chunk is taken from any vnode.

Each chunk must fit on a vnode.

excl Only this job uses the vnodes chosen

exclhost The entire host is allocated to this job

shared This job can share the vnodes chosen

group=<resource> Chunks will be placed on vnodes according to a resource shared by those vnodes. This
resource must be a string or string array. All vnodes in the group must have a common value
for the resource.
PBS Professional 2020.1.1 User’s Guide UG-65

Chapter 4 Allocating Resources & Placing Jobs
4.7.1.1.i Caveats and Restrictions for Arrangement

• For all arrangements except vscatter, chunks cannot be split across hosts, but they can be split across vnodes on the
same host. If a job does not request vscatter for its arrangement, any chunk can be broken across vnodes. This
means that one chunk could be taken from more than one vnode.

• If the job requests vscatter for its arrangement, no chunk can be larger than a vnode, and no chunk can be split
across vnodes. This behavior is different from other values for arrangement, where chunks can be split across
vnodes.

4.7.1.2 Specifying Shared or Exclusive Use of Vnodes

Each vnode can be allocated exclusively to one job, or its resources can be shared among jobs. Hosts can also be allo-
cated exclusively to one job, or shared among jobs.

How vnodes are allocated to jobs is determined by a combination of the vnode’s sharing attribute and the job’s resource
request. The possible values for the vnode sharing attribute, and how they interact with a job’s placement request, are
described in “sharing” on page 324 of the PBS Professional Reference Guide. The following table expands on this:

If a vnode is allocated exclusively to a job, all of its resources are assigned to the job. The state of the vnode becomes
job-exclusive. No other job can use the vnode.

If a host is to be allocated exclusively to one job, all of the host must be used: if any vnode from a host has its sharing
attribute set to either default_exclhost or force_exclhost, all vnodes on that host must have the same value for the shar-
ing attribute.

If your job requests exclusive placement, and it is in a reservation, the reservation must also request exclusive placement
via -l place=excl.

To see the value for a vnode’s sharing attribute, you can do either of the following:

• Use qmgr:
Qmgr: list node <vnode name> sharing

• Use pbsnodes:
pbsnodes -av

Table 4-4: How Vnode sharing Attribute Affects Vnode Allocation

Value of Vnode
sharing Attribute

Effect on Allocation

not set The job’s arrangement request determines how vnodes are allocated to the job. If there is no
specification, vnodes are shared.

default_share Vnodes are shared unless the job explicitly requests exclusive use of the vnodes.

default_excl Vnodes are allocated exclusively to the job unless the job explicitly requests shared alloca-
tion.

default_exclhost All vnodes from this host are allocated exclusively to the job, unless the job explicitly
requests shared allocation.

ignore_excl Vnodes are shared, regardless of the job’s request.

force_excl Vnodes are allocated exclusively to the job, regardless of the job’s request.

force_exclhost All vnodes from this host are allocated exclusively to the job, regardless of the job’s request.
UG-66 PBS Professional 2020.1.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
4.7.1.3 Grouping on a Resource

You can specify that all of the chunks for your job should run on vnodes that have the same value for a selected resource.

To group your job’s chunks this way, use the following format:

-l place=group=<resource name>

where resource name is a string or string array.

The value of the resource can be one or more strings at each vnode, but there must be one string that is the same for each
vnode. For example, if the resource is router, the value can be “r1i0,r1” at one vnode, and “r1i1,r1” at another vnode,
and these vnodes can be grouped because they share the string "r1".

Using the method of grouping on a resource, you cannot specify what the value of the resource should be, only that all
vnodes have the same value. If you need the resource to have a specific value, specify that value in the description of the
chunks.

4.7.1.3.i Grouping vs. Placement Sets

Your administrator may define placement sets for your site. A placement set is a group of vnodes that share a value for a
resource. By default, placement sets attempt to group vnodes that are “close to” each other. If your job doesn’t request a
specific placement, and placement sets are defined, your job may automatically run in a placement set. See "Placement
Sets" on page 168 in the PBS Professional Administrator’s Guide.

If your job requests grouping by a resource, using place=group=resource, the chunks are placed as requested and place-
ment sets are ignored.

If your job requests grouping but no group contains the required number of vnodes, grouping is ignored.

4.7.2 How the Job Gets its Place Statement

If the administrator has defined default values for arrangement, sharing, and grouping, each job inherits these unless it
explicitly requests at least one. That means that if your job requests arrangement, but not sharing or grouping, it will not
inherit values for sharing or grouping. For example, the administrator sets a default of
place=pack:exclhost:group=host. Job A requests place=free, but doesn’t specify sharing or grouping, so
Job A does not inherit sharing or grouping. Job B does not request any placement, so it inherits all three.

The place statement can be specified, in order of precedence, via:

1. Explicit placement request in qalter

2. Explicit placement request in qsub

3. Explicit placement request in PBS job script directives

4. Default qsub place statement

5. Queue default placement rules

6. Server default placement rules

7. Built-in default conversion and placement rules
PBS Professional 2020.1.1 User’s Guide UG-67

Chapter 4 Allocating Resources & Placing Jobs
4.7.3 Caveats and Restrictions for Specifying Placement

• The place specification cannot be used without the select specification. In other words, you can only specify place-
ment when you have specified chunks.

• A select specification cannot be used with a nodes specification.

• A select specification cannot be used with old-style resource requests such as -lncpus, -lmem, -lvmem, -larch,
-lhost.

• When using place=group=<resource>, the resource must be a string or string array.

• Do not mix old and new syntax when requesting placement. See section 4.8, “Backward Compatibility”, on page 70
for a description of old syntax.

• If your job requests exclusive placement, and it is in a reservation, the reservation must also request exclusive place-
ment via -l place=excl.

4.7.4 Examples of Specifying Placement

Unless otherwise specified, the vnodes allocated to the job will be allocated as shared or exclusive based on the setting of
the vnode’s sharing attribute. Each of the following shows how you would use -l select= and -l place=.

1. A job that will fit in a single host but not in any of the vnodes, packed into the fewest vnodes:
-l select=1:ncpus=10:mem=20gb

-l place=pack

In earlier versions, this would have been:

-lncpus=10,mem=20gb

2. Request four chunks, each with 1 CPU and 4GB of memory taken from anywhere.

-l select=4:ncpus=1:mem=4GB

-l place=free

3. Allocate 4 chunks, each with 1 CPU and 2GB of memory from between
UG-68 PBS Professional 2020.1.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
 one and four vnodes which have an arch of “linux”.

-l select=4:ncpus=1:mem=2GB:arch=linux -l place=free

4. Allocate four chunks on 1 to 4 vnodes where each vnode must have 1 CPU, 3GB of memory and 1 node-locked dyna
license available for each chunk.

-l select=4:dyna=1:ncpus=1:mem=3GB -l place=free

5. Allocate four chunks on 1 to 4 vnodes, and 4 floating dyna licenses. This assumes “dyna” is specified as a server
dynamic resource.

-l dyna=4 -l select=4:ncpus=1:mem=3GB -l place=free

6. This selects exactly 4 vnodes where the arch is linux, and each vnode will be on a separate host. Each vnode will
have 1 CPU and 2GB of memory allocated to the job.

-lselect=4:mem=2GB:ncpus=1:arch=linux -lplace=scatter

7. This will allocate 3 chunks, each with 1 CPU and 10GB of memory. This will also reserve 100mb of scratch space if
scratch is to be accounted . Scratch is assumed to be on a file system common to all hosts. The value of “place”
depends on the default which is “place=free”.

-l scratch=100mb -l select=3:ncpus=1:mem=10GB

8. This will allocate 2 CPUs and 50GB of memory on a host named zooland. The value of “place” depends on the
default which defaults to “place=free”:

-l select=1:ncpus=2:mem=50gb:host=zooland

9. This will allocate 1 CPU and 6GB of memory and one host-locked swlicense from each of two hosts:

-l select=2:ncpus=1:mem=6gb:swlicense=1

-lplace=scatter

10. Request free placement of 10 CPUs across hosts:

-l select=10:ncpus=1

-l place=free

11. Here is an odd-sized job that will fit on a single HPE system, but not on any one node-board. We request an odd
number of CPUs that are not shared, so they must be “rounded up”:

-l select=1:ncpus=3:mem=6gb

-l place=pack:excl

12. Here is an odd-sized job that will fit on a single HPE system, but not on any one node-board. We are asking for
small number of CPUs but a large amount of memory:

-l select=1:ncpus=1:mem=25gb

-l place=pack:excl

13. Here is a job that may be run across multiple HPE systems, packed into the fewest vnodes:

-l select=2:ncpus=10:mem=12gb

-l place=free

14. Submit a job that must be run across multiple HPE systems, packed into the fewest vnodes:

-l select=2:ncpus=10:mem=12gb

-l place=scatter

15. Request free placement across nodeboards within a single host:

-l select=1:ncpus=10:mem=10gb
PBS Professional 2020.1.1 User’s Guide UG-69

Chapter 4 Allocating Resources & Placing Jobs
-l place=group=host

16. Request free placement across vnodes on multiple HPE systems:

-l select=10:ncpus=1:mem=1gb

-l place=free

17. Here is a small job that uses a shared cpuset:

-l select=1:ncpus=1:mem=512kb

-l place=pack:shared

18. Request a special resource available on a limited set of nodeboards, such as a graphics card:

-l select= 1:ncpus=2:mem=2gb:graphics=True + 1:ncpus=20:mem=20gb:graphics=False

-l place=pack:excl

19. Align SMP jobs on c-brick boundaries:

-l select=1:ncpus=4:mem=6gb

-l place=pack:group=cbrick

20. Align a large job within one router, if it fits within a router:

-l select=1:ncpus=100:mem=200gb

-l place=pack:group=router

21. Fit large jobs that do not fit within a single router into as few available routers as possible. Here, RES is the resource
used for node grouping:

-l select=1:ncpus=300:mem=300gb

-l place=pack:group=<RES>

22. To submit an MPI job, specify one chunk per MPI task. For a 10-way MPI job with 2gb of memory per MPI task:

-l select=10:ncpus=1:mem=2gb

23. To submit a non-MPI job (including a 1-CPU job or an OpenMP or shared memory) job, use a single chunk. For a
2-CPU job requiring 10gb of memory:

-l select=1:ncpus=2:mem=10gb

4.8 Backward Compatibility

4.8.1 Old-style Resource Specifications

Old versions of PBS allowed job submitters to ask for resources outside of a select statement, using “-lre-
source=value”, where those resources must now be requested in chunks, inside a select statement. This old style of
resource request was called a “resource specification”. Resource specification syntax is deprecated.

For backward compatibility, any resource specification is converted to select and place statements, and any defaults are
applied.

4.8.2 Old-style Node Specifications

In early versions of PBS, job submitters used “-l nodes=...” in what was called a “node specification” to specify
where the job should run. The syntax for a “node specification” is deprecated.
UG-70 PBS Professional 2020.1.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
For backward compatibility, a legal node specification or resource specification is converted into select and place direc-
tives; we show how in following sections.

4.8.3 Conversion of Old Style to New

4.8.3.1 Conversion of Resource Specifications

If your job has an old-style resource specification, PBS creates a select specification requesting 1 chunk containing the
resources specified by the job and server and/or queue default resources. Resource specification format:

-l<resource>=<value>[:<resource>=<value> ...]

The resource specification is converted to:

-lselect=1[:<resource>=<value> ...]

-lplace=pack

with one instance of resource=value for each of the following vnode-level resources in the resource request:

built-in resources: ncpus | mem | vmem | arch | host

site-defined vnode-level resources

For example, a job submitted with

qsub -l ncpus=4:mem=123mb:arch=linux

gets the following select statement:

select=1:ncpus=4:mem=123mb:arch=linux

4.8.3.2 Conversion of Node Specifications

If your job requests a node specification, PBS creates a select and place specification, according to the following rules.

Old node specification format:

-lnodes=[N:<spec list> | <spec list>]

[[+N:<spec list> | +<spec list>] ...]

[#<suffix> ...][-lncpus=Z]

where:

spec list has syntax: <spec>[:<spec> ...]

spec is any of: hostname | property | ncpus=X | cpp=X | ppn=P

suffix is any of: property | excl | shared

N and P are positive integers

X and Z are non-negative integers

The node specification is converted into select and place statements as follows:

Each spec list is converted into one chunk, so that N:<spec list> is converted into N chunks.

If spec is hostname :

The chunk will include host=hostname

If spec matches any vnode's resources_available.<hostname> value:

The chunk will include host=hostname

If spec is property :
PBS Professional 2020.1.1 User’s Guide UG-71

Chapter 4 Allocating Resources & Placing Jobs
The chunk will include <property>=true

Property must be a site-defined vnode-level boolean resource.

If spec is ncpus=X or cpp=X :

The chunk will include ncpus=X

If no spec is ncpus=X and no spec is cpp=X :

The chunk will include ncpus=P

If spec is ppn=P :

The chunk will include mpiprocs=P

If the nodespec is

-lnodes=N:ppn=P

It is converted to

-lselect=N:ncpus=P:mpiprocs=P

Example:

-lnodes=4:ppn=2

is converted into

-lselect=4:ncpus=2:mpiprocs=2

If -lncpus=Z is specified and no spec contains ncpus=X and no spec is cpp=X :

Every chunk will include ncpus=W, where W is Z divided by the total number of chunks. (Note: W must be an inte-
ger; Z must be evenly divisible by the number of chunks.)

If property is a suffix :

All chunks will include property=true

If excl is a suffix :

The placement directive will be -lplace=scatter:excl

If shared is a suffix :

The placement directive will be -lplace=scatter:shared

If neither excl nor shared is a suffix :

The placement directive will be -lplace=scatter

Example:

-lnodes=3:green:ncpus=2:ppn=2+2:red

is converted to:

-l select=3:green=true:ncpus=4:mpiprocs=2+ 2:red=true:ncpus=1

-l place=scatter

4.8.3.3 Examples of Converting Old Syntax to New

1. Request CPUs and memory on a single host using old syntax:
-l ncpus=5,mem=10gb
UG-72 PBS Professional 2020.1.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
is converted into the equivalent:

-l select=1:ncpus=5:mem=10gb

-l place=pack

2. Request CPUs and memory on a named host along with custom resources including a floating license using old syn-
tax:

-l ncpus=1,mem=5mb,host=sunny,opti=1,arch=arch1

is converted to the equivalent:

-l select=1:ncpus=1:mem=5gb:host=sunny:arch=arch1

-l place=pack

-l opti=1

3. Request one host with a certain property using old syntax:

-lnodes=1:property

is converted to the equivalent:

-l select=1:ncpus=1:property=True

-l place=scatter

4. Request 2 CPUs on each of four hosts with a given property using old syntax:

-lnodes=4:property:ncpus=2

is converted to the equivalent:

-l select=4: ncpus=2:property=True -l place=scatter

5. Request 1 CPU on each of 14 hosts asking for certain software, licenses and a job limit amount of memory using old
syntax:

-lnodes=14:mpi-fluent:ncpus=1 -lfluent=1,fluent-all=1, fluent-par=13

-l mem=280mb

is converted to the equivalent:

-l select=14:ncpus=1:mem=20mb:mpi_fluent=True

-l place=scatter

-l fluent=1,fluent-all=1,fluent-par=13

6. Requesting licenses using old syntax:

-lnodes=3:dyna-mpi-Linux:ncpus=2 -ldyna=6,mem=100mb, software=dyna

is converted to the equivalent:

-l select=3:ncpus=2:mem=33mb: dyna-mpi-Linux=True

-l place=scatter

-l software=dyna

-l dyna=6

7. Requesting licenses using old syntax:

 -l ncpus=2,app_lic=6,mem=200mb -l software=app
PBS Professional 2020.1.1 User’s Guide UG-73

Chapter 4 Allocating Resources & Placing Jobs
is converted to the equivalent:

-l select=1:ncpus=2:mem=200mb

-l place=pack

-l software=app

-l app_lic=6

8. Additional example using old syntax:

-lnodes=1:fserver+15:noserver

is converted to the equivalent:

-l select=1:ncpus=1:fserver=True + 15:ncpus=1:noserver=True

-l place=scatter

but could also be more easily specified with something like:

-l select=1:ncpus=1:fserver=True + 15:ncpus=1:fserver=False

-l place=scatter

9. Allocate 4 vnodes, each with 6 CPUs with 3 MPI processes per vnode, with each vnode on a separate host. The
memory allocated would be one-fourth of the memory specified by the queue or server default if one existed. This
results in a different placement of the job from version 5.4:

-lnodes=4:ppn=3:ncpus=2

is converted to:

-l select=4:ncpus=6:mpiprocs=3 -l place=scatter

10. Allocate 4 vnodes, from 4 separate hosts, with the property blue. The amount of memory allocated from each vnode
is 2560MB (= 10GB / 4) rather than 10GB from each vnode.

-lnodes=4:blue:ncpus=2 -l mem=10GB

is converted to:

-l select=4:blue=True:ncpus=2:mem=2560mb -lplace=scatter

4.8.4 Caveats for Using Old Syntax

4.8.4.1 Changes in Behavior

Most jobs submitted with "-lnodes" will continue to work as expected. These jobs will be automatically converted to
the new syntax. However, job tasks may execute in an unexpected order, because vnodes may be assigned in a different
order. Jobs submitted with old syntax that ran successfully on versions of PBS Professional prior to 8.0 can fail because
a limit that was per-chunk is now job-wide.

Example 4-16: A job submitted using -lnodes=X -lmem=M that fails because the mem limit is now job-wide. If the
following conditions are true:

• PBS Professional 9.0 or later using standard MPICH

• The job is submitted with qsub -lnodes=5 -lmem=10GB

• The master process of this job tries to use more than 2GB

The job is killed, where in <= 7.0 the master process could use 10GB before being killed. 10GB is now a job-wide
limit, divided up into a 2GB limit per chunk.
UG-74 PBS Professional 2020.1.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
4.8.4.2 Do Not Mix Old and New Styles

Do not mix old style resource or node specifications (“-l<resource>=<value>” or “-lnodes”) with select and
place statements (“-lselect=” or “-lplace=”). Do not use both in the command line. Do not use both in the job
script. Do not use one in a job script and the other on the command line. This will result in an error.

4.8.4.3 Resource Request Conversion Dependent on Where

Resources are Defined

A job’s resource request is converted from old-style to new according to various rules, one of which is that the conver-
sion is dependent upon where resources are defined. For example: The boolean resource “Red” is defined on the server,
and the boolean resource “Blue” is defined at the host level. A job requests “qsub -l Blue=true”. This looks like
an old-style resource request, and PBS checks to see where Blue is defined. Since Blue is defined at the host level, the
request is converted into “-l select=1:Blue=true”. However, if a job requests “qsub -l Red=true”, while
this looks like an old-style resource request, PBS does not convert it to a chunk request because Red is defined at the
server.

4.8.4.4 Properties are Deprecated

The syntax for requesting properties is deprecated. Your administrator has replaced properties with Booleans.

4.8.4.5 Replace cpp with ncpus

Specifying “cpp” is part of the old syntax, and should be replaced with “ncpus”.

4.8.4.6 Environment Variables Set During Conversion

1. When a node specification is converted into a select statement, the job has the environment variables
NCPUS and OMP_NUM_THREADS set to the old value of ncpus in the first piece of the old node spec-
ification. This may produce incompatibilities with prior versions when a complex node specification using
different values of ncpus and ppn in different pieces is converted.
PBS Professional 2020.1.1 User’s Guide UG-75

Chapter 4 Allocating Resources & Placing Jobs
UG-76 PBS Professional 2020.1.1 User’s Guide

5

Multiprocessor Jobs

5.1 Submitting Multiprocessor Jobs

Before you read this chapter, please read Chapter 4, "Allocating Resources & Placing Jobs", on page 49.

5.1.1 Assigning the Chunks You Want

PBS assigns chunks to job processes in the order in which the chunks appear in the select statement. PBS takes the first
chunk from the primary execution host; this is where the top task of the job runs.

Example 5-1: You want three chunks, where the first has two CPUs and 20 GB of memory, the second has four CPUs
and 100 GB of memory, and the third has one CPU and five GB of memory:

-lselect=1:ncpus=2:mem=20gb+ncpus=4:mem=100gb+mem=5gb

5.1.1.1 Specifying Primary Execution Host

The job’s primary execution host is the host that supplies the vnode to satisfy the first chunk requested by the job.

5.1.1.2 Request Most Specific Chunks First

Chunk requests are interpreted from left to right. The more specific the chunk, the earlier it should be in the order. For
example, if you require a specific host for chunk A, but chunk B is not host-specific, request Chunk A first.

5.1.2 The Job Node File

For each job, PBS creates a job-specific “host file” or “node file”, which is a text file containing the name(s) of the
host(s) containing the vnode(s) allocated to that job. The file is created by the MoM on the primary execution host, and
is available only on that host.

5.1.2.1 Node File Format and Contents

The node file contains a list of host names, one per line. The name of the host is the value in resources_available.host
of the allocated vnode(s). The order in which hosts appear in the PBS node file is the order in which chunks are specified
in the selection directive.

The node file contains one line per MPI process with the name of the host on which that process should execute. The
number of MPI processes for a job, and the contents of the node file, are controlled by the value of the resource
mpiprocs. mpiprocs is the number of MPI processes per chunk, and defaults to 1 where the chunk contains CPUs, 0
otherwise.
PBS Professional 2020.1.1 User’s Guide UG-77

Chapter 5 Multiprocessor Jobs
For each chunk requesting mpiprocs=M, the name of the host from which that chunk is allocated is written in the node
file M times. Therefore the number of lines in the node file is the sum of requested mpiprocs for all chunks requested by
the job.

Example 5-2: Two MPI processes run on HostA and one MPI process runs on HostB. The node file looks like this:

HostA

HostA

HostB

5.1.2.2 Name and Location of Node File

The file is created by the MoM on the primary execution host, in PBS_HOME/aux/JOB_ID, where JOB_ID is the job
identifier for that job.

The full path and name for the node file is set in the job’s environment, in the environment variable PBS_NODEFILE.

5.1.2.3 Node File for Old-style Requests

For jobs which request resources using the old -lnodes=nodespec format, the host for each vnode allocated to the job is
listed N times, where N is the number of MPI ranks on the vnode. The number of MPI ranks is specified via the ppn
resource.

Example 5-3: Request four vnodes, each with two MPI processes, where each process has three threads, and each thread
has a CPU:

qsub -lnodes=4:ncpus=3:ppn=2

This results in each of the four hosts being written twice, in the order in which the vnodes are assigned to the job.

5.1.2.4 Using and Modifying the Node File

You can use $PBS_NODEFILE in your job script.

You can modify the node file. You can remove entries or sort the entries.

5.1.2.5 Node File Caveats

Do not add entries for new hosts; PBS may terminate processes on those hosts because PBS does not expect the pro-
cesses to be running there. Adding entries on the same host may cause the job to be terminated because it is using more
CPUs than it requested.

5.1.2.6 Viewing Execution Hosts

You can see which host is the primary execution host: the primary execution host is the first host listed in the job’s node
file.

5.1.3 Specifying Number of MPI Processes Per Chunk

How you request chunks matters. First, the number of MPI processes per chunk defaults to 1 for chunks with CPUs, and
0 for chunks without CPUs, unless you specify this value using the mpiprocs resource. Second, you can specify
whether MPI processes share CPUs. For example, requesting one chunk with four CPUs and four MPI processes is not
the same as requesting four chunks each with one CPU and one MPI process. In the first case, all four MPI processes are
sharing all four CPUs. In the second case, each process gets its own CPU.
UG-78 PBS Professional 2020.1.1 User’s Guide

Multiprocessor Jobs Chapter 5
You request the number of MPI processes you want for each chunk using the mpiprocs resource. For example, to
request two MPI processes for each of four chunks, where each chunk has two CPUs:

-lselect=4:ncpus=2:mpiprocs=2

If you don’t explicitly request a value for the mpiprocs resource, it defaults to 1 for each chunk requesting CPUs, and 0
for chunks not requesting CPUs.

Example 5-4: To request one chunk with two MPI processes and one chunk with one MPI process, where both chunks
have two CPUs:

-lselect=ncpus=2:mpiprocs=2+ncpus=2

Example 5-5: A request for three vnodes, each with one MPI process:

qsub -l select=3:ncpus=2

This results in the following node file:

<hostname for 1st vnode>

<hostname for 2nd vnode>

<hostname for 3rd vnode>

Example 5-6: If you want to run two MPI processes on each of three hosts and have the MPI processes share a single
processor on each host, request the following:

-lselect=3:ncpus=1:mpiprocs=2

The node file then contains the following list:

hostname for VnodeA

hostname for VnodeA

hostname for VnodeB

hostname for VnodeB

hostname for VnodeC

hostname for VnodeC

Example 5-7: If you want three chunks, each with two CPUs and running two MPI processes, use:

-l select=3:ncpus=2:mpiprocs=2...

The node file then contains the following list:

hostname for VnodeA

hostname for VnodeA

hostname for VnodeB

hostname for VnodeB

hostname for VnodeC

hostname for VnodeC

Notice that the node file is the same as the previous example, even though the number of CPUs used is different.

Example 5-8: If you want four MPI processes, where each process has its own CPU:

-lselect=4:ncpus=1

See “Resources Built Into PBS” on page 265 of the PBS Professional Reference Guide for a definitions of the mpiprocs
resource.
PBS Professional 2020.1.1 User’s Guide UG-79

Chapter 5 Multiprocessor Jobs
5.1.3.1 Chunks With No MPI Processes

If you request a chunk that has no MPI processes, PBS may take that chunk from a vnode which has already supplied
another chunk. You request a chunk that has no MPI processes using either of the following:

-lselect=1:ncpus=0

-lselect=1:ncpus=2:mpiprocs=0

5.1.4 Caveats and Advice for Multiprocessor Jobs

5.1.4.1 Requesting Uniform Processors

Some MPI jobs require the work on all vnodes to be at the same stage before moving to the next stage. For these appli-
cations, the work can proceed only at the pace of the slowest vnode, because faster vnodes must wait while it catches up.
In this case, you may find it useful to ensure that the job’s vnodes are homogeneous.

If there is a resource that identifies the architecture, type, or speed of the vnodes, you can use it to ensure that all chunks
are taken from vnodes with the same value. You can either request a specific value for this resource for all chunks, or
you can group vnodes according to the value of the resource. See section 4.7.1.3, “Grouping on a Resource”, on page 67.

Example 5-9: The resource that identifies the speed is named speed, and your job requests 16 chunks, each with two
CPUs, two MPI processes, all with speed equal to fast:

-lselect=16:ncpus=2:mpiprocs=2:speed=fast

Example 5-10: Request 16 chunks where each chunk has two CPUs, using grouping to ensure that all chunks share the
same speed. The resource that identifies the speed is named speed:

-lselect=16:ncpus=2:mpiprocs=2:place=group=speed

5.1.4.2 Requesting Storage on NFS Server

One of the vnodes in your complex may act as an NFS server to the rest of the vnodes, so that all vnodes have access to
the storage on the NFS server.

Example 5-11: The scratch resource is shared among all the vnodes in the complex, and is requested from a central
location, called the “nfs_server” vnode. To request two vnodes, each with two CPUs to do calculations, and one
vnode with 10gb of memory and no MPI processes:

-l select=2:ncpus=2+1:host=nfs_server:scratch=10gb:ncpus=0

With this request, your job has one MPI process on each chunk containing CPUs, and no MPI processes on the mem-
ory-only chunk. The job shows up as having a chunk on the “nfs_server” host.

5.1.5 File Staging for Multiprocessor Jobs

PBS stages files to and from the primary execution host only.

5.1.6 Prologue and Epilogue

The prologue is run as root on the primary host, with the current working directory set to PBS_HOME/mom_priv, and
with PBS_JOBDIR and TMPDIR set in its environment.

PBS runs the epilogue as root on the primary host. The epilogue is executed with its current working directory set to the
job's staging and execution directory, and with PBS_JOBDIR and TMPDIR set in its environment.
UG-80 PBS Professional 2020.1.1 User’s Guide

Multiprocessor Jobs Chapter 5
5.1.7 MPI Environment Variables

NCPUS

PBS sets the NCPUS environment variable in the job’s environment on the primary execution host. PBS sets
NCPUS to the value of ncpus requested for the first chunk.

OMP_NUM_THREADS

PBS sets the OMP_NUM_THREADS environment variable in the job’s environment on the primary execution
host. PBS sets this variable to the value of ompthreads requested for the first chunk, which defaults to the
value of ncpus requested for the first chunk.

5.1.8 Examples of Multiprocessor Jobs

Example 5-12: For a 10-way MPI job with 2gb of memory per MPI task:

qsub -l select=10:ncpus=1:mem=2gb

Example 5-13: If you have a cluster of small systems with for example two CPUs each, and you wish to submit an MPI
job that will run on four separate hosts:

qsub -l select=4:ncpus=1 -l place=scatter

In this example, the node file contains one entry for each of the hosts allocated to the job, which is four entries.

The variables NCPUS and OMP_NUM_THREADS are set to one.

Example 5-14: If you do not care where the four MPI processes are run:

qsub -l select=4:ncpus=1 -l place=free

Here, the job runs on two, three, or four hosts depending on what is available.

For this example, the node file contains four entries. These are either four separate hosts, or three hosts, one of
which is repeated once, or two hosts, etc.

NCPUS and OMP_NUM_THREADS are set to 1, the number of CPUs allocated from the first chunk.

5.1.9 Submitting SMP Jobs

To submit an SMP job, simply request a single chunk containing all of the required CPUs and memory, and if necessary,
specify the hostname. For example:

qsub -l select=ncpus=8:mem=20gb:host=host1

When the job is run, the node file will contain one entry, the name of the selected execution host.

The job will have two environment variables, NCPUS and OMP_NUM_THREADS, set to the number of CPUs allo-
cated.

5.2 Using MPI with PBS

5.2.1 Using an Integrated MPI

Many MPIs are integrated with PBS. PBS provides tools to integrate most of them; a few MPIs supply the integration.
When a job is run under an integrated MPI, PBS can track resource usage, signal job processes, and perform accounting
for all processes of the job.
PBS Professional 2020.1.1 User’s Guide UG-81

Chapter 5 Multiprocessor Jobs
When a job is run under an MPI that is not integrated with PBS, PBS is limited to managing the job only on the primary
vnode, so resource tracking, job signaling, and accounting happen only for the processes on the primary vnode.

The instructions that follow are for integrated MPIs. Check with your administrator to find out which MPIs are inte-
grated at your site. If an MPI is not integrated with PBS, you use it as you would outside of PBS.

Some of the integrated MPIs have slightly different command lines. See the instructions for each MPI.

The following table lists the supported MPIs and gives links to instructions for using each MPI:

Table 5-1: List of Supported MPIs

MPI Name Versions Instructions for Use

HP MPI 1.08.03

2.0.0

See section 5.2.4, “HP MPI with PBS”, on page 84

Intel MPI 2.0.022

3

4

See section 5.2.7, “Intel MPI 2.0.022, 3, and 4 with PBS”, on page 85

Intel MPI 4.0.3 on Linux See section 5.2.5, “Intel MPI 4.0.3 On Linux with PBS”, on page 85

Intel MPI 4.0.3 on Windows See section 5.2.6, “Intel MPI 4.0.3 On Windows with PBS”, on page 85

LAM MPI 6.5.9 Deprecated. See section 5.2.8.2, “Using LAM 6.5.9 with PBS”, on page 89

LAM MPI 7.0.6

7.1.1

Deprecated. See section 5.2.8.1, “Using LAM 7.x with PBS”, on page 88

MPICH-P4

Deprecated.

1.2.5

1.2.6

1.2.7

See section 5.2.9, “MPICH-P4 with PBS”, on page 89

MPICH-GM

Deprecated.

See section 5.2.10, “MPICH-GM with PBS”, on page 90

MPICH-MX

Deprecated.

See section 5.2.11, “MPICH-MX with PBS”, on page 93

MPICH2

Deprecated.

1.0.3

1.0.5

1.0.7

On Linux

See section 5.2.12, “MPICH2 with PBS on Linux”, on page 95

MPICH2 1.4.1p1 on Windows See section 5.2.13, “MPICH2 1.4.1p1 On Windows with PBS”, on page 98

MVAPICH

Deprecated.

1.2 See section 5.2.14, “MVAPICH with PBS”, on page 98

MVAPICH2 1.8 See section 5.2.15, “MVAPICH2 with PBS”, on page 99

Open MPI 1.4.x See section 5.2.16, “Open MPI with PBS”, on page 101

Platform MPI 8.0 See section 5.2.17, “Platform MPI with PBS”, on page 101

HPE MPI Any See section 5.2.18, “HPE MPI with PBS”, on page 102
UG-82 PBS Professional 2020.1.1 User’s Guide

Multiprocessor Jobs Chapter 5
5.2.1.1 Integration Caveats

• Some MPI command lines are slightly different; the differences for each are described.

5.2.1.2 Integrating an MPI on the Fly

The PBS administrator can perform the steps to integrate the supported MPIs. For non-integrated MPIs, you can inte-
grate them on the fly. You integrate Intel MPI 4.0.3 using environment variables; see section 5.2.5, “Intel MPI 4.0.3 On
Linux with PBS”, on page 85. For the rest, you integrate them using the pbs_tmrsh command.

5.2.1.2.i Integrating an MPI on the Fly using the pbs_tmrsh Command

You should not use pbs_tmrsh with an integrated MPI or with Intel MPI 4.0.3.

This command emulates rsh, but uses the PBS TM interface to talk directly to pbs_mom on sister vnodes. The
pbs_tmrsh command informs the primary and sister MoMs about job processes on sister vnodes. When the job uses
pbs_tmrsh, PBS can track resource usage for all job processes.

You use pbs_tmrsh as your rsh or ssh command. To use pbs_tmrsh, set the appropriate environment variable to
pbs_tmrsh. For example, to integrate MPICH, set the P4_RSHCOMMAND environment variable to pbs_tmrsh, and
to integrate HP MPI, set MPI_REMSH to pbs_tmrsh.

The following figure illustrates how the pbs_tmrsh command can be used to integrate an MPI on the fly:

Figure 5-1: PBS knows about processes on vnodes 2 and 3, because pbs_tmrsh talks directly to

pbs_mom, and pbs_mom starts the processes on vnodes 2 and 3

Vnode 3

...

(Job script)

Vnode 1

#PBS −lselect=3:ncpus=2:mpiprocs=2

...

Session tracked by pbs_mom

(mpirun using pbs_tmrsh) −hostfile $PBS_NODEFILE a.out

Vnode 2

a.outpbs_mom

pbs_tmrsh vnode 2

pbs_tmrsh vnode 3

a.out

a.out

a.out

pbs_mom

a.out

a.out
PBS Professional 2020.1.1 User’s Guide UG-83

Chapter 5 Multiprocessor Jobs
5.2.1.2.ii Caveats for the pbs_tmrsh Command

• This command cannot be used outside of a PBS job; if used outside a PBS job, this command will fail.

• The pbs_tmrsh command does not perform exactly like rsh. For example, you cannot pipe output from
pbs_tmrsh; this will fail.

5.2.2 Prerequisites to Using MPI with PBS

The MPI that you intend to use with PBS must be working before you try to use it with PBS. You must be able to run an
MPI job outside of PBS.

5.2.3 Caveats for Using MPIs

Some applications write scratch files to a temporary location. PBS makes a temporary directory available for this, and
puts the path in the TMPDIR environment variable. The location of the temporary directory is host-dependent. If you
are using an MPI other than LAM MPI or Open MPI, and your application needs scratch space, the temporary directory
for the job should be consistent across execution hosts. Your PBS administrator can specify a root for the temporary
directory on each host using the $tmpdir MoM parameter. In this case, the TMPDIR environment variable is set to the
full path of the resulting temporary directory. Do not attempt to set TMPDIR.

5.2.4 HP MPI with PBS

HP MPI can be integrated with PBS on Linux so that PBS can track resource usage, signal processes, and perform
accounting, for all job processes. Your PBS administrator can integrate HP MPI with PBS.

5.2.4.1 Setting up Your Environment for HP MPI

In order to override the default rsh, set PBS_RSHCOMMAND in your job script:

export PBS_RSHCOMMAND=<rsh choice>

5.2.4.2 Using HP MPI with PBS

You can run jobs under PBS using HP MPI without making any changes to your MPI command line.

5.2.4.3 Options

When running a PBS HP MPI job, you can use the same arguments to the mpirun command as you would outside of
PBS. The following options are treated differently under PBS:

-h <host>

Ignored

-l <user>

Ignored

-np <number>

Modified to fit the available resources

5.2.4.4 Caveats for HP MPI with PBS

Under the integrated HP MPI, the job’s working directory is changed to your home directory.
UG-84 PBS Professional 2020.1.1 User’s Guide

Multiprocessor Jobs Chapter 5
5.2.5 Intel MPI 4.0.3 On Linux with PBS

If your PBS administrator has integrated Intel MPI 4.0.3 on Linux with PBS, you can use its mpirun exactly the same
way inside and outside of a PBS job.

The default process manager for Intel MPI 4.0.3 on Linux is Hydra.

5.2.6 Intel MPI 4.0.3 On Windows with PBS

On Windows PBS supplies a wrapper script for Intel MPI called pbs_intelmpi_mpirun.bat, located in $PBS_EXEC\bin.
You call this script instead of Intel mpirun. All options are passed through the script to mpirun.

5.2.6.1 Integrating Intel MPI 4.0.3 on the Fly

If you are using Intel MPI 4.0.3 but it has not been integrated with PBS, you can integrate it on the fly by setting environ-
ment variables:

1. Specify rsh:
I_MPI_HYDRA_BOOTSTRAP=rsh

2. Specify pbs_tmrsh.

a. If you are running your job entirely on hosts which have PBS_EXEC/bin in the default PATH, set this:

I_MPI_HYDRA_BOOTSTRAP_EXEC=pbs_tmrsh

b. If you are running your job entirely on hosts which do not have PBS_EXEC/bin in the default PATH, include
the full path in the environment variable. For example:

I_MPI_HYDRA_BOOTSTRAP_EXEC=/opt/pbs/bin/pbs_tmrsh

5.2.7 Intel MPI 2.0.022, 3, and 4 with PBS

PBS provides an interface to Intel MPI mpirun for these versions. If executed inside a PBS job, this allows PBS to
track all Intel MPI processes so that PBS can perform accounting and have complete job control. If executed outside of
a PBS job, it behaves exactly as if standard Intel MPI mpirun was used.

5.2.7.1 Using Intel MPI 2.0.022, 3, or 4 Integrated with PBS

You use the same mpirun command as you would use outside of PBS.

When submitting PBS jobs that invoke the PBS-supplied interface to mpirun for Intel MPI, be sure to explicitly specify
the actual number of ranks or MPI tasks in the qsub select specification. Otherwise, jobs will fail to run with "too
few entries in the machinefile".

For an example of this problem, specification of the following:

#PBS -l select=1:ncpus=1:host=hostA+1:ncpus=2:host=hostB

mpirun -np 3 /tmp/mytask

results in the following node file:

hostA

hostB

which conflicts with the "-np 3" specification in mpirun since only two MPD daemons are started.
PBS Professional 2020.1.1 User’s Guide UG-85

Chapter 5 Multiprocessor Jobs
The correct way is to specify either of the following:

#PBS -l select=1:ncpus=1:host=hostA+2:ncpus=1:host=hostB

#PBS -l select=1:ncpus=1:host=hostA+1:ncpus=2:host=hostB:mpiprocs=2

which causes the node file to contain:

hostA

hostB

hostB

and is consistent with "mpirun -np 3".

5.2.7.2 Options to Integrated Intel MPI 2.0.022, 3, or 4

If executed inside a PBS job script, all of the options to the PBS interface are the same as for Intel MPI’s mpirun except
for the following:

-host, -ghost

For specifying the execution host to run on. Ignored.

-machinefile <file>

The file argument contents are ignored and replaced by the contents of $PBS_NODEFILE.

mpdboot option --totalnum=*

Ignored and replaced by the number of unique entries in $PBS_NODEFILE.

mpdboot option --file=*

Ignored and replaced by the name of $PBS_NODEFILE. The argument to this option is replaced by
$PBS_NODEFILE.

Argument to mpdboot option -f <mpd_hosts_file> replaced by $PBS_NODEFILE.

-s

If the PBS interface to Intel MPI’s mpirun is called inside a PBS job, Intel MPI’s mpirun -s argument to
mpdboot is not supported as this closely matches the mpirun option "-s <spec>". You can simply run a
separate mpdboot -s before calling mpirun. A warning message is issued by the PBS interface upon
encountering a -s option describing the supported form.

-np

If you do not specify a -np option, then no default value is provided by the PBS interface. It is up to the stan-
dard mpirun to decide what the reasonable default value should be, which is usually 1. The maximum num-
ber of ranks that can be launched is the number of entries in $PBS_NODEFILE.

5.2.7.3 MPD Startup and Shutdown

Intel MPI's mpirun takes care of starting and stopping the MPD daemons. The PBS interface to Intel MPI’s mpirun
always passes the arguments -totalnum=<number of mpds to start> and -file=<mpd_hosts_file>
to the actual mpirun, taking its input from unique entries in $PBS_NODEFILE.

5.2.7.4 Examples

Example 5-15: Run a single-executable Intel MPI job with six processes spread out across the PBS-allocated hosts listed
in $PBS_NODEFILE:
UG-86 PBS Professional 2020.1.1 User’s Guide

Multiprocessor Jobs Chapter 5
Node file:

pbs-host1

pbs-host1

pbs-host2

pbs-host2

pbs-host3

pbs-host3

Job script:

mpirun takes care of starting the MPD

daemons on unique hosts listed in

$PBS_NODEFILE, and also runs the 6 processes

on the 6 hosts listed in

$PBS_NODEFILE; mpirun takes care of

shutting down MPDs.

mpirun /path/myprog.x 1200

Run job script:

qsub -l select=3:ncpus=2:mpiprocs=2 job.script

<job-id>

Example 5-16: Run an Intel MPI job with multiple executables on multiple hosts using $PBS_NODEFILE and
mpiexec arguments to mpirun:

$PBS_NODEFILE:

hostA

hostA

hostB

hostB

hostC

hostC

Job script:

mpirun runs MPD daemons on hosts listed in $PBS_NODEFILE

mpirun runs 2 instances of mpitest1

on hostA; 2 instances of mpitest2 on

hostB; 2 instances of mpitest3 on hostC.

mpirun takes care of shutting down the

MPDs at the end of MPI job run.

mpirun -np 2 /tmp/mpitest1 : -np 2 /tmp/mpitest2 : -np 2 /tmp/mpitest3
PBS Professional 2020.1.1 User’s Guide UG-87

Chapter 5 Multiprocessor Jobs
Run job script:

qsub -l select=3:ncpus=2:mpiprocs=2 job.script

 <job-id>

Example 5-17: Run an Intel MPI job with multiple executables on multiple hosts via the -configfile option and
$PBS_NODEFILE:

$PBS_NODEFILE:

hostA

hostA

hostB

hostB

hostC

hostC

Job script:

echo “-np 2 /tmp/mpitest1” >> my_config_file

echo “-np 2 /tmp/mpitest2” >> my_config_file

echo “-np 2 /tmp/mpitest3” >> my_config_file

mpirun takes care of starting the MPD daemons

config file says run 2 instances of mpitest1

on hostA; 2 instances of mpitest2 on

hostB; 2 instances of mpitest3 on hostC.

mpirun takes care of shutting down the MPD daemons.

mpirun -configfile my_config_file

cleanup

rm -f my_config_file

Run job script:

qsub -l select=3:ncpus=2:mpiprocs=2 job.script

<job-id>

5.2.7.5 Restrictions

The maximum number of ranks that can be launched under integrated Intel MPI is the number of entries in
$PBS_NODEFILE.

5.2.8 LAM MPI with PBS

LAM MPI can be integrated with PBS on Linux so that PBS can track resource usage, signal processes, and perform
accounting, for all job processes. Your PBS administrator can integrate LAM MPI with PBS.

Support for LAM MPI is deprecated.

5.2.8.1 Using LAM 7.x with PBS

You can run jobs under PBS using LAM 7.x without making any changes to your mpirun call.
UG-88 PBS Professional 2020.1.1 User’s Guide

Multiprocessor Jobs Chapter 5
5.2.8.2 Using LAM 6.5.9 with PBS

You can run jobs under PBS using LAM 6.5.9.

5.2.8.2.i Caveats for LAM 6.5.9 with PBS

• If you specify the bhost argument, PBS will print a warning saying that the bhost argument is ignored by PBS.

• If you do not specify the where argument, pbs_mpilam will try to run the your program on all available CPUs
using the C keyword.

5.2.8.3 Example Job Submission Script

The following is a simple PBS job script for use with LAM MPI:

#!/bin/bash

Job Name

#PBS -N LamSubTest

Merge output and error files

#PBS -j oe

Select 2 nodes with 1 CPU each

#PBS -l select=2:ncpus=1

Export Users Environmental Variables to Execution Host

#PBS -V

Send email on abort, begin and end

#PBS -m abe

Specify mail recipient

#PBS -M username@example.com

cd $PBS_O_WORKDIR

date

lamboot -v $PBS_NODEFILE

mpirun -np $(cat $PBS_NODEFILE|wc -l) ./ANY_C_MPI_CODE HERE

date

When using the integrated lamboot in a job script, lamboot takes input from $PBS_NODEFILE automatically, so
the argument is not necessary.

5.2.9 MPICH-P4 with PBS

The wrapper is deprecated. MPICH-P4 can be integrated with PBS on Linux so that PBS can track resource usage, sig-
nal processes, and perform accounting, for all job processes. Your PBS administrator can integrate MPICH-P4 with PBS.

5.2.9.1 Options for MPICH-P4 with PBS

Under PBS, the syntax and arguments for the MPICH-P4 mpirun command on Linux are the same except for one
option, which you should not set:

-machinefile <file>

PBS supplies the machinefile. If you try to specify it, PBS prints a warning that it is replacing the machinefile.
PBS Professional 2020.1.1 User’s Guide UG-89

Chapter 5 Multiprocessor Jobs
5.2.9.2 Example of Using MPICH-P4 with PBS

Example of using mpirun:

#PBS -l select=arch=linux

#

mpirun a.out

5.2.9.3 MPICH Under Windows

Under Windows, you may need to use the -localroot option to MPICH’s mpirun command in order to allow the
job’s processes to run more efficiently, or to get around the error "failed to communicate with the barrier
command". Here is an example job script:

C:\DOCUME~1\user1>type job.scr

echo begin

type %PBS_NODEFILE%

"\Program Files\MPICH\mpd\bin\mpirun" -localroot -np 2 -machinefile %PBS_NODEFILE%
\winnt\temp\netpipe -reps 3

echo done

5.2.9.3.i Caveats for MPICH Under Windows

Under Windows, MPICH is not integrated with PBS. Therefore, PBS is limited to tracking and controlling processes and
performing accounting only for job processes on the primary vnode.

5.2.10 MPICH-GM with PBS

5.2.10.1 Using MPICH-GM and MPD with PBS

The wrapper is deprecated. PBS provides an interface to MPICH-GM’s mpirun using MPD. If executed inside a
PBS job, this allows for PBS to track all MPICH-GM processes started by the MPD daemons so that PBS can perform
accounting and have complete job control. If executed outside of a PBS job, it behaves exactly as if standard mpirun
with MPD had been used.

You use the same mpirun command as you would use outside of PBS. If the MPD daemons are not already running,
the PBS interface will take care of starting them for you.

5.2.10.1.i Options

Inside a PBS job script, all of the options to the PBS interface are the same as mpirun with MPD except for the follow-
ing:

-m <file>

The file argument contents are ignored and replaced by the contents of $PBS_NODEFILE.

-np

If not specified, the number of entries found in $PBS_NODEFILE is used. The maximum number of ranks
that can be launched is the number of entries in $PBS_NODEFILE

-pg

The use of the -pg option, for having multiple executables on multiple hosts, is allowed but it is up to you to
make sure only PBS hosts are specified in the process group file; MPI processes spawned on non-PBS hosts are
not guaranteed to be under the control of PBS.
UG-90 PBS Professional 2020.1.1 User’s Guide

Multiprocessor Jobs Chapter 5
5.2.10.1.ii MPD Startup and Shutdown

The script starts MPD daemons on each of the unique hosts listed in $PBS_NODEFILE, using either the rsh or ssh
method based on the value of the environment variable RSHCOMMAND. The default is rsh. The script also takes
care of shutting down the MPD daemons at the end of a run.

If the MPD daemons are not running, the PBS interface to mpirun will start GM's MPD daemons as you on the allo-
cated PBS hosts. The MPD daemons may have been started already by the administrator or by you. MPD daemons are
not started inside a PBS prologue script since it won't have the path of mpirun that you executed (GM or MX), which
would determine the path to the MPD binary.

5.2.10.1.iii Examples

Example 5-18: Run a single-executable MPICH-GM job with 3 processes spread out across the PBS-allocated hosts
listed in $PBS_NODEFILE:

$PBS_NODEFILE:

pbs-host1

pbs-host2

pbs-host3

qsub -l select=3:ncpus=1

[MPICH-GM-HOME]/bin/mpirun -np 3 /path/myprog.x 1200

^D

<job-id>

If the GM MPD daemons are not running, the PBS interface to mpirun will start them as you on the allocated PBS
hosts. The daemons may have been previously started by the administrator or by you.

Example 5-19: Run an MPICH-GM job with multiple executables on multiple hosts listed in the process group file
procgrp:

Job script:

qsub -l select=2:ncpus=1

echo "host1 1 user1 /x/y/a.exe arg1 arg2" > procgrp

echo "host2 1 user1 /x/x/b.exe arg1 arg2" >> procgrp

[MPICH-GM-HOME]/bin/mpirun -pg procgrp /path/mypro.x 1200

rm -f procgrp

^D

<job-id>

When the job runs, mpirun gives the warning message:

warning: “-pg” is allowed but it is up to user to make sure only PBS hosts are specified; MPI
processes spawned are not guaranteed to be under PBS-control.

The warning is issued because if any of the hosts listed in procgrp are not under the control of PBS, then the pro-
cesses on those hosts will not be under the control of PBS.

5.2.10.2 Using MPICH-GM and rsh/ssh with PBS

PBS provides an interface to MPICH-GM’s mpirun using rsh/ssh. If executed inside a PBS job, this lets PBS track
all MPICH-GM processes started via rsh/ssh so that PBS can perform accounting and have complete job control. If
executed outside of a PBS job, it behaves exactly as if standard mpirun had been used.

You use the same mpirun command as you would use outside of PBS.
PBS Professional 2020.1.1 User’s Guide UG-91

Chapter 5 Multiprocessor Jobs
5.2.10.2.i Options

Inside a PBS job script, all of the options to the PBS interface are the same as mpirun except for the following:

-machinefile <file>

The file argument contents are ignored and replaced by the contents of $PBS_NODEFILE.

-np

If not specified, the number of entries found in $PBS_NODEFILE is used. The maximum number of ranks
that can be launched is the number of entries in $PBS_NODEFILE.

-pg

The use of the -pg option, for having multiple executables on multiple hosts, is allowed but it is up to you to
make sure only PBS hosts are specified in the process group file; MPI processes spawned on non-PBS hosts are
not guaranteed to be under the control of PBS.

5.2.10.2.ii Examples

Example 5-20: Run a single-executable MPICH-GM job with 64 processes spread out across the PBS-allocated hosts
listed in $PBS_NODEFILE:

$PBS_NODEFILE:

pbs-host1

pbs-host2

...

pbs-host64

qsub -l select=64:ncpus=1 -l place=scatter

mpirun -np 64 /path/myprog.x 1200

^D

<job-id>

Example 5-21: Run an MPICH-GM job with multiple executables on multiple hosts listed in the process group file
procgrp:

qsub -l select=2:ncpus=1

echo "host1 1 user1 /x/y/a.exe arg1 arg2" > procgrp

echo "host2 1 user1 /x/x/b.exe arg1 arg2" >> procgrp

mpirun -pg procgrp /path/mypro.x

rm -f procgrp

^D

<job-id>

When the job runs, mpirun gives this warning message:

warning: “-pg” is allowed but it is up to user to make sure only PBS hosts are specified; MPI
processes spawned are not guaranteed to be under the control of PBS.

The warning is issued because if any of the hosts listed in procgrp are not under the control of PBS, then the pro-
cesses on those hosts will not be under the control of PBS.

5.2.10.3 Restrictions

The maximum number of ranks that can be launched under integrated MPICH-GM is the number of entries in
$PBS_NODEFILE.
UG-92 PBS Professional 2020.1.1 User’s Guide

Multiprocessor Jobs Chapter 5
5.2.11 MPICH-MX with PBS

5.2.11.1 Using MPICH-MX and MPD with PBS

The wrapper is deprecated. PBS provides an interface to MPICH-MX’s mpirun using MPD. If executed inside a PBS
job, this allows for PBS to track all MPICH-MX processes started by the MPD daemons so that PBS can perform
accounting and have complete job control. If executed outside of a PBS job, it behaves exactly as if standard MPICH-
MX mpirun with MPD was used.

You use the same mpirun command as you would use outside of PBS. If the MPD daemons are not already running,
the PBS interface will take care of starting them for you.

5.2.11.1.i Options

Inside a PBS job script, all of the options to the PBS interface are the same as mpirun with MPD except for the follow-
ing:

-m <file>

The file argument contents are ignored and replaced by the contents of $PBS_NODEFILE.

-np

If not specified, the number of entries found in $PBS_NODEFILE is used. The maximum number of ranks
that can be launched is the number of entries in $PBS_NODEFILE.

-pg

The use of the -pg option, for having multiple executables on multiple hosts, is allowed but it is up to you to
make sure only PBS hosts are specified in the process group file; MPI processes spawned on non-PBS hosts are
not guaranteed to be under the control of PBS.

5.2.11.1.ii MPD Startup and Shutdown

The PBS mpirun interface starts MPD daemons on each of the unique hosts listed in $PBS_NODEFILE, using either
the rsh or ssh method, based on value of environment variable RSHCOMMAND. The default is rsh. The interface
also takes care of shutting down the MPD daemons at the end of a run.

If the MPD daemons are not running, the PBS interface to mpirun starts MX's MPD daemons as you on the allocated
PBS hosts. The MPD daemons may already have been started by the administrator or by you. MPD daemons are not
started inside a PBS prologue script since it won't have the path of mpirun that you executed (GM or MX), which
would determine the path to the MPD binary.

5.2.11.1.iii Examples

Example 5-22: Run a single-executable MPICH-MX job with 64 processes spread out across the PBS-allocated hosts
listed in $PBS_NODEFILE:

$PBS_NODEFILE:

pbs-host1

pbs-host2

...

pbs-host64

qsub -l select=64:ncpus=1 -lplace=scatter

[MPICH-MX-HOME]/bin/mpirun -np 64 /path/myprog.x 1200

^D

<job-id>
PBS Professional 2020.1.1 User’s Guide UG-93

Chapter 5 Multiprocessor Jobs
If the MPD daemons are not running, the PBS interface to mpirun starts MX's MPD daemons as you on the allo-
cated PBS hosts. The MPD daemons may be already started by the administrator or by you.

Example 5-23: Run an MPICH-MX job with multiple executables on multiple hosts listed in the process group file
procgrp:

qsub -l select=2:ncpus=1

echo "pbs-host1 1 username /x/y/a.exe arg1 arg2" > procgrp

echo "pbs-host2 1 username /x/x/b.exe arg1 arg2" >> procgrp

[MPICH-MX-HOME]/bin/mpirun -pg procgrp /path/myprog.x 1200

rm -f procgrp

^D

<job-id>

mpirun prints a warning message:

warning: “-pg” is allowed but it is up to user to make sure only PBS hosts are specified; MPI
processes spawned are not guaranteed to be under PBS-control

The warning is issued because if any of the hosts listed in procgrp are not under the control of PBS, then the pro-
cesses on those hosts will not be under the control of PBS.

5.2.11.2 Using MPICH-MX and rsh/ssh with PBS

Deprecated. PBS provides an interface to MPICH-MX’s mpirun using rsh/ssh. If executed inside a PBS job, this
allows for PBS to track all MPICH-MX processes started by rsh/ssh so that PBS can perform accounting and has com-
plete job control. If executed outside of a PBS job, it behaves exactly as if standard mpirun had been used.

You use the same mpirun command as you would use outside of PBS.

5.2.11.2.i Options

Inside a PBS job script, all of the options to the PBS interface are the same as standard mpirun except for the following:

-machinefile <file>

The file argument contents are ignored and replaced by the contents of $PBS_NODEFILE.

-np

If not specified, the number of entries found in the $PBS_NODEFILE is used. The maximum number of ranks
that can be launched is the number of entries in $PBS_NODEFILE.

-pg

The use of the -pg option, for having multiple executables on multiple hosts, is allowed but it is up to you to
make sure only PBS hosts are specified in the process group file; MPI processes spawned on non-PBS hosts are
not guaranteed to be under the control of PBS.

5.2.11.2.ii Examples

Example 5-24: Run a single-executable MPICH-MX job with 64 processes spread out across the PBS-allocated hosts
listed in $PBS_NODEFILE:
UG-94 PBS Professional 2020.1.1 User’s Guide

Multiprocessor Jobs Chapter 5
$PBS_NODEFILE:

pbs-host1

pbs-host2

...

pbs-host64

qsub -l select=64:ncpus=1

mpirun -np 64 /path/myprog.x 1200

^D

<job-id>

Example 5-25: Run an MPICH-MX job with multiple executables on multiple hosts listed in the process group file
procgrp:

qsub -l select=2:ncpus=1

echo "pbs-host1 1 username /x/y/a.exe arg1 arg2" > procgrp

echo "pbs-host2 1 username /x/x/b.exe arg1 arg2" >> procgrp

mpirun -pg procgrp /path/myprog.x

rm -f procgrp

^D

<job-id>

mpirun prints the warning message:

warning: “-pg” is allowed but it is up to user to make sure only PBS hosts are specified; MPI
processes spawned are not guaranteed to be under PBS-control

The warning is issued because if any of the hosts listed in procgrp are not under the control of PBS, then the pro-
cesses on those hosts will not be under the control of PBS.

5.2.11.3 Restrictions

The maximum number of ranks that can be launched under integrated MPICH-MX is the number of entries in
$PBS_NODEFILE.

5.2.12 MPICH2 with PBS on Linux

On Linux, PBS provides an interface to MPICH2’s mpirun. If executed inside a PBS job, this allows for PBS to track
all MPICH2 processes so that PBS can perform accounting and have complete job control. If executed outside of a PBS
job, it behaves exactly as if standard MPICH2's mpirun had been used.

You use the same mpirun command as you would use outside of PBS.

When submitting PBS jobs under the PBS interface to MPICH2's mpirun, be sure to explicitly specify the actual num-
ber of ranks or MPI tasks in the qsub select specification. Otherwise, jobs will fail to run with "too few entries
in the machinefile".

For instance, the following erroneous specification:

#PBS -l select=1:ncpus=1:host=hostA+1:ncpus=2:host=hostB

mpirun -np 3 /tmp/mytask
PBS Professional 2020.1.1 User’s Guide UG-95

Chapter 5 Multiprocessor Jobs
results in this $PBS_NODEFILE listing:

hostA

hostB

which conflicts with the "-np 3" specification in mpirun as only two MPD daemons are started.

The correct way is to specify either of the following:

#PBS -l select=1:ncpus=1:host=hostA+2:ncpus=1:host=hostB

#PBS -l select=1:ncpus=1:host=hostA+1:ncpus=2:host=hostB:mpiprocs=2

which causes $PBS_NODEFILE to contain:

hostA

hostB

hostB

and this is consistent with "mpirun -np 3".

5.2.12.1 Options

If executed inside a PBS job script, all of the options to the PBS interface are the same as MPICH2's mpirun except for
the following:

-host, -ghost

For specifying the execution host to run on. Ignored.

-machinefile <file>

The file argument contents are ignored and replaced by the contents of $PBS_NODEFILE.

-localonly <number of processes>

For specifying the number of processes to run locally. Not supported. You are advised instead to use the equiva-
lent arguments:

"-np <x> -localonly".

-np

If you do not specify a -np option, then no default value is provided by the PBS interface to MPICH2. It is up to
the standard mpirun to decide what the reasonable default value should be, which is usually 1. The maxi-
mum number of ranks that can be launched is the number of entries in $PBS_NODEFILE.

5.2.12.2 MPD Startup and Shutdown

The interface ensures that the MPD daemons are started on each of the hosts listed in $PBS_NODEFILE. It also ensures
that the MPD daemons are shut down at the end of MPI job execution.

5.2.12.3 Examples

Example 5-26: Run a single-executable MPICH2 job with six processes spread out across the PBS-allocated hosts listed
in $PBS_NODEFILE. Only three hosts are available:

$PBS_NODEFILE:

pbs-host1

pbs-host2

pbs-host3

pbs-host1

pbs-host2

pbs-host3
UG-96 PBS Professional 2020.1.1 User’s Guide

Multiprocessor Jobs Chapter 5
Job.script:

mpirun runs 6 processes, scattered over 3 hosts

listed in $PBS_NODEFILE

mpirun -np 6 /path/myprog.x 1200

Run job script:

qsub -l select=6:ncpus=1 -lplace = scatter job.script

<job-id>

Example 5-27: Run an MPICH2 job with multiple executables on multiple hosts using $PBS_NODEFILE and
mpiexec arguments in mpirun:

$PBS_NODEFILE:

hostA

hostA

hostB

hostB

hostC

hostC

Job script:

#PBS -l select=3:ncpus=2:mpiprocs=2

mpirun -np 2 /tmp/mpitest1 : -np 2 /tmp/mpitest2 : -np 2 /tmp/mpitest3

Run job:

qsub job.script

Example 5-28: Run an MPICH2 job with multiple executables on multiple hosts using mpirun -configfile option
and $PBS_NODEFILE:

$PBS_NODEFILE:

hostA

hostA

hostB

hostB

hostC

hostC

Job script:

#PBS -l select=3:ncpus=2:mpiprocs=2

echo "-np 2 /tmp/mpitest1" > my_config_file

echo "-np 2 /tmp/mpitest2" >> my_config_file

echo "-np 2 /tmp/mpitest3" >> my_config_file

mpirun -configfile my_config_file

rm -f my_config_file
PBS Professional 2020.1.1 User’s Guide UG-97

Chapter 5 Multiprocessor Jobs
Run job:

qsub job.script

5.2.12.4 Restrictions

The maximum number of ranks that can be launched under integrated MPICH2 is the number of entries in
$PBS_NODEFILE.

5.2.13 MPICH2 1.4.1p1 On Windows with PBS

On Windows PBS supplies a wrapper script for MPICH2 1.4.1p1 called pbs_mpich2_mpirun.bat, located in
$PBS_EXEC\bin. You call this script instead of MPICH2 mpirun. All options are passed through the script to mpirun.

5.2.14 MVAPICH with PBS

The wrapper is deprecated. PBS provides an mpirun interface to the MVAPICH mpirun. When you use the PBS-
supplied mpirun, PBS can track all MVAPICH processes, perform accounting, and have complete job control. Your
PBS administrator can integrate MVAPICH with PBS so that you can use the PBS-supplied mpirun in place of the
MVAPICH mpirun in your job scripts.

MVAPICH allows your jobs to use InfiniBand.

5.2.14.1 Interface to MVAPICH mpirun Command

If executed outside of a PBS job, the PBS-supplied interface to mpirun behaves exactly as if standard MVAPICH
mpirun had been used.

If executed inside a PBS job script, all of the options to the PBS interface are the same as MVAPICH's mpirun except
for the following:

-map

The map option is ignored.

-machinefile <file>

The machinefile option is ignored.

-exclude

The exclude option is ignored.

-np

If you do not specify a -np option, then PBS uses the number of entries found in $PBS_NODEFILE. The
maximum number of ranks that can be launched is the number of entries in $PBS_NODEFILE.

5.2.14.2 Examples

Example 5-29: Run a single-executable MVAPICH job with six ranks spread out across the PBS-allocated hosts listed in
$PBS_NODEFILE:
UG-98 PBS Professional 2020.1.1 User’s Guide

Multiprocessor Jobs Chapter 5
$PBS_NODEFILE:

pbs-host1

pbs-host1

pbs-host2

pbs-host2

pbs-host3

pbs-host3

Contents of job.script:

mpirun runs 6 processes mapped one to each line in $PBS_NODEFILE

mpirun -np 6 /path/myprog

Run job script:

qsub -l select=3:ncpus=2:mpiprocs=2 job.script

<job-id>

5.2.14.3 Restrictions

The maximum number of ranks that can be launched under integrated MVAPICH is the number of entries in
$PBS_NODEFILE.

5.2.15 MVAPICH2 with PBS

PBS provides an mpiexec interface to MVAPICH2’s mpiexec. When you use the PBS-supplied mpiexec, PBS can
track all MVAPICH2 processes, perform accounting, and have complete job control. Your PBS administrator can inte-
grate MVAPICH2 with PBS so that you can use the PBS-supplied mpirun in place of the MVAPICH2 mpirun in your
job scripts.

MVAPICH2 allows your jobs to use InfiniBand.

5.2.15.1 Interface to MVAPICH2 mpiexec Command

If executed outside of a PBS job, it behaves exactly as if standard MVAPICH2's mpiexec had been used.

If executed inside a PBS job script, all of the options to the PBS interface are the same as MVAPICH2's mpiexec
except for the following:

-host

The host option is ignored.

-machinefile <file>

The file option is ignored.

-mpdboot

If mpdboot is not called before mpiexec, it is called automatically before mpiexec runs so that an MPD
daemon is started on each host assigned by PBS.

5.2.15.2 MPD Startup and Shutdown

The interface ensures that the MPD daemons are started on each of the hosts listed in $PBS_NODEFILE. It also ensures
that the MPD daemons are shut down at the end of MPI job execution.
PBS Professional 2020.1.1 User’s Guide UG-99

Chapter 5 Multiprocessor Jobs
5.2.15.3 Examples

Example 5-30: Run a single-executable MVAPICH2 job with six ranks on hosts listed in $PBS_NODEFILE:

$PBS_NODEFILE:

pbs-host1

pbs-host1

pbs-host2

pbs-host2

pbs-host3

pbs-host3

Job.script:

mpiexec -np 6 /path/mpiprog

Run job script:

qsub -l select=3:ncpus=2:mpiprocs=2 job.script

<job-id>

Example 5-31: Launch an MVAPICH2 MPI job with multiple executables on multiple hosts listed in the default file
"mpd.hosts". Here, run executables prog1 and prog2 with two ranks of prog1 on host1, two ranks of prog2 on
host2 and two ranks of prog2 on host3, all specified on the command line:

$PBS_NODEFILE:

pbs-host1

pbs-host1

pbs-host2

pbs-host2

pbs-host3

pbs-host3

Job.script:

mpiexec -n 2 prog1 : -n 2 prog2 : -n 2 prog2

Run job script:

qsub -l select=3:ncpus=2:mpiprocs=2 job.script

<job-id>

Example 5-32: Launch an MVAPICH2 MPI job with multiple executables on multiple hosts listed in the default file
"mpd.hosts". Run executables prog1 and prog2 with two ranks of prog1 on host1, two ranks of prog2 on host2
and two ranks of prog2 on host3, all specified using the -configfile option:
UG-100 PBS Professional 2020.1.1 User’s Guide

Multiprocessor Jobs Chapter 5
$PBS_NODEFILE:

pbs-host1

pbs-host1

pbs-host2

pbs-host2

pbs-host3

pbs-host3

Job.script:

echo "-n 2 -host host1 prog1" > /tmp/jobconf

echo "-n 2 -host host2 prog2" >> /tmp/jobconf

echo "-n 2 -host host3 prog2" >> /tmp/jobconf

mpiexec -configfile /tmp/jobconf

rm /tmp/jobconf

Run job script:

qsub -l select=3:ncpus=2:mpiprocs=2 job.script

<job-id>

5.2.15.4 Restrictions

The maximum number of ranks that can be launched under MVAPICH2 is the number of entries in $PBS_NODEFILE.

5.2.16 Open MPI with PBS

Open MPI can be integrated with PBS on Linux so that PBS can track resource usage, signal processes, and perform
accounting, for all job processes. Your PBS administrator can integrate Open MPI with PBS.

5.2.16.1 Using Open MPI with PBS

You can run jobs under PBS using Open MPI without making any changes to your MPI command line.

5.2.17 Platform MPI with PBS

Platform MPI can be integrated with PBS on Linux so that PBS can track resource usage, signal processes, and perform
accounting, for all job processes. Your PBS administrator can integrate Platform MPI with PBS.

5.2.17.1 Using Platform MPI with PBS

You can run jobs under PBS using Platform MPI without making any changes to your MPI command line.

5.2.17.2 Setting up Your Environment

In order to override the default rsh, set PBS_RSHCOMMAND in your job script:

export PBS_RSHCOMMAND=<rsh command>
PBS Professional 2020.1.1 User’s Guide UG-101

Chapter 5 Multiprocessor Jobs
5.2.18 HPE MPI with PBS

PBS supplies its own mpiexec to use with HPE MPI on a multi-vnode machine running supported versions of HPE
MPI. When you use the PBS-supplied mpiexec, PBS can track resource usage, signal processes, and perform account-
ing, for all job processes. The PBS mpiexec provides the standard mpiexec interface.

See your PBS administrator to find out whether your system is configured for the PBS mpiexec.

5.2.18.1 Using HPE MPI with PBS

You can launch an MPI job on a single HPE system, or across multiple HPE systems. For MPI jobs across multiple HPE
systems, PBS will manage the multi-host jobs. For example, if you have two HPE systems named host1 and host2, and
want to run two applications called mympi1 and mympi2 on them, you can put this in your job script:

mpiexec -host host1 -n 4 mympi1 : -host host2 -n 8 mympi2

PBS will manage and track the job’s processes. When the job is finished, PBS will clean up after it.

You can run MPI jobs in the placement sets chosen by PBS.

5.2.18.2 Prerequisites

In order to use MPI within a PBS job with HPE MPI, you may need to add the following in your job script before you
call MPI:

module load mpt

5.2.18.3 Fitting Jobs onto Nodeboards

PBS will try to put a job that fits in a single nodeboard on just one nodeboard. However, if the only CPUs available are
on separate nodeboards, and those vnodes are not allocated exclusively to existing jobs, and the job can share a vnode,
then the job is run on the separate nodeboards.

5.2.18.4 Checkpointing and Suspending Jobs

Jobs are suspended on the HPE systems using the PBS suspend feature.

Jobs are checkpointed on HPE systems using application-level checkpointing. There is no OS-level checkpoint.

Suspended or checkpointed jobs will resume on the original nodeboards.

5.2.18.5 Using CSA

PBS support for CSA on HPE systems is no longer available. The CSA functionality for HPE systems has been
removed from PBS.

5.3 Using PVM with PBS

You use the pvmexec command to execute a Parallel Virtual Machine (PVM) program. PVM is not integrated with
PBS; PBS is limited to monitoring, controlling, and accounting for job processes only on the primary vnode.

5.3.1 Arguments to pvmexec Command

The pvmexec command expects a hostfile argument for the list of hosts on which to spawn the parallel job.
UG-102 PBS Professional 2020.1.1 User’s Guide

Multiprocessor Jobs Chapter 5
5.3.2 Using PVM Daemons

To start the PVM daemons on the hosts listed in $PBS_NODEFILE:

1. Start the PVM console on the first host in the list

2. Print the hosts to the standard output file named jobname.o<PBS job ID>:

echo conf | pvm $PBS_NODEFILE

To quit the PVM console but leave the PVM daemons running:

quit

To stop the PVM daemons, restart the PVM console, and quit:

echo halt | pvm

5.3.3 Submitting a PVM Job

To submit a PVM job to PBS, use the following:

qsub <job script>

5.3.4 Examples

Example 5-33: To submit a PVM job to PBS, use the following:

qsub your_pvm_job

Here is an example script for your_pvm_job:

#PBS -N pvmjob

#PBS -V

cd $PBS_O_WORKDIR

echo conf | pvm $PBS_NODEFILE

echo quit | pvm

./my_pvm_program

echo halt | pvm

Example 5-34: Sample PBS script for a PVM job:

#PBS -N pvmjob

#

pvmexec a.out -inputfile data_in

5.4 Using OpenMP with PBS

PBS Professional supports OpenMP applications by setting the OMP_NUM_THREADS variable in the job’s environ-
ment, based on the resource request of the job. The OpenMP run-time picks up the value of OMP_NUM_THREADS
and creates threads appropriately.
PBS Professional 2020.1.1 User’s Guide UG-103

Chapter 5 Multiprocessor Jobs
MoM sets the value of OMP_NUM_THREADS based on the first chunk of the select statement. If you request
ompthreads in the first chunk, MoM sets the environment variable to the value of ompthreads. If you do not request
ompthreads in the first chunk, then OMP_NUM_THREADS is set to the value of the ncpus resource of that chunk. If
you do not request either ncpus or ompthreads for the first chunk of the select statement, then
OMP_NUM_THREADS is set to 1.

You cannot directly set the value of the OMP_NUM_THREADS environment variable; MoM will override any setting
you attempt.

See “Resources Built Into PBS” on page 265 of the PBS Professional Reference Guide for a definition of the
ompthreads resource.

Example 5-35: Submit an OpenMP job as a single chunk, for a two-CPU, two-thread job requiring 10gb of memory:

qsub -l select=1:ncpus=2:mem=10gb

Example 5-36: Run an MPI application with 64 MPI processes, and one thread per process:

#PBS -l select=64:ncpus=1

mpiexec -n 64 ./a.out

Example 5-37: Run an MPI application with 64 MPI processes, and four OpenMP threads per process:

#PBS -l select=64:ncpus=4

mpiexec -n 64 omplace -nt 4 ./a.out

or

#PBS -l select=64:ncpus=4:ompthreads=4

mpiexec -n 64 omplace -nt 4 ./a.out

5.4.1 Running Fewer Threads than CPUs

You might be running an OpenMP application on a host and wish to run fewer threads than the number of CPUs
requested. This might be because the threads need exclusive access to shared resources in a multi-core processor system,
such as to a cache shared between cores, or to the memory shared between cores.

Example 5-38: You want one chunk, with 16 CPUs and eight threads:

qsub -l select=1:ncpus=16:ompthreads=8

5.4.2 Running More Threads than CPUs

You might be running an OpenMP application on a host and wish to run more threads than the number of CPUs
requested, perhaps because each thread is I/O bound.

Example 5-39: You want one chunk, with eight CPUs and 16 threads:

qsub -l select=1:ncpus=8:ompthreads=16

5.4.3 Caveats for Using OpenMP with PBS

Make sure that you request the correct number of MPI ranks for your job, so that the PBS node file contains the correct
number of entries. See section 5.1.3, “Specifying Number of MPI Processes Per Chunk”, on page 78.
UG-104 PBS Professional 2020.1.1 User’s Guide

Multiprocessor Jobs Chapter 5
5.5 Hybrid MPI-OpenMP Jobs

For jobs that are both MPI and multi-threaded, the number of threads per chunk, for all chunks, is set to the number of
threads requested (explicitly or implicitly) in the first chunk, except for MPIs that have been integrated with the PBS TM
API.

For MPIs that are integrated with the PBS TM interface, (LAM MPI and Open MPI), you can specify the number of
threads separately for each chunk, by specifying the ompthreads resource separately for each chunk.

For most MPIs, the OMP_NUM_THREADS and NCPUS environment variables default to the number of ncpus
requested for the first chunk.

Should you have a job that is both MPI and multi-threaded, you can request one chunk for each MPI process, or set
mpiprocs to the number of MPI processes you want on each chunk. See section 5.1.3, “Specifying Number of MPI Pro-
cesses Per Chunk”, on page 78.

5.5.1 Examples

Example 5-40: To request four chunks, each with one MPI process, two CPUs and two threads:

qsub -l select=4:ncpus=2

or

qsub -l select=4:ncpus=2:ompthreads=2

Example 5-41: To request four chunks, each with two CPUs and four threads:

qsub -l select=4:ncpus=2:ompthreads=4

Example 5-42: To request 16 MPI processes each with two threads on machines with two processors:

qsub -l select=16:ncpus=2

Example 5-43: To request two chunks, each with eight CPUs and eight MPI tasks and four threads:

qsub -l select=2:ncpus=8:mpiprocs=8:ompthreads=4

Example 5-44: For the following:

qsub -l select=4:ncpus=2

This request is satisfied by four CPUs from VnodeA, two from VnodeB and two from VnodeC, so the following is
written to $PBS_NODEFILE:

VnodeA

VnodeA

VnodeB

VnodeC

The OpenMP environment variables are set, for the four PBS tasks corresponding to the four MPI processes, as fol-
lows:

• For PBS task #1 on VnodeA: OMP_NUM_THREADS=2 NCPUS=2

• For PBS task #2 on VnodeA: OMP_NUM_THREADS=2 NCPUS=2

• For PBS task #3 on VnodeB: OMP_NUM_THREADS=2 NCPUS=2

• For PBS task #4 on VnodeC: OMP_NUM_THREADS=2 NCPUS=2

Example 5-45: For the following:

qsub -l select=3:ncpus=2:mpiprocs=2:ompthreads=1
PBS Professional 2020.1.1 User’s Guide UG-105

Chapter 5 Multiprocessor Jobs
This is satisfied by two CPUs from each of three vnodes (VnodeA, VnodeB, and VnodeC), so the following is writ-
ten to $PBS_NODEFILE:

VnodeA

VnodeA

VnodeB

VnodeB

VnodeC

VnodeC

The OpenMP environment variables are set, for the six PBS tasks corresponding to the six MPI processes, as follows:

• For PBS task #1 on VnodeA: OMP_NUM_THREADS=1 NCPUS=1

• For PBS task #2 on VnodeA: OMP_NUM_THREADS=1 NCPUS=1

• For PBS task #3 on VnodeB: OMP_NUM_THREADS=1 NCPUS=1

• For PBS task #4 on VnodeB: OMP_NUM_THREADS=1 NCPUS=1

• For PBS task #5 on VnodeC: OMP_NUM_THREADS=1 NCPUS=1

• For PBS task #6 on VnodeC: OMP_NUM_THREADS=1 NCPUS=1

Example 5-46: To run two threads on each of N chunks, each running a process, all on the same HPE system:

qsub -l select=N:ncpus=2 -l place=pack

This starts N processes on a single host, with two OpenMP threads per process, because
OMP_NUM_THREADS=2.
UG-106 PBS Professional 2020.1.1 User’s Guide

6

Controlling How Your Job Runs

6.1 Using Job Exit Status

PBS can use the exit status of your job as input to the epilogue, and to determine whether to run a dependent job. If you
are running under Linux, make sure that your job’s exit status is captured correctly; see section 1.4.2.4, “Capture Correct
Job Exit Status”, on page 6.

Job exit codes are listed in section 13.9, "Job Exit Status Codes", on page 509 of the PBS Professional Administrator’s
Guide.

The exit status of a job array is determined by the status of each of its completed subjobs, and is only available when all
valid subjobs have completed. The individual exit status of a completed subjob is passed to the epilogue, and is available
in the ‘E’ accounting log record of that subjob. See “Job Array Exit Status” on page 156.

6.1.1 Caveats for Exit Status

• Normally, qsub exits with the exit status for a blocking job, but if you submit a job that is both blocking and inter-
active, PBS does not return the job’s exit status. See section 6.10, “Making qsub Wait Until Job Ends”, on page 120.

• For a blocking job, the exit status is returned before staging finishes. See section 6.10.2, “Caveats for Blocking
Jobs”, on page 121.

• The exit status of an interactive job is always recorded as 0 (zero), regardless of the actual exit status.

6.2 Using Job Dependencies

PBS allows you to specify dependencies between two or more jobs. Dependencies are useful for a variety of tasks, such
as:

• Specifying the order in which jobs in a set should execute

• Requesting a job run only if an error occurs in another job

• Holding jobs until a particular job starts or completes execution

There is no limit on the number of dependencies per job.

If you have one or more jobs j2... jN that are dependent on a job j1 so that they can run only after j1 runs, and you delete
j1, PBS deletes jobs j2... jN. If you have jobs j2... jN that can run only after j1 has not run successfully, and you delete j1,
PBS releases the dependencies for jobs j2... jN so that they can run.

6.2.1 Syntax for Job Dependencies

Use the “-W depend=<dependency list>” option to qsub to define dependencies between jobs. The depen-
dency list has the format:

<type>:<arg list>[,<type>:<arg list> ...]

where except for the on type, the arg list is one or more PBS job IDs in the form:

<job ID>[:<job ID> ...]
PBS Professional 2020.1.1 User’s Guide UG-107

Chapter 6 Controlling How Your Job Runs
These are the available dependency types:

after:<arg list>

This job may start only after all jobs in arg list have started execution.

afterok:<arg list>

This job may start only after all jobs in arg list have terminated with no errors.

afternotok:<arg list>

This job may start only after all jobs in arg list have terminated with errors.

afterany:<arg list>

This job may start after all jobs in arg list have finished execution, with or without errors. This job will not run
if a job in the arg list was deleted without ever having been run.

before:<arg list>

Jobs in arg list may start only after specified jobs have begun execution. You must submit jobs that will run
before other jobs with a type of on.

beforeok:<arg list>

Jobs in arg list may start only after this job terminates without errors.

beforenotok:<arg list>

If this job terminates execution with errors, the jobs in arg list may begin.

beforeany:<arg list>

Jobs in arg list may start only after specified jobs terminate execution, with or without errors. Requires use of
on dependency for jobs that will run before other jobs.

on:count

This job may start only after count dependencies on other jobs have been satisfied. This type is used in conjunc-
tion with one of the before types. count is an integer greater than 0.

runone:<job ID>

(2020.1 Beta) Puts the current job and the job with job ID in a set of jobs out of which PBS will eventually run
just one. To add a job to a set, specify the job ID of another job already in the set.

The depend job attribute controls job dependencies. You can set it using the qsub command line or a PBS directive:

qsub -W depend=...

#PBS depend=...

6.2.1.1 Running Your Job on First Available Resources (2020.1 Beta)

2020.1 Beta. This feature is subject to drastic change or removal without notice in future releases.

You may want to run a job on whichever resources become available first, even if the job could run on other sets of
resources. You may want to start a flexible job as soon as possible on a smaller set of resources rather than waiting
longer for a larger set of resources, or you may prefer certain resources but be able to use others (for example, you might
prefer a specific processor, but still be able to run on another if that is all that’s available).

If you submit a set of jobs where each job has a “runone” dependency on the others, PBS runs only one of the jobs in the
“runone set”. PBS automatically groups the jobs into a runone set. The jobs in a runone set can run different scripts.

When any of the jobs in the set starts, PBS applies a system hold to the others. The hold on the other jobs is released
when the running job is requeued:

• Via qrerun

• When node fail requeue is triggered
UG-108 PBS Professional 2020.1.1 User’s Guide

Controlling How Your Job Runs Chapter 6
The other jobs in the set are deleted:

• When a job ends, regardless of its exit status

• When the running job is deleted

To identify a job as a member of the set, give it a “runone” dependency on the previously-submitted member of the set.
For example, we have three jobs, each of which runs on different resources. To submit these three jobs as a runone set:

qsub -lselect=200:ncpus=16 -lwalltime=1:00:00 myscript.sh

10.myserver

qsub -lselect=100:ncpus=16 -lwalltime=2:00:00 -Wdepend=runone:10 myscript.sh

11.myserver

qsub -lselect=50:ncpus=16 -lwalltime=4:00:00 -Wdepend=runone:10 myscript.sh

12.myserver

6.2.2 Job Dependency Examples

Example 6-1: You have three jobs, job1, job2, and job3, and you want job3 to start after job1 and job2 have ended:

qsub job1

16394.jupiter

qsub job2

16395.jupiter

qsub -W depend=afterany:16394:16395 job3

16396.jupiter

Example 6-2: You want job2 to start only if job1 ends with no errors:

qsub job1

16397.jupiter

qsub -W depend=afterok:16397 job2

16396.jupiter

Example 6-3: job1 should run before job2 and job3. To use the beforeany dependency, you must use the on depen-
dency:

qsub -W depend=on:2 job1

16397.jupiter

qsub -W depend=beforeany:16397 job2

16398.jupiter

qsub -W depend=beforeany:16397 job3

16399.jupiter

6.2.3 Job Array Dependencies

Job dependencies are supported:

• Between jobs and jobs

• Between job arrays and job arrays

• Between job arrays and jobs

• Between jobs and job arrays

Job dependencies are not supported for subjobs or ranges of subjobs.
PBS Professional 2020.1.1 User’s Guide UG-109

Chapter 6 Controlling How Your Job Runs
6.2.4 Caveats and Advice for Job Dependencies

6.2.4.1 Correct Exit Status Required

Under Linux, make sure that job exit status is captured correctly; see section 6.1, “Using Job Exit Status”, on page 107.

6.2.4.2 Permission Required for Dependencies

To use the before types, you must have permission to alter the jobs in arg list. Otherwise, the dependency is rejected and
the new job is aborted.

6.2.4.3 Warning About Job History

Enabling job history changes the behavior of dependent jobs. If a job j1 depends on a finished job j2 for which PBS is
maintaining history, PBS releases j1’s dependency, and takes appropriate action. If job j1 depends on a finished job j3
that has been purged from job history, j1 is rejected just as in previous versions of PBS where the job was no longer in the
system.

6.2.4.4 Error Reporting

PBS checks for errors in the existence, state, or condition of the job after accepting the job. If there is an error, PBS sends
you mail about the error and deletes the job.

6.3 Adjusting Job Running Time

This feature was added in PBS Professional 12.0.

6.3.1 Shrink-to-fit Jobs

PBS allows you to submit a job whose running time can be adjusted to fit into an available scheduling slot. The job’s
minimum and maximum running time are specified in the min_walltime and max_walltime resources. PBS chooses the
actual walltime. Any job that requests min_walltime is a shrink-to-fit job.

6.3.1.1 Requirements for a Shrink-to-fit Job

A job must have a value for min_walltime to be a shrink-to-fit job. Shrink-to-fit jobs are not required to request
max_walltime, but it is an error to request max_walltime and not min_walltime.

Jobs that do not have values for min_walltime are not shrink-to-fit jobs, and you can specify their walltime.

6.3.1.2 Comparison Between Shrink-to-fit and Non-shrink-to-fit Jobs

The only difference between a shrink-to-fit and a non-shrink-to-fit job is how the job’s walltime is treated. PBS sets the
walltime when it runs the job. Any walltime value that exists before the job runs is ignored.

6.3.2 Using Shrink-to-fit Jobs

If you have jobs that can run for less than the expected time needed and still make useful progress, you can make them
shrink-to-fit jobs in order to maximize utilization.
UG-110 PBS Professional 2020.1.1 User’s Guide

Controlling How Your Job Runs Chapter 6
You can use shrink-to-fit jobs for the following:

• Jobs that are internally checkpointed. This includes jobs which are part of a larger effort, where a job does as much
work as it can before it is killed, and the next job in that effort takes up where the previous job left off.

• Jobs using periodic PBS checkpointing

• Jobs whose real running time might be much less than the expected time

• When you have dedicated time for system maintenance, and you want to take advantage of time slots right up until
shutdown, you can run speculative shrink-to-fit jobs if you can risk having a job killed before it finishes. Similarly,
speculative jobs can take advantage of the time just before a reservation starts

• Any job where you do not mind running the job as a speculative attempt to finish some work

6.3.3 Running Time of a Shrink-to-fit Job

6.3.3.1 Setting Running Time Range for Shrink-to-fit Jobs

It is only required that the job request min_walltime to be a shrink-to-fit job. Requesting max_walltime without
requesting min_walltime is an error.

You can set the job’s running time range by requesting min_walltime and max_walltime, for example:

qsub -l min_walltime=<min walltime>, max_walltime=<max walltime> <job script>

6.3.3.2 Setting walltime for Shrink-to-fit Jobs

For a shrink-to-fit job, PBS sets the walltime resource based on the values of min_walltime and max_walltime, regard-
less of whether walltime is specified for the job.

PBS examines each shrink-to-fit job when it gets to it, and looks for a time slot whose length is between the job’s
min_walltime and max_walltime. If the job can fit somewhere, PBS sets the job’s walltime to a duration that fits the
time slot, and runs the job. The chosen value for walltime is visible in the job’s Resource_List.walltime attribute. Any
existing walltime value, regardless of where it comes from, e.g. previous execution, is reset to the new calculated run-
ning time.

If a shrink-to-fit job is run more than once, PBS recalculates the job’s running time to fit an available time slot that is
between min_walltime and max_walltime, and resets the job’s walltime, each time the job is run.

For a multi-vnode job, PBS chooses a walltime that works for all of the chunks required by the job, and places job
chunks according to the placement specification.

6.3.4 Modifying Shrink-to-fit and Non-shrink-to-fit Jobs

6.3.4.1 Modifying min_walltime and max_walltime

You can change min_walltime and/or max_walltime for a shrink-to-fit job by using the qalter command. Any
changes take effect after the current scheduling cycle. Changes affect only queued jobs; running jobs are unaffected
unless they are rerun.

6.3.4.1.i Making Non-shrink-to-fit Jobs into Shrink-to-fit Jobs

You can convert a normal non-shrink-to-fit job into a shrink-to-fit job using the qalter command to set values for
min_walltime and max_walltime.

Any changes take effect after the current scheduling cycle. Changes affect only queued jobs; running jobs are unaffected
unless they are rerun.
PBS Professional 2020.1.1 User’s Guide UG-111

Chapter 6 Controlling How Your Job Runs
6.3.4.1.ii Making Shrink-to-fit Jobs into Non-shrink-to-fit Jobs

To make a shrink-to-fit job into a normal, non-shrink-to-fit job, use the qalter command to do the following:

• Set the job’s walltime to the value for max_walltime

• Unset min_walltime

• Unset max_walltime

6.3.5 Viewing Running Time for a Job

6.3.5.1 Viewing min_walltime and max_walltime

You can use qstat -f to view the values of min_walltime and max_walltime. For example:

% qsub -lmin_walltime=01:00:15, max_walltime=03:30:00 job.sh

<job-id>

% qstat -f <job-id>

...

Resource_List.min_walltime=01:00:15

Resource_List.max_walltime=03:30:00

You can use tracejob to display max_walltime and min_walltime as part of the job's resource list. For example:

12/16/2011 14:28:55 A user=pbsadmin group=Users project=_pbs_project_default

…

Resource_List.max_walltime=10:00:00

Resource_List.min_walltime=00:00:10

6.3.5.2 Viewing walltime for a Shrink-to-fit Job

PBS sets a job’s walltime only when the job runs. While the job is running, you can see its walltime via qstat -f.
While the job is not running, you cannot see its real walltime; it may have a value set for walltime, but this value is
ignored.

You can see the walltime value for a finished shrink-to-fit job if you are preserving job history. See section 13.15, “Man-
aging Job History”, on page 519.

6.3.6 Lifecycle of a Shrink-to-fit Job

6.3.6.1 Execution of Shrink-to-fit Jobs

Shrink-to-fit jobs are started just like non-shrink-to-fit jobs.

6.3.6.2 Termination of Shrink-to-fit Jobs

When a shrink-to-fit job exceeds the walltime PBS has set for it, it is killed by PBS exactly as a non-shrink-to-fit job is
killed when it exceeds its walltime.
UG-112 PBS Professional 2020.1.1 User’s Guide

Controlling How Your Job Runs Chapter 6
6.3.7 The min_walltime and max_walltime Resources

max_walltime

Maximum walltime allowed for a shrink-to-fit job. Job’s actual walltime is between max_walltime and
min_walltime. PBS sets walltime for a shrink-to-fit job. If this resource is specified, min_walltime must also
be specified. Must be greater than or equal to min_walltime. Cannot be used for resources_min or
resources_max. Cannot be set on job arrays or reservations. If not specified, PBS uses 5 years as the maxi-
mum time slot. Can be requested only outside of a select statement. Non-consumable. Default: None. Type:
duration. Python type: pbs.duration

min_walltime

Minimum walltime allowed for a shrink-to-fit job. When this resource is specified, job is a shrink-to-fit job. If
this attribute is set, PBS sets the job’s walltime. Job’s actual walltime is between max_walltime and
min_walltime. Must be less than or equal to max_walltime. Cannot be used for resources_min or
resources_max. Cannot be set on job arrays or reservations. Can be requested only outside of a select state-
ment. Non-consumable. Default: None. Type: duration. Python type: pbs.duration

6.3.8 Caveats and Restrictions for Shrink-to-fit Jobs

It is erroneous to specify max_walltime for a job without specifying min_walltime. If attempted via qsub or
qalter, the following error is printed:

'Can not have “max_walltime” without “min_walltime”'

It is erroneous to specify a min_walltime that is greater than max_walltime. If attempted via qsub or qalter, the fol-
lowing error is printed:

'“min_walltime” can not be greater than “max_walltime”'

Job arrays cannot be shrink-to-fit. You cannot have a shrink-to-fit job array. It is erroneous to specify a min_walltime or
max_walltime for a job array. If attempted via qsub or qalter, the following error is printed:

'”min_walltime” and “max_walltime” are not valid resources for a job array'

Reservations cannot be shrink-to-fit. You cannot have a shrink-to-fit reservation. It is erroneous to set min_walltime or
max_walltime for a reservation. If attempted via pbs_rsub, the following error is printed:

'”min_walltime” and “max_walltime” are not valid resources for reservation.'

It is erroneous to set resources_max or resources_min for min_walltime and max_walltime. If attempted, the fol-
lowing error message is displayed, whichever is appropriate:

“Resource limits can not be set for min_walltime”

“Resource limits can not be set for max_walltime”

6.4 Using Checkpointing

6.4.1 Prerequisites for Checkpointing

A job is checkpointable if it has not been marked as non-checkpointable and any of the following is true:

• Its application supports checkpointing and your administrator has set up checkpoint scripts

• There is a third-party checkpointing application available

• The OS supports checkpointing
PBS Professional 2020.1.1 User’s Guide UG-113

Chapter 6 Controlling How Your Job Runs
6.4.2 Minimum Checkpoint Interval

The execution queue in which the job resides controls the minimum interval at which a job can be checkpointed. The
interval is specified in CPU minutes or walltime minutes. The same value is used for both, so for example if the mini-
mum interval is specified as 12, then a job using the queue’s interval for CPU time is checkpointed every 12 minutes of
CPU time, and a job using the queue’s interval for walltime is checkpointed every 12 minutes of walltime.

6.4.3 Syntax for Specifying Checkpoint Interval

Use the “-c checkpoint-spec” option to qsub to specify the interval, in CPU minutes, or in walltime minutes, at
which the job will be checkpointed.

The checkpoint-spec argument is specified as:

c

Job is checkpointed at the interval, measured in CPU time, set on the execution queue in which the job resides.

c=<minutes of CPU time>

Job is checkpointed at intervals of the specified number of minutes of CPU time used by the job. This value
must be greater than zero. If the interval specified is less than that set on the execution queue in which the job
resides, the queue’s interval is used.

Format: Integer

w

Job is checkpointed at the interval, measured in walltime, set on the execution queue in which the job resides.

w=<minutes of walltime>

Checkpointing is to be performed at intervals of the specified number of minutes of walltime used by the job.
This value must be greater than zero. If the interval specified is less than that set on the execution queue in
which the job resides, the queue’s interval is used.

Format: Integer

n

Job is not checkpointed.

s

Job is checkpointed only when the PBS server is shut down.

u

Checkpointing is unspecified, and defaults to the same behavior as “s”.

The Checkpoint job attribute controls the job’s checkpoint interval. You can set it using the qsub command line or a
PBS directive:

Use qsub to specify that the job should use the execution queue’s checkpoint interval:

qsub -c c my_job

Use a directive to checkpoint the job every 10 minutes of CPU time:

#PBS -c c=10

6.4.4 Using Checkpointing for Preempting or Holding Jobs

Your site may need to preempt jobs while they are running, or you may want to be able to place a hold your job while it
runs. To allow either of these, make your job checkpointable. This means that you should not mark it as non-checkpoint-
able (do not use qsub -c n), your application must be checkpointable or there is a third-party checkpointing applica-
tion, and your administrator must supply a checkpoint script to be run by the MoM where the job runs.
UG-114 PBS Professional 2020.1.1 User’s Guide

Controlling How Your Job Runs Chapter 6
You can use application-level checkpointing when your job is preempted or you place a hold on it to save the partial
results. When your checkpointed job is restarted, your job script can find that the job was checkpointed, and can start
from the checkpoint file instead of starting from scratch.

If you try to hold a running job that is not checkpointable (either it is marked as non-checkpointable or the script is miss-
ing or returns failure), the job continues to run with its Hold_Types attribute set to h. See section 6.5, “Holding and
Releasing Jobs”, on page 115.

6.4.5 Caveats and Restrictions for Checkpointing

• Checkpointing is not supported for job arrays.

• If you do not specify qsub -c checkpoint-spec, it is unspecified, and defaults to the same as “s”.

• PBS limits the number of times it tries to run a job to 21, and tracks this count in the job’s run_count attribute. If
your job is checkpointed and requeued enough times, it will be held.

6.5 Holding and Releasing Jobs

You can place a hold on your job to do the following:

• A queued job remains queued until you release the hold; see section 6.5.3, “Holding a Job Before Execution”, on
page 116

• A running job stops running but can resume where it left off; see section 6.5.4.1, “Checkpointing and Requeueing
the Job”, on page 116

• A running job continues to run but is held if it is requeued; see section 6.5.4.2, “Setting Hold Type for a Running
Job”, on page 116

You hold a job using the qhold command; see “qhold” on page 147 of the PBS Professional Reference Guide.

You can release a held queued job to make it eligible to be scheduled to run, and you can release a hold on a running job.
You release a hold on your job using the qrls command; see “qrls” on page 180 of the PBS Professional Reference Guide.

The qhold command uses the following syntax:

qhold [-h <hold list>] <job ID> [<job ID> ...]

The qrls command uses the following syntax:

qrls [-h <hold list>] <job ID> [<job ID> ...]

For a job array the job ID must be enclosed in double quotes.

6.5.1 Types of Holds

The hold list specifies the types of holds to be placed on the job. The hold list argument is a string consisting of one or
more of the letters u, p, o, or s in any combination, or the letter n. The following table shows the hold type associated
with each letter:

Table 6-1: Hold Types

Hold Type Meaning Who Can Set or Release

u User Job owner, Operator, Manager, administrator, root

o Other Operator, Manager, administrator, root
PBS Professional 2020.1.1 User’s Guide UG-115

Chapter 6 Controlling How Your Job Runs
If no -h option is specified, PBS applies a user hold to the jobs listed in the job ID list.

If a job in the job ID list is in the queued, held, or waiting states, the only change is that the hold type is added to the job’s
other holds. If the job is queued or waiting in an execution queue, the job is also put in the held state.

6.5.2 Requirements for Holding or Releasing a Job

The user executing the qhold or qrls command must have the necessary privilege to apply a hold or release a hold.
The same rules apply for releasing a hold and for for setting a hold.

6.5.3 Holding a Job Before Execution

Normally, PBS runs your job as soon as an appropriate slot opens up. However, you can tell PBS that the job is ineligible
to run and should remain queued. Use the “-h” option to qsub to apply a user hold to the job when you submit it. PBS
accepts the job and places it in the held state. The job remains held and ineligible to run until the hold is released.

The Hold_Types job attribute controls the job’s holding behavior; set it via qsub or a directive:

qsub -h my_job

#PBS -h

6.5.4 Holding a Job During Execution

6.5.4.1 Checkpointing and Requeueing the Job

If your job is checkpointable, you can stop its execution by holding it. In this case the following happens:

• The job is checkpointed

• The resources assigned to the job are released

• The job is put back in the execution queue in the Held state

See section 6.4.1, “Prerequisites for Checkpointing”, on page 113.

To hold your job, use the qhold command:

qsub -h my_job

6.5.4.2 Setting Hold Type for a Running Job

If your job is not checkpointable, qhold merely sets the job’s Hold_Types attribute. This has no effect unless the job is
requeued with the qrerun command. In that case the job remains queued and ineligible to run until you release the
hold.

s System Manager, administrator, root, PBS (dependency)

n No hold Job owner, Operator, Manager, administrator, root

p Bad password Administrator, root

Table 6-1: Hold Types

Hold Type Meaning Who Can Set or Release
UG-116 PBS Professional 2020.1.1 User’s Guide

Controlling How Your Job Runs Chapter 6
6.5.5 Releasing a Job

You can release one or more holds on a job by using the qrls command.

The qrls command uses the following syntax:

qrls [-h <hold list>] <job ID> ...

For job arrays, the job ID must be enclosed in double quotes.

If you try to release a hold on a job which is not held, the qrls command is ignored. If you use the qrls command to
release a hold on a job that had been previously running and was checkpointed, the hold is released and the job is
returned to the queued (Q) state, and the job becomes eligible to be scheduled to run when resources come available.

The qrls command does not run the job; it simply releases the hold and makes the job eligible to be run the next time
the scheduler selects it.

6.5.6 Caveats and Restrictions for Holding and Releasing
Jobs

• The qhold command can be used on job arrays, but not on subjobs or ranges of subjobs. On job arrays, the qhold
command can be applied only in the ‘Q’, ‘B’ or ‘W’ states. This will put the job array in the ‘H’, held, state. If any
subjobs are running, they will run to completion. Job arrays cannot be moved in the ‘H’ state if any subjobs are run-
ning.

• Checkpointing is not supported for job arrays. Even on systems that support checkpointing, no subjobs will be
checkpointed; they will run to completion.

• To hold a running job and stop its execution, the job must be checkpointable. See section 6.4.1, “Prerequisites for
Checkpointing”, on page 113.

• The qrls command can only be used with job array objects, not with subjobs or ranges. The job array will be
returned to its pre-hold state, which can be either ‘Q’, ‘B’, or ‘W’.

• The qhold command can only be used with job array objects, not with subjobs or ranges. A hold can be applied
to a job array only from the ‘Q’, ‘B’ or ‘W’ states. This will put the job array in the ‘H’, held, state. If any subjobs
are running, they will run to completion. No queued subjobs will be started while in the ‘H’ state.

• PBS limits the number of times it tries to run a job to 21, and tracks this count in the job’s run_count attribute. If
your job is checkpointed and requeued enough times, it will be held.

6.5.7 Why is Your Job Held?

Your job may be held for any of the following reasons:

• Provisioning fails due to invalid provisioning request or to internal system error (“s”)

• After provisioning, the AOE reported by the vnode does not match the AOE requested by the job (“s”)

• The job was held by a PBS Manager or Operator (“o”)

• The job was checkpointed and requeued (“s”)

• Your job depends on a finished job for which PBS is maintaining history (‘s”)

• The job’s password is invalid (“p”)

• The job’s run_count attribute has a value greater than 20.
PBS Professional 2020.1.1 User’s Guide UG-117

Chapter 6 Controlling How Your Job Runs
6.5.8 Examples of Holding and Releasing Jobs

The following examples illustrate how to use both the qhold and qrls commands. Notice that the state (“S”) column
shows how the state of the job changes with the use of these two commands.

qstat -a 54

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

54.south barry workq engine -- -- 1 -- 0:20 Q --

qhold 54

qstat -a 54

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

54.south barry workq engine -- -- 1 -- 0:20 H --

qrls -h u 54

qstat -a 54

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

54.south barry workq engine -- -- 1 -- 0:20 Q --

6.6 Allowing Your Job to be Re-run

You can specify whether or not your job is eligible to be re-run if for some reason the job is terminated before it finishes.
Use the “-r” option to qsub to specify whether the job is rerunnable. The argument to this option is “y”, meaning that
the job can be re-run, or “n”, meaning that it cannot. If you do not specify whether or not your job is rerunnable, it is
rerunnable.

If running your job more than once would cause a problem, mark your job as non-rerunnable. Otherwise, leave it as
rerunnable . The purpose of marking a job as non-rerunnable is to prevent it from starting more than once.

If a job that is marked non-rerunnable has an error during startup, before it begins execution, that job is requeued for
another attempt.

The Rerunable job attribute controls whether the job is rerunnable; you can set it via qsub or a PBS directive:

qsub -r n my_job

#PBS -r n
UG-118 PBS Professional 2020.1.1 User’s Guide

Controlling How Your Job Runs Chapter 6
The following table lists the circumstances where the job’s Rerunable attribute makes a difference or does not:

6.6.1 Caveats and Restrictions for Marking Jobs as
Rerunnable

• Interactive jobs are not rerunnable.

• Job arrays are required to be rerunnable. PBS will not accept a job array that is marked as not rerunnable. You can
submit a job array without specifying whether it is rerunnable, and PBS will automatically mark it as rerunnable.

• Mark your job as not rerunnable only if running it more than once would cause a problem. If your job is marked as
not rerunnable, and a higher-priority job needs resources, your job could be deleted.

6.7 Controlling Number of Times Job is Re-run

PBS has a built-in limit of 21 on the number of times it will try to run your job. The number of attempts is tracked in the
job’s run_count attribute. By default, the value of run_count is zero at job submission. The job is held when the value
of run_count goes above 20.

You can reduce the number of times PBS attempts to run your job. You can specify a non-negative value for run_count
at job submission, and you can use qalter to raise the value of run_count while the job is running. You cannot give a
job more retries than the limit, and you cannot lower the value of run_count while the job is running.

6.7.1 Caveats for Raising Value of run_count Attribute

If your job is checkpointed and requeued enough times, it will be held.

6.8 Deferring Execution

Normally, PBS runs your job as soon as an appropriate slot opens up. Instead, you can specify a time after which the job
is eligible to run. The job is in the wait (W) state from the time it is submitted until the time it is eligible for execution.

Table 6-2: When does Rerunable Attribute Matter?

Circumstance Rerunnable Not Rerunnable

Job fails upon startup, before running Job is requeued Job is requeued

Job is running on multiple hosts, and one host goes down Job is requeued Job is deleted

Job is scheduled to run on multiple hosts, and did not start on at
least one host

Job is requeued Job is requeued

Server is shut down with a delay Job is requeued Job finishes

Server is shut down immediately Job is requeued Job is deleted

Job requests provisioning and provisioning script fails Job is requeued Job is requeued

Job is running on multiple hosts and one host becomes busy due
to console activity

Job is requeued Job is deleted

Higher-priority job needs resources Job may be requeued Job may be deleted
PBS Professional 2020.1.1 User’s Guide UG-119

Chapter 6 Controlling How Your Job Runs
6.8.1 Syntax for Deferring Execution

Use the “-a <datetime>” option to qsub to specify the time after which the job is eligible for execution. The
datetime argument is in the form:

[[[[CC]YY]MM]DD]hhmm[.SS]

where

CC is the first two digits of the year (the century): optional

YY is the second two digits of the year: optional

MM is the two digits for the month: optional

DD is the day of the month: optional

hh is the hour

mm is the minute

SS is the seconds: optional

If the day DD is in the future, and the month MM is not specified, the month defaults to the current month. If the day DD
is in the past, and the month MM is not specified, the month is set to next month. For example, if today is the 10th, and
you specify the 12th but no month, your job is eligible to run two days from today, on the 12th.

Similarly, if the time hhmm is in the future, and the day DD is not specified, the day defaults to the current day. If the
time hhmm is in the past, and the day DD is not specified, the day is set to tomorrow. For example, if you submit a job at
11:15am with a time of “1110”, the job will be eligible to run at 11:10am tomorrow.

The job’s Execution _Time attribute controls deferred execution. You can set it using either of the following:

qsub -a 0700 my_job

#PBS -a 10220700

6.9 Setting Priority for Your Job

PBS includes a place in each job where you can specify the job’s priority. Your administrator may or may not choose to
use this priority value when scheduling jobs. Use the “-p <priority>” to specify the priority of the job. The priority
argument must be an integer between -1024 (lowest priority) and +1023 (highest priority) inclusive. The default is unset,
which is equivalent to zero.

The Priority job attribute contains the value you specify. Set it via qsub or a directive:

qsub -p 120 my_job

#PBS -p -300

If you need an absolute ordering of your own jobs, see section 6.2, “Using Job Dependencies”, on page 107.

6.10 Making qsub Wait Until Job Ends

Normally, when you submit a job, the qsub command exits after returning the ID of the new job. You can use the “-W
block=true” option to qsub to specify that you want qsub to “block”, meaning wait for the job to complete and
report the exit value of the job.

If your job is successfully submitted, qsub blocks until the job terminates or an error occurs. If job submission fails, no
special processing takes place.
UG-120 PBS Professional 2020.1.1 User’s Guide

Controlling How Your Job Runs Chapter 6
If the job runs to completion, qsub exits with the exit status of the job. For job arrays, blocking qsub waits until the
entire job array is complete, then returns the exit status of the job array.

The block job attribute controls blocking. Set it either via qsub or a PBS directive:

qsub -W block=true

#PBS block=true

6.10.1 Signal Handling and Error Processing for Blocking
Jobs

Signals SIGQUIT and SIGKILL are not trapped, and immediately terminate the qsub process, leaving the associated
job either running or queued.

If qsub receives one of the signals SIGHUP, SIGINT, or SIGTERM, it prints a message and then exits with an exit sta-
tus of 2.

If the job is deleted before running to completion, or an internal PBS error occurs, qsub prints an an error message
describing the situation to this error stream and qsub exits with an exit status of 3.

6.10.2 Caveats for Blocking Jobs

• If you submit a job that is both blocking and interactive, the job’s exit status is not returned at the end of the job.

• PBS returns the exit status of a blocking job before staging finishes for the job. To see whether the job is still stag-
ing, use qstat -f, and look at the job’s substate attribute. This attribute has value 51 when files are staging out.

6.11 Running Your Job Interactively

PBS provides a special kind of batch job called an interactive-batch job or interactive job. An interactive job is treated
just like a regular batch job in that it is queued up, and has to wait for resources to become available before it can run.
However, once it starts, your terminal input and output are connected to the job similarly to a login session. It appears
that you are logged into one of the available execution machines, and the resources requested by the job are reserved for
that job. This is useful for debugging applications or for computational steering.

You can use GUI applications in interactive jobs on remote hosts. The PBS interface is slightly different on Linux and
Windows. For Linux, see section 6.11.9, “Receiving X Output from Interactive Linux Jobs”, on page 124. For Win-
dows, see section 6.11.10, “Submitting Interactive GUI Jobs on Windows”, on page 125.

Interactive jobs can use provisioning.

6.11.1 Input and Output for Interactive Jobs

An interactive job comes complete with a pseudotty suitable for running commands that set terminal characteristics.
Once the interactive job has started execution, input to and output from the job pass through qsub. You provide all input
to your interactive job through the terminal session in which the job runs.

For interactive jobs, you can specify PBS directives in a job script. You cannot provide commands to the job by using a
job script. For interactive jobs, PBS ignores executable commands in job scripts.
PBS Professional 2020.1.1 User’s Guide UG-121

Chapter 6 Controlling How Your Job Runs
6.11.2 Running Your Interactive Job

To run your job interactively, you can do either of the following:

• Use qsub -I at the command line

• Use #PBS interactive=true (deprecated) in a PBS directive

When your interactive job is running, you can run commands, executables, shell scripts, DOS commands, etc. These
commands behave normally; for example, if the path to a command is not in your PATH environment variable, you must
provide the full path.

6.11.3 Lifecycle of an Interactive Job

1. You start the interactive job using qsub #PBS interactive=true (deprecated) or -I

2. If there is a script, PBS processes any directives in the script

3. The scheduler runs the job

4. Output is connected to the submission window

5. You run commands, executables, shell scripts, etc. interactively

6. The job is terminated

6.11.3.1 Terminating Interactive Jobs

When you run an interactive job, the qsub command does not terminate when the job is submitted. qsub remains run-
ning until one of the following:

• You qdel the job

• Someone else deletes the job

• You exit the shell

• The job is aborted

• You interrupt qsub with a SIGINT (the control-C key) before the scheduler starts the job.

Once the scheduler starts the job, SIGINT is ignored.

Under Linux, if you interrupt qsub before the job starts, qsub queries whether you want it to exit. If you respond
“yes”, qsub exits and the job is aborted. Under Windows, if you interrupt the job before it starts, the job is deleted, and
the following messages are printed:

qsub: wait for job <job ID> interrupted by signal 2

<job ID> is being deleted

6.11.4 Interactive Jobs and Exit Codes

Under Windows, if you specify an exit code when you exit the interactive session, via “exit <exit code>”, that exit code
is used as the job’s exit code. This exit code is visible in the output of the tracejob command.

Under Linux, you cannot provide an exit code for the interactive session.
UG-122 PBS Professional 2020.1.1 User’s Guide

Controlling How Your Job Runs Chapter 6
6.11.5 Tracking Progress for Interactive Jobs

After you have submitted an interactive job, PBS prints the following message to the window where you submitted the
job:

qsub: waiting for job <job ID> to start

When the job is started by the scheduler, PBS prints the following message to the submission window:

qsub: job <job ID> ready

When the interactive job finishes, PBS prints the following message to the submission window:

qsub: job <job ID> completed

6.11.6 Special Sequences for Interactive Jobs

Keyboard-generated interrupts are passed to the job. Lines entered that begin with the tilde ('~') character and contain
special sequences are interpreted by qsub itself. The recognized special sequences are:

~.

qsub terminates execution. The batch job is also terminated.

 ~susp

Suspends the qsub program. “susp” is the suspend character, usually CTRL-Z.

 ~asusp

Suspends the input half of qsub (terminal to job), but allows output to continue to be displayed. “asusp” is the
auxiliary suspend character, usually control-Y.

6.11.7 Caveats and Restrictions for Interactive Jobs

• Make sure that your login file does not run processes in the background. See section 1.4.2.5, “Avoid Background
Processes Inside Jobs”, on page 6.

• You cannot run an array job interactively.

• Interactive jobs are not rerunnable.

• An interactive job on a Cray must run on a login node. See section 11.4.6, “Specify Host for Interactive Jobs on
Cray XC”, on page 193.

• You cannot use the CLS command in an interactive job. It will not clear the screen.

• After the scheduler has started the interactive job, SIGINT (Ctrl-C) is ignored.

• Under Linux, you cannot provide an exit code for the interactive session.

• When an interactive job finishes, staged files and stdout and/or stderr may not have been copied back yet.

• The submission host must accept incoming ephemeral ports
PBS Professional 2020.1.1 User’s Guide UG-123

Chapter 6 Controlling How Your Job Runs
6.11.8 Errors and Logging

• If PBS cannot open a remote interactive shell to run an interactive job, PBS prints the following error message:
“qsub: failed to run remote interactive shell”

• If IPC$ on the remote host cannot be connected, PBS prints the following message:
“Couldn't connect to host <hostname>”

• If PBS is successful in connecting to the IPC$ at the execution host, but fails to execute the remote shell, PBS prints
the following error message:
“Couldn't execute remote shell at host <hostname>”

6.11.9 Receiving X Output from Interactive Linux Jobs

Under Linux, you can receive X output from an interactive job via the qsub -X option.

6.11.9.1 How to Receive X Output Under Linux

To receive X output, use qsub -X -I. For example:

qsub -I -X <return>

xterm <return>

Control is returned here when your X process terminates. You can background the process here, if you want to.

6.11.9.1.i Receiving X Output on Non-submission Host

You can view your X output on a host that is not the job submission host. For example, you submit a job from SubHost,
and want to see the output on ViewHost. If you want to receive X output on a host that is not the submission host, for
example ViewHost, do the following:

• Run an X server on ViewHost

• On ViewHost, log into SubHost using ssh -X

• In window logged into SubHost, run qsub -I -X

6.11.9.2 Requirements for Receiving X Output

• You must be running Linux.

• The job must be interactive: you must also specify -I.

• An X server must be running on the system where you want to see the X output.

• The DISPLAY variable in the job’s submission environment must be set to the display where the X output is desired.

• Your administrator must configure MoM’s PATH to include the xauth utility.

6.11.9.3 Viewing X Output Job Attributes

Each job has two read-only attributes containing X forwarding information. These are the following:

forward_x11_cookie

This attribute contains the X authorization cookie.

forward_x11_port

This attribute contains the number of the port being listened to by the port forwarder on the submission host.

You can view these attributes using qstat -f <job ID>.
UG-124 PBS Professional 2020.1.1 User’s Guide

Controlling How Your Job Runs Chapter 6
6.11.9.4 Caveats and Advice for Receiving X Output

• This option is not available under Windows.

• If you use the qsub -V option, PBS will handle the DISPLAY variable correctly.

• If you use the qsub -v DISPLAY option, you will get an error.

• At most 25 concurrent X applications can run using the same job session.

• If you experience a problem with X when using qsub –X –I, use the following to create the correct ~/.Xau-
thority file for qsub to use when establishing the X session:
ssh –X <hostname> server <-> <exec host(s)>

6.11.9.5 X Forwarding Errors

• If the DISPLAY environment variable is pointing to a display number that is correctly formatted but incorrect, sub-
mitting an interactive X forwarding job results in the following error message:
“cannot read data from 'xauth list <display number>', errno=<errno>”

• If the DISPLAY environment variable is pointing to an incorrectly formatted value, submitting an interactive X for-
warding job results in the following error message:
“qsub: Failed to get xauth data (check $DISPLAY variable)”

• If the X authority utility (xauth) is not found on the submission host, the following error message is displayed:
“execution of xauth failed: sh: xauth: command not found”

• When the execution of the xauth utility results in an error, the error message displayed by the xauth utility is pre-
ceded by the following:
“execution of xauth failed: ”

• When the qsub -X option is used without -I, the following error message is displayed:
"qsub: X11 forwarding possible only for Interactive Jobs"

6.11.10 Submitting Interactive GUI Jobs on Windows

You can run an interactive job that uses a GUI application. If the job executes on a host other than the one from which
you submit the job, PBS uses a remote viewer or interactive shell to connect the GUI application to the remote host.
Under Windows, PBS supports any GUI application, including Remote Viewer and X. If your job requires a GUI appli-
cation or interactive shell, you must run it as an interactive job.

To run an interactive PBS job that launches a GUI application:

qsub -I -G -- <GUI application>

When the same host is used for submission and execution, the application is launched on the local console. No
remote viewer client is launched.

When the submission and execution hosts are different, the GUI application is launched in the remote session using
the specified remote viewer. The remote viewer client is launched.

To run X under Windows, do not use the -X option. This option is not available under Windows. Use -G.

To launch an interactive shell in a PBS job:

qsub -I -G

When the submission and execution host are the same, the interactive shell is launched on the local console. No
remote viewer client is launched.
PBS Professional 2020.1.1 User’s Guide UG-125

Chapter 6 Controlling How Your Job Runs
When the submission and execution hosts are different, the interactive shell is launched, and any GUI application
launched through this shell is visible in the remote session using the configured remote viewer. The remote viewer
client is launched.

Your interactive GUI job is finished or no longer running under the following circumstances:

• When the GUI application launched via qsub -I -G <GUI application> is closed

• When the interactive shell launched via qsub -I -G exits

• When the remote viewer is terminated, closed, or logged off, all applications started by the remote viewer are closed.

• When a GUI job is deleted via qdel, all the applications and tasks associated with the job are killed

See “-G [<path to GUI application or script>]” on page 220 of the PBS Professional Reference Guide.

6.12 Using Environment Variables

PBS provides your job with environment variables where the job runs. PBS takes some from your submission environ-
ment, and creates others. You can create environment variables for your job. The environment variables created by PBS
begin with “PBS_”. The environment variables that PBS takes from your submission (originating) environment begin
with “PBS_O_”.

For example, here are a few of the environment variables that accompany a job, with typical values:

PBS_O_HOME=/u/user1

PBS_O_LOGNAME=user1

PBS_O_PATH=/usr/bin:/usr/local/bin:/bin

PBS_O_SHELL=/bin/tcsh

PBS_O_HOST=host1

PBS_O_WORKDIR=/u/user1

PBS_JOBID=16386.server1

For a complete list of PBS environment variables, see “PBS Environment Variables” on page 399 of the PBS Profes-
sional Reference Guide.

6.12.1 Exporting All Environment Variables

The “-V” option declares that all environment variables in the qsub command’s environment are to be exported to the
batch job.

qsub -V my_job

#PBS -V

6.12.2 Exporting Specific Environment Variables

The “-v <variable list>” option to qsub allows you to specify additional environment variables to be exported
to the job. variable list names environment variables from the qsub command environment which are made available to
the job when it executes. These variables and their values are passed to the job. These variables are added to those
already automatically exported. Format: comma-separated list of strings in the form:

-v <variable>

or

-v <variable>=<value>
UG-126 PBS Professional 2020.1.1 User’s Guide

Controlling How Your Job Runs Chapter 6
If a <variable>=<value> pair contains any commas, the value must be enclosed in single or double quotes, and the
<variable>=<value> pair must be enclosed in the kind of quotes not used to enclose the value. For example:

qsub -v DISPLAY,myvariable=32 my_job

qsub -v "var1='A,B,C,D'" job.sh

qsub -v a=10, "var2='A,B'", c=20, HOME=/home/zzz job.sh

6.12.3 Caveat for Environment Variables and Shell Functions

Make sure that no exported shell function you want to forward has the same name as an environment variable. The shell
function will not be visible in the environment.

6.12.4 Forwarding Exported Shell Functions

You can forward exported shell functions using either qsub -V or qsub -v <function name>. You can also put
these functions in your .profile or .login on the execution host(s).

If you use -v or -V, make sure that there is no environment variable with the same name as any exported shell functions
you want to forward; otherwise, the shell function will not be visible in the environment.

6.13 Specifying Which Jobs to Preempt

You can specify which groups of jobs your job is allowed to preempt in order to run. You can specify all the jobs in one
or more queues, and all jobs that request particular resources, by listing them in the preempt_targets resource.

Syntax:

...-l preempt_targets="queue=<queue name>[,queue=<queue name>],
Resource_List.<resource>=<value>[,Resource_List.<resource>=<value>]"

For example, to specify that your job can preempt jobs in the queue named QueueA and/or jobs that requested
arch=linux:

...-l preempt_targets="queue=QueueA,Resource_List.arch=linux"

You can prevent a job from preempting any other job in the complex by setting its preemption_targets to the keyword
“None” (case-insensitive).

Make the preempt_targets resource specification last or use another -l specification for subsequent resource specifica-
tions. Otherwise, subsequent resource specifications will look to PBS like additions to preempt_targets.
PBS Professional 2020.1.1 User’s Guide UG-127

Chapter 6 Controlling How Your Job Runs
6.14 Releasing Unneeded Vnodes from Your Job

If you want to prevent unnecessary resource usage, you can release unneeded sister hosts or vnodes (not the primary exe-
cution host or its vnodes) from your job. You can use the pbs_release_nodes command or the
release_nodes_on_stageout job attribute:

• You can use the pbs_release_nodes command either at the command line or in your job script to release sister
hosts or vnodes when the command is issued. You can use this command to release specific vnodes that are not on
the primary execution host, or all vnodes that are not on the primary execution host. You can also use it to release all
hosts or vnodes except for what you specify, which can be either a count of hosts to keep, or a select specification
describing the vnodes to keep. You cannot use the command to release vnodes on the primary execution host. See
“pbs_release_nodes” on page 92 of the PBS Professional Reference Guide.

• You can set the job’s release_nodes_on_stageout attribute to True so that PBS releases all of the job’s vnodes
that are not on the primary execution host when stageout begins. You must set the job’s stageout attribute as well.
See “Job Attributes” on page 328 of the PBS Professional Reference Guide.

6.14.1 Caveats and Restrictions for Releasing Vnodes

• You must specify a stageout parameter in order to be able to release vnodes on stageout. If you do not specify stage-
out, release_nodes_on_stageout has no effect.

• You can release only vnodes that are not on the primary execution host. You cannot release vnodes on the primary
execution host.

• The job must be running (in the R state).

• The pbs_release_nodes command is not supported on vnodes tied to Cray X* series systems (vnodes whose
vntype has the "cray_" prefix).

• If cgroups support is enabled, and pbs_release_nodes is called to release some but not all the vnodes managed
by a MoM, resources on those vnodes are released.

• If a vnode on a multi-vnode host is assigned exclusively to a job, and the vnode is released, the job will show that the
vnode is released, but the vnode will still show as assigned to the job in pbsnodes -av until the other vnodes on
that host have been released. If a vnode on a multi-vnode machine is not assigned exclusively to a job, and the
vnode is released, it shows as released whether or not the other vnodes on that host are released.

• If you specify release of a vnode on which a job process is running, that process is terminated when the vnode is
released.

6.14.2 What Happens When You Release Vnodes

After you release a job’s vnode:

• The job’s $PBS_NODEFILE no longer lists the released vnode

• The server continues to hold on to the job until receiving confirmation that the job has been cleaned up from the
vnode

• The vnode reports to the primary execution host MoM its resources_used* values for the job as the final action.
The released vnode no longer updates the resources_used values for the job since it's no longer part of the job. But
the primary execution host holds onto the data, and adds the data during final aggregation of resources_used val-
ues when job exits

• After every successful call to pbs_release_nodes, qstat shows updated values for the job’s exec_host,
exec_vnode, and Resource_List attributes
UG-128 PBS Professional 2020.1.1 User’s Guide

Controlling How Your Job Runs Chapter 6
When releasing vnodes, if all vnodes assigned to a job managed by the same MoM have been released, the job is com-
pletely removed from that MoM’s host. This results in the following:

• The execjob_epilogue hook script (if it exists) runs

• Job processes are killed on that host

• Any job-specific specific files including job temporary directories are removed

If one or more, but not all, the vnodes from an execution host assigned to a job are released, the job is not removed from
that host yet. If those released vnodes have been configured to be shared, they can be reassigned to other jobs.

6.14.3 Examples of Releasing Unneeded Vnodes From Job

Example 6-4: Submit a job that will release its non-primary-execution-host vnodes on stageout:

% qsub -W stageout=my_stageout@executionhost2:my_stageout.out -W release_nodes_on_stageout=true
job.scr

Example 6-5: Release particular vnodes from a job:

Syntax: pbs_release_nodes [-j <job ID>] <vnode name> [<vnode name>] ...]

% qsub job.scr

241.myserverhost

% qstat 241 | grep "exec|Resource_List|select"

exec_host = executionhost1[0]/0*0+executionhost2/0*0+executionhost3/0*2

exec_vnode =
(executionhost1[0]:mem=1048576kb:ncpus=1+executionhost1[1]:mem=1048576kb:ncpus=1+executionho
st1[2]:ncpus=1)+(executionhost2:mem=104

8576kb:ncpus=1+executionhost2[0]:mem=1048576k:ncpus=1+executionhost2[1]:ncpus=1)+(executionhost3
:ncpus=2:mem=2097152kb)

Resource_List.mem = 6gb

Resource_List.ncpus = 8

Resource_List.nodect = 3

Resource_List.place = scatter

Resource_List.select = ncpus=3:mem=2gb+ncpus=3:mem=2gb+ncpus=2:mem=2gb

schedselect = 1:ncpus=3:mem=2gb+1:ncpus=3:mem=2gb+1:ncpus=2:mem=2gb

% pbs_release_nodes -j 241 executionhost2[1] executionhost3

% qstat 241 | grep "exec|Resource_List|select"

exec_host = executionhost1[0]/0*0+executionhost2/0*0 (no executionhost3; all assigned vnodes in
executionhost3 have been released)

exec_vnode =
(executionhost1[0]:mem=1048576kb:ncpus=1+executionhost1[1]:mem=1048576kb:ncpus=1+executionho
st1[2]:ncpus=1)+(executionhost2:mem=1048576kb:ncpus=1+executionhost2[0]:mem=1048576kb:ncpus=
1) (executionhost2[1] and executionhost3 no longer appear)

Resource_List.mem = 4194304kb (reduced by 2gb from executionhost3)
Resource_List.ncpus = 5 (reduced by 3 CPUs, 1 from executionhost2[1] and 2 from executionhost3)
Resource_List.nodect = 2 (reduced by 1 chunk; when executionhost3 was released, its entire chunk assignment

disappeared)
Resource_List.place = scatter

schedselect = 1:mem=2097152kb:ncpus=3+1:mem=2097152kb:ncpus=2

Example 6-6: Release all vnodes not on the primary execution host:
PBS Professional 2020.1.1 User’s Guide UG-129

Chapter 6 Controlling How Your Job Runs
Syntax: pbs_release_nodes [-j <job ID>] -a

% pbs_release_nodes -j 241 -a

% qstat -f 241

exec_host = executionhost1[0]/0*0

exec_vnode =
(executionhost1[0]:mem=1048576kb:ncpus=1)+executionhost1[1]:mem=1048576kb:ncpus=1+executionh
ost1[2]:ncpus=1)

Resource_List.mem = 2097152kb

Resource_List.ncpus = 3

Resource_List.nodect = 1

Resource_List.place = scatter

schedselect = 1:mem=2097152kb:ncpus=3

Example 6-7: Release all sister hosts except for 4:

% pbs_release_nodes -k 4

Example 6-8: Release all sister vnodes except for 8 of those marked with “bigmem”:

% pbs_release_nodes -k select=8:bigmem=true

Example 6-9: Sister vnodes are no longer listed in $PBS_NODEFILE after they are released:

% qsub -l select=2:ncpus=1:mem=1gb -l place=scatter -I

qsub: waiting for job 247.executionhost1.example.com to start

qsub: job 247.executionhost1.example.com ready

% cat $PBS_NODEFILE

executionhost1.example.com

executionhost2.example.com

% pbs_release_nodes -j 247 executionhost2

% cat $PBS_NODEFILE

executionhost1.example.com

6.15 Running Your Job in a Container

PBS supports running multi-vnode, multi-host, and interactive jobs in Docker and Singularity containers.

You can specify a container engine by requesting a resource whose value is set to that engine, or you can use the default
by not requesting one. You can request only one container engine per job, even though this resource is requested at the
host level. You must request the same container engine for all chunks. Ask your administrator for the name of the
resource listing available container engines, or find it using pbsnodes (look for container engine names). We recom-
mend that this resource is named “container engine”.

qsub ... -l select=ncpus=...:<container engine resource>=<container engine>

You request a container image for your job via -l container_image=<container image> or by setting the
CONTAINER_IMAGE environment variable to the name of the image and passing the environment variable with the
job:

qsub ... -l container_image=<container image> ...
UG-130 PBS Professional 2020.1.1 User’s Guide

Controlling How Your Job Runs Chapter 6
or

qsub ... -v CONTAINER_IMAGE=<name of container image> ...

Example 6-10: To request the Docker container engine and an image named “centos”:

qsub -l select=1:ncpus=1:container_engine=docker -lcontainer_image="centos" -- /bin/sleep 500

If you do not specify a script, for example “qsub -l container_image=hello-world”, qsub asks you interactively for
a script.

If you supply a script to qsub, PBS runs the script inside the specified container.

For a multi-host job, you can use any version of OpenMPI with containers.

PBS runs an infinite-duration sleep command in the container to keep the container alive.

6.15.1 Specifying Ports with Docker Containers

For single-vnode jobs in Docker containers, you can request ports for applications. PBS maps requested ports to avail-
able ports on the host and returns the mapping. You request ports by listing comma-separated port numbers in the
container_ports job resource. Lists of port numbers must be enclosed in single quotes. PBS sets the job’s
resources_used.container_ports value to comma-separated <container port>:<host port> pairs. For example, your
job can request specific ports:

qsub -l container_ports="'2324,8989'" ...

PBS returns the port mapping in the job’s resources_used.container_ports resource:

resources_used.container_ports = 2324:8080,8989:32771

6.15.2 Specifying Additional Arguments to Container Engine

You can specify additional arguments to the container engine via the PBS_CONTAINER_ARGS environment variable,
which is a semicolon-separated list. For example, to specify --shm-size to be 1GB and --tmpfs to be “/
run:rw,noexec,nosuid,size=65536k”:

export PBS_CONTAINER_ARGS="--shm-size=1GB";"--tmpfs /run:rw,noexec,nosuid,size=65536k"

Your PBS administrator must whitelist any additional arguments before you use them in a job.

The --env and --entrypoint arguments to docker run are not supported.

6.15.3 Passing Environment Variables Into Containers

To pass environment variables directly to PBS, use qsub -v <environment variable list>. The --env
argument is not supported.

6.15.4 Adding Job Owner to Secondary Groups in Docker
Containers

Your administrator can configure PBS to add the job owner to secondary groups inside the container. These are the
groups on the execution host where the job owner is already a member. This feature applies only to Docker containers,
since Singularity automatically adds the job owner to all groups.
PBS Professional 2020.1.1 User’s Guide UG-131

Chapter 6 Controlling How Your Job Runs
6.15.5 Running Single-vnode Single-Host Jobs in Singularity
Containers

In addition to using PBS to launch your containers, you can always run a single-vnode job in a single Singularity con-
tainer by prepending your scripts, executables, or commands with the Singularity binary.

6.15.6 Specifying Shell in Container

You can run your default shell inside a container without taking any extra steps. To run a shell in a container using any-
thing besides the default, you must specify the shell using the -S option to qsub. Any selected shell should be available
inside the container.

6.15.7 Caveats and Restrictions

• You cannot use old-style resource requests such as -lncpus with containers.

• Any entry point in a container is disabled. If you want to run the equivalent of an entry point command, you must
include the complete command with its arguments on the command line.

6.16 Running Your Job in the Cloud

To submit a job that can run in the cloud, submit it to the configured cloud queue. Syntax:

qsub -q <name of cloud queue> -l <resource request> <job script>

For example:

qsub -q cloudq -- /bin/sleep 100

6.16.1 Restrictions and Caveats for Cloud Bursting with PBS

• Cloud bursting is supported only on Linux.

• Reservations are not supported on cloud nodes.

6.17 Allowing Your Job to Tolerate Vnode Failures

You can allow your job to tolerate vnode failures if your administrator has configured PBS to do so. PBS lets you allo-
cate extra vnodes to a job so that the job can successfully start and run even if some vnodes fail. PBS can allocate the
extra vnodes only for startup, or for the life of the job. Later, for jobs where the extra vnodes are needed only for reliable
startup, PBS can trim the allocated vnodes back to just what the job will use to run, releasing the unneeded vnodes for
other jobs.

To allow your job to tolerate vnode failures during startup only, set the job’s tolerate_node_failures attribute to “start”.

To allow your job to tolerate vnode failures during the life of the job, set the job’s tolerate_node_failures attribute to
“all”.
UG-132 PBS Professional 2020.1.1 User’s Guide

Controlling How Your Job Runs Chapter 6
Examples of setting this attribute:

• Via qsub:
qsub -W tolerate_node_failures="all" <job script>

• Via qalter:
qalter -W tolerate_node_failures="job_start" <job ID>
PBS Professional 2020.1.1 User’s Guide UG-133

Chapter 6 Controlling How Your Job Runs
UG-134 PBS Professional 2020.1.1 User’s Guide

7

Reserving Resources

In this chapter we go over job reservations only (advance, standing, and job-specific reservations); maintenance reserva-
tions are covered in "Reservations" on page 197 in the PBS Professional Administrator’s Guide.

7.1 Glossary

Advance reservation

A reservation for a set of resources for a specified time. The reservation is available only to the creator of the
reservation and any users or groups specified by the creator.

Degraded reservation

A job-specific or advance reservation for which one or more associated vnodes are unavailable.

A standing reservation for which one or more vnodes associated with any occurrence are unavailable.

Job-specific reservation

A reservation created for a specific job, for the same resources that the job requested.

Job-specific ASAP reservation

Reservation created for a specific queued job, for the same resources the job requests. PBS schedules the reser-
vation to run as soon as possible, and PBS moves the job into the reservation. Created when you use
pbs_rsub -Wqmove=<job ID> on a queued job.

Job-specific now reservation

Reservation created for a specific running job. PBS immediately creates a job-specific now reservation on the
same resources as the job is using, and moves the job into the reservation. The reservation is created and starts
running immediately when you use pbs_rsub --job <job ID> on a running job.

Job-specific start reservation

Reservation created for a specific queued job, for the same resources the job requests. PBS starts the job
according to scheduling policy. When the job starts, PBS creates and starts the reservation, and PBS moves the
job into the reservation. Created when you use qsub -Wcreate_resv_from_job=true on a queued
job.

Occurrence of a standing reservation

An instance of the standing reservation.

An occurrence of a standing reservation behaves like an advance reservation, with the following exceptions:

• while a job can be submitted to a specific advance reservation, it can only be submitted to the standing res-
ervation as a whole, not to a specific occurrence. You can only specify when the job is eligible to run.
See“qsub” on page 213 of the PBS Professional Reference Guide.

• when an advance reservation ends, it and all of its jobs, running or queued, are deleted, but when an occur-
rence ends, only its running jobs are deleted.

Each occurrence of a standing reservation has reserved resources which satisfy the resource request, but each
occurrence may have its resources drawn from a different source. A query for the resources assigned to a stand-
ing reservation will return the resources assigned to the soonest occurrence, shown in the resv_nodes attribute
reported by pbs_rstat.
PBS Professional 2020.1.1 User’s Guide UG-135

Chapter 7 Reserving Resources
Soonest occurrence of a standing reservation

The occurrence which is currently active, or if none is active, then it is the next occurrence.

Standing reservation

An advance reservation which recurs at specified times. For example, you can reserve 8 CPUs and 10GB every
Wednesday and Thursday from 5pm to 8pm, for the next three months.

7.2 Quick Explanation of Reservations for Jobs

You can reserve resources to be used later by jobs, or you can create a reservation using the resources requested by a spe-
cific job, and move the job into that reservation.

You create an advance or standing reservation, then submit jobs to the reservation. An advance reservation reserves
specific resources for a specific time period, and a standing reservation does the same thing, but for a repeating
sequence of time periods.

PBS creates job-specific reservations by reserving the same resources that a queued job requests, or a running job is
using, then moving the job into the reservation’s queue.

• PBS creates Job-specific Start Reservations for specific queued jobs whose create_resv_from_job attribute is
True. When the job runs, PBS creates and starts the reservation, and PBS moves the job into the reservation. This
reservation allows you to re-run the job later without having to wait for it to be scheduled again. You can set this
attribute at submission using qsub -Wcreate_resv_from_job=true.

• PBS creates Job-specific ASAP Reservations for specific queued jobs when you use pbs_rsub -Wqmove=<job ID>
on those jobs. PBS creates the reservation and moves the job into the reservation, and the reservation is scheduled to
run as soon as possible.

• PBS creates Job-specific Now Reservations for specific running jobs when you use pbs_rsub --job <job
ID> on them. PBS immediately creates a reservation, starts it, and moves the job into the reservation. This reserva-
tion allows you to re-run the job without having to wait for it to be scheduled again.

7.3 Prerequisites for Reserving Resources

The time for which a reservation is requested is in the time zone at the submission host.

You must set the submission host’s PBS_TZID environment variable. The format for PBS_TZID is a timezone loca-
tion. Example: America/Los_Angeles, America/Detroit, Europe/Berlin, Asia/Kolkata. See
section 1.4.4, “Setting Time Zone for Submission Host”, on page 9.

7.4 Advance and Standing Reservations

7.4.1 Introduction to Creating and Using Advance and
Standing Reservations

You can create both advance and standing reservations using the pbs_rsub command. PBS either confirms that the res-
ervation can be made, or rejects the request. Once the reservation is confirmed, PBS creates a queue for the reservation’s
jobs. Jobs are then submitted to this queue.
UG-136 PBS Professional 2020.1.1 User’s Guide

Reserving Resources Chapter 7
When a reservation is confirmed, it means that the reservation will not conflict with currently running jobs, other con-
firmed reservations, or dedicated time, and that the requested resources are available for the reservation. A reservation
request that fails these tests is rejected. All occurrences of a standing reservation must be acceptable in order for the
standing reservation to be confirmed.

The pbs_rsub command returns a reservation ID, which is the reservation name. For an advance reservation, this res-
ervation ID has the format:

R<sequence number>.<server name>

For a standing reservation, this reservation ID refers to the entire series, and has the format:

S<sequence number>.<server name>

You specify the resources for a reservation using the same syntax as for a job. Jobs in reservations are placed the same
way non-reservation jobs are placed in placement sets.

The time for which a reservation is requested is in the time zone at the submission host.

The pbs_rsub command returns a reservation ID string, and the current status of the reservation.

You can create an advance or standing reservation so that if the reservation sits idle, it is automatically deleted after the
amount of time you specify. For a standing reservation, this applies to each occurrence separately. If one occurrence of
a standing reservation is deleted, the next occurrence still starts at its designated time. To have your reservation be
deleted automatically, use pbs_rsub -Wdelete_idle_time=<allowed idle time> and specify the number of seconds as
an integer, or the duration as HH:MM:SS.

For the options to the pbs_rsub command, see “pbs_rsub” on page 96 of the PBS Professional Reference Guide.

7.4.2 Creating Advance Reservations

You create an advance reservation using the pbs_rsub command. PBS must be able to calculate the start and end times
of the reservation, so you must specify two of the following three options:

D Duration

E End time

R Start time

7.4.2.1 Setting Time Zone for Advance Reservations

If you need the time zone for your advance reservation to be UTC, set this when you create the reservation:

TZ=UTC pbs_rsub -R...

7.4.2.2 Examples of Creating Advance Reservations

The following example shows the creation of an advance reservation asking for 1 vnode, 30 minutes of wall-clock time,
and a start time of 11:30. Since an end time is not specified, PBS will calculate the end time based on the reservation start
time and duration.

pbs_rsub -R 1130 -D 00:30:00

PBS returns the reservation ID:

R226.south UNCONFIRMED

The following example shows an advance reservation for 2 CPUs from 8:00 p.m. to 10:00 p.m.:

pbs_rsub -R 2000.00 -E 2200.00 -l select=1:ncpus=2

PBS returns the reservation ID:

R332.south UNCONFIRMED
PBS Professional 2020.1.1 User’s Guide UG-137

Chapter 7 Reserving Resources
7.4.3 Creating Standing Reservations

You create standing reservations using the pbs_rsub command. You must specify a start and end date when creating a
standing reservation. The recurring nature of the reservation is specified using the -r option to pbs_rsub. The -r
option takes the recurrence_rule argument, which specifies the standing reservation’s occurrences. The recurrence
rule uses iCalendar syntax, and uses a subset of the parameters described in RFC 2445.

The recurrence rule can take two forms:

"FREQ=<freq spec>;COUNT=<count spec>;<interval spec>"

In this form, you specify how often there will be occurrences, how many there will be, and which days and/or hours
apply.

"FREQ=<freq spec>;UNTIL=<until spec>;<interval spec>"

Do not include any spaces in your recurrence rule.

In this form, you specify how often there will be occurrences, when the occurrences will end, and which days and/or
hours apply.

freq spec
This is the frequency with which the reservation repeats. Valid values are WEEKLY|DAILY|HOURLY

When using a freq spec of WEEKLY, you may use an interval spec of BYDAY and/or BYHOUR. When using a
freq spec of DAILY, you may use an interval spec of BYHOUR. When using a freq spec of HOURLY, do not use
an interval spec.

count spec
The exact number of occurrences. Number up to 4 digits in length. Format: integer.

interval spec
Specifies the interval at which there will be occurrences. Can be one or both of BYDAY=<days> or
BYHOUR=<hours>. Valid values are BYDAY = MO|TU|WE|TH|FR|SA|SU and BYHOUR = 0|1|2|...|23.
When using both, separate them with a semicolon. Separate days or hours with a comma.

For example, to specify that there will be recurrences on Tuesdays and Wednesdays, at 9 a.m. and 11 a.m., use
BYDAY=TU,WE;BYHOUR=9,11

BYDAY should be used with FREQ=WEEKLY. BYHOUR should be used with FREQ=DAILY or
FREQ=WEEKLY.

until spec
Occurrences will start up to but not after this date and time. This means that if occurrences last for an hour, and
normally start at 9 a.m., then a time of 9:05 a.m on the day specified in the until spec means that an occurrence
will start on that day.

Format: YYYYMMDD[THHMMSS]

Note that the year-month-day section is separated from the hour-minute-second section by a capital T.

Default: 3 years from time of reservation creation.

7.4.3.1 Setting Reservation Start Time and Duration

In a standing reservation, the arguments to the -R and -E options to pbs_rsub can provide more information than they
do in an advance reservation. In an advance reservation, they provide the start and end time of the reservation. In a
standing reservation, they can provide the start and end time, but they can also be used to compute the duration and the
offset from the interval start.

The difference between the values of the arguments for -R and -E is the duration of the reservation. For example, if you
specify

-R 0930 -E 1145
UG-138 PBS Professional 2020.1.1 User’s Guide

Reserving Resources Chapter 7
the duration of your reservation will be two hours and fifteen minutes. If you specify

-R 150800 -E 170830

the duration of your reservation will be two days plus 30 minutes.

The interval spec can be used to specify the day or the hour at which the interval starts. If you specify

-R 0915 -E 0945 ... BYHOUR=9,10

the duration is 30 minutes, and the offset is 15 minutes from the start of the interval. The interval start is at 9 and again at
10. Your reservation will run from 9:15 to 9:45, and again at 10:15 and 10:45. Similarly, if you specify

-R 0800 -E -1000 ... BYDAY=WE,TH

the duration is two hours and the offset is 8 hours from the start of the interval. Your reservation will run Wednesday
from 8 to 10, and again on Thursday from 8 to 10.

Elements specified in the recurrence rule override those specified in the arguments to the -R and -E options. Therefore if
you specify

-R 0730 -E 0830 ... BYHOUR=9

the duration is one hour, but the hour element (9:00) in the recurrence rule has overridden the hour element specified in
the argument to -R (7:00). The offset is still 30 minutes after the interval start. Your reservation will run from 9:30 to
10:30. Similarly, if the 16th is a Monday, and you specify

-R 160800 -E 170900 ... BYDAY=TU;BYHOUR=11

the duration 25 hours, but both the day and the hour elements have been overridden. Your reservation will run on Tues-
day at 11, for 25 hours, ending Wednesday at 12. However, if you specify

-R 160810 -E 170910 ... BYDAY=TU;BYHOUR=11

the duration is 25 hours, and the offset from the interval start is 10 minutes. Your reservation will run on Tuesday at
11:10, for 25 hours, ending Wednesday at 12:10. The minutes in the offset weren’t overridden by anything in the recur-
rence rule.

The values specified for the arguments to the -R and -E options can be used to set the start and end times in a standing
reservation, just as they are in an advance reservation. To do this, don’t override their elements inside the recurrence
rule. If you specify

-R 0930 -E 1030 ... BYDAY=MO,TU

you haven’t overridden the hour or minute elements. Your reservation will run Monday and Tuesday, from 9:30 to 10:30.

7.4.3.2 Requirements for Creating Standing Reservations

• You must specify a start and end date.

• You must set the submission host’s PBS_TZID environment variable. The format for PBS_TZID is a timezone
location. Example: America/Los_Angeles, America/Detroit, Europe/Berlin, Asia/Cal-
cutta. See section 1.4.4, “Setting Time Zone for Submission Host”, on page 9.

• The recurrence rule must be one unbroken line.

• The recurrence rule must be enclosed in double quotes.

• Vnodes that have been configured to accept jobs only from a specific queue (vnode-queue restrictions) cannot be
used for advance or standing reservations. See your PBS administrator to determine whether some vnodes have been
configured to accept jobs only from specific queues.

• Make sure that there are no spaces in your recurrence rule.
PBS Professional 2020.1.1 User’s Guide UG-139

Chapter 7 Reserving Resources
7.4.3.3 Examples of Creating Standing Reservations

For a reservation that runs every day from 8am to 10am, for a total of 10 occurrences:

pbs_rsub -R 0800 -E 1000 - r"FREQ=DAILY;COUNT=10"

Every weekday from 6am to 6pm until December 10, 2008:

pbs_rsub -R 0600 -E 1800 -r "FREQ=WEEKLY;BYDAY=MO,TU,WE,TH,FR;UNTIL=20081210"

Every week from 3pm to 5pm on Monday, Wednesday, and Friday, for 9 occurrences, i.e., for three weeks:

pbs_rsub -R 1500 -E 1700 -r "FREQ=WEEKLY;BYDAY=MO,WE,FR;COUNT=9"

7.5 Job-specific Reservations

7.5.1 Job-specific Start Reservations

PBS runs the job normally, and when the job starts, PBS creates and starts a job-specific start reservation and moves the
job into the reservation. PBS creates the reservation using the same resources that are being used by the job. The reser-
vation holds the resources needed for the job in case the job fails and needs to be re-submitted, allowing it to run again
without having to wait to be scheduled. The reservation starts when the job starts and has the same end time as the job.

If you have a queued job that you think is likely to fail and need to be corrected and re-submitted, you can create a job-
specific start reservation. When you submit the job, set its create_resv_from_job attribute to True using the -W option
to qsub:

qsub ... -Wcreate_resv_from_job=true

For example, to create a job-specific start reservation for the job whose script is named myscript.sh:

qsub myscript.sh -Wcreate_resv_from_job=true

You can also qalter a queued job to set this attribute:

qalter -Wcreate_resv_from_job=true <job ID>

For example, to create a start reservation when job 1234.myserver starts:

qalter -Wcreate_resv_from_job=true 1234.myserver

A job-specific start reservation ID has the format:

R<sequence number>.<server name>

PBS sets the start reservation’s reserve_job attribute to the ID of the job from which the reservation was created, sets
the reservation’s Reserve_Owner attribute to the value of the job’s Job_Owner attribute, sets the reservation’s
resv_nodes attribute to the jobs’s exec_vnode attribute, sets the reservation’s resources to the job’s schedselect
attribute, and sets the reservation’s Resource_List attribute to the job’s Resource_List attribute.

The start reservation’s duration and start time are the same as the job’s walltime and start time. If the job is peer sched-
uled, the now reservation is created in the pulling complex.

The start reservation is created when the job begins execution. You can set the create_resv_from_job attribute to True
at any time, but this is only effective if you do it before the job starts. If your job has started running and you want to cre-
ate a job-specific reservation for it, create a job-specific now reservation; see section 7.5.3, “Job-specific Now Reserva-
tions”, on page 141.

Can be used only with queued jobs.

Cannot be used with job arrays, jobs being submitted to other reservations, or other users’ jobs.
UG-140 PBS Professional 2020.1.1 User’s Guide

Reserving Resources Chapter 7
7.5.2 Job-specific ASAP Reservations

PBS schedules a job-specific ASAP reservation to start as soon as possible. PBS creates a job-specific ASAP reservation
using the resources requested by a specific queued job, and moves the job into the reservation.

Other jobs can also be moved into that queue via qmove or submitted to that queue via qsub.

To create an ASAP reservation:

pbs_rsub -W qmove=<job ID>

For example, to create an ASAP reservation for job 1234.myserver:

pbs_rsub -W qmove="1234.myserver"

A job-specific ASAP reservation ID has the format:

R<sequence number>.<server name>

The -R and -E options to pbs_rsub are disabled when using the -W qmove option.

Cannot be used on job arrays.

For more information, see “pbs_rsub” on page 96 of the PBS Professional Reference Guide.

We recommend using ASAP reservations only for sites that set job walltime. A job’s default walltime is 5 years. There-
fore an ASAP reservation’s start time can be 5 years later, or more, if all the jobs in the system have the default walltime.

The delete_idle_time attribute for an ASAP reservation has a default value of 10 minutes.

7.5.3 Job-specific Now Reservations

PBS creates and starts a job-specific now reservation on the same resources used by a running job, and moves the run-
ning job into the reservation. The reservation holds the resources needed for the job in case the job fails and needs to be
re-submitted, allowing it to run again without having to wait to be scheduled.

If you realize that a running job needs modification and re-submitting, and you don’t want to have to wait until the sched-
uler finds a slot, you can create a now reservation. Later, you can submit a modified version of the job into the reserva-
tion:

pbs_rsub --job <job ID>

For example, to create a now reservation for job 1234.myserver while it’s running:

pbs_rsub --job 1234.myserver

A job-specific now reservation ID has the format:

R<sequence number>.<server name>

PBS sets the job’s create_resv_from_job attribute to True, sets the now reservation’s reserve_job attribute to the ID
of the job from which the reservation was created, sets the reservation’s Reserve_Owner attribute to the value of the
job’s Job_Owner attribute, sets the reservation’s resv_nodes attribute to the jobs’s exec_vnode attribute, sets the res-
ervation’s resources to the job’s schedselect attribute, and sets the reservation’s Resource_List attribute to the job’s
Resource_List attribute.

The now reservation’s duration and start time are the same as the job’s walltime and start time. If the job is peer sched-
uled, the now reservation is created in the pulling complex.

Can be used on running jobs only (jobs in the R state, with substate 42).

Cannot be used with job arrays, jobs already in reservations, or other users’ jobs.
PBS Professional 2020.1.1 User’s Guide UG-141

Chapter 7 Reserving Resources
7.6 Getting Confirmation of a Reservation

By default the pbs_rsub command does not immediately notify you whether the reservation is confirmed or denied.
Instead you receive email with this information. You can specify that the pbs_rsub command should wait for confir-
mation by using the -I <block time> option. The pbs_rsub command will wait up to block time seconds for the reser-
vation to be confirmed or denied and then notify you of the outcome. If block time is negative and the reservation is not
confirmed in that time, the reservation is automatically deleted.

To find out whether the reservation has been confirmed, use the pbs_rstat command. It will display the state of the
reservation. CO and RESV_CONFIRMED indicate that it is confirmed. If the reservation does not appear in the output
from pbs_rstat, that means that the reservation was denied.

To ensure that you receive mail about your reservations, set the reservation’s Mail_Users attribute via the -M <email
address> option to pbs_rsub. By default, you will get email when the reservation is terminated or confirmed. If you
want to receive email about events other than those, set the reservation’s Mail_Points attribute via the -m <mail events>
option. For more information, see “pbs_rsub” on page 96 of the PBS Professional Reference Guide and “Reservation
Attributes” on page 303 of the PBS Professional Reference Guide.

7.7 Modifying Reservations

You can use the pbs_ralter command to alter an existing reservation. You can use this command to modify a job-
specific reservation or an advance reservation or the next or current instance of a standing reservation. Syntax:

pbs_ralter [-D <duration>] [-E <end time>] [-G <auth group list>] [-I <block time>] [-m <mail points>] [-M <mail
list>] [-N <reservation name>] [-R <start time>] [-U <auth user list>] <reservation ID>

After the change is requested, the change is either confirmed or denied. On denial of the change, the reservation is not
deleted and is left as is, and the following message appears in the server’s log:

Unable to alter reservation <reservation ID>

When a reservation is confirmed, the following message appears in the server’s log:

Reservation alter successful for <reservation ID>

To find out whether or not the change was allowed:

• Use the pbs_rstat command: see whether you altered reservation attribute(s)

• Use the interactive option: check for confirmation after the blocking time has run out

If the reservation has not started and it cannot be confirmed on the same vnodes, PBS searches for another set of vnodes.
See section 9.4, "Reservation Fault Tolerance", on page 426 of the PBS Professional Administrator’s Guide.

You must be the reservation owner or the PBS Administrator to run this command.

For details, see “pbs_ralter” on page 86 of the PBS Professional Reference Guide.

7.8 Deleting Reservations

You can delete a reservation by using the pbs_rdel command. For a standing reservation, you can only delete the
entire reservation, including all occurrences. When you delete a reservation, all of the jobs that have been submitted to
the reservation are also deleted. A reservation can be deleted by its owner or by a PBS Operator or Manager. For exam-
ple, to delete S304.south:

pbs_rdel S304.south
UG-142 PBS Professional 2020.1.1 User’s Guide

Reserving Resources Chapter 7
or

pbs_rdel S304

You can create a reservation so that if the reservation sits idle, it is automatically deleted after the amount of time you
specify. For a standing reservation, this applies to each occurrence separately. If one occurrence of a standing reserva-
tion is deleted, the next occurrence still starts at its designated time. To have your reservation be deleted automatically,
use pbs_rsub -Wdelete_idle_time=<allowed idle time> and specify the number of seconds as an integer, or the dura-
tion as HH:MM:SS.

7.9 Viewing the Status of a Reservation

The following table shows the list of possible states for a reservation. The states that you will usually see are CO, UN,
BD, and RN, although a reservation usually remains unconfirmed for too short a time to see that state. See “Reservation
States” on page 367 of the PBS Professional Reference Guide.

To view the status of a reservation, use the pbs_rstat command. It will display the status of all reservations at the
PBS server. For a standing reservation, the pbs_rstat command will display the status of the soonest occurrence.
Duration is shown in seconds. The pbs_rstat command will not display a custom resource which has been created to
be invisible. See section 4.3.8, “Caveats and Restrictions on Requesting Resources”, on page 57. This command has
three options:

The full listing for a standing reservation is identical to the listing for an advance reservation, with the following addi-
tions:

• A line that specifies the recurrence rule:
reserve_rrule = FREQ=WEEKLY;BYDAY=MO;COUNT=5

• An entry for the vnodes reserved for the soonest occurrence of the standing reservation. This entry also appears for
an advance reservation, but will be different for each occurrence:
resv_nodes=(<vnode name>:...)

• A line that specifies the total number of occurrences of the standing reservation:
reserve_count = 5

• The index of the soonest occurrence:
reserve_index = 1

• The timezone at the site of submission of the reservation is appended to the reservation’s Variable_List attribute.
For example, in California:
Variable_List=<other variables>PBS_TZID=America/Los_Angeles

To get the status of a reservation at a server other than the default server, set the PBS_SERVER environment variable to
the name of the server you wish to query, then use the pbs_rstat command. Your PBS commands will treat the new
server as the default server, so you may wish to unset this environment variable when you are finished.

Table 7-1: Options to pbs_rstat Command

Option Meaning Description

B Brief Lists only the names of the reservations

S Short Lists in table format the name, queue name, owner, state, and start, duration and end times
of each reservation

F Full Lists the name and all non-default-value attributes for each reservation.

<none> Default Default is S option
PBS Professional 2020.1.1 User’s Guide UG-143

Chapter 7 Reserving Resources
You can also get information about the reservation’s queue by using the qstat command. See “qstat” on page 197 of
the PBS Professional Reference Guide .

7.9.1 Examples of Viewing Reservation Status Using
pbs_rstat

In our example, we have one advance reservation and one standing reservation. The advance reservation is for today, for
two hours, starting at noon. The standing reservation is for every Thursday, for one hour, starting at 3:00 p.m. Today is
Monday, April 28th, and the time is 1:00, so the advance reservation is running, and the soonest occurrence of the stand-
ing reservation is Thursday, May 1, at 3:00 p.m.

Example brief output:

pbs_rstat -B

Name: R302.south

Name: S304.south

Example short output:

pbs_rstat -S

Name Queue User State Start / Duration / End

--

R302.south R302 user1 RN Today 12:00 / 7200/ Today 14:00

S304.south S304 user1 CO May 1 2008 15:00/3600/May 1 2008 16:00
UG-144 PBS Professional 2020.1.1 User’s Guide

Reserving Resources Chapter 7
Example full output:

pbs_rstat -F

Name: R302.south

Reserve_Name = NULL

Reserve_Owner = user1@south.mydomain.com

reserve_state = RESV_RUNNING

reserve_substate = 5

reserve_start = Mon Apr 28 12:00:00 2008

reserve_end = Mon Apr 28 14:00:00 2008

reserve_duration = 7200

queue = R302

Resource_List.ncpus = 2

Resource_List.nodect = 1

Resource_List.walltime = 02:00:00

Resource_List.select = 1:ncpus=2

Resource_List.place = free

resv_nodes = (south:ncpus=2)

Authorized_Users = user1@south.mydomain.com

server = south

ctime = Mon Apr 28 11:00:00 2008

Mail_Users = user1@mydomain.com

mtime = Mon Apr 28 11:00:00 2008

Variable_List = PBS_O_LOGNAME=user1,PBS_O_HOST=south.mydomain.com

Name: S304.south

Reserve_Name = NULL

Reserve_Owner = user1@south.mydomain.com

reserve_state = RESV_CONFIRMED

reserve_substate = 2

reserve_start = Thu May 1 15:00:00 2008

reserve_end = Thu May 1 16:00:00 2008

reserve_duration = 3600

queue = S304

Resource_List.ncpus = 2

Resource_List.nodect = 1

Resource_List.walltime = 01:00:00

Resource_List.select = 1:ncpus=2

Resource_List.place = free

resv_nodes = (south:ncpus=2)

reserve_rrule = FREQ=WEEKLY;BYDAY=MO;COUNT=5

reserve_count = 5

reserve_index = 2

Authorized_Users = user1@south.mydomain.com

server = south

ctime = Mon Apr 28 11:01:00 2008

Mail_Users = user1@mydomain.com
PBS Professional 2020.1.1 User’s Guide UG-145

Chapter 7 Reserving Resources
mtime = Mon Apr 28 11:01:00 2008

Variable_List = PBS_O_LOGNAME=user1,PBS_O_HOST=south.mydomain.com,PBS_TZID=America/Los_Angeles

7.10 Submitting a Job to a Reservation

Jobs can be submitted to the queue associated with a reservation, or they can be moved from another queue into the res-
ervation queue. You submit a job to a reservation by using the -q <queue> option to the qsub command to specify the
reservation queue. For example, to submit a job to the soonest occurrence of a standing reservation named
S123.south, submit to its queue S123:

qsub -q S123 <script>

You move a job into a reservation queue by using the qmove command. For more information, see “qsub” on page 213
of the PBS Professional Reference Guide and “qmove” on page 172 of the PBS Professional Reference Guide. For
example, to qmove job 22.myhost from workq to S123, the queue for the reservation named S123.south:

qmove S123 22.myhost

or

qmove S123 22

A job submitted to a standing reservation without a restriction on when it can run will be run, if possible, during the soon-
est occurrence. In order to submit a job to a specific occurrence, use the -a <start time> option to the qsub command,
setting the start time to the time of the occurrence that you want. You can also use a cron job to submit a job at a spe-
cific time. See “qsub” on page 213 of the PBS Professional Reference Guide and the cron(8) man page.

7.10.1 Who Can Use Your Reservation

By default, the reservation accepts jobs only from the user who created the reservation, and accepts jobs submitted from
any group or host. You can specify a list of users and groups whose jobs will and will not be accepted by the reservation
by setting the reservation’s Authorized_Users and Authorized_Groups attributes using the -U <authorized
user list> and -G <authorized group list> options to pbs_rsub and pbs_ralter. You can specify the hosts from
which jobs can and cannot be submitted by setting the reservation’s Authorized_Hosts attribute using the -H <autho-
rized host list> option to pbs_rsub.

The administrator can also specify which users and groups can and cannot submit jobs to a reservation, and the list of
hosts from which jobs can and cannot be submitted.

For more information, see “pbs_rsub” on page 96 of the PBS Professional Reference Guide and “Reservation Attributes”
on page 303 of the PBS Professional Reference Guide.

7.10.2 Viewing Status of a Job Submitted to a Reservation

You can view the status of a job that has been submitted to a reservation or to an occurrence of a standing reservation by
using the qstat command. See “qstat” on page 197 of the PBS Professional Reference Guide.

For example, if a job named MyJob has been submitted to the soonest occurrence of the standing reservation named
S304.south, it is listed under S304, the name of the queue:

qstat

Job id Name User Time Use S Queue

---------- --------- ------------ -------- -- -----

139.south MyJob user1 0 Q S304
UG-146 PBS Professional 2020.1.1 User’s Guide

Reserving Resources Chapter 7
7.10.3 How Reservations Treat Jobs

A confirmed reservation will accept jobs into its queue at any time. Jobs are only scheduled to run from the reservation
once the reservation period arrives.

The jobs in a reservation are not allowed to use, in aggregate, more resources than the reservation requested. A reserva-
tion job is accepted in the reservation regardless of whether its requested walltime will fit within the reservation period.
So for example if the reservation runs from 10:00 to 11:00, and the job’s walltime is 4 hours, the job will be started.

When an advance reservation ends, any running or queued jobs in that reservation are deleted.

When an occurrence of a standing reservation ends, any running jobs in that reservation are killed. Any jobs still queued
for that reservation are kept in the queued state. They are allowed to run in future occurrences. When the last occurrence
of a standing reservation ends, all jobs remaining in the reservation are deleted, whether queued or running.

A job in a reservation cannot be preempted.

A job in a reservation runs with the normal job environment variables; see section 6.12, “Using Environment Variables”,
on page 126.

7.10.3.1 Caveats for How Reservations Treat Jobs

If you submit a job to a reservation, and the job’s walltime fits within the reservation period, but the time between when
you submit the job and when the reservation ends is less than the job’s walltime, PBS will start the job, and then kill it if
it is still running when the reservation ends.

7.11 Reservation Caveats and Errors

7.11.1 Time Zone Must be Correct

The environment variable PBS_TZID must be set at the submission host. The time for which a reservation is requested
is the time defined at the submission host. See section 1.4.4, “Setting Time Zone for Submission Host”, on page 9.

7.11.2 Time Required Between Reservations

Leave enough time between reservations for the reservations and jobs in them to clean up. A job consumes resources
even while it is in the E or exiting state. This can take longer when large files are being staged. If the job is still running
when the reservation ends, it may take up to two minutes to be cleaned up. The reservation itself cannot finish cleaning
up until its jobs are cleaned up. This will delay the start time of jobs in the next reservation unless there is enough time
between the reservations for cleanup.

7.11.3 Reservation Information in the Accounting Log

The PBS server writes an accounting record for each reservation in the job accounting file. The accounting record for a
reservation is similar to that for a job. The accounting record for any job belonging to a reservation will include the res-
ervation ID. See "Accounting" on page 607 in the PBS Professional Administrator’s Guide.

7.11.4 Reservation Fault Tolerance

If one or more vnodes allocated to a job-specific reservation, an advance reservation, or to the soonest occurrence of a
standing reservation become unavailable, the reservation’s state becomes DG or RESV_DEGRADED. A degraded res-
ervation does not have all the reserved resources to run its jobs.
PBS Professional 2020.1.1 User’s Guide UG-147

Chapter 7 Reserving Resources
PBS attempts to reconfirm degraded reservations. This means that it looks for alternate available vnodes on which to run
the reservation. The reservation’s retry_time attribute lists the next time when PBS will try to reconfirm the reservation.

If PBS is able to reconfirm a degraded reservation, the reservation’s state becomes CO, or RESV_CONFIRMED, and
the reservation’s resv_nodes attribute shows the new vnodes.

7.11.5 Job and Reservation Exclusivity Must Match

If your job requests exclusive placement, and it is in a reservation, the reservation must also request exclusive placement
via -l place=excl.
UG-148 PBS Professional 2020.1.1 User’s Guide

8

Job Arrays

8.1 Advantages of Job Arrays

PBS provides job arrays, which are useful for collections of almost-identical jobs. Each job in a job array is called a
“subjob”. Subjobs are scheduled and treated just like normal jobs, with the exceptions noted in this chapter. You can
group closely related work into a set so that you can submit, query, modify, and display the set as a unit. Job arrays are
useful where you want to run the same program over and over on different input files. PBS can process a job array more
efficiently than it can the same number of individual normal jobs. Job arrays are suited for SIMD operations, for exam-
ple, parameter sweep applications, rendering in media and entertainment, EDA simulations, and forex (historical data).

8.2 Glossary

Job array identifier

The identifier returned upon success when submitting a job array. Format:

<sequence number>[]

Job array range

A set of subjobs within a job array. When specifying a range, indices used must be valid members of the job
array’s indices.

Sequence number

The numeric part of a job or job array identifier, e.g. 1234.

Subjob

Individual entity within a job array (e.g. 1234[7], where 1234[] is the job array itself, and 7 is the index) which
has many properties of a job as well as additional semantics (defined below.)

Subjob index

The unique index which differentiates one subjob from another. This must be a non-negative integer.

8.3 Description of Job Arrays

A job array is a compact representation of two or more jobs. A job that is part of a job array is called a “subjob”. Each
subjob in a job array is treated exactly like a normal job, except for any differences noted in this chapter.

8.3.1 Job Script for Job Arrays

All subjobs in a job array share a single job script, including the PBS directives and the shell script portion. The job
script is run once for each subjob.

The job script may invoke different commands based on the subjob index. The commands of course may be scripts them-
selves if the script is setup correctly and is marked executable. This could be done by naming different commands with
the subjob index as in your example or by "if" statements in the script.
PBS Professional 2020.1.1 User’s Guide UG-149

Chapter 8 Job Arrays
8.3.2 Attributes and Resources for Job Arrays

All subjobs in one job array have the same attributes, including resource requirements and limits.

The same job script runs for each subjob in the job array, so each subjob gets the same attributes and resources. If the job
script calls other scripts or commands, those scripts or commands cannot change the attributes and resources for individ-
ual subjobs, because PBS stops processing directives when it starts processing commands.

8.3.3 Scheduling Job Arrays and Subjobs

The scheduler handles each subjob in a job array as a separate job. All subjobs within a job array have the same schedul-
ing priority.

8.3.3.1 Starving

A job array’s starving status is based on the queued portion of the array. This means that if there is a queued subjob
which is starving, the job array is starving. A running subjob retains the starving status it had when it was started.

8.3.4 Identifier Syntax

The sequence number (1234 in 1234[].<server>) is unique, so that jobs and job arrays cannot share a sequence number.
The job identifiers of the subjobs in the same job array are the same except for their indices. Each subjob has a unique
index. You can refer to job arrays or parts of job arrays using the following syntax forms:

• The job array object itself: The format is <sequence number>[] or <sequence number>[].<server>.<domain>.com

Example: 1234[].myserver or 1234[]

• A single subjob with index M: The format is <sequence number>[M] or <sequence num-
ber>[M].<server>.<domain>.com

Example where M=17: 1234[17].myserver or 1234[17]

• A range of subjobs of a job array: The format is <sequence number>[start-end[:step]] or <sequence num-
ber>[start-end[:step]].<server>.<domain>.com

Example where we start at 2, end at 8, and the step is 3: 1234[2-8:3].myserver or 1234[2-8:3]

8.3.4.1 Examples of Using Identifier Syntax

1234[] Short job array identifier

1234[].myserver.domain.com Full job array identifier

1234[73] Short subjob identifier of the 73rd index of job array 1234[]

1234[73].myserver.domain.com Full subjob identifier of the 73rd index of job array 1234[]

8.3.4.2 Shells and Array Identifiers

Since some shells, for example csh and tcsh, read “[” and “]” as shell metacharacters, job array names and subjob
names must be enclosed in double quotes for all PBS commands.

Example:

qdel "1234[5].myhost"

qdel "1234[].myhost"

Single quotes will work, except where you are using shell variable substitution.
UG-150 PBS Professional 2020.1.1 User’s Guide

Job Arrays Chapter 8
8.3.5 Special Attributes for Job Arrays

Job arrays and subjobs have all of the attributes of a job. In addition, they have the following when appropriate. These
attributes are read-only.

8.3.6 Job Array States

The state of subjobs in the same job array can be different. See “Job Array States” on page 363 of the PBS Professional
Reference Guide and “Subjob States” on page 364 of the PBS Professional Reference Guide.

8.3.7 PBS Environmental Variables for Job Arrays

8.3.8 Accounting

Job accounting records for job arrays and subjobs are the same as for jobs. When a job array has been moved from one
server to another, the subjob accounting records are split between the two servers.

Subjobs do not have “Q” records.

Table 8-1: Job Array Attributes

Name Type
Applies

To
Value

array Boolean Job array True if item is job array

array_id String Subjob Subjob’s job array identifier

array_index String Subjob Subjob’s index number

array_state_count String Job array Similar to state_count attribute for server and queue
objects. Lists number of subjobs in each state.

array_indices_remaining String Job array List of indices of subjobs still queued. Range or list of
ranges, e.g. 500, 552, 596-1000

array_indices_submitted String Job array Complete list of indices of subjobs given at submission
time. Given as range, e.g. 1-100

Table 8-2: PBS Environmental Variables for Job Arrays

Environment
Variable Name

Used For Description

PBS_ARRAY_INDEX Subjobs Subjob index in job array, e.g. 7

PBS_ARRAY_ID Subjobs Identifier for a job array. Sequence number of job array, e.g.
1234[].myserver

PBS_JOBID Jobs, subjobs Identifier for a job or a subjob. For subjob, sequence number and subjob
index in brackets, e.g. 1234[7].myserver
PBS Professional 2020.1.1 User’s Guide UG-151

Chapter 8 Job Arrays
8.3.9 Prologues and Epilogues

If defined, prologues and epilogues run at the beginning and end of each subjob, but not for the array object.

8.3.10 The Rerunnable Flag and Job Arrays

Job arrays are required to be rerunnable. PBS will not accept a job array that is marked as not rerunnable. You can sub-
mit a job array without specifying whether it is rerunnable, and PBS will automatically mark it as rerunnable.

8.4 Submitting a Job Array

8.4.1 Job Array Submission Syntax

You submit a job array through a single command. You specify subjob indices at submission. You can specify any of the
following:

• A contiguous range, e.g. 1 through 100

• A range with a stepping factor, e.g. every second entry in 1 through 100 (1, 3, 5, ... 99)

Syntax for submitting a job array:

qsub -J <index start>-<index end>[:<stepping factor>]

where

index start is the lowest index number in the range

index end is the highest index number in the range

stepping factor is the optional difference between index numbers

The index start and end must be whole numbers, and the stepping factor must be a positive integer. The index end must
be greater than the index start. If the index end is not a multiple of the stepping factor above the index start, it will not be
used as an index value, and the highest index value used will be lower than the index end. For example, if index start is
1, index end is 8, and the stepping factor is 3, the index values are 1, 4, and 7.

8.4.2 Examples of Submitting Job Arrays

Example 8-1: To submit a job array of 10,000 subjobs, with indices 1, 2, 3, ... 10000:

$ qsub -J 1-10000 job.scr

1234[].server.domain.com

Example 8-2: To submit a job array of 500 subjobs, with indices 500, 501, 502, ... 1000:

$ qsub -J 500-1000 job.scr

1235[].server.domain.com

Example 8-3: To submit a job array with indices 1, 3, 5 ... 999:

$ qsub -J 1-1000:2 job.scr

1236[].server.domain.com
UG-152 PBS Professional 2020.1.1 User’s Guide

Job Arrays Chapter 8
8.4.3 File Staging for Job Arrays

When preparing files to be staged for a job array, plan on naming the files so that they match the index numbers of the
subjobs. For example, inputfile3 is meant to be used by the subjob with index value 3.

To stage files for job arrays, you use the same mechanism as for normal jobs, but include a variable to specify the subjob
index. This variable is named array_index.

8.4.3.1 File Staging Syntax for Job Arrays

You can specify files to be staged in before the job runs and staged out after the job runs. Format:

qsub -W stagein=<stagein file list> -W stageout=<stageout file list>

You can use these as options to qsub, or as directives in the job script.

For both stagein and stageout, the file list has the form:

<execution path>^array_index^@<storage host>:<storage path>^array_index^[,...]

The name <execution path><index number> is the name of the file in the job’s staging and execution directory (on the
execution host). The execution path can be relative to the job’s staging and execution directory, or it can be an absolute
path.

The ‘@’ character separates the execution specification from the storage specification.

The name <storage path><index number> is the file name on the host specified by storage host. For stagein, this is the
location where the input files come from. For stageout, this is where the output files end up when the job is done. You
must specify a storage host. The name can be absolute, or it can be relative to your home directory on the storage
machine.

For stagein, the direction of travel is from storage path to execution path.

For stageout, the direction of travel is from execution path to storage path.

When staging more than one set of filenames, separate the filenames with a comma and enclose the entire list in double
quotes.

8.4.3.2 Job Array Staging Syntax on Windows

In Windows the stagein and stageout string must be contained in double quotes when using ^array_index^.

Example of a stagein:

qsub -W stagein="foo.^array_index^@host-1:C:\WINNT\Temp\foo.^array_index^" -J 1-5 stage_script

Example of a stageout:

qsub -W stageut="C:\WINNT\Temp\foo.^array_index^@host-1:Q:\my_username\foo. ̂ array_index^_out" -J
1-5 stage_script

8.4.3.3 Job Array File Staging Caveats

We recommend using an absolute pathname for the storage path. Remember that the path to your home directory may be
different on each machine, and that when using sandbox = PRIVATE, you may or may not have a home directory on
all execution machines.

8.4.3.4 Examples of Staging for Job Arrays

Example 8-4: Simple example:

Storage path: store:/film
PBS Professional 2020.1.1 User’s Guide UG-153

Chapter 8 Job Arrays
Data files used as input: frame1, frame2, frame3

execution path: pix

Executable: a.out

For this example, a.out produces frame2.out from frame2.

#PBS -W stagein=pix/in/frame^array_index^@store:/film/frame^array_index^

#PBS- W stageout=pix/out/frame^array_index^.out @store:/film/frame^array_index^.out

#PBS -J 1-3 a.out frame$PBS_ARRAY_INDEX ./in ./out

Note that the stageout statement is all one line.

The result is that your directory named “film” contains the original files frame1, frame2, frame3, plus the new
files frame1.out, frame2.out, and frame3.out.

Example 8-5: In this example, we have a script named ArrayScript which calls scriptlet1 and scriptlet2.

All three scripts are located in /homedir/testdir.

#!/bin/sh

#PBS -N ArrayExample

#PBS -J 1-2

echo "Main script: index " $PBS_ARRAY_INDEX

/homedir/testdir/scriptlet$PBS_ARRAY_INDEX

In our example, scriptlet1 and scriptlet2 simply echo their names. We run ArrayScript using the qsub com-
mand:

qsub ArrayScript

Example 8-6: In this example, we have a script called StageScript. It takes two input files, dataX and extraX,
and makes an output file, newdataX, as well as echoing which iteration it is on. The dataX and extraX files
will be staged from inputs to work, then newdataX will be staged from work to outputs.

#!/bin/sh

#PBS -N StagingExample

#PBS -J 1-2

#PBS -W stagein=”/homedir/work/data^array_index^@host1:/homedir/inputs/data^array_index^, \

/homedir/work/extra^array_index^ @host1:/homedir/inputs/extra^array_index^”

#PBS -W stageout=/homedir/work/newdata^array_index^@host1:/homedir/outputs/newdata^array_index^

echo "Main script: index " $PBS_ARRAY_INDEX

cd /homedir/work

cat data$PBS_ARRAY_INDEX extra$PBS_ARRAY_INDEX >> newdata$PBS_ARRAY_INDEX

Execution path:

/homedir/work

Storage host:

host1

Storage path for inputs (original data files dataX and extraX):

/homedir/inputs

Storage path for results (output of computation newdataX):

/homedir/outputs

StageScript resides in /homedir/testdir. In that directory, we can run it by typing:

qsub StageScript
UG-154 PBS Professional 2020.1.1 User’s Guide

Job Arrays Chapter 8
It will run in /homedir, our home directory, which is why the line

“cd /homedir/work”

 is in the script.

Example 8-7: In this example, we have the same script as before, but we will run it in a staging and execution directory
created by PBS. StageScript takes two input files, dataX and extraX, and makes an output file, newdataX, as
well as echoing which iteration it is on. The dataX and extraX files will be staged from inputs to the staging
and execution directory, then newdataX will be staged from the staging and execution directory to outputs.

#!/bin/sh

#PBS -N StagingExample

#PBS -J 1-2

#PBS -W stagein=”data^array_index^@host1:/homedir/inputs/data^array_index^, \

extra^array_index^@host1:/homedir/inputs/extra^array_index^”

#PBS -W stageout=newdata^array_index^@host1:/homedir/outputs/newdata^array_index^

echo "Main script: index " $PBS_ARRAY_INDEX

cat data$PBS_ARRAY_INDEX extra$PBS_ARRAY_INDEX >> newdata$PBS_ARRAY_INDEX

Execution path (directory): created by PBS; we don’t know the name

Storage host:

host1

Storage path for inputs (original data files dataX and extraX):

/homedir/inputs

Storage path for results (output of computation newdataX):

/homedir/outputs

StageScript resides in /homedir/testdir. In that directory, we can run it by typing:

qsub StageScript

It will run in the staging and execution directory created by PBS. See section 3.2, “Input/Output File Staging”, on
page 31.

8.4.4 Filenames for Standard Output and Standard Error

The name for stdout for a subjob defaults to <job name>.o<sequence number>.<index>, and the name for stderr
for a subjob defaults to <job name>.e<sequence number>.<index>.

Example 8-8: The job is named “fixgamma” and the sequence number is “1234”.

The subjob with index 7 is 1234[7].<server name>. For this subjob, stdout and stderr are named fix-
gamma.o1234.7 and fixgamma.e1234.7.

8.4.5 Job Array Dependencies

Job dependencies are supported for the following relationships:

• Between job arrays and job arrays

• Between job arrays and jobs

• Between jobs and job arrays
PBS Professional 2020.1.1 User’s Guide UG-155

Chapter 8 Job Arrays
8.4.5.1 Caveats for Job Array Dependencies

Job dependencies are not supported for subjobs or ranges of subjobs.

8.4.6 Job Array Exit Status

The exit status of a job array is determined by the status of each of the completed subjobs. It is only available when all
valid subjobs have completed. The individual exit status of a completed subjob is passed to the epilogue, and is available
in the ‘E’ accounting log record of that subjob.

8.4.6.1 Making qsub Wait Until Job Array Finishes

Blocking qsub waits until the entire job array is complete, then returns the exit status of the job array.

8.4.6.2 Caveats for Job Array Exit Status

Subjob exit status is available only as long as the subjob is in job history. When a subjob is not in job history, a failed or
terminated subjob will show an exit status of Finished, instead of failed or terminated.

8.4.7 Caveats for Submitting Job Arrays

8.4.7.1 No Interactive Job Submission of Job Arrays

Interactive submission of job arrays is not allowed.

8.5 Viewing Status of a Job Array

You can use the qstat command to query the status of a job array. The default output is to list the job array in a single
line, showing the job array identifier. You can combine options.

You can use the -f option to the qstat command to see all of a subjob’s attributes.

Table 8-3: Job Array Exit Status

Exit Status Meaning

0 All subjobs of the job array returned an exit status of 0. No PBS error occurred. Deleted subjobs are
not considered

1 At least 1 subjob returned a non-zero exit status. No PBS error occurred.

2 A PBS error occurred.
UG-156 PBS Professional 2020.1.1 User’s Guide

Job Arrays Chapter 8
 To show the state of all running subjobs, use -t -r. To show the state of subjobs only, not job arrays, use -t -J.

8.5.1 Example of Viewing Job Array Status

We run an example job and an example job array, on a machine with 2 processors:

demoscript:

#!/bin/sh

#PBS -N JobExample

sleep 60

arrayscript:

#!/bin/sh

#PBS -N ArrayExample

#PBS -J 1-5

sleep 60

We run these scripts using qsub:

qsub arrayscript

1235[].host

qsub demoscript

1236.host

Table 8-4: Job Array and Subjob Options to qstat

Option Result

-t Shows state of job array object and subjobs.

Also shows state of jobs.

-J Shows state only of job arrays.

-p Prints the default display, with column for Percentage Completed.

For a job array, this is the number of subjobs completed or deleted divided by the total number of subjobs.
For a job, it is time used divided by time requested.
PBS Professional 2020.1.1 User’s Guide UG-157

Chapter 8 Job Arrays
We query using various options to qstat:

qstat

Job id Name User Time Use S Queue

----------- ------------ ---------- -------- - -----

1235[].host ArrayExample user1 0 B workq

1236.host JobExample user1 0 Q workq

qstat -J

Job id Name User Time Use S Queue

----------- ------------ ---------- -------- - -----

1235[].host ArrayExample user1 0 B workq

qstat -p

Job id Name User % done S Queue

----------- ------------ ---------- ------- - -----

1235[].host ArrayExample user1 0 B workq

1236.host JobExample user1 -- Q workq

qstat -t

Job id Name User Time Use S Queue

----------- ------------ ---------- -------- - -----

1235[].host ArrayExample user1 0 B workq

1235[1].host ArrayExample user1 00:00:00 R workq

1235[2].host ArrayExample user1 00:00:00 R workq

1235[3].host ArrayExample user1 0 Q workq

1235[4].host ArrayExample user1 0 Q workq

1235[5].host ArrayExample user1 0 Q workq

1236.host JobExample user1 0 Q workq

qstat -Jt

Job id Name User Time Use S Queue

------------ ------------ ----- -------- - -----

1235[1].host ArrayExample user1 00:00:00 R workq

1235[2].host ArrayExample user1 00:00:00 R workq

1235[3].host ArrayExample user1 0 Q workq

1235[4].host ArrayExample user1 0 Q workq

1235[5].host ArrayExample user1 0 Q workq
UG-158 PBS Professional 2020.1.1 User’s Guide

Job Arrays Chapter 8
After the first two subjobs finish:

qstat -Jtp

Job id Name User % done S Queue

------------ ------------ ----- ------ - -----

1235[1].host ArrayExample user1 100 X workq

1235[2].host ArrayExample user1 100 X workq

1235[3].host ArrayExample user1 -- R workq

1235[4].host ArrayExample user1 -- R workq

1235[5].host ArrayExample user1 -- Q workq

qstat -pt

Job id Name User % done S Queue

------------ ------------ ----- ------ - -----

1235[].host ArrayExample user1 40 B workq

1235[1].host ArrayExample user1 100 X workq

1235[2].host ArrayExample user1 100 X workq

1235[3].host ArrayExample user1 -- R workq

1235[4].host ArrayExample user1 -- R workq

1235[5].host ArrayExample user1 -- Q workq

1236.host JobExample user1 -- Q workq

Now if we wait until only the last subjob is still running:

qstat -rt

 Req'd Req'd Elap

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

----------- ------ ----- --------- ---- --- --- ------ ---- - -----

1235[5].host user1 workq ArrayExamp 3048 -- 1 -- -- R 00:00

1236.host user1 workq JobExample 3042 -- 1 -- -- R 00:00

qstat -Jrt

 Req'd Req'd Elap

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

----------- -------- ----- --------- ---- --- --- ------ ---- - -----

1235[5].host user1 workq ArrayExamp 048 -- 1 -- -- R 00:01
PBS Professional 2020.1.1 User’s Guide UG-159

Chapter 8 Job Arrays
8.6 Using PBS Commands with Job Arrays

The following table shows how you can or cannot use PBS commands with job arrays, subjobs or ranges:

8.6.1 Deleting a Job Array

The qdel command will take a job array identifier, subjob identifier or job array range. The indicated object(s) are
deleted, including any currently running subjobs. Running subjobs are treated like running jobs. Subjobs not running are
deleted and never run.

By default, one email is sent per deleted subjob, so deleting a job array of 5000 subjobs results in 5000 emails being sent,
unless you are suppressing the number of emails sent. See “-Wsuppress_email=<N>” on page 141 of the PBS Profes-
sional Reference Guide.

8.6.2 Altering a Job Array

The qalter command can only be used on a job array object, not on subjobs or ranges. Job array attributes are the
same as for jobs.

8.6.3 Moving a Job Array

The qmove command can only be used with job array objects, not with subjobs or ranges. Job arrays can only be moved
from one server to another if they are in the ‘Q’, ‘H’, or ‘W’ states, and only if there are no running subjobs. The state of
the job array object is preserved in the move. The job array will run to completion on the new server.

As with jobs, a qstat on the server from which the job array was moved does not show the job array. A qstat on the
job array object is redirected to the new server.

Table 8-5: Using PBS Commands with Job Arrays

Argument to Command

Command Array[]: Array Object
Array[Range]: Specified

Range of Subjobs
Array[Index]:

Specified Subjob

qalter Array object erroneous erroneous

qdel Array object & Running subjobs Running subjobs in specified range Specified subjob

qhold Array object & Queued subjobs erroneous erroneous

qmove Array object & Queued subjobs erroneous erroneous

qmsg erroneous erroneous erroneous

qorder Array object erroneous erroneous

qrerun Running and finished subjobs Running subjobs in specified range Specified subjob

qrls Array object & Queued subjobs erroneous erroneous

qsig Running subjobs Running subjobs in specified range Specified subjob

qstat Array object Specified range of subjobs Specified subjob

tracejob erroneous erroneous Specified subjob
UG-160 PBS Professional 2020.1.1 User’s Guide

Job Arrays Chapter 8
8.6.4 Holding a Job Array

The qhold command can only be used with job array objects, not with subjobs or ranges. A hold can be applied to a job
array only from the ‘Q’, ‘B’ or ‘W’ states. This puts the job array in the ‘H’, held, state. If any subjobs are running, they
will run to completion. No queued subjobs are started while in the ‘H’ state.

If a job array has subjobs that have a System hold, the job array also gets a System hold.

8.6.5 Releasing a Job Array

The qrls command can be used directly only with job array objects, not with subjobs or ranges. If the job array was in
the ‘Q’ or ‘B’ state, it is returned to that state. If it was in the ‘W’ state, it is returned to that state, unless its waiting time
was reached, in which case it goes to the ‘Q’ state.

You can use qrls indirectly on subjobs. If you use qrls on a job array, and that job array has a System hold because it
has subjobs(s) with a System hold, the subjobs that were held with a System hold are released, then the System hold on
the job array is released (you’ll need Manager, root, or PBS Administrator privilege for this).

8.6.6 Selecting Job Arrays

The default behavior of qselect is to return the job array identifier, without returning subjob identifiers.

The qselect command does not return any job arrays when the state selection (-s) option restricts the set to ‘R’, ‘S’,
‘T’ or ‘U’, because a job array will never be in any of these states. However, you can use qselect to return a list of
subjobs by using the -t option.

You can combine options to qselect. For example, to restrict the selection to subjobs, use both the -J and the -T
options. To select only running subjobs, use -J -T -sR.

8.6.7 Ordering Job Arrays in the Queue

The qorder command can only be used with job array objects, not on subjobs or ranges. This changes the queue order
of the job array in association with other jobs or job arrays in the queue.

8.6.8 Requeueing a Job Array

The qrerun command will take a job array identifier, subjob identifier or job array range. If a job array identifier is
given as an argument, it is returned to its initial state at submission time, or to its altered state if it has been qaltered. All
of that job array’s subjobs are requeued, which includes those that are currently running, and those that are completed
and deleted. If a subjob or range is given, those subjobs are requeued as jobs would be.

Table 8-6: Options to qselect for Job Arrays

Option Selects Result

(none) jobs, job arrays Shows job and job array identifiers

-J job arrays Shows only job array identifiers

-T jobs, subjobs Shows job and subjob identifiers
PBS Professional 2020.1.1 User’s Guide UG-161

Chapter 8 Job Arrays
8.6.9 Signaling a Job Array

If a job array object, subjob or job array range is given to qsig, all currently running subjobs within the specified set are
sent the signal.

8.6.10 Sending Messages to Job Arrays

The qmsg command is not supported for job arrays.

8.6.11 Getting Log Data on Job Arrays

The tracejob command can be run on job arrays and individual subjobs. When tracejob is run on a job array or a
subjob, the same information is displayed as for a job, with additional information for a job array. Note that subjobs do
not exist until they are running, so tracejob will not show any information until they are. When tracejob is run
on a job array, the information displayed is only that for the job array object, not the subjobs. Job arrays themselves do
not produce any MoM log information. Running tracejob on a job array gives information about why a subjob did
not start.

8.6.12 Caveats for Using PBS Commands with Job Arrays

8.6.12.1 Shells and PBS Commands with Job Arrays

Some shells such as csh and tcsh use the square bracket (“[”, “]”) as a metacharacter. When using one of these shells,
and a PBS command taking subjobs, job arrays or job array ranges as arguments, the subjob, job array or job array range
must be enclosed in double quotes.

8.7 Job Array Caveats

8.7.1 Job Arrays Required to be Rerunnable

Job arrays are required to be rerunnable, and are rerunnable by default.

8.7.2 Resources Same for All Subjobs

You cannot combine jobs into an array that have different hardware requirements, i.e. different select statements.

8.7.3 Checkpointing Not Supported for Job Arrays

Checkpointing is not supported for job arrays. On systems that support checkpointing, subjobs are not checkpointed,
instead they run to completion.

8.7.4 Caveats for Job Array Exit Status

Subjob exit status is available only as long as the subjob is in job history. When a subjob is not in job history, a failed or
terminated subjob will show an exit status of Finished, instead of failed or terminated.
UG-162 PBS Professional 2020.1.1 User’s Guide

9

Working with PBS Jobs

9.1 Using Job History

PBS Professional can provide job history information, including what the submission parameters were, whether the job
started execution, whether execution succeeded, whether staging out of results succeeded, and which resources were
used.

PBS can keep job history for jobs which have finished execution, were deleted, or were moved to another server.

9.1.1 Definitions

Moved jobs

Jobs which were moved to another server

Finished jobs

Jobs whose execution is done, for any reason:

• Jobs which finished execution successfully and exited

• Jobs terminated by PBS while running

• Jobs whose execution failed because of system or network failure

• Jobs which were deleted before they could start execution

9.1.2 Job History Information

PBS can keep all job attribute information, including the following:

• Submission parameters

• Whether the job started execution

• Whether execution succeeded

• Whether staging out of results succeeded

• Which resources were used

PBS keeps job history for the following jobs:

• Jobs that are running at another server

• Jobs that have finished execution

• Jobs that were deleted

• Jobs that were moved to another server

While a job is running, you can see information about it. After a job has finished or been deleted, its history information
is preserved for the specified duration. The administrator chooses a duration for preservation of job history information
after each job has finished or been deleted. PBS periodically checks each finished job, and deletes job history for those
whose history has been preserved for longer than the specified duration.

Subjobs are not considered finished jobs until the parent array job is finished, which happens when all of its subjobs have
terminated execution.
PBS Professional 2020.1.1 User’s Guide UG-163

Chapter 9 Working with PBS Jobs
9.1.2.1 Working With Moved Jobs

You can use the following commands with moved jobs. They will function as they do with normal jobs.

qalter

qhold

qmove

qmsg

qorder

qrerun

qrls

qrun

qsig

While a moved job is running, its state is M. When a moved job finishes, its substate becomes 92. See “Job States” on
page 361 of the PBS Professional Reference Guide.

9.1.2.2 PBS Commands and Finished Jobs

The commands listed above cannot be used with finished jobs, whether they finished at the local server or a remote
server. These jobs are no longer running; PBS is storing their information, and this information cannot be altered. Trying
to use one of the above commands with a finished job results in the following error message:

<command name>: Job <job ID> has finished

9.2 Modifying Job Attributes

Most attributes can be changed by the owner of the job (or a manager or operator) while the job is still queued. However,
once a job begins execution, the only values that can be modified are cputime, walltime, and run_count. You can
decrease walltime, and you can increase run_count.

When the qalter -l option is used to alter the resource list of a queued job, it is important to understand the interac-
tions between altering the select directive and job limits.

If the job was submitted with an explicit "-l select=", then vnode-level resources must be qaltered using the "-l
select=" form. In this case a vnode level resource RES cannot be qaltered with the "-l <resource>" form.

For example:

Submit the job:

% qsub -l select=1:ncpus=2:mem=512mb jobscript

Job’s ID is 230

qalter the job using "-l RES" form:

% qalter -l ncpus=4 230

Error reported by qalter:

qalter: Resource must only appear in "select"

specification when select is used: ncpus 230
UG-164 PBS Professional 2020.1.1 User’s Guide

Working with PBS Jobs Chapter 9
qalter the job using the "-l select=" form:

% qalter -l select=1:ncpus=4:mem=512mb 230

No error reported by qalter:

%

9.2.1 Changing the Selection Directive

If the selection directive is altered, the job limits for any consumable resource in the directive are also modified.

For example, if a job is queued with the following resource list:

select=2:ncpus=1:mem=5gb

job limits are set to ncpus=2, mem=10gb.

If the select statement is altered to request:

select=3:ncpus=2:mem=6gb

then the job limits are reset to ncpus=6 and mem=18gb

9.2.2 Changing the Job-wide Limit

If the job-wide limit is modified, the corresponding resources in the selection directive are not modified. It would be
impossible to determine where to apply the changes in a compound directive.

Reducing a job-wide limit to a new value less than the sum of the resource in the directive is strongly discouraged. This
may produce a situation where the job is aborted during execution for exceeding its limits. The actual effect of such a
modification is not specified.

A job's walltime may be altered at any time, except when the job is in the Exiting state, regardless of the initial value.

If a job is queued, requested modifications must still fit within the queue's and server's job resource limits. If a requested
modification to a resource would exceed the queue's or server's job resource limits, the resource request will be rejected.

Resources are modified by using the -l option, either in chunks inside of selection statements, or in job-wide modifica-
tions using resource_name=value pairs. The selection statement is of the form:

-l select=[N:]chunk[+[N:]chunk ...]

where N specifies how many of that chunk, and a chunk is of the form:

<resource name>=<value>[:<resource name>=<value> ...]

Job-wide <resource name>=<value> modifications are of the form:

-l <resource name>=<value>[,<resource name>=<value> ...]

Placement of jobs on vnodes is changed using the place statement:

-l place=<modifier>[:<modifier>]

where modifier is any combination of group, excl, exclhost, and/or one of free|pack|scatter|vscatter.

The usage syntax for qalter is:

qalter <job resources> <job list>
PBS Professional 2020.1.1 User’s Guide UG-165

Chapter 9 Working with PBS Jobs
The following examples illustrate how to use the qalter command. First we list all the jobs of a particular user. Then
we modify two attributes as shown (increasing the wall-clock time from 20 to 25 minutes, and changing the job name
from “airfoil” to “engine”):

qstat -u barry

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

51.south barry workq airfoil 930 -- 1 -- 0:16 R 0:01

54.south barry workq airfoil -- -- 1 -- 0:20 Q --

qalter -l walltime=20:00 -N engine 54

qstat -a 54

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

54.south barry workq engine -- -- 1 -- 0:25 Q --

The qalter command can be used on job arrays, but not on subjobs or ranges of subjobs. When used with job arrays,
any job array identifiers must be enclosed in double quotes, e.g.:

qalter -l walltime=25:00 "1234[].south"

You cannot use the qalter command (or any other command) to alter a custom resource which has been created to be
invisible or unrequestable. See section 4.3.8, “Caveats and Restrictions on Requesting Resources”, on page 57.

For more information, see “qalter” on page 127 of the PBS Professional Reference Guide.

9.2.2.1 Caveats

Be careful when using a Boolean resource as a job-wide limit.

9.3 Deleting Jobs

PBS provides the qdel command for deleting jobs. The qdel command deletes jobs in the order in which their job
identifiers are presented to the command. A batch job may be deleted by its owner, a PBS operator, or a PBS administra-
tor. Unless you are an administrator or an operator, you can delete only your own jobs.

To delete a queued, held, running, or suspended job:

qdel <job ID>

Example:

qdel 51

qdel 1234[].server

Job array identifiers must be enclosed in double quotes.

9.3.1 Deleting Jobs with Force

You can delete a job whether or not its execution host is reachable, and whether or not it is in the process of provisioning:

qdel -W force <job ID>
UG-166 PBS Professional 2020.1.1 User’s Guide

Working with PBS Jobs Chapter 9
9.3.2 Deleting Finished Jobs

By default, the qdel command does not affect finished jobs. You can use the qdel -x option to delete job histories.
This option also deletes any specified jobs that are queued, running, held, suspended, finished, or moved. When you use
this, you are deleting the job and its history in one step. If you use the qdel command without the -x option, you delete
the job, but not the job history, and you cannot delete a finished job.

To delete a finished job, whether or not it was moved:

qdel -x <job ID>

If you try to delete a finished job without the -x option, you will get the following error:

qdel: Job <job ID> has finished

9.3.3 Deleting Moved Jobs

You can use the qdel -x option to delete jobs that are queued, running, held, suspended, finished, or moved.

To delete a job that was moved:

qdel <job ID sequence number>.<original server>

To delete a job that was moved, and then finished:

qdel -x <job ID>

9.3.4 Restricting Number of Emails

By default, mail is sent for each job or subjob you delete. Use the following option to qdel to specify a limit on emails
sent:

qdel -Wsuppress_email=<N>

See section 2.5.1.3, “Restricting Number of Job Deletion Emails”, on page 27.

9.4 Sending Messages to Jobs

To send a message to a job is to write a message string into one or more output files of the job. Typically this is done to
leave an informative message in the output of the job. Such messages can be written using the qmsg command.

You can send messages to running jobs only.

The usage syntax of the qmsg command is:

qmsg [-E][-O] <message string> <job ID>

Example:

qmsg -O "output file message" 54

qmsg -O "output file message" "1234[].server"

Job array identifiers must be enclosed in double quotes.

The -E option writes the message into the error file of the specified job(s). The -O option writes the message into the out-
put file of the specified job(s). If neither option is specified, the message will be written to the error file of the job.
PBS Professional 2020.1.1 User’s Guide UG-167

Chapter 9 Working with PBS Jobs
The first operand, message_string, is the message to be written. If the string contains blanks, the string must be quoted. If
the final character of the string is not a newline, a newline character will be added when written to the job’s file. All
remaining operands are job IDs which specify the jobs to receive the message string. For example:

qmsg -E "hello to my error (.e) file" 55

qmsg -O "hello to my output (.o) file" 55

qmsg "this too will go to my error (.e) file" 55

9.5 Sending Signals to Jobs

You can use the qsig command to send a signal to your job. The signal is sent to all of the job’s processes.

Usage syntax of the qsig command is:

qsig [-s <signal>] <job ID>

Job array job IDs must be enclosed in double quotes.

If the -s option is not specified, SIGTERM is sent. If the -s option is specified, it declares which signal is sent to the job.
The signal argument is either a signal name, e.g. SIGKILL, the signal name without the SIG prefix, e.g. KILL, or an
unsigned signal number, e.g. 9. The signal name SIGNULL is allowed; the server will send the signal 0 to the job which
will have no effect. Not all signal names will be recognized by qsig. If it doesn’t recognize the signal name, try issuing
the signal number instead. The request to signal a batch job will be rejected if:

• You are not authorized to signal the job

• The job is not in the running state

• The requested signal is not supported by the execution host

• The job is exiting

• The job is provisioning

Two special signal names, “suspend” and “resume”, (note, all lower case), are used to suspend and resume jobs. When
suspended, a job continues to occupy system resources but is not executing and is not charged for walltime. Manager or
operator privilege is required to suspend or resume a job.

The signal TERM is useful, because it is ignored by shells, but you can trap it and do useful things such as write out sta-
tus.

The three examples below all send a signal 9 (SIGKILL) to job 34:

qsig -s SIGKILL 34

qsig -s KILL 34

If you want to trap the signal in your job script, the signal must be trapped by all of the job’s shells.

On most Linux systems the command “kill -l” (that’s ‘minus ell’) will list all the available signals.

9.6 Changing Order of Jobs

PBS provides the qorder command to change the order of two jobs, within or across queues. To order two jobs is to
exchange the jobs’ positions in the queue or queues in which the jobs reside. If job1 is at position 3 in queue A and job2
is at position 4 in queue B, qordering them will result in job1 being in position 4 in queue B and job2 being in position 3
in queue A.

No attribute of the job (such as Priority) is changed. The impact of changing the order within the queue(s) is dependent
on local job scheduling policy; contact your systems administrator for details.
UG-168 PBS Professional 2020.1.1 User’s Guide

Working with PBS Jobs Chapter 9
Usage of the qorder command is:

qorder <job ID>1 <job ID2>

Job array identifiers must be enclosed in double quotes.

Both operands are job IDs which specify the jobs to be exchanged.

qstat -u bob

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

54.south bob workq twinkie -- -- 1 -- 0:20 Q --

63[].south bob workq airfoil -- -- 1 -- 0:13 Q --

qorder 54 "63[]"

qstat -u bob

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

63[].south bob workq airfoil -- -- 1 -- 0:13 Q --

54.south bob workq twinkie -- -- 1 -- 0:20 Q --

9.6.1 Restrictions

• The two jobs must be located at the same server, and both jobs must be owned by you. However, a PBS Manager or
Operator can exchange any jobs.

• A job in the running state cannot be reordered.

• The qorder command can be used with entire job arrays, but not on subjobs or ranges. Reordering a job array
changes the queue order of the job array in relation to other jobs or job arrays in the queue.

9.7 Moving Jobs Between Queues

PBS provides the qmove command to move jobs between different queues (even queues on different servers). To move
a job is to remove the job from the queue in which it resides and instantiate the job in another queue.

A job in the running state cannot be moved.

The usage syntax of the qmove command is:

qmove <destination> <job ID(s)>

Job array <job ID>s must be enclosed in double quotes.

The first operand is the new destination for

<queue>

@<server>

<queue>@<server>
PBS Professional 2020.1.1 User’s Guide UG-169

Chapter 9 Working with PBS Jobs
If the destination operand describes only a queue, then qmove will move jobs into the queue of the specified name at the
job’s current server. If the destination operand describes only a server, then qmove will move jobs into the default queue
at that server. If the destination operand describes both a queue and a server, then qmove will move the jobs into the
specified queue at the specified server. All following operands are job IDs which specify the jobs to be moved to the new
destination.

The qmove command can only be used with job array objects, not with subjobs or ranges. Job arrays can only be moved
from one server to another if they are in the ‘Q’, ‘H’, or ‘W’ states, and only if there are no running subjobs. The state of
the job array object is preserved in the move. The job array will run to completion on the new server.

As with jobs, a qstat on the server from which the job array was moved will not show the job array. A qstat on the
job array object will be redirected to the new server.

The subjob accounting records will be split between the two servers.
UG-170 PBS Professional 2020.1.1 User’s Guide

10

Checking Job & System Status

10.1 Checking Job Status

You can use the qstat command to view job information in the following formats:

• Basic format: minimal summary of jobs

• Alternate format: intermediate listing of job information

• Long format: shows all information about jobs

You can see only the information for which you have the required privilege.

We discuss each format in the following sections. See “qstat” on page 197 of the PBS Professional Reference Guide.

By default, qstat displays information for queued or running jobs only. However, you can tell qstat to display infor-
mation for all jobs, whether they are running, queued, finished, or moved; we cover this in this chapter. Job history is
kept for a period defined by your administrator.

Summary of usage:

Displaying Job Status

Default format:

qstat [-E] [-J] [-p] [-t] [-x] [[<job ID> | <destination>] ...]

Long format:

qstat -f [-F json|dsv [-D <delimiter>]] [-E] [-J] [-p] [-t] [-w] [-x] [[<job ID> | <destination>] ...]

Alternate format:

qstat [-a [-w]| -H | -i | -r] [-E] [-G | -M] [-J] [-n [-1] [-w]] [-s [-1] [-w]] [-t] [-T [-w]] [-u <user list>] [[<job ID> |
<destination>] ...]

Displaying Queue Status

Default format:

qstat -Q [<destination> ...]

Long format:

qstat -Q -f [-F json|dsv [-D <delimiter>]] [-w] [<destination> ...]

Alternate format:

qstat -q [-G | -M] [<destination> ...]

Displaying Server Status

Default format:

qstat -B [<server> ...]

Long format:

qstat -B -f [-F json|dsv [-D <delimiter>]] [-w] [<server> ...]

qstat --version
PBS Professional 2020.1.1 User’s Guide UG-171

Chapter 10 Checking Job & System Status
10.1.1 Specifying Jobs to View

You can specify that you want information for a job identifier, a list of job identifiers, or all of the jobs at a destination.

To specify a job identifier, it must be in the following form:

<sequence number>[.<server>][@<server>]

where <sequence number>.<server> is the job identifier assigned at submission. If you do not specify.<server>, the
default server is used. If @<server> is supplied, the request will be for the job identifier currently at that server.

If you specify a destination identifier, it takes one of the following three forms:

<queue>

@<server>

<queue>@<server>

If you specify <queue>, the request is for status of all jobs in that queue at the default server.

If you use the @<server> form, the request is for status of all jobs at that server.

If you specify a full destination identifier, <queue>@<server>, the request is for status of all jobs in the named queue at
the named server.

10.1.2 Viewing Default Job Status

You can use the qstat command to view basic job status, in the default format.

Syntax for simple form and with options:

qstat

qstat [-E] [-J] [-p] [-t] [-x] [[<job ID> | <destination>] ...]

The default display shows the following information:

• The job identifier assigned by PBS

• The job name given by the submitter

• The job owner

• The CPU time used

• The job state; see “Job States” on page 361 of the PBS Professional Reference Guide.

• The queue in which the job resides

The following example illustrates the default display of qstat.

qstat

Job id Name User Time Use S Queue

--------- ----------- ----------- -------- - -----

16.south aims14 user1 0 H workq

18.south aims14 user1 0 W workq

26.south airfoil barry 00:21:03 R workq

27.south airfoil barry 21:09:12 R workq

28.south myjob user1 0 Q workq

29.south tns3d susan 0 Q workq

30.south airfoil barry 0 Q workq

31.south seq_35_3 donald 0 Q workq
UG-172 PBS Professional 2020.1.1 User’s Guide

Checking Job & System Status Chapter 10
10.1.3 Viewing Job Status in Alternate Format

You can use the qstat command to view more detail than the basic job information, in the alternate format.

Syntax for simple form and with options:

qstat -a

qstat [-a [-w]| -H | -i | -r] [-E] [-G | -M] [-J] [-n [-1] [-w]] [-s [-1] [-w]] [-t] [-T [-w]] [-u <user list>] [[<job ID> |
<destination>] ...]

The alternate display shows the following fields:

• Job ID

• Job owner

• Queue in which job resides

• Job name

• Session ID (only appears when job is running)

• Number of chunks or vnodes requested

• Number of CPUs requested

• Amount of memory requested

• Amount of CPU time requested, if CPU time requested; if not, amount of wall clock time requested

• State of job

• Amount of CPU time elapsed, if CPU time requested; if not, amount of wall clock time elapsed
qstat -a

 Req'd Elap

Job ID User Queue Jobname Ses NDS TSK Mem Time S Time

-------- ------ ----- ------- --- --- --- --- ---- - ----

16.south user1 workq aims14 -- -- 1 -- 0:01 H --

18.south user1 workq aims14 -- -- 1 -- 0:01 W --

51.south barry workq airfoil 930 -- 1 -- 0:13 R 0:01

52.south user1 workq myjob -- -- 1 -- 0:10 Q --

53.south susan workq tns3d -- -- 1 -- 0:20 Q --

54.south barry workq airfoil -- -- 1 -- 0:13 Q --

55.south donald workq seq_35_ -- -- 1 -- 2:00 Q --

You can use the -1 option to reformat qstat output to a single line. This option can only be used in conjunction with
the -n and/or -s options.
PBS Professional 2020.1.1 User’s Guide UG-173

Chapter 10 Checking Job & System Status
10.1.3.1 Display Size in Gigabytes

The “-G” option to qstat displays all jobs at the requested or default server using the alternative display, showing all
size information in gigabytes (GB) rather than the default of smallest displayable units. Note that if the size specified is
less than 1 GB, then the amount if rounded up to 1 GB. For example:

qstat –G

host1:

 Req’d Req’d Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

--------- ----- ----- ------- ---- --- --- ----- ----- - -----

43.host1 user1 workq STDIN 4693 1 1 -- -- R 00:05

44[].host1 user1 workq STDIN -- 1 1 -- -- Q --

45.host1 user1 workq STDIN -- 1 1 1gb -- Q --

10.1.3.2 Display Size in Megawords

The “-M” option to qstat displays all jobs at the requested (or default) server using the alternative display, showing all
size information in megawords (MW) rather than the default of smallest displayable units. A word is considered to be 8
bytes. For example:

qstat –M

host1:

 Req’d Req’d Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

---------- ----- ----- ------- ---- --- --- ----- ----- - -----

43.host1 user1 workq STDIN 4693 1 1 -- -- R 00:05

44[].host1 user1 workq STDIN -- 1 1 -- -- Q --

45.host1 user1 workq STDIN -- 1 1 25mw -- Q --

10.1.4 Viewing Job Status in Long Format

You can use the qstat command to view all of the information about a job, including values for its attributes and
resources, in the long format.

Syntax for simple form and with options:

qstat -f

qstat -f [-F json|dsv [-D <delimiter>]] [-E] [-J] [-p] [-t] [-w] [-x] [[<job ID> | <destination>] ...]
UG-174 PBS Professional 2020.1.1 User’s Guide

Checking Job & System Status Chapter 10
You can see job status in JSON or delimiter-separated value formats; see section 10.4, “Full Display Options for Job,
Queue, and Server Status”, on page 186. The long format shows the following fields, including job attributes. See “Job
Attributes” on page 328 of the PBS Professional Reference Guide for a description of attributes:

qstat -f 13

Job Id: 13.host1

 Job_Name = STDIN

 Job_Owner = user1@host2

 resources_used.cpupercent = 0

 resources_used.cput = 00:00:00

 resources_used.mem = 2408kb

 resources_used.ncpus = 1

 resources_used.vmem = 12392kb

 resources_used.walltime = 00:01:31

 job_state = R

 queue = workq

 server = host1

 Checkpoint = u

 ctime = Thu Apr 2 12:07:05 2010

 Error_Path = host2:/home/user1/STDIN.e13

 exec_host = host2/0

 exec_vnode = (host3:ncpus=1)

 Hold_Types = n

 Join_Path = n

 Keep_Files = n

 Mail_Points = a

 mtime = Thu Apr 2 12:07:07 2010

 Output_Path = host2:/home/user1/STDIN.o13

 Priority = 0

 qtime = Thu Apr 2 12:07:05 2010

 Rerunable = True

 Resource_List.ncpus = 1

 Resource_List.nodect = 1

 Resource_List.place = free

 Resource_List.select = host=host3

 stime = Thu Apr 2 12:07:08 2010

 session_id = 32704

 jobdir = /home/user1

 substate = 42

 Variable_List = PBS_O_HOME=/home/user1,PBS_O_LANG=en_US.UTF-8,

 PBS_O_LOGNAME=user1,

 PBS_O_PATH=/opt/gnome/sbin:/root/bin:/usr/local/bin:/usr/bin:/usr/X11R

 6/bin:/bin:/usr/games:/opt/gnome/bin:/opt/kde3/bin:/usr/lib/mit/bin:/us

 r/lib/mit/sbin,PBS_O_MAIL=/var/mail/root,PBS_O_SHELL=/bin/bash,

 PBS_O_HOST=host2,PBS_O_WORKDIR=/home/user1,PBS_O_SYSTEM=Linux,

 PBS_O_QUEUE=workq

 comment = Job run at Thu Apr 02 at 12:07 on (host3:ncpus=1)
PBS Professional 2020.1.1 User’s Guide UG-175

Chapter 10 Checking Job & System Status
 alt_id = <dom0:job ID xmlns:dom0="http://schemas.microsoft.com/HPCS2008/hpcb

 p">149</dom0:Job ID>

 etime = Thu Apr 2 12:07:05 2010

 Submit_arguments = -lselect=host=host3 -- ping -n 100 127.0.0.1

 executable = <jsdl-hpcpa:Executable>ping</jsdl-hpcpa:Executable>

 argument_list = <jsdl-hpcpa:Argument>-n</jsdl-hpcpa:Argument><jsdl-hpcpa:Ar

 gument>100</jsdl-hpcpa:Argument><jsdl-hpcpa:Argument>127.0.0.1</jsdl-hp

 cpa:Argument>

10.1.4.1 Path Display under Windows

When you view a job in long format that was submitted from a mapped drive, PBS displays the UNC path for the job’s
Output_Path, Error_Path attributes, and the value for PBS_O_WORKDIR in the job’s Variable_List attribute.

When you view a job in long format that was submitted using UNC paths for output and error files, PBS displays the
UNC path for the job’s Output_Path and Error_Path attributes.

10.1.5 Listing Jobs by User

The “-u” option to qstat displays jobs owned by any of a list of user names you specify.

Syntax:

qstat -u <user name>[@<host>][,<user name>[@<host>],...]

Host names are not required, and may be “wild carded” on the left end, e.g. “*.mydomain.com”. <user name> without a
“@<host>” is equivalent to “<user name>@*”, that is at any host.

qstat -u user1

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

16.south user1 workq aims14 -- -- 1 -- 0:01 H --

18.south user1 workq aims14 -- -- 1 -- 0:01 W --

52.south user1 workq my_job -- -- 1 -- 0:10 Q --

qstat -u user1,barry

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

51.south barry workq airfoil 930 -- 1 -- 0:13 R 0:01

52.south user1 workq my_job -- -- 1 -- 0:10 Q --

54.south barry workq airfoil -- -- 1 -- 0:13 Q --
UG-176 PBS Professional 2020.1.1 User’s Guide

Checking Job & System Status Chapter 10
10.1.6 Listing Running Jobs

The “-r” option to qstat displays the status of all running jobs at the (optionally specified) PBS server. Running jobs
include those that are running and suspended. One line of output is generated for each job reported, and the information
is presented in the alternative display. For example:

qstat –r

host1:

 Req’d Req’d Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ----- ----- ------- ---- --- --- ----- ----- - -----

43.host1 user1 workq STDIN 4693 1 1 -- -- R 00:00

10.1.7 Listing Non-Running Jobs

The “-i” option to qstat displays the status of all non-running jobs at the (optionally specified) PBS server. Non-run-
ning jobs include those that are queued, held, and waiting. One line of output is generated for each job reported, and the
information is presented in the alternative display (see description above). For example:

qstat –i

host1:

 Req’d Req’d Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

---------- ----- ----- ------- ---- --- --- ----- ----- - -----

44[].host1 user1 workq STDIN -- 1 1 -- -- Q --

10.1.8 Listing Hosts Assigned to Jobs

The “-n” option to qstat displays the hosts allocated to any running job at the (optionally specified) PBS server, in
addition to the other information presented in the alternative display. The exec_host information is printed immediately
below the job (see job 51 in the example below), and includes the host name and number of virtual processors assigned to
the job (i.e. “south/0”, where “south” is the host name, followed by the virtual processor(s) assigned.). A text string of “-
-” is printed for non-running jobs. Notice the differences between the queued and running jobs in the example below:

qstat -n

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

16.south user1 workq aims14 -- -- 1 -- 0:01 H --

 --

18.south user1 workq aims14 -- -- 1 -- 0:01 W --

 --

51.south barry workq airfoil 930 -- 1 -- 0:13 R 0:01

 south/0

52.south user1 workq my_job -- -- 1 -- 0:10 Q --

 --
PBS Professional 2020.1.1 User’s Guide UG-177

Chapter 10 Checking Job & System Status
10.1.9 Displaying Job Comments

The “-s” option to qstat displays the job comments, in addition to the other information presented in the alternative
display. The job comment is printed immediately below the job. By default the job comment is updated by the scheduler
with the reason why a given job is not running, or when the job began executing. A text string of “--” is printed for jobs
whose comment has not yet been set. The example below illustrates the different type of messages that may be displayed:

qstat -s

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ----- ----- ------- ---- --- --- --- ---- - ----
16.south user1 workq aims14 -- -- 1 -- 0:01 H --

 Job held by user1 on Wed Aug 22 13:06:11 2004

18.south user1 workq aims14 -- -- 1 -- 0:01 W --

 Waiting on user requested start time

51.south barry workq airfoil 930 -- 1 -- 0:13 R 0:01

 Job run on host south - started Thu Aug 23 at 10:56

52.south user1 workq my_job -- -- 1 -- 0:10 Q --

 Not Running: No available resources on nodes

57.south susan workq solver -- -- 2 -- 0:20 Q --

 --

10.1.10 Showing State of Job, Job Array or Subjob

The “-t” option to qstat will show the state of a job, a job array object, and all non-X subjobs.

The “-J” option to qstat will show only the state of job arrays.

The combination of “-J” and “-t” options to qstat will show only the state of subjobs.
UG-178 PBS Professional 2020.1.1 User’s Guide

Checking Job & System Status Chapter 10
For example:

qstat –t

Job ID Name User Time Use S Queue

---------- -------- ----------- -------- - -----

44[].host1 STDIN user1 0 B workq

44[1].host1 STDIN user1 00:00:00 R workq

44[2].host1 STDIN user1 0 Q workq

44[3].host1 STDIN user1 0 Q workq

qstat –J

Job ID Name User Time Use S Queue

----------- -------- ----------- -------- - -----

44[].host1 STDIN user1 0 B workq

$ qstat –Jt

Job ID Name User Time Use S Queue

----------- -------- ----------- -------- - -----

44[1].host1 STDIN user1 00:00:00 R workq

44[2].host1 STDIN user1 0 Q workq

44[3].host1 STDIN user1 0 Q workq

10.1.11 Printing Job Array Percentage Completed

The “-p” option to qstat prints the default display, with a column for Percentage Completed. For a job array, this is the
number of subjobs completed and deleted, divided by the total number of subjobs. For example:

qstat –p

Job ID Name User % done S Queue

------------- -------- ----------- -------- - -----

44[].host1 STDIN user1 40 B workq

10.1.12 Viewing Job Start Time

There are two ways you can find the job’s start time. If the job is still running, you can do a qstat -f and look for the
stime attribute. If the job has finished, you look in the accounting log for the S record for the job. For an array job, only
the S record is available; array jobs do not have a value for the stime attribute.

10.1.13 Viewing Estimated Start Times For Jobs

You can view the estimated start times and vnodes of jobs using the qstat command. If you use the -T option to
qstat when viewing job information, the Elap Time field is replaced with the Est Start Time field. Running jobs are
shown above queued jobs. Running jobs are sorted by their stime attribute (start time).

Queued jobs whose estimated start times are unset (estimated.start_time = unset) are displayed after those with esti-
mated start times, with estimated start time shown as a double dash (“--”). Queued jobs with estimated start times in the
past are treated as if their estimated start times are unset.

Time displayed is local to the qstat command. Current week begins on Sunday.
PBS Professional 2020.1.1 User’s Guide UG-179

Chapter 10 Checking Job & System Status
If the estimated start time or vnode information is invisible to unprivileged users, no estimated start time or vnode infor-
mation is available via qstat.

Example output:

qstat -T

 Est

 Req'd Req'd Start

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

------- -------- ----- -------- ----- --- --- ------ ----- - -----

5.host1 user1 workq foojob 12345 1 1 128mb 00:10 R --

9.host1 user1 workq foojob -- 1 1 128mb 00:10 Q 11:30

10.host1 user1 workq foojob -- 1 1 128mb 00:10 Q Tu 15

7.host1 user1 workq foojob -- 1 1 128mb 00:10 Q Jul

8.host1 user1 workq foojob -- 1 1 128mb 00:10 Q 2010

11.host1 user1 workq foojob -- 1 1 128mb 00:10 Q >5yrs

13.host1 user1 workq foojob -- 1 1 128mb 00:10 Q --

If the start time for a job cannot be estimated, the start time is shown as a question mark (“?”).

10.1.13.1 Why Does Estimated Start Time Change?

The estimated start time for your job may change for the following reasons:

• Changes to the system, such as vnodes going down, or the administrator offlining vnodes

• A higher priority job coming into the system, or a shift in priority of the existing jobs

10.1.14 Viewing Job Status in Wide Format

The -w qstat option displays job status in wide format. The total width of the display is extended from 80 characters
to 120 characters. The Job ID column can be up to 30 characters wide, while the Username, Queue, and Jobname column
can be up to 15 characters wide. The SessID column can be up to eight characters wide, and the NDS column can be up
to four characters wide.

You can use this option only with the -a, -n, or -s qstat options.

This option is different from the -w option used with -f.

10.1.15 Viewing Information for Finished and Moved Jobs

You can view information for finished and moved jobs in the same way as for queued and running jobs, as long as the job
history is still being stored by PBS.

The -x option to the qstat command allows you to see information for all jobs, whether they are running, queued, fin-
ished or moved. This information is presented in standard format.

You can view the history for selected sets of jobs:

Linux:

qstat -fx `qselect -x -s "MF"`

Windows:

for /F "usebackq" %%j in (`"\Program Files\ PBSPro\ exec\ bin\qselect" -x -s MF`)

do ("\Program Files\PBS\exec\bin\qstat" -fx %%j)
UG-180 PBS Professional 2020.1.1 User’s Guide

Checking Job & System Status Chapter 10
10.1.15.1 Getting Information on Jobs Moved to Another Server

If your job is running at another server, you can use the qstat command to see its status. If your site is using peer
scheduling, your job may be moved to a server that is not your default server. In this case, to see information on your job,
you can use any of the following methods:

• Use qstat -x to see information about all jobs, whether running, queued, finished, or moved; you can specify job
IDs

• Give the job ID as an argument to qstat. If you use only “qstat”, your job will not appear to exist. For exam-
ple: you submit a job to ServerA, and it returns the job ID as “123.ServerA”. Then 123.ServerA is moved to Ser-
verB. In this case, use
qstat 123

or

qstat 123.ServerA

to get information about your job. ServerA will query ServerB for the information. To list all jobs at ServerB, you
can use:

qstat @<server>B

If you use “qstat” without the job ID, the job will not appear to exist.

10.1.15.2 Job History In Standard Format

You can use the -x option to the qstat command to see information for finished, moved, queued, and running jobs, in
standard format.

Usage:

qstat -x

Displays information for queued, running, finished, and moved jobs, in standard format.

qstat -x <job ID>

Displays information for a job, regardless of its state, in standard format.

Example 10-1: Showing finished and moved jobs with queued and running jobs:

qstat -x

Job id Name User Time Use S Queue

------------- ----------- ------ ------- --- ------

101.server1 STDIN user1 00:00:00 F workq

102.server1 STDIN user1 00:00:00 M destq@server2

103.server1 STDIN user1 00:00:00 R workq

104.server1 STDIN user1 00:00:00 Q workq

To see status for jobs, job arrays and subjobs that are queued, running, finished, and moved, use qstat -xt.

To see status for job arrays that are queued, running, finished, or moved, use qstat -xJ.
PBS Professional 2020.1.1 User’s Guide UG-181

Chapter 10 Checking Job & System Status
When information for a moved job is displayed, the destination queue and server are shown as <queue>@<server>.

Example 10-2: qstat -x output for moved job: destination queue is destq, and destination server is server2.

Job id Name User Time Use S Queue

---------------- ----------- ----- ------- --- ------

101.sequoia STDIN user1 00:00:00 F workq

102.sequoia STDIN user1 00:00:00 M destq@server2

103.sequoia STDIN user1 00:00:00 R workq

Example 10-3: Viewing moved job:

• There are three servers with hostnames ServerA, ServerB, and ServerC

• User1 submits job 123 to ServerA.

• After some time, User1 moves the job to ServerB.

• After more time, the administrator moves the job to QueueC at ServerC.

This means:

• The qstat command will show QueueC@ServerC for job 123.

10.1.15.3 Job History In Alternate Format

You can use the -H option to the qstat command to see job history for finished or moved jobs in alternate format. This
does not display running or queued jobs.

Usage:

qstat -H

Displays information for finished or moved jobs, in alternate format

qstat -H <job ID>

Displays information for that job in alternate format, whether or not it is finished or moved

qstat -H <destination>

Displays information for finished or moved jobs at that destination

Example 10-4: Job history in alternate format:

qstat -H

 Req'd Req'd Elap

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

------ -------- ---- ------- ------ --- --- ------ ---- -- -----

101.S1 user1 workq STDIN 5168 1 1 -- -- F 00:00

102.S1 user1 Q1@S2 STDIN -- 1 2 -- -- M --

To see alternate-format status for jobs, job arrays and subjobs that are finished and moved, use qstat -Ht.

To see alternate-format status for job arrays that are finished or moved, use qstat -HJ.

The -H option is incompatible with the -a, -i and -r options.
UG-182 PBS Professional 2020.1.1 User’s Guide

Checking Job & System Status Chapter 10
10.1.16 Grouping Jobs and Sorting by ID

You can use the -E option to sort and group jobs in the output of qstat. The -E option groups jobs by server and dis-
plays each group by ascending ID. This option also improves qstat performance. The following table shows how the
-E option affects the behavior of qstat:

10.1.17 Caveats for Job Information

• MoM periodically polls jobs for usage by the jobs running on her host, collects the results, and reports this to the
server. When a job exits, she polls again to get the final tally of usage for that job.

For example, MoM polls the running jobs at times T1, T2, T4, T8, T16, T24, and so on.

The output shown by a qstat during the window of time between T8 and T16 shows the resource usage up to T8.

If the qstat is done at T17, the output shows usage up through T16. If the job ends at T20, the accounting log (and
the final log message, and the email to you if "qsub -me" was used in job submission) contains usage through T20.

• The final report does not include the epilogue. The time required for the epilogue is treated as system overhead.

• The order in which jobs are displayed is undefined.

10.2 Checking Server Status

To see server information in default format:

qstat -B [<server> ...]

To see server information in long format:

qstat -B -f [-F json|dsv [-D <delimiter>]] [-w] [<server> ...]

10.2.1 Viewing Server Information in Default Format

The “-B” option to qstat displays the status of the specified PBS server. One line of output is generated for each server
queried. The three letter abbreviations correspond to various job limits and counts as follows: Maximum, Total, Queued,
Running, Held, Waiting, Transiting, and Exiting. The last column gives the status of the server itself: active, idle, or
scheduling.

qstat -B

Server Max Tot Que Run Hld Wat Trn Ext Status

----------- --- ---- ---- ---- ---- ---- ---- ---- ------

fast.domain 0 14 13 1 0 0 0 0 Active

Table 10-1: How -E Option Affects qstat Output

How qstat is Used Result Without -E Result With -E

qstat (no job ID specified) Queries the default server and displays
result

No change in behavior; same as with-
out -E option

qstat <list of job IDs
from single server>

Displays results in the order specified Displays results in ascending ID order

qstat <job IDs at multiple
servers>

Displays results in the order they are
specified

Groups jobs by server. Displays each
group in ascending order
PBS Professional 2020.1.1 User’s Guide UG-183

Chapter 10 Checking Job & System Status
10.2.2 Viewing Server Information in Long Format

You can see server status in JSON or delimiter-separated value formats; see section 10.4, “Full Display Options for Job,
Queue, and Server Status”, on page 186.

When querying jobs, servers, or queues, you can add the “-f” option to qstat to change the display to the full or long
display. For example, the server status shown above can be expanded using “-f” as shown below:

qstat -Bf

Server: fast.mydomain.com

server_state = Active

scheduling = True

total_jobs = 14

state_count = Transit:0 Queued:13 Held:0 Waiting:0

Running:1 Exiting:0

managers = user1@fast.mydomain.com

default_queue = workq

log_events = 511

mail_from = adm

query_other_jobs = True

resources_available.mem = 64mb

resources_available.ncpus = 2

resources_default.ncpus = 1

resources_assigned.ncpus = 1

resources_assigned.nodect = 1

scheduler_iteration = 600

pbs_version = PBSPro_2020.1.1.41640

10.3 Checking Queue Status

To view queue information in default format:

qstat -Q [<destination> ...]

To view queue information in alternate format:

qstat -q [-G | -M] [<destination> ...]

To view queue information in long format:

qstat -Q -f [-F json|dsv [-D <delimiter>]] [-w] [<destination> ...]

If you specify a destination identifier, it takes one of the following three forms:

<queue>

@<server>

<queue>@<server>

If you specify <queue>, the request is for status of that queue at the default server.

If you use the @<server> form, the request is for status of all queues at that server.

If you specify a full destination identifier, <queue>@<server>, the request is for status of the named queue at the named
server.
UG-184 PBS Professional 2020.1.1 User’s Guide

Checking Job & System Status Chapter 10
10.3.1 Viewing Queue Information in Default Format

The “-Q” option to qstat displays the status of specified queues at the (optionally specified) PBS server. One line of
output is generated for each queue queried.

qstat -Q

Queue Max Tot Ena Str Que Run Hld Wat Trn Ext Type

----- --- --- --- --- --- --- --- --- --- --- ---------

workq 0 10 yes yes 7 1 1 1 0 0 Execution

The columns show the following for each queue:

• Queue Queue name

• Max Maximum number of jobs allowed to run concurrently in the queue

• Tot Total number of jobs in the queue

• Ena Whether the queue is enabled or disabled

• Str Whether the queue is started or stopped

• Que Number of queued jobs

• Run Number of running jobs

• Hld Number of held jobs

• Wat Number of waiting jobs

• Trn Number of jobs being moved (transiting)

• Ext Number of exiting jobs

• Type Type of queue: execution or routing

10.3.2 Viewing Queue Information in Long Format

You can see queue information in JSON or delimiter-separated value formats; see section 10.4, “Full Display Options for
Job, Queue, and Server Status”, on page 186.

Use the long format to see the value for each queue attribute:

qstat -Qf

Queue: workq

queue_type = Execution

total_jobs = 10

state_count = Transit:0 Queued:7 Held:1 Waiting:1

Running:1 Exiting:0

resources_assigned.ncpus = 1

hasnodes = False

enabled = True

started = True
PBS Professional 2020.1.1 User’s Guide UG-185

Chapter 10 Checking Job & System Status
10.3.3 Displaying Queue Limits in Alternate Format

The “-q” option to qstat displays any limits set on the requested (or default) queues. Since PBS is shipped with no
queue limits set, any visible limits will be site-specific. The limits are listed in the format shown below.

qstat -q

server: south

Queue Memory CPU Time Walltime Node Run Que Lm State

------ ------ -------- -------- ---- --- --- -- -----

workq -- -- -- -- 1 8 -- E R

10.4 Full Display Options for Job, Queue, and Server

Status

-f [-w]

Full display. Job, queue or server attributes displayed one to a line.

Optional -w prints each attribute on one unbroken line. Feed characters are converted:

• Newline is converted to backslash concatenated with “n”: “\n”

• Form feed is converted to backslash concatenated with “f”: “\f”

This -w is independent of the -w job alternate output option.

-F dsv [-D <delimiter>]

Prints output in delimiter-separated value format. The default delimiter is a pipe (“|”). You can specify a char-
acter or a string delimiter using the -D argument to the -F dsv option. For example, to use a comma as the
delimiter:

qstat -f -F dsv -D,

If the delimiter itself appears in a value, it is escaped:

• On UNIX/Linux, the delimiter is escaped with a backslash (“\”).

• On Windows, the delimiter is escaped with a caret (“^”).

Feed characters are converted:

• Newline is converted to backslash concatenated with “n”: “\n”

• Form feed is converted to backslash concatenated with “f”: “\f”

A newline separates each job from the next. Using newline as the delimiter leads to undefined behavior.

Example of getting output in delimiter-separated value format:

qstat -f -Fdsv

Job Id: 1.vbox|Job_Name = STDIN|Job_Owner = root@vbox|job_state = Q|queue = workq|server =
vbox|Checkpoint = u|ctime = Fri Nov 11 17:57:05 2016|Error_Path = ...
UG-186 PBS Professional 2020.1.1 User’s Guide

Checking Job & System Status Chapter 10
-F json

Prints output in JSON format (http://www.json.org/).

Attribute output is preceded by timestamp, PBS version, and PBS server hostname.

Example:

qstat -f -F json

{

"timestamp":1479277336,

"pbs_version":"14.1",

"pbs_server":"vbox",

"Jobs":{

"1.vbox":{

"Job_Name":"STDIN",

"Job_Owner":"root@vbox",

"job_state":"Q",

...

-G

Show size in gigabytes. Alternate format is used.

-M

Show size in megawords. A word is considered to be 8 bytes. Alternate format is used.

10.4.1 Caveats for the qstat Command

When you use the -f option to qstat to display attributes of jobs, queues, or servers, attributes that are unset may not be
displayed. If you do not see an attribute, it is unset.

10.5 Selecting a List of Jobs

The qselect command provides a method to list the job identifier of those jobs, job arrays or subjobs which meet a list
of selection criteria. Jobs are selected from those owned by a single server. The qselect command writes to standard
output a list of zero or more job identifiers which meet the criteria specified by the options. Each option acts as a filter
restricting the number of jobs which might be listed. With no options, the qselect command will list all jobs at the
server which you are authorized to list (query status of). The -u option may be used to limit the selection to jobs owned
by you or other specified users.

For a description of the qselect command, see “qselect” on page 186 of the PBS Professional Reference Guide.

For example, say you want to list all jobs owned by user “barry” that requested more than 16 CPUs. You could use the
following qselect command syntax:

qselect -u barry -l ncpus.gt.16

121.south

133.south

154.south

Notice that what is returned is the job identifiers of jobs that match the selection criteria. This may or may not be enough
information for your purposes. Many users will use shell syntax to pass the list of job identifiers directly into qstat for
viewing purposes, as shown in the next example (necessarily different between Linux and Windows).
PBS Professional 2020.1.1 User’s Guide UG-187

http://www.json.org/

Chapter 10 Checking Job & System Status
Linux:

qstat -a `qselect -u barry -l ncpus.gt.16 `

 Req'd Req’d Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ----- ----- ------- ---- --- --- --- ---- - ----

121.south barry workq airfoil -- -- 32 -- 0:01 H --

133.south barry workq trialx -- -- 20 -- 0:01 W --

154.south barry workq airfoil 930 -- 32 -- 1:30 R 0:32

Windows (type the following at the cmd prompt, all on one line):

for /F "usebackq" %j in (`qselect -u barry -l ncpus.gt.16`) do

(qstat -a %j)

121.south

133.south

154.south

Note: This technique of using the output of the qselect command as input to qstat can also be used to supply input
to other PBS commands as well.

10.5.1 Listing Job Identifiers of Finished and Moved Jobs

You can list identifiers of finished and moved jobs in the same way as for queued and running jobs, as long as the job his-
tory is still being preserved.

The -x option to the qselect command allows you to list job identifiers for all jobs, whether they are running, queued,
finished or moved. The -H option to the qselect command allows you to list job identifiers for finished or moved jobs
only.

10.5.2 Listing Jobs by Time Attributes

You can use the qselect command to list queued, running, finished and moved jobs, job arrays, and subjobs according
to their time attributes. The -t option to the qselect command allows you to specify how you want to select based on
time attributes. You can also use the -t option twice to bracket a time period.

Example 10-5: Select jobs with end time between noon and 3PM.

qselect -te.gt.09251200 -te.lt.09251500

Example 10-6: Select finished and moved jobs with start time between noon and 3PM.

qselect -x -s “MF” -ts.gt.09251200 -ts.lt.09251500

Example 10-7: Select all jobs with creation time between noon and 3PM

qselect -x -tc.gt.09251200 -tc.lt.09251500

Example 10-8: Select all jobs including finished and moved jobs with qtime of 2.30PM (default relation is .eq.)

qselect -x -tq09251430
UG-188 PBS Professional 2020.1.1 User’s Guide

Checking Job & System Status Chapter 10
10.6 Checking License Availability

You can check to see where licenses are available. You can do either of the following:

• Display license information for the current host:
qstat -Bf

• Display resources available (including licenses) on all hosts:
qmgr

Qmgr: print node @default

If your site is using floating licenses, when looking at the server’s license_count attribute, use the sum of the
Avail_Global and Avail_Local values.
PBS Professional 2020.1.1 User’s Guide UG-189

Chapter 10 Checking Job & System Status
UG-190 PBS Professional 2020.1.1 User’s Guide

11

Submitting Cray Jobs

11.1 PBS Jobs on Cray Shasta

Submitting a PBS job on a Shasta system is exactly like submitting a job on a standard Linux machine. The rest of this
chapter does NOT apply to Shasta systems.

11.2 PBS Jobs on the Cray XC

You can submit jobs that are designed to run on the Cray XC, using the PBS select and place syntax.

When you submit a job that is designed to run on the Cray XC, you create a job script that contains the same aprun
command as a non-PBS job, but submit the job using the PBS select and place syntax.

If a job does not request a login node, one is chosen for it. A login node is assigned to each PBS job that runs on the Cray
XC. The job script runs on this login node.

Jobs requesting a vntype of cray_compute are expected to have an aprun in the job script to launch the job on the
compute nodes. PBS does not verify that the job script contains an aprun statement.

You may find it helpful to run qsub in the foreground by using the -f option. This can avoid stale ALPS reservations
not being released.

11.3 Resources for Cray XC

accelerator

accelerator_memory

accelerator_model

energy

eoe

naccelerators

PBScrayhost

PBScraylabel_<label name>

PBScraynid

PBScrayorder

vntype

See “Resources Built Into PBS” on page 265 of the PBS Professional Reference Guide.

11.3.1 Resource Accounting for Cray XC

Jobs that request only compute nodes are not assigned resources from login nodes. PBS accounting logs do not show any
login node resources being used by these jobs.
PBS Professional 2020.1.1 User’s Guide UG-191

Chapter 11 Submitting Cray Jobs
Jobs that request login nodes are assigned resources from login nodes, and those resources appear in the PBS accounting
logs for these jobs.

PBS performs resource accounting on the login nodes, under the control of their MoMs.

Comprehensive System Accounting (CSA) runs on the compute nodes, under the control of the Cray XC system. CSA
requires CLE 5.2.

11.4 Rules for Submitting Jobs on the Cray XC

11.4.1 Always Specify Node Type on Cray XC

If you want your job to run on Cray XC nodes, you must specify a Cray XC node type for your job. You do this by
requesting a value for the vntype vnode resource. On each vnode on a Cray XC, the vntype resource includes one of the
following values:

cray_login, for a login node

cray_compute, for a compute node

Each chunk of a Cray XC job that must run on a login node must request a vntype of cray_login.

Each chunk of a Cray XC job that must run on a compute node must request a vntype of cray_compute.

Example 11-1: Request any login node, and two compute-node vnodes. The job is run on the login node selected by the
scheduler:

qsub -lselect=1:ncpus=2:vntype=cray_login +2:ncpus=2:vntype=cray_compute

Example 11-2: Launch a job on a particular login node by specifying the login node vnode name first in the select line.
The job script runs on the specified login node:

qsub -lselect=1:ncpus=2:vnode=login1 +2:ncpus=2:vntype=cray_compute

For a description of the vntype resource, see “Resources Built Into PBS” on page 265 of the PBS Professional Reference
Guide.

11.4.2 Always Reserve Required Vnodes on Cray XC

Always reserve at least as many PEs as you request in your aprun statement.

11.4.3 Requesting Cray XC Login Node Where Job Script
Runs

If you request a login node as part of your resource request, the login node resource request must be the first element of
the select statement. The job script is run on the login node. If you request more than one login node, the job script runs
on the first login node requested.

11.4.4 Cray XC Login Nodes in PBS Reservations

If the jobs that are to run in a PBS reservation require a particular login node, you must do the following:

• The reservation must request the specific login node

• Each job that will run in the reservation must request the same login node that the reservation requested
UG-192 PBS Professional 2020.1.1 User’s Guide

Submitting Cray Jobs Chapter 11
11.4.5 Specifying Number of Chunks on Cray XC

You specify the number of chunks by prefixing each chunk request with an integer. If not specified, this integer defaults
to 1. For example, to specify 4 chunks with 2 CPUs each, and 8 chunks with 1 CPU each:

qsub -lselect=4:ncpus=2+8:ncpus=1

You cannot request the nchunk resource.

If you request fewer chunks, the scheduling cycle is faster. See section 11.9.5, “Request Fewer Chunks on Cray XC”, on
page 198.

11.4.6 Specify Host for Interactive Jobs on Cray XC

Interactive jobs on a Cray XC must run on a login node. When you run an interactive job, specify the login node as the
host for the job. You can do so using a PBS directive, or the command line. For example:

qsub -l select=host=<name of login node> -I job.sh

#PBS -l select=host=<name of login node>

See section 6.11, “Running Your Job Interactively”, on page 121.

11.5 Techniques for Submitting Cray XC Jobs

11.5.1 Requesting Groups of Cray XC Login Nodes

If you want to use groups of esLogin nodes and internal login nodes, your administrator can set the vntype resource on
these nodes to a special value, for example cray_compile.

To submit a job requesting any combination of esLogin nodes and internal login nodes, you specify the special value for
the vntype resource in your select statement. For example:

qsub -lselect=4:ncpus=1:vntype=cray_compile job

11.5.2 Using Internal Cray XC Login Nodes Only

Compiling, preprocessing, and postprocessing jobs can run on internal login nodes. Internal login nodes have a vntype
value of cray_login. If you want to run a job that needs to use the resources on internal login nodes only, you can specify
vntype=cray_login in your select statement. For example:

qsub -lselect=4:ncpus=1:vntype=cray_login job

11.5.3 Using Cray XC Compute Nodes

If your job script contains an aprun launch, you must run your job on compute nodes. To run your job on compute
nodes, specify a vntype of cray_compute. For example:

lselect=2:ncpus=2:vntype=cray_compute

11.5.4 Requesting Specific Groups of Cray XC Nodes

You can use select and place to request the groups of vnodes you want.
PBS Professional 2020.1.1 User’s Guide UG-193

Chapter 11 Submitting Cray Jobs
You may need to group nodes by some criteria, for example:

• Certain nodes are fast nodes

• Certain nodes share a required or useful characteristic

• Some combination of nodes gives the best performance for an application

Your administrator can set up either of the following:

• Custom Boolean resources on each vnode, which reflect how the nodes are labeled, and allow you to request the
vnodes that represent the group of nodes you want. These resources are named PBScraylabel_<label name>, and
set to True on the vnodes that represent the labeled nodes.

Your administrator must label the groups of nodes. For example, if a node is both fast and best for App1, it can have
two labels, fast, and BestForApp1.

To request the fast nodes in this example, add the following to each chunk request:

:PBScraylabel_fast=True

• Other custom resources on each vnode, which are set to reflect the vnode’s characteristics. For example, if a vnode
is fast, it can have a custom string resource called “speed”, with a value of fast on that vnode. You must ask your
administrator for the name and possible values for the resource.

11.5.5 Requesting Cray XC Nodes in Specific Order

Your application may perform better when the ranks are laid out on specific nodes in a specific order. If you want to
request vnodes so that the nodes are in a specific order, you can specify the host for each chunk of the job. For example,
if you need nodes ordered “nid0, nid2, nid4”, you can request the following:

qsub -l select=2:ncpus=2:host=nid0 +2:ncpus=2:host=nid2 +2:ncpus=2:host=nid4

11.5.6 Requesting Specific Hardware on Cray XC

PBS allows you to specifically request (or avoid) specific hardware. Your administrator must create a Boolean resource
on each vnode, and set it to True where the vnode has that specific hardware. We recommend that the Boolean is called
“PBScraylabel_<hardware name>”.

You request or avoid this resource using PBScraylabel_<hardware name>=True or PBScraylabel_<hard-
ware name>=False. For example:

qsub -lselect=3:ncpus=2:PBScraylabel_<new_and_fast>=true myjob

11.5.7 Requesting Accelerators on Cray XC

Accelerators are associated with vnodes when those vnodes represent a host that has at least one accelerator in state UP.
PBS allows you to request vnodes with associated accelerators. PBS sets the value of the naccelerators host-level
resource to the number of accelerators on the host. Note that this value is set for all vnodes on that host, so if you have a
host with one accelerator and four vnodes, each of the four vnodes has naccelerators set to 1.

To request accelerators for your job, use the integer naccelerators resource to request a specific number of accelerators,
or the Boolean accelerator resource if you do not care how many accelerators you get.

To request a vnode on a host with a specific number of associated accelerators, include the following in the job’s select
statement:

naccelerators = <number of accelerators>
UG-194 PBS Professional 2020.1.1 User’s Guide

Submitting Cray Jobs Chapter 11
To request a vnode on a host with any number of associated accelerators, you can include the following in the job’s select
statement:

accelerator = True

11.5.7.1 Advice on Requesting Accelerators on Cray XC

• When requesting accelerators, put them in the same chunks as CPUs. Otherwise the accelerators could end up in a
chunk taken from a different host from the CPUs, and in that case your CPUs could be on a host without an acceler-
ator.

• Use accelerator=True in a chunk only when you don’t care how many accelerators are in the chunk.

11.5.7.2 Examples of Requesting Accelerators on Cray XC

Example 11-3: You want a total of 40 PEs with 4 PEs per compute node and one accelerator per compute node:

-lselect=10:ncpus=4:naccelerators=1

Example 11-4: You want 30PEs and a Tesla_x2090 accelerator on each host, and the accelerator should have at least
4000MB, and you don't care how many hosts the job uses:

-lselect=30:ncpus=1:nacclerators=1:accelerator_model=”Tesla_x2090” :accelerator_memory=4000MB
myjob

Example 11-5: You want a total of 40 PEs with 4 PEs per compute node and at least one accelerator per compute node:

-lselect=10:ncpus=4:accelerator=True

Example 11-6: Your system has some compute nodes with one type of accelerator (GPU1), and another type of compute
node with a different type of accelerator (GPU2), and you want to request 10 PEs and 1 accelerator of model
“GPU1” per compute node and 4 PEs and 1 accelerator of model “GPU2” per compute node. Your job request
would look like this:

-lselect=10:ncpus=1:naccelerators=1:accelerator_model=”GPU1”
+4:ncpus=1:naccelerators=1:accelerator_model=”GPU2” myjob

11.6 Using Xeon Phi Vnodes on Cray XC

PBS automatically detects a Xeon Phi in the ALPS inventory. The Xeon Phi attributes are configured automatically in
the PBS vnode attributes. A job can make an explicit request for a Xeon Phi on a compute node and be dispatched to that
node.

When using Xeon Phi vnodes, it’s generally useful to request an AOE that gives you a Xeon Phi memory model with
your desired values for numa_cfg and hbm_cache_pct. Run the pbsnodes command to find the available AOEs
(look at resources_available.aoe) and choose the AOE you want.

To request Xeon Phi vnodes for the compute nodes used by your job, specify the cray_compute resource. For example,
to request 10 Xeon Phi vnodes:

qsub -l select=10:vntype=cray_compute:aoe=<desired AOE>

11.7 Using Hyperthreads on Cray XC

PBS supports hyperthreading on Cray X* series systems using ALPS. On each vnode, PBS sets
resources_available.ncpus to the number of compute unit elements returned in the XML inventory. This allows PBS
to make ALPS reservations for the compute units of a node, and get all of the hyperthreads associated with those compute
units.
PBS Professional 2020.1.1 User’s Guide UG-195

Chapter 11 Submitting Cray Jobs
You can use aprun -j to control how you use hyperthreads on XC series machines.

Your administrator may label hyperthreaded vnodes with a custom resource.

We recommend that when you submit jobs to PBS, you use the size of a compute node as the size of a chunk.

To use hyperthreading in your job, request hyperthreading in your aprun call in your job script. Please refer to Cray’s
man page for aprun.

Check the Cray Programming Environment User Guide for Cray’s advice on using CPUs and compute units.

When hyperthreading is enabled on a system, each core is paired with one associated hyperthread, and you should
request ncpus in multiples of 2 so that each associated hyperthread is assigned to the job’s cgroup.

When hyperthreading is not enabled, you should request just the cores.

Let’s say you request the following:

select=1:ncpus=2

If hyperthreading is enabled, this nets one core and one hyperthread.

If hyperthreading is not enabled, this nets two cores.

11.8 Viewing Cray XC Job Information

11.8.1 Finding Out Where Job Was Launched on Cray XC

To determine the internal login node where the job was launched, use the qstat -f command:

qstat -f <job ID>

Look at the exec_host line of the output. The first vnode is the login node where the job was launched.

11.8.2 Listing Jobs Running on Vnode on Cray XC

To see which jobs are running on a vnode, use the pbsnodes command:

pbsnodes -av

The jobs attribute of each vnode lists the jobs running on that vnode.

Jobs launched from an internal login node, requesting a vntype of cray_compute only, are not listed in the internal
login node’s vnode’s jobs attribute.

Jobs that are actually running on a login node, which requested a vntype of cray_login, do appear in the login node’s
vnode’s jobs attribute.
UG-196 PBS Professional 2020.1.1 User’s Guide

Submitting Cray Jobs Chapter 11
11.8.3 How ALPS Request Is Constructed on Cray XC

The reservation request that is sent to the Cray XC is constructed from the contents of the exec_vnode and
Resource_List.select job attributes. If the exec_vnode attribute contains chunks asking for the same ncpus and
mem, these are grouped into one section of an ALPS request. Cray XC requires one CPU per thread. The ALPS request
is constructed using the following rules:

11.8.4 Viewing Accelerator Information on Cray XC

There is no aprun interface for requesting accelerator memory or model, so this information is not translated into Cray
XC elements. To see this information, look in the MoM logs for the job’s login node.

11.9 Caveats and Advice for Cray XC

11.9.1 Using Combination or Number Resources on Cray XC

When requesting a resource that is set up by the administrator, you must use the same resource string values as the ones
set up by the administrator. “012” is not the same as “102” or “201”.

11.9.2 Avoid Invalid Cray XC Requests

It is possible to create a select and place statement that meets the requirements of PBS but not of the Cray XC.

Example 11-7: The Cray XC width and depth values cannot be calculated from ncpus and mpiprocs values. For
example, if ncpus is 2 and mpiprocs is 4, the depth value is calculated by dividing ncpus by mpiprocs, and is
one-half. This is not a valid depth value for Cray XC.

Example 11-8: ALPS cannot run jobs with some complex select statements. In particular, a multiple program, multiple
data (MPMD) ALPS reservation where two groups span a compute node will produce an ALPS error, because the
nid shows up in two ReserveParam sections.

Table 11-1: How Cray XC Elements Are Derived From exec_vnode Terms

Cray XC Element exec_vnode Term

Processing Element (PE) mpiprocs

Requested number of PEs / compute node in
this section of job request (width)

Total mpiprocs on vnodes representing compute node involved in this
section of job request

Number of threads per PE (depth) (total assigned ncpus on vnodes representing a compute node) / (total
mpiprocs on vnodes representing a compute node)

Memory per PE (mem) (total memory in chunk request)/total mpiprocs in chunk

Number of PEs per compute node (nppn) Sum of mpiprocs on vnodes representing a compute node

Number of PEs per segment (npps) Not used.

Number of segments per node (nspn) Not used.

NUMA node (segments) Not used.
PBS Professional 2020.1.1 User’s Guide UG-197

Chapter 11 Submitting Cray Jobs
11.9.3 Resource Restrictions and Deprecations on Cray XC

11.9.3.1 mpp* Resources Removed

The mpp* resources are no longer used.

11.9.4 Do Not Request PBScrayorder on Cray XC

Do not use PBScrayorder in a resource request.

11.9.5 Request Fewer Chunks on Cray XC

The more chunks in each translated job request, the longer the scheduling cycle takes. Jobs that request a value for
ncpus effectively direct PBS to use the size of ncpus as the value for ncpus for each chunk, thus dividing the number of
chunks by ncpus.

If you are on a homogeneous system, we recommend that chunks use the value for ncpus for a vnode or for a compute
node.

Example 11-9: Comparison of larger vs. smaller chunk size and the effect on scheduling time:

Submit job with chunk size 1 and 8544 chunks:

qsub -lselect=8544:ncpus=1 job

Job’s Resource_List:

Resource_List.ncpus = 8544

Resource_List.place = free

Resource_List.select = 8544:vntype=cray_compute

Submit_arguments = -lselect=8544:ncpus=1 job

Scheduling took 6 seconds:

12/05/2011 16:46:10;0080;pbs_sched;Job;23.example;considering job to run

12/05/2011 16:46:16;0040;pbs_sched;Job;23.example;Job run

If you are on a heterogeneous system, with varying sizes for vnodes or compute nodes, you can request chunk sizes that
fit available hardware, but this may not be feasible.

11.9.6 Improving Performance on Cray XC

• You can speed performance via the -E option to qstat; see section 10.1.16, “Grouping Jobs and Sorting by ID”, on
page 183.

• We give several recommendations for improving file transfer performance in section 14.6.6, "Advice on Improving
File Transfer Performance", on page 554 of the PBS Professional Administrator’s Guide.

• You can avoid using the -f option to qsub where possible; see section 2.5.9, “Running qsub in the Foreground”, on
page 30 and “Options to qsub” on page 218 of the PBS Professional Reference Guide.
UG-198 PBS Professional 2020.1.1 User’s Guide

Submitting Cray Jobs Chapter 11
11.10 Errors and Logging on Cray XC

11.10.1 Invalid Cray XC Requests

When a select statement does not meet Cray XC requirements, and the Cray XC reservation fails, the following error
message is printed in MoM’s log, at log event class 0x080:

“Fatal MPP reservation error preparing request”

11.10.2 Job Requests More Than Available on Cray XC

If do_not_span_psets is set to True, and a job requests more resources than are available in one placement set, the fol-
lowing happens:

• The job's comment is set to the following:
“Not Running: can't fit in the largest placement set, and can't span psets”

• The following message is printed to the scheduler’s log:
“Can't fit in the largest placement set, and can't span placement sets”
PBS Professional 2020.1.1 User’s Guide UG-199

Chapter 11 Submitting Cray Jobs
UG-200 PBS Professional 2020.1.1 User’s Guide

12

Using Provisioning

PBS provides automatic provisioning of an OS or application on vnodes that are configured to be provisioned. When a
job requires an OS that is available but not running, or an application that is not installed, PBS provisions the vnode with
that OS or application.

12.1 Definitions

AOE

The environment on a vnode. This may be one that results from provisioning that vnode, or one that is already
in place

Provision

To install an OS or application, or to run a script which performs installation and/or setup

Provisioned Vnode

A vnode which, through the process of provisioning, has an OS or application that was installed, or which has
had a script run on it

12.2 How Provisioning Works

Provisioning can be performed only on vnodes that have provisioning enabled, shown in the vnode’s provision_enable
attribute.

Provisioning can be the following:

• Directly installing an OS or application

• Running a script which may perform setup or installation

Each vnode is individually configured for provisioning with a list of available AOEs, in the vnode’s
resources_available.aoe attribute.

Each vnode’s current_aoe attribute shows that vnode’s current AOE. The scheduler queries each vnode’s aoe resource
and current_aoe attribute in order to determine which vnodes to provision for each job.

Provisioning can be used for interactive jobs.

A job’s walltime clock starts when provisioning for the job has finished.

12.2.1 Causing Vnodes To Be Provisioned

An AOE can be requested for a job or a reservation. When a job requests an AOE, that means that the job will be run on
vnodes running that AOE. When a reservation requests an AOE, that means that the reservation reserves vnodes that
have that AOE available. The AOE is instantiated on reserved vnodes only when a job requesting that AOE runs.

When the scheduler runs each job that requests an AOE, it either finds the vnodes that satisfy the job’s requirements, or
provisions the required vnodes. For example, if SLES is available on a set of vnodes that otherwise suit your job, you
can request SLES for your job, and regardless of the OS running on those vnodes before your job starts, SLES will be
running at the time the job begins execution.
PBS Professional 2020.1.1 User’s Guide UG-201

Chapter 12 Using Provisioning
12.2.2 Using an AOE

When you request an AOE for a job, the requested AOE must be one of the AOEs that has been configured at your site.
For example, if the AOEs available on vnodes are “rhel” and “sles”, you can request only those; you cannot request
“suse”.

Your job can run where its requested AOE can be supplied both by provisioning and where the AOE already matches the
request. Some of your job chunks can run on the non-provisionable vnodes that already match the requested AOE, and
some chunks can run on vnodes that can be provisioned to match the requested AOE.

You can request a reservation for vnodes that have a specific AOE available. This way, jobs needing that AOE can be
submitted to that reservation. This means that jobs needing that AOE are guaranteed to be running on vnodes that have
that AOE available.

Each reservation can have at most one AOE specified for it. Any jobs that run in that reservation must not request a dif-
ferent AOE from the one requested for the reservation. That is, the job can run in the reservation if it either requests no
AOE, or requests the same AOE as the reservation.

12.2.3 Job Substates and Provisioning

When a job is in the process of provisioning, its substate is provisioning. This is the description of the substate:

provisioning

The job is waiting for vnode(s) to be provisioned with its requested AOE. Integer value is 71. See “Job Sub-
states” on page 362 of the PBS Professional Reference Guide for a list of job substates.

The following table shows how provisioning events affect job states and substates:

12.3 Requirements and Restrictions

12.3.1 Host Restrictions

12.3.1.1 Single-vnode Hosts Only

PBS will provision only single-vnode hosts. Do not attempt to use provisioning on hosts that have more than one vnode.

Table 12-1: Provisioning Events and Job States/Substates

Event Initial Job State, Substate Resulting Job State, Substate

Job submitted Queued and ready for selection

Provisioning starts Queued, Queued Running, Provisioning

Provisioning fails to start Queued, Queued Held, Held

Provisioning fails Running, Provisioning Queued, Queued

Provisioning succeeds and job runs Running, Provisioning Running, Running

Internal error occurs Running, Provisioning Held, Held
UG-202 PBS Professional 2020.1.1 User’s Guide

Using Provisioning Chapter 12
12.3.1.2 Server Host Cannot Be Provisioned

The server host cannot be provisioned: a MoM can run on the server host, but that MoM’s vnode cannot be provisioned.
The provision_enable vnode attribute, resources_available.aoe, and current_aoe cannot be set on the server host.

12.3.2 AOE Restrictions

Only one AOE can be instantiated at a time on a vnode.

Only one kind of aoe resource can be requested in a job. For example, an acceptable job could make the following
request:

-l select=1:ncpus=1:aoe=suse+1:ncpus=2:aoe=suse

12.3.2.1 Vnode Job Restrictions

A vnode with any of the following jobs will not be selected for provisioning:

• One or more running jobs

• A suspended job

• A job being backfilled around

12.3.2.2 Provisioning Job Restrictions

A job that requests an AOE will not be backfilled around.

12.3.2.3 Vnode Reservation Restrictions

A vnode will not be selected for provisioning for job MyJob if the vnode has a confirmed reservation, and the start time
of the reservation is before job MyJob will end.

A vnode will not be selected for provisioning for a job in reservation R1 if the vnode has a confirmed reservation R2, and
an occurrence of R1 and an occurrence of R2 overlap in time and share a vnode for which different AOEs are requested
by the two occurrences.

12.3.3 Requirements for Jobs

12.3.3.1 If AOE is Requested, All Chunks Must Use Same AOE

If any chunk of a job requests an AOE, all chunks must use that AOE, even if they do not explicitly request an AOE. For
example, if your job requests

-l select=2:ncpus=1:aoe=suse+4:ncpus=2

all chunks must use the suse AOE.

If a job requesting an AOE is submitted to a reservation, that reservation must also request the same AOE.
PBS Professional 2020.1.1 User’s Guide UG-203

Chapter 12 Using Provisioning
12.4 Using Provisioning

12.4.1 Requesting Provisioning

You request a reservation with an AOE in order to reserve the resources and AOE required to run a job. You request an
AOE for a job if that job requires that AOE. You request provisioning for a job or reservation using the same syntax.

You can request an AOE for the entire job/reservation:

-l aoe = <AOE>

Example:

-l aoe = suse

The -l <AOE> form cannot be used with -l select.

You can request an AOE for a single-chunk job/reservation:

-l select=<chunk request>:aoe=<AOE>

Example:

-ls select=1:ncpus=2:aoe=rhel

You can request the same AOE for each chunk of a job/reservation:

-l select=<chunk request>:aoe=<AOE> + <chunk request>:aoe=<AOE>

Example:

-l select=1:ncpus=1:aoe=suse + 2:ncpus=2:aoe=suse

You can request the an AOE for some, but not all, chunks of a job/reservation:

-l select=<chunk request>:aoe=<AOE> + <chunk request>

Example:

-l select=1:ncpus=1:aoe=suse + 2:ncpus=2

12.4.2 Commands and Provisioning

If you try to use PBS commands on a job that is in the provisioning substate, the commands behave differently. The pro-
visioning of vnodes is not affected by the commands; if provisioning has already started, it will continue. The following
table lists the affected commands:

Table 12-2: Effect of Commands on Jobs in Provisioning Substate

Command Behavior While in Provisioning Substate

qdel (Without force) Job is not deleted

(With force) Job is deleted

qsig -s suspend Job is not suspended

qhold Job is not held

qrerun Job is not requeued
UG-204 PBS Professional 2020.1.1 User’s Guide

Using Provisioning Chapter 12
12.4.3 How Provisioning Affects Jobs

A job that has requested an AOE will not preempt another job. Therefore no job will be terminated in order to run a job
with a requested AOE.

A job that has requested an AOE will not be backfilled around.

12.5 Caveats and Errors

12.5.1 Requested Job AOE and Reservation AOE Should
Match

Do not submit jobs that request an AOE to a reservation that does not request the same AOE. Reserved vnodes may not
supply that AOE; your job will not run.

12.5.2 Allow Enough Time in Reservations

If a job is submitted to a reservation with a duration close to the walltime of the job, provisioning could cause the job to
be terminated before it finishes running, or to be prevented from starting. If a reservation is designed to take jobs
requesting an AOE, leave enough extra time in the reservation for provisioning.

12.5.3 Requesting Multiple AOEs For a Job or Reservation

Do not request more than one AOE per job or reservation. The job will not run, or the reservation will remain uncon-
firmed.

12.5.4 Held and Requeued Jobs

The job is held with a system hold for the following reasons:

• Provisioning fails due to invalid provisioning request or to internal system error

• After provisioning, the AOE reported by the vnode does not match the AOE requested by the job

The hold can be released by the PBS Administrator after investigating what went wrong and correcting the mistake.

The job is requeued for the following reasons:

• The provisioning hook fails due to timeout

• The vnode is not reported back up

qmove Cannot be used on a job that is provisioning

qalter Cannot be used on a job that is provisioning

qrun Cannot be used on a job that is provisioning

Table 12-2: Effect of Commands on Jobs in Provisioning Substate

Command Behavior While in Provisioning Substate
PBS Professional 2020.1.1 User’s Guide UG-205

Chapter 12 Using Provisioning
12.5.5 Conflicting Resource Requests

The values of the resources arch and vnode may be changed by provisioning. Do not request an AOE and either arch or
vnode for the same job.

12.5.6 Job Submission and Alteration Have Same
Requirements

Whether you use the qsub command to submit a job, or the qalter command to alter a job, the job must eventually
meet the same requirements. You cannot submit a job that meets the requirements, then alter it so that it does not.
UG-206 PBS Professional 2020.1.1 User’s Guide

13

Using Accounting

13.1 Using Accounting

13.1.1 Specifying Accounting String

You can associate an accounting string with your job by setting the value of the Account_Name job attribute. This
attribute has no default value. You can set the value of Account_Name at the command line or in a PBS directive:

qsub -A <accounting string>

#PBS Account_Name=<accounting string>

The <accounting string> can be any string of characters; PBS does not attempt to interpret it.

You can use the qalter command to change the value of the Account_Name job attribute while the job is queued, but
not while the job is running.

13.1.2 Using Comprehensive System Accounting

You can use CSA on Cray systems running CLE 5.2. PBS support for CSA on HPE systems is no longer available. The
CSA functionality for HPE systems has been removed from PBS.

CSA provides accounting information about user jobs, called user job accounting.

CSA works the same with and without PBS. To run user job accounting, either you must specify the file to which raw
accounting information will be written, or an environment variable must be set. The environment variable is
ACCT_TMPDIR. This is the directory where a temporary file of raw accounting data is written.

To run user job accounting, you issue the CSA command “ja <filename>” or, if the environment variable
ACCT_TMPDIR is set, “ja”. In order to have an accounting report produced, you issue the command “ja
-<options>” where the options specify that a report should be written and what kind to write. To end user job
accounting, you issue the command “ja -t”; the -t option can be included in the previous set of options. See the man
page on ja for details.

The starting and ending ja commands must be used before and after any other commands you wish to monitor. Here are
examples of a command line and a script:

On the command line:

qsub -N myjobname -l ncpus=1

ja myrawfile

sleep 50

ja -c > myreport

ja -t myrawfile

ctrl-D

Accounting data for your job (sleep 50) is written to myreport.
PBS Professional 2020.1.1 User’s Guide UG-207

Chapter 13 Using Accounting
If you create a job script foo with these commands:

#PBS -N myjobname

#PBS -l ncpus=1

ja myrawfile

sleep 50

ja -c > myreport

ja -t myrawfile

Then you can run your job script via qsub, to do the same thing as in the previous example:

qsub foo

13.1.3 Using Dependencies with Accounting

If you need to run end-of-day accounting, you can use dependencies; see section 6.2, “Using Job Dependencies”, on page
107

13.1.4 Advice and Caveats for Using Accounting

13.1.4.1 Use an Integrated MPI

Many MPIs are integrated with PBS. PBS provides tools to integrate most of them; a few MPIs supply the integration.
When a job is run under an integrated MPI, PBS can track resource usage, signal job processes, and perform accounting
for all processes of the job.

When a job is run under an MPI that is not integrated with PBS, PBS is limited to managing the job only on the primary
vnode, so resource tracking, job signaling, and accounting happen only for the processes on the primary vnode.

Under Windows, some MPIs such as MPICH are not integrated with PBS.

See section 5.2.1, “Using an Integrated MPI”, on page 81.
UG-208 PBS Professional 2020.1.1 User’s Guide

Index

A
accelerator UG-189
accelerator_memory UG-189
accelerator_model UG-189
accounting UG-205
ACCT_TMPDIR UG-205
advance reservation UG-133

creation UG-135
AOE UG-199

using UG-200
application licenses

floating UG-54
node-locked

per-CPU UG-55

B
blocking jobs UG-120
Boolean

format UG-49

C
changing order of jobs UG-166
chunk UG-51, UG-53
chunk-level resource UG-51
commands UG-2

and provisioning UG-202
comment UG-176
count_spec UG-136
CSA UG-205
cygwin UG-16

D
deleting jobs UG-164
display

non-running jobs UG-175

E
exclhost UG-65
exclusive UG-65
exit status

job arrays UG-154

F
file

staging UG-31

float
format UG-50

floating licenses UG-54
format

Boolean UG-49
float UG-50
size UG-50
string resource value UG-50
string_array UG-51

free UG-65
freq_spec UG-136

G
group=resource UG-65

H
here document UG-22

I
identifier UG-12
InfiniBand UG-98, UG-99
instance UG-133
instance of a standing reservation UG-133
Intel MPI

examples UG-86
interval_spec UG-136

J
ja

CSA command UG-205
job

comment UG-176
definition UG-2
dependencies UG-107
identifier UG-12
identifier syntax UG-148
submission options UG-24

job array
identifier UG-147
range UG-147
states UG-149

job arrays UG-147
exit status UG-154
prologues and epilogues UG-150

job attributes
PBS Professional 2020.1 User’s Guide UG-209

Index
setting UG-16
jobs

changing order UG-166
deleting UG-164
moving between queues UG-167
sending messages to UG-165
sending signals to UG-166

job-specific ASAP reservation UG-133
job-specific now reservation UG-133
job-specific reservation UG-133
job-specific start reservation UG-133
job-wide resource UG-51, UG-52

L
limits

resource usage UG-61

M
max_walltime UG-113
min_walltime UG-113
MoM UG-2
monitoring UG-1
moving jobs between queues UG-167
MPI

Intel MPI
examples UG-86

MPICH2
examples UG-100

MPICH-MX
MPD

examples UG-93
rsh/ssh

examples UG-94
MVAPICH1 UG-98

examples UG-98
MPICH UG-89
MPICH2

examples UG-100
MPICH-MX

MPD
examples UG-93

rsh/ssh
examples UG-94

MPI-OpenMP UG-105
MVAPICH1 UG-98

examples UG-98

N
naccelerators UG-189

O
OpenMP UG-103

P
pack UG-65
Parallel Virtual Machine (PVM) UG-102
PBS environmental variables UG-149
PBS_ARRAY_ID UG-149
PBS_ARRAY_INDEX UG-149
pbs_hostn UG-4
PBS_JOBID UG-149
pbs_login UG-3
pbs_probe UG-4
pbs_python UG-3
pbs_rdel UG-3
pbs_rstat UG-3
pbs_rsub UG-3
pbs_tclsh UG-4
PBScrayhost UG-189
PBScraylabel UG-189
PBScraynid UG-189
PBScrayorder UG-189
pbsdsh UG-3
pbsfs UG-4
pbsnodes UG-4
pbs-report UG-4
per-CPU node-locked licenses UG-55
printjob UG-4
prologues and epilogues

job arrays UG-150
provision UG-199
provisioned vnode UG-199
provisioning UG-200

allowing time UG-203
and commands UG-202
AOE restrictions UG-201
host restrictions UG-200
requesting UG-202
using AOE UG-200
vnodes UG-199

PVM (Parallel Virtual Machine) UG-102

Q
qalter UG-3
qdel UG-3
qdisable UG-4
qenable UG-4
qhold UG-3, UG-118
qmgr UG-4
qmove UG-3, UG-167
qmsg UG-3, UG-165
qorder UG-3, UG-166, UG-167
qrerun UG-4
qrls UG-3, UG-118
qrun UG-4
qselect UG-3, UG-185
UG-210 PBS Professional 2020.1 User’s Guide

Index
qsig UG-3
qstart UG-4
qstat UG-3, UG-118, UG-164, UG-167, UG-170,
UG-172, UG-174
qstop UG-4
qsub UG-3
qterm UG-4
queuing UG-1

R
recurrence rule UG-136
report UG-205
requesting provisioning UG-202
reservation

advance UG-133, UG-135
degraded UG-133
deleting UG-140
instance UG-133
job-specific UG-133

ASAP UG-133
now UG-133
start UG-133

setting start time & duration UG-136
soonest occurrence UG-134
standing UG-134

instance UG-133
soonest occurrence UG-134

standing reservation UG-136
submitting jobs UG-144

reservations
time for provisioning UG-203

resource
job-wide UG-51, UG-52

Resource_List UG-24
restrictions

AOE UG-201
provisioning hosts UG-200

resv_nodes UG-133
run_count UG-25, UG-119

S
scatter UG-65
scheduler UG-2
scheduling UG-1
sequence number UG-147
server UG-2
setting job attributes UG-16
share UG-65
SIGKILL UG-166
SIGNULL UG-166
SIGTERM UG-166
size

format UG-50

soonest occurrence UG-134
stagein UG-25
stageout UG-25
standing reservation UG-134, UG-136
start reservation UG-133
states

job array UG-149
string resource value

format UG-50
string_array

format UG-51
subjob UG-147
subjob index UG-147
submitting a PBS job UG-11
syntax

identifier UG-148

T
time between reservations UG-145
tracejob UG-3

U
until_spec UG-136
user job accounting UG-205

V
vnode types UG-49
vnodes

provisioning UG-199
vscatter UG-65

W
waiting for job completion UG-120
PBS Professional 2020.1 User’s Guide UG-211

Index
UG-212 PBS Professional 2020.1 User’s Guide

Altair®

PBS Professional®

2020.1.1

Programmer’s Guide

You are reading the Altair PBS Professional 2020.1.1

Programmer’s Guide (PG)

Updated 9/30/20

Copyright © 2003-2020 Altair Engineering, Inc. All rights reserved.

ALTAIR ENGINEERING INC. Proprietary and Confidential. Contains Trade Secret Information. Not for use or disclo-
sure outside of Licensee’s organization. The software and information contained herein may only be used internally and
are provided on a non-exclusive, non-transferable basis. Licensee may not sublicense, sell, lend, assign, rent, distribute,
publicly display or publicly perform the software or other information provided herein, nor is Licensee permitted to
decompile, reverse engineer, or disassemble the software. Usage of the software and other information provided by Altair
(or its resellers) is only as explicitly stated in the applicable end user license agreement between Altair and Licensee. In
the absence of such agreement, the Altair standard end user license agreement terms shall govern.

Use of Altair’s trademarks, including but not limited to “PBS™”, “PBS Professional®”, and “PBS Pro™”, “PBS
Works™”, “PBS Control™”, “PBS Access™”, “PBS Analytics™”, “PBScloud.io™”, and Altair’s logos is subject to
Altair's trademark licensing policies. For additional information, please contact Legal@altair.com and use the wording
“PBS Trademarks” in the subject line.

For a copy of the end user license agreement(s), log in to https://secure.altair.com/UserArea/agreement.html or contact
the Altair Legal Department. For information on the terms and conditions governing third party codes included in the
Altair Software, please see the Release Notes.

This document is proprietary information of Altair Engineering, Inc.

Contact Us

For the most recent information, go to the PBS Works website, www.pbsworks.com, select "My PBS", and log in with
your site ID and password.

Altair

Altair Engineering, Inc., 1820 E. Big Beaver Road, Troy, MI 48083-2031 USA www.pbsworks.com

Sales

pbssales@altair.com 248.614.2400

Please send any questions or suggestions for improvements to agu@altair.com.

https://secure.altair.com/UserArea/agreement.html
http://www.pbsworks.com
http://www.pbsworks.com

Technical Support

Need technical support? We are available from 8am to 5pm local times:

Location Telephone e-mail

Australia +1 800 174 396 anz-pbssupport@india.altair.com

China +86 (0)21 6117 1666 pbs@altair.com.cn

France +33 (0)1 4133 0992 pbssupport@europe.altair.com

Germany +49 (0)7031 6208 22 pbssupport@europe.altair.com

India +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

Italy +39 800 905595 pbssupport@europe.altair.com

Japan +81 3 6225 5821 pbs@altairjp.co.jp

Korea +82 70 4050 9200 support@altair.co.kr

Malaysia +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

North America +1 248 614 2425 pbssupport@altair.com

Russia +49 7031 6208 22 pbssupport@europe.altair.com

Scandinavia +46 (0)46 460 2828 pbssupport@europe.altair.com

Singapore +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

South Africa +27 21 831 1500 pbssupport@europe.altair.com

South America +55 11 3884 0414 br_support@altair.com

UK +44 (0)1926 468 600 pbssupport@europe.altair.com

Contents

1 PBS Architecture 1
1.1 PBS Components . 1

2 Server Functions 5
2.1 Roles and Required Privilege . 5

2.2 Batch Server Functions . 5

2.3 Server Management . 5

2.4 Queue Management . 6

2.5 Job Management. 6

2.6 Server to Server Requests . 11

2.7 Deferred Services . 12

2.8 Resource Management . 16

2.9 Network Protocol . 16

3 Developer Headers and Libraries 19
3.1 Location of API Libraries . 19

3.2 Location of Header Files . 19

3.3 Developer Package. 19

3.4 Batch Interface Library . 20

3.5 Example Compilation Line. 20

4 Batch Interface Library (IFL) 21
4.1 Interface Library Overview . 21

4.2 Batch Library Routines . 22

5 TM Library 93
5.1 TM Library Routines . 93

6 RM Library 99
6.1 RM Library Routines . 99

7 TCL/tk Interface 103
7.1 TCL/tk API Functions . 103

8 Hooks 109
8.1 Introduction . 109

8.2 How Hooks Work. 109

8.3 Interface to Hooks . 110

9 LibAuth: Custom Authentication and Encryption Library APIs
121
PBS Professional 2020.1 Programmer’s Guide PG-v

Contents
Index 133
PG-vi PBS Professional 2020.1 Programmer’s Guide

List of APIs

4.3 pbs_alterjob 24
4.4 pbs_asyrunjob 26
4.5 pbs_confirmresv 28
4.6 pbs_connect 30
4.7 pbs_default 32
4.8 pbs_deljob 33
4.9 pbs_delresv 35
4.10 pbs_disconnect 36
4.11 pbs_geterrmsg 37
4.12 pbs_holdjob 38
4.13 pbs_locjob 39
4.14 pbs_manager 41
4.15 pbs_modify_resv 45
4.16 pbs_movejob 47
4.17 pbs_msgjob 49
4.18 pbs_orderjob 51
4.19 pbs_preempt_jobs 52
4.20 pbs_relnodesjob 54
4.21 pbs_rerunjob 55
4.22 pbs_rlsjob 56
4.23 pbs_runjob 57
4.24 pbs_selectjob 59
4.25 pbs_selstat 62
4.26 pbs_sigjob 66
4.27 pbs_statfree 68
4.28 pbs_stathost 69
4.29 pbs_statjob 71
4.30 pbs_statnode 74
4.31 pbs_statque 76
4.32 pbs_statresv 78
4.33 pbs_statrsc 80
4.34 pbs_statsched 82
4.35 pbs_statserver 84
4.36 pbs_statvnode 86
4.37 pbs_submit 88
4.38 pbs_submit_resv 90
4.39 pbs_terminate 92
5.2 tm_init, tm_nodeinfo, tm_poll, tm_notify, tm_spawn, tm_kill, tm_obit, tm_taskinfo,

tm_atnode, tm_rescinfo, tm_publish, tm_subscribe, tm_finalize, tm_attach 94
6.2 openrm, closerm, downrm, configrm, addreq, allreq, getreq, flushreq, activereq,
PBS Professional 2020.1 Programmer’s Guide PG-vii

fullresp 100
7.2 pbs_tclapi 104
8.4 pbs_module 111
8.5 pbs_stathook(3B) 117
9.1 pbs_auth_set_config 122
9.2 pbs_auth_create_ctx 123
9.3 pbs_auth_destroy_ctx 125
9.4 pbs_auth_get_userinfo 126
9.5 pbs_auth_process_handshake_data 128
9.6 pbs_auth_encrypt_data 130
9.7 pbs_auth_decrypt_data 131
PG-viii PBS Professional 2020.1 Programmer’s Guide

2

PBS Architecture

PBS is a distributed workload management system which manages and monitors the computational workload on a set of
one or more computers.

2.1 PBS Components

You can manage one or more machines using PBS. PBS consists of commands, a data service, and the following dae-
mons:

• Server daemon for central management; this daemon runs on Linux only.

• One or more scheduler daemons to schedule jobs; schedulers run on Linux only.

• Communication daemon to manage communication; this daemon also runs only on Linux.

• Job management daemon called MoM to manage each execution host; this daemon can run on Linux or Windows.

The data service runs on Linux only. Commands can run on Linux or Windows.

2.1.1 Single Execution System

If PBS is to manage a single system, all components are installed on that same system. For installation instructions, see
the PBS Professional Installation & Upgrade Guide.

The following illustration shows how communication works when PBS is on a single host in TPP mode. For more on
TPP mode, see “Communication” on page 45 in the PBS Professional Installation & Upgrade Guide.

Figure 2-1:PBS daemons on a single execution host

 All PBS components on a single host

Scheduler

MoM

ServerJobs

Commands
Kernel

Communication

Job
processes
PBS Professional 2020.1.1 Programmer’s Guide PG-1

Chapter 2 PBS Architecture
2.1.2 Single Execution System with Front End

The PBS server and default scheduler (pbs_server and pbs_sched) can run on one system and jobs can execute on
another. Job execution is managed by the MoM daemon. The following illustration shows how communication works
when the PBS server and scheduler are on a front-end system and MoM is on a separate host, in TPP mode. For more on
TPP mode, see “Communication” on page 45 in the PBS Professional Installation & Upgrade Guide.

Figure 2-2:PBS daemons on single execution system with front end

Scheduler

MoM
Server

Jobs

Kernel

Single execution host

Commands

Front-end system

Communication

Job processes
PG-2 PBS Professional 2020.1.1 Programmer’s Guide

PBS Architecture Chapter 2
2.1.3 Multiple Execution Systems

When you run PBS on several systems, normally the server (pbs_server), the scheduler (pbs_sched), and the com-
munication daemon (pbs_comm) are installed on a “front end” system, and a MoM (pbs_mom) is installed and run on
each execution host. The following diagram illustrates this for an eight-host complex in TPP mode.

Figure 2-3:Typical PBS daemon locations for multiple execution hosts

2.1.4 Server

The server process is the central focus for PBS. In our documentation, it is generally referred to as the server, the PBS
server, or by the execution name pbs_server. All commands and communication with the server are via an Internet Pro-
tocol (IP) network. The server provides core batch services such as receiving batch job requests, creating batch jobs,
modifying jobs, protecting jobs against system crashes, and sending jobs to MoM for execution. One server manages
each PBS complex.

Scheduler

MoM

Server
Jobs

 PBS
Commands

Execution Host

MoM

 Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

Communication
PBS Professional 2020.1.1 Programmer’s Guide PG-3

Chapter 2 PBS Architecture
2.1.5 Job Executor (MoM)

The Job Executor is the component that actually places the job into execution. This daemon, pbs_mom, is informally
called MoM as it is the mother of all executing jobs on that host. MoM places a job into execution when it receives a
copy of the job from the server. MoM creates a new session that is as identical to a user login session as is possible. For
example, if the user’s login shell is csh, then MoM creates a session in which .login is run as well as .cshrc.
MoM also returns the job’s output to the user. One MoM runs on each execution host (a host where PBS jobs execute).

2.1.6 Scheduler

The scheduler, pbs_sched, implements the site’s policy controlling when each job is run and on which resources. The
scheduler queries the MoMs to get the state of system resources, and queries the server to for the list of waiting jobs.
See "About Schedulers" on page 89 in the PBS Professional Administrator’s Guide.

2.1.7 Communication Daemon

The communication daemon, pbs_comm, handles communication between the other PBS daemons. For a complete
description, see section 4.5, “Inter-daemon Communication Using TPP”, on page 49.

2.1.8 Privilege

PBS recognizes separate roles and levels of privilege: Manager role is required for sensitive operations, Operator role can
perform various less-sensitive functions, and User role allows access to only the user’s own jobs. Root privilege is
required for some of the Manager operations; the combination of root privilege and Manager role is called PBS Adminis-
trator. See "Security" on page 359 in the PBS Professional Administrator’s Guide.

2.1.9 Commands

PBS provides a set of commands for submitting and managing jobs, and for managing PBS. PBS commands are
described in “PBS Commands” on page 21 of the PBS Professional Reference Guide.
PG-4 PBS Professional 2020.1.1 Programmer’s Guide

3

Server Functions

3.1 Roles and Required Privilege

PBS recognizes specific roles and levels of privilege, and these are required for some operations on PBS. For details,
see "User Roles and Required Privilege" on page 359 in the PBS Professional Administrator’s Guide.

3.2 Batch Server Functions

A batch server provides services in the following ways:

• The server provides a service at the request of a client. Clients are processes that make requests of a batch server.
The requests may ask for an action to be performed on one or more jobs, one or more queues, the server itself, etc.
Any requests that cannot be successfully completed are rejected. The reason for the rejection is returned in the reply
to the client.

• The server provides a deferred service when it detects a change in conditions that it monitors. The server may,
depending on conditions being monitored, defer a client service request until a later time. Deferred services include
file staging, sending jobs for execution, etc. See section 3.7, “Deferred Services”, on page 12.

The server also performs a number of internal bookkeeping functions.

3.3 Server Management

The following sections describe the services provided by a batch server in response to a request from a client. The
requests are grouped in the following subsections by the type of object affected by the request: server, queue, job, reser-
vation, vnode, hook, or resource. The batch requests described in this section control the functioning of the batch server.
The control is either direct as in the Shut Down request, or indirect as when server attributes are modified. For a list of
batch request codes, see “Request Codes” on page 395 of the PBS Professional Reference Guide.

3.3.1 Manage Request

The Manage request supports qmgr and other commands. For more information, see “qmgr” on page 149 of the PBS
Professional Reference Guide.

3.3.2 Server Status Request

The status of the server may be requested with a server Status request. The batch server will reject the request if the
user of the client is not authorized to query the status of the server. If the request is accepted, the server will return a
server Status Reply. See “qstat” on page 197 of the PBS Professional Reference Guide details of which server
attributes are returned to the client.
PBS Professional 2020.1.1 Programmer’s Guide PG-5

Chapter 3 Server Functions
3.3.3 Starting the PBS Server

A batch request to start a server cannot be sent to a server since the server is not running. Therefore a batch server must
be started by a process local to the host on which the server is to run. For how to start the server, see “Server: Starting,
Stopping, Restarting” on page 163 in the PBS Professional Installation & Upgrade Guide.

The server recovers the state of managed objects, such as queues and jobs, from the information last recorded by the
server. The.treatment of jobs which were in the running state when the server previously shut down is dictated by the
start up mode; see “pbs_server” on page 108 of the PBS Professional Reference Guide.

3.3.4 Stopping the PBS Server

The batch server is "shut down" when it no longer responds to requests from clients and does not perform deferred ser-
vices. The batch server is requested to shut down by sending it a server Shutdown request. The server will reject the
request from a client not authorized to shut down the server. When the server accepts a shut down request, it will termi-
nate in the manner described in “qterm” on page 233 of the PBS Professional Reference Guide. When shutting down,
the server must record the state of all managed objects (jobs, queues, etc.) in non-volatile memory. Jobs which were run-
ning will be marked in the secondary state field for possible special treatment when the server is restarted. If checkpoint
is supported, any job running at the time of the shut down request whose Checkpoint attribute is not n, will be check-
pointed. This includes jobs whose Checkpoint attribute value is “unspecified”, a value of u. If the server receives
either a SIGTERM or a SIGSHUTDN signal, the server will act as if it had received a shut down immediate request.

3.4 Queue Management

The following client requests operate on the queues managed by the server.

3.4.1 Queue Status Request

The status of a queue at the server may be requested with a Queue Status request. The batch server requires that the
following conditions are true:

• The user of the client is authorized to query the status of the designated queue

• The specified queue exists on the server

If the request does not specify a queue, status of all the queues at the server will be returned. When the request is
accepted, the server will return a Queue Status Reply. See“qstat” on page 197 of the PBS Professional Reference
Guide for details of which queue attributes are returned to the client.

3.5 Job Management

The following client requests operate on jobs managed by the server. These requests do not require any special privilege
except when the job for which the request is issued is not owned by the user making the request.
PG-6 PBS Professional 2020.1.1 Programmer’s Guide

Server Functions Chapter 3
3.5.1 Queue Job Request

A Queue Job request consists of several subrequests: Initiate Job Transfer, Job Data, Job Script, and Commit. The
end result of a successful Queue Job request is an additional job being managed by the server. The job may have been
created by the request or it may have been moved from another server. After the successful request, the job resides in a
queue managed by the server. When a queue is not specified in the request, the job is placed in the default queue. The
administrator can specify the default queue. We call the queue where the job ends up the target queue. The batch server
requires that the following conditions are true:

• The client is authorized to create a job in the target queue

• The target queue exists at the server.

• The target queue is enabled.

• If the target queue is an execution queue, no resource requirement of the job exceeds the limits set for the queue

• If the target queue is an execution queue, all resources requested by the job are recognized

• The job requires access to a user identifier that the client is authorized to access

When a job is placed in an execution queue, it is put in the queued state unless one of the following conditions applies:

• The job has an Execution_Time attribute that specifies a time in the future and the Hold_Types attribute has value
of no hold, in which case the job is placed in the waiting state

• The job has a Hold_Types attribute with a value other than no hold, in which case the job is placed in the held state.

When a job is placed in a routing queue, its state may change based on the conditions described in section 3.7.4, “Job
Routing”, on page 15.

A server that accepts a Queue Job request for a new job will do the following:

• Add the PBS_O_QUEUE variable to the Variable_List attribute of the job and set the value to the name of the tar-
get queue

• Add the PBS_JOBID variable to the Variable_List attribute of the job and set the value to the job identifier
assigned to the job

• Add the PBS_JOBNAME variable to the Variable_List attribute of the job and set the value to the value of the
Job_Name attribute of the job

When the server accepts a Queue Job request for an existing job, the server will send a Track Job request to the server
which created the job.

3.5.2 Job Credential Request

The Job Credential sub-request is part of the Queue Job request. This sub-request transfers a copy of the credential
provided by the authentication facility explained below.

3.5.3 Job Script Request

The Job Script sub-request is part of the Queue Job request. This sub-request passes a block of the job script file to
the receiving server. The script is broken into blocks to prevent having to hold the entire script in memory. Multiple
Job Script sub-requests may be required to transfer the script file.

3.5.4 Commit Request

The Commit sub-request is part of the Queue Job request. The Commit notifies the receiving server that all parts of
the job have been transferred and the receiving server should now assume ownership of the job. Prior to sending the
Commit, the sending client, command, or another server, is the owner.
PBS Professional 2020.1.1 Programmer’s Guide PG-7

Chapter 3 Server Functions
3.5.5 Message Job Request

A batch server can be requested to write a string of characters to one or both output streams of an executing job. This
request is primarily used by an operator to record a message for the user. The batch server will accept a Message Job
request if all of the following conditions are true:

• The specified job is in the running state

• The user of the client is authorized to post a message to the designated job

• The specified job is owned by the server

When the server accepts the Message Job request, it will forward the request to the primary MoM for the job. Upon
receiving the Message Job request from the server, the MoM will append the message string, followed by a newline
character, to the file or files indicated. If no file is indicated, the message will be written to the standard error of the job.

3.5.6 Locate Job Request

A client may ask a server to return the location of a job that was created by or is owned by the server. When the server
accepts the Locate Job request, it returns a Locate Reply. The request will be accepted if all of the following condi-
tions are true:

• The server owns (manages) the job

• The server created the job

• The server is maintaining a record of the current location of the job

3.5.7 Delete Job Request

A Delete Job request asks a server to remove a job from the queue in which it exists and not place it elsewhere. The
batch server will accept a Delete Job request if all of the following conditions are true:

• The user of the client is authorized to delete the designated job.

• The designated job is owned by the server.

• The designated job is in an eligible state. Eligible states are queued, held, waiting, running, and transiting.

If the job is in the running state, the server will forward the Delete Job request to the primary MoM responsible for the
job. The MoM daemon will first send a SIGTERM signal to the job process group. After a delay specified by the
delete request, or if not specified, the kill_delay queue attribute, the MoM will send a SIGKILL signal to the job process
group. The job is then placed into the exiting state. Option arguments exist to specify the delay in seconds between the
SIGTERM and SIGKILL signals, as well as to force the deletion of the job even if the node it is running on is not
responding.

3.5.8 Modify Job Request

A batch client makes a Modify Job request to the server to alter the attributes of a job. The batch server will accept a
Modify Job request if all of the following conditions are true:

• The user of the client is authorized to make the requested modification to the job.

• The designated job is owned by the server.

• The requested modification is consistent with the state of the job.

• A requested resource change would not exceed the limits of the queue or server.

• An recognized resource is requested for a job in an execution queue.
PG-8 PBS Professional 2020.1.1 Programmer’s Guide

Server Functions Chapter 3
When the batch server accepts a Modify Job request, it will modify all the specified attributes of the job. When the
batch server rejects a Modify Job request, it will modify none of the attributes of the job.

3.5.9 Run Job Request

The Run Job request directs the server to place the specified job into immediate execution. The request is issued by a
qrun command or by the PBS job scheduler.

3.5.10 Rerun Job Request

To rerun a job is to kill the members of the session (process) group of the job and leave the job in the execution queue. If
the Hold_Types attribute is not NONE , the job is eligible to be re-scheduled for execution. The server will accept the
Rerun Job request if all of the following conditions are true:

• The user of the client is authorized to rerun the designated job

• The Rerunable attribute of the job is set to True

• The job is in the running state

• The server owns the job

When the server accepts the Rerun Job request, the request will be forwarded to the primary MoM responsible for the
job, who will then perform the following actions:

1. Send a SIGKILL signal to the session (process) group of the job

2. Send an OBIT notice to the server with resource usage information

3. The server will then requeue the job in the execution queue in which it was executing

If the Hold_Types attribute is not NONE, the job will be placed in the held state. If the execution_time attribute is a
future time, the job will be placed in the waiting state. Otherwise, the job is.placed in the queued state.

3.5.11 Hold Job Request

A client can request that one or more holds be applied to a job. The batch server will accept a Hold Job request if all of
the following conditions are true:

• The user of the client is authorized to add any of the specified holds

• The batch server manages the specified job

When the server accepts the Hold Job request, it will add each specified hold which is not already present to the value of
the Hold_Types attribute of the job. If the job is in the queued or waiting state, it is placed in the held state.

If the job is in running state:

If checkpoint / restart is supported by the host system, placing a hold on a running job will cause:

a. The job is checkpointed

b. The resources assigned to the job will be released

c. The job is placed in the held state in the execution queue.

If checkpoint / restart is not supported, the server will only set the requested hold type(s). This will have no effect
unless the job is rerun or restarted.
PBS Professional 2020.1.1 Programmer’s Guide PG-9

Chapter 3 Server Functions
3.5.12 Release Job Request

A client can request that one or more holds be removed from a job. A batch server accepts a Release Job request if all
of the following conditions are true:

• The user of the client is authorized to add (remove) any of the specified holds.

• The batch server manages the specified job.

When the server accepts the Release Job request, it will remove each specified type of hold from the value of the
Hold_Types attribute of the job. Normally, the job will then be placed in the queued state, unless another hold type is
remaining on the job. However, if all holds have been removed, but the Execution_Time attribute specifies a time in
the future, the job is placed in the waiting state.

3.5.13 Move Job Request

A client can request a server to move a job to a new destination. The batch server will accept a Move Job request if all
of the following conditions are true:

• The user of the client is authorized to remove the designated job from the queue in which the job resides

• The user of the client is authorized to submit a job to the new destination

• The designated job is owned by the server

• The designated job is in the queued, held, or waiting state

• The new destination is enabled

• The new destination is accessible. When the server accepts a Move Job request, it will

• Queue the designated job at the new destination.

• Remove the job from the current queue.

If the destination exists at a different server, the current server will transfer the job to the new server by sending a Queue

Job request sequence to the target server. The server will ensure that a job is neither lost nor duplicated.

3.5.14 Select Jobs Request

A client is able to request from the server a list of jobs owned by that server that match a list of selection criteria. The
request is a Select Jobs request. All the jobs owned by the server and which the user is authorized to query are initially
eligible for selection. Job attribute and resource relationships listed in the request restrict the selection of jobs. Only
jobs which have attributes and resources that meet the specified criteria will be selected. The server will reject the
request if the queue portion of a specified destination does not exist on the server. When the request is accepted, the
server will return a Select Reply containing a list of zero or more jobs that met the selection criteria.

3.5.15 Signal Job Request

A batch client is able to request that the server signal the session (process) group of a job. Such a request is called a Sig-

nal Job request. The batch server will accept a Signal Job request if all of the following conditions are true:

• The user of the client is authorized to signal the job

• The job is in the running state, except for the special signal “resume” when the job must be in the Suspended state

• The server owns the designated job

• The requested signal is supported by the host operating system. (The kill system call returns [EINVAL].)

When the server accepts a request to signal a job, it will forward the request to the primary MoM daemon responsible for
the job, who will then send the signal requested by the client to the all processes in the job’s session.
PG-10 PBS Professional 2020.1.1 Programmer’s Guide

Server Functions Chapter 3
3.5.16 Status Job Request

The status of a job or set of jobs at a destination may be requested with a Status Job request. The batch server will
accept a Status Job request if all of the following conditions are true:

• The user of the client is authorized to query the status of the designated job

• The designated job is owned by the server

When the server accepts the request, it will return a Job Status message to the client. See the qstat command for
details of which job attributes are returned to the client. If the request specifies a job identifier, status will be returned
only for that job. If the request specifies a destination identifier, status will be returned for all jobs residing within the
specified queue that the user is authorized to query.

3.6 Server to Server Requests

Server to server requests are a special category of client requests. They are only issued to a server by another server.

3.6.1 Track Job Request

A client that wishes to request an action be performed on a job must send a batch request to the server that currently man-
ages the job.

As jobs are routed or moved through the batch network, finding the location of the job can be difficult without a tracking
service. The Track Job request forms the basis for this service.

A server that queues a job sends a track job request to the server which created the job.

Additional backup location servers may be defined.

A server that receives a track job request records the information contained therein.

This information is made available in response to a Locate Job request.

3.6.2 Job Dependency

PBS supports job dependencies. A job, the “child”, can be declared to be dependent on one or more jobs, the “parents”.
A parent may have any number of children. The dependency is specified as an attribute via the qsub command with the
-W depend=<dependency list> option.

See “qsub” on page 213 of the PBS Professional Reference Guide for the complete specification of the dependency list,
and "Using Job Dependencies", on page 107 of the PBS Professional User’s Guide for how to use them.

When a server queues a job with a dependency type of after, afterok, afternotok, or afterany in an execution queue, the
server will send a Register Dependent Job request to the server managing the job specified by the associated job iden-
tifier. The request will specify that the server is to register the dependency. This actually creates a corresponding
before type dependency attribute entry on the parent (e.g. run job X before job Y). If the request is rejected because the
parent job does not exist, the child job is aborted. If the request is accepted, a system hold is placed on the child job.
When a parent job with any of the before... types of dependency reaches the required state, starts, or terminates, the
server executing the parent job sends a Register Dependent Job request to the server managing the child job directing
it to release the child job. If there are no other dependencies on other jobs, the system hold on the child job is removed.
When a child job is submitted with an on dependency and the parent is submitted with any of the before... types of
dependencies, the parent will register with the child. This causes the on dependency count to be reduced and a corre-
PBS Professional 2020.1.1 Programmer’s Guide PG-11

Chapter 3 Server Functions
sponding after... dependency to be created for the child job. The result is a pairing between corresponding before...

and after... dependency types. If the parent job terminates so that the child is not released, it is up to the user to correct
the situation by either deleting the child job or by correcting the problem with the parent job and resubmitting it. If the
parent job is resubmitted, it must have a dependency type of before, beforeok, beforenotok, or beforeany specified to
connect it to the waiting child job.

3.7 Deferred Services

The PBS server uses an internal mechanism of deferred services to handle some work asynchronously.

Servers use deferred services for these job-related tasks:

• File staging

• Job selection

• Job initiation

• Job routing

• Job exit

• Job abort

• Rerunning jobs after a server restart

The following rules apply to deferred services used for jobs:

• If the server cannot complete a deferred service for a reason which is permanent, the job is aborted

• If the service cannot be completed at the current time but may be completed later, the service is retried a finite num-
ber of times

3.7.1 Job Scheduling

If a scheduler’s scheduling attribute is True, the server requests scheduling cycles for that scheduler.

A scheduler runs in a loop. Inside each loop, it starts up, performs all of its work, and then stops. The scheduling cycle
is triggered by a timer and by several possible events.

When there are no events to trigger the scheduling cycle, it is started by a timer. The time between starts is set in each
scheduler’s scheduler_iteration server attribute. The default value is 10 minutes.

The maximum duration of the cycle is set in each scheduler’s sched_cycle_length attribute. A scheduler will terminate
its cycle if the duration of the cycle exceeds the value of the attribute. The default value for the length of the scheduling
cycle is 20 minutes. A scheduler does not include the time it takes to query dynamic resources in its cycle measurement.
PG-12 PBS Professional 2020.1.1 Programmer’s Guide

Server Functions Chapter 3
3.7.1.1 Triggers for Scheduling Cycle

A scheduler starts when the following happen:

• The specified amount of time has passed since the previous start

• A job is submitted

• A job finishes execution.

• A new reservation is created

• A reservation starts

• Scheduling is enabled

• The server comes up

• A job is qrun

• A queue is started

• A job is moved to a local queue

• Eligible wait time for jobs is enabled

• A reservation is re-confirmed after being degraded

• A hook restarts the scheduling cycle

While a request for a scheduling cycle is outstanding, the connection to the scheduler is open, and the server will not
make another request of the scheduler. If the scheduler scheduling attribute is False, the server will not contact the
scheduler.

3.7.2 File Staging

PBS provides staging in before execution and staging out after execution. These services are requested via the -W
option, which sets the stagein and stageout job attributes. The attributes specify the files to be staged:

-W stagein=<execution path>@<input file storage host>:<input file storage path>[,...]

-W stageout=<execution path>@<output file storage host>:<output file storage path>[,...]

The name execution path is the name of the file in the job’s staging and execution directory (on the execution host). The
execution path can be relative to the job’s staging and execution directory, or it can be an absolute path.

The ‘@’ character separates the execution specification from the storage specification.

The name storage path is the file name on the host specified by storage host. For stagein, this is the location where the
input files come from. For stageout, this is where the output files end up when the job is done. The user must specify a
hostname. The name can be absolute, or it can be relative to your home directory on the machine named storage host.

For stagein, the direction of travel is from storage path to execution path.

For stageout, the direction of travel is from execution path to storage path.

A request to stage in a file tells the server to direct MoM to copy a file from the storage location to the execution location.
The user must have authority to access the file under the same username under which the job will be run. The storage
file is not modified or destroyed. The file will be available before the job is initiated. If a file cannot be staged in for
any reason, any files which were staged in are deleted and the job is placed in the wait state and mail is sent to the job
owner.

A request to stage out a file tells the server to direct MoM to move a file from the execution location to the storage loca-
tion. This service is performed after the job has completed execution and regardless of job exit status. If a file cannot
be moved, mail is sent to the job owner. If a file is successfully staged out, the local file is deleted.

For file copy mechanism information, see "Setting File Transfer Mechanism" on page 549 in the PBS Professional
Administrator’s Guide.
PBS Professional 2020.1.1 Programmer’s Guide PG-13

Chapter 3 Server Functions
3.7.3 Job Start

The server receives Run Job requests from a PBS scheduler and the qrun command. If a request is authenticated, the
server forwards the Run Job request to the primary MoM for the job; the primary MoM is chosen by the scheduler or
specified in the Run Job request.

See the sequence of events in "Sequence of Events for Start of Job" on page 516 in the PBS Professional Administrator’s
Guide.

The primary MoM creates a session leader that runs the shell program specified in the job’s Shell_Path_List attribute.

The pathname of the script and any script arguments are passed as parameters to the shell. If the pathname of the shell is
relative, the MoM searches its execution path, $PATH, for the shell. If the pathname of the shell is omitted or is the null
string, the MoM uses the login shell for the job owner.

The MoM determines the job owner using the following rules:

1. Choose the username in the User_List job attribute whose hostname matches the execution host.

2. Choose the username in the User_List job attribute which has no associated hostname.

3. Use the username from the Job_Owner job attribute.

The MoM creates and sets the following environment variables in the environment of the session leader of the job:

• PBS_ENVIRONMENT; value set to the string “PBS_BATCH”

• PBS_QUEUE; value set to the name of the execution queue

PBS provides each job with environment variables where the job runs. PBS takes some from the submission environ-
ment, and creates others. Job submitters can create environment variables for their jobs. The environment variables
created by PBS begin with “PBS_”. The environment variables that PBS takes from the job submission environment
begin with “PBS_O_”.

For example, here are a few of the environment variables that accompany a job submitted by user1, with typical values:

PBS_O_HOME=/u/user1

PBS_O_LOGNAME=user1

PBS_O_PATH=/usr/bin:/usr/local/bin:/bin

PBS_O_SHELL=/bin/tcsh

PBS_O_HOST=host1

PBS_O_WORKDIR=/u/user1

PBS_JOBID=16386.server1

For a complete list of PBS environment variables, “PBS Environment Variables” on page 399 of the PBS Professional
Reference Guide.

The MoM puts all of the variables found in the job’s Variable_List attribute, with their corresponding values, into the
environment of the job’s session leader.

The MoM places the specified limits on host-level resources.

If the job has been run before and is now being rerun, the MoM will ensure that the standard output and standard error
streams of the job are appended to the prior streams, if any.

If the MoM and host system support accounting, the MoM will use the value of the Account_Name job attribute as
required by the host system.
PG-14 PBS Professional 2020.1.1 Programmer’s Guide

Server Functions Chapter 3
If the MoM and host system support checkpoint, the MoM will set up checkpointing of the job according to the value of
the Checkpoint job attribute. If checkpoint is supported and the Checkpoint attribute requests checkpointing at the
minimum interval or at an interval less than the minimum interval for the queue, then checkpoint will be set for an inter-
val given by the queue attribute checkpoint_min.

The MoM will set up the standard output stream and the standard error stream of the job according to the table labeled
"How k, sandbox, o, and e Options to qsub Affect stdout and stderr", on page 41 of the PBS Professional User’s Guide.

3.7.4 Job Routing

The PBS server performs all job routing tasks. Job routing is described in "Routing Queues" on page 25 in the PBS Pro-
fessional Administrator’s Guide.

If the routing destination is at another server, the current server uses a Queue Job request to move the job to the new
destination.

3.7.5 Job Exit

When the session leader of a batch job exits, the MoM will perform the following actions in the order listed:

• Place the job in the exiting state.

• Manage the output and error streams of the job, according to "How k, sandbox, o, and e Options to qsub Affect std-
out and stderr", on page 41 of the PBS Professional User’s Guide.

• If the Mail_Points job attribute contains the value e (EXIT), the server will send mail to the users listed in the
Mail_Users job attribute.

• Files are staged out

• Frees the resources allocated to the job. The actual releasing of resources assigned to the processes of the job is per-
formed by the kernel. PBS will free the resources which it reserved for the job by decrementing the resources_used
generic data item for the queue and server.

• The job will be removed from the execution queue.

3.7.6 Aborting Job

If the server aborts a job and the Mail_Points job attribute contains the value a (ABORT), the server will send mail to
the users listed in the Mail_Users job attribute. The mail message will contain the reason the job was aborted.

3.7.7 Timed Events

The server performs certain events at a specified time or after a specified time delay. Examples:

• A job may have its Execution_Time attribute set to a time in the future. When that time is reached, the job state is
updated.

• If the server is unable to make connection with another server, it is to retry after a time specified by the routing queue
attribute route_retry_time.

3.7.8 Event Logging

The PBS server maintains an event logfile, the format and contents of which are documented in "Event Logging" on page
536 in the PBS Professional Administrator’s Guide.
PBS Professional 2020.1.1 Programmer’s Guide PG-15

Chapter 3 Server Functions
3.7.9 Accounting

The PBS server maintains an accounting file, the format and contents of which are documented in "Accounting" on page
607 in the PBS Professional Administrator’s Guide.

3.8 Resource Management

PBS performs resource allocation at job initiation in two ways depending on the support provided by the host system.
Resources are either reservable or non reservable.

3.8.1 Resource Limits

A job submitter can specify limits for resources used by their job, by requesting those amounts. If the job exceeds those
limits, it is aborted. The administrator can specify default limits for resource use by jobs. Defaults are specified at the
server and at queues. Defaults are applied when limits are not specified by the submitter. The administrator can also
use hooks to set resource requests, and thereby limits, in whatever way is useful. See "Allocating Default Resources to
Jobs" on page 247 in the PBS Professional Administrator’s Guide and the PBS Professional Plugins (Hooks) Guide.

If the submitter does not specify a limit for a resource and there is no default, the job can use an unlimited amount of the
resource.

3.8.2 Resource Names

For additional information, see “List of Built-in Resources” on page 259 of the PBS Professional Reference Guide where
all resource names are documented.

3.9 Network Protocol

The PBS system fits into a client - server model, with a batch client making a request of a batch server and the server
replying. This client - server communication necessitates an interprocess communication method and a data exchange
(data encoding) format. Since the client and server may reside on different systems, the interprocess communication
must be supportable over a network.

While the basic PBS system fits nicely into the client - server model, it also has aspects of a transaction system. When
jobs are being moved between servers, it is critical that the jobs are not lost or replicated. Updates to a batch job must be
applied once and only once. Thus the operation must be atomic. Most of the client to server requests consist of a single
message. Treating these requests as an atomic operation is simple. One request, "Queue Job", is more complex and
involves several messages, or subrequests, between the client and the server. Any of these subrequests might be rejected
by the server. It is important that either side of the connection be able to abort the request (transaction) without losing or
replicating the job. The network connection also might be lost during the request. Recovery from a partially transmitted
request sequence is critical. The sequence of recovery from lost connections is discussed in the Queue Job Request
description.

The batch system data exchange protocol must be built on top of a reliable stream connection protocol. PBS uses TCP/IP
and the socket interface to the network. Either the Simple Network Interface, SNI, or the Detailed Network Interface,
DNI, as specified by POSIX.12, Protocol Independent Interfaces, could be used as a replacement.
PG-16 PBS Professional 2020.1.1 Programmer’s Guide

Server Functions Chapter 3
3.9.1 General DIS Data Encoding

The purpose of the “Data is Strings” encoding is to provide a simple, fast, small, machine-independent form for encoding
data to a character string and back again. Because data can be decoded directly into the final internal data structures, the
number of data copy operations are reduced. Data items are represented as people think of them, but preceded with a
count of the length of each data item.

For small positive integers, it is impossible to tell from the encoded data whether they came from signed or unsigned
chars, shorts, ints, or longs. Similarly, for small negative numbers, the only thing that can be determined from the
encoded data is that the source datum was not unsigned. It is impossible to tell the word size of the encoding machine, or
whether it uses 2’s complement, one’s complement or sign - magnitude representation, or.even if it uses binary arith-
metic. All of the basic C data types are handled. Signed and unsigned chars, shorts, ints, longs produce integers. NULL-
terminated and counted strings produce counted strings (with the terminating NULL removed). Floats, doubles, and long
doubles produce real numbers. Complex data must be built up from the basic types. Note that there is no type tagging,
so the type and sequence of data to be decoded must be known in advance.
PBS Professional 2020.1.1 Programmer’s Guide PG-17

Chapter 3 Server Functions
PG-18 PBS Professional 2020.1.1 Programmer’s Guide

4

Developer Headers and

Libraries

4.1 Location of API Libraries

All of the libraries containing the PBS API are installed by default in $PBS_EXEC/lib/.

4.2 Location of Header Files

Header files used by your code are found in $PBS_EXEC/include.

4.3 Developer Package

We provide a development package as an RPM package. The files in this package are useful only for developing and
compiling software that interfaces with PBS. They are not required to run PBS.

The development package is named pbspro-devel and contains the following headers and libraries:

/opt/pbs/include/pbs_error.h

/opt/pbs/include/pbs_ifl.h

/opt/pbs/include/rm.h

/opt/pbs/include/tm.h

/opt/pbs/include/tm_.h

/opt/pbs/lib/libattr.a

/opt/pbs/lib/liblog.a

/opt/pbs/lib/libnet.a

/opt/pbs/lib/libpbs.a

/opt/pbs/lib/libpbs_sched.a

/opt/pbs/lib/libsite.a

These files were previously in the pbspro-server, pbspro-client and pbspro-execution packages.

The pbspro-devel package also contains the README file, like the other PBS Professional RPM packages:

/usr/share/doc/pbspro-devel-19.0.0/README.md

You can install the pbspro-devel package separately from the other PBS packages. This package does not conflict with
other PBS packages.
PBS Professional 2020.1.1 Programmer’s Guide PG-19

Chapter 4 Developer Headers and Libraries
4.4 Batch Interface Library

The primary external application programming interface to PBS is the Batch Interface Library, or IFL. This library pro-
vides all of the batch service requests used for PBS. The IFL provides a user-callable function corresponding to each
batch client command in PBS Professional. Each command generates its own batch service request. You request service
from a batch server by calling the appropriate library routine and passing it the required arguments.

The user-callable routines are declared in the header file PBS_ifl.h.

We describe the Batch Interface Library in section , “Batch Interface Library (IFL)”, on page 21.

4.4.1 Error Codes

Error codes are available in the header file PBS_error.h.

4.4.2 Windows Requirement

To use pbs_connect() with Windows, initialize the network library and link with winsock2. Call winsock_init()
before calling pbs_connect(), and link against the ws2_32.lib library.

4.5 Example Compilation Line

A compile command might look like the following:

cc mycode.c -I/usr/pbs/include -L/usr/pbs/lib -lpbs
PG-20 PBS Professional 2020.1.1 Programmer’s Guide

5

Batch Interface Library (IFL)

You can use the commands in this library to build your new batch clients. For example, you can customize your job sta-
tus display instead of using qstat, build new control commands, or use these commands to build jobs that can get their
own status or spawn new jobs.

5.1 Interface Library Overview

The primary external application programming interface to PBS is the Batch Interface Library, or IFL. This library pro-
vides all of the batch service requests used for PBS. The IFL provides a user-callable function corresponding to each
batch client command in PBS Professional. Each command generates its own batch service request. You request service
from a batch server by calling the appropriate library routine and passing it the required arguments.

The user-callable routines are declared in the header file PBS_ifl.h.

Error codes are available in the header file PBS_error.h.

5.1.1 Connection to Server

We provide network connection management routines to be used with our API commands.

You open a connection with a batch server via a call to pbs_connect(), which returns a connection handle to the
desired server. You can open multiple connections, and you can use each connection for multiple service requests.

When you are finished using a connection to the server, close it via a call to pbs_disconnect().

5.1.2 Authentication

Before it establishes a connection, pbs_connect() fork()s and exec()s a pbs_iff process. The pbs_iff
process provides a credential which validates the user’s identity, and prevents a user from spoofing another user’s iden-
tity. This credential is included in each batch request sent to the server, and consists of the following:

• The user's name from the password file based on running pbs_iff's "real uid" value

• The unprivileged, client-side port value associated with the original pbs_connect() request message to the
server.

The server checks the entries in its connection table for a matching entry which is not yet marked authenticated. The
server requires that the matching entry came from a privileged, remote-end, port value.
PBS Professional 2020.1.1 Programmer’s Guide PG-21

Chapter 5 Batch Interface Library (IFL)

5.1.3 Windows Requirement

To use pbs_connect() with Windows, initialize the network library and link with winsock2. Call winsock_init()
before calling pbs_connect(), and link against the ws2_32.lib library.

5.2 Batch Library Routines

4.3 pbs_alterjob . 24
4.4 pbs_asyrunjob . 26
4.5 pbs_confirmresv . 28
4.6 pbs_connect . 30
4.7 pbs_default . 32
4.8 pbs_deljob . 33
4.9 pbs_delresv . 35
4.10 pbs_disconnect . 36
4.11 pbs_geterrmsg . 37
4.12 pbs_holdjob . 38
4.13 pbs_locjob . 39
4.14 pbs_manager . 41
4.15 pbs_modify_resv . 45
4.16 pbs_movejob . 47
4.17 pbs_msgjob . 49
4.18 pbs_orderjob . 51

Client

pbs_connect()

any port

pbs_iff

reserved port

pbs_server

1. connect

2. local port number

3. local port, user, host

4. ACK

5. request
6. reply

Figure 4-1: Interface Between Client, IFF, and Server
PG-22 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
4.19 pbs_preempt_jobs . 52
4.20 pbs_relnodesjob. 54
4.21 pbs_rerunjob . 55
4.22 pbs_rlsjob . 56
4.23 pbs_runjob . 57
4.24 pbs_selectjob . 59
4.25 pbs_selstat . 62
4.26 pbs_sigjob . 66
4.27 pbs_statfree . 68
4.28 pbs_stathost . 69
4.29 pbs_statjob. 71
4.30 pbs_statnode . 74
4.31 pbs_statque . 76
4.32 pbs_statresv . 78
4.33 pbs_statrsc . 80
4.34 pbs_statsched. 82
4.35 pbs_statserver . 84
4.36 pbs_statvnode . 86
4.37 pbs_submit. 88
4.38 pbs_submit_resv . 90
4.39 pbs_terminate . 92
PBS Professional 2020.1.1 Programmer’s Guide PG-23

Chapter 5 Batch Interface Library (IFL)
5.3 pbs_alterjob

alter a PBS batch job

5.3.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_alterjob(int connect, char *jobID, struct attropl *change_list, char *extend)

5.3.2 Description

Issues a batch request to alter a batch job.

This command generates a Modify Job (11) batch request and sends it to the server over the connection specified by
connect.

Job state may affect which attributes can be altered. See “qalter” on page 127 of the PBS Professional Reference Guide.

5.3.3 Arguments

connect

Return value of pbs_connect(). Specifies connection over which to send batch request to server.

jobID

ID of job or job array to be altered. Format for a job:

<sequence number>.<server name>
Format for an array job:

<sequence number>[].<server name>

change_list

Pointer to a list of attributes to change. Each attribute is described in an attropl structure, defined in pbs_ifl.h
as:

struct attropl {

struct attropl *next;

char *name;

char *resource;

char *value;

enum batch_op op;

};

extend

Character string for extensions to command. Not currently used.

5.3.3.1 Members of attropl Structure

next

Points to next attribute in list. A null pointer terminates the list.
PG-24 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
name

Points to a string containing the name of the attribute.

resource

Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a pointer to a null string.

If the resource is already present in the job’s Resource_List attribute, the value is altered as specified. Other-
wise the resource is added.

value

Points to a string containing the value of the attribute or resource.

op

Defines the operation to perform on the attribute or resource. For this command, operators are SET, UNSET,
INCR, DECR.

5.3.4 Return Value

The routine returns 0 (zero) on success.

If an error occurred, the routine returns a non-zero exit value, and the error number is available in the global integer
pbs_errno.

5.3.5 See Also

qalter, qhold, qrls, qsub, pbs_connect, pbs_holdjob, pbs_rlsjob
PBS Professional 2020.1.1 Programmer’s Guide PG-25

Chapter 5 Batch Interface Library (IFL)
5.4 pbs_asyrunjob

run an asynchronous PBS batch job

5.4.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_asyrunjob(int connect, char *jobID, char *location, char *extend)

5.4.2 Description

Issues a batch request to run a batch job.

Generates an Asynchronous Run Job (23) request and sends it to the server over the connection specified by connect.

The server validates the request and replies before initiating the execution of the job.

You can use this version of the call to reduce latency in scheduling, especially when the scheduler must start a large num-
ber of jobs.

5.4.3 Required Privilege

You must have Manager or Operator privilege to use this command.

5.4.4 Arguments

connect

Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

jobID

ID of job to be run.

Format for a job:

<sequence number>.<server name>
Format for a job array:

<sequence number>[].<server name>

location

Location where job should run, and optionally resources to use. Same as qrun -H:

-H <vnode specification without resources>
The vnode specification without resources has this format:

(<vchunk>)[+(<vchunk>) ...]
where vchunk has the format

<vnode name>[+<vnode name> ...]
Example:

-H (VnodeA+VnodeB)+(VnodeC)
PG-26 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
PBS applies one requested chunk from the job’s selection directive in round-robin fashion to each vchunk in
the list. Each vchunk must be sufficient to run the job’s corresponding chunk, otherwise the job may not
execute correctly.

-H <vnode specification with resources>
The vnode specification with resources has this format:

(<vchunk>)[+(<vchunk>) ...]
where vchunk has the format

<vnode name>:<vnode resources>[+<vnode name>:<vnode resources> ...]
and where vnode resources has the format

<resource name>=<value>[:<resource name>=<value> ...]
Example:

-H (VnodeA:mem=100kb:ncpus=1) +(VnodeB:mem=100kb:ncpus=2+VnodeC:mem=100kb)

PBS creates a new selection directive from the vnode specification with resources, using it instead of the
original specification from the user. Any single resource specification results in the job’s original selection
directive being ignored. Each vchunk must be sufficient to run the job’s corresponding chunk, otherwise
the job may not execute correctly.

If the job being run requests -l place=exclhost, take extra care to satisfy the exclhost request.
Make sure that if any vnodes are from a multi-vnoded host, all vnodes from that host are allocated. Other-
wise those vnodes can be allocated to other jobs.

extend

Character string for extensions to command. Not currently used.

5.4.5 Return Value

The routine returns 0 (zero) on success.

If an error occurred, the routine returns a non-zero exit value, and the error number is available in the global integer
pbs_errno.

5.4.6 See Also

qrun, pbs_connect, pbs_runjob
PBS Professional 2020.1.1 Programmer’s Guide PG-27

Chapter 5 Batch Interface Library (IFL)
5.5 pbs_confirmresv

confirm a PBS reservation

5.5.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_confirmresv(int connect, char *reservationID, char *location, unsigned long start_time, char *extend)

5.5.2 Description

Issues a batch request to confirm a PBS advance, standing, or maintenance reservation.

This function generates a Confirm Reservation (75) batch request and sends it to the server over the connection speci-
fied by connect.

5.5.3 Arguments

connect

Return value of pbs_connect(). Specifies connection over which to send batch request to server.

reservationID

Reservation to be confirmed.

Format for advance reservation:

R<sequence number>.<server name>
Format for standing reservation:

S<sequence number>.<server name>
Format for maintenance reservation:

M<sequence number>.<server name>

location

String describing vnodes and resources to be used for reservation. Format:

(<vchunk>)[+(<vchunk>) ...]
where vchunk has the format

<vnode name>:<vnode resources>[+<vnode name>:<vnode resources> ...]
and where vnode resources has the format

<resource name>=<value>[:<resource name>=<value> ...]
Example:

-H (VnodeA:mem=100kb:ncpus=1) +(VnodeB:mem=100kb:ncpus=2+VnodeC:mem=100kb)

start_time

Unsigned long containing start time in seconds since epoch. Used only for ASAP reservations (reservations cre-
ated by using pbs_rsub -W qmove=<jobID> on an existing job).
PG-28 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
extend

Character string for specifying confirmation/non-confirmation action:

• To confirm a normal reservation, pass in PBS_RESV_CONFIRM_SUCCESS.

• To have an unconfirmed reservation deleted, pass in PBS_RESV_CONFIRM_FAIL.

• To have the scheduler set the time when it will try to reconfirm a degraded reservation, pass in
PBS_RESV_CONFIRM_FAIL.

5.5.4 Return Value

The routine returns 0 (zero) on success.

If an error occurred, the routine returns a non-zero exit value, and the error number is available in the global integer
pbs_errno.

5.5.5 See Also

pbs_rsub, pbs_connect
PBS Professional 2020.1.1 Programmer’s Guide PG-29

Chapter 5 Batch Interface Library (IFL)
5.6 pbs_connect

return a connection handle from a PBS batch server

5.6.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_connect(char *server)

5.6.2 Description

This function establishes a virtual stream (TCP/IP) connection with the specified batch server.

Returns a connection handle.

pbs_connect() determines whether or not the complex has a failover server configured. It also determines which
server is the primary and which is the secondary.

5.6.3 Arguments

server

Specifies name of server to connect to. Format:

<hostname>[:<port>]
If you do not specify a port, PBS uses the default.

If server is a null pointer or a null string, this function opens a connection to the default server. The default
server is specified in the PBS_DEFAULT environment variable or the PBS_SERVER parameter in /etc/
pbs.conf.

5.6.4 Usage

Use this function to establish a connection handle to the desired server before calling any of the other pbs_* API func-
tions. They will send their batch requests over the connection established by this function. You can send multiple
requests over one connection.

5.6.5 Cleanup

After you are done using the connection handle, close the connection via a call to pbs_disconnect().

5.6.6 Side Effects

The global variable pbs_server is declared in pbs_ifl.h. This variable is set on return to point to the server name to
which pbs_connect() connected or attempted to connect.
PG-30 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
5.6.7 Windows Requirement

In order to use pbs_connect() with Windows, initialize the network library and link with winsock2. To do this, call
winsock_init() before calling pbs_connect(), and link against the ws2_32.lib library.

5.6.8 Return Value

On success, the routine returns a connection handle which is a non-negative integer.

If an error occurred, the routine returns -1, and the error number is available in the global integer pbs_errno.

5.6.9 See Also

qsub, pbs_alterjob, pbs_deljob, pbs_disconnect, pbs_geterrmsg, pbs_holdjob, pbs_locjob, pbs_manager,
pbs_modify_resv, pbs_movejob, pbs_msgjob, pbs_rerunjob, pbs_rlsjob, pbs_runjob, pbs_selectjob, pbs_selstat,
pbs_sigjob, pbs_statjob, pbs_statque, pbs_statresv, pbs_statsched, pbs_statserver, pbs_submit, pbs_submit_resv,
pbs_terminate, pbs_server
PBS Professional 2020.1.1 Programmer’s Guide PG-31

Chapter 5 Batch Interface Library (IFL)
5.7 pbs_default

return the name of the default PBS server

5.7.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

char *pbs_default()

5.7.2 Description

Returns a pointer to a character string containing the name of the default PBS server.

The default server is specified in the PBS_DEFAULT environment variable or the PBS_SERVER parameter in /etc/
pbs.conf.

5.7.3 Return Value

On success, returns a pointer to a character string containing the name of the default PBS server. You do not need to free
the character string.

Returns null if it cannot determine the name of the default server.
PG-32 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
5.8 pbs_deljob

delete a PBS batch job

5.8.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_deljob(int connect, char *jobID, char *extend)

5.8.2 Description

Issues a batch request to delete a batch job.

This function generates a Delete Job (6) batch request and sends it to the server over the connection specified by con-

nect.

If the batch job is running, the MoM sends the SIGTERM signal followed by SIGKILL.

If the batch job is deleted by a user other than the job owner, PBS sends mail to the job owner.

5.8.3 Arguments

connect

Return value of pbs_connect(). Specifies connection over which to send batch request to server.

jobID

ID of job, job array, subjob, or range of subjobs to be deleted.

Format for a job:

<sequence number>.<server name>
Format for an array job:

<sequence number>[].<server name>
Format for a subjob:

<sequence number>[<index>][.<server name>]
Format for a range of subjobs:

<sequence number>[<first>-<last>][.<server name>]

extend

Character string for extensions to command. If the string is not null, it is appended to the message mailed to the
job owner.

5.8.4 Return Value

The routine returns 0 (zero) on success.

On error, the routine returns a non-zero exit value, and the error number is available in the global integer pbs_errno.
PBS Professional 2020.1.1 Programmer’s Guide PG-33

Chapter 5 Batch Interface Library (IFL)
5.8.5 See Also

qdel, pbs_connect
PG-34 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
5.9 pbs_delresv

delete a reservation

5.9.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_delresv(int connect, char *reservationID, char *extend)

5.9.2 Description

Issues a batch request to delete a reservation.

This function generates a Delete Reservation (72) batch request and sends it to the server over the connection specified
by connect.

If the reservation is in state RESV_RUNNING, and there are jobs in the reservation queue, those jobs are deleted before
the reservation is deleted.

5.9.3 Arguments

connect

Return value of pbs_connect(). Specifies connection over which to send batch request to server.

reservationID

Reservation to be deleted.

Format for advance reservation:

R<sequence number>.<server name>
Format for standing reservation:

S<sequence number>.<server name>
Format for maintenance reservation:

M<sequence number>.<server name>

extend

Character string for extensions to command. Not currently used.

5.9.4 Return Value

The routine returns 0 (zero) on success.

On error, the routine returns a non-zero exit value, and the error number is available in the global integer pbs_errno.

5.9.5 See Also

pbs_rdel, pbs_connect
PBS Professional 2020.1.1 Programmer’s Guide PG-35

Chapter 5 Batch Interface Library (IFL)
5.10 pbs_disconnect

disconnect from a PBS batch server

5.10.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_disconnect(int connect)

5.10.2 Description

Closes the virtual stream connection to a PBS batch server. Connection was previously returned from a call to
pbs_connect().

5.10.3 Arguments

connect

Connection handle to be closed. Return value of pbs_connect(). Specifies connection used earlier to send
batch requests to server.

5.10.4 Return Value

The routine returns 0 (zero) after successfully closing the connection.

If an error occurred, the routine returns -1, and the error number is available in the global integer pbs_errno.

5.10.5 See Also

pbs_connect
PG-36 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
5.11 pbs_geterrmsg

get error message for most recent PBS batch operation

5.11.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

char *pbs_geterrmsg(int connect)

5.11.2 Description

Returns most recent error message text associated with a batch server request.

If a preceding batch interface library call over the connection specified by connect returned an error from the server, the
server may have created an associated text message. If there is a text message, this function returns a pointer to the text
message.

5.11.3 Arguments

connect

Return value of pbs_connect(). Specifies connection handle over which to request error message from
server.

5.11.4 Return Value

If the server returned an error and created an error text string in reply to a previous batch request, this function returns a
pointer to the text string. The text string is null-terminated.

If the server does not have an error text string, this function returns a null pointer.

The text string is a global variable; you do not need to free it.

5.11.5 See Also

pbs_connect
PBS Professional 2020.1.1 Programmer’s Guide PG-37

Chapter 5 Batch Interface Library (IFL)
5.12 pbs_holdjob

place a hold on a PBS batch job

5.12.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_holdjob(int connect, char *jobID, char *hold_type, char *extend)

5.12.2 Description

Issues a batch request to place a hold on a job or job array.

This function generates a Hold Job (7) batch request sends it to the server over the connection specified by connect.

5.12.3 Arguments

connect

Return value of pbs_connect(). Specifies connection over which to send batch request to server.

jobID

ID of job which is to be held.

Format for a job:

<sequence number>.<server name>
Format for a job array:

<sequence number>[].<server name>

hold_type

Type of hold to apply to job or job array. Valid values are defined in pbs_ifl.h. If hold_type is a null pointer or
points to a null string, PBS applies a User hold to the job or job array.

extend

Character string for extensions to command. Not currently used.

5.12.4 Return Value

The routine returns 0 (zero) on success.

If an error occurred, the routine returns a non-zero exit value, and the error number is available in the global integer
pbs_errno.

5.12.5 See Also

qhold, pbs_connect, pbs_alterjob, pbs_rlsjob
PG-38 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
5.13 pbs_locjob

return current location of a PBS batch job

5.13.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

char *pbs_locjob(int connect, char *jobID, char *extend)

5.13.2 Description

Issues a batch request to locate a batch job or job array.

This function generates a Locate Job (8) batch request and sends it to the server over the connection specified by con-

nect.

If the server currently manages the batch job, or knows which server does currently manage the job, the server returns the
location of the job.

5.13.3 Arguments

connect

Return value of pbs_connect(). Specifies connection over which to send batch request to server.

jobID

ID of job to be located.

Format for a job:

<sequence number>.<server name>
Format for a job array:

<sequence number>[].<server name>

extend

Character string for extensions to command. Not currently used.

5.13.4 Cleanup

The character string returned by pbs_locjob() is allocated by pbs_locjob(). You must free it via a call to
free().

5.13.5 Return Value

On success, returns a pointer to a character string containing current location. Format:

<server name>

On failure, returns a null pointer, and the error number is available in the global integer pbs_errno.
PBS Professional 2020.1.1 Programmer’s Guide PG-39

Chapter 5 Batch Interface Library (IFL)
5.13.6 See Also

pbs_connect
PG-40 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
5.14 pbs_manager

modify a PBS batch object

5.14.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_manager(int connect, int command, int object_type, char *object_name, struct attropl *attrib_list, char *extend)

5.14.2 Description

Issues a batch request to perform administrative functions at a server.

Generates a Manager (9) batch request and sends it to the server over the connection specified by connect.

You can use this to create, delete, and set attributes of objects such as queues.

5.14.3 Required Privilege

This function requires Manager or Operator privilege depending on the operation, and root privilege when used with
hooks.

When not used with hooks:

• Functions MGR_CMD_CREATE and MGR_CMD_DELETE require PBS Manager privilege.

• Functions MGR_CMD_SET and MGR_CMD_UNSET require PBS Manager or Operator privilege.

When used with hooks:

• All commands require root privilege on the server host.

• Functions MGR_CMD_IMPORT, MGR_CMD_EXPORT, and MGR_OBJ_HOOK are used only with hooks, and
therefore require root privilege on the server host.

• Hook commands are run at the server host.

5.14.4 Arguments

connect

Return value of pbs_connect(). Specifies connection over which to send batch request to server.

command

Operation to be performed. Valid values are specified in pbs_ifl.h.

object_type

Specifies type of object on which command is to operate. Valid values are specified in pbs_ifl.h.

object_name

Name of object on which to operate.
PBS Professional 2020.1.1 Programmer’s Guide PG-41

Chapter 5 Batch Interface Library (IFL)
attrib_list

Pointer to a list of attributes to be operated on. Each attribute is described in an attropl structure, defined in
pbs_ifl.h as:

struct attropl {

struct attropl *next;

char *name;

char *resource;

char *value;

enum batch_op op;

};

extend

Character string for extensions to command. Not currently used.

5.14.4.1 Members of attropl Structure

next

Points to next attribute in list. A null pointer terminates the list.

name

Points to a string containing the name of the attribute.

resource

Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.

If the resource is already present in the object’s attribute, the value is altered as specified. Otherwise the
resource is added.

value

Points to a string containing the new value of the attribute or resource. For parameterized limit attributes, this
string contains all parameters for the attribute.

op

Defines the manner in which the new value is assigned to the attribute or resource. The operators used for this
function are SET, UNSET, INCR, DECR.
PG-42 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
5.14.5 Usage for Hooks

When importing a hook or hook configuration file:

• Set command to MGR_CMD_IMPORT

• Set object_type to SITE_HOOK (or PBS_HOOK if you are importing a configuration file for a built-in hook; you
cannot import a built-in hook)

• Set object_name to the name of the hook

• In one attropl structure:

• Set name to “content-type”

• Set value to “application/x-python” for a hook, or “application/x-config” for a configuration file

• In another attropl structure:

• Set name to “content-encoding”

• Set value to “default” or “base64”

• In a third attropl structure:

• Set name to “input-file”

• Set value to the name of the input file

• Set op to SET

When exporting a hook or hook configuration file:

• Set command to MGR_CMD_EXPORT

• Set object_type to SITE_HOOK (or PBS_HOOK if you are exporting a configuration file for a built-in hook; you
cannot export a built-in hook)

• Set object_name to the name of the hook

• In one attropl structure:

• Set name to “content-type”

• Set value to “application/x-python” for a hook, or “application/x-config” for a configuration file

• In another attropl structure:

• Set name to “content-encoding”

• Set value to “default” or “base64”

• In a third attropl structure:

• Set name to “output-file”

• Set value to the name of the output file

• Set op to SET

See the PBS Professional Hooks Guide.

5.14.6 Return Value

The routine returns 0 (zero) on success.

If an error occurred, the routine returns a non-zero exit value, and the error number is available in the global integer
pbs_errno.
PBS Professional 2020.1.1 Programmer’s Guide PG-43

Chapter 5 Batch Interface Library (IFL)
5.14.7 See Also

qmgr, pbs_connect
PG-44 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
5.15 pbs_modify_resv

modify a PBS reservation

5.15.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

char *pbs_modify_resv(int connect, char *reservationID, struct attropl *attrib_list, char *extend)

5.15.2 Description

Issues a batch request to modify a reservation.

Generates a Modify Reservation (91) batch request and sends it to the server over the connection specified by connect.

5.15.3 Arguments

connect

Return value of pbs_connect(). Specifies connection over which to send batch request to server.

reservationID

Reservation to be modified.

Format for advance reservation:

R<sequence number>.<server name>
Format for standing reservation:

S<sequence number>.<server name>

attrib_list

Pointer to a list of attributes to modify. Each attribute is described in an attropl structure, defined in pbs_ifl.h
as:

struct attropl {

struct attropl *next;

char *name;

char *resource;

char *value;

enum batch_op op;

};

For any attribute that is not specified or that is a null pointer, PBS takes the default action for that attribute. The
default action is to assign the default value or to not pass the attribute with the reservation; the action depends
on the attribute.

extend

Character string for extensions to command. Not currently used.
PBS Professional 2020.1.1 Programmer’s Guide PG-45

Chapter 5 Batch Interface Library (IFL)
5.15.3.1 Members of attropl Structure

next

Points to next attribute in list. A null pointer terminates the list.

name

Points to a string containing the name of the attribute.

resource

Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.

If the resource is already present in the reservation’s Resource_List attribute, the value is altered as specified.
Otherwise the resource is added.

value

Points to a string containing the value of the attribute or resource.

op

Operator. The only allowed operator for this function is SET.

5.15.4 Return Value

On success, returns a character string containing the reservation ID assigned by the server.

On failure, returns a null pointer, and the error number is available in the global integer pbs_errno.

5.15.5 Cleanup

The space for the reservation ID string is allocated by pbs_modify_resv().

Release the reservation ID via a call to free() when no longer needed.

5.15.6 See Also

pbs_rsub, pbs_connect
PG-46 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
5.16 pbs_movejob

move a PBS batch job to a new destination

5.16.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_movejob(int connect, char *jobID, char *destination, char *extend)

5.16.2 Description

Issues a batch request to move a job or job array to a new destination.

Generates a Move Job (12) batch request and sends it to the server over the connection specified by connect.

Moves specified job or job array from its current queue and server to the specified queue and server.

You cannot move a job in the Running, Transiting, or Exiting states.

5.16.3 Arguments

connect

Return value of pbs_connect(). Specifies connection over which to send batch request to server.

jobID

ID of job to be moved.

Format for a job:

<sequence number>.<server name>
Format for a job array:

<sequence number>[].<server name>

destination

New location for job or job array. Formats:

<queue name>@<server name>
Specified queue at specified server

<queue name>
Specified queue at default server

@<server name>
Default queue at specified server

@default
Default queue at default server

(null pointer or null string)
Default queue at default server

extend

Character string for extensions to command. Not currently used.
PBS Professional 2020.1.1 Programmer’s Guide PG-47

Chapter 5 Batch Interface Library (IFL)
5.16.4 Return Value

The routine returns 0 (zero) on success.

If an error occurred, the routine returns a non-zero exit value, and the error number is available in the global integer
pbs_errno.

5.16.5 See Also

qmove, pbs_connect
PG-48 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
5.17 pbs_msgjob

record a message for a running PBS batch job

5.17.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_msgjob(int connect, char *jobID, int file, char *message, char *extend)

5.17.2 Description

Issues a batch request to write a message in one or more output files of a batch job.

Generates a Message Job (10) batch request and sends it to the server over the connection specified by connect.

You can write a message into a job’s stdout and/or stderr files. Can be used on jobs or subjobs, but not job arrays or
ranges of subjobs.

5.17.3 Arguments

connect

Return value of pbs_connect(). Specifies connection over which to send batch request to server.

jobID

ID of job into whose output file(s) to write.

Format for a job:

<sequence number>.<server name>
Format for a subjob:

<sequence number>[<index>].<server name>

file

Indicates whether to write to stdout, stderr, or both:

1
Writes to stdout

2
Writes to stderr

3
Writes to stdout and stderr

message

Character string to be written to output file(s).

extend

Character string for extensions to command. Not currently used.

5.17.4 Return Value

The routine returns 0 (zero) on success.
PBS Professional 2020.1.1 Programmer’s Guide PG-49

Chapter 5 Batch Interface Library (IFL)
If an error occurred, the routine returns a non-zero exit value, and the error number is available in the global integer
pbs_errno.

5.17.5 See Also

qmsg, pbs_connect
PG-50 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
5.18 pbs_orderjob

swap positions of two PBS batch jobs

5.18.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_orderjob(int connect, char *jobID1, char *jobID2, char *extend)

5.18.2 Description

Issues a batch request to swap the positions of two jobs.

Generates an Order Job (50) batch request and sends it to the server over the connection specified by connect.

Can be used on jobs and job arrays. Can be used on jobs in different queues. Both jobs must be at the same server.

You cannot swap positions of jobs that are running.

5.18.3 Arguments

connect

Return value of pbs_connect(). Specifies connection over which to send batch request to server.

jobID1, jobID2

IDs of jobs to be swapped.

Format for a job:

<sequence number>.<server name>
Format for a job array:

<sequence number>[].<server name>

extend

Character string for extensions to command. Not currently used.

5.18.4 Return Value

The routine returns 0 (zero) on success.

If an error occurred, the routine returns a non-zero exit value, and the error number is available in the global integer
pbs_errno.

5.18.5 See Also

qmove, qorder, qsub, pbs_connect
PBS Professional 2020.1.1 Programmer’s Guide PG-51

Chapter 5 Batch Interface Library (IFL)
5.19 pbs_preempt_jobs

preempt a list of jobs

5.19.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

preempt_job_info *pbs_preempt_jobs(int connect, char **jobID_list)

5.19.2 Description

Sends the server a list of jobs to be preempted.

Sends a Preempt Jobs (93) batch request to the server over the connection specified by connect.

Returns a list of preempted jobs along with the method used to preempt each one.

5.19.3 Arguments

connect

Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

jobID_list

List of job IDs to be preempted, as a null-terminated array of pointers to strings.

Format for a job ID:

<sequence number>.<server name>
Format for a job array ID:

<sequence number>[].<server name>
For example:

const char *joblist[3];

joblist[0]=”123@myserver”;

joblist[1]=”456@myserver”;

joblist[2]=NULL;

5.19.4 Return Value

Returns a list of preempted jobs. Each job is represented in a preempt_job_info structure, which has the following
fields:

job_id

The job ID, in a char*

preempt_method

How the job was preempted, in a char:

S
The job was preempted using suspension.

C
The job was preempted using checkpointing.
PG-52 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
R
The job was preempted by being requeued.

D
The job was preempted by being deleted.

0 (zero)
The job could not be preempted.

5.19.5 Cleanup

You must free the list of preempted jobs by passing it directly to free().
PBS Professional 2020.1.1 Programmer’s Guide PG-53

Chapter 5 Batch Interface Library (IFL)
5.20 pbs_relnodesjob

release some or all of the non-primary-execution-host vnodes assigned to a PBS job

5.20.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_relnodesjob (int connect, char *jobID, char *vnode_list, char *extend)

5.20.2 Description

Issues a batch request to release some or all of the vnodes of a batch job.

Generates a RelnodesJob (90) batch request and sends it to the server over the connection specified by connect.

You cannot release vnodes on the primary execution host.

You can use this on jobs and subjobs, but not on job arrays or ranges of subjobs.

5.20.3 Arguments

connect

Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

jobID

ID of job or subjob whose vnodes are to be released.

Format for a job:

<sequence number>.<server name>
Format for a subjob:

<sequence number>[<index>].<server name>

vnode_list

List of vnode names separated by plus signs ("+").

If vnode_list is a null pointer, this specifies that all the vnodes assigned to the job that are not on the primary
execution host are to be released.

extend

Character string for extensions to command. Not currently used.

5.20.4 Return Value

The routine returns 0 (zero) on success.

If an error occurred, the routine returns a non-zero exit value, and the error number is available in the global integer
pbs_errno.

5.20.5 See Also

pbs_connect
PG-54 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
5.21 pbs_rerunjob

requeue a PBS batch job

5.21.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_rerunjob(int connect, char *jobID, char *extend)

5.21.2 Description

Issues a batch request to requeue a batch job, job array, subjob, or range of subjobs.

Generates a Rerun Job (14) batch request and sends it to the server over the connection specified by connect.

You cannot requeue a job that is marked as not rerunnable (the Rerunable attribute is False).

5.21.3 Arguments

connect

Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

jobID

ID of job to be requeued.

Format for a job:

<sequence number>.<server name>
Format for a job array:

<sequence number>[].<server name>
Format for a subjob:

<sequence number>[<index>].<server name>
Format for a range of subjobs:

<sequence number>[<index start>-<index end>].<server name>

extend

Character string for extensions to command. Not currently used.

5.21.4 Return Value

The routine returns 0 (zero) on success.

If an error occurred, the routine returns a non-zero exit value, and the error number is available in the global integer
pbs_errno.

5.21.5 See Also

qrerun, pbs_connect
PBS Professional 2020.1.1 Programmer’s Guide PG-55

Chapter 5 Batch Interface Library (IFL)
5.22 pbs_rlsjob

release a hold on a PBS batch job

5.22.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_rlsjob(int connect, char *jobID, char *hold_type, char *extend)

5.22.2 Description

Issues a batch request to release a hold on a job or job array.

Generates a Release Job (13) batch request and sends it to the server over the connection specified by connect.

5.22.3 Arguments

connect

Return value of pbs_connect(). Specifies connection over which to send batch request to server.

jobID

ID of job which is to have a hold released.

Format for a job:

<sequence number>.<server name>
Format for a job array:

<sequence number>[].<server name>

hold_type

Type of hold to remove from job or job array. Valid values are defined in pbs_ifl.h. If hold_type is a null
pointer or points to a null string, PBS removes a User hold from the job or job array.

extend

Character string for extensions to command. Not currently used.

5.22.4 Return Value

The routine returns 0 (zero) on success.

If an error occurred, the routine returns a non-zero exit value, and the error number is available in the global integer
pbs_errno.

5.22.5 See Also

qhold, qrls, pbs_connect, pbs_holdjob
PG-56 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
5.23 pbs_runjob

run a PBS batch job

5.23.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_runjob(int connect, char *jobID, char *location, char *extend)

5.23.2 Description

Issues a batch request to run a batch job.

Generates a Run Job (15) batch request and sends it to the server over the connection specified by connect.

If no file stagein is required, the server replies when the job has started execution. If file stagein is required, the server
replies when staging is started.

5.23.3 Required Privilege

You must have Operator or Administrator privilege to use this command.

5.23.4 Arguments

connect

Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

jobID

ID of job to run.

Format for a job:

<sequence number>.<server name>
Format for a job array:

<sequence number>[].<server name>

location

Location where job should run, and optionally resources to use. Same as qrun -H:

-H <vnode specification without resources>
The vnode specification without resources has this format:

(<vchunk>)[+(<vchunk>) ...]
where vchunk has the format

<vnode name>[+<vnode name> ...]
Example:

-H (VnodeA+VnodeB)+(VnodeC)

PBS applies one requested chunk from the job’s selection directive in round-robin fashion to each vchunk in
the list. Each vchunk must be sufficient to run the job’s corresponding chunk, otherwise the job may not
execute correctly.
PBS Professional 2020.1.1 Programmer’s Guide PG-57

Chapter 5 Batch Interface Library (IFL)
-H <vnode specification with resources>
The vnode specification with resources has this format:

(<vchunk>)[+(<vchunk>) ...]
where vchunk has the format

<vnode name>:<vnode resources>[+<vnode name>:<vnode resources> ...]
and where vnode resources has the format

<resource name>=<value>[:<resource name>=<value> ...]
Example:

-H (VnodeA:mem=100kb:ncpus=1) +(VnodeB:mem=100kb:ncpus=2+VnodeC:mem=100kb)

PBS creates a new selection directive from the vnode specification with resources, using it instead of the
original specification from the user. Any single resource specification results in the job’s original selection
directive being ignored. Each vchunk must be sufficient to run the job’s corresponding chunk, otherwise
the job may not execute correctly.

If the job being run requests -l place=exclhost, take extra care to satisfy the exclhost request.
Make sure that if any vnodes are from a multi-vnoded host, all vnodes from that host are allocated. Other-
wise those vnodes can be allocated to other jobs.

extend

Character string for extensions to command. Not currently used.

5.23.5 Return Value

The routine returns 0 (zero) on success.

If an error occurred, the routine returns a non-zero exit value, and the error number is available in the global integer
pbs_errno.

5.23.6 See Also

qrun, pbs_asyrunjob, pbs_connect
PG-58 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
5.24 pbs_selectjob

select PBS batch jobs according to specified criteria

5.24.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

char **pbs_selectjob(int connect, struct attropl *criteria_list, char *extend)

5.24.2 Description

pbs_selectjob() issues a batch request to select jobs that meet specified criteria, and returns an array of job IDs
that meet the specified criteria.

This command generates a Select Jobs (16) batch request and sends it to the server over the connection handle specified
by connect.

By default, pbs_selectjob() returns all batch jobs for which the user is authorized to query status. You filter the
jobs by specifying values for job attributes and resources. You send a linked list of attributes with associated values and
operators. Job attributes are listed in “Job Attributes” on page 328 of the PBS Professional Reference Guide.

Returns a list of jobs that meet all specified criteria.

5.24.3 Arguments

connect

Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

criteria_list

Pointer to a list of attributes to use as selection criteria. Each attribute is described in an attropl structure,
defined in pbs_ifl.h as:

struct attropl {

struct attropl *next;

char *name;

char *resource;

char *value;

enum batch_op op;

};

If criteria_list itself is null, you are not using attributes or resources as selection criteria.

extend

Character string where you can specify limits or extensions of your search.

5.24.3.1 Members of attropl Structure

next

Points to next attribute in list. A null pointer terminates the list.

name

Points to a string containing the name of the attribute.
PBS Professional 2020.1.1 Programmer’s Guide PG-59

Chapter 5 Batch Interface Library (IFL)
resource

Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.

value

Points to a string containing the value of the attribute or resource.

op

Defines the operator in the logical expression:

<existing value> <operator> <specified limit>
Jobs for which the logical expression evaluates to True are selected.

For this command, op can be EQ, NE, GE, GT, LE, LT.

5.24.4 Querying States

You can select jobs in more than one state using a single request, by listing all states you want returned. For example, to
get jobs in Held and Waiting states:

• Fill in criteria_list->name with “job_state”

• Fill in criteria_list->value with “HW” for Held and Waiting

5.24.5 Extending Your Query

You can use the following characters in the extend parameter:

T, t

Extends query to include subjobs. Job arrays are not included.

x

Extends query to include finished and moved jobs.

5.24.5.1 Querying Finished and Moved Jobs

To get information on finished or moved jobs, as well as current jobs, add an 'x' character to the extend parameter (set
one character to be the 'x' character). For example:

pbs_selectjob (..., ..., <extend characters>) ...

To get information on finished jobs only:

• Add the ‘x character to the extend parameter

• Fill in criteria_list->name with “ATTR_state”

• Fill in criteria_list->value with “FM” for Finished and Moved

Subjobs are not considered finished until the parent array job is finished.

5.24.5.2 Querying Job Arrays and Subjobs

To query only job arrays (not jobs or subjobs):

• Fill in criteria_list->name with “array”

• Fill in criteria_list->value with “True”
PG-60 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
To query only job arrays and subjobs (not jobs):

• Fill in criteria_list->name with “array”

• Fill in criteria_list->value with “True”

• Add the ‘T’ or ‘t’ character to the extend parameter

To query only jobs and subjobs (not job arrays), add the ‘T’ or ‘t’ character to the extend parameter.

5.24.6 Return Value

The return value is a pointer to a null-terminated array of character pointers. Each character pointer in the array points to
a character string which is a job ID in the form:

<sequence number>.<server>@<server>

If no jobs met the criteria, the first pointer in the array is null.

If an error occurred, the routine returns a null pointer, and the error number is available in the global integer pbs_errno.

5.24.7 Cleanup Required

The returned array of character pointers is malloc()’ed by pbs_selectjob(). When the array is no longer needed,
you must free it via a call to free().

5.24.8 See Also

pbs_alterjob, pbs_connect, qselect
PBS Professional 2020.1.1 Programmer’s Guide PG-61

Chapter 5 Batch Interface Library (IFL)
5.25 pbs_selstat

get status of selected PBS batch jobs

5.25.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

struct batch_status *pbs_selstat(int connect, struct attropl *criteria_list, struct attrl *output_attribs, char *extend)

5.25.2 Description

Issues a batch request to get the status of jobs which meet the specified criteria.

Generates a Select Status (51) batch request and sends it to the server over the connection specified by connect.

Returns a list of batch_status structures for jobs that meet the selection criteria.

This function is a combination of pbs_selectjob() and pbs_statjob().

By default this gives status for all jobs for which you are authorized to query status. You can filter the results by specify-
ing selection criteria.

5.25.3 Arguments

connect

Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

criteria_list

Pointer to a list of selection criteria, which are attributes and resources with required values. If this list is null,
you are not filtering your results via selection criteria. Each attribute or resource is described in an attropl struc-
ture, defined in pbs_ifl.h as:

struct attropl {

struct attropl *next;

char *name;

char *resource;

char *value;

enum batch_op op;

};

If criteria_list itself is null, you are not using attributes or resources as selection criteria.

output_attribs

Pointer to a list of attributes to return. If this list is null, all attributes are returned. Each attribute is described in
an attrl structure, defined in pbs_ifl.h as:

struct attrl {

char *name;

char *resource;

char *value;

struct attrl *next;

};
PG-62 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
extend

Character string where you can specify limits or extensions of your selection.

5.25.3.1 Members of attropl Structure

next

Points to next attribute in list. A null pointer terminates the list.

name

Points to a string containing the name of the attribute.

resource

Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.

value

Points to a string containing the value of the attribute or resource. For parameterized limit attributes, this string
contains all parameters for the attribute.

op

Specifies the test to be applied to the attribute or resource. The operators are EQ, NE, GE, GT, LE, LT.

5.25.3.2 Members of attrl Structure

name

Points to a string containing the name of the attribute.

resource

Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.

value

Points to a string containing the value of the attribute or resource. Should always be null.

next

Points to next attribute in list. A null pointer terminates the list.

5.25.4 Querying States

You can select jobs in more than one state using a single request, by listing all states you want returned. For example, to
get jobs in Held and Waiting states:

• Fill in criteria_list->name with “job_state”

• Fill in criteria_list->value with “HW” for Held and Waiting

5.25.5 Extending Your Query

You can use the following characters in the extend parameter:

T, t

Extends query to include subjobs. Job arrays are not included.

x

Extends query to include finished and moved jobs.
PBS Professional 2020.1.1 Programmer’s Guide PG-63

Chapter 5 Batch Interface Library (IFL)
5.25.5.1 Querying Finished and Moved Jobs

To get information on finished or moved jobs, as well as current jobs, add an 'x' character to the extend parameter (set
one character to be the 'x' character). For example:

pbs_selstat (..., ..., <extend characters>) ...

To get information on finished jobs only:

• Add the ‘x character to the extend parameter

• Fill in criteria_list->name with “ATTR_state”

• Fill in criteria_list->value with “FM” for Finished and Moved

For example:

criteria_list->name = ATTR_state;

criteria_list->value = "FM";

criteria_list->op = EQ;

pbs_selstat (..., criteria_list, ..., extend) ...

Subjobs are not considered finished until the parent array job is finished.

5.25.5.2 Querying Job Arrays and Subjobs

To query only job arrays (not jobs or subjobs):

• Fill in criteria_list->name with “array”

• Fill in criteria_list->value with “True”

To query only job arrays and subjobs (not jobs):

• Fill in criteria_list->name with “array”

• Fill in criteria_list->value with “True”

• Add the ‘T’ or ‘t’ character to the extend parameter

To query only jobs and subjobs (not job arrays), add the ‘T’ or ‘t’ character to the extend parameter.

5.25.6 Return Value

Returns a pointer to a list of batch_status structures for jobs that meet the selection criteria. If no jobs meet the criteria
or can be queried for status, returns the null pointer.

If an error occurred, the routine returns a null pointer, and the error number is available in the global integer pbs_errno.

5.25.6.1 The batch_status Structure

The batch_status structure is defined in pbs_ifl.h as

struct batch_status {

struct batch_status *next;

char *name;

struct attrl *attribs;

char *text;

}

PG-64 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
5.25.7 Cleanup

You must free the list of batch_status structures when no longer needed, by calling pbs_statfree().

5.25.8 See Also

qselect, qstat, pbs_connect, pbs_selectjob, pbs_statfree, pbs_statjob
PBS Professional 2020.1.1 Programmer’s Guide PG-65

Chapter 5 Batch Interface Library (IFL)
5.26 pbs_sigjob

send a signal to a PBS batch job

5.26.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_sigjob(int connect, char *jobID, char *signal, char *extend)

5.26.2 Description

Issues a batch request to send a signal to a batch job.

Generates a Signal Job (18) batch request and sends it to the server over the connection specified by connect.

You can send a signal to a job, job array, subjob, or range of subjobs.

The batch server sends the job the specified signal.

The job must be in the running or suspended state.

5.26.3 Arguments

connect

Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

jobID

ID of job to be signaled.

Format for a job:

<sequence number>.<server name>
Format for a job array:

<sequence number>[].<server name>
Format for a subjob:

<sequence number>[<index>].<server name>
Format for a range of subjobs:

<sequence number>[<index start>-<index end>].<server name>

signal

Name of signal to send to job. Can be alphabetic, with or without SIG prefix. Can be signal number.

The following special signals are all lower-case, and have no associated signal number:

admin-suspend
Suspends a job and puts its vnodes into the maintenance state. The job is put into the S state and its pro-
cesses are suspended.

admin-resume
Resumes a job that was suspended using the admin-suspend signal, without waiting for scheduler. Can-
not be used on jobs that were suspended with the suspend signal. When the last admin-suspended job has
been admin-resumed, the vnode leaves the maintenance state.

suspend
Suspends specified job(s). Job goes into suspended (S) state.
PG-66 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
resume
Marks specified job(s) for resumption by scheduler when there are sufficient resources. Cannot be used on
jobs that were suspended with the admin_suspend signal.

If the signal is not recognized on the execution host, no signal is sent and an error is returned.

extend

Character string for extensions to command. Not currently used.

5.26.4 Return Value

The routine returns 0 (zero) on success.

If an error occurred, the routine returns a non-zero exit value, and the error number is available in the global integer
pbs_errno.

5.26.5 See Also

qsig, pbs_connect
PBS Professional 2020.1.1 Programmer’s Guide PG-67

Chapter 5 Batch Interface Library (IFL)
5.27 pbs_statfree

free a PBS status object

5.27.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

void pbs_statfree(struct batch_status *psj)

5.27.2 Description

Frees the specified PBS status object returned by PBS API routines such as pbs_statque(), pbs_statserver(),
pbs_stathook(), etc.

5.27.3 Arguments

psj

Pointer to the batch_status structure to be freed.

5.27.3.1 The batch_status Structure

The batch_status structure is defined in pbs_ifl.h as

struct batch_status {

struct batch_status *next;

char *name;

struct attrl *attribs;

char *text;

}

5.27.4 Return Value

No return value.
PG-68 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
5.28 pbs_stathost

get status of PBS execution host(s)

5.28.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

void pbs_statfree(struct batch_status *psj)

struct batch_status *pbs_stathost(int connect, char *target, struct attrl *output_attribs, char *extend)

5.28.2 Description

Issues a batch request to get the status of PBS execution hosts.

Generates a Status Node (58) batch request and sends it to the server over the connection specified by connect.

Returns specified attributes or all attributes of specified execution host or all execution hosts. If an execution host has
multiple vnodes, this command reports aggregated information from the vnodes for that host.

5.28.3 Arguments

connect

Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

target

Name of execution host whose attributes are to be reported. If this argument is a null pointer or points to a null
string, returns attributes of all execution hosts known to the server.

output_attribs

Pointer to a list of attributes to return. If this argument is null, returns all attributes. Each attribute is described
in an attrl structure, defined in pbs_ifl.h as:

struct attrl {

char *name;

char *resource;

char *value;

struct attrl *next;

};

extend

Character string for extensions to command. Not currently used.

5.28.3.1 Members of attrl Structure

name

Points to a string containing the name of the attribute.

resource

Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.
PBS Professional 2020.1.1 Programmer’s Guide PG-69

Chapter 5 Batch Interface Library (IFL)
value

Points to a string containing the value of the attribute or resource.

next

Points to next attribute in list. A null pointer terminates the list.

5.28.4 Return Value

Returns a pointer to a list of batch_status structures describing the execution host(s).

If an error occurred, the routine returns a null pointer, and the error number is available in the global integer pbs_errno.

5.28.4.1 The batch_status Structure

The batch_status structure is defined in pbs_ifl.h as

struct batch_status {

struct batch_status *next;

char *name;

struct attrl *attribs;

char *text;

}

5.28.5 Cleanup

You must free the list of batch_status structures when no longer needed, by calling pbs_statfree().

5.28.6 See Also

qstat, pbs_connect, pbs_statfree
PG-70 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
5.29 pbs_statjob

get status of PBS batch jobs

5.29.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

void pbs_statfree(struct batch_status *psj)

struct batch_status *pbs_statjob(int connect, char *ID, struct attrl *output_attribs, char *extend)

5.29.2 Description

Issues a batch request to get the status of a specified batch job, a list of batch jobs, or the batch jobs at a queue or server.

Generates a Status Job (19) batch request and sends it to the server over the connection specified by connect.

You can query status of jobs, job arrays, subjobs, and ranges of subjobs.

Queries all specified jobs that the user is authorized to query.

5.29.3 Arguments

connect

Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

ID

Job ID, list of job IDs, queue, server, or null.

If ID is a null pointer or points to a null string, gets status of jobs at connected server.

Format for a job:

<sequence number>.<server name>
Format for a job array:

<sequence number>[].<server name>
Format for a subjob:

<sequence number>[<index>].<server name>
Format for a range of subjobs:

<sequence number>[<index start>-<index end>].<server name>
Format for a list of jobs: comma-separated list of job IDs in a single string. White space is ignored. No limit on
length:

“<job ID>,<job ID>,<job ID>, ...”
Format for a queue:

<queue name>@<server name>
Format for a server:

<server name>
PBS Professional 2020.1.1 Programmer’s Guide PG-71

Chapter 5 Batch Interface Library (IFL)
output_attribs

Pointer to a list of attributes to return. If this list is null, all attributes are returned. Each attribute is described in
an attrl structure, defined in pbs_ifl.h as:

struct attrl {

char *name;

char *resource;

char *value;

struct attrl *next;

};

extend

Character string where you can specify limits or extensions of your search. Order of characters is not important.

5.29.3.1 Members of attrl Structure

name

Points to a string containing the name of the attribute.

resource

Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.

value

Points to a string containing the value of the attribute or resource.

next

Points to next attribute in list. A null pointer terminates the list.

5.29.4 Querying Job Arrays and Subjobs

You can query status of job arrays and their subjobs, or just the parent job arrays only.

To query status of job arrays and their subjobs, include the job array IDs in the ID argument, and include the ‘t’ character
in the extend argument. The function returns the status of each parent job array followed by status of each subjob in that
job array.

To query status of one or more parent job arrays only, but not their subjobs, include their job IDs in the ID argument, but
do not include anything in the extend argument.

5.29.5 Querying the Jobs at a Queue or Server

To query status of all jobs at a queue, give the queue name in the ID argument.

To query status of all jobs at a server, give the server name in the ID argument. If you give a null ID argument, the func-
tion queries the default server.

5.29.6 Extending Your Query

You can use the following characters in the extend parameter:

T, t

Extends query to include subjobs. Job arrays are not included.
PG-72 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
x

Extends query to include finished and moved jobs.

5.29.6.1 Querying Finished and Moved Jobs

To get status for finished or moved jobs, as well as current jobs, add an 'x' character to the extend parameter (set one
character to be the 'x' character). For example:

pbs_statjob (..., ..., <extend characters>) ...

Subjobs are not considered finished until the parent array job is finished.

5.29.7 Return Values

For a single job, if the job can be queried, returns a pointer to a batch_status structure containing the status of the spec-
ified job. If the job cannot be queried, returns a NULL pointer, and pbs_errno is set to an error number indicating the
reason the job could not be queried.

For a list of jobs, if any of the specified jobs can be queried, returns a pointer to a batch_status structure containing the
status of all the queryable jobs. If none of the jobs can be queried, returns a NULL pointer, and pbs_errno is set to the
error number that indicates the reason that the last job in the list could not be queried.

For a queue, if the queue exists, returns a pointer to a batch_status structure containing the status of all the queryable
jobs in the queue. If the queue does not exist, returns a NULL pointer, and pbs_errno is set to PBSE_UNKQUE
(15018). If the queue exists but contains no queryable jobs, returns a NULL pointer, and pbs_errno is set to
PBSE_NONE (0).

When querying a server, the connection to the server is already established by pbs_connect(). If there are jobs at the
server, returns a pointer to a batch_status structure containing the status of all the queryable jobs at the server. If the
server does not contain any queryable jobs, returns a NULL pointer, and pbs_errno is set to PBSE_NONE (0).

5.29.7.1 The batch_status Structure

The batch_status structure is defined in pbs_ifl.h as

struct batch_status {

struct batch_status *next;

char *name;

struct attrl *attribs;

char *text;

}

5.29.8 Cleanup

You must free the list of batch_status structures when no longer needed, by calling pbs_statfree().

5.29.9 See Also

qstat, pbs_connect
PBS Professional 2020.1.1 Programmer’s Guide PG-73

Chapter 5 Batch Interface Library (IFL)
5.30 pbs_statnode

get status of PBS execution host(s)

5.30.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

void pbs_statfree(struct batch_status *psj)

struct batch_status *pbs_statnode(int connect, char *target, struct attrl *output_attribs, char *extend)

5.30.2 Description

Issues a batch request to get the status of PBS execution hosts.

Generates a Status Node (58) batch request and sends it to the server over the connection specified by connect.

Returns specified attributes or all attributes of specified execution host or all execution hosts. If an execution host has
multiple vnodes, this command reports aggregated information from the vnodes for that host.

Identical to pbs_stathost(); retained for backward compatibility.

5.30.3 Arguments

connect

Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

target

Name of execution host whose attributes are to be reported. If this argument is null, returns attributes of all exe-
cution hosts known to the server.

output_attribs

Pointer to a list of attributes to return. If this argument is a null pointer or points to a null string, returns all
attributes. Each attribute is described in an attrl structure, defined in pbs_ifl.h as:

struct attrl {

char *name;

char *resource;

char *value;

struct attrl *next;

};

extend

Character string for extensions to command. Not currently used.

5.30.3.1 Members of attrl Structure

name

Points to a string containing the name of the attribute.
PG-74 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
resource

Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.

value

Points to a string containing the value of the attribute or resource.

next

Points to next attribute in list. A null pointer terminates the list.

5.30.4 Return Value

Returns a pointer to a list of batch_status structures describing the host(s).

If an error occurred, the routine returns a null pointer, and the error number is available in the global integer pbs_errno.

5.30.4.1 The batch_status Structure

The batch_status structure is defined in pbs_ifl.h as

struct batch_status {

struct batch_status *next;

char *name;

struct attrl *attribs;

char *text;

}

5.30.5 Cleanup

You must free the list of batch_status structures when no longer needed, by calling pbs_statfree().

5.30.6 See Also

qstat, pbs_connect
PBS Professional 2020.1.1 Programmer’s Guide PG-75

Chapter 5 Batch Interface Library (IFL)
5.31 pbs_statque

get status of PBS queue(s)

5.31.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

struct batch_status *pbs_statque(int connect, char *target, struct attrl *output_attribs, char *extend)

5.31.2 Description

Issues a batch request to get the status of PBS queues.

Generates a Status Queue (20) batch request and sends it to the server over the connection specified by connect.

Returns specified attributes or all attributes of specified queue or all queues.

5.31.3 Arguments

connect

Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

target

Name of queue whose attributes are to be reported. If this argument is null, returns attributes of all queues
known to the server.

output_attribs

Pointer to a list of attributes to return. If this argument is a null pointer or points to a null string, returns all
attributes. Each attribute is described in an attrl structure, defined in pbs_ifl.h as:

struct attrl {

char *name;

char *resource;

char *value;

struct attrl *next;

};

extend

Character string for extensions to command. Not currently used.

5.31.3.1 Members of attrl Structure

name

Points to a string containing the name of the attribute.

resource

Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.

value

Points to a string containing the value of the attribute or resource.
PG-76 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
next

Points to next attribute in list. A null pointer terminates the list.

5.31.4 Return Value

Returns a pointer to a list of batch_status structures describing the queue(s).

If an error occurred, the routine returns a null pointer, and the error number is available in the global integer pbs_errno.

5.31.4.1 The batch_status Structure

The batch_status structure is defined in pbs_ifl.h as

struct batch_status {

struct batch_status *next;

char *name;

struct attrl *attribs;

char *text;

}

5.31.5 Cleanup

You must free the list of batch_status structures when no longer needed, by calling pbs_statfree().

5.31.6 See Also

qstat, pbs_connect, pbs_statfree
PBS Professional 2020.1.1 Programmer’s Guide PG-77

Chapter 5 Batch Interface Library (IFL)
5.32 pbs_statresv

get status of PBS reservation(s)

5.32.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

void pbs_statfree(struct batch_status *psj)

struct batch_status *pbs_statresv(int connect, char *target, struct attrl *output_attribs, char *extend)

5.32.2 Description

Issues a batch request to get the status of PBS reservation(s).

Generates a Status Reservation (71) batch request and sends it to the server over the connection specified by connect.

Returns specified attributes or all attributes of specified reservation or all reservations.

5.32.3 Arguments

connect

Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

target

ID of reservation whose attributes are to be reported. If this argument is a null pointer or points to a null string,
returns attributes of all reservations the user is authorized to query.

Format for advance reservation:

R<sequence number>.<server name>
Format for standing reservation:

S<sequence number>.<server name>
Format for maintenance reservation:

M<sequence number>.<server name>

output_attribs

Pointer to a list of attributes to return. If this argument is null, returns all attributes. Each attribute is described
in an attrl structure, defined in pbs_ifl.h as:

struct attrl {

char *name;

char *resource;

char *value;

struct attrl *next;

};

extend

Character string for extensions to command. Not currently used.
PG-78 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
5.32.3.1 Members of attrl Structure

name

Points to a string containing the name of the attribute.

resource

Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.

value

Points to a string containing the value of the attribute or resource.

next

Points to next attribute in list. A null pointer terminates the list.

5.32.4 Return Value

Returns a pointer to a list of batch_status structures describing the reservation(s).

If an error occurred, the routine returns a null pointer, and the error number is available in the global integer pbs_errno.

5.32.4.1 The batch_status Structure

The batch_status structure is defined in pbs_ifl.h as

struct batch_status {

struct batch_status *next;

char *name;

struct attrl *attribs;

char *text;

}

5.32.5 Cleanup

You must free the list of batch_status structures when no longer needed, by calling pbs_statfree().

5.32.6 See Also

qstat, pbs_connect, pbs_statfree
PBS Professional 2020.1.1 Programmer’s Guide PG-79

Chapter 5 Batch Interface Library (IFL)
5.33 pbs_statrsc

get status of PBS resources

5.33.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

void pbs_statfree(struct batch_status *psj)

struct batch_status *pbs_statrsc(int connect, char *rescname, struct attrl *output_attribs, char *extend)

5.33.2 Description

Issues a batch request to query and return the status of a specified resource, or a set of resources at a server.

Generates a Status Resource (82) batch request and sends it to the server over the connection specified by connect.

5.33.3 Arguments

connect

Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

rescname

Name of resource to be queried. If this is null, queries all resources at the server.

output_attribs

Pointer to a list of attributes to return. If this argument is a null pointer or points to a null string, returns all
attributes. Each attribute is described in an attrl structure, defined in pbs_ifl.h as:

struct attrl {

char *name;

char *resource;

char *value;

struct attrl *next;

};

extend

Character string for extensions to command. Not currently used.

5.33.3.1 Members of attrl Structure

name

Points to a string containing the name of the attribute.

resource

Points to a string containing the name of a resource. Should be a null pointer.

value

Points to a string containing the value of the attribute or resource. Should always be a pointer to a null string.

next

Points to next attribute in list. A null pointer terminates the list.
PG-80 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
5.33.4 Querying Resources at Server

Use the pbs_connect() command to get a connection handle at the server.

To query all resources at the server, pass a null pointer as the name of the resource.

5.33.5 Return Value

For a single resource, if the resource can be queried, returns a pointer to a batch_status structure containing the status of
the specified resource.

If the resource cannot be queried, the routine returns a null pointer, and the error number is available in the global integer
pbs_errno.

When querying a server, the connection to the server is already established by pbs_connect(). If there are resources
at the server, returns a pointer to a batch_status structure describing the queryable resource(s) at the server.

In the unlikely event that the server does not contain any queryable resources because the user is unprivileged and all
resources are marked as invisible (the i flag is set), returns a NULL pointer, and pbs_errno is set to PBSE_NONE (0).

5.33.5.1 The batch_status Structure

The batch_status structure is defined in pbs_ifl.h as

struct batch_status {

struct batch_status *next;

char *name;

struct attrl *attribs;

char *text;

}

5.33.6 Cleanup

You must free the list of batch_status structures when no longer needed, by calling pbs_statfree().

5.33.7 See Also

qstat, pbs_connect
PBS Professional 2020.1.1 Programmer’s Guide PG-81

Chapter 5 Batch Interface Library (IFL)
5.34 pbs_statsched

get status of PBS schedulers

5.34.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

void pbs_statfree(struct batch_status *psj)

struct batch_status *pbs_statsched(int connect, struct attrl *output_attribs, char *extend)

5.34.2 Description

Issues a batch request to get the status of the PBS schedulers.

Generates a Status Scheduler (81) batch request and sends it to the server over the connection specified by connect.

This command returns status of the default scheduler and all multischeds.

5.34.3 Arguments

connect

Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

output_attribs

Pointer to a list of attributes to return. If this argument is a null pointer or points to a null string, returns all
attributes. Each attribute is described in an attrl structure, defined in pbs_ifl.h as:

struct attrl {

char *name;

char *resource;

char *value;

struct attrl *next;

};

extend

Character string for extensions to command. Not currently used.

5.34.3.1 Members of attrl Structure

name

Points to a string containing the name of the attribute.

resource

Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.

value

Points to a string containing the value of the attribute or resource. Should always be a pointer to a null string.

next

Points to next attribute in list. A null pointer terminates the list.
PG-82 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
5.34.4 Return Value

Returns a pointer to a list of batch_status structures describing the default scheduler and all multischeds.

If an error occurred, the routine returns a null pointer, and the error number is available in the global integer pbs_errno.

5.34.4.1 The batch_status Structure

The batch_status structure is defined in pbs_ifl.h as

struct batch_status {

struct batch_status *next;

char *name;

struct attrl *attribs;

char *text;

}

5.34.5 Cleanup

You must free the list of batch_status structures when no longer needed, by calling pbs_statfree().

5.34.6 See Also

qstat, pbs_connect
PBS Professional 2020.1.1 Programmer’s Guide PG-83

Chapter 5 Batch Interface Library (IFL)
5.35 pbs_statserver

get status of a PBS batch server

5.35.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

void pbs_statfree(struct batch_status *psj)

struct batch_status *pbs_statserver(int connect, struct attrl *output_attribs, char *extend)

5.35.2 Description

Issues a batch request to get the status of a batch server.

Generates a Status Server (21) batch request and sends it to the server over the connection specified by connect.

5.35.3 Arguments

connect

Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

output_attribs

Pointer to a list of attributes to return. If this argument is a null pointer or points to a null string, returns all
attributes. Each attribute is described in an attrl structure, defined in pbs_ifl.h as:

struct attrl {

char *name;

char *resource;

char *value;

struct attrl *next;

};

extend

Character string for extensions to command. Not currently used.

5.35.3.1 Members of attrl Structure

name

Points to a string containing the name of the attribute.

resource

Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.

value

Points to a string containing the value of the attribute or resource. Should always be a pointer to a null string.

next

Points to next attribute in list. A null pointer terminates the list.
PG-84 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
5.35.4 Return Value

Returns a pointer to a batch_status structure describing the server.

If an error occurred, the routine returns a null pointer, and the error number is available in the global integer pbs_errno.

5.35.4.1 The batch_status Structure

The batch_status structure is defined in pbs_ifl.h as

struct batch_status {

struct batch_status *next;

char *name;

struct attrl *attribs;

char *text;

}

5.35.5 Cleanup

You must free the batch_status structure when no longer needed, by calling pbs_statfree().

5.35.6 See Also

qstat, pbs_connect, pbs_statfree
PBS Professional 2020.1.1 Programmer’s Guide PG-85

Chapter 5 Batch Interface Library (IFL)
5.36 pbs_statvnode

get status of PBS vnode(s) on execution hosts

5.36.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

void pbs_statfree(struct batch_status *psj)

struct batch_status *pbs_statvnode(int connect, char *target, struct attrl *output_attribs, char *extend)

5.36.2 Description

Issues a batch request to get the status of PBS vnodes on execution hosts.

Generates a Status Node (58) batch request and sends it to the server over the connection specified by connect.

Returns specified attributes or all attributes of specified execution host vnode or all execution host vnodes.

5.36.3 Arguments

connect

Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

target

Name of execution host vnode whose attributes are to be reported. If this argument is null, returns attributes of
all execution host vnodes known to the server.

output_attribs

Pointer to a list of attributes to return. If this argument is a null pointer or points to a null string, returns all
attributes. Each attribute is described in an attrl structure, defined in pbs_ifl.h as:

struct attrl {

char *name;

char *resource;

char *value;

struct attrl *next;

};

extend

Character string for extensions to command. Not currently used.

5.36.3.1 Members of attrl Structure

name

Points to a string containing the name of the attribute.

resource

Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.
PG-86 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
value

Points to a string containing the value of the attribute or resource.

next

Points to next attribute in list. A null pointer terminates the list.

5.36.4 Return Value

Returns a pointer to a list of batch_status structures describing the vnode(s).

If an error occurred, the routine returns a null pointer, and the error number is available in the global integer pbs_errno.

5.36.4.1 The batch_status Structure

The batch_status structure is defined in pbs_ifl.h as

struct batch_status {

struct batch_status *next;

char *name;

struct attrl *attribs;

char *text;

}

5.36.5 Cleanup

You must free the list of batch_status structures when no longer needed, by calling pbs_statfree().

5.36.6 See Also

qstat, pbs_connect, pbs_statfree
PBS Professional 2020.1.1 Programmer’s Guide PG-87

Chapter 5 Batch Interface Library (IFL)
5.37 pbs_submit

submit a PBS batch job

5.37.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

char *pbs_submit(int connect, struct attropl *attrib_list, char *jobscript, char *destqueue, char *extend)

5.37.2 Description

Issues a batch request to submit a new batch job.

Generates a Queue Job (1) batch request and sends it to the server over the connection specified by connect.

Submits job to specified queue at connected server, or if no queue is specified, to default queue at connected server.

5.37.3 Arguments

connect

Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

attrib_list

Pointer to a list of attributes explicitly requested for job. Each attribute is described in an attropl structure,
defined in pbs_ifl.h as:

struct attropl {

struct attropl *next;

char *name;

char *resource;

char *value;

enum batch_op op;

};

For any attribute that is not specified or that is a null pointer, PBS takes the default action for that attribute. The
default action is to assign the default value or to not pass the attribute with the job; the action depends on the
attribute.

jobscript

Pointer to path to job script. Can be absolute or relative. Relative path begins with the directory where the user
submits the job.

If null pointer or pointer to null string, no script is passed with job.

destqueue

Pointer to name of destination queue at connected server. If this is a null pointer or points to a null string, the
job is submitted to the default queue at the connected server.

extend

Character string for extensions to command. Not currently used.
PG-88 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
5.37.3.1 Members of attropl Structure

next

Points to next attribute in list. A null pointer terminates the list.

name

Points to a string containing the name of the attribute.

resource

Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.

value

Points to a string containing the value of the attribute or resource.

op

Operation to perform on the attribute or resource. In this command, the only allowed operator is SET.

5.37.4 Return Value

Returns a pointer to a character string containing the job ID assigned by the server.

If an error occurred, the routine returns a null pointer, and the error number is available in the global integer pbs_errno.

5.37.5 Cleanup

The space for the job ID returned by pbs_submit() is allocated by pbs_submit(). Free it via a call to free()
when you no longer need it.

5.37.6 See Also

qsub, pbs_connect
PBS Professional 2020.1.1 Programmer’s Guide PG-89

Chapter 5 Batch Interface Library (IFL)
5.38 pbs_submit_resv

submit a PBS reservation

5.38.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

char *pbs_submit_resv(int connect, struct attropl *attrib_list, char *extend)

5.38.2 Description

Issues a batch request to submit a new reservation.

Generates a Submit Reservation (70) batch request and sends it to the server over the connection specified by connect.

Returns a pointer to the reservation ID.

5.38.3 Arguments

connect

Return value of pbs_connect(). Specifies connection over which to send batch request to server.

attrib_list

Pointer to a list of attributes to set, with values. Each attribute is described in an attropl structure, defined in
pbs_ifl.h as:

struct attropl {

struct attropl *next;

char *name;

char *resource;

char *value;

enum batch_op op;

};

For any attribute that is not specified or that is a null pointer, PBS takes the default action for that attribute. The
default action is to assign the default value or to not pass the attribute with the reservation; the action depends
on the attribute.

extend

Character string for extensions to command. Not currently used.

5.38.3.1 Members of attropl Structure

next

Points to next attribute in list. A null pointer terminates the list.

name

Points to a string containing the name of the attribute.
PG-90 PBS Professional 2020.1.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 5
resource

Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.

value

Points to a string containing the value of the attribute or resource.

op

Operator. The only allowed operator for this function is SET.

5.38.4 Return Value

Returns a pointer to a character string containing the reservation ID assigned by the server.

If an error occurred, the routine returns a null pointer, and the error number is available in the global integer pbs_errno.

5.38.5 Cleanup

The space for the reservation ID returned by pbs_submit_resv() is allocated by pbs_submit_resv(). Free it
via a call to free() when you no longer need it.

5.38.6 See Also

pbs_rsub, pbs_connect
PBS Professional 2020.1.1 Programmer’s Guide PG-91

Chapter 5 Batch Interface Library (IFL)
5.39 pbs_terminate

shut down a PBS batch server

5.39.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_terminate(int connect, int manner, char *extend)

5.39.2 Description

Issues a batch request to shut down a batch server.

Generates a Server Shutdown (17) batch request and sends it to the server over the connection specified by connect.

The pbs_terminate() command exits after the server has completed its shutdown procedure.

5.39.3 Required Privilege

You must have Operator or Manager privilege to run this command.

5.39.4 Arguments

connect

Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

manner

Manner in which to shut down server. The available manners are defined in pbs_ifl.h. Valid values:
SHUT_IMMEDIATE, SHUT_DELAY, SHUT_QUICK. See “qterm” on page 233 of the PBS Professional
Reference Guide for information on manner in which to shut down server.

extend

Character string for extensions to command. Not currently used.

5.39.5 Return Value

The routine returns 0 (zero) on success.

If an error occurred, the routine returns a non-zero exit value, and the error number is available in the global integer
pbs_errno.

5.39.6 See Also

qterm, pbs_connect
PG-92 PBS Professional 2020.1.1 Programmer’s Guide

6

TM Library

This chapter describes the PBS Task Management library. The TM library is a set of routines used to manage multi-pro-
cess, parallel, and distributed applications.

6.1 TM Library Routines

The following manual pages document the application programming interface provided by the TM library.
PBS Professional 2020.1.1 Programmer’s Guide PG-93

Chapter 6 TM Library
6.2 tm_init, tm_nodeinfo, tm_poll, tm_notify,

tm_spawn, tm_kill, tm_obit, tm_taskinfo,

tm_atnode, tm_rescinfo, tm_publish,

tm_subscribe, tm_finalize, tm_attach

task management API
PG-94 PBS Professional 2020.1.1 Programmer’s Guide

TM Library Chapter 6
6.2.1 Synopsis

#include <tm.h>

int tm_init(info, roots)

void *info;

struct tm_roots *roots;

int tm_nodeinfo(list, nnodes)

tm_node_id **list;

int *nnodes;

int tm_poll(poll_event, result_event, wait, tm_errno)

tm_event_t poll_event;

tm_event_t *result_event;

int wait;

int *tm_errno;

int tm_notify(tm_signal)

int tm_signal;

int tm_spawn(argc, argv, envp, where, tid, event)

int argc;

char **argv;

char **envp;

tm_node_id where;

tm_task_id *tid;

tm_event_t *event;

int tm_kill(tid, sig, event)

tm_task_id tid;

int sig;

tm_event_t *event;

int tm_obit(tid, obitval, event)

tm_task_id tid;

int *obitval;

tm_event_t *event;

int tm_taskinfo(node, tid_list, list_size, ntasks, event)

tm_node_id node;

tm_task_id *tid_list;

int list_size;

int *ntasks;

tm_event_t *event;

int tm_atnode(tid, node)

tm_task_id tid;

tm_node_id *node;

int tm_rescinfo(node, resource, len, event)

tm_node_id node;

char *resource;

int len;

tm_event_t *event;

int tm_publish(name, info, len, event)
PBS Professional 2020.1.1 Programmer’s Guide PG-95

Chapter 6 TM Library
char *name;

void *info;

int len;

tm_event_t *event;

int tm_subscribe(tid, name, info, len, info_len, event)

tm_task_id tid;

char *name;

void *info;

int len;

int *info_len;

tm_event_t *event;

int tm_attach(jobid, cookie, pid, tid, host, port)

char *jobid;

char *cookie;

pid_t pid;

tm_task_id *tid;

char *host;

int port;

int tm_finalize()

6.2.2 Description

These functions provide a partial implementation of the task management interface part of the PSCHED API. In PBS,
MoM provides the task manager functions. This library opens a tcp socket to the MoM running on the local host and
sends and receives messages using the DIS protocol (described in the PBS IDS). The tm interface can only be used by a
process within a PBS job.

The PSCHED Task Management API description used to create this library was committed to paper on November 15,
1996 and was given the version number 0.1. Changes may have taken place since that time which are not reflected in this
library.

The API description uses several data types that it purposefully does not define. This was done so an implementation
would not be confined in the way it was written. For this specific work, the definitions follow:

typedef int tm_node_id; /* job-relative node id */

#define TM_ERROR_NODE ((tm_node_id)-1)

typedef int tm_event_t; /* > 0 for real events */

#define TM_NULL_EVENT ((tm_event_t)0)

#define TM_ERROR_EVENT ((tm_event_t)-1)

typedef unsigned long tm_task_id;

#define TM_NULL_TASK (tm_task_id)0

There are a number of error values defined as well: TM_SUCCESS, TM_ESYSTEM, TM_ENOEVENT,
TM_ENOTCONNECTED, TM_EUNKNOWNCMD, TM_ENOTIMPLEMENTED, TM_EBADENVIRONMENT,
TM_ENOTFOUND.

tm_init() initializes the library by opening a socket to the MoM on the local host and sending a TM_INIT message, then
waiting for the reply. The info parameter has no use and is included to conform with the PSCHED document. The roots
pointer will contain valid data after the function returns and has the following structure:

struct tm_roots {
PG-96 PBS Professional 2020.1.1 Programmer’s Guide

TM Library Chapter 6
tm_task_id tm_me;

tm_task_id tm_parent;

int tm_nnodes;

int tm_ntasks;

int tm_taskpoolid;

tm_task_id *tm_tasklist;

};

tm_me The task id of this calling task.

tm_parent The task id of the task which spawned this task or TM_NULL_TASK if the calling task is the initial

task started by PBS.

tm_nnodes The number of nodes allocated to the job.

tm_ntasks This will always be 0 for PBS.

tm_taskpoolid PBS does not support task pools so this will always be -1.

tm_tasklist This will be NULL for PBS.

The tm_ntasks, tm_taskpoolid and tm_tasklist fields are not filled with data specified by the PSCHED document. PBS
does not support task pools and, at this time, does not return information about current running tasks from tm_init. There
is a separate call to get information for current running tasks called tm_taskinfo which is described below. The return
value from tm_init is TM_SUCCESS if the library initialization was successful, or an error is returned otherwise.

tm_nodeinfo() places a pointer to a malloc'ed array of tm_node_id's in the pointer pointed at by list. The order of the
tm_node_id's in list is the same as that specified to MoM in the "exec_host" attribute. The int pointed to by nnodes con-
tains the number of nodes allocated to the job. This is information that is returned during initialization and does not
require communication with MoM. If tm_init has not been called, TM_ESYSTEM is returned, otherwise
TM_SUCCESS is returned.

tm_poll() is the function which will retrieve information about the task management system to locations specified when
other routines request an action take place. The bookkeeping for this is done by generating an event for each action.
When the task manager (MoM) sends a message that an action is complete, the event is reported by tm_poll and informa-
tion is placed where the caller requested it. The argument poll_event is meant to be used to request a specific event. This
implementation does not use it and it must be set to TM_NULL_EVENT or an error is returned. Upon return, the argu-
ment result_event will contain a valid event number or TM_ERROR_EVENT on error. If wait is zero and there are no
events to report, result_event is set to TM_NULL_EVENT. If wait is non-zero an there are no events to report, the func-
tion will block waiting for an event. If no local error takes place, TM_SUCCESS is returned. If an error is reported by
MoM for an event, then the argument tm_errno will be set to an error code.

tm_notify() is described in the PSCHED documentation, but is not implemented for PBS yet. It will return
TM_ENOTIMPLEMENTED.

tm_spawn() sends a message to MoM to start a new task. The node id of the host to run the task is given by where. The
parameters argc, argv and envp specify the program to run and its arguments and environment very much like exec().
The full path of the program executable must be given by argv[0] and the number of elements in the argv array is given
by argc. The array envp is NULL terminated. The argument event points to a tm_event_t variable which is filled in with
an event number. When this event is returned by tm_poll, the tm_task_id pointed to by tid will contain the task id of the
newly created task.

tm_kill() sends a signal specified by sig to the task tid and puts an event number in the tm_event_t pointed to by event.

tm_obit() creates an event which will be reported when the task tid exits. The int pointed to by obitval will contain the
exit value of the task when the event is reported.
PBS Professional 2020.1.1 Programmer’s Guide PG-97

Chapter 6 TM Library
tm_taskinfo() returns the list of tasks running on the node specified by node. The PSCHED documentation mentions a
special ability to retrieve all tasks running in the job. This is not supported by PBS. The argument tid_list points to an
array of tm_task_id's which contains list_size elements. Upon return, event will contain an event number. When this
event is polled, the int pointed to by ntasks will contain the number of tasks running on the node and the array will be
filled in with tm_task_id's. If ntasks is greater than list_size, only list_size tasks will be returned.

tm_atnode() will place the node id where the task tid exists in the tm_node_id pointed to by node.

tm_rescinfo() makes a request for a string specifying the resources available on a node given by the argument node. The
string is returned in the buffer pointed to by resource and is terminated by a NUL character unless the number of charac-
ters of information is greater than specified by len. The resource string PBS returns is formatted as follows:

A space separated set of strings from the uname system call. The order of the strings is sysname, nodename, release, ver-
sion, machine.

A comma separated set of strings giving the components of the "Resource_List" attribute of the job, preceded by a colon
(:). Each component has the resource name, an equal sign, and the limit value.

tm_publish() causes len bytes of information pointed at by info to be sent to the local MoM to be saved under the name
given by name.

tm_subscribe() returns a copy of the information named by name for the task given by tid. The argument info points to a
buffer of size len where the information will be returned. The argument info_len will be set with the size of the published
data. If this is larger than the supplied buffer, the data will have been truncated.

tm_attach() commands MoM to create a new PBS "attached task" out of a session running on MoM's host. The jobid
parameter specifies the job which is to have a new task attached. If it is NULL, the system will try to determine the cor-
rect jobid. The cookie parameter must be NULL. The pid parameter must be a non-zero process id for the process which
is to be added to the job specified by jobid. If tid is non-NULL, it will be used to store the task id of the new task. The
host and port parameters specify where to contact MoM. host should be NULL. The return value will be 0 if a new task
has been successfully created and non-zero on error. The return value will be one of the TM error numbers defined in
tm.h as follows:

TM_ESYSTEM MoM cannot be contacted

TM_ENOTFOUND No matching job was found

TM_ENOTIMPLEMENTED The call is not implemented/supported

TM_ESESSION The session specified is already attached

TM_EUSER The calling user is not permitted to attach

TM_EOWNER The process owner does not match the job

TM_ENOPROC The process does not exist

tm_finalize() may be called to free any memory in use by the library and close the connection to MoM.

6.2.3 See Also

pbs_mom(8B), pbs_sched(8B)
PG-98 PBS Professional 2020.1.1 Programmer’s Guide

7

RM Library

This chapter describes the PBS Resource Monitor library. The RM library contains functions to facilitate communication
with the PBS Professional resource monitor. It is set up to make it easy to connect to several resource monitors and han-
dle the network communication efficiently.

7.1 RM Library Routines

The following manual pages document the application programming interface provided by the RM library.
PBS Professional 2020.1.1 Programmer’s Guide PG-99

Chapter 7 RM Library
7.2 openrm, closerm, downrm, configrm, addreq,

allreq, getreq, flushreq, activereq, fullresp

resource monitor API

7.2.1 Synopsis

#include <sys/types.h>

#include <netinet/in.h>

#include <rm.h>

int openrm (host, port)

char *host;

unsigned int port;

int closerm (stream)

int stream;

int downrm (stream)

int stream;

int configrm (stream, file)

int stream;

char *file;

int addreq (stream, line)

int stream;

char *line;

int allreq (line)

char *line;

char *getreq(stream)

int stream;

int flushreq()

int activereq()

void fullresp(flag)

int flag;

7.2.2 Description

The resource monitor library contains functions to facilitate communication with the PBS Professional resource monitor.
It is set up to make it easy to connect to several resource monitors and handle the network communication efficiently.

In all these routines, the variable pbs_errno will be set when an error is indicated. The lower levels of network protocol
are handled by the "Data Is Strings" DIS library and the TPP library.

configrm() causes the resource monitor to read the file named. Deprecated.

addreq() begins a new message to the resource monitor if necessary. Then adds a line to the body of an outstanding com-
mand to the resource monitor.

allreq() begins, for each stream, a new message to the resource monitor if necessary. Then adds a line to the body of an
outstanding command to the resource monitor.
PG-100 PBS Professional 2020.1.1 Programmer’s Guide

RM Library Chapter 7
getreq() finishes and sends any outstanding message to the resource monitor. If fullresp() has been called to turn off "full
response" mode, the routine searches down the line to find the equal sign just before the response value. The returned
string (if it is not NULL) has been allocated by malloc and thus free must be called when it is no longer needed to prevent
memory leaks.

flushreq() finishes and sends any outstanding messages to all resource monitors. For each active resource monitor struc-
ture, it checks if any outstanding data is waiting to be sent. If there is, it is sent and the internal structure is marked to
show "waiting for response".

fullresp() turns on, if flag is true, "full response" mode where getreq() returns a pointer to the beginning of a line of
response. This is the default. If flag is false, the line returned by getreq() is just the answer following the equal sign.

activereq() Returns the stream number of the next stream with something to read or a negative number (the return from
tpp_poll) if there is no stream to read.

In order to use any of the above with Windows, initialize the network library and link with winsock2. To do this, call
winsock_init() before calling the function and link against the ws2_32.lib library.

7.2.3 See Also

tcp(4P), udp(4P)
PBS Professional 2020.1.1 Programmer’s Guide PG-101

Chapter 7 RM Library
PG-102 PBS Professional 2020.1.1 Programmer’s Guide

8

TCL/tk Interface

As of version 19.4.1, the PBS TCL API is deprecated.

The PBS Professional software includes a TCL/tk interface to PBS. Wrapped versions of many of the API calls are com-
piled into a special version of the TCL shell, called pbs_tclsh. (A special version of the tk window shell is also pro-
vided, called pbs_wish.). This chapter documents the TCL/tk interface to PBS.

The pbs_tclapi is a subset of the PBS external API wrapped in a TCL library. This functionality allows the creation
of scripts that query the PBS system. Specifically, it permits the user to query the pbs_server about the state of PBS,
jobs, queues, and nodes, and communicate with pbs_mom to get information about the status of running jobs, available
resources on nodes, etc.

8.1 TCL/tk API Functions

A set of functions to communicate with the PBS server and resource monitor have been added to those normally avail-
able with Tcl. All these calls will set the Tcl variable pbs_errno to a value to indicate if an error occurred. In all cases,
the value "0" means no error. If a call to a Resource Monitor function is made, any error value will come from the sys-
tem supplied errno variable. If the function call communicates with the PBS server, any error value will come from the
error number returned by the server. This is the same TCL interface used by the pbs_tclsh and pbs_wish com-
mands.

Note that the pbs_tclapi pbsrescquery command, which calls the C API pbs_rescquery, is obsolete. Any
attempt to use it will result in a PBSE_NOSUPPORT error being returned.
PBS Professional 2020.1.1 Programmer’s Guide PG-103

Chapter 8 TCL/tk Interface
8.2 pbs_tclapi

PBS TCL Application Programming Interface

8.2.1 Description

The pbs_tclapi is a subset of the PBS external API wrapped in a TCL library. This functionality allows the creation of
scripts that query the PBS system. Specifically, it permits the user to query the pbs_server about the state of PBS, jobs,
queues, and nodes, and communicate with pbs_mom to get information about the status of running jobs, available
resources on nodes, etc.

8.2.2 Usage

A set of functions to communicate with the PBS server and resource monitor have been added to those normally avail-
able with Tcl. All these calls will set the Tcl variable "pbs_errno" to a value to indicate if an error occurred. In all cases,
the value "0" means no error. If a call to a Resource Monitor function is made, any error value will come from the system
supplied errno variable. If the function call communicates with the PBS Server, any error value will come from the error
number returned by the server. This is the same TCL interface used by the pbs_tclsh and pbs_wish commands.

openrm host ?port?

Creates a connection to the PBS Resource Monitor on host using port as the port number or the standard port for the
resource monitor if it is not given. A connection handle is returned. If the open is successful, this will be a non-negative
integer. If not, an error occurred.

closerm connection

The parameter connection is a handle to a resource monitor which was previously returned from openrm. This connec-
tion is closed.

Nothing is returned.

downrm connection

Sends a command to the connected resource monitor to shutdown.

Nothing is returned.

configrm connection filename

Sends a command to the connected resource monitor to read the configuration file given by filename. If this is success-
ful, a "0" is returned, otherwise, "-1" is returned.

addreq connection request

A resource request is sent to the connected resource monitor. If this is successful, a "0" is returned, otherwise, "-1" is
returned.

getreq connection

One resource request response from the connected resource monitor is returned. If an error occurred or there are no more
responses, an empty string is returned.

allreq request

A resource request is sent to all connected resource monitors. The number of streams acted upon is returned.

flushreq

All resource requests previously sent to all connected resource monitors are flushed out to the network. Nothing is
returned.
PG-104 PBS Professional 2020.1.1 Programmer’s Guide

TCL/tk Interface Chapter 8
activereq

The connection number of the next stream with something to read is returned. If there is nothing to read from any of the
connections, a negative number is returned.

fullresp flag

Evaluates flag as a boolean value and sets the response mode used by getreq to full if flag evaluates to "true". The full
return from a resource monitor includes the original request followed by an equal sign followed by the response. The
default situation is only to return the response following the equal sign. If a script needs to "see" the entire line, this func-
tion may be used.

pbsstatserv

The server is sent a status request for information about the server itself. If the request succeeds, a list with three ele-
ments is returned, otherwise an empty string is returned. The first element is the server's name. The second is a list of
attributes. The third is the "text" associated with the server (usually blank).

pbsstatjob

The server is sent a status request for information about the all jobs resident within the server. If the request succeeds, a
list is returned, otherwise an empty string is returned. The list contains an entry for each job. Each element is a list with
three elements. The first is the job's jobid. The second is a list of attributes. The attribute names which specify resources
will have a name of the form "Resource_List:name" where "name" is the resource name. The third is the "text" associ-
ated with the job (usually blank).

pbsstatque

The server is sent a status request for information about all queues resident within the server. If the request succeeds, a
list is returned, otherwise an empty string is returned. The list contains an entry for each queue. Each element is a list
with three elements. This first is the queue's name. The second is a list of attributes similar to pbsstatjob. The third is the
"text" associated with the queue (usually blank).

pbsstatnode

The server is sent a status request for information about all nodes defined within the server. If the request succeeds, a list
is returned, otherwise an empty string is returned. The list contains an entry for each node. Each element is a list with
three elements. This first is the node's name. The second is a list of attributes similar to pbsstatjob. The third is the
"text" associated with the node (usually blank).

pbsselstat

The server is sent a status request for information about the all runnable jobs resident within the server. If the request
succeeds, a list similar to pbsstatjob is returned, otherwise an empty string is returned.

pbsrunjob jobid ?location?

Run the job given by jobid at the location given by location. If location is not given, the default location is used. If this
is successful, a "0" is returned, otherwise, "-1" is returned.

pbsasyrunjob jobid ?location?

Run the job given by jobid at the location given by location without waiting for a positive response that the job has actu-
ally started. If location is not given, the default location is used. If this is successful, a "0" is returned, otherwise, "-1" is
returned.

pbsrerunjob jobid

Re-runs the job given by jobid. If this is successful, a "0" is returned, otherwise, "-1" is returned.

pbsdeljob jobid

Delete the job given by jobid. If this is successful, a "0" is returned, otherwise, "-1" is returned.

pbsholdjob jobid

Place a hold on the job given by jobid. If this is successful, a "0" is returned, otherwise, "-1" is returned.
PBS Professional 2020.1.1 Programmer’s Guide PG-105

Chapter 8 TCL/tk Interface
pbsmovejob jobid ?location?

Move the job given by jobid to the location given by location. If location is not given, the default location is used. If this
is successful, a "0" is returned, otherwise, "-1" is returned.

pbsqenable queue

Set the "enabled" attribute for the queue given by queue to true. If this is successful, a "0" is returned, otherwise, "-1" is
returned.

pbsqdisable queue

Set the "enabled" attribute for the queue given by queue to false. If this is successful, a "0" is returned, otherwise, "-1" is
returned.

pbsqstart queue

Set the "started" attribute for the queue given by queue to true. If this is successful, a "0" is returned, otherwise, "-1" is

returned.

pbsqstop queue

Set the "started" attribute for the queue given by queue to false. If this is successful, a "0" is returned, otherwise, "-1" is
returned.

pbsalterjob jobid attribute_list

Alter the attributes for a job specified by jobid. The parameter attribute_list is the list of attributes to be altered. There
can be more than one. Each attribute consists of a list of three elements. The first is the name, the second the resource
and the third is the new value. If the alter is successful, a "0" is returned, otherwise, "-1" is returned.

pbsrescquery resource_list

Deprecated. Obtain information about the resources specified by resource_list. This will be a list of strings. If the
request succeeds, a list with the same number of elements as resource_list is returned. Each element in this list will be a
list with four numbers. The numbers specify available, allocated, reserved, and down in that order.

pbsconnect ?server?

Make a connection to the named server or the default server if a parameter is not given. Only one connection to a server
is allowed at any one time.

pbsdisconnect

Disconnect from the currently connected server.

The above Tcl functions use PBS interface library calls for communication with the server and the PBS resource monitor
library to communicate with pbs_mom.

datetime ?day? ?time?

The number of arguments used determine the type of date to be calculated. With no arguments, the current POSIX date
is returned. This is an integer in seconds.

With one argument there are two possible formats. The first is a 12 (or more) character string specifying a complete date
in the following format:

YYMMDDhhmmss

All characters must be digits. The year (YY) is given by the first two (or more) characters and is the number of years
since 1900. The month (MM) is the number of the month [01-12]. The day (DD) is the day of the month [01-32]. The
hour (hh) is the hour of the day [00-23]. The minute (mm) is minutes after the hour [00-59]. The second (ss) is seconds
after the minute [00-59]. The POSIX date for the given date/time is returned.

The second option with one argument is a relative time. The format for this is

HH:MM:SS
PG-106 PBS Professional 2020.1.1 Programmer’s Guide

TCL/tk Interface Chapter 8
With hours (HH), minutes (MM) and seconds (SS) being separated by colons ":". The number returned in this case will
be the number of seconds in the interval specified, not an absolute POSIX date.

With two arguments a relative date is calculated. The first argument specifies a day of the week and must be one of the
following strings: "Sun", "Mon", "Tue", "Wed", "Thr", "Fri", or "Sat". The second argument is a relative time as given
above. The POSIX date calculated will be the day of the week given which follows the current day, and the time given in
the second argument. For example, if the current day was Monday, and the two arguments were "Fri" and "04:30:00",
the date calculated would be the POSIX date for the Friday following the current Monday, at four-thirty in the morning.
If the day specified and the current day are the same, the current day is used, not the day one week later.

strftime format time

This function calls the POSIX function strftime(). It requires two arguments. The first is a format string. The format
conventions are the same as those for the POSIX function strftime(). The second argument is POSIX calendar time in
second as returned by datetime. It returns a string based on the format given. This gives the ability to extract information
about a time, or format it for printing.

logmsg tag message

This function calls the internal PBS function log_err(). It will cause a log message to be written to the scheduler's log
file. The tag specifies a function name or other word used to identify the area where the message is generated. The mes-
sage is the string to be logged.

8.2.3 See Also

pbs_tclsh(8B), pbs_wish(8B), pbs_mom(8B), pbs_server(8B), pbs_sched(8B)
PBS Professional 2020.1.1 Programmer’s Guide PG-107

Chapter 8 TCL/tk Interface
PG-108 PBS Professional 2020.1.1 Programmer’s Guide

9

Hooks

This chapter describes the PBS hook APIs. For more information on hooks, see the PBS Professional Administrator’s
Guide.

9.1 Introduction

A hook is a block of Python code that is triggered in response to queueing a job, modifying a job, moving a job, running
a job, submitting a PBS reservation, MoM receiving a job, MoM starting a job, MoM killing a job, a job finishing, and
MoM cleaning up a job. Each hook can accept (allow) or reject (prevent) the action that triggers it. The hook can mod-
ify the input parameters given for the action. The hook can also make calls to functions external to PBS. PBS provides
an interface for use by hooks. This interface allows hooks to read and/or modify things such as job and server attributes,
the server, queues, and the event that triggered the hook.

The Administrator creates any desired hooks.

This chapter contains the following man pages:

• pbs_module(7B)

• pbs_stathook(3B)

See the following additional man pages:

• qmgr(1B)

• qsub(1B)

• qmove(1B)

• qalter(1B)

• pbs_rsub(1B)

• pbs_manager(3B)

9.2 How Hooks Work

9.2.1 Hook Contents and Permissions

A hook contains a Python script. The script is evaluated by a Python 3 or later interpreter, embedded in PBS.

Hooks have a default Linux umask of 022. File permissions are inherited from the current working directory of the hook
script.

9.2.2 Accepting and Rejecting Actions

The hook script always accepts the current event request action unless an unhandled exception occurs in the script, a
hook alarm timeout is triggered or there's an explicit call to “pbs.event().reject()”.
PBS Professional 2020.1.1 Programmer’s Guide PG-109

Chapter 9 Hooks
9.2.3 Exceptions

A hook script can catch an exception and evaluate whether or not to accept or reject the event action. In this example,
while referencing the non-existent attribute pbs.event().job.interactive, an exception is triggered, but the event action is
still accepted:

…

try:

e = pbs.event()

if e.job.interactive:

 e.reject(“Interactive jobs not allowed”)

except SystemExit:

pass

except:

e.accept()

9.2.4 Unsupported Interfaces and Uses

Site hooks which read, write, close, or alter stdin, stdout, or stderr, are not supported. Hooks which use any interfaces
other than those described are unsupported.

9.3 Interface to Hooks

Two PBS APIs are used with hooks. These are pbs_manager() and pbs_stathook(). The pbs module provides
a Python interface to PBS.

9.3.1 The pbs Module

Hooks have access to a special module called “pbs”, which contains functions that perform PBS-related actions. This
module must be explicitly loaded by the hook writer via the call “import pbs”.

The pbs module provides an interface to PBS and the hook environment. The interface is made up of Python objects,
which have attributes and methods. You can operate on these objects using Python code.

9.3.1.1 Description of pbs Module
PG-110 PBS Professional 2020.1.1 Programmer’s Guide

Hooks Chapter 9
9.4 pbs_module

The interface is made up of Python objects, which have attributes and methods. You can operate on these objects using Python
code. For a description of each object, see the PBS Professional Administrator’s Guide.

9.4.0.1 pbs Module Objects

See "The pbs Module" on page 76 in the PBS Professional Hooks Guide.

9.4.0.2 pbs Module Global Attribute Creation Methods

See "PBS Types and Their Methods" on page 143 in the PBS Professional Hooks Guide.

9.4.0.3 Attributes and Resources

See "Using Attributes and Resources in Hooks" on page 44 in the PBS Professional Hooks Guide.

9.4.0.4 Exceptions

See "Table of Exceptions" on page 43 in the PBS Professional Hooks Guide and "Hook Alarm Calls and Unhandled Excep-
tions" on page 43 in the PBS Professional Hooks Guide.

9.4.0.5 See Also

The PBS Professional Administrator’s Guide, pbs_hook_attributes(7B), pbs_resources(7B), qmgr(1B)

9.4.1 The pbs_manager() API

The pbs_manager() API is described in "pbs_manager” on page 41.

The pbs_manager() API contains the following:

• An obj_name called “hook” defined as MGR_OBJ_HOOK, for use with non-built-in hooks

• An obj_name called “pbshook” defined as MGR_OBJ_PBS_HOOK, for use with built-in hooks.

• The following hook commands, which operate only on hook objects:

MGR_CMD_IMPORT

This command is used for loading the hook script contents into a hook.

MGR_CMD_EXPORT

This command is used for dumping to a file the contents of a hook script.

The parameters to MGR_CMD_IMPORT and MGR_CMD_EXPORT are specified via the attrib parameter of
pbs_manager().

For MGR_CMD_IMPORT, specify attropl “name” as “content-type”, “content-encoding”, and “input-file” along
with the corresponding “value” and an “op” of SET.

For MGR_CMD_EXPORT, specify attropl “name” as “content-type”, “content-encoding”, and “output-file” along
with the corresponding “value” and an “op” of SET.

Functions MGR_CMD_IMPORT, MGR_CMD_EXPORT, and MGR_OBJ_HOOK are used only with hooks, and
therefore require root privilege on the server host.

When obj_name is MGR_OBJ_PBS_HOOK, the only allowed options for command are MGR_CMD_SET,
MGR_CMD_UNSET, MGR_CMD_IMPORT, and MGR_CMD_EXPORT.
PBS Professional 2020.1.1 Programmer’s Guide PG-111

Chapter 9 Hooks
If MGR_CMD_IMPORT or MGR_CMD_EXPORT is specified when obj_name is MGR_OBJ_PBS_HOOK, the
attropl content-type must be “application/x-config”.

9.4.1.1 Troubleshooting

You can use pbs_geterrmsg() to determine the last error message received from the pbs_manager() call. For
instance, with a MGR_OBJ_PBS_HOOK where command is either MGR_CMD_IMPORT or MGR_CMD_EXPORT,
but attropl 'content-type' is not “application/x-config”, pbs_geterrmsg() returns:

“<content-type> must be application/x-config”

If an unrecognized hook configuration file suffix is given, whether for MGR_OBJ_HOOK or MGR_OBJ_PBS_HOOK,
pbs_geterrmsg() returns:

“<input-file> contains an invalid suffix, should be one of: .json .py .txt .xml .ini”

If the hook configuration file failed to be precompiled by PBS, pbs_geterrmsg() shows:

“Failed to validate config file, hook '<hook_name>' config file not overwritten"

9.4.1.2 Privilege for Hooks

To run, hooks require root privilege on Linux, and local Administrators privilege on Windows.
PG-112 PBS Professional 2020.1.1 Programmer’s Guide

Hooks Chapter 9
9.4.1.3 Examples of Using pbs_manager()

Example 9-1: The following:

qmgr -c 'import hook hook1 application/x-python base64 hello.py.b64'

is programmatically equivalent to:

static struct attropl imp_attribs[] = {

{ “content-type”,

(char *)0,

“application/x-python”,

SET,

(struct attropl *)&imp_attribs[1]

},

{ “content-encoding”,

(char *)0,

“base64”,

SET,

(struct attropl *)&imp_attribs[2]},

{ “input-file”,

(char *)0,

“hello.py.b64”,

SET,

(struct attropl *)0

}

};

pbs_manager(con, MGR_CMD_IMPORT, MGR_OBJ_HOOK, “hook1”, &imp_attribs[0], NULL);

Example 9-2: The following:

qmgr -c 'export hook hook1 application/x-python default hello.py'

is programmatically equivalent to:

static struct attropl exp_attribs[] = {

{ “content-type”,

(char *)0,

“application/x-python”,

SET,

(struct attropl *)&exp_attribs[1]},

{ “content-encoding”,

(char *)0,

“default”,

SET,

(struct attropl *)&exp_attribs[2]},

{ “output-file”,

(char *)0,

“hello.py”,

SET,

(struct attropl *)0
PBS Professional 2020.1.1 Programmer’s Guide PG-113

Chapter 9 Hooks
}

};

pbs_manager(con, MGR_CMD_EXPORT, MGR_OBJ_HOOK, “hook1”, &exp_attribs[0], NULL);

Example 9-3: The following:

qmgr -c 'import pbshook hook1 application/x-config default hello.json'
PG-114 PBS Professional 2020.1.1 Programmer’s Guide

Hooks Chapter 9
is programmatically equivalent to:

static struct attropl imp_attribs[] = {

{ “content-type”,

(char *)0,

“application/x-config”,

SET,

(struct attropl *)&imp_attribs[1]},

{ “content-encoding”,

(char *)0,

“default”,

SET,

(struct attropl *)&imp_attribs[2]},

{ “input-file”,

(char *)0,

“hello.json”,

< SET,

(struct attropl *)0

}

};

pbs_manager(con, MGR_CMD_IMPORT, MGR_OBJ_PBS_HOOK, “hook1”, &imp_attribs[0], NULL);

Example 9-4: The following:

qmgr -c 'export pbshook hook1 application/x-config default hello.json'

is programmatically equivalent to:

static struct attropl exp_attribs[] = {

{ “content-type”,

(char *)0,

“application/x-config”,

SET,

(struct attropl *)&exp_attribs[1]},

{ “content-encoding”,

(char *)0,

“default”,

SET,

(struct attropl *)&exp_attribs[2]},

{ “output-file”,

(char *)0,

“hello.json”,

SET,

(struct attropl *)0

}

};

pbs_manager(con, MGR_CMD_EXPORT,

MGR_OBJ_PBS_HOOK, “hook1”, &exp_attribs[0], NULL);
PBS Professional 2020.1.1 Programmer’s Guide PG-115

Chapter 9 Hooks
9.4.2 The pbs_stathook() API

The PBS API called “pbs_stathook()” is used to get attributes and values for site hooks and built-in hooks.

The prototype for pbs_stathook() is as follows:

struct batch_status *pbs_stathook(int connect, char *hook_name, struct attrl *attrib, char
*extend)

To query status for site hooks:

The call to pbs_stathook() causes a PBS_BATCH_StatusHook request to be sent to the server. In reply, the PBS
server returns a batch reply status of object type MGR_OBJ_HOOK listing the attributes and values that were
requested relating to a particular hook or all hooks of type HOOK_SITE. Leave the extend value blank.

To query status for built-in hooks:

Pass PBS_HOOK as the extend value. The server returns a batch reply status of object type
MGR_OBJ_PBS_HOOK.

9.4.2.1 Example of Using pbs_stathook()

To list all site hooks using qmgr:

qmgr -c "list hook"

To list all site hooks using the pbs_stathook() API:

pbs_stathook()

The result is the same. For example, if there are two site hooks, c3 and c36:

Hook c3

type = site

enabled = true

event = queuejob, modifyjob

user = pbsadmin

alarm = 30

order = 1

Hook c36

type = site

enabled = true

event = resvsub

user = pbsadmin

alarm = 30

order = 1
PG-116 PBS Professional 2020.1.1 Programmer’s Guide

Hooks Chapter 9
9.5 pbs_stathook(3B)

get status information about PBS site hooks

9.5.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

struct batch_status *pbs_stathook(int connect, char *hook_id, struct attrl *output_attribs, char *extend)

void pbs_statfree(struct batch_status *psj)

9.5.2 Description

Issues a batch request to get the status of a specified site hook or a set of site hooks at the current server.

Generates a Status Hook batch request and sends it to the server over the connection specified by connect.

9.5.2.1 Required Privilege

This API can be executed only by root on the local server host.

9.5.3 Arguments

connect

Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

hook_id

Hook name, null string, or null pointer.

If hook_id specifies a name, the attribute-value list for that hook is returned.

If hook_id is a null string or a null pointer, the status of all hooks at the current server is returned.

output_attribs

Pointer to a list of attributes to return. If this list is null, all attributes are returned. Each attribute is described in
an attrl structure, defined in pbs_ifl.h as:

struct attrl {

char *name;

char *resource;

char *value;

struct attrl *next;

};

extend

Character string where you can specify limits or extensions of your selection.

9.5.3.1 Members of attrl Structure

name

Points to a string containing the name of the attribute.
PBS Professional 2020.1.1 Programmer’s Guide PG-117

Chapter 9 Hooks
resource

Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.

value

Should always be a pointer to a null string.

next

Points to next attribute in list. A null pointer terminates the list.

9.5.4 Return Value

Returns a pointer to a list of batch_status structures for the specified site hook. If no site hook can be queried for status,
returns the null pointer.

If an error occurred, the routine returns a null pointer, and the error number is available in the global integer pbs_errno.

9.5.4.1 The batch_status Structure

The batch_status structure is defined in pbs_ifl.h as

struct batch_status {

struct batch_status *next;

char *name;

struct attrl *attribs;

char *text;

}

9.5.5 Cleanup

You must free the list of batch_status structures when no longer needed, by calling pbs_statfree().

9.5.6 Error Messages

The following error message is returned by the pbs_geterrmsg() API after calling pbs_manager() operating on
a hook object, with the MGR_CMD_IMPORT command, with “content-type” of “application/x-config”:

“Failed to validate config file, hook 'submit' config file not overwritten”

If the input config file given is of unrecognized suffix, then the following message is returned by the
pbs_geterrmsg() API after calling pbs_manager() operating on a hook object, MGR_CMD_IMPORT com-
mand with “content-type” of “application/x-config”:

“<input-file> contains an invalid suffix, should be one of: .json .py .txt .xml .ini”

If you specify an unknown hook event, pbs_geterrmsg() returns the following after calling pbs_manager():

invalid argument (<bad_event>) to event. Should be one or more of:
queuejob,modifyjob,resvsub,movejob,runjob,provision,execjob_begin,execjob_prologue,execjob_e
pilogue,execjob_preterm,execjob_end,exechost_periodic,execjob_launch,exechost_startup or ""
for no event

If you specify an invalid value for a hook’s debug attribute, the following error message appears in qmgr's stderr and is
returned by pbs_geterrmsg() after calling pbs_manager():

“unexpected value '<bad_val>' must be (not case sensitive) true|t|y|1|false|f|n|0”
PG-118 PBS Professional 2020.1.1 Programmer’s Guide

Hooks Chapter 9
A runjob hook cannot set the value of a Resource_LIst member other than those listed in "Table: Reading & Setting
Built-in Job Resources in Hooks" on page 60 in the PBS Professional Hooks Guide. Setting any of the wrong resources
results in the following:

• The hook request is rejected

• The following message is the output from calling pbs_geterrmsg() after the failed pbs_runjob():
“ request rejected by filter hook: '<hook name>' hook failed to set job's

Resource_List.<resc_name> = <resc_value> (not allowed)”

9.5.7 See Also

pbs_connect, pbs_statfree, “Hook Attributes” on page 349 of the PBS Professional Reference Guide
PBS Professional 2020.1.1 Programmer’s Guide PG-119

Chapter 9 Hooks
PG-120 PBS Professional 2020.1.1 Programmer’s Guide

10

Custom Authentication and

Encryption Library APIs

This chapter describes LibAuth, which contains APIs you can use to create your own custom authentication or encryption
library.

Call the pbs_auth_set_config API first before calling any other LibAuth API.

Table of Authentication and Encryption APIs

9.1 pbs_auth_set_config . 120
9.2 pbs_auth_create_ctx . 121
9.3 pbs_auth_destroy_ctx . 123
9.4 pbs_auth_get_userinfo. 124
9.5 pbs_auth_process_handshake_data . 126
9.6 pbs_auth_encrypt_data . 128
9.7 pbs_auth_decrypt_data . 129
PBS Professional 2020.1.1 Programmer’s Guide PG-121

Chapter 10 Custom Authentication and Encryption Library APIs
10.1 pbs_auth_set_config

specify configuration for authentication library

10.1.1 Synopsis

void pbs_auth_set_config(const pbs_auth_config_t *auth_config)

10.1.2 Description

Specifies configuration for the authentication library. Use this to specify logging method, where to find required creden-
tials, etc.

Call this API first before calling any other LibAuth API.

10.1.3 Arguments

const pbs_auth_config_t *auth_config

Pointer to a configuration structure

10.1.4 Configuration Structure

typedef struct pbs_auth_config {

char *pbs_home_path;
Path to PBS_HOME directory (aka same value as PBS_HOME in pbs.conf). This must be a null-terminated
string.

char *pbs_exec_path;
Path to PBS_EXEC directory (aka same value as PBS_EXEC in pbs.conf). This must be a null-terminated
string.

char *auth_method;
Name of authentication method (aka same value as PBS_AUTH_METHOD in pbs.conf). This must be a
null-terminated string.

char *encrypt_method;
Name of encryption method (aka same value as PBS_ENCRYPT_METHOD in pbs.conf). This must be a
null-terminated string

void (*logfunc)(int type, int objclass, int severity, const char *objname, const char *text);
Function pointer to the logging method with the same signature as log_event from Liblog.

With this, the user of the authentication library can redirect logs from the authentication library into respec-
tive log files or stderr in case no log files.

If func is set to NULL then logs will be written to stderr (if available, else no logging at all).

} pbs_auth_config_t;

10.1.5 Return Value

None return value
PG-122 PBS Professional 2020.1.1 Programmer’s Guide

Custom Authentication and Encryption Library APIs Chapter 10
10.2 pbs_auth_create_ctx

create authentication context

10.2.1 Synopsis

int pbs_auth_create_ctx(void **ctx, int mode, int conn_type, char *hostname)

10.2.2 Description

Creates an authentication context for a given mode and connection type. Context is used by other LibAuth APIs for
authentication, encryption, and decryption of data.

10.2.3 Arguments

void **ctx

Pointer to auth context to be created

int mode

Specifies type of context to be created. Should be one of AUTH_CLIENT or AUTH_SERVER.

Use AUTH_CLIENT for client-side (who is initiating authentication) context

Use AUTH_SERVER for server-side (who is authenticating incoming user/connection) context

enum AUTH_ROLE {

AUTH_ROLE_UNKNOWN = 0,

AUTH_CLIENT,

AUTH_SERVER,

AUTH_ROLE_LAST

};

int conn_type

Specifies type of connection is for context to be created. Should be one of AUTH_USER_CONN or
AUTH_SERVICE_CONN

Use AUTH_USER_CONN for user-oriented connection (such as when PBS client is connecting to PBS server)

Use AUTH_SERVICE_CONN for service-oriented connection (such as when PBS MoM is connecting to PBS
server via PBS comm)

enum AUTH_CONN_TYPE {

AUTH_USER_CONN = 0,

AUTH_SERVICE_CONN

};

char *hostname

The null-terminated hostname of another authenticating party

10.2.4 Return Value

Integer.
PBS Professional 2020.1.1 Programmer’s Guide PG-123

Chapter 10 Custom Authentication and Encryption Library APIs
0

On Success

1

On Failure

10.2.5 Cleanup

When a context created using this API is no longer required, destroy it via auth_destroy_ctx.
PG-124 PBS Professional 2020.1.1 Programmer’s Guide

Custom Authentication and Encryption Library APIs Chapter 10
10.3 pbs_auth_destroy_ctx

destroy an authentication context created using auth_create_ctx

10.3.1 Synopsis

void pbs_auth_destroy_ctx(void *ctx)

10.3.2 Description

Destroys the authentication context created using auth_create_ctx

10.3.3 Arguments

void *ctx

Pointer to authentication context to be destroyed

10.3.4 Return Value

No return value
PBS Professional 2020.1.1 Programmer’s Guide PG-125

Chapter 10 Custom Authentication and Encryption Library APIs
10.4 pbs_auth_get_userinfo

extract username with its realm, and hostname of connecting party from authentication context

10.4.1 Synopsis

int pbs_auth_get_userinfo(void *ctx, char **user, char **host, char **realm)

10.4.2 Description

Extracts username with its realm, and hostname of the connecting party from the given authentication context.

The extracted user, host, and realm values are null-terminated strings.

This API is mostly useful for authenticating on the server side to get information about an authenticating client.

The authenticating server can use this information from the auth library to match against the actual username/realm/host-
name provided by the connecting party.

10.4.3 Arguments

void *ctx

Pointer to auth context from which information will be extracted

char **user

Pointer to a buffer in which this API will write the user name

char **host

Pointer to a buffer in which this API will write hostname

char **realm

Pointer to a buffer in which this API will write the realm

10.4.4 Return Value

Integer

0

On success

1

On failure

10.4.5 Cleanup

When the returned user, host, and realm are no longer required, free them using free(), since they use allocated heap
memory.
PG-126 PBS Professional 2020.1.1 Programmer’s Guide

Custom Authentication and Encryption Library APIs Chapter 10
10.4.6 Example

This example shows what the values of user, host, and realm will be. Let's use an example with GSS/Kerberos authenti-
cation, where the authentication client hostname is "xyz.abc.com", the username is "test", and in the Kerberos configura-
tion, the domain realm is "PBSPRO". When the client authenticates to the server using the Kerberos authentication
method, it is authenticated as "test@PBSPRO", and this API returns user = test, host = xyz.abc.com, and realm =
PBSPRO.
PBS Professional 2020.1.1 Programmer’s Guide PG-127

Chapter 10 Custom Authentication and Encryption Library APIs
10.5 pbs_auth_process_handshake_data

handle and generate handshakes, and generate handshake data

10.5.1 Synopsis

int pbs_auth_process_handshake_data(void *ctx, void *data_in, size_t len_in, void **data_out, size_t *len_out, int
*is_handshake_done)

10.5.2 Description

Process incoming handshake data and do the handshake. If required generate handshake data which to be sent to another
party. If there is no incoming data then initiate a handshake and generate initial handshake data to be sent to the authen-
tication server.

10.5.3 Arguments

void *ctx

Pointer to authentication context for which handshake is happening

void *data_in

Incoming handshake data to process, if any. A NULL value indicates that this API should initiate a handshake
and generate initial handshake data to be sent to the authentication server.

size_t len_in

Length of incoming handshake data, if any, else 0

void **data_out

Outgoing handshake data to be sent to another authentication party.

A NULL value indicates that the handshake is completed and no further data needs to be sent.

When this API returns 1 (failure), data_out contains the error message.

size_t *len_out

Length of outgoing handshake/auth error data, if any, else 0

int *is_handshake_done

Indicates whether handshake is completed or not.

0 means that the handshake is not completed.

1 means that the handshake is completed.

10.5.4 Return Value

Integer

0

On success

1

On failure

On failure, the value of data_out is the error data/message, to be sent to another authentication party as authen-
tication error data.
PG-128 PBS Professional 2020.1.1 Programmer’s Guide

Custom Authentication and Encryption Library APIs Chapter 10
10.5.5 Cleanup

When the returned data_out (if any) is no longer required, free it using free(), since it uses allocated heap memory.
PBS Professional 2020.1.1 Programmer’s Guide PG-129

Chapter 10 Custom Authentication and Encryption Library APIs
10.6 pbs_auth_encrypt_data

encrypt data using specified authentication context

10.6.1 Synopsis

int pbs_auth_encrypt_data(void *ctx, void *data_in, size_t len_in, void **data_out, size_t *len_out)

10.6.2 Description

Encrypt given unencrypted data using the specified authentication context.

10.6.3 Arguments

void *ctx

Pointer to auth context which will be used while encrypting given unencrypted data

void *data_in

unencrypted data to encrypt

size_t len_in

Length of unencrypted data

void **data_out

Encrypted data

size_t *len_out

Length of encrypted data

10.6.4 Return Value

Integer

0

Success

1

Failure

10.6.5 Cleanup

When the returned data_out is no longer required, free it using free(), since it uses allocated heap memory.
PG-130 PBS Professional 2020.1.1 Programmer’s Guide

Custom Authentication and Encryption Library APIs Chapter 10
10.7 pbs_auth_decrypt_data

decrypt data

10.7.1 Synopsis

int pbs_auth_decrypt_data(void *ctx, void *data_in, size_t len_in, void **data_out, size_t *len_out)

10.7.2 Description

Decrypt encrypted data using the specified authentication context

10.7.3 Arguments

void *ctx

Pointer to authentication context which will be used while decrypting given encrypted data

void *data_in

Encrypted data to decrypt

size_t len_in

Length of encrypted data

void **data_out

Unencrypted data

size_t *len_out

Length of unencrypted data

10.7.4 Return Value

Integer

0

On success

1

On failure

10.7.5 Cleanup

When the returned data_out is no longer required, free it using free(), since it uses allocated heap memory.
PBS Professional 2020.1.1 Programmer’s Guide PG-131

Chapter 10 Custom Authentication and Encryption Library APIs
PG-132 PBS Professional 2020.1.1 Programmer’s Guide

Index

A
activereq PG-100
addreq PG-100
allreq PG-100

C
closerm PG-100
commands PG-4
configrm PG-100
credential PG-21

D
downrm PG-100

E
executor PG-4

F
flushreq PG-100
fullresp PG-100

G
getreq PG-100

J
job

executor (MoM) PG-4
scheduler PG-4

M
MoM PG-3, PG-4

O
openrm PG-100

P
pbs_alterjob PG-24
pbs_asyrunjob PG-26, PG-57
pbs_auth_create_ctx PG-123
pbs_auth_decrypt_data PG-131
pbs_auth_destroy_ctx PG-125
pbs_auth_encrypt_data PG-130
pbs_auth_get_userinfo PG-126

pbs_auth_process_handshake_data PG-128
pbs_auth_set_config PG-122
pbs_connect PG-21, PG-30
pbs_default PG-32
pbs_deljob PG-33
pbs_delresv PG-35
pbs_disconnect PG-36
pbs_geterrmsg PG-37
pbs_holdjob PG-38
pbs_iff PG-21
pbs_locjob PG-39
pbs_manager PG-41
pbs_module PG-111
pbs_mom PG-3, PG-4
pbs_movejob PG-47
pbs_msgjob PG-49
pbs_orderjob PG-51
pbs_preempt_jobs PG-52
pbs_relnodesjob PG-54
pbs_rerunjob PG-55
pbs_rlsjob PG-56
pbs_runjob PG-26, PG-57
pbs_sched PG-2, PG-3, PG-4
pbs_selectjob PG-59
pbs_selstat PG-62
pbs_server PG-2, PG-3
pbs_sigjob PG-66
pbs_statfree PG-68
pbs_stathook(3B) PG-117
pbs_stathost PG-69
pbs_statjob PG-71
pbs_statnode PG-74
pbs_statque PG-76
pbs_statresv PG-78
pbs_statrsc PG-80
pbs_statsched PG-82
pbs_statserver PG-84
pbs_statvnode PG-86
pbs_submit PG-88
pbs_submit_resv PG-90
pbs_tclapi PG-104
pbs_tclsh PG-103
pbs_terminate PG-92
pbs_wish PG-103
PBS Professional 2020.1 Programmer’s Guide PG-133

Index
S
scheduler PG-3, PG-4
server PG-3

T
TCL PG-103
tm_atnode PG-94
tm_attach PG-94
tm_finalize PG-94
tm_init PG-94
tm_kill PG-94
tm_nodeinfo PG-94
tm_notify PG-94
tm_obit PG-94
tm_poll PG-94
tm_publish PG-94
tm_rescinfo PG-94
tm_spawn PG-94
tm_subscribe PG-94
tm_taskinfo PG-94
PG-134 PBS Professional 2020.1 Programmer’s Guide

Altair®

PBS Professional®

2020.1.1

Cloud Guide

You are reading the Altair PBS Professional 2020.1.1

Cloud Guide (CG)

Updated 9/30/20

Copyright © 2003-2020 Altair Engineering, Inc. All rights reserved.

ALTAIR ENGINEERING INC. Proprietary and Confidential. Contains Trade Secret Information. Not for use or disclo-
sure outside of Licensee’s organization. The software and information contained herein may only be used internally and
are provided on a non-exclusive, non-transferable basis. Licensee may not sublicense, sell, lend, assign, rent, distribute,
publicly display or publicly perform the software or other information provided herein, nor is Licensee permitted to
decompile, reverse engineer, or disassemble the software. Usage of the software and other information provided by Altair
(or its resellers) is only as explicitly stated in the applicable end user license agreement between Altair and Licensee. In
the absence of such agreement, the Altair standard end user license agreement terms shall govern.

Use of Altair’s trademarks, including but not limited to “PBS™”, “PBS Professional®”, and “PBS Pro™”, “PBS
Works™”, “PBS Control™”, “PBS Access™”, “PBS Analytics™”, “PBScloud.io™”, and Altair’s logos is subject to
Altair's trademark licensing policies. For additional information, please contact Legal@altair.com and use the wording
“PBS Trademarks” in the subject line.

For a copy of the end user license agreement(s), log in to https://secure.altair.com/UserArea/agreement.html or contact
the Altair Legal Department. For information on the terms and conditions governing third party codes included in the
Altair Software, please see the Release Notes.

This document is proprietary information of Altair Engineering, Inc.

Contact Us

For the most recent information, go to the PBS Works website, www.pbsworks.com, select "My PBS", and log in with
your site ID and password.

Altair

Altair Engineering, Inc., 1820 E. Big Beaver Road, Troy, MI 48083-2031 USA www.pbsworks.com

Sales

pbssales@altair.com 248.614.2400

Please send any questions or suggestions for improvements to agu@altair.com.

https://secure.altair.com/UserArea/agreement.html
http://www.pbsworks.com
http://www.pbsworks.com

Technical Support

Need technical support? We are available from 8am to 5pm local times:

Location Telephone e-mail

Australia +1 800 174 396 anz-pbssupport@india.altair.com

China +86 (0)21 6117 1666 pbs@altair.com.cn

France +33 (0)1 4133 0992 pbssupport@europe.altair.com

Germany +49 (0)7031 6208 22 pbssupport@europe.altair.com

India +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

Italy +39 800 905595 pbssupport@europe.altair.com

Japan +81 3 6225 5821 pbs@altairjp.co.jp

Korea +82 70 4050 9200 support@altair.co.kr

Malaysia +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

North America +1 248 614 2425 pbssupport@altair.com

Russia +49 7031 6208 22 pbssupport@europe.altair.com

Scandinavia +46 (0)46 460 2828 pbssupport@europe.altair.com

Singapore +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

South Africa +27 21 831 1500 pbssupport@europe.altair.com

South America +55 11 3884 0414 br_support@altair.com

UK +44 (0)1926 468 600 pbssupport@europe.altair.com

Contents

1 Installing Cloud Bursting Module 1
1.1 Supported Platforms for Cloud . 1

1.2 Supported Cloud Providers . 1

1.3 Prerequisites . 2

1.4 Recommended Configurations . 2

1.5 Installation Steps. 3

1.6 Configuring a Cloud Head Node in Azure . 6

1.7 Sample Cloud Hook Configuration File . 10

1.8 Command Reference and Sample Output for pkr . 11

1.9 Logging into Cloud . 14

2 Configuring Cloud Bursting 15
2.1 Introduction to Cloud Bursting . 15

2.2 Cloud Bursting Startup Script . 17

2.3 Configure PBS Professional for Cloud Bursting . 21

2.4 Manage Cloud Bursting. 40

2.5 Troubleshoot Cloud Bursting. 49

2.6 Manage Cloud and On-Premise Jobs . 49

2.7 Run Cloud Jobs On-Premise Before Bursting. 51

2.8 Modify the Bursting Hook . 53

2.9 Start and Stop Cloud After a Manual Installation . 56

3 Using Cloud Provider Services 59
3.1 Windows Bursting on AWS and Azure . 59

3.2 Configuring Amazon Web Service Cloud Bursting . 60

3.3 Configuring Microsoft Azure Cloud Bursting . 73

3.4 Configure Google Cloud Platform Cloud Bursting. 87

3.5 Configure Oracle Cloud Platform Cloud Bursting . 95

3.6 Configure Orange Cloud Flexible Engine for Cloud Bursting . 108

3.7 Configure HUAWEI Cloud for Cloud Bursting . 117

3.8 Configure Open Telekom Cloud for Cloud Bursting . 125

3.9 AWS Spot Pricing . 133

4 Running Cloud Jobs 139
4.1 Introduction . 139

4.2 Sample Job Script: Cloud Job. 139

4.3 Logging into Cloud . 139

Index 141
PBS Professional 2020.1 Cloud Guide CG-v

Contents
CG-vi PBS Professional 2020.1 Cloud Guide

1

Installing Cloud Bursting

Module

1.1 Supported Platforms for Cloud

• CentOS 6, 7

• RHEL 6, 7

• SLES 12

1.2 Supported Cloud Providers

You must already have an account with one of the supported cloud providers:

• Microsoft Azure

• Amazon Web Services (AWS)

• Google Cloud Platform (GCP)

• Oracle Cloud Platform

• Orange Cloud Flexible Engine

• Open Telekom Cloud (OTC)

• HUAWEI Cloud
PBS Professional 2020.1.1 Cloud Guide CG-1

Chapter 1 Installing Cloud Bursting Module
1.3 Prerequisites

• A working PBS complex managed by PBS Professional version 2020.1. The PBS complex can be either of the rec-
ommended configurations in Recommended Configurations

• Altair License Server 14.5 or later

• PBSProNodes v20 license

• docker-ce v19.x or later

• The root filesystem must be ext3 or ext4, XFS can NOT be used (docker issue)

• An additional volume could be added to the system using ext3/ext4 and docker configured to use this volume;
see section 1.6, “Configuring a Cloud Head Node in Azure”, on page 6 for steps involved.

• Current install procedure assumes Centos or RedHat (requires yum)

• SELinux must be disabled (reboot the system to make this the active config)

• Firewalld must be disabled and stopped

• VPN connection to the cloud you will use

• Except in the case of a cloud hosted head node.

• Cloud account with:

• Correct authorizations

• Budget to run cloud infrastructure.

1.4 Recommended Configurations

Head node and service node can be one of either:

• Both on premises

• Both in cloud

Do not put one on premises and one in the cloud.

See section 1.6, “Configuring a Cloud Head Node in Azure”, on page 6.

1.4.1 Recommended Configuration for Larger Installations

For larger installations using on premises hosts:

• Hosts on premises for PBS server, scheduler, some MoM daemons, cloud service node

• Head, service, and first N execution nodes are on premises

• Extra execution nodes are burst

• On head node, PBS components running as usual

• On service node

• Cloud is designed to run in a container

• VPN connection to the cloud you will use
CG-2 PBS Professional 2020.1.1 Cloud Guide

Installing Cloud Bursting Module Chapter 1
Notes:

• You many not want Docker on the head node, because it may impose too high a load.

• All components are mix-and-match (with Docker restriction).

• The Cloud module may cause too much load to be run on the head node.

• You don’t need to configure additional pbs_comm daemons for cloud nodes, because cloud can't cause enough
throughput to need one.

• For PBS configuration instructions, see the PBS Professional Administrator’s Guide.

1.4.2 Recommended Configuraton for Smaller Installations

For smaller installations cloud-only installations where the workload is low enough:

• All PBS components can be hosted in the cloud

• All components can run on the same node

• You can run Docker on the same node as the PBS components

Notes:

• No VPN is required for this configuration.

• See section 1.6, “Configuring a Cloud Head Node in Azure”, on page 6.

1.5 Installation Steps

1. Log in as root

2. Install, start, and enable docker-ce:

yum install -y yum-utils

yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo

yum install docker-ce docker-ce-cli containerd.io

systemctl enable docker

systemctl start docker

3. Extract the installer to $home:

tar xvfz pbspro-cloud-pbspro-cloud.tar.gz

4. If the PBS cloud hook, named “cloud_hook”, exists, delete it:

qmgr -c 'd h cloud_hook'

5. Install PBS cloud feature, PBS cloud hook, and Cloud command layer. Execute the installation script: Change direc-
tory to pbspro-cloud-installer directory:

cd pbspro-cloud-installer

./install.sh

6. If the Cloud command is already installed please use this command and then retry 5:

hook/install.sh --type uninstall

7. Create an alias to easily use pkr. Type the following all one line:

alias pkr=” docker run -ti --network host --rm -e PBSCLOUD_VERSION=pbspro-cloud-2020.2
PKR_VERSION=pbspro-cloud-2020.2 -v /run/docker.sock:/run/docker.sock -v /root/kard:/pkr/kard
pbscloudio.azurecr.io/pkr:pbspro-cloud-2020.2 pkr”
PBS Professional 2020.1.1 Cloud Guide CG-3

Chapter 1 Installing Cloud Bursting Module
8. Make sure that relevant services are up and running. Each should have an IP address. See section 1.8.1, “Sample
pkr Output on Startup”, on page 11 for sample healthy output reference data for pkr.

pkr ps

9. If hosting a head node in the cloud, use the vendor tools to open access to port 9980 so you can use the Cloud web
interface.

10. Go to the Cloud interface in your web browser and log in:

http://<server>:9980/pbspro-cloud/#/login

• Login: pbsadmin@altair

• Password: Altair@123

11. Build your cloud environment. We give an example using Azure, but you can use any of the supported cloud provid-
ers. For how to use the various provided clouds, see Chapter 3, "Using Cloud Provider Services", on page 59.

12. If using Azure: configure a cloud resource group To configure a cloud resource group and network in Azure:

a. Follow section 3.3.3, “Create a Resource Group”, on page 77

b. Follow section 3.3.4, “Create a Virtual Network”, on page 77

13. If using Azure: register Cloud with Azure; see section 3.3.1, “Register the Cloud Application with Azure”, on page
73

a. Use http/://<server>:9980/pbspro-cloud/ for your Cloud service address (App Registration step) where the doc-
umentation may point you towards https://<hostname>:9500/pc/ or similar, and noting that this edition of Cloud
is running on http (Azure interface requires https) - this is expected and managed internally in Azure)

b. Ensure you configure IAM for your App Registration at the Subscription level (use search to locate Subscription
if required) for the subscription containing your Resource Group

c. Obtain the relevant keys to register your cloud account in PBS Cloud

14. If using Azure: add a Microsoft Azure account; see section 3.3.2, “Add a Microsoft Azure Cloud Account”, on page
76

a. Connect PBS Cloud to your Azure account

b. Wait for status to change to READY in PBS Cloud

15. If using Azure: to build out your cloud infrastructure, including your burst node image, in Azure:

a. Follow section 3.3.5, “Create a Virtual Machine”, on page 78

b. Follow section 3.3.6, “Install the PBS MoM on the VM”, on page 80

c. Ensure you install cloud-init in your cloud Virtual Machine before converting it into an image for bursting in the
next step (10.7.7)

yum install -y cloud-init

d. Follow section 3.3.7, “Create an OS Image”, on page 82
CG-4 PBS Professional 2020.1.1 Cloud Guide

Installing Cloud Bursting Module Chapter 1
16. If using Azure: create an Azure cloud bursting scenario; see section 3.3.8, “Create an Azure Cloud Bursting Sce-
nario”, on page 83

a. Create a scenario for bursting. Recommended options:

• Give it a short name (all lower case): e.g. hyperburst

• Select Managed Disks

• Select Public IP (To debug burst nodes, deactivate once productionised)

• Suggest using Standard_A4 image for minimal cost

• Provide a cloud-init script; see section 2.2.4, “Example of a cloud-init Script for a Linux Virtual Machine”,
on page 18 for a sample script

• Follow the procedure to create a scenario token and store the token safely (it is lost once you close the win-
dow, though you can simply create another if you lose it)

17. This and the rest of the steps are for all cloud providers. Configure the cloud PBS Professional resources. For more
information, see section 2.3, “Configure PBS Professional for Cloud Bursting”, on page 21.

qmgr -c 'create resource cloud_queue type=boolean'

qmgr -c 'create resource cloud_instance_type type=string'

qmgr -c 'create resource cloud_node_instance_type type=string,flag=h'

qmgr -c 'create resource cloud_min_instances type=long'

qmgr -c 'create resource cloud_max_instances type=long'

qmgr -c 'create resource cloud_provisioned_time type=long,flag=h'

qmgr -c 'create resource lic_signature type=string,flag=h'

qmgr -c 'create resource cloud_node_image type=string,flag=h'

qmgr -c 'create resource cloud_network type=string,flag=h'

qmgr -c 'create resource node_location type=string,flag=h'

qmgr -c 'create resource cloud_max_jobs_check_per_queue type=long'

qmgr -c 'create resource cloud_scenario type=string,flag=h'

qmgr -c 'create resource burst_by_hook type=boolean'

18. Update sched_config to add cloud_scenario, cloud_node_image, cloud_node_instance_type, e.g.

resources: “ncpus, mem, arch, host, vnode, netwins, aoe, cloud_scenario, cloud_node_image,
cloud_node_instance_type”

19. Reread the sched config file: Either HUP the scheduler or restart PBS

20. Config PBS server limits

qmgr -c 'set server resources_available.cloud_min_instances = 0'

qmgr -c 'set server resources_available.cloud_max_instances = 1'

21. Create a cloud queue and attach scenario name

This assumes scenario is called hyperburst and you configured Standard_A4 in the PBS Cloud web interface as
instance types, change as appropriate for your configuration options.

qmgr -c 'c q cloudq queue_type=execution'

qmgr -c 's q cloudq enabled=t'

qmgr -c 's q cloudq started=t'

qmgr -c 's q cloudq resources_available.cloud_queue = True'

qmgr -c 's q cloudq resources_available.cloud_max_jobs_check_per_queue = 1000'

qmgr -c 's q cloudq resources_available.cloud_scenario=hyperburst'

qmgr -c 's q cloudq resources_available.cloud_instance_type=Standard_A4'
PBS Professional 2020.1.1 Cloud Guide CG-5

Chapter 1 Installing Cloud Bursting Module
22. Configure cloud hook configuration file with scenario details. See section 2.3.9, “Configure the Cloud Bursting
Hook”, on page 35. Once configured the changes go live immediately.

23. Test manual burst of one node from web interface

• Ensure Public IP is activated in the scenario to allow access to the node for debugging purposes in case there are
issues

• Example: If following Configuring a Cloud Head Node in Azure for a cloud head node, then if /home fails to
mount

• The cloud-init script may need tuning to make this successful, such as mounting home directory to avoid
passwordless ssh, or having a directory with all apps on it and mounting that on each cloud compute node; that
way you can just update the directory.

• Typical cycle is burst, check, unburst, modify config/cloud-init, repeat

24. Enable the cloud hook in PBS:

qmgr -c 'set hook cloud_hook enabled = true'

To check the state of the hook:

qmgr -c 'l h cloud_hook'

25. Execute a test job; see section 4.2, “Sample Job Script: Cloud Job”, on page 139

26. What does success look like?

• In output of qstat for job, you see “job can never run”

• Auto bursting is triggered, and the web interface shows a workflow in action

• The job runs on the burst node

• The node un-bursts sometime later when it is idle

• All job outputs are returned successfully prior to unburst

1.6 Configuring a Cloud Head Node in Azure

Here we show an example of how to configure a cloud head node using Azure:

1. Create a new VM based on Centos 7, using Rogue Wave Software’s CentOS-based 7.6 image, not an HPC tagged
version

• Use Standard_D14 instance type for head node (Good price/performance option)

• Add additional storage: 1000GB SSD to allow an ext4 volume to be added; the Centos image uses XFS filesys-
tem which has a bug with docker

2. Provide a public ssh key for the username “centos” via Azure GUI

This is the only default user in this image

3. Once the node is up, use the provided external IP and your private key to connect to it. PuTTY is more robust for
connection to cloud than Moba xTerm

4. Unless noted otherwise all the following commands must be run as root. Use sudo or the following to switch to the
root user:

sudo su -
CG-6 PBS Professional 2020.1.1 Cloud Guide

Installing Cloud Bursting Module Chapter 1
5. Use cfdisk to partition /dev/sdc using all space for a single volume. Make absolutely sure that /dev/sdc is the
right target. The target depends on instance type chosen and how many disks are added; if you followed the proce-
dure exactly this should be correct in this case‚ but formatting is destructive to data on the disk.

cfdisk /dev/sdc

a. Select New

b. Select Primary

c. Accept Default Size (Should be whole disk)

d. Select Write

e. Answer yes (You will need to type yes)

f. Select Quit

6. Create a filesystem on your drive (ext4 preferred):

mkfs -t ext4 /dev/sdc1

7. Make a folder to mount your new volume to:

mkdir /data

8. Set suitable permissions on the folder:

chmod 777 /data

9. Find UUID from /dev/disk/by-uuid, e.g.

lrwxrwxrwx 1 root root 10 Apr 1 12:48 640a03fd-aa69-4f8d-98d5-2f0d3d12bb26 -> ../../sdb1

lrwxrwxrwx 1 root root 10 Apr 1 12:48 a505f591-5a7d-424f-a5a1-06dcb72f944c -> ../../sda1

lrwxrwxrwx 1 root root 10 Apr 1 12:48 c6cd262b-3930-48a8-9b21-8981bb479cee -> ../../sdc1

lrwxrwxrwx 1 root root 10 Apr 1 12:48 e0d6ff47-4c69-4a4c-b44a-13ea19d80f96 -> ../../sda2

10. Add a line to end of /etc/fstab for this mount (Note: ID of /dev/sdc1 above):

UUID=c6cd262b-3930-48a8-9b21-8981bb479cee /data ext4 defaults 0 0

11. Mount the new filesystem:

mount /data

12. Upgrade all system packages to the latest versions:

yum upgrade

13. Disable SELinux by editing /etc/selinux/config and changing, then save:

SELINUX=enforcing -> SELINUX=disabled

14. Disable and stop firewalld

systemctl disable firewalld

systemctl stop firewalld

15. SELinux is still enforcing, so prevent that. Reboot.

16. Add password to user “centos”:

passwd centos

17. Log in as centos

18. Create ssh keys for centos and enable passwordless ssh
PBS Professional 2020.1.1 Cloud Guide CG-7

Chapter 1 Installing Cloud Bursting Module
Accept all the defaults for ssh-keygen step:

cd $HOME

ssh-keygen

cd .ssh

cat id_rsa.pub >> authorized_keys

19. For a cloud head node, make sure you validate that external ssh still works externally, before you disconnect your
first session. If there is an issue with ssh keys, which can be sometimes caused by errors in step 18 above, and you
disconnect your first session, you could be permanently locked out of your cloud VM. Use ssh from your local
machine to your cloud head node to create a second session using your public ssh key. Troubleshoot as required
while your first session is still up.

20. Add the key PBS Professional service users:

useradd -rm pbsdata; useradd pbsadmin

21. Follow steps 17, 18, and 19 for user pbsadmin

22. Install/Start/Enable docker-ce

yum install -y yum-utils

yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo

yum install docker-ce docker-ce-cli containerd.io

systemctl enable docker

systemctl start docker

23. Stop docker:

systemctl stop docker

24. Move docker data storage to new filesystem mounted on /data

25. Add -g /data/docker \ in file /lib/systemd/system/docker.service. ExecStart should look like this:

ExecStart=/usr/bin/dockerd-current ...

--seccomp-profile=/etc/docker/seccomp.json -g /data/docker $OPTIONS ...

$REGISTRIES

26. Reread daemon config files:

systemctl daemon-reload

27. Look in /data/docker; there should be subdirectories for docker data

28. Start docker:

systemctl start docker

29. Create a repository for PBS Package

mkdir /home/centos/software

chown -R centos:centos /home/centos/software

chmod 777 /home/centos/software

30. Download all the PBS package modules to your software directory (PBS Professional, Cloud)
CG-8 PBS Professional 2020.1.1 Cloud Guide

Installing Cloud Bursting Module Chapter 1
31. Install and configure NFS Server to share /home from head node, so you can avoid setting up ssh keys for client
nodes and have a convenient mount:

yum install nfs-utils

systemctl enable nfs-blkmap

systemctl enable nfs-rquotad

systemctl enable nfs-server

systemctl enable nfs

systemctl start nfs-blkmap

systemctl start nfs-rquotad

systemctl start nfs-server

systemctl start nfs

32. Edit /etc/exports to add

/home *(rw,sync,no_root_squash,no_all_squash)

33. Restart NFS Server:

systemctl restart nfs-server

34. Add local machine name and IP to /etc/hosts, remove IPv6 loopback, e.g.

127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4

<pbs_server_ip> <pbs_server_hostname>

On my system this would be:

127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4

172.17.0.6 myhost

35. Follow the PBS Professional Installation & Upgrade Guide, the PBS Professional Administrator’s Guide, and the
PBS Professional Licensing Guide to install, configure and license PBS Professional

• Set PBS to have MoM running on the head node before first start

36. Run test job and ensure job output is returned without issues (e.g. scp problems)

Sample test script using default workq:

#!/bin/bash

#PBS -N testjob

#PBS -j oe

#PBS -m n

#PBS -q workq

#PBS -l select=1:ncpus=2:mem=16mb

#PBS -l walltime=0:10:00

sleeptime=60

cmd=”sleep $sleeptime”

echo $cmd

$cmd

Exit
PBS Professional 2020.1.1 Cloud Guide CG-9

Chapter 1 Installing Cloud Bursting Module
37. Optionally enable a few useful config options:

qmgr -c 'set server eligible_time_enable = True'

qmgr -c 'set server job_history_enable = True'

qmgr -c 'set server job_history_duration = 72:00:00'

qmgr -c 'set server scheduler_iteration = 30'

qmgr -c 'set server max_job_sequence_id = 999999999'

qmgr -c 'set server job_sort_formula = \”eligible_time + job_priority\”'

1.7 Sample Cloud Hook Configuration File

Here we show a basic cloud hook configuration file with a single scenario.

You can export and look at the installed PBS cloud hook configuration file:

qmgr -c 'export hook cloud_hook application/x-config default' >cloud_hook.json

You can edit this file and change its parameters, then read it back in:

qmgr -c 'import hook cloud_hook application/x-config default cloud_hook.json'

Replace these tokens with the correct information:

<name or IP address of PBS Cloud service>

<scenario name> (The name of your cloud bursting scenario)

<burst token> (The token you created for your cloud bursting scenario)

<cloud image> (The cloud image you created for your cloud bursting scenario)

1.7.1 Contents of Sample Cloud Hook Configuration File

{

“pclm_server”: “https://<name or IP address of server>:9980/pbspro-cloud/”,

“pclm_no_check_ssl_certificate”: true,

“cloud_min_instances”: 0,

“resources”:[“ncpus”, “mem”, “ngpus”],

“use_node_hour_license”: false,

“cloud_driver”: “PclmDriver”,

“scenario”: {

“<scenario name>”: {

“api_key”: “<burst token>”,

“cloud_default_image”: “<cloud image>”,

“cloud_max_instances”: 10,

“max_nodes_per_burst”: 50,

“cloud_node_wait_timeout”: 180

}

}

}

CG-10 PBS Professional 2020.1.1 Cloud Guide

Installing Cloud Bursting Module Chapter 1
1.8 Command Reference and Sample Output for

pkr

We use pkr to manage all the containers in the current kard. In this context that means all the services around the Cloud
Bursting feature in PBS Professional. Each service runs in its own container.

To start all pkr services:

pkr start

1.8.1 Sample pkr Output on Startup

[root@myhost ~]# pkr start

Starting node-exporter ... done

Starting elasticsearch ... done

Starting mongodb ... done

Starting cadvisor ... done

Starting postgres ... done

Starting rabbitmq ... done

Starting prometheus ... done

Starting bootstrapper-worker1 ... done

Starting bootstrapper-worker ... done

Starting guardian ... done

Starting kibana ... done

Starting logstash ... done

Starting grafana ... done

Starting websocket-bridge ... done

Starting pacioli ... done

Starting notification-center ... done

Starting hubble ... done

Starting mistral-api ... done

Starting keeper ... done

Starting hype ... done

Starting mistral-executor ... done

Starting executor-api ... done

Starting cloudflow ... done

Starting bootstrapper-api ... done

Starting services ... done

Starting ui ... done

To stop all pkr services:

pkr stop
PBS Professional 2020.1.1 Cloud Guide CG-11

Chapter 1 Installing Cloud Bursting Module
1.8.2 Sample pkr Output on Stop

[root@myhost ~]# pkr stop

Stopping pacioli ... done

Stopping ui ... done

Stopping services ... done

Stopping bootstrapper-api ... done

Stopping cloudflow ... done

Stopping executor-api ... done

Stopping mistral-executor ... done

Stopping hype ... done

Stopping mistral-api ... done

Stopping hubble ... done

Stopping notification-center ... done

Stopping websocket-bridge ... done

Stopping keeper ... done

Stopping guardian ... done

Stopping grafana ... done

Stopping kibana ... done

Stopping logstash ... done

Stopping bootstrapper-worker ... done

Stopping bootstrapper-worker1 ... done

Stopping prometheus ... done

Stopping elasticsearch ... done

Stopping rabbitmq ... done

Stopping mongodb ... done

Stopping postgres ... done

Stopping node-exporter ... done

Stopping cadvisor ... done

To list all pkr services:

pkr ps
CG-12 PBS Professional 2020.1.1 Cloud Guide

Installing Cloud Bursting Module Chapter 1
1.8.3 Sample pkr Output while Running

System is running:

[root@myhost ~]# pkr ps

- cadvisor:

- elasticsearch: 172.19.0.7

- postgres: 172.19.0.6

- mongodb: 172.19.0.5

- guardian: 172.19.0.13

- keeper: 172.19.0.17

- kibana: 172.19.0.10

- logstash: 172.19.0.14

- hubble: 172.19.0.2

- rabbitmq: 172.19.0.4

- mistral-api: 172.19.0.20

- executor-api: 172.19.0.23

- cloudflow: 172.19.0.24

- mistral-executor: 172.19.0.22

- websocket-bridge: 172.19.0.15

- notification-center: 172.19.0.18

- services: 172.19.0.25

- bootstrapper-api: 172.19.0.21

- pacioli: 172.19.0.19

- bootstrapper-worker1: 172.19.0.12

- bootstrapper-worker: 172.19.0.11

- hype: 172.19.0.16

- node-exporter: 172.19.0.3

- prometheus: 172.19.0.8

- grafana: 172.19.0.9

- ui: 172.19.0.26
PBS Professional 2020.1.1 Cloud Guide CG-13

Chapter 1 Installing Cloud Bursting Module
1.8.4 Sample pkr Output while Stopped

System is stopped:

[root@myhost ~]# pkr ps

- cadvisor: stopped

- elasticsearch: stopped

- postgres: stopped

- mongodb: stopped

- guardian: stopped

- keeper: stopped

- kibana: stopped

- logstash: stopped

- hubble: stopped

- rabbitmq: stopped

- mistral-api: stopped

- executor-api: stopped

- cloudflow: stopped

- mistral-executor: stopped

- websocket-bridge: stopped

- notification-center: stopped

- services: stopped

- bootstrapper-api: stopped

- pacioli: stopped

- bootstrapper-worker1: stopped

- bootstrapper-worker: stopped

- hype: stopped

- node-exporter: stopped

- prometheus: stopped

- grafana: stopped

- ui: stopped

1.9 Logging into Cloud

To log into Cloud, go to the Cloud interface in your web browser:

http://<server>:9980/pbspro-cloud/#/login
CG-14 PBS Professional 2020.1.1 Cloud Guide

2

Configuring Cloud Bursting

2.1 Introduction to Cloud Bursting

PBS has a cloud bursting capability that allows a PBS complex to handle demand peaks by bursting to a cloud. This
ensures that jobs continue to be executed as quickly as possible, without interruption to service.

Jobs are submitted to one or more designated cloud queues, and a server periodic hook monitors the cloud queues, esti-
mates the demand for cloud nodes, and dynamically adjusts the number of nodes by bursting or unbursting as needed.

Figure 2-1:Typical Cloud Bursting Setup
PBS Professional 2020.1.1 Cloud Guide CG-15

Chapter 2 Configuring Cloud Bursting
2.1.1 Overview of Configuring Cloud Bursting

You need to do some setup at the cloud provider level before creating a cloud bursting scenario using Cloud. You also
need to configure PBS for cloud bursting. The setup is different at each cloud provider. Here’s an outline of the steps
required:

1. Create a boot script that runs after a cloud node is burst.

2. Create necessary cloud provider components such as a virtual network and a virtual machine.

3. SSH into the cloud provider virtual machine and configure the VM for your site’s environment such as installing
PBS, mounting file systems, connecting it to the authentication service, installing any applications, etc.

4. Create an image of the virtual machine.

5. Create a bursting scenario with Cloud that provides the necessary cloud provider details required for cloud bursting.

6. Configure PBS cloud bursting custom resources.

7. Create PBS cloud queues.

8. Configure the PBS cloud bursting hook.

9. Enable a bursting scenario.

Steps vary depending on which cloud provider you use.

2.1.2 Cloud Bursting Terminology

Burst

The action of adding a node in the cloud, and adding it to the PBS complex.

Unburst

The action of removing a node from both the PBS complex and the cloud.

Bursting scenario

Scenario created in Cloud containing information about resources provided by the cloud service that are used
for bursting.

Image

A pre-configured OS image in the cloud from which virtual machines can be instantiated.

Instance

A single virtual machine in a cloud computing environment.

Instance type

Instance characteristics made up of CPU, memory, storage, and networking capacity.

api_key

Scenario token generated for the bursting scenario. Identifies cloud service provider and controls access to the
Cloud cloud bursting APIs.
CG-16 PBS Professional 2020.1.1 Cloud Guide

Configuring Cloud Bursting Chapter 2
2.2 Cloud Bursting Startup Script

2.2.1 Introduction

Youe will want to do some configuration to each cloud nodes after it boots. For example, you may want to install some
packages, add users, or start services. You can add a startup script to a bursting scenario that runs when the instance
boots, in order to perform automated tasks. Startup scripts can perform many actions, such as installing software, per-
forming updates, turning on services, and any other tasks defined in the script. You can use startup scripts to easily and
programmatically customize your cloud instances.

2.2.2 Startup Script on Windows Platforms

On Windows platforms, the startup script must be a PowerShell script. The content of the PowerShell script should be
enclosed in <powershell> and </powershell>. Refer to Microsoft documentation for more information about Power-
Shell.

2.2.3 Startup Script on Linux Platforms

On Linux platforms, cloud-init is a utility specifically designed for cloud instance initialization. The cloud-init program
is a bootstrapping utility for pre-provisioned disk images that run in virtualized environments, usually cloud-oriented ser-
vices. Basically, it sets up the server instance to be usable when it’s finished booting. You must install cloud-init on your
cloud provider VM to simplify the task of configuring your instances on boot. For more information see cloud-init.

The cloud-init utility supports the following input types:

• Shell scripts

The simplest way to configure an instance at boot time is to use a shell script. The shell script must begin with #! in order
for cloud-init to recognize it as a shell script.
PBS Professional 2020.1.1 Cloud Guide CG-17

https://cloud-init.io/

Chapter 2 Configuring Cloud Bursting
2.2.4 Example of a cloud-init Script for a Linux Virtual
Machine

In the following, we show examples of actions in a configuration script intended to be run after bursting a node in the
cloud; the script includes a description of the purpose for each section. Do not use this as is; make sure you adapt the
script to your site.

#!/bin/sh

Map PBS server IP address to hostnames via /etc/hosts

echo "/etc/hosts setup"

rm -f /etc/hosts

echo "127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4" > /etc/hosts

echo "PBS_SERVER_IP_ADDR headnode headnode.DOMAINNAME" >> /etc/hosts

Disable NetworkManager and use network interface

so that it does not overwrite the /etc/resolv.conf file

systemctl disable NetworkManager

systemctl stop NetworkManager

systemctl enable network

systemctl start network

Configure PBS via /etc/pbs.conf

echo "pbs setup"

systemctl stop pbs

rm -f /etc/pbs.conf

echo "PBS_EXEC=/opt/pbs/default" > /etc/pbs.conf

echo "PBS_HOME=/var/spool/PBS" >> /etc/pbs.conf

echo "PBS_START_SERVER=0" >> /etc/pbs.conf

echo "PBS_START_MOM=1" >> /etc/pbs.conf

echo "PBS_START_SCHED=0" >> /etc/pbs.conf

echo "PBS_START_COMM=0" >> /etc/pbs.conf

echo "PBS_SERVER=PBS_SERVER_HOSTNAME" >> /etc/pbs.conf

echo "PBS_CORE_LIMIT=unlimited" >> /etc/pbs.conf

echo "PBS_SCP=/bin/scp" >> /etc/pbs.conf

echo "PBS_LEAF_ROUTERS=HOSTNAME,HOSTNAME" >> /etc/pbs.conf

pbs.conf must be updated with the cloud node's IP address.

IP=$(ip addr show eth0 | grep "inet\b" | awk '{print $2}' | cut -d/ -f1)

echo "PBS_MOM_NODE_NAME=$IP" >> /etc/pbs.conf

Configure the MoM by updating PBS_HOME/mom_priv/config

echo "mom config setup"

. /etc/pbs.conf

echo "\$clienthost $PBS_SERVER" >> /var/spool/pbs/mom_priv/config

echo "\$clienthost ${PBS_SERVER//.*}" >> /var/spool/pbs/mom_priv/config

echo "\$restrict_user_maxsysid 999" >> /var/spool/pbs/mom_priv/config
CG-18 PBS Professional 2020.1.1 Cloud Guide

Configuring Cloud Bursting Chapter 2
Restart pbs

systemctl start pbs

2.2.5 Adjust PBS_HOME and PBS_EXEC if Necessary

If PBS is installed in non-default home and/or execution directories, adjust the values of PBS_EXEC and/or PBS_HOME.

2.2.6 Additional Configuration

You can use the startup script for other tasks such as configuring filesystems (/etc/fstab), configuring NIS (/etc/yp.conf),
and mounting necessary filesystems:

2.2.6.1 Creating Local Scratch Space

Create local scratch on a fast local disk and use it as default location to run jobs (use the PBS sandbox feature to place
data in job scripts):

mkdir /scratch

chmod 1777 /scratch

echo "\$jobdir_root /scratch" >> /var/spool/pbs/mom_priv/config

See the PBS Professional 2020.1 Administrator’s Guide, section 13.13.1.4, “Example of Setting Location for Creation of
Staging and Execution Directories”, on page AG-513.

To make it so that jobs with sandbox=PRIVATE have their staging and execution directories created under /scratch, as /
scratch/<job-specific_dir_name>, put the following line in MoM’s configuration file:

$jobdir_root /scratch

2.2.6.2 Mounting a Directory for PBS Data Transfer

Mount /home so that it can be used for PBS data transfer and so that SSH keys stored in the user environment are acces-
sible.

echo "PBS_SERVER_IP_ADDR headnode headnode.DOMAINNAME" >> /etc/hosts

...

...

yum install -y nfs-utils

mount -t nfs headnode:/home /home

2.2.6.3 Configuring the MoM for Local Copy

Use the $usecp MoM configuration parameter to tell the MoM which local directories are mapped to mounted directo-
ries, so that the local copy mechanism can be used.

echo "PBS_SERVER_IP_ADDR headnode headnode.DOMAINNAME" >> /etc/hosts

...

...

echo "\$usecp headnode:/home/ /home/" >> /var/spool/pbs/mom_priv/config
PBS Professional 2020.1.1 Cloud Guide CG-19

Chapter 2 Configuring Cloud Bursting
2.2.7 Troubleshooting the Cloud-Init Script

It can be difficult and time consuming to troubleshoot issues with cloud bursting. Some examples of issues that can arise
include:

• Network issues

• SSH key issues

• Missing users or groups

• Missing packages

• Mounted file system errors

The recommended mechanism for resolving these issues is through the cloud-init script. The cloud- init script enables
automatic configuration of the cloud instance as it boots. An example, cloud-init is provided as part of this documenta-
tion and can be used as a starting point.

Firstly, it is recommended to verify that the cloud node is accessible from the PBS Professional server. A suggested
approach for testing accessibility and other issues is an iterative process where a single cloud node is burst using the
Cloud CLI. Issues are identified and resolved interactively on the burst node command line and a log is maintained of the
changes made to the node. The cloud node is unburst using the Cloud CLI, and the logged commands entered at the com-
mand-line to resolve the issue are added to the cloud-init script (and parameterized where required). This process is
repeated until the cloud node is accessible to the PBS Professional Server. At this point, the cloud hook can be

enabled, jobs can be submitted through PBS Professional and cloud bursting hook problems can then be identified and
resolved.

2.2.7.1 Example of Troubleshooting the cloud-init Script

The steps below provide an example of how a specific issue such as access to SSH keys can be troubleshooted.

1. Create a cloud-init script by copying the example cloud-init script and make any of the necessary modifications as
documented.

2. As part of the cloud-init changes, the PBS Server hostname is mapped to its IP address:

echo “PBS_SERVER_IP_ADDR headnode headnode.DOMAINNAME” >> /etc/hosts

3. Create a bursting scenario using Cloud and upload the cloud-init script as part of this configuration process. Ensure
the Add public IP to VMs option is enabled and that a suitable public SSH key is added to the cloud node.

You will need the corresponding private key later in this process.

4. Log in To the PBS Server as root or a user with sudo permissions and set up PBS for cloud bursting including install-
ing the Cloud CLI and the cloud bursting hook.

5. Disable the cloud bursting hook.

6. Use the Cloud CLI to burst a single cloud node:

pclm --api-endpoint=http://<CONTROL_HOSTNAME>:9980/pbspro-cloud/ --api-key "<scenario_token>"
bootstrapper --wait scenario burst '{"mom":[{"deployable_id": "Standard_D4_v2", "count":1}]}'

7. Once the node is burst, attempt to SSH into the cloud node using the value of the private_ip parameter that is
returned from the Cloud bursting command.

Result: A “Permission denied” error is encountered.

8. You know that the user’s SSH keys are stored in the user’s home directory under the .ssh directory and the public key
has been added to .ssh/authorized_keys in the user’s home directory so SSH should be working. This indicates that
there is a problem with the burst nodes configuration and/or the cloud-init script.
CG-20 PBS Professional 2020.1.1 Cloud Guide

Configuring Cloud Bursting Chapter 2
9. Using Putty or a similar SSH client, SSH into the cloud node using the cloud node’s public IP address (the value of
the parameter public_ip address returned from the Cloud bursting command) and your previously generated private
SSH key (matching the public key used in the bursting scenario).

10. By checking the contents of the /etc/hosts file, it is apparent that the cloud-init script is working because the PBS
Server hostname is mapped to its IP address.

11. Check which filesystems have been mounted using the df command.

Result: /home is not mounted and is the cause of the SSH failure to the private IP address of the cloud node.

12. Using the ls command, you can see that /home does exist.

13. To mount the directory, install nfs-utils and then mount /home.

yum install nfs-utils

mount -t nfs headnode:/home /home

14. Unburst the cloud node using the Cloud CLI:

pclm --api-endpoint=http://<CONTROL_HOSTNAME>:9980/pbspro-cloud/ --api-key "<scenario_token>"
bootstrapper --wait scenario unburst <private_ip>

15. Log in to Cloud.

16. Edit the bursting scenario.

17. Edit the init-cloud script.

18. Copy the two commands to install nfs-utils and mount /home and paste them into the cloud-init script.

19. Save the cloud-init script.

20. Burst a cloud node and repeat the process.

2.3 Configure PBS Professional for Cloud Bursting

Configure the cloud bursting hook, add custom resources for bursting, configure cloud queues and set server cloud limits.

2.3.1 Cloud Provider Instance Types

Information about cloud provider instance types.

The instance type (also called shapes, machine types or flavors) determines the hardware of the host computer used for
your cloud bursting nodes. Each instance type offers different compute, memory, and storage capabilities. You will need
to know what type of instance type you want to burst in the cloud before you can configure PBS Professional. For infor-
mation about instance types per cloud provider see the following table:

Table 2-1: Cloud Provider Instance Types

Provider URL Example Instance Types

Azure Sizes for virtual machines in Azure and
High performance compute VM sizes

Standard_DS1_v2, Standard_D2s_v3, Standard_NC6
Standard_H16r, Standard_H16mr (InfiniBand)

AWS Amazon EC2 Instance Types t2.medium, r4.large, p3.2xlarge

GCP Machine Types n1-standard-8, n1-highmem-2, n1-highcpu-64

Oracle VM Shapes and GPU Instances VM.Standard1.1, VM.DenseIO1.16, VM.GPU3.1
PBS Professional 2020.1.1 Cloud Guide CG-21

Chapter 2 Configuring Cloud Bursting
2.3.2 Configure Your Network

A VPN is required from the on-premise network to the cloud network for seamless communication between the two.

Test the VPN setup: manually bring up the instance on the cloud and check connectivity between the local and cloud
instances.

2.3.3 Configure Cloud Bursting Custom Resources

2.3.3.1 PBS Professional Custom Resources for Cloud Bursting

Custom resources that must be added to PBS Professional to implement cloud bursting:

cloud_instance_type

Queue-level string

Cloud provider instance type (machine, shape type or flavor) associated to the queue.

cloud_min_instances

Server-level integer.

Minimum number of instances (nodes) to be present in the cloud at any time.

cloud_max_instances

Server-level integer.

Maximum number of instances (nodes) that can be made available in the cloud.

cloud_max_jobs_check_per_queue

Queue-level integer.

The number of queued jobs in the cloud queue that are checked to determine the number of nodes that must be
burst based on the instance type requested.

Default is 64. Must be greater than zero. Setting it to zero results in no jobs being considered for cloud bursting
in that queue.

cloud_network

Host-level string

Used to group a set of nodes with the same network name. Used to request InfiniBand enabled nodes.

cloud_node_image

Host-level string

OS image that is to be used when a cloud node is burst.

Orange Cloud Instance Family s1.medium, s3.large.4, cc3.large.4

HUAWEI Cloud ECS Types s2.small.1, s2.medium.4, s2.xlarge.2

OTC ECS Types s1.medium, c1.large, m1.xlarge

Table 2-1: Cloud Provider Instance Types

Provider URL Example Instance Types
CG-22 PBS Professional 2020.1.1 Cloud Guide

Configuring Cloud Bursting Chapter 2
cloud_node_instance_type

Host-level string

Indicates the default instance type of the cloud node. Is set by the cloud bursting hook when the node is burst.

Node-level string

Indicates the instance type of the cloud node requested at job submission. This overrides the default instance
type set at the queue-level. A cloud node is burst with this instance type signature and the job is directed to that
cloud node. Is set by the cloud bursting hook when the node is burst.

cloud_provisioned_time

Host-level integer.

Time at which the cloud node is created.

cloud_queue

Queue-level Boolean

Indicates whether the queue is a cloud queue. When True, the queue is a cloud queue.

cloud_scenario

Node-level, Server-level string.

Indicates the associated scenario type for the queue and the node.

lic_signature

Host-level string.

Contains node hour based information for licensing

node_location

Host-level string.

Used to differentiate local nodes from cloud nodes. It is useful when the site wants the scheduler to try to place
jobs on the on-premise nodes first before trying to run them on cloud nodes, while restricting jobs from running
on both. Used with placement sets.

2.3.3.2 Further Explanation for cloud_max_jobs_check_per_queue

The following example further explains the use of cloud_max_jobs_check_per_queue.

1. The cloud hook first checks for queued jobs in the cloud queue.

2. It then checks the number of resources it requires to run those jobs.

3. It adds up all the resources required for the queued jobs to run.

4. It calculates the number of nodes required to run the job. Example:

Example 2-1: Suppose there is a cloud queue and the instance type specified for the queue is Standard_DS2_V2. The
configuration for Standard_DS1_v2 is{“ncpus”:2, “mem”:”8gb”}.

Jobs that are in a queued state in the cloud queue are J1, J2, and J3.

J1 needs 3 CPUs to run.

J2 needs 2 CPUs to run.

J3 needs 5 CPUs to run.

The number of CPUs required to run these jobs is 3+2+5 = 10 CPUs.

The number of nodes needed to run all 3 jobs = (10 CPUs/2[Standard_DS2_V2 number of CPUs]) = 5 nodes are
needed to burst nodes of type Standard_DS2_V2.
PBS Professional 2020.1.1 Cloud Guide CG-23

Chapter 2 Configuring Cloud Bursting
cloud_max_jobs_check_per_queue is set to the default value of 64. If 100 jobs are queued in the cloud queue
(J1.….J100), then only the first 64 jobs (J1....J64) are used to calculate how many nodes need to be burst. You may
change the value of cloud_max_jobs_check_per_queue to tune cloud bursting.

2.3.3.3 Create Cloud Bursting Custom Resources

Add custom resources required to implement cloud bursting.

Creating custom resources must be done as root or as a user with sudo permissions using the sudo

command.

1. Log in to the PBS Server.

2. Copy and execute the following commands to create the custom resources required for cloud bursting:

qmgr -c "create resource cloud_queue type=boolean"

qmgr -c "create resource cloud_instance_type type=string"

qmgr -c "create resource cloud_node_instance_type type=string,flag=h"

qmgr -c "create resource cloud_min_instances type=long"

qmgr -c "create resource cloud_max_instances type=long"

qmgr -c "create resource cloud_provisioned_time type=long,flag=h"

qmgr -c "create resource lic_signature type=string,flag=h"

qmgr -c "create resource cloud_node_image type=string,flag=h"

qmgr -c "create resource cloud_network type=string,flag=h"

qmgr -c "create resource node_location type=string,flag=h"

qmgr -c "create resource cloud_max_jobs_check_per_queue type=long"

3. Navigate to PBS_HOME/sched_priv.

4. Edit the sched_config file.

5. Add cloud_scenario, cloud_node_image, and cloud_node_instance_type to the resources line:

resources: "ncpus, mem, arch, host, vnode, netwins, aoe, cloud_scenario, cloud_node_image,
cloud_node_instance_type"

2.3.4 Set Cloud Limits at Server

Set server limits for the minimum and maximum number of cloud nodes and minimum uptime and minimum idle time
for a cloud node.

Setting server limits must be done as root or as a user with sudo permissions using the sudo command.

1. Log in to the PBS Server.

2. Copy and execute the following commands to set server limits:

qmgr -c "set server resources_available.cloud_min_instances = 0"

qmgr -c "set server resources_available.cloud_max_instances = MAX_INSTANCES"

Where MAX_INSTANCES is the maximum number of nodes that can be made available in the cloud and must be
expressed as an integer greater than zero.

2.3.5 Configure the Cloud Queues

Add and configure the queues necessary for cloud bursting.
CG-24 PBS Professional 2020.1.1 Cloud Guide

Configuring Cloud Bursting Chapter 2
Creating and configuring a queue must be done as root or as a user with sudo permissions using the

sudo command.

The type of node that is burst is defined at the queue-level, unless overridden at job submission time.

To support poly-cloud bursting, the cloud bursting hook has been reformatted allowing scenarios to be added for each
cloud provider. A cloud queue must be created for each scenario that is defined in the cloud bursting hook configuration
file. Additionally, multiple cloud queues can be created for the same bursting scenario having different instance types
allowing different machine types to be burst per cloud provider.

1. Log in to the PBS Server.

2. Copy and execute the following commands to create and configure the cloud queue:

qmgr -c "create queue QUEUE_NAME queue_type=execution,enabled=true,started=true"

qmgr -c "set queue QUEUE_NAME resources_available.cloud_queue = True"

Where QUEUE_NAME is the name of the queue.

3. Optionally, set the maximum number of jobs to check in the queue to determine the number of nodes to burst:

qmgr -c "set queue QUEUE_NAME resources_available.cloud_max_jobs_check_per_queue = MAX_JOBS"

Where MAX_JOBS is the number of queued jobs in the cloud queue that are checked to determine the number of
nodes that must be burst based on the instance type requested.

Default is 64. MAX_JOBS must be greater than zero. Setting it to zero results in no jobs being considered for cloud
bursting in that queue.

4. Assign a bursting scenario to the queue.

qmgr -c "set queue QUEUE_NAME resources_available.cloud_scenario = SCENARIO_NAME"

Where SCENARIO_NAME is the name of the scenario as defined by the cloud bursting hook configuration file.
Cloud nodes are burst based on this scenario.

Hook configuration file scenario:

"scenario": {

"azure_scenario_1": {

"api_key": "API-KEY-HERE",

"cloud_default_image": "azure_bursting_image1",

"cloud_max_instances": 10,

"max_vms_for_infiniband_scaleset" : 100,

"max_nodes_per_burst":50,

"cloud_node_wait_timeout":180

}

}

Associate the scenario with the queue using the command:

qmgr -c "set queue QUEUE_NAME resources_available.cloud_scenario = azure_scenario_1"

5. Execute the following command to associate an instance type to the queue:

qmgr -c "set queue QUEUE_NAME resources_available.cloud_instance_type = INSTANCE_TYPE"

Where INSTANCE_TYPE is the name of cloud provider instance type. This is the type of machine that will be burst.
It must match one of the instance types enabled for the bursting scenario that was just assigned to the queue.

qmgr -c "set queue QUEUE_NAME resources_available.cloud_instance_type = Standard_DS2_v2"
PBS Professional 2020.1.1 Cloud Guide CG-25

Chapter 2 Configuring Cloud Bursting
2.3.6 CLI Cloud Bursting Scenario Commands

Command line interface commands that can be used to enable and disable a bursting scenario and get bursting scenario
information.

A cloud bursting scenario is created using Cloud and provides information needed for cloud bursting including the cloud
provider, region where the node is burst, VPC details, cloud nodes booting script, SSH keys, valid instance types, etc.

Use the Cloud CLI to obtain information about previously created bursting scenarios including its status, enable a burst-
ing scenario so that nodes can be burst, or disable a bursting scenario to restrict nodes from being burst.

Valid status for a bursting scenario are:

READY

The bursting scenario can be used to burst nodes as long its enabled.

BUSY

The bursting scenario is in the process of being created.

Information that is required to use these commands:

HOSTNAME

The IP address or hostname of the machine where Cloud is installed.

PORT

The port that the Cloud component listens on. Default is 9980.

API_KEY

The API Key generated for a cloud bursting scenario.

SCENARIO_ID

Unique label that identifies a bursting scenario. Required to enable, disable or get the status of a bursting sce-
nario. Use the Display a List of Bursting Scenarios command to obtain a list of bursting scenarios including the
scenario id.

IDLE_TIME

Minimum time that a cloud node can be idle before it is unburst. Is expressed as an integer whose units are in
seconds. Default is 180 seconds.

2.3.6.1 Display a List of Bursting Scenarios

The below command displays a list of bursting scenarios that have been previously created using Cloud.

pclm --api-endpoint=http://HOSTNAME:PORT/pbspro-cloud/ --api-key API_KEY bootstrapper scenario
list

The output of the command is a list of bursting scenarios including the scenario id, the state of the scenario, and whether
the scenario is enabled or disabled.

2.3.6.2 Enable a Bursting Scenario

The below command enables a bursting scenario so that cloud nodes can be burst using the scenario.

pclm --api-endpoint=http://HOSTNAME:PORT/pbspro-cloud/ --api-key API_KEY bootstrapper scenario
enable SCENARIO_ID

To verify that the bursting scenario is enabled, use the command Display Bursting Scenario Details.

2.3.6.3 Disable a Bursting Scenario

The below command disables a bursting scenario. Cloud nodes cannot be burst using a scenario that is
CG-26 PBS Professional 2020.1.1 Cloud Guide

Configuring Cloud Bursting Chapter 2
disabled.

pclm --api-endpoint=http://HOSTNAME:PORT/pbspro-cloud/ --api-key API_KEY bootstrapper scenario
disable SCENARIO_ID

To verify that the bursting scenario is disabled, use the command Display Bursting Scenario Details.

2.3.6.4 Display Bursting Scenario Details

The below command returns information about the bursting scenario:

pclm --api-endpoint=http://HOSTNAME:PORT/pbspro-cloud/ --api-key API_KEY bootstrapper scenario
show --id SCENARIO_ID

The output of the command displays information about the bursting scenario including the scenario id, the state of the
scenario, the associated cloud account. and whether the scenario is enabled or disabled.

If you want to display the amount of time before an idle node is unburst, then use the below command (the --raw option
must be provided)

pclm --raw --api-endpoint=http://HOST:9980/pbspro-cloud/ --api-key KEY bootstrapper scenario show

The output of the command is in a JSON format. The idle time is displayed as a key-value pair in the output:
{"idle_before_unburst": 100}.

2.3.6.5 Update the Minimum Time Before an Idle Node is Unburst

The below command updates the bursting scenario setting the minimum time that a cloud node can be idle before it is
unburst.

pclm --api-endpoint=http://HOSTNAME:PORT/pbspro-cloud/ --api-key API_KEY bootstrapper scenario
patch --idle-before-unburst IDLE_TIME SCENARIO_ID

To verify that the idle before unburst time is updated, use the command Display Bursting Scenario Details with the --raw
option.

2.3.7 CLI Cloud Bursting Commands

Command line interface commands that can be used to burst and unburst cloud nodes and get status information about a
bursting activity.

These commands can be used to test cloud bursting without using the cloud bursting hook. This will ensure that the con-
nectivity from the PBS Server to the cloud infrastructure and the bursting scenarios are working properly. These com-
mands can also be used when a site wants to burst a cloud node so that it remains burst indefinitely.

Cloud nodes burst manually remain up and running until explicitly unburst using the Cloud CLI.

A cloud bursting scenario must be created and a token generated using Cloud before you can burst cloud nodes. Informa-
tion that is required to use these commands:

API_KEY

The API Key (token) generated for a cloud bursting scenario.

COUNT

Indicates the number of nodes to burst.

HOSTNAME

The IP address or hostname of the machine where Cloud is installed.

MACHINE_HOSTNAME

Hostname assigned to the cloud node. This information can be obtained by executing the command to display
the cloud bursting activity.
PBS Professional 2020.1.1 Cloud Guide CG-27

Chapter 2 Configuring Cloud Bursting
MACHINE_ID

A unique label that identifies the cloud node. This information can be obtained by executing the command to
display the cloud bursting activity.

PRIVATE_IP

Private IP address assigned to the cloud node. This information can be obtained by executing the command to
display the cloud bursting activity.

MACHINE_TYPE

The name of the cloud provider instance type. This is the type of machine that will be burst. It must match one
of the instance types enabled for the bursting scenario identified by API_KEY.

PORT

The port that the Cloud component listens on. Default is 9980.

2.3.7.1 Command Options

Options that can be used with the pclm command:

--wait

Causes the application to wait for the node to be burst/unburst. This option must follow the keyword "bootstrap-
per".

pclm --api-endpoint=http://HOSTNAME::PORT/pbspro-cloud/ --api-key API_KEY bootstrapper --wait
scenario burst \

--raw

Displays the output of the command in JSON format. This option must follow the keyword "pclm".

pclm --raw --api-endpoint==http://HOSTNAME::PORT/pbspro-cloud/ --api-key API_KEY

2.3.7.2 Command for Bursting Cloud Nodes

The below command bursts a number of cloud nodes based on COUNT of type MACHINE_TYPE for the bursting sce-
nario identified by API_KEY.

pclm --api-endpoint=http://HOSTNAME:PORT/pbspro-cloud/ --api-key API_KEY bootstrapper --wait sce-
nario burst '{"mom":[{"deployable_id":"MACHINE_TYPE","count":"COUNT","tags":{"burst-
by":"user"}}]}'

The PBS cloud bursting hook always adds a tag called "burst-by" and its value is set to "pbs-cloudhook".

By using the same tag with a different value or a different tag altogether, manually burst nodes can be distinguished from
those burst via the bursting hook.

The JSON that describes the type of node to burst and how many to burst can be included directly on the command-line,
as shown above, or loaded from a separate file. For example, the following JSON can be copied to a file called
node_to_burst.json:

{"mom":[{"deployable_id": "MACHINE_TYPE", "count":"10", "tags": {"burst-by": "user"}}]}

The file can then be used as part of the bursting command to load the information.

pclm --api-endpoint=http://HOSTNAME:PORT/pbspro-cloud/ --api-key API_KEY bootstrapper --wait sce-
nario burst node_to_burst.json
CG-28 PBS Professional 2020.1.1 Cloud Guide

Configuring Cloud Bursting Chapter 2
2.3.7.3 Command to Display the Status of the Cloud Bursting

Activity

The below command displays the status of the cloud bursting activity.

pclm --api-endpoint=http://HOSTNAME:PORT/pbspro-cloud/ --api-key API_KEY bootstrapper scenario
status -f tags

The status is displayed as a table. Use --raw to display the output of the command in JSON format. The status command
displays the machine id, instance type, hostname, private and public IP addresses, the OS image used to create the node,
the node's state, and creation time. When the option -f tags is used, any associated tags are displayed as well.

Figure 2-2:Command Output

2.3.7.4 Cloud Node States

The following is a list of possible virtual machine states. Only a virtual machine that is UP is guaranteed to have an IP
addresses and a hostname. A virtual machine that has been fully undeployed will not be present in the output at all.

DOWN

Indicates the machine is created in the local database, but not yet in the cloud provider. This status is short-lived
and rarely visible.

DEPLOYING

Indicates deployment is ongoing.

FAILED_DEPLOYING

Indicates that something has gone wrong and the machine deployment has failed. The virtual machine is auto-
matically unburst in this case.

FAILED_STARTING

Indicates that something has gone wrong and the machine has not started.

FAILED_STOPPING

Indicates that something has gone wrong and the machine has not been stopped.

FAILED_TERMINATING

Indicates that something has gone wrong and the machine has not been terminated.

STARTING

Indicates machine is starting.

STOPPED

Indicates the machine is stopped.

STOPPING

Indicates machine is stopping.

TERMINATING

Indicates that machine is being removed.

UP

Indicates that the machine deployment has completed and the machine is ready.
PBS Professional 2020.1.1 Cloud Guide CG-29

Chapter 2 Configuring Cloud Bursting
2.3.7.5 Command for Unbursting Cloud Nodes

The below command unbursts cloud nodes. Use the command to display cloud bursting activity to obtain information
about cloud nodes. A cloud node can be unburst using its machine id, private ip address, or hostname.

pclm --api-endpoint=http://HOSTNAME:PORT/pbspro-cloud/ --api-key API_KEY bootstrapper --wait scenario unburst
MACHINE_ID1|PRIVATE_IP1|MACHINE_HOSTNAME1
MACHINE_ID2|PRIVATE_IP2|MACHINE_HOSTNAME2 […]

Multiple nodes can be unburst in a single call and the parameter used to unburst the nodes can be mixed:

unburst MACHINE_ID1 PRIVATE_IP2 MACHINE_HOSTNAME3

This information can also be supplied in JSON format on the command-line or in a JSON file:

unburst '["MACHINE_ID1", "PRIVATE_IP2", "MACHINE_HOSTNAME3"]'

unburst /tmp/machines_to_unburst.json

2.3.7.6 Sizing the Network Disk for the Cloud Node Root System

Use the disk_size_gb parameter to define the size of the network disk for the root file system in GBs when bursting a
cloud node. By default the minimum size is compatible with the image associated with the bursting scenario defined by
API_KEY.

"mom" : [

{

"deployable_id": "c3.xlarge",

"disk_size_gb": 12

},

{

"deployable_id": "d2.xlarge",

"count": 2,

"disk_size_gb": 15

}

]

2.3.7.7 Preemptible or Spot Instances

Use the preemptable parameter to indicate that the cloud node is preemptible (currently implemented for AWS. AWS
refers to this as spot instances). This parameter takes a Boolean value. It is preferable that the bursting request either con-
tain only preemptible instances or only non-preemptible instances.

The bursting scenario associated with the API_KEY must have spot instances enabled.

pclm --api-endpoint=http://HOSTNAME:PORT/pbspro-cloud/ --api-key API_KEY bootstrapper --wait sce-
nario burst "mom":[{"deployable_id": "c3.xlarge","count":"10","preemptable": true}]

Possible errors that may occur (returned as JSON, when the --raw option is used):

The current spot instance price for Instance Type xx in region yy is higher than the limit
configured in the Bursting Scenario zz

The Instance Type xx has not been configured in the Bursting Scenario to be used for spot
instances.
CG-30 PBS Professional 2020.1.1 Cloud Guide

Configuring Cloud Bursting Chapter 2
2.3.7.8 Defining the Image to Use when Bursting

Burst a virtual machine from a specific image using the image parameter. By default, the virtual machine is burst based
on the image specified when creating a bursting scenario (defined by the API_KEY). The value of image depends on the
cloud provider. For example, for AWS the name of the AMI is specified:

"mom":[{"deployable_id": "t2.medium", "count":"10", "image":"ami-123456"}]

For Azure, the resource group into which to place the VM and the name of the image must be specified:

"mom":[{"deployable_id": "Standard_DS1_v2", "count":"10", "image":"res-group/imagename"}]

2.3.7.9 Requesting Infiniband Nodes

When the user wants to run HPC workloads like MPI jobs, the user needs InfiniBand supported nodes deployed on the
same InfiniBand network. Among the cloud providers, only Azure currently supports InfiniBand nodes. A restriction for
bursting on Infiniband networks is that jobs cannot run across multiple Infiniband networks. To prevent this from hap-
pening, scale sets can be used. Only virtual machines within the same scale set have Infiniband connectivity. Use the
infiniband_network parameter to ensure that all nodes for a bursting request get deployed into the same scaleset.

When bursting Infiniband nodes, the OS image associated with the bursting scenario defined by API_KEY must contain
everything that is needed to use Infiniband.

To create a new scaleset, set the value of the infiniband_network parameter to “new”:

"deployable_id":"Standard_H16mr", "infiniband_network": "new"

To use an existing scale set, set the value of the infiniband_network parameter to "auto", which will re-use the existing
scale sets as long as all requested nodes fit inside the scale set. If they do not, a new scale set is created for the requested
nodes.

"deployable_id":"Standard_H16mr", "infiniband_network": "auto"

Use the command to display the status of the cloud bursting activity to get information about a node's scaleset. For exam-
ple:

{ ...,

"scaleset": {"nr": "2", "name": "pclmDEVvhoiAACrxTOHioWSkwg"}, ... }

Nodes with the same name value are in the same scaleset.

2.3.7.10 Bursting Asynchronously

Sometimes it can take several minutes to burst a cloud node. If you do not want to wait for the bursting command to com-
plete, then eliminate the --wait option and provide a unique request identifier. The bursting call will return instanta-
neously. For example:

REQUEST_ID=$(uuidgen)

pclm --api-endpoint=http://HOSTNAME:PORT/pbspro-cloud/ --api-key API_KEY bootstrapper scenario
burst --request-id $REQUEST_ID '{"mom":[{"deployable_id": "MACHINE_TYPE", "count":"COUNT"}]}'

Using the request identifier, poll the list of notifications for the bursting operation to determine its status.

pclm --raw --api-endpoint==http://HOSTNAME:PORT/pbspro-cloud/ --api-key API_KEY

notif thread list --request-id $REQUEST_ID --expand
PBS Professional 2020.1.1 Cloud Guide CG-31

Chapter 2 Configuring Cloud Bursting
Output from the command will look something like this:

[

{

"title": "Workflow bootstrapper.deploy_deployables",

"created_at": "2019-10-01T09:02:57.383000+00:00",

"open": false,

"related": [...],

"notifications": [

... ,

{

"notification_id": "5d93170000b64a0001c4fe00",

"sender": "executor",

"message": "Workflow \"deploy_deployables\" execution succeeded",

"timestamp": "2019-10-01T09:06:08.752000+00:00",

"content": {

"workflow": "deploy_deployables",

"workflow_name": "bootstrapper.deploy_deployables",

"machine_ids": [

"a8d1681f-173d-4476-9d52-05e7e1b405d5",

"535ec0fc-f6f4-4b51-8f9d-abb13984f42d"

],

"state": "SUCCEEDED",

"machines": [...],

... ,

},

...

}

},

],

...

}

When a final message of success or failure is received, the open parameter is set to “false”. There can be many notifica-
tions so be sure to read the last one (the latest timestamp is usually the last one in the list). The state of the notification
content can be SUCCEEDED, RUNNING or FAILED.

2.3.8 Test Cloud Bursting

2.3.8.1 Test Cloud Bursting with the CLI

Test cloud bursting using the Cloud CLI before trying to burst nodes using the cloud bursting hook. This will ensure that
the connectivity from the PBS Server to the cloud infrastructure and the bursting scenario are working properly.

Before you begin testing cloud bursting:

1. Ensure that the cloud infrastructure (VPN connectivity, networks, firewalls etc.) is configured.

2. The cloud account and bursting scenario must be configured in Cloud.

3. Generate a token (API Key) for the bursting scenario.
CG-32 PBS Professional 2020.1.1 Cloud Guide

Configuring Cloud Bursting Chapter 2
4. The Cloud CLI must be installed.

5. The bursting scenario must be enabled.

2.3.8.1.i Burst an Execution Node in the Cloud

Use the Cloud CLI client to burst cloud nodes.

Before you attempt to burst a cloud node, see CLI Cloud Bursting Commands for an explanation on the commands to
burst and unburst cloud nodes.

Cloud bursting can be accomplished from the command line by issuing a single command. You can then get the status of
the bursting activity and also capture the output in raw JSON format.

Cloud nodes burst manually remain up and running until explicitly unburst using the Cloud CLI.

1. Execute the below command to burst a node in the cloud:
pclm --api-endpoint=http://HOSTNAME:9980/pbspro-cloud/ --api-key API_KEY bootstrapper --wait sce-

nario burst '{"mom":[{"deployable_id": "MACHINE_TYPE", "count":COUNT}]}'

Where:

• HOSTNAME is the IP address or hostname of the machine where Cloud is installed.

• MACHINE_TYPE is the name of the cloud provider instance type. This is the type of machine that will be
burst. It must match one of the instance types enabled for the bursting scenario identified by API_KEY.

• COUNT indicates the number of nodes to burst.

2. Execute this command to view the status of the cloud bursting activity.

pclm --api-endpoint=http://HOSTNAME:9980/pbspro-cloud/ --api-key API_KEY bootstrapper scenario
status

The status command displays the machine id, instance type, hostname, private and public IP addresses, the OS
image used to create the node, the node’s state, and workflow creation time.

Figure 2-3:Command Output

2.3.8.1.ii Unburst an Execution Node in the Cloud

Use the Cloud CLI client to unburst cloud nodes.

Before you attempt to unburst a cloud node, see CLI Cloud Bursting Commands for an explanation on the commands to
burst and unburst cloud nodes.

Use the Cloud CLI to view the status of the nodes while cloud bursting is in progress. Execute the unbursting command
to remove cloud nodes.

1. Execute this command to get the status of the cloud bursting activity.
pclm --api-endpoint=http://HOSTNAME:9980/pbspro-cloud/ --api-key API_KEY bootstrapper scenario

status

Where:

• HOSTNAME is the IP address or hostname of the machine where Cloud is installed.
PBS Professional 2020.1.1 Cloud Guide CG-33

Chapter 2 Configuring Cloud Bursting
The status command displays the machine id, instance type, hostname, private and public IP addresses, the OS
image used to create the node, the node's state, and workflow creation time.

Figure 2-4:Command Output

2. Execute this command for unbursting.

pclm --api-endpoint=http://HOSTNAME:9980/pbspro-cloud/ --api-key API_KEY bootstrapper --wait sce-
nario unburst MACHINE_ID|PRIVATE_IP|MACHINE_HOSTNAME

A cloud node can be unburst using its machine id, private ip address, or hostname.

Where:

• HOSTNAME is the IP address or hostname of the machine where Cloud is installed.

• MACHINE_ID is a unique label that identifies the cloud node.

• PRIVATE_IP is the private IP address assigned to the cloud node.

• MACHINE_HOSTNAME is the hostname assigned to the cloud node.

2.3.8.2 Test Automated Cloud Bursting by Submitting a Job

Test cloud bursting by submitting jobs to cloud queues.

Before you begin testing cloud bursting, a token must be generated for the bursting scenario and the bursting scenario
must be enabled.

To troubleshoot issues with the cloud bursting hook, specify that all log events should be captured in the PBS server logs.
Make sure to reset this value after testing is complete.

qmgr -c "set server log_events=2047"

1. Submit jobs to the cloud queue.
qsub -l select=1:ncpus=4 -q CLOUD_Q JOB_SCRIPT

qsub -l select=1:ncpus=4 -q CLOUD_Q JOB_SCRIPT

Where:

• CLOUD_Q is the name of the cloud queue.

• JOB_SCRIPT is the name of the script to be executed.

2. Check the status of the jobs:

qstat -s

3. Tail the PBS Professional server logs.

tail -f PBS_HOME/server_logs/CURRENT_SERVER_LOG_FILE

Where CURRENT_SERVER_LOG_FILE is the most current PBS Server log file.

4. Check the current log file to verify that the cloud bursting hook is started. Search for the name of the cloud bursting
hook.

Server@master;Hook;HOOK_NAME;started

Where HOOK_NAME is the name of the cloud bursting hook.

5. Log into Cloud, go to your burst scenario, and you should see the initiation of the workflow that is triggered by the
bursting hook. The workflow should automaticallyl start within a couple of minutes.
CG-34 PBS Professional 2020.1.1 Cloud Guide

Configuring Cloud Bursting Chapter 2
6. Check the status of the nodes to verify that PBS Professional burst to cloud nodes:

pbsnodes -av

7. Check the status of the jobs.

Once the node is added, jobs should start running.

qstat -s

8. You should see that any nodes used only for the test are unburst after the Idle Before Unburst period has elapsed.

2.3.9 Configure the Cloud Bursting Hook

Configure the cloud bursting hook that monitors cloud queues, estimates the demand for cloud nodes, and dynamically
adjusts the number of nodes by bursting or unbursting as needed.

2.3.9.1 Cloud Bursting Periodic Hook

A periodic hook that monitors cloud queues, estimates the demand for cloud nodes, and dynamically adjusts the number
of nodes by bursting or unbursting as needed.

The cloud bursting hook defines the types of cloud nodes that can be burst as well as other parameters that control burst-
ing. The scenarios defined in the cloud bursting hook are linked to bursting scenarios created using the Cloud user inter-
face. The linking mechanism is an API key that is generated when a token is added to a bursting scenario via the Cloud
user interface. The tokens must be generated before updating the bursting hook.

The cloud bursting hook has been changed so that cloud nodes may be burst across multiple cloud providers. This is use-
ful when your site wants to for instance burst InfiniBand nodes which are currently supported by Azure, but you also
want to burst spot instance nodes in AWS. To support this new feature, the cloud bursting hook configuration file now
includes a section called scenario. A scenario must be added to the cloud bursting hook configuration file for each cloud
provider.

The DNS setup that was required for previous versions of the cloud bursting hook is no longer required. Cloud nodes are
accessed through their IP address, therefore the DNS information in the hook configuration file has been removed.

Lastly, the cloud bursting hook now obtains the instance types from Cloud, therefore the instance types are no longer
managed through the hook’s configuration file.

The cloud bursting configuration file contains the following parameters:

pclm_server

Endpoint for accessing Cloud in the format http://hostname:port or http://ipaddress:port. Default port is 9980.

cloud_min_instances

Minimum number of instances to be present in the cloud at any time. Does not apply during startup; cloud nodes
are not immediately burst on startup. This is the minimum number that are maintained after they are initially
burst on demand. This value is overridden by the same value set at the server-level.

resources

Resources to be considered for calculating the number of nodes to burst. Resources that are currently supported
are: “ncpus”, “mem”, “ngpus”.

cloud_driver

Indicates the driver class implementation in the hook.

Currently, the only value supported is “PclmDriver”. DO NOT change this value.
PBS Professional 2020.1.1 Cloud Guide CG-35

Chapter 2 Configuring Cloud Bursting
scenario

Container for bursting scenarios. You can have scenarios for each cloud provider or multiple scenarios for a
cloud provider or both.

Restriction: Each bursting scenario should have its own api_key.

scenario_1...n

api_key
Token generated for a bursting scenario via the Cloud user interface. The value should be unique for
each bursting scenario.

cloud_default_image
OS image that is to be used by default when a cloud node is burst. This is overridden when the OS
image is provided at job submission via the qsubcommand.

cloud_max_instances
Maximum number of instances that can be made available in the cloud for this scenario. Is expressed
by an integer and must be greater than 0. This value must be specified otherwise the cloud bursting
hook is rejected.

max_vms_for_infiniband_scaleset (Optional)
Defines the number of nodes on an single InfiniBand switch. Supported by Azure only. This limit is set
by Azure and the current default is 100. Customers may negotiate with Azure to increase this limit. In
this case, the value of this parameter should be updated.

max_nodes_per_burst
Maximum number of nodes allowed to burst in a single hook cycle. Maximum number of cloud node
licenses to renew per hook cycle.

cloud_node_wait_timeout
Maximum time to wait for freshly burst node to become usable. Is expressed as an integer whose units
are in seconds. Default is 180 seconds. You can set this to a higher value, but a lower value defaults to
180 seconds.

preemptable (Optional)
This flag is set to True if the scenario is supporting preemptible (spot) instances. Default value is False
for a scenario. If flag is not specified, the default value is used. Useful when using cloud spot instances
for running short re-runnable jobs that could be preempted.
CG-36 PBS Professional 2020.1.1 Cloud Guide

Configuring Cloud Bursting Chapter 2
2.3.9.2 Default Cloud Bursting Hook Configuration File

{

"pclm_server": "pclm_server:port_number",

"cloud_min_instances": 1,

"resources":["ncpus", "mem", "ngpus"],

"cloud_driver": "PclmDriver",

"scenario": {

"azure_scenario_1": {

"api_key": "API-KEY-HERE",

"cloud_default_image": "<CloudDefaultImage>",

"cloud_max_instances": 10,

"max_vms_for_infiniband_scaleset" : 100,

"max_nodes_per_burst":50,

"cloud_node_wait_timeout":180

},

"aws_scenario_1": {

"api_key": "API-KEY-HERE",

"cloud_default_image": "<CloudDefaultImage>",

"cloud_max_instances": 20,

"max_nodes_per_burst":50,

"cloud_node_wait_timeout":180

},

"aws_scenario_2": {

"api_key": "API KEY HERE",

"cloud_default_image": "<CloudDefaultImage>",

"cloud_max_instances": 50,

"max_nodes_per_burst":50,

"cloud_node_wait_timeout":180

}

}

}
PBS Professional 2020.1.1 Cloud Guide CG-37

Chapter 2 Configuring Cloud Bursting
2.3.9.3 Cloud Hook Considerations

Each bursting scenario should have its own unique api_key. The below example where the same api_key is used for two
bursting scenarios where the only difference is the maximum amount of cloud nodes that can be burst is not supported
and may result in unexpected bursting behavior.

"aws_scenario_1": {

"api_key": "uqldIqmgS6el4PMm0FDdZw3duy7cNAZACPGgpnxxl0jbMViIgx3_YXC"

"cloud_default_image": "<CloudDefaultImage>",

"cloud_max_instances": 20,

"max_nodes_per_burst":50,

"cloud_node_wait_timeout":180

},

"aws_scenario_2": {

"api_key": "uqldIqmgS6el4PMm0FDdZw3duy7cNAZACPGgpnxxl0jbMViIgx3_YXC"

"cloud_default_image": "<CloudDefaultImage>",

"cloud_max_instances": 50,

"max_nodes_per_burst":50,

"cloud_node_wait_timeout":180

}

2.3.9.4 Configure the Cloud Bursting Hook

Configure the cloud bursting hook per your site’s requirements and then re-import it. Configuring the hook must be done
as root or as a user with sudo permissions using the sudo command.

The scenarios defined in the cloud bursting hook are linked to bursting scenarios created using the Cloud user interface.
The linking mechanism is an API key that is generated when a token is added to a bursting scenario via the Cloud user
interface. The tokens must be generated before updating the bursting hook.

Export the cloud bursting hook configuration file, update its parameters per your site’s requirements, and then re-import
the hook.

1. Export the cloud bursting hook configuration to a file:
qmgr -c "export hook cloud_hook application/x-config default" > FILENAME

Where FILENAME is the name of the file where the hook configuration is written.

qmgr -c "export hook cloud_hook application/x-config default" > config.json

2. Edit the file.

3. Set pclm_server to the endpoint for accessing Cloud in the format http://HOSTNAME:9980. Where HOSTNAME is
the IP address or hostname of the machine where Cloud is installed.

4. Set the value of cloud_min_instances to the minimum number of instances to be present in the cloud at any time.

This value must be specified otherwise the cloud bursting hook is rejected.

5. Set resources to a comma separated list of resources that are to be considered for calculating the number of nodes to
burst.

[“ncpus”, “mem”, “ngpus”] OR [“ncpus”, “mem”]
CG-38 PBS Professional 2020.1.1 Cloud Guide

Configuring Cloud Bursting Chapter 2
6. For each scenario to be added to the scenario container:

a. Set the value of api_key to the token generated for the bursting scenario.

b. Set the value of cloud_default_image to OS image that should be used for bursting. This OS image is used if the
image is not requested as part of the job submission request.

c. Set the value of cloud_max_instances to the maximum number of instances that can be made available in the
cloud.

Must be expressed an integer greater than zero. This value must be specified otherwise the cloud bursting hook
is rejected.

d. Optionally, set the value of max_vms_for_infiniband_scaleset to define the maximum number of nodes allowed
on a single InfiniBand switch.

This value should match the value of Maximum number of VMs inside a ScaleSet as specified in the Azure
bursting scenario. If you are not using InfiniBand, then you can eliminate this parameter.

e. Set the value of max_nodes_per_burst to the maximum number of nodes allowed to burst in a single hook cycle.

f. Set the value of cloud_node_wait_timeout to the maximum time to wait for freshly burst node to become
usable.

Must be expressed as an integer whose units are in seconds. Default is 180 seconds. You can set this to a higher
value, but a lower value defaults to 180 seconds.

g. Set preemptable to:

• True when the bursting scenario supports preemptible (spot) instances and cloud jobs may be preempted.

• False when jobs that are run in the cloud should not be preemptible.

Default value is False for a scenario. If flag is not specified, the default value is used.

7. Re-import the hook with the updated configuration values:

qmgr -c "import hook cloud_hook application/x-config default FILENAME"

Where FILENAME is the name of the file containing the hook configuration.

qmgr -c "import hook cloud_hook application/x-config default config.json"

8. Optionally, set the cloud bursting hook frequency.

The default frequency for the cloud bursting hook to execute is every 2 minutes.

qmgr -c "set hook cloud_hook freq=FREQUENCY"

Where FREQUENCY is the frequency for the hook to execute. Must be expressed as an integer whose units are in
seconds.

9. Set the cloud bursting hook alarm:

You must set the hook alarm; otherwise, the hook will time out after the default value of 600 seconds. Tune the alarm
value to something greater than the default. Consider the following factors:

• Time required to burst nodes on the cloud

• Time required to unburst nodes on the cloud

• Number of cloud queues

Recommendation: Set the alarm to at least 20 minutes (1200 seconds).

qmgr -c "set hook cloud_hook alarm=ALARM_TIME"

Where ALARM_TIME must be expressed as an integer whose units are in seconds.

10. Enable the cloud bursting hook.
PBS Professional 2020.1.1 Cloud Guide CG-39

Chapter 2 Configuring Cloud Bursting
The cloud bursting server periodic hook is disabled by default.

qmgr -c "set hook cloud_hook enabled=True"

2.4 Manage Cloud Bursting

Enable and disable cloud bursting and edit cloud bursting scenarios to reconfigure cloud bursting such as adding instance
types, updating the cloud node boot script, and managing SSH keys.

2.4.1 View Cloud Account Details

View the information that was entered to create a cloud account.

1. Log in to Cloud.

2. Click the Cloud tab.

3. Under Infrastructure, click Cloud.

4. Select a cloud account by clicking on its name.

The information that was entered to create the cloud account is displayed.

5. Click Close.

2.4.2 View the Cloud Burst Nodes

View the cloud nodes that have been burst for a bursting scenario. Information that is displayed about cloud burst nodes:

Machine Name

Hostname of the node.

IP Address

IP address assigned to the node.

Instance Type

Cloud provider instance type (machine type, shape or flavor) of cloud node.

Image

OS image used to burst the node.

1. Log in to Cloud.

2. Click the Cloud tab.

3. Under Infrastructure, click Bursting.

4. Select a bursting scenario by clicking on its name.

Any cloud nodes that have been burst are displayed under the Machines category.

Figure 2-5:Burst Cloud Nodes
CG-40 PBS Professional 2020.1.1 Cloud Guide

Configuring Cloud Bursting Chapter 2
2.4.3 Enable Cloud Bursting

Enable cloud bursting so that cloud nodes can be burst.

By default, a bursting scenario is disabled after creation. To begin cloud bursting, a bursting scenario must first be
enabled.

1. Log in to Cloud.

2. Click Cloud.

3. Click the Bursting tab on the left-hand side of the web page.

4. Enable a bursting scenario by clickinglocated to the far right of the scenario name.

5. Click Enable.

6. Repeatthe last two steps to enable additional bursting scenarios.

2.4.4 Disable Cloud Bursting

Disable cloud bursting by disabling a bursting scenario, draining the cloud queues associated with the bursting scenario,
and waiting until all cloud nodes unburst.

Disabling a bursting scenario locks the bursting scenario from accepting any new bursting requests, but does not unburst
any cloud nodes. This allows jobs that have been submitted to a cloud queue associated with the bursting scenario to run
and complete. Once all jobs are complete, the node is unburst when it has remained idle for a specific amount of time.

Tip: The timeframe that a cloud node can be idle before it is unburst is configurable through the cloud bursting hook or
using the Cloud CLI to update the bursting scenario.

Repeat the below instructions for all bursting scenarios to disable bursting entirely. For instance, when upgrading PBS
Professional, performing PBS maintenance, or reconfiguring PBS execution hosts.

1. Log in to Cloud.

2. Click Cloud.

3. Click the Bursting tab on the left-hand side of the web page.

4. Disable a bursting scenario by clickinglocated to the far right of the scenario name.

5. Click Disable.

6. Allow the cloud queues associated to the bursting scenario to drain by allowing time for the jobs that are waiting in
the queues to run and complete.

If a running job is taking a long time to complete, it can be deleted using the PBS qdel command.

7. Verify that all cloud nodes are unburst:

a. Click on the name of a cloud bursting scenario.

b. View the information displayed under the Machines heading.

When the following message is displayed, all cloud nodes are unburst.

No machines are available

2.4.5 Edit a Bursting Scenario

Edit a bursting scenario to add quotas and alerts, enable instance types, add or remove SSH keys, and make changes to
the cloud node startup script.
PBS Professional 2020.1.1 Cloud Guide CG-41

Chapter 2 Configuring Cloud Bursting
Before you can edit a bursting scenario, any cloud nodes that are currently burst for that scenario must be drained and
unburst. For more information see Disable Cloud Bursting.

2.4.5.1 Add Quotas and Alerts

Add optional resource quotas and alerts to control cloud bursting.

To control cloud bursting, quotas can be added to define bursting limits for the following resources:

• the number of CPUs

• the amount of RBudget

• the amount of nodes

• the amount of node hours

Once the limit is reached, additional nodes are not burst. Alerts can also be defined so that an email is sent by a SMTP
server when a limit is reached.

The SMTP server is configured during installation of Cloud by your site’s system administrator.

1. Log in to Cloud.

2. Click Cloud.

3. Under Infrastructure, click Bursting.

4. Click the name of the bursting scenario.

5. Click Add Quota.

6. For Resource type, choose a resource from the menu.

7. Click Add Quota.

8. For Limit, provide a limit for the resource.

When the limit is reached for the resource, the deployment of further cloud burst nodes is blocked.

9. To add an alert, click Add.

10. Provide an alert value.

When the alert value is reached, an email is sent if an SMTP server is configured.

11. Repeat steps 5 through 10 to add quotas and alerts for other resources types.

2.4.5.2 Add a Token

Create a token and associated API key for a bursting scenario. The API key is used in the cloud bursting hook.

You can create a token right after creating a bursting scenario or you can create a token at a later date.

1. Log in to Cloud.

2. Click Cloud.

3. Under Infrastructure, click Bursting.

4. Click the name of the bursting scenario.

5. Click Add token located at the bottom of the web page.

6. For Name, enter a name for the token.

7. For Expiration date, specify the expiration date in MM/DD/YYYY format.

8. Click Add Token.
CG-42 PBS Professional 2020.1.1 Cloud Guide

Configuring Cloud Bursting Chapter 2
An API key is generated and displayed.

9. Copy and save this API key.

The API key is only displayed once. It is pasted in the configuration file used to configure the cloud bursting hook.

10. Click Close.

Once the token is created, there is additional configuration that needs to occur for PBS Professional; see section 2.3,
“Configure PBS Professional for Cloud Bursting”, on page 21.

2.4.6 Enable Instance Types

Enable instance types for a bursting scenario so that nodes having that hardware configuration can be burst.

1. Log in to to Cloud.

2. Click Cloud.

3. Under Infrastructure, click Bursting.

4. Click the name of the bursting scenario.

5. Click Edit Instances.

6. Select the instance types to enable for the bursting scenario by clicking the Enabled checkbox located to the far right
of the instance type name

If an attempt is made to burst nodes with a disabled instance type, the node is not burst and the below message is dis-
played in the PBS Server logs (if bursting through PBS), the Cloud logs and through the Cloud component user
interface.

TYPE is not enabled

Where TYPE is the instance type used when attempting to burst the node.

7. Click Save.

The instance types that have been enabled for the bursting scenario are displayed.

2.4.7 Edit General Bursting Scenario Details

Modify bursting scenario details such as scenario name, description, domain name, OS image, and VPC details.

1. Log in to Cloud.

2. Click Cloud.

3. Under Infrastructure, click Bursting.

4. Click the name of the bursting scenario.
PBS Professional 2020.1.1 Cloud Guide CG-43

Chapter 2 Configuring Cloud Bursting
5. Click the edit pen.

Figure 2-6:Edit Scenario Details

6. Change any of the editable data.

7. Enter a key-value pair to add a label to the cloud node and press ENTER.

A tag is a label that is assigned to a cloud node. Tags enable cloud nodes to be categorized in different ways, for
example, by purpose, owner, or environment.

The key-value pair must be entered as key:value. The key must be less than 36 characters and the value must be less
than 43 characters. The length of both the key + value should be less than 80 characters. Valid values are alphanu-
meric, dash (-) and an underscore (_).

Once the tag is added, it will appear within its own bubble.

Figure 2-7:Key-Value Tag

8. Repeat the previous step to add more tags.

Figure 2-8:Additional Tags

9. Click Save.

2.4.7.1 Edit SSH Keys

Add an SSH to a bursting scenario to give users access to associated cloud nodes. Remove SSH keys for a bursting sce-
nario to restrict access to the associated cloud nodes.

1. Log in to Cloud.

2. Click Cloud.

3. Under Infrastructure, click Bursting.

4. Click the name of the bursting scenario.

5. Click the edit pen.
CG-44 PBS Professional 2020.1.1 Cloud Guide

Configuring Cloud Bursting Chapter 2
6. Add public SSH keys for any users that you want to have access to the burst nodes:

a. Click Add.

An editable box is displayed.

b. Place the cursor in the editable box.

c. Paste the public SSH key into the editable box.

Public key files are usually stored in /.ssh in the user’s home directory.

d. Repeat steps 6.a through 6.c to add additional public SSH keys.

7. Remove public SSH keys so that users do not have access to the burst nodes:

Click the “x” located next to the SSH key box.

8. Click Save.

2.4.7.2 Edit the Cloud Node Startup Script

Update the cloud node startup script to configure the node after booting.

1. Log in to Cloud.

2. Click Cloud.

3. Under Infrastructure, click Bursting.

4. Click the name of the bursting scenario.

5. Click the edit pen .

6. Modify the script.

7. Click Save.

2.4.8 Manage Manually Burst Cloud Nodes

Burst, unburst and view information about cloud nodes that have been created manually.

Manually burst cloud nodes are those that have either been created using the Cloud CLI or through the Cloud user inter-
face and have not been created via the PBS cloud bursting hook.

2.4.8.1 Burst a Cloud Node Manually

Burst nodes manually (without the intervention of the PBS cloud bursting hook) for testing purposes or when your site
wants to keep nodes burst for an indeterminate amount of time.

A cloud bursting scenario must be created before you can burst cloud nodes.

Cloud nodes can be burst manually (without using the PBS cloud bursting hook) to test the bursting scenario, to ensure
that the connectivity from the PBS Server to the cloud infrastructure is working properly, or so that the cloud node
remains burst indefinitely.

Cloud nodes burst manually remain up and running until explicitly unburst.

1. Log in to Cloud.

2. Click the Cloud tab.

3. Under Infrastructure, click Bursting.

4. Select a bursting scenario by clicking on its name.
PBS Professional 2020.1.1 Cloud Guide CG-45

Chapter 2 Configuring Cloud Bursting
5. Under Machines (manually burst), click Manual bursting.

A list of instance types that have been enabled for the bursting scenario is displayed.

6. Click the “+” to choose an instance type to burst.

Figure 2-9:Choose Instance Type

7. Enter the number of machines to burst.

Figure 2-10:Number of Machines to Burst

8. Optionally, override the default OS image by entering a different OS image. An OS image is the template used to
create the virtual machine.

Figure 2-11:Override the OS Image

9. Optionally, click again to burst the same instance type with a different OS image.

Figure 2-12:Choose a Different OS Image
CG-46 PBS Professional 2020.1.1 Cloud Guide

Configuring Cloud Bursting Chapter 2
10. Repeat steps 6 through 9 to burst any other instance types.

11. Click Burst xx machines.

Where xx indicates the number of virtual machines that will be burst.

12. Click Burst xx machines to confirm the action.

13. Click the bell icon to view messages in the Notification Center about the progress of the bursting activity.

Once bursting is complete, a list of virtual machine that have been burst is displayed.

Figure 2-13:Burst Machines

2.4.8.2 View Information About a Manually Burst Cloud Node

Display information about a manually burst node such as machine name, IP address, associated OS image and price.

1. Log in to Cloud.

2. Click the Cloud tab.

3. Under Infrastructure, click Bursting.

4. Select a bursting scenario by clicking on its name.

5. Under Machines (manually burst), click View to display information about the machines that have been burst for a
particular instance type.

Figure 2-14:View Machine Information
PBS Professional 2020.1.1 Cloud Guide CG-47

Chapter 2 Configuring Cloud Bursting
Use the search boxes located above the columns to filter a long list of machines.

Figure 2-15:Machine Information

2.4.8.3 Unburst a Manually Burst Cloud Node

Unburst nodes that were created manually when they are no longer needed.

Before unbursting, drain the cloud node of any running jobs, otherwise jobs that are running when the node is unburst
will fail.

Cloud nodes burst manually remain up and running until explicitly unburst.

1. Log in to Cloud.

2. Click the Cloud tab.

3. Under Infrastructure, click Bursting.

4. Select a bursting scenario by clicking on its name.

5. Under Machines (manually burst), choose on of the following options:

• To display all machines that have been manually burst, click Manual unbursting located to the right of the web
page.

• To display a list of machines that have been burst for a particular instance type, click Unburst.

Figure 2-16:Unburst Machines for a Particular Instance Type
CG-48 PBS Professional 2020.1.1 Cloud Guide

Configuring Cloud Bursting Chapter 2
6. Choose machines to unburst by enabling the check box to the right of the machine.

Figure 2-17:Choose Machines to Unburst

7. Click Unburst.

8. Click Unburst machines to confirm the action.

9. Click the bell icon to view messages in the Notification Center about the progress of the unbursting activity.

2.5 Troubleshoot Cloud Bursting

View log messages to troubleshoot cloud bursting.

View the log messages that are written to PBS_HOME/server_logs on the PBS Server to troubleshoot cloud bursting.
Additionally, you can SSH to the virtual machine that was burst and check PBS_HOME/ mom_logs to debug issues with
node creation or issues with starting the MoM on that virtual machine.

A third option for troubleshooting cloud bursting is to use Cloud to view the logs through a Kibana user interface.

2.5.1 PBS MoM s Stopped or Down

When cloud bursting is implemented and all PBS MoM’s are stopped or down, error messages similar to the below may
be seen in the PBS Server logs:

Server@server;Hook;Server@server;CLBR: Error: /opt/pbs/bin/pbsnodes: Server has no node list

Server@server;Hook;Server@server;CLBR: Error: Failed to get nodes info

Resolve the issue by starting at least one MoM.

2.5.1.1 See Also

Access the Cloud Logs

2.6 Manage Cloud and On-Premise Jobs

Solutions to handle various job distribution needs.

Your site may want to run certain types of jobs on-premises or in the cloud. PBS Professional provides various methods
to collect and distribute jobs. For more information see Routing Jobs in the PBS Professional Administrator’s Guide.
Here are some solutions to handle various job distribution needs.
PBS Professional 2020.1.1 Cloud Guide CG-49

Chapter 2 Configuring Cloud Bursting
2.6.1 Associate Nodes with Queues

In general, start by associating nodes with queues, so that a job in a specific queue is sent to the desired nodes. Associate
each on-premise vnode with the appropriate local queue. Set the queue attribute on the vnode to the name of the local
queue:

qmgr -c "active <list of on-premise nodes>"

qmgr -c "set node queue=<name of local queue>"

For more information see Creating Queues and Associating Vnodes With One Queue in the PBS Professional Adminis-
trator’s Guide.

2.6.2 Use Hooks or Routing Queues to Send Jobs to the
Appropriate Queue

To send jobs to the appropriate queue on submission, use hooks or routing queues. For more information see the PBS
Professional Hooks Guide and Routing Queues in the PBS Professional Administrator’s Guide.

2.6.3 Job Distribution Examples and Solutions

Examples for routing jobs to the cloud.

2.6.3.1 Burst when On-premise Nodes are Not Available

You want to run as many jobs as possible on on-premise nodes, and only burst to the cloud when no more on-premise
nodes are available.

Solution: Create two execution queues, one for local jobs and one for cloud jobs. Set up local peering so that the local
queue pulls from the cloud queue whenever local nodes are available.

2.6.3.2 Send Small Jobs to the Cloud

You have big machines for on-premise nodes and want to reserve those big machines for big jobs. You want to send
smaller jobs to the cloud.

Solution 1:

• Create three queues: a routing queue, a local queue, and a cloud queue.

• Use the routing queue to collect jobs on submission.

• Set resource gating on the local queue to filter out smaller jobs.

• Allow smaller jobs into the cloud queue.

Solution 2:

• Create two queues: a local queue, and a cloud queue.

• Use a queuejob hook to route jobs into the appropriate queue.

2.6.3.3 Send Specific Jobs Only to the Cloud

You want to send specific jobs to the cloud because:

• an application needed by some jobs runs well in the cloud.

• a resource that is available in the cloud is not available locally.

• a department has exhausted its share of local resources, and wants to send its jobs to the cloud.
CG-50 PBS Professional 2020.1.1 Cloud Guide

Configuring Cloud Bursting Chapter 2
Solution :

• Create two queues: a local queue, and a cloud queue.

• Use a queuejob hook to route jobs into the appropriate queue.

2.6.3.4 Charge Departments for Resources Used

You have multiple departments and each department should be charged for the resources it uses.

Solution :

• Create a cloud queue for each department.

• Set separate limits on each cloud queue.

2.7 Run Cloud Jobs On-Premise Before Bursting

Use placement sets to run jobs on-premise first and burst cloud nodes when local nodes are not available.

Assign a bursting scenario to an on-premise vnode so that cloud jobs are run on-premise when there is capacity. Cloud
nodes are only burst when on-premise nodes are not available.

For more information see Placement Sets in the PBS Professional Administrator’s Guide.

1. Create a custom resource to indicate that a node is on-premise.
qmgr -c "create resource node_location type=string,flag=h"

2. For each on-premise vnode, set the resources_available.node_location resource to "local" to indicate that it is on-
premise.

qmgr -c "active node VNODE_NAME"

qmgr -c "set node VNODE_NAME resources_available.node_location=local"

Where VNODE_NAME is the name of the local vnode.

3. For any on-premise vnodes where you want to run cloud jobs, associate a bursting scenario or a list of bursting sce-
narios to the vnode:

• To associate a list of bursting scenarios to a vode:
qmgr -c "set node VNODE_NAME resources_available.cloud_scenario= SCENARIO_1,

SCENARIO_2,...,SCENARIO_n"

• To associate a single bursting scenario to a vode:
qmgr -c "set node VNODE_NAME resources_available.cloud_scenario= SCENARIO_1"

Where SCENARIO_1,..., SCENARIO_n are scenario names that have been added to the cloud bursting hook con-
figuration file.

qmgr -c "set node VNODE_NAME resources_available.cloud_scenario=
azure_scenario_1,aws_scenario_1,aws_scenario_2"

4. Create a dummy vnode with a high resources_available.ncpus value and unset resources_available.node_location.

5. Mark the dummy node as offline so that jobs cannot run on it.

pbsnodes -C "COMMENT" -o HOSTNAME

Where COMMENT is a string explaining that this is a dummy node for cloud bursting and HOSTNAME is the host-
name of the vnode.
PBS Professional 2020.1.1 Cloud Guide CG-51

Chapter 2 Configuring Cloud Bursting
6. Enable placement sets:

qmgr -c "set server node_group_enable=true"

qmgr -c "set server node_group_key=node_location"

7. Allow creation of placement sets from unset resources:

qmgr -c "set sched only_explicit_psets=false"

8. Optionally, prevent any single job from running on both local and cloud vnodes:

qmgr -c "set sched do_not_span_psets=true"

9. Navigate to PBS_HOME/sched_priv.

10. Edit the sched_config file.

11. Add cloud_scenario and node_location to the resources line:

"... , cloud_scenario, node_location"

12. For each local (non-cloud) queue set its node_location to “local”:

qmgr -c "set queue QUEUE_NAME resources_default.node_location=local"

Where QUEUE_NAME is the name of the local queue.

13. For each cloud queue, verify that the value of resources_default.node_location is unset.

14. Restart or HUP the scheduler:

kill -HUP <scheduler PID>

2.7.1 Override Instance Type or Image at Job Submission

Override the default instance type or OS image used to burst the cloud node at job submission.

The OS image that is to be used when a cloud node is burst can be specified at job submission via the qsub command. If
this information is not provided at job submission, then the OS image defaults to the value of the cloud_default_image
parameter in the cloud bursting hook configuration file.

The job submitter can use only the instance types that have been allowed by the administrator. If the job submitter tries
to use a non-allowed instance type, the job does not run.

Additionally, the instance type that is burst can be specified at job submission via the qsub command (e.g.
Standard_DS3_v2). Instance types are defined by the cloud provider. The name of the instance type must exactly match
the cloud provider’s. If this information is not provided at job submission, then the instance type defaults to the instance
type defined for the cloud queue.

1. Override the cloud image at job submission via the qsub command:
qsub -l select=1:ncpus=4 -q QUEUE_NAME -v CLOUD_IMAGE=IMAGE JOB_SCRIPT

Where:

• QUEUE_NAME is the name of the cloud queue.

• JOB_SCRIPT is the name of the script to be executed.

• IMAGE is the name of the OS image to be used when the node is burst.

2. Override the cloud instance at job submission via the qsub command:

qsub -l select=1:ncpus=4 -q QUEUE_NAME -v CLOUD_INSTANCE=INSTANCE_TYPE JOB_SCRIPT
CG-52 PBS Professional 2020.1.1 Cloud Guide

Configuring Cloud Bursting Chapter 2
Where:

• QUEUE_NAME is the name of the cloud queue.

• JOB_SCRIPT is the name of the script to be executed.

• INSTANCE_TYPE is the name of cloud provider instance type. This is the type of machine that will be burst.

3. You can also override both the OS image and the instance type as part of the qsub command:

qsub -l select=1:ncpus=4 -q QUEUE_NAME -v CLOUD_IMAGE=IMAGE,CLOUD_

2.7.2 Request InfiniBand Nodes

Request InfiniBand nodes to run HPC workloads like MPI jobs.

You will need to create an InfiniBand enabled OS image before you can submit a job to an InfiniBand cloud node.

When the user wants to run HPC workloads like MPI jobs, the user needs InfiniBand supported nodes deployed on the
same InfiniBand network. Among the cloud providers, only Azure currently supports InfiniBand nodes. Azure limits the
number of nodes on a single Infiniband network (current default limit is 100), however your site may set up multiple
Infiniband networks. A restriction for bursting on Infiniband networks is that PBS jobs cannot run across multiple Infini-
band networks. To prevent this from happening, placement sets can be used.

At job submission, the user can request InfiniBand nodes by requesting an InfiniBand supported instance type, an Infini-
Band enabled OS image, and an InfiniBand network.

Upon bursting an InfiniBand node, the name of the network is obtained from the cloud provider. The custom resource
cloud_network on the Infiniband node is updated with this value. All nodes on the same Infiniband network have this
custom resource set to the same value. This value is then used to restrict jobs to run within the same network, using
placement sets.

1. Enable placement sets:
qmgr -c "set server node_group_key=cloud_network"

qmgr -c "set server node_group_enable=true"

2. Prevent any single job from running across multiple Infiniband networks:

qmgr -c "set sched do_not_span_psets=true"

3. Request Infiniband nodes by overriding the cloud image and the cloud instance and requesting an Infiniband net-
work via the qsub command:

qsub -l select=1:ncpus=4 -q QUEUE_NAME -v
CLOUD_IMAGE=IMAGE,CLOUD_INSTANCE=INSTANCE_TYPE,CLOUD_NETWORK=IB JOB_SCRIPT

Where:

• QUEUE_NAME is the name of the cloud queue.

• INSTANCE_TYPE is the name of cloud provider instance type (machine types, shapes or flavors) and should
be an instance type that supports Infiniband.

• IMAGE is the name of the Infiniband enabled OS image to be used when the node is burst.

• CLOUD_NETWORK=IB requests an Infiniband network

• JOB_SCRIPT is the name of the script to be executed.

2.8 Modify the Bursting Hook

Add, remove or change a scenario in the cloud bursting hook configuration file.
PBS Professional 2020.1.1 Cloud Guide CG-53

Chapter 2 Configuring Cloud Bursting
Modifying any of the following parameters in the cloud bursting hook configuration file does not require any special pro-
cessing. The cloud bursting hook will use the updated values in the next hook cycle:

• cloud_min_instances

• resources

2.8.1 Change a Scenario in the Cloud Bursting Hook

Make modifications to an existing scenario in the cloud bursting hook.

Configuring the hook must be done as root or as a user with sudo permissions using the sudo command.

1. Log in to the PBS Server.

2. Export the cloud bursting hook configuration to a file:

qmgr -c "export hook cloud_hook application/x-config default" > FILENAME

Where FILENAME is the name of the file where the hook configuration is written.

qmgr -c "export hook cloud_hook application/x-config default" > config.json

3. Edit the file.

4. Make any necessary adjustments to the scenario.

5. Save the file.

6. Re-import the hook with the updated configuration values:

qmgr -c "import hook cloud_hook application/x-config default FILENAME"

Where FILENAME is the name of the file containing the hook configuration.

2.8.2 Add a New Scenario to the Cloud Bursting Hook

Modify the cloud bursting hook configuration file by adding a new scenario.

Each scenario requires its own queue, and each queue can have only one scenario, otherwise bursting and unbursting will
not be coordinated.

Configuring the hook must be done as root or as a user with sudo permissions using the sudo command.

1. Log in to the PBS Server.

2. Export the cloud bursting hook configuration to a file:

qmgr -c "export hook cloud_hook application/x-config default" > FILENAME

Where FILENAME is the name of the file where the hook configuration is written.

qmgr -c "export hook cloud_hook application/x-config default" > config.json

3. Edit the file.
CG-54 PBS Professional 2020.1.1 Cloud Guide

Configuring Cloud Bursting Chapter 2
4. Add a scenario by adding the following information to the scenario container. Note that scenarios are specific to a
cloud provider.

a. Set the value of api_key to the token generated for the bursting scenario.

b. Set the value of cloud_default_image to OS image that should be used for bursting. This OS image is used if the
image is not requested as part of the job submission request.

c. Set the value of cloud_max_instances to the maximum number of instances that can be made available in the
cloud.

Is expressed as an integer whose units are in seconds. This value must be specified otherwise the cloud bursting
hook is rejected.

d. Optionally, set the value of max_vms_for_infiniband_scaleset to define the maximum number of nodes allowed
on a single InfiniBand switch.

This value should match the value of Maximum number of VMs inside a ScaleSet as specified in the Azure
bursting scenario. If you are not using InfiniBand, then you can eliminate this parameter.

Supported by Azure only.

e. Set the value of max_nodes_per_burst to the maximum number of nodes allowed to burst in a single hook cycle.

f. Set the value of cloud_node_wait_timeout to the maximum time to wait for freshly burst node to become
usable.

Must be expressed as an integer whose units are in seconds. Default is 180 seconds. You can set this to a higher
value, but a lower value defaults to 180 seconds.

g. Set preemptable to:

• True when the bursting scenario supports preemptible (spot) instances and cloud jobs may be preempted.

• False when jobs that are run in the cloud should not be preemptible.

Default value is False for a scenario. If flag is not specified, the default value is used.

5. Save the file.

6. Re-import the hook with the updated configuration values:

qmgr -c "import hook cloud_hook application/x-config default FILENAME"

Where FILENAME is the name of the file containing the hook configuration.

Now you must add and configure a new cloud queue for the scenario: see section 2.3.5, “Configure the Cloud Queues”,
on page 24.

2.8.3 Delete a Scenario from the Cloud Bursting Hook

Remove a scenario that is no longer needed from the cloud bursting hook configuration file. Before deleting a scenario
from the cloud bursting hook configuration file, disable cloud bursting.

Configuring the hook must be done as root or as a user with sudo permissions using the sudo

command.

1. Log in to the PBS Server.

2. Export the cloud bursting hook configuration to a file:

qmgr -c "export hook cloud_hook application/x-config default" > FILENAME

Where FILENAME is the name of the file where the hook configuration is written.

qmgr -c "export hook cloud_hook application/x-config default" > config.json

3. Edit the file.
PBS Professional 2020.1.1 Cloud Guide CG-55

Chapter 2 Configuring Cloud Bursting
4. Remove the scenario from the scenario container.

5. Save the file.

6. Re-import the hook with the updated configuration values:

qmgr -c "import hook cloud_hook application/x-config default FILENAME"

Where FILENAME is the name of the file containing the hook configuration.

7. Enable all cloud queues.

qmgr -c "set queue QUEUE_NAME enabled=true"

Where QUEUE_NAME is the name of the cloud queue.

2.8.4 Change the Cloud Server

Update the hook configuration file when the location of the Cloud component changes.

Before making any changes to the endpoint for accessing the Cloud component, disable cloud bursting.

1. Log in to the PBS Server.

2. Export the cloud bursting hook configuration to a file:

qmgr -c "export hook cloud_hook application/x-config default" > FILENAME

Where FILENAME is the name of the file where the hook configuration is written.

qmgr -c "export hook cloud_hook application/x-config default" > config.json

3. Edit the file.

4. Set pclm_server to the endpoint for accessing Cloud in the format http://HOSTNAME:PORT.

Where HOSTNAME is the IP address or hostname of the machine where Cloud is installed and PORT is the Cloud
port (Defaults to 9980).

5. Re-import the hook with the updated configuration values:

qmgr -c "import hook cloud_hook application/x-config default FILENAME"

Where FILENAME is the name of the file containing the hook configuration.

6. Enable all cloud queues.

qmgr -c "set queue QUEUE_NAME enabled=true"

Where QUEUE_NAME is the name of the cloud queue.

2.9 Start and Stop Cloud After a Manual Installation

2.9.1 Start Cloud

Start the Cloud service after a manual installation.

Starting Cloud must be done as root or as a user with sudo permissions using the sudo command.
CG-56 PBS Professional 2020.1.1 Cloud Guide

Configuring Cloud Bursting Chapter 2
When your server hosting the Cloud component reboots, containers are restarted automatically. If you need to manually
start Cloud containers, please follow the below instructions.

1. Log in to the machine where Cloud is installed.

2. Enter the following command to start Cloud:

pkr start

2.9.2 Stop Cloud

Stop the Cloud service after a manual installation.

Stopping Cloud must be done as root or as a user with sudo permissions using the sudo command.

1. Log in to the machine where Cloud is installed.

2. Enter the following command to stop Cloud:

pkr stop

2.9.3 Restart Cloud

Retart the Cloud service after a manual installation.

Retarting Cloud must be done as root or as a user with sudo permissions using the sudo command.

When your server hosting the Cloud component reboots, containers are restarted automatically. If you need to manually
restart Cloud containers, please follow below instructions.

1. Log in to the machine where Cloud is installed.

2. Enter the following command to restart Cloud:

pkr restart

2.9.4 Determine the Status of the Cloud Service

Determine whether the Cloud service is up or down.

1. Log in to the machine where Cloud is installed.

2. Enter the following command to display the status of the Cloud service:

pkr status
PBS Professional 2020.1.1 Cloud Guide CG-57

Chapter 2 Configuring Cloud Bursting
CG-58 PBS Professional 2020.1.1 Cloud Guide

3

Using Cloud Provider Services

3.1 Windows Bursting on AWS and Azure

Bursting of Windows virtual machines is supported on AWS and Azure. Windows cloud bursting is similar to cloud
bursting on Linux platforms. Three special requirements are necessary to burst Windows cloud nodes.

3.1.1 OS Image Name

When creating the OS image, the name of the image must contain the term “windows” (case insensitive). For example,
on AWS, the AMI Name should look something like this:

Windows_Server-2012-R2_RTM-English-64Bit- Base-2019.11.13

On Azure, the Image Name should look something like Windows Server 2012 R2 Datacenter.

3.1.2 Inbound Security Rule for RDP

Secondly, an inbound rule to open the port 3389 must be added to the AWS security group or the Azure network security
group that is associated with the cloud provider virtual network. This allows a connection to be made to the Windows
VM via RDP so that the PBS MoM can be installed.

For more information see AWS: Authorizing Inbound Traffic for Your Windows Instances and Azure: Cannot connect
remotely to a VM because RDP port is not enabled in NSG.

Figure 3-1:AWS Inbound Security Rule for RDP

Figure 3-2:Azure Inbound Security Rule for RDP
PBS Professional 2020.1.1 Cloud Guide CG-59

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/authoring-access-to-an-instance.html
https://docs.microsoft.com/en-us/azure/virtual-machines/troubleshooting/troubleshoot-rdp-nsg-problem
https://docs.microsoft.com/en-us/azure/virtual-machines/troubleshooting/troubleshoot-rdp-nsg-problem

Chapter 3 Using Cloud Provider Services
3.1.3 Startup Script

The cloud node startup script must use a PowerShell script. For more information see PowerShell Scripting. The below
PowerShell script example generates a file in C:\Windows\Temp:

<powershell>

$file = $env:SystemRoot + "\Temp\" + (Get-Date).ToString("MM-dd-yy-hh-mm")

New-Item $file -ItemType file

</powershell>

3.1.4 See Also

• "Configuring Amazon Web Service Cloud Bursting” on page 60

• "Configuring Microsoft Azure Cloud Bursting” on page 73

3.2 Configuring Amazon Web Service Cloud

Bursting

You create and activate an AWS account, create the AWS components required for cloud bursting, and then create a
Cloud cloud bursting scenario.

For more information see How do I create and activate a new Amazon Web Services account?

You’ll need the AWS user account in order to create a cloud account in Cloud.

You create an AWS user account and give this account administrative permissions. Once this task is complete, you
should have downloaded a CSV file containing the following:

• Access key ID

• Secret access key

This information is necessary to create a cloud account in Cloud.

3.2.1 Creating an Amazon Web Service User Account

1. Sign up for an AWS account.

You can find AWS documentation at Creating an IAm User in Your AWS Account.

2. Log in to the AWS console.

3. Using the search box located under AWS services, enter IAM.

4. Click the IAM search result.

The Identity and Access Management dashboard is opened.

5. In the navigation pane on the left-hand side of the web page, click Users.

6. Click Add user.

This user will have administrative rights to any machines hosted in the cloud.
CG-60 PBS Professional 2020.1.1 Cloud Guide

https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws_account
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html

Using Cloud Provider Services Chapter 3
7. Enter the following information to add a user:

a. For User name, enter a name for the user.

The name can be anything meaningful to your organization, e.g., pc_clouduser.

b. For Access type, enable Programmatic access.

The user requires this type of access because Cloud needs to make API calls or use the AWS CLI. An access key
ID and a secret access key are generated for the user.

8. Click Next:Permissions.

9. Optional: Click Add user to group. This button may already be selected.

10. Click Create group.

11. Enter the following information to create a group, add the user to the group, and choose a permission policy for the
group.

a. For Group name, enter a group name.

The name can be anything meaningful to your organization, e.g., pc_cloudgroup.

b. For Policy type, enable AdministratorAccess.

This policy provides full access to AWS services and resources.

12. Click Create group.

You are returned to the Add user page and the new group is enabled indicating that the user is added to the new
group.

13. Click Next: Tags.

14. Click Next: Review.

15. Click Create user.

16. Click Download.csv.

17. Download and save this file in a secure location.

This file contains an access key ID and a secret access key and is used later to add a cloud account to Cloud.

18. Click Close.

The new user account is displayed.

3.2.2 Add an Amazon Web Service Cloud Account

Add an existing AWS user account Cloud so that you can create a cloud bursting scenario or an appliance.

You must already created an AWS user account, given it administrative permissions and downloaded a CSV file contain-
ing an access key ID and a secret access key. The information in the CSV file is necessary to create a cloud account in
Cloud. If you do not have this information see Create an Amazon Web Service User Account.

1. Log in to Cloud.

2. Click the Cloud tab.

3. Under Infrastructure, click Cloud.

4. Click the “AWS” button.
PBS Professional 2020.1.1 Cloud Guide CG-61

Chapter 3 Using Cloud Provider Services
5. Enter the following to add a cloud account:

a. For Account name, enter any name for the cloud account.

The name can be anything meaningful to your organization, e.g., aws_cloudaccount.

b. For Access Key ID, copy and paste the value of Access key ID from the downloaded CSV file.

c. For Secret Access Key, copy and paste the Secret access key value from the downloaded CSV file.

d. Click Create account.

3.2.3 Multi-Availability Zone Management on AWS

Configure the bursting scenario so that cloud nodes can be burst in several Availability Zones.

Refer to the following AWS documentation if you are not familiar with AWS regions, Availability Zones, VPCs or sub-
nets:

• Regions, Availability Zones, and Local Zones

• VPCs and Subnets

Bursting cloud nodes in multiple Availability Zones allows an HPC complex to distribute the load across a region and
take advantage of AWS Spot Instances. Several prerequisites must be met before configuring the bursting scenario:

• An AWS virtual private cloud (VPC) must be created.

• A subnet for each Availability Zone must be created and each subnet must belong to the same VPC.

Once these prerequisites are met, then it is as simple as providing a comma-separated list of subnets when the bursting
scenario is created.

Figure 3-3:List of Subnets
CG-62 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
Cloud attempts to burst cloud nodes in the first subnet in the list. If there is no availability in that subnet, then it will
attempt to burst cloud nodes in the next subnet in the list and will continue until a subnet is found where the cloud nodes
can be burst or until all subnets are exhausted (i.e. bursting fails). The cloud bursting hook attempts to burst all requested
cloud nodes in a single subnet. Cloud nodes are not burst across subnets. This same process is followed each bursting
cycle until there is availability for the cloud nodes.

Example 3-1: 10 cloud nodes are requested for bursting.

a. The cloud bursting hook attempts to burst all 10 nodes in subnet-014c5607b.

b. If there is no availability in subnet-014c5607b, the hook attempts to burst all 10 cloud nodes in subnet-
0622f6467.

c. If there is no availability in subnet-0622f6467, the hook attempts to burst all 10 cloud nodes in subnet-
05c352abff.

d. If there is no availability in subnet-05c352abff, then cloud bursting fails.

3.2.4 Create a Virtual Private Cloud Network

Create a Virtual Private Cloud (VPC) in AWS so that you can later create a virtual machine for cloud bursting.log in to
your AWS Management Console and choose a region based on the geographical location of your users. All cloud
resources that are created are placed in this region. For more information see Regions and Availability Zones. The menu
for selecting a region is located at the upper right-hand corner of the AWS Console menu bar.

Figure 3-4:AWS Region

AWS documentation can be found at Getting Started with IPv4 for Amazon VPC and Working with VPCs and Subnets.

To configure the bursting scenario so that cloud nodes can be burst in several Availability Zones, create a subnet for each
Availability Zone that you want to burst in. For more information see Multi-Availability Zone Management on AWS.

1. Log in to the AWS console.

2. Click located in the upper left-hand corner of the web page.

3. Using the search box located under AWS services, enter VPC.

4. Click the VPC search result. The VPC dashboard is opened.

5. In the menu located on the left-hand side of the web page, click Your VPCs. Create a virtual private cloud.

6. Click Create VPC.

7. Enter the following to create a VPC:

a. For Name, enter any name for the VPC.

The name can be anything meaningful to your organization, e.g., bursting_vpc.

b. For IPv4 CIDR block, provide an address range in CIDR notation.

c. For IPv6 CIDR block, enable No IPv6 CIDR Block.

d. For Tenancy, choose Default.

8. Click Yes, Create.

9. Create subnets for the VPC:

10. In the menu located on the left-hand side of the web page, click Subnets.
PBS Professional 2020.1.1 Cloud Guide CG-63

Chapter 3 Using Cloud Provider Services
11. Click Create Subnet.

a. For Name tag, enter a name for the subnet.

The name can be anything meaningful to your organization, e.g., bursting_subnet.

b. For VPC, choose the VPC that was previously created (e.g. bursting_vpc).

c. For Availability Zone, choose one of the following options:

• Choose a unique availability zone for each subnet.

• Choose No Preference to let Amazon choose an Availability Zone for you.

d. For IPv4 CIDR block, provide an address range in CIDR notation.

12. Click Create.

13. Click Close.

3.2.5 Create an Internet Gateway

Create an internet gateway and attach it to the bursting VPC. AWS documentation can be found at Internet Gateways.

An internet gateway must be created so that you can later SSH into the virtual machine that is used for cloud bursting.

1. Log in to the AWS console.

2. Click located in the upper left-hand corner of the web page.

3. Using the search box located under AWS services, enter VPC.

4. Click the VPC search result. The VPC dashboard is opened.

5. In the menu located on the left-hand side of the web page, click Internet Gateways.

6. Click Create internet gateway.

7. Enter the following to create an internet gateway:

• For Name tag, enter a name for the internet gateway.

The name can be anything meaningful to your organization, e.g., bursting_gateway

8. Click Create.

9. Click Close.

10. Select the internet gateway that was just created by enabling the check box next to the name of the gateway.

11. You may need to deselect any other internet gateways that are displayed in the list. Amazon creates default
resources for your selected region so a default internet gateway may already exist.

12. Click Actions > Attach to VPC.

13. Select the VPC that was created previously (e.g. bursting_vpc).

14. Click Attach.

3.2.6 Update the VPC Route Table

Add a rule to the VPC route table that allows all internet access and associate the route table to the bursting subnet.
CG-64 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
AWS documentation can be found at Route Tables.

1. Log in to the AWS console.

2. Click located in the upper left-hand corner of the web page.

3. Using the search box located under AWS services, enter VPC.

4. Click the VPC search result. The VPC dashboard is opened.

5. In the menu located on the left-hand side of the web page, click Route Tables. A list of route tables is displayed.

6. Select the route table attached to your VPC (e.g. bursting_vpc) by enabling the check box next to the name of the
route table.

The VPC column in the route table list specifies the VPC to which the route table is attached.

7. Click the Routes tab at the bottom of the web page.

8. Click Edit routes.

Figure 3-5:Add a Route

9. Click Add route.

10. Add a rule that allows all traffic access to the internet gateway:

a. Enter the following to add a rule:

• For Destination enter 0.0.0.0/0.

• For Target, select Internet Gateway and then the internet gateway that was created previously (e.g.
bursting_gateway).

11. Click Save routes.

12. Click Close.

13. Associated the route table to the bursting subnet:

a. Click the Subnet Associations tab.

b. Click Edit subnet associations.

c. Select the subnet created for cloud bursting from the list.

14. Click Save.
PBS Professional 2020.1.1 Cloud Guide CG-65

Chapter 3 Using Cloud Provider Services
3.2.7 Add Inbound Rules to the VPC Security Group

Add inbound rules to the VPC security group so that a connection can be established with an AWS VM using SSH or
RDP.

1. Log in to the AWS console.

2. Click located in the upper left-hand corner of the web page.

3. Using the search box located under AWS services, enter VPC.

4. Click the VPC search result. The VPC dashboard is opened.

5. In the menu located on the left-hand side of the web page, under Security click Security Groups.

6. Select the security group associated to the VPC created for cloud bursting by enabling the check box next to its
name.

A default VPC security group is created when the VPC is created.

7. Click the Inbound Rules tab at the bottom of the web page.

8. Click Edit rules.

9. Click Add Rule.

10. Add security rules based on your site’s requirements.

• On Linux platforms, add an inbound rule to allow SSH traffic on port 22.

• On Windows platforms, add an inbound rule to allow RDP traffic on port 3389.

Figure 3-6:Security Rules

Warning: 0.0.0.0/0 enables all IPv4 addresses to access your instance. ::/0 enables all IPv6 address to access your
instance. This is acceptable for a short time in a test environment, but it's unsafe for production environments. In
production, authorize only a specific IP address or range of addresses to access your instance.

11. Click Save rules.

3.2.8 Create a Virtual Machine

Create a virtual machine in AWS Elastic Compute Cloud (EC2).
CG-66 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
AWS documentation can be found at Launch a Linux Virtual Machine and Launching a Virtual Machine with Amazon
EC2.

1. Log in to the AWS console.

2. Click located in the upper left-hand corner of the web page.

3. Using the search box located under AWS services, enter EC2.

4. Click the EC2 search result. The EC2 dashboard is opened.

5. In the menu located on the left-hand side of the web page, click Instances.

6. Click Launch Instance.

7. In the menu located on the left-hand side of the web page, click AWS Marketplace.

8. Using the search box:

• On Linux platforms, enter CentOS 7 or RHEL and press ENTER.

• On Windows platforms, enter Windows and press ENTER.

9. Locate the appropriate Amazon Machine Image (AMI) and click Select.

On Linux platforms, cloud bursting has been tested on CentOS 7.2 - 7.6.

On Windows platforms, cloud bursting has been tested on Windows 10 and Windows Server 2012.

10. Click Continue.

11. Select an Instance Type appropriate for your site’s workload based on:

• the number of cores

• the amount of memory

• storage

• network performance

Consider the nature of the applications that you plan to deploy on the instance, the number of users that you expect
to use the applications, and also how you expect the load to scale in the future. Remember to also factor in the CPU
and memory resources that are necessary for the operating system.

12. Click Next: Configure Instance Details.

13. Enter the following to configure instance details:

a. For Number of instances, specify 1.

b. For Network, choose the VPC that you previously created (e.g. bursting_vpc). The bursting subnet is automati-
cally populated.

c. For Auto-assign Public IP, select Enable.

14. Click Next: Add Storage.

15. Specify the storage options as per your site’s requirements. We recommend enabling Delete on Termination to
delete EBS volumes when the virtual machine is terminated.

16. Click Next: Add Tags.

17. Optional: You can add tags in key-value pairs for the VM per your site’s requirements.

18. Click Next: Configure Security Group.
PBS Professional 2020.1.1 Cloud Guide CG-67

Chapter 3 Using Cloud Provider Services
19. Enter the following to assign a security group to the VM:

a. For Assign a security group, enable Select an existing security group.

b. Select the security group that was automatically created for the cloud bursting VPC by enabling the check box
next to its name.

20. Click Review and Launch.

21. Review the VM information of the VM and click Launch.

22. Create a new public/private key pair for the VM by entering the following:

a. Select Create a new key pair.

b. Provide a name for the key pair.

c. Click Download Key Pair.

d. Download and save this file in a secure location.

The information in this .pem file is used later to SSH into the VM.

23. Click Launch Instances.

24. At the bottom of the web page, click View Instances.

All virtual machines that have been created are displayed.

Your virtual machine is ready when the Instance State is equal to “running” and Status Checks are complete. The virtual
machine can be accessed using its IPv4 Public IP.

Figure 3-7:Bursting Virtual Machine

3.2.9 Install the PBS MoM on the VM

Install the PBS Professional MoM on the virtual machine and configure the VM per your site’s environment.

3.2.9.1 Install the PBS MoM on the Linux VM

Install the PBS Professional MoM on the Linux virtual machine and configure the VM per your site’s environment.

On Linux platforms, the username for logging into the virtual machine is dependent on the Amazon Machine Image
(AMI) that you used to create the virtual machine. For example, the username for a CentOS AMI is “centos”. For infor-
mation about usernames and instructions for connecting and copying files to the Linux virtual machine see Connecting to
Your Linux Instance Using SSH.

You will need the .pem file downloaded while creating the VM to establish a connection.

A startup script is provided during the creation of the bursting scenario. This script is ran after a cloud node is burst and
is used to set up the system environment so that nodes burst in the cloud can communicate with the PBS Server. A service
specifically designed for cloud instance initialization is cloud-init and is utilized by Cloud when booting cloud nodes,
therefore it must be installed on the VM. For more information about installing cloud-init, refer to the Cloudinit Docu-
mentation.
CG-68 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
The PBS Professional installer package will need to be copied to the virtual machine. Use SCP to copy the tarball file
from the PBS Server to the virtual machine. For more information, see Transferring Files to Linux Instances from Linux
Using SCP .

1. Log in to your site’s PBS Professional Server.

2. SSH into the virtual machine as the user “centos” using the .pem file and the IPv4 Public IP assigned to the VM:

ssh -i /path/my-key-pair.pem centos@IPV4PublicIP

where /path/my-key-pair.pem is the path to the .pem file downloaded while creating the virtual machine and
IPV4PublicIP is the public IP address of the virtual machine.

Figure 3-8:Bursting Virtual Machine

3. Enter the command:

sudo -i

4. Copy the PBS Professional installation package to the VM.

5. Using the PBS Professional Installation and Upgrade Guide, install and configure the PBS Professional MOM.

6. Configure the VM for your site’s environment such as mounting file systems, connecting it to the authentication ser-
vice, installing any applications, etc.

7. Install cloud-init.

8. Connect the VM to your PBS Professional server and submit a job to ensure it is working as expected.

3.2.9.2 Installing the PBS MoM on the Windows VM

Install the PBS Professional MoM on the Windows virtual machine and configure the VM per your site’s environment.

Use an RDP client to access the virtual machine. A connection can be established to the Windows virtual machine
through the AWS EC2 console. See Connect to Your Windows Instance for more information.

You will need the .pem file downloaded while creating the VM to establish a connection.

The PBS Professional installer package will need to be copied to the virtual machine. Use RDP to map a local drive to
gain access to the installer package. For more information, see Transfer Files to Windows Instances.

1. Log in to the AWS console.

2. Click located in the upper left-hand corner of the web page.

3. Using the search box located under AWS services, enter EC2.

4. Click the EC2 search result.

5. In the menu located on the left-hand side of the web page, click Instances.

6. Select the Windows virtual machine created for cloud bursting by enabling the check box next to its name.

7. At the top, click Connect.

8. Click Get Password.

9. Browse to the .pem file downloaded while creating the VM.

10. Open the .pem file.

11. Click Decrypt Password.
PBS Professional 2020.1.1 Cloud Guide CG-69

Chapter 3 Using Cloud Provider Services
12. Hover over the decrypted password.

A copy to clipboard icon is displayed.

13. Click the copy to clipboard icon.

14. Click Download Remote Desktop File.

15. Open the file.

16. Click Connect.

17. For Password, paste the password copied to the clipboard.

18. Click OK.

19. Click Yes to connect even if there are certificate errors.

A connection is established with the Windows virtual machine.

20. Copy the PBS Professional installation package to the VM.

21. Using the PBS Professional Installation and Upgrade Guide, install and configure the PBS Professional MOM.

22. Configure the VM for your site’s environment such as mounting file systems, connecting it to the authentication ser-
vice, installing any applications, etc.

23. Connect the VM to your PBS Professional server and submit a job to ensure it is working as expected.

3.2.10 Create an OS Image

Create an image of the virtual machine configured per your site’s requirements.

You must have already create a virtual machine, installed the PBS Professional MoM on the VM and configured the VM
per your site’s environment.

AWS documentation can be found at Create an AMI from an Amazon EC2 Instance.

1. Log in to the AWS console.

2. Click located in the upper left-hand corner of the web page.

3. Using the search box located under AWS services, enter EC2.

4. Click the EC2 search result. The EC2 dashboard is opened.

5. In the menu located on the left-hand side of the web page, click Instances.

6. Select the virtual machine created for cloud bursting by enabling the check box next to its name.

7. At the top, click Actions > Instance State > Stop.

8. Click Yes, Stop.

It may take some time for the virtual machine to be stopped.

Do not proceed until the Instance State is “Stopped”.

9. Click Actions > Image > Create Image.

10. For Image name, enter a name for the image.

The name can be anything meaningful to your organization, e.g., bursting_image.

On Windows platforms, the name of the ijmage should contain the string “windows” (case-insensitive). For exam-
ple, Windows_Server-2012-R2__RTM-English-64Bit-Base-2019.11.13.

11. Click Create Image.
CG-70 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
12. Click the View pending image ami-xxxxxxxxxx link. The image is complete when its Status is “available”.

You can now delete the virtual machine so that you are no longer charged for it.

3.2.11 Create an AWS Cloud Bursting Scenario

Create an AWS bursting scenario so that PBS Professional execution nodes can be burst in the cloud.

Open a browser window and log in to your AWS Management Console. Open a second browser window and log in to
Cloud.

A startup script is provided during the creation of the bursting scenario. This script is ran after a cloud node is burst and
is used to set up the system environment so that nodes burst in the cloud can communicate with the PBS Server. On Win-
dows platforms, the startup script must be a PowerShell script. For more information see PowerShell Scripting. On Linux
platforms, use a cloud-init script.

For more information about writing cloud-init scripts, refer to the Cloudinit Documentation and Cloud Bursting Startup
Script.

1. Navigate to the Cloud browser window.

2. Click Cloud.

3. Under Infrastructure, click Bursting.

4. Click Add Bursting Scenario.

5. Enter information about the bursting scenario such as name, cloud provider, cloud account, and geographic location.

a. For Name, enter a name for the cloud bursting scenario.

b. For Description, enter a description.

c. For Cloud Account, choose a registered AWS account from the list.

d. Select a region from the list that matches the region selected in AWS.

Figure 3-9:AWS Region

6. Click Next.

7. For Domain name, provide the domain name of your organization for the cloud bursting network. altair.com,
burst.altair.com

8. For Hostname prefix, enter a prefix for the names of the burst nodes.

If “node” is entered , the cloud bursting nodes will be available to PBS Professional as node1, node2, node3, etc.

9. Navigate to the AWS browser window.

10. Click located in the upper left-hand corner of the web page.

11. Using the search box located under AWS services, enter EC2.

12. Click the EC2 search result. The EC2 dashboard is opened.

13. In the menu located on the left-hand side of the web page, click AMIs.

14. Select the Amazon Machine Image (AMI) created for cloud bursting by enabling the check box next to its name.

15. In the Details tab located at the bottom of the web page, hover over the AMI ID.

A copy to clipboard icon is displayed.
PBS Professional 2020.1.1 Cloud Guide CG-71

Chapter 3 Using Cloud Provider Services
16. Click the copy to clipboard icon.

17. Navigate to the Cloud browser window.

18. For the AMI ID, paste the AMI ID copied from AWS.

19. Navigate to the AWS browser window.

20. In the menu located on the left-hand side of the web page, click Security Groups under NETWORK & SECURITY.

21. Select the Security Group associated with the VPC and the VM by enabling the check box next to its Group ID.

22. In the Description tab located at the bottom of the web page, hover over the Group ID. A copy to clipboard icon is
displayed.

23. Click.

24. Navigate to the Cloud browser window.

25. For the Security group ID, paste the Group ID copied from AWS.

26. Navigate to the AWS browser window.

27. Click located in the upper left-hand corner of the web page.

28. Using the search box located under AWS services, enter VPC.

29. Click the VPC search result. The VPC dashboard is opened.

30. In the menu located on the left-hand side of the web page, click Subnets.

31. Select the subnet for the bursting VPC by enabling the check box next to its name.

32. In the Description tab located at the bottom of the web page, hover over the Subnet ID. A copy to clipboard icon is
displayed.

33. Click the copy to clipboard icon.

34. Navigate to the Cloud browser window.

35. For the Subnet ID, paste the Subnet ID copied from AWS.

To configure the bursting scenario so that cloud nodes can be burst in several Availability Zones, providing a
comma-separated list of subnet IDs.

36. Enable the Add public IP to VMs if you need to connect to the cloud bursting nodes from the internet.

It is recommended to leave this disabled.

37. For Cloud-init script, click Browse, browse for the startup script file and select it. This script will run after a cloud
node is burst.

38. Add public SSH keys for any users that you want to have access to the burst nodes:

a. Log in to the PBS Professional Server.

b. Copy the public SSH key for the user.

Public key files are usually stored in /.ssh in the user’s home directory.

c. Navigate to the Cloud browser window.

d. Click Add to add the public key.

e. For Public SSH keys, paste the public SSH key.

f. Repeat steps a through e to add additional public SSH keys.

The public keys are copied to each burst node for secure connectivity.

39. For Idle before unburst, enter the minimum time that a cloud node can be idle before it is unburst.
CG-72 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
It is expressed as an integer whose units are in seconds.

40. For Tags, enter a key-value pair to add a label to the cloud node and press ENTER.

A tag is a label that is assigned to a cloud node. Tags enable cloud nodes to be categorized in different ways, for
example, by purpose, owner, or environment.

The key-value pair must be entered as key:value. The key must be less than 36 characters and the value must be less
than 43 characters. The length of both the key + value should be less than 80 characters. Valid values are alphanu-
meric, dash (-) and an underscore (_).

Once the tag is added, it will appear within its own bubble.

Figure 3-10:Key-Value Tag

41. Repeat the previous step to add more tags.

Figure 3-11:Additional Tags

42. Click Next.

43. Select the instance types to enable for the bursting scenario by clicking the Enabled checkbox located to the far right
of the instance type name

If an attempt is made to burst nodes with a disabled instance type, the node is not burst and the below message is dis-
played in the PBS Server logs (if bursting through PBS), the Cloud logs and through the Cloud component user
interface.

TYPE is not enabled

Where TYPE is the instance type used when attempting to burst the node.

44. Click Instantiate scenario.

Once the scenario created, it is recommended to Add a Token and Add Quotas and Alerts. When adding a token, an API
key is generated that is required for bursting. Quotas define bursting limits such as the maximum number of cloud nodes
to burst.

3.3 Configuring Microsoft Azure Cloud Bursting

Create the necessary components in Microsoft Azure that are required for cloud bursting and then create a Cloud cloud
bursting scenario.

Before you can begin creating the Azure components necessary for cloud bursting, you must purchase an Azure subscrip-
tion and have created a tenant. For more information about subscriptions see What is an Azure subscription. For more
information about tenants How to get an Azure Active Directory tenant. As a final step, add users to the Active Directory.

3.3.1 Register the Cloud Application with Azure

Register Cloud with Azure so that you can later create a cloud account in Cloud.

You must have already purchased an Azure subscription, obtained a tenant and have an Azure user account.
PBS Professional 2020.1.1 Cloud Guide CG-73

Chapter 3 Using Cloud Provider Services
Azure documentation can be found at Quickstart: Register an application with the Microsoft identity platform.

Register the Cloud web application with the Azure Active Directory and create an client secret key. Manage access to the
newly create application by assigning a role. Also, obtain your Azure tenant ID and subscription ID. Once this task is
complete, you should have the following information stored in a file:

• Application ID generated when registering Cloud with the Azure Active Directory.

• Client secret key generated for the newly registered Cloud application.

• Subscription ID

• Tenant ID

This information is necessary to create a cloud account in Cloud.

1. Log in to to your Microsoft Azure account.

Register Cloud to the Azure Active Directory.

2. Using the search box, enter app reg. A list of search results is listed.

3. Under Services, click App registrations.

4. Click New registration.

5. Enter the following to register Cloud to the Azure Active Directory:

a. For Name, enter the name of the application.

The name can be anything meaningful to your organization, e.g., pc_cloudapp.

b. For Supported account types, choose the option that best suits your organization. Click the Help me choose link
for additional information about the available options.

c. For Redirect URI, select Web and enter the URL https://hostname:9500/pc.

where hostname is the hostname of the machine where the Cloud Web Interface is installed. This is the URL that
is used to log in to Cloud.

6. Click Register.

Once the application registration is complete, its details are displayed, including an Application ID.

Obtain the application id of the newly registered application.

7. Hover over the Application (client) ID and click the copy-to-clipboard icon when it appears.

8. Store the Application ID to a file.

The Application ID is used later to create a cloud account in Cloud.

Create a client secret key for your newly registered application.
CG-74 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
9. Under, Manage, click Certificates and secrets.

Figure 3-12:Certificates and Secrets

10. Under Client secrets, click New client secret.

11. Enter the following to add a client secret:

a. For DESCRIPTION, enter pc_client_secret.

b. For EXPIRES, select Never.

12. Click Add.

A client secret key is generated and is displayed under the heading VALUE.

13. Click next to the client secret key.

14. Store the client secret key to a file.

The client secret key is used later to create a cloud account in Cloud.

Obtain your Azure subscription ID.

15. Using the search box, enter subscription. A list of search results is listed.

16. Under Services, click Subscriptions.

17. Locate and click your subscription.

Details about the subscription are displayed, including a Subscription ID.

18. Hover over the Subscription ID and clickwhen it appears.

19. Store the Subscription ID value to a file.

The Subscription ID is used later to create a cloud account in Cloud.

Assign an access control role to the newly registered application.
PBS Professional 2020.1.1 Cloud Guide CG-75

Chapter 3 Using Cloud Provider Services
20. Click Access control (IAM).

Figure 3-13:Add Access Controls

21. Click Add.

22. Click Add role assignment.

23. In the Add role assignment panel, enter the following to assign a role to the newly registered application:

a. For Role, select Contributor.

b. For Assign access to, select Azure AD user, group, or service principal.

c. For Select, search for the newly registered application by entering its name, e.g., pc_cloudapp.

d. Select the application by clicking on it.

24. Click Save.

Obtain your Azure tenant ID:

25. At the top of the web page, click ?.

26. Click Show diagnostics.

A dialog box is displayed allowing a file called PortalDiagnostics.json to be saved.

27. Open the file using any text editor.

28. Search for tenantId.

29. Store the value of tenantId to a file.

The Tenant ID is used later to create a cloud account in Cloud

3.3.2 Add a Microsoft Azure Cloud Account

Add an Azure cloud account to Cloud so that you can create a cloud bursting scenario or an appliance. You should have
the following information stored in a file:

• Application ID generated when registering Cloud with the Azure Active Directory.

• Client secret key generated for the newly registered Cloud application.

• Subscription ID

• Tenant ID

This information is necessary to create a cloud account in Cloud. If you do not have this information see Register the
Cloud Application with Azure.

1. Log in to Cloud.

2. Click the Cloud tab.

3. Under Infrastructure, click Cloud.

4. Click
CG-76 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
5. Enter the following to add a cloud account:

a. For Account name, enter any name for the cloud account.

The name can be anything meaningful to your organization, e.g., azure_cloudaccount.

b. For Client ID, enter the Application ID generated when Cloud was registered with the Azure Active Directory.

c. For Secret Key, enter the client secret key generated for the newly registered Cloud application.

d. For AD tenant ID, enter your Azure tenant ID.

e. For Subscription ID, enter your Azure subscription ID.

6. Click Create account.

3.3.3 Create a Resource Group

Create a resource group that will contain a virtual network and a virtual machine for cloud bursting. You must have
already purchased an Azure subscription and have an Azure user account.

Azure documentation can be found at Manage Azure resources through portal.

A resource group is container that holds related resources for an Azure solution. The resource group can include all the
resources for the solution, or only those resources that you want to manage as a group. You decide how you want to allo-
cate resources to resource groups based on what makes the most sense for your organization. Once the resource group is
created, resources that are placed into the resource group are a virtual network, a virtual machine, and an image of the
virtual machine.

1. Log in to your Microsoft Azure account.

2. Using the search box, enter resource groups. A list of search results is listed.

3. Under Services, click Resource Groups.

4. Click Add.

5. Enter the following to configure the basic settings for the resource group:

a. For Project Details enter the following:

• For Subscription, choose the subscription to be billed for the use of the VM.

• For Resource group, enter a name for the resource group.

The name can be anything meaningful to your organization, e.g., bursting_resource_group.

b. For Resource Details enter the following:

• For Region, select a location based on the geographical location of users.

6. Click Review + create.

7. Click Create.

It may take a moment to create the resource group. All resources (networks, virtual machines, etc.) that are created are
placed within this resource group. The name of the resource group is required for creating a bursting scenario in Cloud.

3.3.4 Create a Virtual Network

Create a virtual network so that you can later create a virtual machine for cloud bursting. You must have already created
a resource group.
PBS Professional 2020.1.1 Cloud Guide CG-77

https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/manage-resources-portal?toc=%2Fen-us%2Fazure%2Farchitecture%2Ftoc.json&bc=%2Fen-us%2Fazure%2Farchitecture%2Fbread%2Ftoc.json

Chapter 3 Using Cloud Provider Services
Azure documentation can be found at Virtual Network Documentation.

1. Log in to your Microsoft Azure account.

2. Using the search box, enter virtual networks. A list of search results is listed.

3. Under Services, click Virtual networks.

4. Click Add.

5. For Name, enter a name for the virtual network.

The name can be anything meaningful to your organization, e.g., bursting_virtual_network

6. For Address space, enter an address range for the network using CIDR notation.

7. For Subscription, select the same subscription as was selected for the previously created resource group.

8. For Resource group, select the previously created resource group.

9. For Location, select the same geographical location as was selected for the previously created resource group.

10. For Subnet, enter the following:

a. For Name, enter a name for the virtual machine’s subnet.

The name can be anything meaningful to your organization, e.g., bursting_subnet

b. For Address range, enter an address range for the subnet in CIDR notation.

11. Click Create.

It may take a moment to create the virtual network. The name of the virtual network is required for creating a burst-
ing scenario in Cloud.

3.3.5 Create a Virtual Machine

Create a virtual machine in Azure.

You must have already created a virtual network.

You may want to view the following web page to learn about Azure Managed Disks before creating a VM. Additionally,
a video is available from Microsoft that shows how to create a virtual machine: Create a Linux Virtual Machine.

1. Log in to your Microsoft Azure account.

2. Using the search box, enter virtual machines. A list of search results is listed.

3. Under Services, click Virtual machines.

4. Click Add.

Enter the following to configure the basic settings for the virtual machine:
CG-78 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
5. For Project Details enter the following:

a. For Subscription, choose the subscription to be billed for the use of the VM.

b. For Resource group, choose the previously created resource group.

c. For Virtual machine name, enter a name for the virtual machine.

The name can be anything meaningful to your organization, e.g., bursting-vm.

d. For Region, select the same geographical location as was selected for the previously created resource group.

e. For Availability options, choose No infrastructure redundancy required.

f. For Image, click the Browse all public and private images link.

g. Using the search box:

• On Linux platforms, enter CentOS 7 or RHEL 7 and press ENTER.

• On Windows platforms, enter Windows and press ENTER.

h. Locate the appropriate image and select it.

• On Linux platforms, cloud bursting has been tested on on CentOS 7.2 - 7.6.

• On Windows platforms, cloud bursting has been tested on Windows 10 and Windows Server 2012.

i. For Size, click the Change size link and select a machine size appropriate for your site’s workload based on:

• the number of cores

• the amount of memory

• storage

• network performance

Consider the nature of the applications that you plan to deploy on the instance, the number of users that you
expect to use the applications, and also how you expect the load to scale in the future. Remember to also factor
in the CPU and memory resources that are necessary for the operating system.

j. Click Select.

6. For Administrator Account, enter a user account :

This user will have sudo rights and will be able to connect to the VM to install the PBS MoM.

• On Linux platforms:

• For Authentication type, enable SSH public key.

• For Username, enter a username of a user account that exists on your site’s PBS Server.

• For SSH public key, copy the SSH public key (i.e., id_rsa.pub) of the user account and paste it.

• On Windows platforms:

• For Username, enter a username.

• For Password, enter a password.

7. For Inbound Port Rules, enter the following:

a. For Public inbound ports, enable Allow selected ports.

b. For Select inbound ports:

• For Linux platforms, enable SSH (22).

• For Windows platforms, enable RDH (3389).

8. Click Next.

Enter the following to configure the storage settings for the virtual machine:
PBS Professional 2020.1.1 Cloud Guide CG-79

Chapter 3 Using Cloud Provider Services
9. For Disk Options, enter the following:

a. For OS disk size, choose an appropriate disk size based on your site’s needs.

b. For OS disk type, choose one of the following options:

• Premium SSD

• Standard SSD

• Standard HDD

Choose SSD for I/O-intensive applications, where low latency and high throughput are critical. For testing, con-
sider HDD to keep costs down, as you scale up and down quickly.

1. For Advanced, enter the following:

a. Click Advanced.

b. For Use managed disks, choose one of the following options:

• Yes to use managed disks.

• No to not use managed disks.

Enable this feature to have Azure automatically manage the availability of disks to provide data redundancy and
fault tolerance, without creating and managing storage accounts on your own. This option is recommended by
Azure as it is a lot more scalable.

1. Click Next.

Enter the following to configure the networking settings for the virtual machine:

2. For Network Interface, enter the following:

• For Virtual network, choose the virtual network previously created.

3. Click Review + create.

4. Click Create.

It may take a few minutes for the VM to be deployed. You will use this virtual machine to create an OS image.

Once the virtual machine is deployed a message is displayed indicating success, click on Go to resource.

3.3.6 Install the PBS MoM on the VM

Install the PBS Professional MoM on the virtual machine and configure the VM per your site’s environment.

3.3.6.1 Install the PBS MoM on the Linux VM

Install the PBS MoM on the Linux virtual machine and configure the VM per your site’s environment. Use SSH to con-
nect to the virtual machine. For more information see Connect to your VM on Linux.

A startup script is provided during the creation of the bursting scenario. This script is ran after a cloud node is burst and
is used to set up the system environment so that nodes burst in the cloud can communicate with the PBS Server. A service
specifically designed for cloud instance initialization is cloud-init and is utilized by Cloud when booting cloud nodes,
therefore it must be installed on the VM. For more information about installing cloud-init, refer to the Cloudinit Docu-
mentation.
CG-80 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
The PBS Professional installer package will need to be copied to the virtual machine. Use SCP to copy the tarball file
from the PBS Server to the virtual machine. For more information, see Move files to and from a Linux VM using SCP.

1. Log in to your site’s PBS Server as the user account (username and the public SSH key) provided during the creation
of the VM.

2. SSH into the virtual machine using the public IP address of the VM:

ssh IPV4PublicIP

where IPV4PublicIP is the public IP address of the virtual machine.

Figure 3-14:Bursting Virtual Machine

3. Enter the command:

sudo -i

4. Copy the PBS Professional installation package to the VM.

5. Using the PBS Professional Installation and Upgrade Guide, install and configure the PBS MOM.

6. Configure the VM for your site’s environment such as mounting file systems, connecting it to the authentication ser-
vice, installing any applications, etc.

7. Install cloud-init.

8. Connect the VM to your PBS server and submit a job to ensure it is working as expected.

3.3.6.2 Install the PBS MoM on the Windows VM

Install the PBS MoM on the Windows virtual machine and configure the VM per your site’s environment.

Use an RDP client to access the virtual machine. A connection can be established to the Windows virtual machine
through the Azure portal. For more information see How to connect and sign on to an Azure virtual machine running
Windows.

The PBS Professional installer package will need to be copied to the virtual machine. Use RDP to map a local drive to
gain access to the installer package.

1. Log in to the Azure portal.

2. Using the search box, enter virtual machines.

3. Under Services, click Virtual machines.

4. Select the Windows virtual machine created for cloud bursting by clicking its name.

5. Click Connect.

6. Click the RDP tab.

7. Click Download RDP File.
PBS Professional 2020.1.1 Cloud Guide CG-81

Chapter 3 Using Cloud Provider Services
8. Open the file.

9. Click Connect.

10. Enter the password that was established for the Administrator Account when creating the virtual machine.

11. Click OK.

12. Click Yes to connect even if there are certificate errors.

A connection is established with the Windows virtual machine.

13. Copy the PBS Professional installation package to the VM.

14. Using the PBS Professional Installation and Upgrade Guide, install and configure the PBS MOM.

15. Configure the VM for your site’s environment such as mounting file systems, connecting it to the authentication ser-
vice, installing any applications, etc.

16. Connect the VM to your PBS server and submit a job to ensure it is working as expected.

3.3.7 Create an OS Image

Create an image of the virtual machine configured per your site’s requirements.

3.3.7.1 Create a Linux OS Image

Create an image of the Linux virtual machine configured per your site’s requirements.

You must have already create a virtual machine, installed the PBS MoM on the VM and configured the VM per your
site’s environment.

To create an OS image requires the Azure CLI. Refer to these instructions for installing the CLI How to install the Azure
CLI. It is recommended to install the CLI on a Windows or Mac machine and then use the command prompt to execute
the CLI commands.

Before you can create an OS image of the previously created VM, you must first SSH into the VM and deprovision it.
Next you will use the Azure CLI to deallocate and generalize the VM and then create the image. Generalizing the virtual
machine removes any SSH keys and DNS settings from the VM.

Follow Step 1 and Step 2 as documented at the URL How to create an image of a virtual machine or VHD to create an
image of the VM.

Before you can deallocate the virtual machine you may have to execute the following commands to set your subscription
to be the active subscription:

az account list

az account seet --subscription <your subscription ID>

You can now delete the virtual machine so that you are no longer charged for it.

3.3.7.2 Create a Windows OS Image

Create an image of the Windows virtual machine configured per your site’s requirements.

You must have already create a virtual machine, installed the PBS MoM on the VM and configured the VM per your
site’s environment.

The VM must first be generalized using Sysprep. For more information see Create a managed image of a generalized VM
in Azure.

1. Log in to the Azure portal.

2. Using the search box, enter virtual machines.
CG-82 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
3. Under Services, click Virtual machines.

4. Select the Windows virtual machine created for cloud bursting by clicking its name.

5. Click Connect.

6. Click the RDP tab.

7. Click Download RDP File.

8. Open the file.

9. Click Connect.

10. Enter the password that was established for the Administrator Account when creating the virtual machine.

11. Click OK.

12. Click Yes to connect even if there are certificate errors.

13. Open a Command Prompt window as an administrator.

14. Using Windows Explorer, navigate to the directory C:\Windows\System32\Sysprep.

15. Right-click sysprep.exe and select Run as Administrator.

16. For System Cleanup Action, choose Enter System Out-of-Box Experience (OOBE).

17. Enable the Generalize check box.

18. For Shutdown Options, choose Shutdown.

19. Click OK.

20. Once the VM is shutdown, close the RDP session.

21. Navigate to the browser window where the Azure portal is open and the VM details are displayed.

22. Click Capture.

23. For name, enter a name for the image.

The name of the image should contain the string “windows” (case insensitive). For example, Windows Server 2012
R2 Datacenter.

24. For Resource group, choose the previously created resource group.

25. For Type the virtual machine name, enter the name of the VM.

26. Click Create.

You can now delete the virtual machine so that you are no longer charged for it.

3.3.8 Create an Azure Cloud Bursting Scenario

Create an Azure bursting scenario so that PBS execution nodes can be burst in the cloud.

Open a browser window and log in to your Microsoft Azure account. Open a second browser window and log in to
Cloud.

Before creating a cloud bursting scenario, read the following Azure article about scale sets What are virtual machine
scale sets.

A startup script is provided during the creation of the bursting scenario. This script is ran after a cloud node is burst and
is used to set up the system environment so that nodes burst in the cloud can communicate with the PBS Server. On Win-
dows platforms, the startup script must be a PowerShell script. For more information see PowerShell Scripting. On Linux
platforms, use a cloud-init script.
PBS Professional 2020.1.1 Cloud Guide CG-83

Chapter 3 Using Cloud Provider Services
Note: To create a bursting scenario you must enter a resource group, however the resources necessary for creating the
bursting scenario (network, subnet, network security group and the OS image) can all reside in a different resource
group. However, the resource groups must be in the same geographic location for this to work.

For more information about writing cloud-init scripts, refer to the Cloudinit Documentation and Cloud Bursting Startup
Script.

1. Navigate to the Cloud browser window.

2. Click Cloud.

3. Under Infrastructure, click Bursting.

4. Click Add Bursting Scenario.

5. Enter information about the bursting scenario such as name, cloud provider, cloud account, and geographic location.

a. For Name, enter a name for the cloud bursting scenario.

b. For Description, enter a description.

c. For Cloud Account, choose a previously created Azure cloud account from the list.

d. For Select a region, select the same geographic location as was selected for the previously created bursting
resource group.

6. Click Next.

Enter information about the Azure resources necessary to burst in the cloud.

7. For Domain name, provide the domain name of your organization for the cloud bursting network. altair.com,
burst.altair.com

8. For Hostname prefix, enter a prefix for the names of the burst nodes.

If “node” is entered , the cloud bursting nodes will be available to PBS Professional as node1, node2, node3, etc.

9. Navigate to the Azure browser window.

10. In the menu located on the left-hand side of the web page, click Resource Groups.

11. Copy the name of the resource group created for cloud bursting.

12. Navigate to the Cloud browser window.

13. For Resource group name, paste the resource group copied from Azure.

14. Navigate to the Azure browser window.

15. In the menu located on the left-hand side of the web page, click Virtual Networks.

16. Copy the name of the virtual network created for cloud bursting.

17. Navigate to the Cloud browser window.

18. For Network name, paste the name of the virtual network copied from Azure.

If the network is contained in a resource group that is different from the one entered for the bursting scenario, it must
be entered as Resource Group Name/Virtual Network Name.

19. Navigate to the Azure browser window.

20. Select the virtual network created for cloud bursting.
CG-84 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
21. Click Subnets.

Figure 3-15:Subnet

22. For Subnet name, copy the name of the subnet created for the cloud bursting virtual network.

23. Navigate to the Cloud browser window.

24. For Subnet name, paste the Subnet copied from Azure.

If the subnet is contained in a resource group that is different from the one entered for the bursting scenario, it must
be entered as Resource Group Name/Subnet Name.

25. Navigate to the Azure browser window.

26. In the menu located on the left-hand side of the web page, click Resource Groups.

27. Select the Resource Group created for cloud bursting.

28. In the list, locate the Network Security group created for cloud bursting. The Type is Network Security group.

29. Copy the name of the network security group.

30. Navigate to the Cloud browser window.

31. For Network security group name, paste the network security group copied from Azure.

If the network security group is contained in a resource group that is different from the one entered for the bursting
scenario, it must be entered as Resource Group Name/Network Security Group Name.

32. Choose one of the following options based on whether you chose to use the Azure managed disk feature when creat-
ing the virtual machine:

• Enable Managed Storage if you enabled the managed disk feature.

• Disable Managed Storage if you disabled the managed disk feature.

33. Navigate to the Azure browser window.

34. In the menu located on the left-hand side of the web page, click Resource Groups.

35. Select the Resource Group created for cloud bursting.

36. In the list, locate the image that was created for cloud bursting. The Type is Image.

37. Select the image.
PBS Professional 2020.1.1 Cloud Guide CG-85

Chapter 3 Using Cloud Provider Services
38. Choose one of the following options:

• If you chose to use managed disks when you created the VM, copy the name of the image.

• If you did not choose to use managed disks when you created the VM, copy the Linux Source BLOB URI.

39. Navigate to the Cloud browser window.

40. For OS image, paste the information copied from Azure.

If the OS image is contained in a Resource group that is different from the one entered for the bursting scenario, it
must be entered as Resource Group Name/OS Image Name or Resource Group Name/URI.

41. Enable the Add public IP to VMs if you need to connect to the cloud bursting nodes from the internet.

It is recommended to leave this disabled.

42. For Maximum number of VMs inside a ScaleSet, specify the limit for your cloud bursting scenario.

If you use InfiniBand, Azure limits the number of VMs on a scaleset to 100. Without InfiniBand, for a scaleset with
managed disk and custom image, you can specify a higher limit.

43. For Cloud-init script, click Browse, browse for the startup script file and add it. This script will run after a cloud
node is burst.

44. Add public SSH keys for any users that you want to have access to the burst nodes:

a. Log in to the PBS Server.

b. Copy the public SSH key for the user.

Public key files are usually stored in /.ssh in the user’s home directory.

c. Navigate to the Cloud browser window.

d. Click Add to add the public key.

e. For Public SSH keys, paste the public SSH key.

f. Repeat steps a through e to add additional public SSH keys.

The public keys are copied to each burst node for secure connectivity.

45. For Idle before unburst, enter the minimum time that a cloud node can be idle before it is unburst.

It is expressed as an integer whose units are in seconds.

46. For Tags, enter a key-value pair to add a label to the cloud node and press ENTER.

A tag is a label that is assigned to a cloud node. Tags enable cloud nodes to be categorized in different ways, for
example, by purpose, owner, or environment.

The key-value pair must be entered as key:value. The key must be less than 36 characters and the value must be less
than 43 characters. The length of both the key + value should be less than 80 characters. Valid values are alphanu-
meric, dash (-) and an underscore (_).

Once the tag is added, it will appear within its own bubble.

Figure 3-16:Key-Value Tag

47. Repeat the previous step to add more tags.
CG-86 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
Figure 3-17:Additional Tags

48. Click Next.

49. Select the instance types to enable for the bursting scenario by clicking the Enabled checkbox located to the far right
of the instance type name

If an attempt is made to burst nodes with a disabled instance type, the node is not burst and the below message is dis-
played in the PBS Server logs (if bursting through PBS), the Cloud logs and through the Cloud component user
interface.

TYPE is not enabled

Where TYPE is the instance type used when attempting to burst the node.

50. Click Instantiate scenario.

Once the scenario created, it is recommended to Add a Token and Add Quotas and Alerts. When adding a token, an API
key is generated that is required for bursting. Quotas define bursting limits such as the maximum number of cloud nodes
to burst.

3.4 Configure Google Cloud Platform Cloud

Bursting

Create the necessary components in GCP that are required for cloud bursting and then create a Cloud cloud bursting sce-
nario.

3.4.1 Create a Project

Create a GCP Project so that you can create the necessary cloud components for cloud bursting. GCP documentation can
be found at Creating and Managing Projects.

Google Cloud Platform projects form the basis for creating, enabling, and using all Cloud Platform services including
managing APIs, enabling billing, adding and removing collaborators, and managing permissions for Cloud Platform
resources.

1. Log in to the GCP console.

2. Click located in the upper left-hand corner of the web page.

3. Click Home.

4. Click Create.

5. For Project Name, enter a name for the project.

The name can be anything meaningful to your organization, e.g., pc_cloudproject.

6. Click Create.

It may take a few moments to create the project.

7. Using a browser, navigate to the following URL: https://console.developers.google.com/ apis/library/com-
pute.googleapis.com?project=PROJECTNAME

where PROJECTNAME is the name of the project.
PBS Professional 2020.1.1 Cloud Guide CG-87

Chapter 3 Using Cloud Provider Services
8. Click Enable.

3.4.2 Create a Service Account

Create a Google Cloud Platform service account so that you can later create a cloud account in Cloud. You must already
have signed up for an GCP account.

GCP documentation can be found at Understanding Service Accounts and Compute Engine IAM Roles .

A service account is a special Google account that belongs to an application or a virtual machine, instead of to an individ-
ual end user. Create a service account and give this account administrative permissions for all Compute Engine
resources. Once this task is complete, you should have downloaded a JSON file containing the following:

• Project ID

• Client ID

• Client email

• Private key ID

• Private key

This information is necessary to create a cloud account in Cloud.

1. Log in to the GCP console.

2. Click located in the upper left-hand corner of the web page.

3. Click IAM & admin > Service accounts.

4. Click CREATE SERVICE ACCOUNT.

5. Enter the following to create a service account:

a. For the Service account name, enter a name for the service account.

The name can be anything meaningful to your organization, e.g., pc-service-account.

b. Click CREATE.

c. For the Project role, click Select a role > Compute Engine > Compute Admin. This role gives full control of all
Compute Engine resources.

d. Click CONTINUE.

e. Under Create key (optional), click CREATE KEY.

f. For Key type, enable JSON.

g. Click CREATE.

h. Save the JSON file in a secure location.

The information in this file is used later to add a cloud account to Cloud.

i. Click CLOSE.

j. Click DONE.

The service account is created.

3.4.3 Add a GCP Cloud Account

Add an existing GCP service account to Cloud so that you can create a cloud bursting scenario or an appliance.
CG-88 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
You must have created a GCP service account, given it Compute Admin permissions and downloaded a JSON file con-
taining information about the service account. The information in the JSON file is necessary to create a cloud account in
Cloud. If you do not have this information see Create a Service Account.

1. Log in to Cloud.

2. Click the Cloud tab.

3. Under Infrastructure, click Cloud.

4. Click

5. Enter the following to add a cloud account:

a. For Account name, enter any name for the cloud account.

The name can be anything meaningful to your organization, e.g., gcp_cloudaccount.

b. For Project ID, copy and paste the project_id value from the JSON file.

c. For Client ID, copy and paste the client_id value from the JSON file.

d. For Client Mail, copy and paste the client_email value from the JSON file.

e. For Private Key ID, copy and paste the private_key_id value from the JSON file.

f. For Private Key, copy and paste the private_key value from the JSON file.

Do not copy the \n characters at the end of the private_key value.

6. Click Create account.

3.4.4 Create a Virtual Private Cloud Network

Create a Virtual Private Network (VPC) in GCP so that you can later create a virtual machine for cloud bursting.

GCP documentation can be found at Virtual Private Cloud Documentation and Using VPC Networks .

1. Log in to the GCP console.

2. Click located in the upper left-hand corner of the web page.

3. Click VPC network > VPC networks.

4. Click CREATE VPC NETWORK.

5. Enter the following to create a VPC:

a. For the Name, enter a name for the VPC.

The name can be anything meaningful to your organization, e.g., bursting-vpc.

b. In the Subnets section, click the Custom tab under Subnet creation mode.

c. For Name, enter a name for the subnet.

The name can be anything meaningful to your organization, e.g., bursting-subnet.

d. For Region, select a Region based on the geographical location of users.

e. For IP address range, enter an IP address range using CIDR notation

f. For Private Google access, enable Off.

g. Click Done.

h. For Dynamic routing mode, enable Regional.

6. Click Create.

Creating the VPC network may take some time. Do not proceed until the VPC is created.
PBS Professional 2020.1.1 Cloud Guide CG-89

Chapter 3 Using Cloud Provider Services
7. Select the VPC by clicking on its name.

8. Click the Firewall rules tab.

9. Click CREATE FIREWALL RULE.

10. Enter the following to create a firewall rule:

a. For Name, enter a name for the firewall rule.

The name can be anything meaningful to your organization, e.g., ssh-all.

b. For Direction of Traffic, enable Ingress.

c. For Action on match, enable Allow.

d. For Targets, select All instances in the network.

e. For Source filter, select IP ranges.

f. For Source IP ranges, enter 0.0.0.0/0.

g. For Protocols and ports, enable Specified protocols and ports.

h. Enable tcp.

i. Enter 22.

11. Click Create.

3.4.5 Create a Virtual Machine

Create a CentOS 7.3 virtual Machine in GCP.

You must have already created a virtual network with a subnet and added a firewall rule.

GCP documentation can be found at Virtual Machine Instances and Creating and Starting a VM Instance.

1. Log in to the GCP console.

2. Click located in the upper left-hand corner of the web page.

3. Click Compute Engine > VM instances.

4. Click CREATE INSTANCE.
CG-90 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
5. Enter the following to create a virtual machine:

a. For the Name, enter a name for the virtual machine.

The name can be anything meaningful to your organization, e.g., bursting-vm.

b. For Zone, select a zone that is in the same Region as the subnet of the previously created VPC.

c. In the Machine type, click the Customize link.

Figure 3-18:Customize the Machine Type

d. Specify the CPUs, GPUs and RAm.

Consider the nature of the applications that you plan to deploy on the instance, the number of users that you
expect to use the applications, and also how you expect the load to scale in the future. Remember to also factor
in the CPU and memory resources that are necessary for the operating system.

e. For Boot disk, click Change.

f. Choose CentOS 7.

g. For Boot disk type, choose one of the following options:

• Standard persistent disk

• SSD persistent disk

Choose SSD for I/O-intensive applications, where low latency and high throughput are critical. For testing, con-
sider Standard persistent disk to keep costs down.

h. For Size, specify the size of the boot disk.

i. Click Select.

j. Under Identity and API access, for Service Account, select No service account.

k. For Firewall, choose Allow HTTP traffic.

l. Click Management, disks, networking, SSH Keys.

m. Click the Networking tab.

n. Click Add network interface.

o. For Network, choose the VPC you previously created for bursting.

p. For Network Service Tier, click Standard.

q. Click Done.

r. Delete any default network interfaces that might have been automatically generated.

s. Click the Security tab.

t. For SSK Keys, copy the SSH public key (i.e., id_rsa.pub) of a user account that exists on your site’s PBS Server
and paste it.

This user will have sudo rights and will be able to SSH into the VM to install the PBS MoM.

6. Click Create.

Creating the virtual machine may take some time.
PBS Professional 2020.1.1 Cloud Guide CG-91

Chapter 3 Using Cloud Provider Services
3.4.6 Install and Configure the PBS MoM on the VM

Install the PBS MoM on the virtual machine and configure the VM per your site’s environment.

The username for logging into the virtual machine is determined by the SSH key that was provided during the creation of
the virtual machine.

A startup script is provided during the creation of the bursting scenario. This script is ran after a cloud node is burst and
is used to set up the system environment so that nodes burst in the cloud can communicate with the PBS Server. A service
specifically designed for cloud instance initialization is cloud-init and is utilized by Cloud when booting cloud nodes,
therefore it must be installed on the VM. For more information about installing cloud-init, refer to the Cloudinit Docu-
mentation.

1. Log in to your site’s PBS Server as the user account (public SSH key) provided during the creation of the VM.

2. SSH into the virtual machine using the public IP address of the VM:

ssh IPV4PublicIP

where IPV4PublicIP is the public IP address of the virtual machine.

Figure 3-19:Bursting Virtual Machine

3. Enter the command:

sudo -i

4. Using the PBS Professional Installation and Upgrade Guide, install and configure the PBS MOM.

5. Configure the VM for your site’s environment such as mounting file systems, connecting it to the authentication ser-
vice, installing any applications, etc.

6. Install cloud-init.

7. Connect the VM to your PBS server and submit a job to ensure it is working as expected.

3.4.7 Create an OS Image

Create an image of the virtual machine configured per your site’s requirements.

You must have already create a virtual machine, installed the PBS MoM on the VM and configured the VM per your
site’s environment.

GCP documentation can be found at Creating, Deleting, and Deprecating Custom Images.

1. Log in to the GCP console.

2. Click located in the upper left-hand corner of the web page.

3. Click Compute Engine > VM instances. A list of virtual machines is displayed.

4. Click the three vertical dots next to the virtual machine that was created for cloud bursting.

Figure 3-20:Bursting Virtual Machine

5. Click Stop.

It may take some time for the VM to be stopped. Do not proceed until the VM is stopped.
CG-92 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
6. In the menu located on the left-hand side of the web page, click Images .

7. Click CREATE IMAGE.

8. Enter the following to create an image:

a. For Name, enter a name for the image.

The name can be anything meaningful to your organization, e.g., bursting-image.

b. For Source select Disk.

c. For Source disk, select the previously created virtual machine.

9. Click Create.

It may take some time to create the image. Do not proceed until the image is created.

You can now delete the virtual machine so that you are no longer charged for it.

3.4.8 Create a GCP Cloud Bursting Scenario

Create an GCP bursting scenario so that PBS execution nodes can be burst in the cloud.

Open a browser window and log in to your GCP console. Open a second browser window and log in to Cloud.

A startup script is provided during the creation of the bursting scenario. This script is ran after a cloud node is burst and
is used to set up the system environment so that nodes burst in the cloud can communicate with the PBS Server. Use a
cloud-init script for the startup script. For more information about writing cloud-init scripts, refer to the Cloudinit Docu-
mentation and and Cloud Bursting Startup Script.

1. Navigate to the Cloud browser window.

2. Click Cloud.

3. Under Infrastructure, click Bursting.

4. Click Add Bursting Scenario.

5. Enter information about the bursting scenario such as name, cloud provider, cloud account, and geographic location.

a. For Name, enter a name for the cloud bursting scenario.

b. For Description, enter a description.

c. For Cloud Account, choose a previously created GCP cloud account from the list.

d. For Select a region, select the same geographic location as was selected for the previously created bursting
VPC.

6. Click Next.

Enter information about the GCP resources necessary to burst in the cloud.

7. For Domain name, provide the domain name of your organization for the cloud bursting network. altair.com,
burst.altair.com

8. For Hostname prefix, enter a prefix for the names of the burst nodes.

If “node” is entered , the cloud bursting nodes will be available to PBS Professional as node1, node2, node3, etc.

9. Navigate to the GCP browser window.

10. Click located in the upper left-hand corner of the web page.

11. Click VPC network > VPC networks.

12. Click on the name of the VPC that was created for cloud bursting. VPC network details are displayed.
PBS Professional 2020.1.1 Cloud Guide CG-93

Chapter 3 Using Cloud Provider Services
13. Copy the name of the VPC network.

14. Navigate to the Cloud browser window.

15. For Network name, paste the name of the VPC network copied from GCP.

16. Navigate to the GCP browser window.

17. Copy the name of the VPC network subnet.

18. Navigate to the Cloud browser window.

19. For Subnetwork name, paste the name of the VPC network subnet copied from GCP.

20. Enable the Add public IP to VMs if you need to connect to the cloud bursting nodes from the internet.

It is recommended to leave this disabled.

21. Navigate to the GCP browser window.

22. Click located in the upper left-hand corner of the web page.

23. Click Compute Engine > Images.

24. Select the image created for cloud bursting.

25. Click Equivalent REST

26. Copy the value for the entry called selfLink.

27. Navigate to the Cloud browser window.

28. For OS Image URI, paste the link copied from GCP.

29. For Cloud-init script, click Browse, browse for the startup script file and add it. This script will run after a cloud
node is burst.

30. Add public SSH keys for any users that you want to have access to the burst nodes:

a. Log in to the PBS Server.

b. Copy the public SSH key for the user.

Public key files are usually stored in /.ssh in the user’s home directory.

c. Navigate to the Cloud browser window.

d. Click Add to add the public key.

e. For Public SSH keys, paste the public SSH key.

f. Repeat steps a through e to add additional public SSH keys.

The public keys are copied to each burst node for secure connectivity.

31. For Idle before unburst, enter the minimum time that a cloud node can be idle before it is unburst.

It is expressed as an integer whose units are in seconds.

32. For Tags, enter a key-value pair to add a label to the cloud node and press ENTER.

A tag is a label that is assigned to a cloud node. Tags enable cloud nodes to be categorized in different ways, for
example, by purpose, owner, or environment.

The key-value pair must be entered as key:value. The key must be less than 36 characters and the value must be less
than 43 characters. The length of both the key + value should be less than 80 characters. Valid values are alphanu-
meric, dash (-) and an underscore (_).

Once the tag is added, it will appear within its own bubble.
CG-94 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
Figure 3-21:Key-Value Tag

33. Repeat the previous step to add more tags.

Figure 3-22:Additional Tags

34. Click Next.

35. Select the instance types to enable for the bursting scenario by clicking the Enabled checkbox located to the far right
of the instance type name

If an attempt is made to burst nodes with a disabled instance type, the node is not burst and the below message is dis-
played in the PBS Server logs (if bursting through PBS), the Cloud logs and through the Cloud component user
interface.

TYPE is not enabled

Where TYPE is the instance type used when attempting to burst the node.

36. Click Instantiate scenario.

Once the scenario created, it is recommended to Add a Token and Add Quotas and Alerts. When adding a token, an API
key is generated that is required for bursting. Quotas define bursting limits such as the maximum number of cloud nodes
to burst.

3.5 Configure Oracle Cloud Platform Cloud

Bursting

Create the necessary components in Oracle Cloud that are required for cloud bursting and then create a Cloud cloud
bursting scenario.

3.5.1 Create an Oracle Cloud User Account

Create an Oracle Cloud user account so that you can later create a cloud account in Cloud. You must already have signed
up for an Oracle Cloud account and have an associated tenancy. Oracle documentation can be found at Adding Users and
Resource Identifiers.

An Oracle user account must be created to add an Oracle cloud account to Cloud. Once this task is complete, you should
have the following information stored in a file:

The user account’s Oracle Cloud ID (OCID).

This information is necessary to create a cloud account in Cloud.

1. Log in to the Oracle Cloud Infrastructure console.

2. Click located in the upper left-hand corner of the web page.

3. Click Identity > Users.

4. Click Create User.
PBS Professional 2020.1.1 Cloud Guide CG-95

Chapter 3 Using Cloud Provider Services
5. Enter the following to create the user:

a. For NAME, enter a name for the user.

The name can be anything meaningful to your organization, e.g., pc_clouduser.

b. For DESCRIPTION, enter a description of the user.

6. Click Create.

The user account is created and displayed in the users list.

7. Click Show located under the name of the user. The user account’s OCID is displayed.

8. Click Copy to copy the OCID.

9. Store the OCID to a file.

The OCID is used later to create a cloud account in Cloud.

10. Click Group from the menu located on the left-hand side of the web page.

11. Click Create Group.

12. Enter the following:

a. For Name, enter Administrators.

b. For Description, enter a description for the group.

c. Click Submit.

The group is created and is displayed in the Groups list.

13. Click on the name of the group.

14. Click Add User to Group.

a. For User, select the user that was previously created (e.g., pc_clouduser).

b. Click Add.

15. Click located in the upper left-hand corner of the web page.

16. Click Identity > Policies.

17. Click Create Policy.

a. For Name, enter a name for the policy.

b. For Policy Versioning, enable Keep Policy Current.

c. For Policy Statements, enter: ALLOW GROUP Administrators to manage all-resources IN TENANCY

d. Click Create.

3.5.2 Generating an SSH Public for the Oracle Cloud User

Use OpenSSL to create a private and public key in a PEM format for the previously created Oracle Cloud user.

If you’re using Windows, you’ll need to install Git Bash for Windows and run the commands with that tool.

Use OpenSSL to generate an API signing key pair in a PEM format. Once this task is complete, you should have the fol-
lowing information stored in a file:

• The RSA public key’s fingerprint.

1. Generate a private key by executing the following command:
openssl genrsa -out oracle_private_key.pem 2048
CG-96 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
We recommend changing the permissions on this file so that only you have read/write access.

The private key is used later to create a cloud account in in Cloud.

Generate the public key by executing the following command:

openssl rsa -pubout -in oracle_private_key.pem -out oracle_public_key.pem

2. Log in to the Oracle Cloud Infrastructure console.

3. Click located in the upper left-hand corner of the web page.

4. Click Identity > Users.

5. Click the name of the previously created user (e.g., pc_clouduser).

6. Click Add Public Key.

7. Copy and paste the contents of the public RSA key file.

8. Click Add.

A fingerprint is generated.

Figure 3-23:Public Key Fingerprint

9. Copy the fingerprint.

10. Store the fingerprint to a file.

The fingerprint is used later to create a cloud account in Cloud.

3.5.3 Obtain the Root Compartment Identifier

Obtain the Oracle Cloud identifier of the root compartment so that you can later create a cloud account in Cloud.

You must already have signed up for an Oracle Cloud account and have an associated tenancy. Oracle documentation can
be found at Understand Compartments.

When your tenancy is provisioned, a root compartment is created for you. Compartments can be used to organize and
isolate your resources to make it easier to manage and secure access to them. Your root compartment holds all of your
cloud resources. You can think of the root compartment like a root folder in a file system. The first time you sign in to the
Oracle Cloud Console and select a service, you will see your root compartment. All the resources required for cloud
bursting will be contained in this root compartment. You will need the root compartment’s resource identifier to add an
Oracle cloud account to Cloud. Once this task is complete, you should have the following information stored in a file:
PBS Professional 2020.1.1 Cloud Guide CG-97

Chapter 3 Using Cloud Provider Services
The compartment’s Oracle Cloud ID (OCID).

1. Log in to the Oracle Cloud Infrastructure console.

2. Click located in the upper left-hand corner of the web page.

3. Click Identity > Compartments.

4. Click Show located under the name of the root compartment. The compartment’s OCID is displayed.

5. Click Copy to copy the OCID.

6. Store the OCID to a file.

The OCID is used later to create a cloud account in Cloud.

3.5.4 Obtain the Tenancy Identifier

Obtain the Oracle Cloud identifier of the tenancy that you can later create a cloud account in Cloud. You must already
have signed up for an Oracle Cloud account and have an associated tenancy.

You will need the tenancy’s Oracle Cloud identifier to add an Oracle cloud account to Cloud. Once this task is complete,
you should have the following information stored in a file:

The tenancy’s Oracle Cloud ID (OCID).

1. Log in to the Oracle Cloud Infrastructure console.

2. Click located in the upper left-hand corner of the web page.

3. Click Administration > Tenancy Details.

4. Under Tenancy Information, click Show located to the right of OCID:

The tenancy’s OCID is displayed.

Figure 3-24:Tenancy OCID

5. Click Copy to copy the OCID.

6. Store the OCID to a file.

The OCID is used later to create a cloud account in Cloud.

3.5.5 Add an Oracle Cloud Account

Add an existing Oracle Cloud account to Cloud so that you can create a cloud bursting scenario or an appliance.
CG-98 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
You must have created an Oracle Cloud user and added a public key for the user. You should have the following informa-
tion stored in a file:

• User OCID generated when creating the Oracle user.

• Tenancy OCID.

• Root compartment OCID.

• Fingerprint of the public key generated for the Oracle user.

• RSA private key that was generated for the Oracle user.

This information is necessary to create a cloud account in Cloud. If you do not have this information see Create an Oracle
Cloud User Account, Generating an SSH Public for the Oracle Cloud User, Obtain the Root Compartment Identifier and
Obtain the Tenancy Identifier.

1. Log in to Cloud.

2. Click the Cloud tab.

3. Under Infrastructure, click Cloud.

4. Click

5. Enter the following to add a cloud account:

a. For Account name, enter any name for the cloud account.

b. The name can be anything meaningful to your organization, e.g., oracle_cloudaccount.

c. For User OCID, enter the user OCID generated when creating the Oracle cloud user.

d. For Tenant OCID, enter the tenancy OCID .

e. For Compartment OCID, enter the root compartment OCID.

f. For Fingerprint, enter the fingerprint generated when adding the public SSH key for the Oracle user.

g. For Private Key, enter the generated RSA private key.

6. Click Create account.

3.5.6 Create a Virtual Cloud Network

Create a Virtual Cloud Network (VCN) so that you can perform cloud bursting.

You must already have signed up for an Oracle Cloud account and have an associated tenancy. Oracle documentation can
be found at Overview of Networking and Creating a Virtual Cloud Network. An Oracle VCN must be created to create a
bursting scenario in Cloud.

1. Log in to the Oracle Cloud Infrastructure console.

2. Click located in the upper left-hand corner of the web page.

3. Click Networking > Virtual Cloud Networks.

4. Choose a region based on the geographical location of your users. Use the REGION pull-down menu.

5. Click Create Virtual Cloud Network.
PBS Professional 2020.1.1 Cloud Guide CG-99

Chapter 3 Using Cloud Provider Services
6. Enter the following to create a VNC:

a. For CREATE IN COMPARTMENT, select the root compartment.

b. For NAME, enter a name for the VNC.

The name can be anything meaningful to your organization, e.g., bursting_vnc.

c. Enable CREATE VIRTUAL CLOUD NETWORK PLUS RELATED RESOURCES.

Choosing this option automatically creates a VCN with a CIDR block 10.0.0.0/16, an internet gateway, a route
rule to enable traffic to and from the internet gateway, the default security list, the default set of DHCP options,
and one public subnet per availability domain.

7. Click Create Virtual Cloud Network.

A summary of the VNC, internet gateway, default route table and subnets is displayed.

8. Click Close.

A list of VNCs is displayed.

Figure 3-25:Virtual Machine Subnets and Associated Availability Domains

9. Click the name of the VNC.

The subnets are displayed. A subnet is created for each availability domain (data center) located in the previously
selected region.

Next, create a virtual machine that is hosted in one of the region’s availability domains.

3.5.7 Creating a Virtual Machine

Create a CentOS 7 virtual machine (VM) in Oracle Cloud.

You must already have signed up for an Oracle Cloud account, have an associated tenancy and have created a VNC in a
region that is geographically close to your users. The VNC should have a subnet associated to each of the region’s avail-
ability domains. If you have not created a VNC see Create a Virtual Cloud Network.

Virtual machines are hosted in availability domains (data centers) located in a region and are based on predefined VM
shapes. Before proceeding, determine the VM shape that your site requires for cloud bursting based on the number of
CPUs, memory, disk space, network bandwidth, and virtual network

interface cards. While selecting the shape for a VM, consider the nature of the applications that you plan to deploy on the
instance, the number of users that you expect to use the applications, and also how you expect the load to scale in the
future. Remember to also factor in the CPU and memory resources that are necessary for the operating system.
CG-100 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
Next, verify that your Oracle tenancy has the appropriate service limits for the VM shape and the region’s availability
domains Check Tenancy Service Limits .

1. Log in to the Oracle Cloud Infrastructure console.

2. Click located in the upper left-hand corner of the web page.

3. Click Compute > Instances.

4. Choose the region where the previously created VNC is hosted. Use the REGION pull-down menu.

5. For COMPARTMENT, select the root compartment.

6. Click Create Instance.
PBS Professional 2020.1.1 Cloud Guide CG-101

Chapter 3 Using Cloud Provider Services
7. Enter the following to create a virtual machine:

a. For NAME, enter a name for the VM.

The name can be anything meaningful to your organization, e.g., bursting_vm.

b. For AVAILABILITY DOMAIN, choose one of the region’s availability domains.

The virtual machine is hosted in the chosen availability domain (data center). Choose the availability domain
that best suits your site’s cloud bursting requirements based on the machine type of the virtual machine (VM
shape) and service limits.

c. For BOOT VOLUME, enable ORACLE-PROVIDED OS IMAGE.

d. For IMAGE OPERATING SYSTEM, choose CentOS 7.

e. For SHAPE TYPE, enable VIRTUAL MACHINE.

f. For SHAPE, select a VM shape.

Choose the VM shape that best suits your site’s cloud bursting requirements based on number of CPUs, mem-
ory, disk space, and network bandwidth.

g. For IMAGE VERSION, select the latest available one.

h. For BOOT VOLUME CONFIGURATION, enable CUSTOM BOOT VOLUME SIZE and enter a boot volume
size in GBs.

i. Enable PASTE SSH KEYS and copy the SSH public key (i.e., id_rsa.pub) of a user account that exists on your
site’s PBS Server and paste it.

This user will have sudo rights and will be able to SSH into the VM to install the PBS MoM.

j. For VIRTUAL CLOUD NETWORK, choose the VCN that was created for cloud bursting.

k. For SUBNET, choose the subnet associated with the previously chosen availability domain.

8. Click Create Instance.

Creating the virtual machine may take some time. It is done when the state is “Running”.

Figure 3-26:Running Virtual Machine
CG-102 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
3.5.8 Check Tenancy Service Limits

Check the service limit for your tenancy before creating the components necessary for cloud bursting. You must already
have signed up for an Oracle Cloud account and have an associated tenancy.

When you sign up for Oracle Cloud Infrastructure, a set of service limits are configured for your tenancy. The service
limit is the quota or allowance set on a resource. For example, your tenancy is allowed a maximum number of compute
instances (virtual machines) per availability domain. These limits are generally established with your Oracle sales repre-
sentative when you purchase Oracle Cloud Infrastructure. Oracle documentation can be found at Service Limits and
Regions and Availability Domains.

When you reach the service limit for a resource, you receive an error when you try to create a new resource of that type.
You cannot create a new resource until you are granted an increase to your service limit or you terminate an existing
resource.

View your tenancy’s limits to ensure that there are sufficient resources available in a region’s availability domains.

1. Log in to the Oracle Cloud Infrastructure console.

2. Choose the region where the previously created VNC is hosted. Use the REGION pull-down menu.

3. Click located in the upper left-hand corner of the web page.

4. Click Governance > Service Limits.

5. Scroll down to the Service Limits section.

6. Click Compute.

Availability domains (data centers) for the region are displayed. For each resource (VM shape) the number of nodes
that can be burst in the corresponding availability domains are displayed. In the below example, three nodes can be
burst in each data center in the us-phoenix-1 region for the VM Standard1.1 shape.

Figure 3-27:Virtual Machine Type Limits

7. Verify that the appropriate service limits are set for your tenancy based on the VM shape chosen for the virtual
machine and the region’s availability domains.

To request an increase a service limits for your tenancy see Requesting a Service Limit Increase.
PBS Professional 2020.1.1 Cloud Guide CG-103

Chapter 3 Using Cloud Provider Services
3.5.9 Installing and Configuring the PBS MoM on the VM

Install the PBS MoM on the virtual machine and configure the VM per your site’s environment.

Log in to the VM using the default user “opc” and the private SSH key of the user account provided during the creation
of the VM. For more information see Accessing an Instance from UNIX and UNIX- Like Systems.

A startup script is provided during the creation of the bursting scenario. This script is ran after a cloud node is burst and
is used to set up the system environment so that nodes burst in the cloud can communicate with the PBS Server. A service
specifically designed for cloud instance initialization is cloud-init and is utilized by Cloud when booting cloud nodes,
therefore it must be installed on the VM. For more information about installing cloud-init, refer to the Cloudinit Docu-
mentation.

1. Log in to your site’s PBS Server as the user account provided during the creation of the VM.

2. SSH into the virtual machine using the default user “opc”, the private SSH key of the user account provided during
the creation of the VM and the External IP assigned to the VM.

ssh -i PRIVATE_KEY_PATH opc@PUBLIC_IP_ADDR

Where PRIVATE_KEY_PATH is the path to the file that contains the private SSH key of the user account provided
during the creation of the VM and PUBLIC_IP_ADDR is the public IP address of the VM.

Figure 3-28:Bursting Virtual Machine

3. Enter the command:

sudo -i

4. Using the PBS Professional Installation and Upgrade Guide, install and configure the PBS MOM.

5. Configure the VM for your site’s environment such as mounting file systems, connecting it to the authentication ser-
vice, installing any applications, etc.

6. Install cloud-init.

7. Connect the VM to your PBS server and submit a job to ensure it is working as expected.

3.5.10 Create an OS Image

Create an image of the virtual machine configured per your site’s requirements.
CG-104 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
You must have already create a virtual machine, installed the PBS MoM on the VM and configured the VM per your
site’s environment.

Oracle documentation can be found at Managing Custom Images.

1. Log in to the Oracle Cloud Infrastructure console.

2. Click located in the upper left-hand corner of the web page.

3. Click Compute > Instances.

A list of virtual machines is displayed.

4. Click the name of the virtual machine created for cloud bursting.

5. Click Create Custom Image.

6. Enter the following to create a custom image:

a. For CREATE IN COMPARTMENT, select the root compartment.

b. For NAME, enter a name for the image.

The name can be anything meaningful to your organization, e.g., bursting_image.

7. Click Create Custom Image.

It may take some time to create the image. Do not proceed until the image is created.

You can now delete the virtual machine so that you are no longer charged for it.

3.5.11 Create an Oracle Cloud Bursting Scenario

Create an Oracle bursting scenario so that PBS execution nodes can be burst in the cloud.

Open a browser window and log in to the Oracle Cloud Infrastructure console. Open a second browser window and log in
to Cloud.

A startup script is provided during the creation of the bursting scenario. This script is ran after a cloud node is burst and
is used to set up the system environment so that nodes burst in the cloud can communicate with the PBS Server. Use a
cloud-init script for the startup script. For more information about writing cloud-init scripts, refer to the Cloudinit Docu-
mentation and and Cloud Bursting Startup Script.

1. Navigate to the Cloud browser window.

2. Click Cloud.

3. Under Infrastructure, click Bursting.

4. Click Add Bursting Scenario.
PBS Professional 2020.1.1 Cloud Guide CG-105

Chapter 3 Using Cloud Provider Services
5. Enter information about the bursting scenario such as name, cloud provider, cloud account, and geographic location.

a. For Name, enter a name for the cloud bursting scenario.

b. For Description, enter a description.

c. For Cloud Account, choose a previously created Oracle cloud account from the list.

d. For Select a region, select the availability domain where the cloud bursting virtual machine is hosted.

Figure 3-29:Virtual Machine Availability Domain

6. Click Next.

Enter information about the Oracle resources necessary to burst in the cloud.

7. For Domain name, provide the domain name of your organization for the cloud bursting network. altair.com,
burst.altair.com

8. For Hostname prefix, enter a prefix for the names of the burst nodes.

If “node” is entered , the cloud bursting nodes will be available to PBS Professional as node1, node2, node3, etc.

9. Navigate to the Oracle Cloud Infrastructure browser window.

10. Click located in the upper left-hand corner of the web page.

11. Click Networking > Virtual Cloud Networks.

12. Click the name of the VCN create for cloud bursting.

13. Locate the subnet associated with the availability domain where the cloud bursting virtual machine is hosted.

Figure 3-30:Subnet and Associated Availability Domain

14. Click Show located under the name of the subnet.

The subnet’s OCID is displayed.
CG-106 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
15. Click Copy to copy the OCID.

16. Navigate to the Cloud browser window.

17. For Subnet OCID, paste the subnet’s OCID copied from Oracle.

18. Enable the Add public IP to VMs if you need to connect to the cloud bursting nodes from the internet.

It is recommended to leave this disabled.

19. Navigate to the Oracle Cloud Infrastructure browser window.

20. Click located in the upper left-hand corner of the web page.

21. Click Compute > Custom Images. A list of custom images is displayed.

22. Locate the custom image created from the cloud bursting virtual machine.

23. Click the Show link below the name of the image to view the OCID.

24. Click Copy to copy the OCID of the image.

25. Navigate to the Cloud browser window.

26. For OS Image URI, paste the link copied from Oracle.

27. For Cloud-init script, click Browse, browse for the startup script file and add it. This script will run after a cloud
node is burst.

28. Add public SSH keys for any users that you want to have access to the burst nodes:

a. Log in to the PBS Server.

b. Copy the public SSH key for the user.

Public key files are usually stored in /.ssh in the user’s home directory.

c. Navigate to the Cloud browser window.

d. Click Add to add the public key.

e. For Public SSH keys, paste the public SSH key.

f. Repeat steps a through e to add additional public SSH keys.

The public keys are copied to each burst node for secure connectivity.

29. For Idle before unburst, enter the minimum time that a cloud node can be idle before it is unburst.

It is expressed as an integer whose units are in seconds.

30. For Tags, enter a key-value pair to add a label to the cloud node and press ENTER.

A tag is a label that is assigned to a cloud node. Tags enable cloud nodes to be categorized in different ways, for
example, by purpose, owner, or environment.

The key-value pair must be entered as key:value. The key must be less than 36 characters and the value must be less
than 43 characters. The length of both the key + value should be less than 80 characters. Valid values are alphanu-
meric, dash (-) and an underscore (_).

Once the tag is added, it will appear within its own bubble.

Figure 3-31:Key-Value Tag

31. Repeat the previous step to add more tags.
PBS Professional 2020.1.1 Cloud Guide CG-107

Chapter 3 Using Cloud Provider Services
Figure 3-32:Additional Tags

32. Click Next.

33. Select the instance types to enable for the bursting scenario by clicking the Enabled checkbox located to the far right
of the instance type name

If an attempt is made to burst nodes with a disabled instance type, the node is not burst and the below message is dis-
played in the PBS Server logs (if bursting through PBS), the Cloud logs and through the Cloud component user
interface.

TYPE is not enabled

Where TYPE is the instance type used when attempting to burst the node.

34. Click Instantiate scenario.

Once the scenario created, it is recommended to Add a Token and Add Quotas and Alerts. When adding a token, an API
key is generated that is required for bursting. Quotas define bursting limits such as the maximum number of cloud nodes
to burst.

3.6 Configure Orange Cloud Flexible Engine for

Cloud Bursting

Create the necessary components in Orange Cloud Flexible Engine that are required for cloud bursting and then create a
cloud bursting scenario.

Purchase an Orange Business Services account and use your Orange ID and password to access the Flexible Engine con-
sole. For more information visit Orange Cloud.

3.6.1 Create an Orange Cloud Flexible Engine User Account

Create an Orange Cloud Flexible Engine user account so that you can later create a cloud account in Cloud.

You must already have signed up for an Orange Cloud account. You should be able to log in to the Orange Cloud Cus-
tomer space (https://selfcare.cloud.orange-business.com/) with the credentials provided to you with your Orange Cloud
account. You will also be provided with a Domain name when you sign up for your Orange Cloud account.

An Orange Cloud user account must be created to add an Orange Cloud Flexible Engine account to Cloud. Once this task
is complete, you should have the following information stored in a file:

• Username and password

• API password

This information is necessary to create a cloud account in Cloud.

1. Go to the Orange Cloud Customer space login page.

2. Enter your Orange Cloud credentials.
CG-108 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
3. Click Your services.

Figure 3-33:Orange Cloud Customer Space Services

4. In the navigation bar on the top click Users

5. Click Add user.

6. Enter the following user details:

a. For Civility, choose Mrs or Mr

b. For Last name, enter the user’s last name.

c. For First name, enter the user’s first name.

d. For Login, enter a login name for the user.

e. For Email, enter the user’s email address.

f. For Phone number, enter the user’s phone number.

g. For Mobile phone, enter the user’s mobile phone number.

h. For Preferred language, choose the language in which the application should be displayed.

i. Click next.

7. In the Roles section enter these details

a. For Billing, choose Visitor.

b. For Contracts, choose Account Manager.

c. For Dashboard, choose Visitor.

d. For Documents, choose Visitor.

e. For Orders, choose Visitor.

f. For Services, choose Visitor.

g. For Subscriptions, choose Visitor.

h. For Support, choose Visitor.

i. For Users. choose Manager.

j. For Flexible Engine Console. choose admin.

k. Click next.

8. In the Summary section review your choices. Click previous to edit your choices entries.

9. Click finish.
PBS Professional 2020.1.1 Cloud Guide CG-109

Chapter 3 Using Cloud Provider Services
The new user account is created and displayed in the list of users. Emails are sent to the email address you specified.
The emails will contain:

• Orange ID (Domain Name).

• Link to set Orange Password.

• Link to access Cloud Customer Space.

• Link to log in to the Flexible Engine Console.

• Link to define your API password.

10. Click the link in the email to set your Orange Password.

11. Click the link in the email to set your API Password.

12. Store the API Password to a file.

The API Password is used later to create a cloud account in Cloud.

3.6.2 Select a Region

Define a region in the Orange Cloud Flexible Engine console to set up the infrastructure for cloud bursting.

A region is a geographic area where resources used by your ECSs are located. ECSs in the same region can communicate
with each other over an intranet, but ECSs in different regions cannot. Before setting up the infrastructure for cloud
bursting, it is important to ensure that all the resources are defined in the same region. An Authorization URL is required
for adding the Orange Cloud Flexible Engine cloud account in Cloud. This is based on the region selected.

1. Log in to the Orange Cloud Flexible Engine console.

2. In the navigation bar on the top, pull down the region menu and select the region for setting up your infrastructure.

3. For the Authorization URL, (IAM URL), enter the URL in the following format based on the region you chose in the
Orange Cloud Flexible Engine console:

https://iam.<orange region>.<console link>

e.g. https://iam.eu-west-0.prod-cloud-ocb.orange-business.com

4. Store the region and Auth (IAM) URL in a file. You will use this to register the account in Cloud.

3.6.3 Add an Orange Cloud Flexible Engine Account

Add an existing Orange Cloud Flexible Engine account to Cloud so that you can create a cloud bursting scenario or an
appliance.

You must have:

• Created an Orange Cloud Flexible Engine user account.

• Obtained the Domain name for the Orange Cloud Flexible Engine account.

• Obtained the API password for the user.

• Defined the region where you will deploy your cloud infrastructure.

• Obtained the Auth (IAM) URL based on the selected region.

This information is necessary to create a cloud account in Cloud. If you do not have this information see Create an
Orange Cloud Flexible Engine User Account and Select a Region.

1. Log in to Cloud.

2. Click the Cloud tab.

3. Under Infrastructure, click Cloud.
CG-110 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
4. Click

5. Enter the following to add a cloud account:

a. For Account name, enter any name for the cloud account.

The name can be anything meaningful to your organization, e.g., orange_cloudaccount.

b. For Auth (IAM) URL, enter the URL in the following format based on the region you chose in the Orange
Cloud Flexible Engine console:

https://iam.<orange region>.<console link>
e.g. https://iam.eu-west-0.prod-cloud-ocb.orange-business.com

c. For Domain name, enter the Domain Name you used to log in to your Orange account. It is the same as your
Customer ID.

d. For User name, enter the username of the user account you created in the Orange Cloud Customer space.

e. For Password, enter the API password you generated after creating the user.

6. Click Create Account.

3.6.4 Check Orange Cloud Flexible Engine Account Service
Quota

View the your Orange Cloud Flexible Engine resource usage and limits from the console.

Quotas are used to limit the number of resources available to users. It is important to ensure you are not exceeding your
quota while setting up the resources for cloud bursting. If the existing resource quota cannot meet your service require-
ments, you can submit a work order to increase your quota. Once your application is approved, Orange Cloud Flexible
Engine will update your resource quota accordingly and send you a notification.

1. Log in to the Orange Cloud Flexible Engine console.

2. In the navigation bar on the top right hand side, click

Information about resources usage and availability is displayed.

3.6.5 Create a Virtual Private Cloud

Create a Virtual Private Cloud (VPC) so that you can perform cloud bursting.

Orange Cloud Flexible Engine documentation for VPC can be found at:Virtual Private Cloud Documentation

1. Log in to the Orange Cloud Flexible Engine console.

2. In the top navigation bar select the region where you wish to deploy your cloud infrastructure.

3. From the Network section click Virtual Private Cloud.

4. Click + Create VPC.

5. In the Basic Information section:

a. For Region, ensure the VPC is the same region as the other resources.

a. For Name, enter a name for the VPC.

a. For CIDR Block, enter CIDR values for the VPC.
PBS Professional 2020.1.1 Cloud Guide CG-111

Chapter 3 Using Cloud Provider Services
6. In the Subnet Settings section:

a. For the Subnet Settings choose the AZ (Availability Zone) as the same as the region.

b. For Subnet Name, enter a name to match the VPC Name.

c. Enter CIDR Block for Subnet.

d. For Advanced Settings, click Default.

7. Review the Configuration information.

8. Click Create Now.

9. Once the VPC is created, click the Back to VPC List.

10. Click Security Group in the left hand side menu.

11. Click + Create Security Group.

12. For Name, enter a name for the Security Group.

13. For Description, enter a suitable Description.

14. Click OK

15. By default, the Outbound and Inbound traffic over IPv4 is open. You can add firewall rules to this security group if
required.

3.6.6 Creating a Virtual Machine

Create an Elastic Cloud Server (ECS) using a public image provided by Orange Cloud Flexible Engine for cloud burst-
ing.

You must have already created a Virtual Private Network with a subnet and assigned a Security Group. If you do not have
this information, see Create a Virtual Private Cloud

1. Log in to the Orange Cloud Flexible Engine console.

2. In the Computing section and click Elastic Cloud Server.

3. From the menu on the left hand side click Key Pair.

4. Click + Create Key Pair.

5. Enter a Name for the Key Pair.

6. Click OK.

7. Save the Key Pair (.pem) file to your local disk in a secure location. The information in this .pem file is used later to
SSH into the VM.

8. Click OK to confirm that you have downloaded the Key Pair file.

9. From the menu on the left hand side, click Elastic Cloud Server.

10. Click + Create ECS.

11. For Region, click the region you selected for setting up the infrastructure.

12. For AZ (Availability Zone), select the AZ related to the region.

13. In the Specifications section:

a. For ECS type, click one of the flavor names. Orange Cloud Flexible Engine provides a set of predefined ECS
types for specific requirements. Click a flavor name to get the list of available configurations.

b. Review the specifications you have selected.
CG-112 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
14. In the Image section:

a. Click Public image.

b. From the drop down menu select CentOS

c. From the version drop down menu select Select OBS_U_CentOS_7.2(40GB)

15. In the Disk section select the defaults.

16. In the VPC section:

a. For VPC, select the VPC you created from the drop down menu.

a. For NIC, choose the default primary NIC.

b. For Security Group, select the Security Group you created for the VPC.

c. For EIP, click Automatically assign

d. For Bandwidth, specify it as 5 Mbit/s.

17. For Login Mode, select the Key Pair you generated earlier from the drop down menu.

18. For Auto Recovery, click Enable.

19. For Advanced Settings, click Do not configure.

20. For ECS Name, enter a name.

21. For Quantity, specify 1.

22. Review the Current Configuration.

23. Click Create Now.

24. Review the Specifications.

25. Click Submit.

The ECS (Virtual Machine) is created and displayed in the list of ECS.

3.6.7 Installing and Configuring the PBS MoM on the VM

Install the PBS MoM on the virtual machine and configure the VM per your site’s environment.

Log in to the VM using the default user “cloud” and the .pem generated during the creation of the VM. For more infor-
mation about logging into the Linux ECS, refer to the Elastic Cloud Server User Guide.

A startup script is provided during the creation of the bursting scenario. This script is ran after a cloud node is burst and
is used to set up the system environment so that nodes burst in the cloud can communicate with the PBS Server. A service
specifically designed for cloud instance initialization is cloud-init and is utilized by Cloud when booting cloud nodes,
therefore it must be installed on the VM. For more information about installing cloud-init, refer to the Cloudinit Docu-
mentation.

1. Log in to your site’s PBS Server.

2. Log in to the Flexible Engine console.

3. In the Computing section, click Elastic Cloud Server.

4. In the search box above the upper right corner of the ECS list, enter the ECS name, IP address, or ID, and click the
search icon.

5. Click the name of the target ECS.

6. The page providing details about the ECS is displayed.
PBS Professional 2020.1.1 Cloud Guide CG-113

Chapter 3 Using Cloud Provider Services
7. Copy the Public IP address (External IP) of the ECS.

8. SSH into the VM using the default user “cloud”, the .pem file you generated when creating the VM and the External
IP assigned to the VM.

ssh -i /path/my-key-pair.pem cloud@IPV4PublicIP

where /path/my-key-pair.pem is the path to the .pem file downloaded while creating the virtual machine and
IPV4PublicIP is the public IP address of the virtual machine.

9. Enter the command:

sudo -i

10. Using the PBS Professional Installation and Upgrade Guide, install and configure the PBS MOM.

11. Save the file.

12. Configure the VM for your site’s environment such as mounting file systems, connecting it to the authentication ser-
vice, installing any applications, etc.

13. Install cloud-init.

14. Connect the VM to your PBS server and submit a job to ensure it is working as expected.

3.6.8 Create an OS Image

Create an image of the virtual machine configured per your site’s requirements.

You must have already created a ECS (VM), installed the PBS MoM on the VM and configured it per your site’s environ-
ment.

Orange Cloud Flexible Engine documentation can be found at Creating a Linux Private Image Using an ECS. Before cre-
ating the Image from the ECS, you must have.

• A Linux ECS in the Stopped state.

• Configured DHCP for the NICs of the ECS

• Configured Network attributes of the ECS

• Detached Data Disks from the ECS

1. Log in to the Flexible Engine console.

2. In the Computing section, click Image Management Service.

3. On the Image Management Service page, click + Create Private Image.

4. In the Image Type and Source section, .

a. For Type, click System disk image

b. For Source, click ECS

c. Select the target ECS from the ECS list.

5. Set the required information, such as Name and Description.

6. Click Create Now.

7. Confirm the parameters and click Submit.

8. Switch back to the Image Management Service page to view the image status.

The time required for creating an image varies depending on the image file size. Generally, it takes about 20 minutes
to create an image. The image is successfully created when its image status changes to Normal.

Do not perform any operation on the selected ECS or its associated resources during image creation.
CG-114 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
You can now delete the virtual machine so that you are no longer charged for it.

3.6.9 Create Orange Cloud Cloud Bursting Scenario

Create an Orange Cloud Flexible Engine bursting scenario so that PBS execution nodes can be burst in the cloud.

Open a browser window and log in to the Orange Cloud Flexible Engine console. Open a second browser window and-
Log in to Cloud.

A startup script is provided during the creation of the bursting scenario. This script is ran after a cloud node is burst and
is used to set up the system environment so that nodes burst in the cloud can communicate with the PBS Server. Use a
cloud-init script for the startup script. For more information about writing cloud-init scripts, refer to the Cloudinit Docu-
mentation and and Cloud Bursting Startup Script.

1. Navigate to the Cloud browser window.

2. Click Cloud.

3. Under Infrastructure, click Bursting.

4. Click Add Bursting Scenario.

5. Enter information about the bursting scenario such as name, cloud provider, cloud account, and geographic location.

a. For Name, enter a name for the cloud bursting scenario.

b. For Description, enter a description.

c. For Cloud Account, choose a previously created Orange Cloud Flexible Engine account from the list.

d. For Select a region, select the availability domain where the cloud bursting virtual machine is hosted.

6. Click Next.

7. For Domain name, provide the domain name of your organization for the cloud bursting network. altair.com,
burst.altair.com

8. For Hostname prefix, enter a prefix for the names of the burst nodes.

If “node” is entered , the cloud bursting nodes will be available to PBS Professional as node1, node2, node3, etc.

9. Navigate to the Orange Cloud Flexible Engine console browser window.

10. Click Service List in the menu bar.

Figure 3-34:Orange Cloud Flexible Engine Console

11. Under Network, click Virtual Private Cloud.

12. Click Virtual Private Cloud from the menu located on the left-hand side of the web page.

13. Click the name of the VPC you created for cloud bursting.

14. Click the name of the Subnet for the VPC.

15. Copy the Subnet ID.

16. Navigate to the Cloud browser window.

17. For Subnet ID, paste the subnet’s ID copied from the Orange Cloud Flexible Engine console.

18. In the Orange Cloud Flexible Engine console browser window click Security Groupfrom the left hand side menu.

19. Click the name of the Security Group you created for the VPC.
PBS Professional 2020.1.1 Cloud Guide CG-115

Chapter 3 Using Cloud Provider Services
20. Copy the ID of the Security Group.

21. Navigate to the Cloud browser window.

22. For Security Group ID, paste the security group’s ID you copied from the Orange Cloud Flexible Engine console.

23. Enable the Add public IP to VMs if you need to connect to the cloud bursting nodes from the internet.

24. It is recommended to leave this disabled.

25. Navigate to the Orange Cloud Flexible Engine console browser window.

26. Click Service List in the menu bar.

27. Under Computing, click Image Management Service.

28. Click the Private Images tab.

29. Click the name of the VM image you created for cloud bursting.

30. Copy the ID of the image.

31. Navigate to the Cloud browser window.

32. For OS Image URI, paste the image ID you copied from the Orange Cloud Flexible Engine console.

33. For Cloud-init script, click Browse, browse for the startup script file and add it. This script will run after a cloud
node is burst.

34. Add public SSH keys for any users that you want to have access to the burst nodes:

a. Log in to the PBS Server.

b. Copy the public SSH key for the user.

Public key files are usually stored in /.ssh in the user’s home directory.

c. Navigate to the Cloud browser window.

d. Click Add to add the public key.

e. For Public SSH keys, paste the public SSH key.

f. Repeat steps a through e to add additional public SSH keys.

The public keys are copied to each burst node for secure connectivity.

35. For Idle before unburst, enter the minimum time that a cloud node can be idle before it is unburst.

It is expressed as an integer whose units are in seconds.

36. For Tags, enter a key-value pair to add a label to the cloud node and press ENTER.

A tag is a label that is assigned to a cloud node. Tags enable cloud nodes to be categorized in different ways, for
example, by purpose, owner, or environment.

The key-value pair must be entered as key:value. The key must be less than 36 characters and the value must be less
than 43 characters. The length of both the key + value should be less than 80 characters. Valid values are alphanu-
meric, dash (-) and an underscore (_).

Once the tag is added, it will appear within its own bubble.

Figure 3-35:Key-Value Tag

37. Repeat the previous step to add more tags.
CG-116 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
Figure 3-36:Additional Tags

38. Click Next.

39. Select the instance types to enable for the bursting scenario by clicking the Enabled checkbox located to the far right
of the instance type name

If an attempt is made to burst nodes with a disabled instance type, the node is not burst and the below message is dis-
played in the PBS Server logs (if bursting through PBS), the Cloud logs and through the Cloud component user
interface.

TYPE is not enabled

Where TYPE is the instance type used when attempting to burst the node.

40. Click Instantiate scenario.

Once the scenario created, it is recommended to Add a Token and Add Quotas and Alerts. When adding a token, an API
key is generated that is required for bursting. Quotas define bursting limits such as the maximum number of cloud nodes
to burst.

3.7 Configure HUAWEI Cloud for Cloud Bursting

Create the necessary components in HUAWEI Cloud that are required for cloud bursting and then create a cloud bursting
scenario.

Before you can begin creating the components necessary for cloud bursting, you must create and activate an HUAWEI
Cloud account.

3.7.1 Obtain the HUAWEI Cloud Administrator Credentials

Get the credentials for the HUAWEI Cloud administrative user account so that you can later use this information to cre-
ate a cloud account in Cloud.

You must already have signed up for an HUAWEI Cloud account.

When subscribing to HUAWEI Cloud, an administrative user account that has permissions for all system operations is
automatically created. Use this user account to add an HUAWEI Cloud account to Cloud. Reset the password for this
account when the password is unknown.

Alternatively, you can create a new user and give the user administrative privileges by setting its User Group to “admin”.

1. Log in to the HUAWEI Cloud Console.

2. Click Service List.

Figure 3-37:HUAWEI Cloud Console

3. Under Management & Deployment, click Identity and Access Management.

4. Click Users from the menu located on the left-hand side of the web page. A list of users is displayed.

5. Click the down-arrow located next to a username to display the user’s details.
PBS Professional 2020.1.1 Cloud Guide CG-117

Chapter 3 Using Cloud Provider Services
The user account listed as an “admin” is the account to use to create the cloud account in Cloud.

Figure 3-38:User Details

6. If you do not know the password for the administrative user account, click Set Credentials.

Figure 3-39:Set Password

a. Enable Set manually.

b. For Password, enter a password for the user account.

c. For Confirm Password, enter the password a second time.

d. Click OK.

You may have to confirm the password change either by email or by a SMS text.

3.7.2 Add an HUAWEI Cloud Account

Add an existing HUAWEI Cloud account to Cloud so that you can create a cloud bursting scenario.

1. Log in to Cloud.

2. Click the Cloud tab.

3. Under Infrastructure, click Cloud.

4. Click

5. Enter the following to add a cloud account:

a. For Account name, enter any name for the cloud account.

The name can be anything meaningful to your organization, e.g., huawei_cloudaccount.

b. For Auth (IAM) URL, enter https://iam.ap-southeast-1.myhwclouds.com.

c. For Domain name, enter the Domain Name provided when your subscription to HUAWEI Cloud was created.

If you do not know your Domain name, contact HUAWEI Cloud support.

d. For Username, enter a username that is an HUAWEI Cloud administrator.

e. For Password, enter the password for the HUAWEI Cloud administrator.

6. Click Create Account.

3.7.3 Check HUAWEI Cloud Account Service Quotas

View your OTC account resource usage and limits.
CG-118 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
Quotas are used to limit the number of resources available to users. It is important to ensure you are not exceeding your
quota while setting up the resources for cloud bursting. If the existing resource quota cannot meet your service require-
ments, you can submit a work order to increase your quota. Once your application is approved, HUAWEI Cloud will
update your resource quota accordingly and send you a notification.

1. Log in to the HUAWEI Cloud console.

2. Click Resources > My Quota.

Information about resources usage and availability is displayed.

3.7.4 Create a Virtual Private Cloud

Create a Virtual Private Cloud (VPC) so that you can perform cloud bursting.

HUAWEI Cloud documentation for creating a VPC can be found at: Creating a VPC and Regions and AZs.

1. Log in to the HUAWEI Cloud Console.

2. Click Service List in the menu bar.

3. Under Network, click Virtual Private Cloud.

4. Click + Create VPC.

5. In the Basic Information section:

a. For Region, select a region.

Regions are geographic areas isolated from each other. Resources are region-specific and cannot be used across
regions through internal network connections. For low network latency and quick resource access, select the
nearest region.

b. For Name, enter a name for the VPC.

c. For CIDR Block, enter an address range for the network using CIDR notation.

6. In the Subnet Settings section:

a. For the Subnet Settings choose the AZ (Availability Zone).

An Availability Zone is a physical location where resources use independent power supplies and networks. AZs
are physically isolated and AZs in the same VPC are interconnected through an internal network.

b. For Subnet Name, enter a name for the subnet.

c. For CIDR, enter an address range for the subnet using CIDR notation.

d. For Advanced Settings, click Default.

7. Click Create Now.

8. Click Back to VPC List.

9. Click Security Group in the left hand side menu.

10. Click + Create Security Group.

11. For Name, enter a name for the security group.

12. For Description, enter a suitable description.

13. Click OK.

14. By default, the Outbound and Inbound traffic over IPv4 is open. You can add firewall rules to this security group if
required.
PBS Professional 2020.1.1 Cloud Guide CG-119

Chapter 3 Using Cloud Provider Services
3.7.5 Creating a Virtual Machine

Create an Elastic Cloud Server (ECS) using a public image provided by HUAWEI Cloud for cloud bursting.

You must have already created a Virtual Private Network with a subnet and assigned a Security Group. If you do not have
this information, see Create a Virtual Private Cloud.

HUAWEI Cloud documentation for creating an ECS (virtual machine) can be found at Purchase an ECS.

1. Log in to the HUAWEI Cloud Console.

2. Click Service List in the menu bar.

3. Under Computing, click Elastic Cloud Server.

4. Click Key Pair from the menu located on the left-hand side of the web page.

5. Click + Create Key Pair.

6. For Name, enter a name for the key pair.

7. Click OK.

8. Save the key pair (.pem) file to your local disk in a secure location. The information in this .pem file is used later to
SSH into the VM.

9. Click OK to confirm that you have downloaded the key pair file.

10. Click Elastic Cloud Server from the menu located on the left-hand side of the web page.

11. Click Buy ECS.

12. For Billing Mode, click Pay-per-use.

13. For Region, select the same region that was chosen for the previously created VPC.

14. For AZ (Availability Zone), select the same AZ that was chosen for the previously created VPC.

15. In the Type section:

a. Choose an ECS type category:

• General computing

• General computing-plus

• Memory-optimized

• Large-memory

• High-performance computing

• Disk-intensive

b. For ECS type, click one of the flavor based on the needs of your site.

16. In the Image section:

a. Click Public image.

b. For Select an OS, select CentOS.

c. For Select an OS version, select CentOS 7.2 64bit(40GB).

17. In the Disk section, select your system disk requirements.
CG-120 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
18. In the VPC section:

a. For VPC, select the VPC you created for cloud bursting. The NIC information is automatically populated.

b. For Security Group, select the security group you created for cloud bursting.

c. For EIP, click Automatically assign

d. For Bandwidth, specify it as 5 Mbit/s.

19. For Login Mode, select Key Pair.

20. For Key Pair, select the key pair file you generated earlier.

21. For Advanced Settings, click Not required.

22. For ECS Name, enter a name for the virtual machine.

23. For Quantity, specify 1.

24. Click Next.

25. Review the specifications.

26. Enable the I have read and agree to the Huawei Image Disclaimer checkbox.

27. Click Submit Application.

28. Click Back to ECS List.

It may take some time to create the virtual machine. Once the ECS is created it is displayed in the ECS list.

3.7.6 Installing and Configuring the PBS MoM on the VM

Install the PBS MoM on the virtual machine and configure the VM per your site’s environment.

Log in to the VM using the default user “root” and the .pem generated during the creation of the VM.

A startup script is provided during the creation of the bursting scenario. This script is ran after a cloud node is burst and
is used to set up the system environment so that nodes burst in the cloud can communicate with the PBS Server. A service
specifically designed for cloud instance initialization is cloud-init and is utilized by Cloud when booting cloud nodes,
therefore it must be installed on the VM. For more information about installing cloud-init, refer to the Cloudinit Docu-
mentation.

1. Log in to the HUAWEI Cloud console.

2. Click Service List in the menu bar.

3. Under Computing, click Elastic Cloud Server.

4. Copy the Public IP address (External IP) of the ECS.

Figure 3-40:VM IP Address

5. Log in to your site’s PBS Server.

6. SSH into the VM using the default user “root”, the .pem file you generated when creating the VM and the External
IP assigned to the VM.

sh -i /path/my-key-pair.pem root@IPV4PublicIP
PBS Professional 2020.1.1 Cloud Guide CG-121

Chapter 3 Using Cloud Provider Services
where /path/my-key-pair.pem is the path to the .pem file downloaded while creating the virtual machine and
IPV4PublicIP is the public IP address of the virtual machine.

7. Using the PBS Professional Installation and Upgrade Guide, install and configure the PBS MOM.

8. Configure the VM for your site’s environment such as mounting file systems, connecting it to the authentication ser-
vice, installing any applications, etc.

9. Install cloud-init.

10. Connect the VM to your PBS server and submit a job to ensure it is working as expected.

3.7.7 Create an OS Image

Create an image of the virtual machine configured per your site’s requirements.

You must have already created a ECS (virtual machine), installed the PBS MoM on the ECS and configured it per your
site’s environment.

HUAWEI Cloud documentation can be found at Creating a Linux Private Image.

1. Log in to the HUAWEI Cloud console.

2. Click Service List in the menu bar.

3. Under Computing, click Image Management Service.

4. Click + Create Image.

5. For Region, select the same region that was chosen for the previously created VPC and ECS.

6. In the Image Type and Source section, .

a. For Type, click System disk image.

b. For Source, click ECS.

c. Select the virtual machine created for cloud bursting.

d. For Name, enter a name for the virtual machine.

7. Click Next.

8. Review the specifications.

9. Enable the I have read and agree to the Statement of Commitment to Image Creation and Huawei Image Disclaimer
checkbox.

10. Click Submit.

11. Click Back to Image List.

The time required for creating an image varies depending on the image file size. Generally, it takes about 20 minutes
to create an image. The image is successfully created when its image status changes to Normal.

Do not perform any operation on the selected ECS or its associated resources during image creation.

You can now delete the virtual machine so that you are no longer charged for it.

3.7.8 Create a HUAWEI Cloud Bursting Scenario

Create an HUAWEI Cloud bursting scenario so that PBS execution nodes can be burst in the cloud.

Open a browser window and log in to the HUAWEI Cloud console. Open a second browser window and log in to Cloud.
CG-122 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
A startup script is provided during the creation of the bursting scenario. This script is ran after a cloud node is burst and
is used to set up the system environment so that nodes burst in the cloud can communicate with the PBS Server. Use a
cloud-init script for the startup script. For more information about writing cloud-init scripts, refer to the Cloudinit Docu-
mentation and and Cloud Bursting Startup Script.

1. Navigate to the Cloud browser window.

2. Click Cloud.

3. Under Infrastructure, click Bursting.

4. Click Add Bursting Scenario.

5. Enter information about the bursting scenario such as name, cloud provider, cloud account, and geographic location.

a. For Name, enter a name for the cloud bursting scenario.

b. For Description, enter a description.

c. For Cloud Account, choose a previously created HUAWEI Cloud account from the list.

d. For Select a region, select the same region that was chosen for the previously created VM and VPC.

6. Click Next.

Enter information about the HUAWEI Cloud resources necessary to burst in the cloud.

7. For Domain name, provide the domain name of your organization for the cloud bursting network. altair.com,
burst.altair.com

8. For Hostname prefix, enter a prefix for the names of the burst nodes.

If “node” is entered , the cloud bursting nodes will be available to PBS Professional as node1, node2, node3, etc.

9. Navigate to the HUAWEI Cloud console browser window.

10. Click Service List in the menu bar.

11. Under Network, click Virtual Private Cloud.

12. Click Virtual Private Cloud from the menu located on the left-hand side of the web page.

13. Click the name of the VPC you created for cloud bursting.

14. Click the name of the VPC’s subnet.

15. Copy the Subnet ID.

16. Navigate to the Cloud browser window.

17. For Subnet ID, paste the subnet’s ID copied from HUAWEI Cloud console.

18. In the HUAWEI Cloud console browser window click Security Group from the menu located on the left-hand side of
the web page.

19. Click the name of the security group you created for the VPC.

20. Copy the ID of the security group.

21. Navigate to the Cloud browser window.

22. For Security Group, paste the security group’s ID you copied from the HUAWEI Cloud console.

23. Enable the Add public IP to VMs if you need to connect to the cloud bursting nodes from the internet.

It is recommended to leave this disabled.

24. Navigate to the HUAWEI Cloud console browser window.

25. Click Service List in the menu bar.
PBS Professional 2020.1.1 Cloud Guide CG-123

Chapter 3 Using Cloud Provider Services
26. Under Computing, click Image Management Service.

27. Click the Private Images tab.

28. Click the name of the VM image you created for cloud bursting.

29. Copy the ID of the image.

30. Navigate to the Cloud browser window.

31. For OS Image URI, paste the image ID you copied from the HUAWEI Cloud console.

32. For Cloud-init script, click Browse, browse for the startup script file and add it. This script will run after a cloud
node is burst.

33. Add public SSH keys for any users that you want to have access to the burst nodes:

a. Log in to the PBS Server.

b. Copy the public SSH key for the user.

Public key files are usually stored in /.ssh in the user’s home directory.

c. Navigate to the Cloud browser window.

d. Click Add to add the public key.

e. For Public SSH keys, paste the public SSH key.

f. Repeat steps a through e to add additional public SSH keys.

The public keys are copied to each burst node for secure connectivity.

34. For Idle before unburst, enter the minimum time that a cloud node can be idle before it is unburst.

It is expressed as an integer whose units are in seconds.

35. For Tags, enter a key-value pair to add a label to the cloud node and press ENTER.

A tag is a label that is assigned to a cloud node. Tags enable cloud nodes to be categorized in different ways, for
example, by purpose, owner, or environment.

The key-value pair must be entered as key:value. The key must be less than 36 characters and the value must be less
than 43 characters. The length of both the key + value should be less than 80 characters. Valid values are alphanu-
meric, dash (-) and an underscore (_).

Once the tag is added, it will appear within its own bubble.

Figure 3-41:Key-Value Tag

36. Repeat the previous step to add more tags.

Figure 3-42:Additional Tags

37. Click Next.

38. Select the instance types to enable for the bursting scenario by clicking the Enabled checkbox located to the far right
of the instance type name
CG-124 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
If an attempt is made to burst nodes with a disabled instance type, the node is not burst and the below message is dis-
played in the PBS Server logs (if bursting through PBS), the Cloud logs and through the Cloud component user
interface.

TYPE is not enabled

Where TYPE is the instance type used when attempting to burst the node.

39. Click Instantiate scenario.

Once the scenario created, it is recommended to Add a Token and Add Quotas and Alerts. When adding a token, an API
key is generated that is required for bursting. Quotas define bursting limits such as the maximum number of cloud nodes
to burst.

3.8 Configure Open Telekom Cloud for Cloud

Bursting

Create the necessary components in Open Telekom Cloud (OTC) that are required for cloud bursting and then create a
cloud bursting scenario.

Before you can begin creating the components necessary for cloud bursting, you must create and activate an OTC Cloud
account.

3.8.1 Obtain the OTC Administrator Credentials

Get the credentials for the OTC administrative user account so that you can later use this information to create a cloud
account in Cloud.

You must already have signed up for an OTC account.

When subscribing to OTC, an administrative user account that has permissions for all system operations is automatically
created. Use this user account to add an OTC cloud account to Cloud. Reset the password for this account when the pass-
word is unknown.

Alternatively, you can create a new user and give the user administrative privileges by setting its User Group to “admin”.

1. Log in to the OTC Console.

2. Click Service List in the menu bar.

3. Under Management & Deployment, click Identity and Access Management.

4. Click Users from the menu located on the left-hand side of the web page. A list of users is displayed.

5. Click the down-arrow located next to a username to display the user’s details.
PBS Professional 2020.1.1 Cloud Guide CG-125

Chapter 3 Using Cloud Provider Services
The user account listed as an “admin” is the account to use to create the cloud account in Cloud.

Figure 3-43:User Details

6. If you do not know the password for the admin user account, click Set Credentials

Figure 3-44:Set Password

7. Enable Set manually.

8. For Password, enter a password for the user account.

9. For Confirm Password, enter the password a second time.

10. Click OK.

You may have to confirm the password change either by email or by a SMS text.

3.8.2 Add an OTC Account

Add an existing OTC Cloud account to Cloud so that you can create a cloud bursting scenario.

1. Log in to Cloud.

2. Click the Cloud tab.

3. Under Infrastructure, click Cloud.

4. Click

5. Enter the following to add a cloud account:

a. For Account name, enter any name for the cloud account.

The name can be anything meaningful to your organization, e.g., orange_cloudaccount.

b. For Auth (IAM) URL, enter: https://iam.eu-de.otc.t-systems.com/v3.

c. For Domain name, enter the OTC Domain Name you used to log in to the OTC console.

d. For Username, enter a username that is an OTC administrator.

e. For Password, enter the password for the OTC administrator.

6. Click Create Account.
CG-126 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
3.8.3 Check OTC Account Service Quotas

View your OTC account resource usage and limits.

Quotas are used to limit the number of resources available to users. It is important to ensure you are not exceeding your
quota while setting up the resources for cloud bursting. If the existing resource quota cannot meet your service require-
ments, you can submit a work order to increase your quota. Once your application is approved, OTC will update your
resource quota accordingly and send you a notification.

1. Log in to the OTC Console.

2. Click the three vertical bars in the menu bar:

Figure 3-45:Viewing Quotas

You can see resource usage and availability:

Figure 3-46:Resource quotas and availability

3.8.4 Create a Virtual Private Cloud

Create a Virtual Private Cloud (VPC) so that you can perform cloud bursting.

OTC documentation for creating a VPC can be found at: Creating a VPC and Regions.

1. Log in to the OTC Console.

2. Click Service List.

3. Under Network, click Virtual Private Cloud.

4. Click + Create VPC.
PBS Professional 2020.1.1 Cloud Guide CG-127

Chapter 3 Using Cloud Provider Services
5. In the Basic Information section:

a. For Region, select a region.

Figure 3-47:Regions

A region is a geographical areas and can comprise one or more availability zones (AZs). A region is completely
isolated from other regions. Only AZs in the same region can communicate with one another through an internal
network.

b. For Name, enter a name for the VPC.

c. For CIDR Block, enter an address range for the network using CIDR notation.

6. In the Subnet Settings section:

a. For Subnet Name, enter a name for the subnet.

b. For CIDR, enter an address range for the subnet using CIDR notation.

c. For Advanced Settings, click Default.

7. Click Create Now.

8. Click Back to VPC List.

9. Click Security Group in the left hand side menu.

10. Click + Create Security Group.

11. For Name, enter a name for the security group.

12. For Description, enter a suitable description.

13. Click OK.

The security group rules are displayed.

14. Click the Inbound tab.

15. Click Add Rule.

a. For Protocol/Application, select TCP.

b. For Port, enter 22.

c. For Source, select IP Address. and enter 0.0.0.0/0.

d. Click OK.

3.8.5 Creating a Virtual Machine

Create an Elastic Cloud Server (ECS) using a public image provided by OTC for cloud bursting.

You must have already created a Virtual Private Network with a subnet and assigned a Security Group. If you do not have
this information, see Create a Virtual Private Cloud.

OTC documentation for creating an ECS (virtual machine) can be found at Create an ECS.

1. Log in to the OTC Console.

1. Click Service List in the menu bar.

2. Under Computing, click Elastic Cloud Server.

3. Click Key Pair from the menu located on the left-hand side of the web page.
CG-128 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
4. Click + Create Key Pair.

5. For Name, enter a name for the key pair.

6. Click OK.

7. Save the key pair (.pem) file to your local disk in a secure location. The information in this .pem file is used later to
SSH into the VM.

8. Click OK to confirm that you have downloaded the key pair file.

9. Click Elastic Cloud Server from the menu located on the left-hand side of the web page.

10. Click Create ECS.

11. For Region, select the same region that was chosen for the previously created VPC.

12. For AZ (Availability Zone), select an availability zone.

13. In the Specifications section:

a. Choose an ECS type category:

• General-purpose

• Dedicated general-purpose

• Memory-optimized

• Large-memory

• High-performance

• Disk-intensive

• GPU-accelerated

b. For ECS type, choose one of the flavors based on the needs of your site.

14. In the Image section:

a. Click Public image.

b. Select CentOS as the operating system.

c. Select Standard_CentOS7_latest(4GB) for the OS version..

15. In the Disk section, select your system disk requirements.

16. In the VPC section:

a. For VPC, select the VPC you created for cloud bursting. The NIC information is automatically populated.

b. For Security Group, select the security group you created for cloud bursting.

c. For EIP, click Automatically assign

d. For Bandwidth, specify it as 5 Mbit/s.

17. For Log in Mode, select Key Pair.

18. For Key Pair, select the key pair file you generated earlier.

19. For Advanced Settings, click Do not configure.

20. For ECS Name, enter a name for the virtual machine.

21. For Quantity, specify 1.

22. Click Create Now.

23. Review the specifications.
PBS Professional 2020.1.1 Cloud Guide CG-129

Chapter 3 Using Cloud Provider Services
24. Click Submit.

25. Click Back to ECS List.

It may take some time to create the virtual machine. Once the ECS is created it is displayed in the ECS list.

3.8.6 Installing and Configuring the PBS MoM on the VM

Install the PBS MoM on the virtual machine and configure the VM per your site’s environment.

Log in to the VM using the default user “root” and the .pem generated during the creation of the VM.

A startup script is provided during the creation of the bursting scenario. This script is ran after a cloud node is burst and
is used to set up the system environment so that nodes burst in the cloud can communicate with the PBS Server. A service
specifically designed for cloud instance initialization is cloud-init and is utilized by Cloud when booting cloud nodes,
therefore it must be installed on the VM. For more information about installing cloud-init, refer to the Cloudinit Docu-
mentation.

1. Log in to the OTC Console.

2. Click Service List in the menu bar.

3. Under Computing, click Elastic Cloud Server.

4. Copy the Public IP address (External IP) of the ECS.

Figure 3-48:VM IP Address

5. Log in to your site’s PBS Server.

6. SSH into the VM using the default user “root”, the .pem file you generated when creating the VM and the External
IP assigned to the VM.

ssh -i /path/my-key-pair.pem root@IPV4PublicIP

where /path/my-key-pair.pem is the path to the .pem file downloaded while creating the virtual machine and
IPV4PublicIP is the public IP address of the virtual machine.

7. Using the PBS Professional Installation and Upgrade Guide, install and configure the PBS MOM.

8. Configure the VM for your site’s environment such as mounting file systems, connecting it to the authentication ser-
vice, installing any applications, etc.

9. Install cloud-init.

10. Connect the VM to your PBS server and submit a job to ensure it is working as expected.

3.8.7 Create an OS Image

Create an image of the virtual machine configured per your site’s requirements.

You must have already created a ECS (virtual machine), installed the PBS MoM on the ECS and configured it per your
site’s environment.

OTC documentation can be found at Creating a Linux Private Image.

1. Log in to the OTC Console.

2. Click Service List in the menu bar.
CG-130 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
3. Under Computing, click Image Management Service.

4. Click + Create System Disk Image.

a. For Region, select the same region that was chosen for the previously created VPC and ECS.

b. For Source, click Server.

c. For Server Type, click ECS.

d. For ECS, select the virtual machine created for cloud bursting.

e. If the virtual machine is not stopped, stop it.

f. Click OK when prompted to verify that certain operations have been performed on the ECS. You do not need to
configure or optimize the ECS.

g. For Name, enter a name for the virtual machine.

5. Click Create Now.

6. Review the specifications.

7. Click Submit.

8. Click Back to Image List.

The time required for creating an image varies depending on the image file size. Generally, it takes about 20 minutes
to create an image. The image is successfully created when its image status changes to Normal.

Do not perform any operation on the selected ECS or its associated resources during image creation.

You can now delete the virtual machine so that you are no longer charged for it.

3.8.8 Create an OTC Cloud Bursting Scenario

Create an OTC bursting scenario so that PBS execution nodes can be burst in the cloud.

Open a browser window and log in to the OTC Console. Open a second browser window and log in to Cloud.

A startup script is provided during the creation of the bursting scenario. This script is ran after a cloud node is burst and
is used to set up the system environment so that nodes burst in the cloud can communicate with the PBS Server. Use a
cloud-init script for the startup script. For more information about writing cloud-init scripts, refer to the Cloudinit Docu-
mentation and and Cloud Bursting Startup Script.

1. Navigate to the Cloud browser window.

2. Click Cloud.

3. Under Infrastructure, click Bursting.

4. Click Add Bursting Scenario.

5. Enter information about the bursting scenario such as name, cloud provider, cloud account, and geographic location.

a. For Name, enter a name for the cloud bursting scenario.

b. For Description, enter a description.

c. For Cloud Account, choose a previously created OTC cloud account from the list.

d. For Select a region, select the same region that was chosen for the previously created VM and VPC.

6. Click Next.

Enter information about the OTC resources necessary to burst in the cloud.

7. For Domain name, provide the domain name of your organization for the cloud bursting network. altair.com,
burst.altair.com
PBS Professional 2020.1.1 Cloud Guide CG-131

Chapter 3 Using Cloud Provider Services
8. For Hostname prefix, enter a prefix for the names of the burst nodes.

If “node” is entered , the cloud bursting nodes will be available to PBS Professional as node1, node2, node3, etc.

9. Navigate to the OTC console browser window.

10. Click Service List in the menu bar.

11. Under Network, click Virtual Private Cloud.

12. Click Virtual Private Cloud from the menu located on the left-hand side of the web page.

13. Click the name of the VPC you created for cloud bursting.

14. Click the name of the VPC’s subnet.

15. Copy the Subnet ID.

16. Navigate to the Cloud browser window.

17. For Subnet ID, paste the subnet’s ID copied from the OTC console.

18. In the OTC console browser window, click Security Group from the menu located on the left- hand side of the web
page.

19. Click the name of the security group you created for the VPC.

20. Copy the ID of the security group.

21. Navigate to the Cloud browser window.

22. For Security Group, paste the security group’s ID you copied from the OTC console.

23. Enable the Add public IP to VMs if you need to connect to the cloud bursting nodes from the internet. It is recom-
mended to leave this disabled.

24. Navigate to the OTC console browser window.

25. Click Service List in the menu bar.

26. Under Computing, click Image Management Service.

27. Click the Private Images tab.

28. Click the name of the VM image you created for cloud bursting.

29. Copy the Image ID of the image.

30. Navigate to the Cloud browser window.

31. For OS Image URI, paste the image ID you copied from the OTC console.

32. For Cloud-init script, click Browse, browse for the startup script file and add it. This script will run after a cloud
node is burst.

33. Add public SSH keys for any users that you want to have access to the burst nodes:

a. Log in to the PBS Server.

b. Copy the public SSH key for the user.

c. Public key files are usually stored in /.ssh in the user’s home directory.

d. Navigate to the Cloud browser window.

e. Click Add to add the public key.

f. For Public SSH keys, paste the public SSH key.

g. Repeat steps a through e to add additional public SSH keys.
CG-132 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
The public keys are copied to each burst node for secure connectivity.

34. For Idle before unburst, enter the minimum time that a cloud node can be idle before it is unburst. It is expressed as
an integer whose units are in seconds.

35. For Tags, enter a key-value pair to add a label to the cloud node and press ENTER.

A tag is a label that is assigned to a cloud node. Tags enable cloud nodes to be categorized in different ways, for
example, by purpose, owner, or environment.

The key-value pair must be entered as key:value. The key must be less than 36 characters and the value must be less
than 43 characters. The length of both the key + value should be less than 80 characters. Valid values are alphanu-
meric, dash (-) and an underscore (_).

Once the tag is added, it will appear within its own bubble.

Figure 3-49:Key-Value Tag

36. Repeat the previous step to add more tags.

Figure 3-50:Additional Tags

37. Click Next.

38. Select the instance types to enable for the bursting scenario by clicking the Enabled checkbox located to the far right
of the instance type name

If an attempt is made to burst nodes with a disabled instance type, the node is not burst and the below message is dis-
played in the PBS Server logs (if bursting through PBS), the Cloud logs and through the Cloud component user
interface.

TYPE is not enabled

Where TYPE is the instance type used when attempting to burst the node.

39. Click Instantiate scenario.

Once the scenario created, it is recommended to Add a Token and Add Quotas and Alerts. When adding a token, an API
key is generated that is required for bursting. Quotas define bursting limits such as the maximum number of cloud nodes
to burst.

3.9 AWS Spot Pricing

Use AWS Spot Instances to request spare computing capacity for up to 90% off the On-Demand price.

3.9.1 AWS Spot Pricing Overview

A description of spot pricing and information on implementing it.
PBS Professional 2020.1.1 Cloud Guide CG-133

Chapter 3 Using Cloud Provider Services
3.9.2 What is Spot Pricing

Amazon EC2 Spot Instances offer spare compute capacity available in the AWS cloud at steep discounts compared to
On-Demand instances. Spot Instances can be interrupted by AWS with two minutes of notification when AWS needs the
capacity back. AWS can interrupt your Spot Instance when the Spot price exceeds your maximum price, when the
demand for Spot Instances rises, or when the supply of Spot Instances decreases.

The recommendation is to avoid running critical or long running jobs on spot instances as jobs may be killed when spot
instances are preempted.

3.9.3 Implementing AWS Spot Pricing

Create an AWS bursting scenario. Once the bursting scenario is created, select the bursting scenario and choose to set up
spot instances. A list of machine types are displayed that can be enabled for spot pricing:

Figure 3-51:Spot Instances

Instance type name

Name of the instance type (machine type, shapes or flavors) as defined by the cloud provider.

Core

Number of CPUs available for this instance type.

Mem

Amount of RAM available for this instance type.

GPU

Number of GPUs available for this instance type.

Price

On-demand price. With On-Demand instances, you pay for compute capacity by per hour or per second depend-
ing on which instances you run. No longer-term commitments or upfront payments are needed. You can increase
or decrease your compute capacity depending on the demands of your application and only pay the specified per
hourly rates for the instance you use.
CG-134 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
Current Spot Price

Currently, available spot price. With spot instances, you pay the spot price that’s in effect for the time period
your instances are running. Spot instance prices are set by Amazon EC2 and adjust gradually based on long-
term trends in supply and demand for Spot instance capacity. Spot instances allow you to request spare Amazon
EC2 computing capacity for up to 90% off the On- Demand price.

Max Spot Price

Maximum amount that your site is willing to pay to continue using the spot instance. Once this price is exceeded
the spot instance can be interrupted by AWS with two minutes of notification.

Enable for spot

Machine type is enabled for spot pricing.

Choose which instance types that you want for spot pricing and enter a maximum price that you are willing to pay to con-
tinue using the spot instance.

A scenario must be added to the cloud bursting hook configuration file for every instance type selected for spot pricing
and the scenario must be enabled as preemptible.

“preemptable”: true

3.9.3.1 Cloud Bursting Hook Scenario Example

Two instance types are selected for spot pricing:

Figure 3-52:Spot Instances

Add the following scenario to the cloud bursting hook configuration file:

"aws_scenario_1": {

"api_key": "API-KEY-HERE",

"cloud_default_image": "<CloudDefaultImage>",

"cloud_max_instances": 20,

"max_nodes_per_burst":50,

"cloud_node_wait_timeout":180,

"preemptable": true

}

3.9.4 Choose Spot Instances

Choose instance types for spot pricing and set the maximum spot price.
PBS Professional 2020.1.1 Cloud Guide CG-135

Chapter 3 Using Cloud Provider Services
Before you can choose instances for spot pricing you must have created an AWS bursting scenario.

1. Log in to Cloud.

2. Click the Cloud tab.

3. Under Infrastructure, click Bursting.

4. Select an AWS bursting scenario by clicking on its name.

5. Choose one of the following options:.

• If spot pricing has not yet been set up, click Set up spot instances.

• If spot pricing instances have already been enabled, click Edit spot instances.

A list of spot instances are listed.

Figure 3-53:Spot Instances

6. Scroll through the list by:

• Clicking the Previous and Next buttons to scroll through the list.

• Entering a page number in the Page field and pressing ENTER to jump to a specific page.

• Entering search criteria in the Search by name field to filter the list of instance types by name.

7. Select an instance type for spot pricing by enabling Enable for spot to the far right of the instance type name.

8. To disable spot pricing for an instance type, disable Enable for spot.

9. Enter a maximum spot price that you are willing to pay for the instance type.

10. Repeat steps 6 through 8 to choose additional instance types for spot pricing.

11. Click Save.

3.9.5 Add Scenarios to the Cloud Bursting Hook

Add scenarios to the cloud bursting hook configuration file to configure PBS Professional to use spot instances.

Configuring the hook must be done as root or as a user with sudo permissions using the sudo command.

1. Export the cloud bursting hook configuration to a file:
qmgr -c "export hook cloud_hook application/x-config default" > FILENAME
CG-136 PBS Professional 2020.1.1 Cloud Guide

Using Cloud Provider Services Chapter 3
Where FILENAME is the name of the file where the hook configuration is written.

qmgr -c "export hook cloud_hook application/x-config default" > config.json

2. Edit the file.

3. Add the AWS scenario to the scenario container. Note that you can create a single scenario with multiple spot
instance types or create a scenario for each spot instance type.

a. Set the value of api_key to the token generated for the bursting scenario.

b. Set the value of cloud_default_image to OS image that should be used for bursting. This OS image is used if the
image is not requested as part of the job submission request.

c. Set the value of cloud_max_instances to the maximum number of instances that can be made available in the
cloud.

Must be expressed an integer greater than zero. This value must be specified otherwise the cloud bursting hook
is rejected.

d. Set the value of max_nodes_per_burst to the maximum number of nodes allowed to burst in a single hook cycle.

e. Set the value of cloud_node_wait_timeout to the maximum time to wait for freshly burst node to become
usable.

Must be expressed as an integer whose units are in seconds. Default is 180 seconds. You can set this to a higher
value, but a lower value defaults to 180 seconds.

f. Set preemptable to True.

4. Save the file.

5. Re-import the hook with the updated configuration values:

qmgr -c "import hook cloud_hook application/x-config default FILENAME"

Where FILENAME is the name of the file containing the hook configuration.

qmgr -c "import hook cloud_hook application/x-config default config.json"

6. Enable the cloud bursting hook.

The cloud bursting server periodic hook is disabled by default.

qmgr -c "set hook cloud_hook enabled=True"
PBS Professional 2020.1.1 Cloud Guide CG-137

Chapter 3 Using Cloud Provider Services
CG-138 PBS Professional 2020.1.1 Cloud Guide

4

Running Cloud Jobs

4.1 Introduction

Jobs are submitted to one or more designated cloud queues, and a server periodic hook monitors the cloud queues, esti-
mates the demand for cloud nodes, and dynamically adjusts the number of nodes by bursting or unbursting as needed.

You can choose any of the instance types allowed by the administrator via CLOUD_INSTANCE=<instance type>.

You can choose an OS image with CLOUD_IMAGE=<name of image file>.

4.2 Sample Job Script: Cloud Job

The following script is simply a job requesting 10 minutes of walltime, it will sleep for 1 minute (or tune $sleeptime as
appropriate) and then exit. It requests cloudq; adjust the name depending on previous configuration. You can save the
following job script as sleep.sh. Then you can submit it to PBS:

qsub sleep.sh

4.2.1 Contents of Sample Cloud Job Script

#!/bin/bash

#PBS -N testjob

#PBS -j oe

#PBS -m n

#PBS -q cloudq

#PBS -l select=1:ncpus=2:mem=16mb

#PBS -l walltime=0:10:00

sleeptime=60

cmd=”sleep $sleeptime”

echo $cmd

$cmd

exit

4.2.2 Viewing Job Output

When the job completes you should see the job’s output. This will appear where the job was submitted.

4.3 Logging into Cloud

To log into Cloud, go to the Cloud interface in your web browser:

http://<server>:9980/pbspro-cloud/#/login
PBS Professional 2020.1.1 Cloud Guide CG-139

Chapter 4 Running Cloud Jobs
CG-140 PBS Professional 2020.1.1 Cloud Guide

Index

A
Altair License Server CG-2
Amazon Web Services CG-1
api_key CG-16
AWS CG-1
Azure cloud head node CG-6

B
burst CG-16
bursting scenario CG-16

C
CentOS CG-1
cloud bursting scenario CG-16
cloud bursting startup script CG-17
cloud head node in Azure CG-6
cloud hook configuration file CG-10
cloud queues CG-24
cloud_instance_type CG-22
cloud_max_instances CG-22
cloud_max_jobs_check_per_queue CG-22, CG-23
cloud_min_instances CG-22
cloud_network CG-22
cloud_node_image CG-22
cloud_node_instance_type CG-23
cloud_provisioned_time CG-23
cloud_queue CG-23
cloud_scenario CG-23
cloud-init

example CG-18
troubleshooting CG-20

configuration file
cloud hook CG-10

configuring PBS for cloud bursting CG-21
custom resources for cloud bursting CG-24

D
docker CG-2

F
Firewalld CG-2
firewalld CG-7

G
GCP CG-1

Google Cloud Platform CG-1

H
hook configuration file

cloud hook CG-10
HUAWEI Cloud CG-1

I
image CG-16
installation script CG-3
instance CG-16
instance type CG-16, CG-21

L
lic_signature CG-23

M
Microsoft Azure CG-1

N
NIS

configuring at startup CG-19
node_location CG-23

O
Open Telekom Cloud CG-1
Oracle Cloud Platform CG-1
Orange Cloud Flexible Engine CG-1
OTC CG-1

P
PBS

configuring for cloud bursting CG-21
pkr CG-3, CG-11

sample output CG-11

R
RHEL CG-1

S
scratch CG-19
script

cloud bursting startup CG-17
startup CG-17
PBS Professional 2020.1 Cloud Guide CG-141

Index
SELinux CG-2, CG-7
SLES CG-1
startup script CG-17

example CG-18
troubleshooting CG-20

T
troubleshooting startup script CG-20

U
unburst CG-16

V
VPN CG-2, CG-22
CG-142 PBS Professional 2020.1 Cloud Guide

Altair®

PBS Professional®

2020.1.1

Budget Guide

You are reading the Altair PBS Professional 2020.1.1

Budget Guide (BG)

Updated 9/30/20

Copyright © 2003-2020 Altair Engineering, Inc. All rights reserved.

ALTAIR ENGINEERING INC. Proprietary and Confidential. Contains Trade Secret Information. Not for use or disclo-
sure outside of Licensee’s organization. The software and information contained herein may only be used internally and
are provided on a non-exclusive, non-transferable basis. Licensee may not sublicense, sell, lend, assign, rent, distribute,
publicly display or publicly perform the software or other information provided herein, nor is Licensee permitted to
decompile, reverse engineer, or disassemble the software. Usage of the software and other information provided by Altair
(or its resellers) is only as explicitly stated in the applicable end user license agreement between Altair and Licensee. In
the absence of such agreement, the Altair standard end user license agreement terms shall govern.

Use of Altair’s trademarks, including but not limited to “PBS™”, “PBS Professional®”, and “PBS Pro™”, “PBS
Works™”, “PBS Control™”, “PBS Access™”, “PBS Analytics™”, “PBScloud.io™”, and Altair’s logos is subject to
Altair's trademark licensing policies. For additional information, please contact Legal@altair.com and use the wording
“PBS Trademarks” in the subject line.

For a copy of the end user license agreement(s), log in to https://secure.altair.com/UserArea/agreement.html or contact
the Altair Legal Department. For information on the terms and conditions governing third party codes included in the
Altair Software, please see the Release Notes.

This document is proprietary information of Altair Engineering, Inc.

Contact Us

For the most recent information, go to the PBS Works website, www.pbsworks.com, select "My PBS", and log in with
your site ID and password.

Altair

Altair Engineering, Inc., 1820 E. Big Beaver Road, Troy, MI 48083-2031 USA www.pbsworks.com

Sales

pbssales@altair.com 248.614.2400

Please send any questions or suggestions for improvements to agu@altair.com.

https://secure.altair.com/UserArea/agreement.html
http://www.pbsworks.com
http://www.pbsworks.com

Technical Support

Need technical support? We are available from 8am to 5pm local times:

Location Telephone e-mail

Australia +1 800 174 396 anz-pbssupport@india.altair.com

China +86 (0)21 6117 1666 pbs@altair.com.cn

France +33 (0)1 4133 0992 pbssupport@europe.altair.com

Germany +49 (0)7031 6208 22 pbssupport@europe.altair.com

India +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

Italy +39 800 905595 pbssupport@europe.altair.com

Japan +81 3 6225 5821 pbs@altairjp.co.jp

Korea +82 70 4050 9200 support@altair.co.kr

Malaysia +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

North America +1 248 614 2425 pbssupport@altair.com

Russia +49 7031 6208 22 pbssupport@europe.altair.com

Scandinavia +46 (0)46 460 2828 pbssupport@europe.altair.com

Singapore +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

South Africa +27 21 831 1500 pbssupport@europe.altair.com

South America +55 11 3884 0414 br_support@altair.com

UK +44 (0)1926 468 600 pbssupport@europe.altair.com

Contents

1 Introduction to Budget 1
1.1 Introduction . 1

1.2 Budget Terminology . 2

1.3 Relationships in Budget. 4

1.4 Job and Credit Workflow . 4

1.5 Service Units . 5

2 Installing Budget 7
2.1 Supported Platforms for Budget . 7

2.2 Prerequisites . 7

2.3 Recommended Configurations . 8

2.4 Installation Steps. 10

3 Configuring Budget 13
3.1 The Budget Configuration File. 13

3.2 Configuring the Budget Hook . 13

3.3 Configuring Failover for Budget. 18

3.4 Configuring Budget for Peer Scheduling. 19

4 Authentication for Budget 21
4.1 Authenticating Users . 21

4.2 Budget and PBS Authentication . 21

4.3 Logging in to Budget . 23

5 Budget Commands 25
5.1 Budget Commands . 25

5.2 Commands for Managing Budget Elements . 26

5.3 Commands for Managing Service Units . 50

6 Tutorial on Using Budget 63
6.1 Getting Started with Budget Commands. 63

6.2 Getting Started with Budget Commands. 63

6.3 Submitting Jobs with Budget . 65

Index 67
PBS Professional 2020.1 Budget Guide BG-v

Contents
BG-vi PBS Professional 2020.1 Budget Guide

1

Introduction to Budget

1.1 Introduction

Budget is a High Performance Computing (HPC) resource budgeting tool for project stakeholders. Budget provides flex-
ibility and control over how available compute resources are used over medium- and long-term periods, and is tightly
integrated with the job management mechanisms of PBS Professional.

1.1.1 Managing Resource Usage

PBS Professional lets you submit jobs once the architecture and systems of a HPC site are in place. Budget lets you allo-
cate credit to PBS Professional jobs. An allocation is a consumable resource available for use by projects. Each alloca-
tion is linked to projects and fixed time periods. As the resources are consumed, the allocation is depleted. Allocations
can be made for compute resources, budget resources, or a combination of both.

Budget works like a bank by providing a form of customized currency. It records usage of HPC resources through PBS
Professional, as transactions in that currency. HPC owners (investors) provide departments or business units consisting
of managers with an initial amount to be used over a period of time. Managers allocate this amount to projects (joint
accounts) and individuals (individual accounts) for their activities. For example, a university might give the Physics
department 100000 units for a year, and a part of that might be distributed to specific research projects or individual
researchers for Quarter 1 and Quarter 2 of the year. The project teams and individual users can then run their jobs thereby
consuming those budgets. They can balance their budgets by tracking consumption in the time periods and determine
how they want the system to be used.

An initial amount of currency is granted to a user or project to submit jobs. Based on the resources requested by a job,
Budget calculates the amount of currency required for the job to complete. Budget then authorizes the amount from the
user or project and allows the job to run.

Once the job is finished, balance from the authorized amount is reconciled to the user’s account based on the resources
consumed. Every transaction is recorded. These transactions are tracked over particular time frames, usually for a month,
quarter, or year. All transaction information is stored in a database allowing extensive statistical allocation tracking. The
reports of these transactions enable managers and investors to budget their resource usage. The Budget framework holds
all the account and transaction information in its database.

1.1.2 Currency

The customized currency could be actual dollars or it could be a compute resource, e.g. CPU hours, GPU hours, or what-
ever resource-based calculation an HPC site would like to use. PBS queries Budget through hooks. The hook sets the
definition of the currency. The amount of each job’s allocation charge is associated with the amount of resources used by
the job and the amount of time it was used for. It can be configured to charge varying amounts based on the type of com-
pute resources used, priority of the job, day of the week, or time of day when the resources were used. The hook also
determines whether you have permission, and the required currency, to consume the resource you request. You can bud-
get the usage of external resources such as storage by setting quotas on them.

You can define various different currencies, and allocate different amount to different groups and users.
PBS Professional 2020.1.1 Budget Guide BG-1

Chapter 1 Introduction to Budget
1.2 Budget Terminology

Account

The entity against which allocations are defined, credited, and debited.

Defined by the Budget administrator; can be specific to the needs of the client.

Allocations (currency) are deposited into the account by a Manager for a specified time period and service unit.
Currency is debited from the account when users who are assigned to the account run jobs that use the currency.
Currency is usually tied to a resource such as CPU hours, GPU hours, etc.

There are two types of accounts:

Project
An entity that represents a project or workflow within a department or business unit, etc. The currency
deposited into the account can be used by any users assigned to the account.

User
An entity that represents an individual. The currency deposited into the account can only be used by the
individual assigned to the account.

Allocation

A consumable resource available for projects and users. It is linked to projects and extends for a fixed time
period. As the resources are consumed, the allocation is depleted. Allocations can be made for compute
resources, budget resources, or a combination of both.

Budget Resource

Currency mapped to a compute resource, e.g. 1 CPU-hour = $10 1 GPU-hour = $25. For a budget resource,
users specify the currency budget and consume any of the mapped PBS resources.

Compute Resource

An arithmetic formula involving a PBS resource and time. For example, the PBS resources ncpus and walltime
together make up the compute resource CPU-hours.

Other examples are GPU-hours, memory-hours, etc.

Cluster, PBS Complex

One or more machines managed by PBS Professional. Projects are associated with an HPC cluster and funding
for those projects is administered by Budget.

Element

Used to refer to a part of Budget, such as a transaction or configuration. Can be something associated with an
entity, such as a limit on a service unit. This is a blanket term and includes entities.

Entity

A data structure in Budget. A period, cluster, service unit, user, project, group, role.

Group

An entity that represents a organization structure such as a department, a business unit, etc. Group investors
provide funds to the group, and group managers pass these funds to user and project accounts.

Instance

An installation of Budget; described by a name and the hostname or IP address of the machine where Budget is
installed.
BG-2 PBS Professional 2020.1.1 Budget Guide

Introduction to Budget Chapter 1
Period

Time duration for which an allocation is made, and against which it is reported.

Defined by the Budget administrator; can be specific to the needs of the client.

Examples: a year, a quarter within a year, a month within a year.

Queue Weight

Each queue has its own priority, which may be the same as or different from that of other queues. Compute
resources or budget resources can be depleted at different rates at different queues. You can use queue priority
in the formula as a weighting mechanism.

Role

Roles define access to the features of Budget.

Admin
Configures Budget.

Investor
Deposits service units to a group.

Manager
This role is associated with a group. This role adds or withdraws currency for user and project accounts.

Teller
Performs all acquire and reconcile transactions on behalf of users.

The Teller has full permissions for transactions and can read all other projects, accounts, groups, etc.

User
PBS users who are authorized to run jobs for a project and consume currency allocations.

Standard Service Unit

Single unit of a compute resource, a budget resource, or a combination of both.

Defined by the Budget administrator; can be specific to the needs of the client.

Example: CPU-hours, GPU-hours, dollars

Dynamic Service Unit

A unit of an external compute resource such as storage.

Limits can be set on dynamic service units in order to define quotas. If a quota is exceeded, jobs that depend on
that service unit do not run.

Transaction

An action that takes place for a specific purpose:

Credit
Currency is added to an account.

Debit
Currency is subtracted from an account.

Refund
A Budget administrator refunds currency to an account.

Job Acquire
Currency is allocated to the job when the job is submitted.

Job Release
Transaction that occurs when a job completes.
PBS Professional 2020.1.1 Budget Guide BG-3

Chapter 1 Introduction to Budget
1.3 Relationships in Budget

1.3.1 Groups, Investors, Managers

Groups in Budget represent organizational entities such as departments or businesses. For example, an organization
might have multiple departments including engineering, systems, and software, which get funding from investors (e.g.
the CFO). The departments (groups) can then fund projects.

Group investors deposit funds to the group budget pool. Group managers transfer funds to and from user and project
accounts. A group is at least one investor who can contribute currency to the group’s budget pool, and at least one man-
ager who can use the budget pool to fund users and/or projects.

Linking to a group means joining the group. A group can have multiple investors, and investors can be linked to multiple
groups. Investors must be part of a group in order to invest in that group. A group can have multiple managers, and man-
agers can be linked to multiple groups. Many groups can fund a single project and a single group can fund many
projects.

The group budget pool does not have any defined period. The amount in the budget pool is available for an infinite
amount of time.

When an investor is unlinked from a group, or a group is unlinked from a project, funds are kept with the group or
project, and become unusable. Therefore investors should withdraw before unlinking. The group manager can transfer
these funds to another owner or group and make them usable again.

A group manager can transfer funds from one group to another within a project, or between two projects.

Project and user accounts can be part of multiple groups.

1.3.2 Investing and Consuming Funds

Investing in a user or group means dispensing currency to that user or group.

Funds are consumed when jobs are submitted by authorized users and projects.

The amount each investor dispenses to a group is tracked. Investors cannot withdraw more than the amount they dis-
pense to a group.

There is no limit on the funds a manager can allocate to a project or user. A single manager can use the entire budget of
the group. A allocation to an account is linked to a period, and the allocation expires at the end of the period. A group
manager can withdraw funds from one period and allocate them to a different period.

A service unit is a currency. A user or project can consume multiple currencies.

1.4 Job and Credit Workflow

1. User submits job

2. Budget validates credit of the project or user, depending on whether job is part of project

3. Job is queued at PBS server (queuejob hook)

4. When job is sent for execution, a runjob Budget hook authorizes credit, and puts needed credit in escrow

5. Job runs at execution host

6. When job finishes, an execjob_epilogue hook debits credit that was used by job and returns excess to user or
project
BG-4 PBS Professional 2020.1.1 Budget Guide

Introduction to Budget Chapter 1
1.5 Service Units

1.5.1 Standard Service Units

A standard service unit tracks an internally managed resource such as CPU-hours. Standard service units are a measure
of resource usage multiplied by time of use such as CPU-hours or GPU-hours. Standard service units can be treated like
a currency. For example, the dollars used can be a calculation representating any resource, such as CPU-hours, GPU-
hours, and memory usage.

Budget tracks the consumption of service units. If sufficient service units are available, jobs are allowed to run. When a
job runs, the consumed amount of service units is deducted from the project or user account. The Budget hook contains
the formula for calculating standard service units.

1.5.2 Dynamic Service Units

A dynamic service unit is a service unit that tracks an external resource such as storage. At a given point in time, a
dynamic service unit is a snapshot of the current usage level of a given external resource. This usage level is reported by
an external script that you write. You would normally run the script as a cron job, where it calls amgr updatedynam-
icvalues, which updates the value of the dynamic service unit. See section 5.2.1.5, “Updating Dynamic Values”, on
page 29.

A group manager can apply limits to consumption of dynamic service units for project and user accounts. These limits
have to be set for specific periods. Limit periods can be nested; for example you can set a limit for a year, and also set
limits for quarters in the year. If there is no limit, the limit defaults to zero. A job’s most recently reported usage is com-
pared against the current limit; previous usage is not taken into account. If a limit is reached the job is not allowed to run.
The job will run again if the limit is increased or the resource usage is reduced.

1.5.3 Rules for Using Service Units

When you create a service unit, the default type is SU_STANDARD. You can specify standard or dynamic service units
via the -t <service unit type> option to the amgr add serviceunit command; see section 5.2.1.3,
“Adding a Service Unit”, on page 28. The type for dynamic service units is SU_DYNAMIC.

• You can change the type of a service unit, but there are restrictions:

• You can change standard to dynamic only when no transactions have taken place

• You can change dynamic to standard only when no updates have been made to the external dynamicvalue

• In the budget hook configuration file, you can use only standard service units.

• An active dynamic service unit must have a limit set in order for jobs to use it

• If you apply a limit directly to a period, it does not inherit the limit from its parent

• If you apply a limit to a period, all child periods that are not directly limited inherit the limit; similarly, limits on
child periods are inherited by children of those child periods, when no direct limits have been set

• When you create a new child period, it inherits its limit from its parent

• Only group managers can update dynamicvalues.
PBS Professional 2020.1.1 Budget Guide BG-5

Chapter 1 Introduction to Budget
1.5.3.1 Storage Quotas via Dynamic Service Units

You can limit usage of external storage by setting quotas on dynamic service units that track external storage. Group
managers can define a limit (i.e. amount of storage in GB) that a project or user can use during a specific period. Jobs
belonging to the project or user can run during the period specified in the dynamic service unit limit as long as usage is
below the dynamic service unit limit. When the usage value reaches the limit, running jobs are stopped for the project or
user in that period. Jobs will run again when the usage is reduced below the limit or when the limit is increased.
BG-6 PBS Professional 2020.1.1 Budget Guide

2

Installing Budget

2.1 Supported Platforms for Budget

• CentOS 7

• SLES 15

2.2 Prerequisites

2.2.1 Altair Prerequisites

Altair License Manager 14.5 or newer

PBSProNodes 20.0 license features

PBS Professional 2020.1, installed and running

2.2.2 Third-party Prerequisites

docker-ce v19.x or later

python3

python3-pip

2.2.3 Required Accounts

• Administration requires a Budget administrator. We recommend that this be pbsadmin. This user should not be
amteller.

• The Budget database requires the pbsdata user.

• Budget requires a teller (amteller) to process transactions through the Budget hook. This user should not be pbsad-
min. This user does not have to be root or administrator.

• Users who submit jobs to PBS Professional have to exist in the system where Budget is installed, but these users can
be added to Budget after installation.

2.2.3.1 Configuring Accounts for Budget

1. Add a user called pbsdata for the Budget database (PostgreSQL) and set a password.
adduser -u 900 pbsdata

passwd pbsdata <password>
PBS Professional 2020.1.1 Budget Guide BG-7

Chapter 2 Installing Budget
The pbsdata user should have an ID <1000 so that any processes which run under this user are protected from the Out Of
Memory (OOM) killer and run with the correct level of privilege.

2. Add pbsadmin as the Budget administrator

adduser -u 901 pbsadmin

passwd pbsadmin <password>

3. Add the amteller user

adduser -u 902 amteller

passwd amteller <password>

2.3 Recommended Configurations

Head node and service node can be one of either:

• Both on premises

• Both in cloud

Do not put one on premises and one in the cloud.

2.3.1 Recommended Configuration for Larger Installations

For larger installations using on premises hosts:

• Hosts on premises for PBS server, scheduler, some MoM daemons, cloud service node

• Head, service, and first N execution nodes are on premises

• Extra execution nodes can be burst

• On head node, PBS and Budget

• On service node

• AMS designed to run in container

• VPN connection to the cloud you will use

• Client commands go on any Linux host

Notes:

• You many not want Docker on the head node, because it may impose too high a load.

• All components are mix-and-match (with Docker restriction).

• The AMS module may cause too much load to be run on the head node.

• You don’t need to configure additional pbs_comm daemons for cloud nodes, because cloud can't cause enough
throughput to need one.

• For PBS configuration instructions, see the PBS Professional Administrator’s Guide.
BG-8 PBS Professional 2020.1.1 Budget Guide

Installing Budget Chapter 2
2.3.2 Recommended Configuraton for Smaller Installations

For smaller installations cloud-only installations where the workload is low enough:

• All PBS components can be hosted in the cloud

• Cloud headnode, running PBS Professional server and Budget module

• All components can run on the same node

• You can run Docker on the same node as the PBS components

• Client commands go on any Linux host, but a user must be able to reach the Budget port on the cloud host

Notes:

• No VPN is required for this configuration.

2.3.3 Software Components

• Budget module

• Budget client commands

• PBS Professional server/scheduler(s)/comm

• PBS Professional client commands

• Authentication module
PBS Professional 2020.1.1 Budget Guide BG-9

Chapter 2 Installing Budget
2.4 Installation Steps

1. Log in as root.

2. Install utilities and docker:

yum install -y yum-utils

yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo

yum install docker-ce docker-ce-cli containerd.io

systemctl enable docker

systemctl start docker

yum install python3 python3-pip

3. Copy installer tar files to your host machine:

ams_installation.tar.gz

budget-manager-server-centos7-2020.1.1.tar.gz

4. Install the AMS module to provide the Budget security framework. As the Budget module points to this module
(AMS) as a web service it can be installed on a machine other than the PBS/Budget server.

a. Install AMS:

tar xvfz ams_installation.tar.gz

cd ams-installation

python3 -m pip install --upgrade --ignore-installed pbsworks-packager/

/usr/local/bin/pkgr (Please stay in the ams installer directory for this step)

b. Answer the questions in the dialogue:

• Choose option: 0

• Hit Enter until license agreement complete and then answer Yes to accept.

• Select Enter to continue

• Choose Option 1 (Provide server hostname/IP address)

<hostname>

<ip>

• Choose Option: 0 (Skips providing any more machine details)

• Install Location: <hostname>

• Authentication Server: <hostname>

• Authentication Port: Accept Default (If alternative to default 22 for sshd is used then provide alternative
port ID)

• Provide Admin User: pbsadmin

• Install Path: Accept default

c. Once installation completes check the AMS service status:

systemctl status altaircontrol

5. Install the Budget module:

tar xvfz budget-manager-server-centos7-2020.1.1.tar.gz

cd am

6. Edit and configure the /etc/am.conf file.

AM_PORT=8000
BG-10 PBS Professional 2020.1.1 Budget Guide

Installing Budget Chapter 2
AM_EXEC=/opt/am

AM_HOME=/var/spool/am

AM_WORKERS=2

AM_DBUSER=pbsdata

AM_DBPORT=9876

AM_AUTH_ENDPOINT=9100@<AMS server host>

AM_LICENSE_ENDPOINT=6200@<ALM host>

AM_SERVER=<Budget host>

7. Set up the environment. Replace AM_HOME with path from /etc/am.conf:

export PATH=/$AM_HOME/python/bin:$PATH

8. Run the Budget module installer:

./install -u pbsadmin

9. Start Budget:

/etc/init.d/am start

10. After setting up the cluster and installing Budget, add the amteller user to Budget:

amgr add user -n amteller -A begin_period -c <cluster-name> -r teller
PBS Professional 2020.1.1 Budget Guide BG-11

Chapter 2 Installing Budget
BG-12 PBS Professional 2020.1.1 Budget Guide

3

Configuring Budget

3.1 The Budget Configuration File

The configuration file for Budget is /etc/am.conf:

AM_PORT=8000

AM_EXEC=/opt/am

AM_HOME=/var/spool/am

AM_WORKERS=2

AM_DBUSER=pbsdata

AM_DBPORT=9876

AM_AUTH_ENDPOINT=9100@<AMS server host>

AM_LICENSE_ENDPOINT=6200@<ALM host>

AM_SERVER=<Budget host>

3.2 Configuring the Budget Hook

Budget works like a bank by providing a form of customized currency. Budget records usage of HPC resources by PBS
Professional jobs, as transactions in that currency. The customized currency could be actual dollars or it could be a com-
pute resource, e.g. CPU-hours, GPU-hours, or whatever resource-based calculation a site needs. The PBS Budget hook
contains the definition of the currency. The amount of currency charged to a job is calculated from the amount of
resources used by the job and the amount of time it was used for. The hook can be configured to charge varying amounts
based on type of compute resources used, priority of the job, day of the week, or time of day when the resources were
used. The hook also determines whether the job owner has permission or the required amount of currency to consume
the resource requested.
PBS Professional 2020.1.1 Budget Guide BG-13

Chapter 3 Configuring Budget
How to configure the Budget hook:

1. Add the path to the PBS binary to the environment variable PATH:
export PATH=$PATH:/opt/pbs/bin/

2. Check the status of PBS:

systemctl status pbs

3. Create a resource called am_job_amount of type string:

qmgr -c “c r am_job_amount type=string”

4. Ceate a custom resource called am_job_cache of type string:

qmgr -c “c r am_job_cache type=string,flag=m”

5. Create a hook called am_hook:

qmgr -c “c h am_hook”

6. Set the hook to run for the events queuejob, runjob, modifyjob, movejob and execjob_epilogue:

qmgr -c “s h am_hook event=’queuejob,runjob,execjob_epilogue,modifyjob,movejob’”

7. Set the order of the hook to be the highest (last to run). This will ensure the hook will run after all other hooks for
each of the events. In the example below we set it to 1000:

qmgr -c “s h am_hook order=1000”

8. Create a periodic hook called am_hook_periodic:

qmgr -c “c h am_hook_periodic”

9. Set the hook to run for the periodic event:

qmgr -c “s h am_hook_periodic event=periodic”

10. Set a frequency, for example 120 seconds, for the periodic hook:

qmgr -c “s h am_hook_periodic freq=120”

11. Define the service unit. Use the same name in Budget and in the hook. Do not use blank spaces or special characters
in the service unit name. You can use underscores. Edit the JSON file placed by the installer at /opt/am/hooks/pbs/
am_hook.json. For example:

vi /opt/am/hooks/pbs/am_hook.json
BG-14 PBS Professional 2020.1.1 Budget Guide

Configuring Budget Chapter 3
For a simple “cpu_hrs” service unit, use:

{

“auth_user”: “amteller”,

“constants”:{

“ncpus” : “job.ncpus”,

“walltime” : “job.walltime”

},

“formulas”:{

“cpu_hrs” : “ncpus*walltime”

}

}

12. Import the am_hook using the am_hook.py file placed by the installer at /opt/am/hooks/pbs/:

qmgr -c “i h am_hook application/x-python default /opt/am/hooks/pbs/am_hook.py”

13. Import the am_hook_periodic hook using the am_hook.py file placed by the installer at /opt/am/hooks/pbs/:

qmgr -c “i h am_hook_periodic application/x-python default /opt/am/hooks/pbs/am_hook.py”

14. Enable both the hooks:

qmgr -c “s h am_hook enabled=true”

qmgr -c “s h am_hook_periodic enabled=true”

15. Import the JSON file for both the hooks:

qmgr -c “i h am_hook application/x-config default /opt/am/hooks/pbs/am_hook.json”

qmgr -c “i h am_hook_periodic application/x-config default /opt/am/hooks/pbs/am_hook.json”

16. The hook alarm time is set to 30 seconds by default. If the job submission rates are high, increase the hook alarm
time:

qmgr -c “s h am_hook alarm=90”
PBS Professional 2020.1.1 Budget Guide BG-15

Chapter 3 Configuring Budget
3.2.1 Rules for Configuring Hooks

Here are some important points to keep in mind while configuring the hook:

• The service unit name should match the name defined in the hook. Do not use blank spaces or special characters in
the service unit name. You can use underscores.

• Put all standard service units in the hook configuration file.

• Apart from PBS Professional job attributes and node attributes, you can define constants with the prefix “CONST_”.
Constants in hook formulae should be defined as floating point numbers.

• Use PBS attributes of type float or int.

• The walltime, cput and eligible_time resources are of duration format (hh:mm:ss). The hook converts the value of
these to seconds when used in the formula for the service unit. For example, if a job’s walltime is two minutes, the
value used in the formula is 120.

• The mem and vmem resources are of size format (3b, 20kb etc.). The hook converts their values to kb in the service
unit formula.

• For jobs that run on multiple vnodes, the hook uses the sum of the resources used. The hook does not support calcu-
lation of variable rates on multiple vnodes.

• Do not add resources to a formula when jobs are running. To add resources, drain the system of jobs during a main-
tenance window and update the formula, then put the system back into production.

• The method to select job objects in hooks is: job.Resource_List[‘ncpus’]. In Budget, the equivalent method is sim-
plified to: job.ncpus

• The other aspects are internally handled by Budget. You can use logical operators (AND and OR), conditional oper-
ators (>,>=,<,<=,==,!=) with CONST_ variables and hook attributes.

• While accessing server, queue, and node-level resources use the hook scripting conventions and omit the single
quotes. For example, for server.resources_available[‘charge_rate’], we can use
server.resources_available[charge_rate]

• The maximum amount of service units an account can hold is 999999999999.99.

• The am_hook has to run after all the other hooks for each event. Hence it should have the highest order.

• For example, you can set it to a high order value such as 1000:
qmgr -c “s h am_hook order=1000”.

• See the PBS Professional Plugins (Hooks) Guide for more information.
BG-16 PBS Professional 2020.1.1 Budget Guide

Configuring Budget Chapter 3
3.2.2 Hook Examples

3.2.2.1 Default Configuration

This is the default configuration file used by the Budget hook. The constants ncpus and walltime are defined in the con-
stants section, and used in the formulas section to define the cpu_hrs default service unit.

{

“auth_user” : “amteller”

“constants”:{

“ncpus”: “job.ncpus”,

“walltime”: “job.walltime”

},

“formulas”:{

“cpu_hrs”: “ncpus*walltime”

}

}

3.2.2.2 Multiple Constants and Operators

This is a configuration file using multiple constants and operators. We define the constants CONST_a, CONST_b, and
CONST_prio. We use them in the formulas section with logical operators ‘and’, ‘or’, the comparison operator ‘>’, and
the arithmetic operator ‘*’.

{

“constants”:{

“ncpus”: “job.ncpus”,

“walltime”: “job.walltime”,

“ngpus”: “job.ngpus”,

“CONST_a”: 2.0,

“CONST_b”: 1.0,

“CONST_prio”: 150

},

“formulas”:{

“cost”:”(ngpus and node.resources_available[ncpus] or ncpus)*walltime*(

queue.Priority > CONST_prio and CONST_a or CONST_b)”

}

}

PBS Professional 2020.1.1 Budget Guide BG-17

Chapter 3 Configuring Budget
3.2.2.3 Multiple Service Units

We define three different service units: cpu_hrs, gpu_hrs, and mics_hrs.

{

“constants”:{

“ncpus” : “job.ncpus”,

“walltime” : “job.walltime”,

“ngpus” : “job.ngpus”,

“nimcs” : “job.nmics”

},

“formulas”:{

“cpu_hrs” : “ncpus*walltime”,

“gpu_hrs” : “ngpus*walltime”,

“mics_hrs” : “nmics*walltime”

}

}

3.3 Configuring Failover for Budget

Failover is the capability to switch over from the primary Budget server to the secondary Budget server when the primary
server becomes unavailable. When the primary Budget server is unable to run, a secondary Budget server can be manu-
ally started to switch over and continue operations.

To create a failover configuration, set up AM_HOME at a shared location and run the server processes on your primary
server host. If the Budget primary server (Server 1) is unable to run, you can use a secondary failover server (Server 2) to
access the shared location and run the server processes again.

1. Install NFS utilities on both the server hosts to create a shared location:
yum install nfs-utils nfs-utils-lib

2. Mount the shared location and ensure that both the servers have write access to this location:

mount dataserver:/export /export

3. Ensure that the same version of PostgreSQL is installed on both the servers.

4. Install Budget on the primary server (Server 1)

a. Edit am.conf and set AM_HOME to /export/am

b. Install Budget using install script

5. Install Budget on secondary server (Server 2)

a. Edit am.conf and set AM_HOME to /tmp/am

b. Install using install script

c. Once installation is successful, stop Budget

/etc/init.d/am stop

d. Edit am.conf and change AM_HOME to /export/am

AM_HOME=/export/am

CAUTION: Do not start Budget on the secondary server. If two instances of Budget are active at the same time, the data-
base will get corrupted. Ensure that only one instance of Budget is active at a time.
BG-18 PBS Professional 2020.1.1 Budget Guide

Configuring Budget Chapter 3
3.3.1 Switching to Secondary Budget Server

If the primary server (Server 1) is unable to run, switch over to the secondary server (Server 2):

1. Log in to the secondary server host (Server 2) and update the hostname of Server 2 to that of Server 1

Alternatively, you can update the /etc/am.conf file on the PBS server host and all the clients to point to the host-
name or IP address of Server 2.

2. Ensure that the shared location is accessible from Server 2.

3. Start the Budget service

/etc/init.d/am start

To access Budget hosts, use hostname instead of IP address in the configuration files.

3.4 Configuring Budget for Peer Scheduling

In a peer scheduling setup, different PBS complexes are set up to automatically run each others’ jobs to dynamically
load-balance jobs across the complexes. Budget needs to be aware of all the clusters in a peer scheduling environment.

To use Budget when running jobs in multiple clusters in a peer scheduling environment:

1. Configure the Budget hook in all the peer scheduling clusters.

2. Add the clusters involved in peer scheduling to Budget using amgr add cluster. See section 5.2.1.2, “Adding a
Cluster”, on page 27.

3. Add the peer scheduling clusters to the project account or user account to run jobs via amgr update <user or
project> -c <cluster>; see section 5.2.3.1, “Updating Projects”, on page 36 and section 5.2.3.2, “Updating
Users”, on page 37.
PBS Professional 2020.1.1 Budget Guide BG-19

Chapter 3 Configuring Budget
BG-20 PBS Professional 2020.1.1 Budget Guide

4

Authentication for Budget

4.1 Authenticating Users

Budget users are required to log in to Budget using their local host credentials to run commands.

Budget uses AMS to retrieve tokens, verify them and authenticate users. Every Budget request has an authorization token
(JSON Web Token) with a header and Budget decrypts this token to authenticate the user and send back a HTTP
response.

1. To begin using the Budget CLI, log in to the application using the command:
amgr login

2. Enter your local host password.

3. After logging in, you can use the Budget commands.

4. To close your session, log out of Budget by using the command:

amgr logout

4.1.1 Authenticating Budget

While installing Budget, the Budget server is registered as a client in AMS. A client_id and client_secret is returned from
AMS. This is stored in the Budget database and retrieved when Budget is launched. The authentication mechanism will
use the client_id and client_secret as auth headers for login and logout requests. The request module decrypts the tokens
received during the request. The username for the login is the shell’s current user.

4.2 Budget and PBS Authentication

In Budget, an admin user with the teller role performs all acquire and reconcile transactions on behalf of the users. In the
hook configuration file am_hook.json located at /opt/am/hooks/pbs/, the teller is specified as the value of the
‘auth_user’ key.e.g. “auth_user”:“amteller”.
PBS Professional 2020.1.1 Budget Guide BG-21

Chapter 4 Authentication for Budget
4.2.1 Prerequisites

• The teller user should be a dedicated user for the sole purpose of the teller role.

• Budget should have an authorized user (e.g. amteller) assigned with the “Teller”role. This role has all permissions on
the transaction model and read access to all other models.

• Configure password less SSH between PBS Server and Budget server for the amteller user.

• Home directory for authorized user (e.g. pbsadmin and amteller) should exist on the PBS Server machine.

• Disable requiretty for the amgr sshlogin command. Add these entries to the /etc/sudoers file.
Cmnd_Alias AM_CMD = <AM_EXEC>/python/bin/amgr sshlogin

Defaults!AM_CMD !requiretty

• On CentOS 6 and Cray (SLES 15) systems, create /etc/locale.confand add this entry.LANG=en_US.utf8

• Teller user (amteller) should be able to SSH to Budget server without a password.

4.2.2 Hook Workflow

This section explains how the authorized Teller user influences the hook’s workflow.

4.2.2.1 Hook Config File

By default there will be an entry for authorized user under the key ‘auth_user’ which is pbsadmin. Example of hook con-
figuration file:

{

“auth_user” : “pbsadmin”

“constants”:{

“ncpus” : “job.ncpus”,

“walltime” : “job.walltime”

},

“formulas”:{

“cpu_hrs” : “ncpus*walltime”

}

}

4.2.2.2 Budget Call Function

The hook works as follows:

1. Get the authorized username from the configuration file. Default name is pbsadmin.

2. The Budget call function checks whether the token file exists at <auth_user_home_dir>/.am/.amtoken. If the token
exists, it is used to make a Budget call.

3. If the token file does not exist, an SSH connection is made to the Budget server.

4. A curl request is made as an authorized user through the ‘authentication/gettoken’ interface to get the token.

5. The token is received and saved inside <auth_user_home_dir>/.am/.amtoken.

6. The saved token is used to make a Budget call.

When the token expires, the last three steps are repeated to get a new token. In this process, if the token cannot be
obtained at any point, the Budget call will fail and the job will be rejected.
BG-22 PBS Professional 2020.1.1 Budget Guide

Authentication for Budget Chapter 4
4.2.3 Set Up Passwordless SSH from PBS to Budget Server

1. Generate a public authentication key in the PBS server and append it to ~/.ssh/authorized_keys file in the Budget
Server.

2. Log in to the PBS server as pbsadmin

3. Check for an existing SSH key pair

ls -al ~/.ssh/id_*.pub

If you find existing keys, you can use those or back up the old keys and generate a new one.

4. To generate a new SSH key pair enter the command

ssh-keygen

5. Copy the contents of the id_rsa.pub.

6. Log in into the Budget Server as pbsadmin

7. Check for the .ssh directory. If it does not exist, create it:

a. mkdir -p .ssh

b. cd .ssh/

8. Create the authorized_keys file in the directory

vi authorized_keys

9. Paste the content of id_rsa.pub that you copied from the PBS Server and save the file.

10. Change the permission of the authorized_keys to 600

chmod 600 authorized_keys

4.3 Logging in to Budget

4.3.1 Logging In

1. To begin using the Budget CLI, log in to the application:
amgr login

2. Enter your local host password.

3. After logging in, you can use the Budget commands.

4.3.2 Logging Out

To close your session, log out of Budget:

amgr logout
PBS Professional 2020.1.1 Budget Guide BG-23

Chapter 4 Authentication for Budget
BG-24 PBS Professional 2020.1.1 Budget Guide

5

Budget Commands

5.1 Budget Commands

Budget commands enable you to add, list, update and remove entities from the application. These entities are:

• user

• project

• group

• role

• period

• clusters

• service units

You can use the commands for service units transactions. These transactions are:

• deposit

• checkbalance

• withdraw

• transfer

• precheck

• acquire

• reconcile

• refund

You can use the report commands for projects, users, groups and transactions.

To run Budget commands export the path of the am binaries to the PATH environment variable by using the command:

export PATH=$PATH:opt/am/python/bin/

5.1.1 Using Budget Commands

All Budget commands are prefixed with “amgr ”.

5.1.1.1 Finding Command Information

To see a list of Budget subcommands with a single-line description for each command:

amgr <enter>

To get usage information for a command or subcommand:

<command> --help

<subcommand> --help

For example:

amgr add --help provides information on how to use the main amgr add command
PBS Professional 2020.1.1 Budget Guide BG-25

Chapter 5 Budget Commands
amgr add period --help provides information on how to use the period subcommand.

Use the -l switch for amgr ls and amgr report commands for more detailed information.

Use the -j switch for amgr ls commands to get the detailed information output in JSON format. This output can be
used by other programs which can process JSON format.

If you enter a command without the required arguments, Budget will prompt you to enter it.

5.1.2 List of Budget Commands

5.2 Commands for Managing Budget Elements

The Budget elements commands allow you to list, add, update, and remove entities and other elements.

Table 5-1: Budget Entities Commands

Entities
Function

Command Subcommands

Add Entities amgr add user, period, project, group, cluster, serviceunit

List Entities amgr ls user, period, project, group, cluster, serviceunit, role

Update Entities amgr update user, period, project, group, cluster, serviceunit, dynam-
icvalue

Remove Entities amgr rm user, period, project, group, cluster, serviceunit

Table 5-2: Budget Service Units Commands

Service Units Function Command Subcommands

Deposit Service units amgr deposit user, project, group

Check Balance Service Units amgr checkbalance user, project, group

Withdraw Service Units amgr withdraw user, project, group

Transfer Service Units amgr transfer user, project, group

Precheck Service Units Balance amgr precheck user, project

Acquire Service Units amgr acquire user, project

Reconcile Service Units amgr reconcile user, project

Refund Service Units amgr refund user, project

Table 5-3: Budget Report Commands

Report Function Command Subcommands

Report Commands amgr report project, group, transaction
BG-26 PBS Professional 2020.1.1 Budget Guide

Budget Commands Chapter 5
The Entities subcommands let you create user, role, period, project, group, cluster, and service units.

5.2.1 Adding Entities

To add elements to Budget:

amgr add

Operates on entities: period, cluster, service unit, user, role, project, group

5.2.1.1 Adding a Period

5.2.1.1.i Name

amgr add period

5.2.1.1.ii Description

Adds the specified period.

5.2.1.1.iii Syntax

amgr add period { -n | --name } TEXT { -S | --start-date } TEXT { -E | --end-date } TEXT [{ -p | --parent }] TEXT

5.2.1.1.iv Parameters

-n or --name <TEXT>

Specify the name of the Period.

-S or --start-date <TEXT>

Start date of the Period. Format: YYYY-MM-DD.

-E or --end-date <TEXT>

End date of the Period. Format: YYYY-MM-DD.

-p or --parent <TEXT>

Specify the Parent Period. This is an optional parameter.

A site should plan out the required hierarchy of periods (e.g. Years and Quarters or Years and Months) and create the
hierarchy from the top down. Parent (top level) periods cannot be added to the structure once a period has been created at
a lower level. The parent period must exist for a sub period to be linked to it.

5.2.1.2 Adding a Cluster

5.2.1.2.i Name

amgr add cluster

5.2.1.2.ii Description

Adds the specified cluster.

5.2.1.2.iii Syntax

amgr add cluster { -n | --name } TEXT [{ -a | --active }] [{ True | TRUE | true | t | 1 | False | FALSE | false | f | 0 }]
PBS Professional 2020.1.1 Budget Guide BG-27

Chapter 5 Budget Commands
5.2.1.2.iv Parameters

-n or --name <TEXT>

Specify the name of the Cluster. Cluster Name should match the name of the PBS Server hostname. Multiple
PBS Servers are supported.

-a or --active [True|TRUE|true|t|1|False|FALSE|false|f|0]

Set the Cluster active/inactive. This is active by default.

5.2.1.3 Adding a Service Unit

5.2.1.3.i Name

amgr add serviceunit

5.2.1.3.ii Description

Add a standard service unit to track consumption of computing resources internally in Budget. e.g. cpu_hrs.

Add a dynamic service unto to define a limit and manage quotas on external resources.

5.2.1.3.iii Syntax

amgr add serviceunit { -n | --name } TEXT { -t | --type } TEXT [{ -a | --active }] [{ True | TRUE | true | t | 1 | False |
FALSE | false | f | 0 }] [{ -d | --description }] TEXT

5.2.1.3.iv Parameters

-n or --name <TEXT>

Specify the name of the Service unit.

-t or --type <TEXT>

Specify the type of Service unit. Should be either SU_STANDARD or SU_DYNAMIC. Default is
SU_STANDARD.

-a or --active [True|TRUE|true|t|1|False|FALSE|false|f|0]

Set the Service unit as active/inactive.

-d or --description <TEXT>

Describe the Service unit.

5.2.1.3.v Command Example

The service unit name is used in the Budget PBS hook. Hence, blank spaces are not allowed in the name. It should match
the name used in the hook. In the description, multiple words must be wrapped in double quotes. The dynamic service
unit name must not be specified in the hook.

Adding a standard service unit:

amgr add serviceunit -n cpu_hrs -d “CPU hours”

Adding a dynamic service unit:

add serviceunit -n luster -t SU_DYNAMIC

5.2.1.4 Apply Limits to Dynamic Service Unit

Apply limits on dynamic service units.
BG-28 PBS Professional 2020.1.1 Budget Guide

Budget Commands Chapter 5
5.2.1.4.i Name

amgr limit project

amgr limit user

5.2.1.4.ii Description

A limit is applied on dynamic service units for a particular period and account (projects or users). The usage of the ser-
vice unit is reported to Budget by an external application. If the usage reaches the defined limit for the current period,
jobs are blocked from running.

5.2.1.4.iii Effect of Limits on the Period Heirarchy

• A limit on service unit is applied for a particular period and on an account (project or user).

• A period’s limit shall be the same as its parent’s limit (if parent limit present) and if admin does not apply any direct
limit to it.

• If the administrator applies a direct limit to a period then it will not inherit any changes in limit from its parent.

• Administrator can apply limits to any period.

5.2.1.4.iv Required Privilege

Only managers can apply limits. All active dynamic units must have limits available in current period for jobs to run.

5.2.1.4.v Syntax

amgr limit project { -p | --period } { -s | --serviceunit } TEXT FLOAT

5.2.1.4.vi Parameters

-p or --period <TEXT>

Period to which the limit is to be applied.

-s or --serviceunit <TEXT FLOAT>

Specify the service unit with limits in gb . e.g. “--serviceunit luster 100”

5.2.1.5 Updating Dynamic Values

Dynamic values deal with external reporting of dynamic service unit values.

5.2.1.5.i Name

amgr update dynamicvalues

5.2.1.5.ii Description

You use an external script to discover the usage of an external resource such as scratch. A dynamic service unit is a ser-
vice unit that tracks an external resource such as storage. At a given point in time, a dynamic service unit is a snapshot of
the current usage level of a given external resource. This usage level is reported by an external script that you write. You
would normally run the script as a cron job, where it calls amgr updatedynamicvalues, which updates the value of the
dynamic service unit. Budget will compare the reported value with the defined limits and allow the jobs run as long as
the usage is below the limit.

5.2.1.5.iii Syntax

amgr update dynamicvalues { -v | --value }
PBS Professional 2020.1.1 Budget Guide BG-29

Chapter 5 Budget Commands
5.2.1.5.iv Parameters

-v or --values <TEXT>

Specify the dynamic values to update in json formatted string. e.g. -v ‘{“scratch”: {“p1”: {“total”:8, “pbsuser”:
4}}}’

• scratch is the dynamic service unit

• p1 is the project account

• total storage consumed is 8 GB

• user pbsuser has consumed 4 GB.

The keyword “total” is required. If user account is provided then only total consumption should be specified.

5.2.1.6 Adding a User

5.2.1.6.i Name

amgr add user

5.2.1.6.ii Description

Adds specified user. The users you add to Budget should exist in the Linux system where Budget is installed. When you
create a user, you need to assign a role to the user.

5.2.1.6.iii Syntax

amgr add user { -n | --name } TEXT { -A | --accounting-policy } { begin_period | end_period | proportionate } { -c | --
clusters } TEXT { -r | --role } TEXT [{ -h | --groups }] TEXT [{ -a | --active }] { True | TRUE | true | t | 1 | False |
FALSE | false | f | 0 }

5.2.1.6.iv Parameters

-n or --name <TEXT>

Specify the name of the user. The username and project name cannot be the same.

-A or --accounting-policy [begin_period | end_period | proportionate]

Specify the accounting policy for the user.

-c or --clusters <TEXT>

Associate clusters to the user.

-r or --role <TEXT>

Set the role of the user. Users with Manager role can transfer funds to the user account.

-h or --groups <TEXT>

Associate groups to the user account.

-a or --active [True|TRUE|true|t|1|False|FALSE|false|f|0]

Set the user account to active/inactive.

5.2.1.6.v Command Examples

Adding a user:

amgr add user -n joe -A begin_period -c pbs_server -r user -h group01

Create a user account and add them to a group as a manager:

amgr add user -n user01 -A begin_period -c centos -r manager -h group01

amgr update group -n group01 -M + user01
BG-30 PBS Professional 2020.1.1 Budget Guide

Budget Commands Chapter 5
5.2.1.7 Adding a Project

5.2.1.7.i Name

amgr add project

5.2.1.7.ii Description

Adds specified project.

5.2.1.7.iii Syntax

amgr add project { -n | --name } TEXT { -A | --accounting-policy } { begin_period | end_period | proportionate } [{ -S | -
-start-date }] TEXT [{ -E | --end-date }] TEXT { -c | --clusters } TEXT { -u | --users } TEXT { -h | --groups } TEXT [{
-a | --active }] { True | TRUE | true | t | 1 | False | FALSE | false | f | 0 } [{ -m | --metadata }] <Comma Separated
Key Value Pair>

5.2.1.7.iv Parameters

-n or --name <TEXT>

Specify the name of the project. The project name and username cannot be the same.

-A or --accounting-policy [begin_period | end_period | proportionate]

Specify the Accounting Policy for the Project account.

-S or --start-date <TEXT>

Start date of the Project. Format: YYYY-MM-DD.

-E or --end-date <TEXT>

End date of the Project. Format: YYYY-MM-DD.

-c or --clusters <TEXT>

Associate clusters to the Project account.

-u or --users <TEXT>

Associate users to the Project account.

-h or --groups <TEXT>

Associate groups to the Project account. Users with Manager role in a group can add funds to the project.

-a or --active [True|TRUE|true|t|1|False|FALSE|false|f|0]

Set the project to active/inactive.

-m or --metadata

Metadata for the project. Format: <key1>:<data1>,<key2>:<data2>...

5.2.1.7.v Accounting Policies

Rules for using accounting policy:

• If we create a project with begin_period the accounts will be charged in the period when the job begins.

• If we create a project with end_period, the accounts will be charged in the periods when the job ends.

• If we create a project with proportionate, the accounts will be charged in the corresponding periods when the jobs
were run.
PBS Professional 2020.1.1 Budget Guide BG-31

Chapter 5 Budget Commands
5.2.1.7.vi Multiple Associations to the Project

• Multiple clusters are added in the format -c c1 -c c2. If a cluster is added to a project and you submit a job to another
cluster, the job will not be queued and will be rejected.

• Multiple users are added in the format -u u1 -u u2

• Multiple groups are added in the format -h h1 -h h2

5.2.1.7.vii Command Example

Add metadata with type:weather and region:asia

amgr add project -n proj1 -A begin_period -S ‘01-02-2019’ -E ‘28-02-2019’ -c centos7 -m
type:weather,region:asia

5.2.1.8 Adding a Group

5.2.1.8.i Name

amgr add group

5.2.1.8.ii Description

Create a group. Investors can transfer funds to the group and managers can transfer funds from the group to projects and
user accounts.

5.2.1.8.iii Syntax

amgr add group { -n | --name } [{ -I | --investors }] [{ -M | --managers }] [{ -a | --active }] [{ True | TRUE | true | t | 1 |
False | FALSE | false | f | 0 }]

5.2.1.8.iv Parameters

-n or --name <TEXT>

Specify the name of the Group.

-I or --investors <TEXT>

Associate investors to the group.

-M or --managers <TEXT>

Associate managers to the group.

-a or --active [True|TRUE|true|t|1|False|FALSE|false|f|0]

Set the Group active/inactive. This is active by default.

5.2.2 Listing Elements

The Budget “add elements” commands create the starting point. Before them there is nothing that can be listed.

Operates on entities: user, period, project, cluster, service unit, role

To list active records:

amgr ls

Inactive records are not listed by default. To view inactive records, specify to display the records with active attribute set
to false. To display all the clusters which are inactive:

amgr ls cluster -a False
BG-32 PBS Professional 2020.1.1 Budget Guide

Budget Commands Chapter 5
5.2.2.1 Listing Users

Prints group information.

5.2.2.1.i Name

amgr ls user

5.2.2.1.ii Description

Lists all the users that exist in Budget, or information about specific users.

5.2.2.1.iii Syntax

amgr ls user [{ -n | --name TEXT }] [{ -a | --active }] [{ True | TRUE | true | t | 1 | False | FALSE | false | f | 0 }] [{ -l | --
list-info }] [{ -j | --json-info }]

5.2.2.1.iv Parameters

-n or --name <TEXT>

Specify the name of the user.

-a or --active [True|TRUE|true|t|1|False|FALSE|false|f|0]

Specify the status of the user as active/inactive. This is active by default.

-l or --list-info

Display information in list format.

-j or --json-info

Display information in json format.

5.2.2.2 Listing Groups

Prints group information.

5.2.2.2.i Name

amgr ls group

5.2.2.2.ii Description

Lists all the groups that exist in Budget, or information about specific groups.

5.2.2.2.iii Syntax

amgr ls group [{ -n | --name TEXT }] [{ -a | --active }] [{ True | TRUE | true | t | 1 | False | FALSE | false | f | 0 }] [{ -l |
--list-info }] [{ -j | --json-info }]

5.2.2.2.iv Parameters

-n or --name <TEXT>

Specify the name of the Group.

-a or --active [True|TRUE|true|t|1|False|FALSE|false|f|0]

Specify the status of the group as active/inactive. This is active by default.

-l or --list-info

Display information in list format.

-j or --json-info

Display information in json format.
PBS Professional 2020.1.1 Budget Guide BG-33

Chapter 5 Budget Commands
5.2.2.3 Listing Roles

Prints out role information.

5.2.2.3.i Name

amgr ls role

5.2.2.3.ii Description

Prints out all the roles that have been created.

The roles available in Budget are:

admin - can perform all operations. Administrators have user privileges and stakeholder privileges.

investor - can deposit and withdraw service units from associated groups.

manager - can deposit and withdraw service units from associated projects and users.

user - Will be assigned to projects and can run jobs using the project budget.

teller - An admin user role for performing all acquire and reconcile transactions on behalf of users.

When you create a user, you need to assign a role to the user.

5.2.2.3.iii Syntax

amgr ls role

5.2.2.3.iv Command Example

To show information on only admin:

amgr ls role -n admin

For more information about admin, we can use the -l switch.

amgr ls role -n admin -l

To get this information in JSON format use -j switch.

amgr ls role -n admin -j

5.2.2.4 Listing Periods

Prints out information about periods.

5.2.2.4.i Name

amgr ls period

5.2.2.4.ii Description

Prerequisites for listing periods:

• Creation of periods has to be planned. Periods are common across all projects.

• Once transactions are done, periods cannot be extended or deleted.

• A period’s start date cannot be extended if transaction exists.

• Same level periods should not overlap.

• Child period range should be within parent period range

5.2.2.4.iii Syntax

amgr ls period
BG-34 PBS Professional 2020.1.1 Budget Guide

Budget Commands Chapter 5
5.2.2.5 Listing Clusters

Prints information about clusters.

5.2.2.5.i Name

amgr ls cluster

5.2.2.5.ii Description

By default, lists all active clusters. You can specify whether you want to see active or inactive clusters. To display inac-
tive clusters:

amgr ls cluster -a False

5.2.2.5.iii Syntax

amgr ls cluster [-a <activity level>]

5.2.2.5.iv Parameters

-a <TRUE | FALSE>

Lists all clusters with specified activity level. For activity level, you can specify t, f, true, false, 1, 0, and values
are case-insensitive.

5.2.2.6 Listing Configurations

Prints the list of Budget configuration options.

5.2.2.6.i Name

amgr ls config

5.2.2.6.ii Description

Lists all the configuration options.

Note: As of now we have only one configuration attribute called data_lifetime for SU_DYNAMIC type of service units.
The value of data_lifetime is specified in seconds. It is the time for which Budget will wait for an update to to
SU_DYNAMIC (Dynamic Service Unit). If the update does not happen within the specified time, a warning message
will be logged in the Budget logs. Jobs are not blocked even if the data_lifetime is exceeded.

5.2.2.6.iii Syntax

amgr ls config [{ -n | --name TEXT }] { -l | --list-info } { -j | --json-info }

5.2.2.6.iv Parameters

-n or --name <TEXT>

Specify the name of the configuration attribute.

-l or --list-info

Display information in list format.

-j or --json-info

Display information in json format.
PBS Professional 2020.1.1 Budget Guide BG-35

Chapter 5 Budget Commands
5.2.2.6.v Sample Output

Sample output of the command

SU_DYNAMIC

configuration = {‘data_lifetime’: 3600}

id = 1

created_user_name = root

created_date = 2020-05-12 09:42:53.312722+05:30

last_updated_user_name = root

last_updated_date = 2020-05-14 15:55:54.339+05:30

5.2.3 Updating Elements

To update an entity in Budget, use the command:

amgr update

Operates on entities: user, period, project, group, cluster, service unit, role

5.2.3.1 Updating Projects

5.2.3.1.i Name

amgr update project

5.2.3.1.ii Description

Update the details of a project.

5.2.3.1.iii Syntax

amgr update project { -n | --name } TEXT [{ -A | --accounting-policy }] begin_period, end_period, proportionate [{ -S | -
-start-date }] [{ -E | --end-date }] [{ -c | --clusters }] <Operator, Comma Separated Strings> [{ -u | --users }]
<Operator, Comma Separated Strings> [{ -h | --groups }] <Operator, Comma Separated Strings> [{ -a | --active }]
{ True | TRUE | true | t | 1 | False | FALSE | false | f | 0 } [{ -m | --metadata }] <Operator, Comma Separated
Strings>

5.2.3.1.iv Parameters

-n or --name <TEXT>

Specify the name of the project.

-A or --accounting-policy <TEXT>

Specifies the accounting policy for the project. It can be begin_period, end-period or proportionate

-S or --start-date <TEXT>

Start date of the Project. Format: YYYY-MM-DD.

-E or --end-date <TEXT>

End date of the Project. Format: YYYY-MM-DD.

-c or --clusters <Operator, Comma Separated Strings>

You can link clusters using + operator and unlink clusters using - operator. For example:

+cluster1,cluster2,cluster3... or -cluster4,cluster5,cluster6...

-u or --users <Operator, Comma Separated Strings>

You can link users using + operator and unlink users using - operator. For example,
BG-36 PBS Professional 2020.1.1 Budget Guide

Budget Commands Chapter 5
+user1,user2,user3... or -user4,user5,user6...

-h or --groups <Operator, Comma Separated Strings>

You can link groups using + operator or unlink users using - operator. For example,

+group1,group2,group3... or -group4,group5,group6...

-m or --metadata <Operator, Comma Separated Strings>

Add, Update, or Remove Metadata to or from the project account. The format can be
+<key1>:<data1>,<key2>:<data2> or - <key1>,<key2>

-a or --active [True|TRUE|true|t|1|False|FALSE|false|f|0]

Set the project to active/inactive.

Note: The + operation will add a new entity if it is not present or update an existing entry.

The - operator will remove an entry.

5.2.3.1.v Command Example

Add a new data ‘currency:rupee’ and update the existing data region as america:

amgr update project -n proj1 -m + currency:rupee,region:america

Remove the existing data type:

amgr update project -n proj1 -m - type,region

Multiple operations in single command:

amgr update project -n proj1 -m + currency:dollar,”Lead Researcher”:”John Smith” -m - type,region

5.2.3.2 Updating Users

5.2.3.2.i Name

amgr update user

5.2.3.2.ii Description

Update the details of the user.

5.2.3.2.iii Syntax

amgr update user { -n | --name } TEXT [{ -A | --accounting-policy }] begin_period, end_period, proportionate [{ -S | --
start-date }] [{ -E | --end-date }] [{ -c | --clusters }] <Operator, Comma Separated Strings> { -r | --roles } TEXT [{
-h | --groups }] <Operator, Comma Separated Strings> [{ -a | --active }] { True | TRUE | true | t | 1 | False | FALSE
| false | f | 0 }

5.2.3.2.iv Parameters

-n or --name <TEXT>

Specify the name of the user account.

-A or --accounting-policy <TEXT>

Specifies the accounting policy for the user account. It can be begin_period, end-period or proportionate

-S or --start-date <TEXT>

Start date of the Project. Format: YYYY-MM-DD.

-E or --end-date <TEXT>

End date of the Project. Format: YYYY-MM-DD.
PBS Professional 2020.1.1 Budget Guide BG-37

Chapter 5 Budget Commands
-c or --clusters <Operator, Comma Separated Strings>

You can link clusters using + operator and unlink clusters using - operator. For example,

+cluster1,cluster2,cluster3... or -cluster4,cluster5,cluster6...

-r or --roles <TEXT>

Set the role of the user. Users with Manager role can transfer funds to the user account.

-h or --groups <Operator, Comma Separated Strings>

You can link groups using + operator or unlink users using - operator. For example,

+group1,group2,group3... or -group4,group5,group6...

-a or --active [True|TRUE|true|t|1|False|FALSE|false|f|0]

Set the project to active/inactive.

5.2.3.3 Updating Groups

5.2.3.3.i Name

amgr update group

5.2.3.3.ii Description

Update the details of the group.

5.2.3.3.iii Required Privilege

Only an administrator can update a group.

5.2.3.3.iv Syntax

amgr update group { -n | --name } TEXT { -i | --investors } TEXT { ‚Äìm | --managers } TEXT { -a | --active } TEXT

5.2.3.3.v Parameters

-n or --name <TEXT>

Specify the name of the budget group.

-i or --investors <TEXT>

Provide the name of the investor to link or unlink with the group.

-m or --managers <TEXT>

Provide the name of the manager to link or unlink with the group.

-a or --active <TEXT>

Specify whether the group is active or not.

5.2.3.4 Updating Clusters

5.2.3.4.i Name

amgr update cluster

5.2.3.4.ii Description

Update the details of the cluster.

5.2.3.4.iii Syntax

amgr update cluster { -n | --name } TEXT [{ -a | --active }] { True | TRUE | true | t | 1 | False | FALSE | false | f | 0 }
BG-38 PBS Professional 2020.1.1 Budget Guide

Budget Commands Chapter 5
5.2.3.4.iv Parameters

-n or --name <TEXT>

Specify the name of the Cluster. The cluster name should match the name of the PBS Server hostname. Multiple
PBS Servers are supported.

-a or --active [True|TRUE|true|t|1|False|FALSE|false|f|0]

Set the Cluster active/inactive. It is set to active by default.

Note: All update commands are like add. Name of a record cannot be updated.

5.2.3.5 Updating Configurations

5.2.3.5.i Name

amgr update config

5.2.3.5.ii Description

Update Budget configurations.

5.2.3.5.iii Syntax

amgr update config [{ -n | --name TEXT }] [{ -V | --config-value JSON_STRING }]

5.2.3.5.iv Parameters

-n or --name <TEXT>

Specify the name of the configuration attribute.

-V or --config-value

JSON formatted string of configuration values. Example:

amgr update config -n SU_DYNAMIC -V { data_lifetime : 1000}

Note: As of now we have only one configuration attribute called data_lifetime for SU_DYNAMIC type of service units.
The value of data_lifetime is specified in seconds. It is the time for which Budget will wait for an update to to
SU_DYNAMIC (Dynamic Service Unit). If the update does not happen within the specified time, a warning message
will be logged in the Budget logs. Jobs are not blocked even if the data_lifetime is exceeded.

5.2.4 Removing Elements

The amgr rm commands have the same subcommands as the amgr add subcommands.

Note: The periods where transactions have happened cannot be removed. If projects, clusters, or service units are
removed for periods where transactions are made, they are made inactive.

5.2.5 Getting Reports on Elements

The amgr report command allows you to get the reports for a projects, groups, transactions, and users.

Operates on entities: project, transaction, group, user.

Transactions are tracked over particular time frames, usually for a month, quarter or year. All transaction information is
stored in a database allowing extensive statistical and allocation tracking. The reports of these transactions enable stake-
holders to budget their resource usage. These reports are displayed as tables in the console and can be output as CSV
files.
PBS Professional 2020.1.1 Budget Guide BG-39

Chapter 5 Budget Commands
5.2.5.1 Getting Project Reports

5.2.5.1.i Name

amgr report project

5.2.5.1.ii Description

Provides project-level information in multiple formats.

5.2.5.1.iii Syntax

amgr report project { -n | --name } TEXT { -s | --serviceunit } TEXT { -t | --sunit-type } TEXT { -U | --user-wise } TEXT {
-h | --groups } TEXT { -p | --period } TEXT [{ -S | --start-date }] TEXT [{ -E | --end-date }] TEXT { -l | --list-info } [{
-o | --out-file }] TEXT [{ -r | --raw-output }]

5.2.5.1.iv Parameters

-n or --name <TEXT>

Specify the name of the Project.

-n or --name <TEXT>

Specify the name of the Project.

-s or --serviceunit <TEXT>

Service unit (name) for which user wants the report.

-t or --sunit-type <TEXT>

Specify service unit type, it can be one of the (‘SU_STANDARD’, ‘SU_DYNAMIC’). Default is
‘SU_STANDARD’.

-U or --user-wise <TEXT>

User wise external updates that happened for dynamic service unit under the project.

-h or --groups <TEXT>

groups which are invested in the project and their invested amounts.

-p or --period <TEXT>

Period name (cannot be used with -S and -E options). Default is current period.

-S or --start-date <TEXT>

Start date from which user wants to see the report (cannot be used without -l or -g). It includes updated and cre-
ated transactions from given date. Format: YYYY-MM-DD HH:MM:SS.

-E or --end-date <TEXT>

End date till which user wants to see the report(cannot be used without -l or -g). It includes updated and created
transactions till date. Format: YYYY-MM-DD HH:MM:SS.

-l or --list-info

Detailed project report showing all transactions that have happened for the specified project.

-o or --out-file <TEXT>

Output file path.

-r or --raw-output

Show raw (CSV) output.

5.2.5.1.v Output Format

Output for the report will contain the name, start_date, end_date, opening_balance, total_credits, total_debits_reconciled,
total_debits_authorized and net_balance in columns.
BG-40 PBS Professional 2020.1.1 Budget Guide

Budget Commands Chapter 5
Use the -l switch to get the report for the project in long format which will contain the transaction_id, transaction_date,
transaction_time, entity, transaction_type, transaction_user, type amount and reconciled status in columns.

If you specify the -S --start date and -E --end date, the details for that time period will be displayed.

5.2.5.1.vi Command Example

• Report for all service units and current lowest period:
amgr report project -n p1

Command output:

name | period | serviceunit | opening_balance | total_credits

p1 | DEC-2018 | dollar1 | 0.0 | 3000000.0

--

| total_debits | total_debits_reconciled | total_debits_authorized

--

| 0.0 | 180.0 | 0.0

| net_balance

| 2999820.0

Example 5-1: Report for service unit dollar1 for period 2018:

amgr report project -n p1 -s dollar1 -p 2018

Command output:

name | period | serviceunit | opening_balance | total_credits

p1 | 2018 | dollar1 | 0.0 | 5000000.0

| total_debits | total_debits_reconciled | total_debits_authorized

| 0.0 | 0.0 | 0.0

| net_balance

| 5000000.0

Raw output of the above example:

amgr report project -n p1 -s dollar1 -p 2018 -r
PBS Professional 2020.1.1 Budget Guide BG-41

Chapter 5 Budget Commands
Command output:

name,period,service-
unit,opening_balance,total_credits,total_debits,total_debits_reconciled,total_debits_authorized
,net_balance

p1,2018,dollar1,0.0,5000000.0,0.0,0.0,0.0,5000000.0

Example 5-2: Shows individual transactions for the service unit dollar1 for the lowest period.

amgr report project -n p1 -s dollar1 -l

Command output:

transaction_id | transaction_date | transaction_time | entity

1544096706.291656 | 2018-12-06 | 17:15:06.290064 | manager

2042.centos7 | 2018-12-06 | 17:15:23.760451 | job

2043.centos7 | 2018-12-06 | 17:15:24.695462 | job

2044.centos7 | 2018-12-06 | 17:16:24.058123 | job

| transaction_type | transaction_user | type | serviceunit | amount

| grant | sanketb | credit | dollar1 | 3000000.0

| acquired | pbsuser | debit | dollar1 | 60.0

| acquired | pbsuser | debit | dollar1 | 60.0

| acquired | pbsuser | debit | dollar1 | 60.0

| reconciled | period | comment

| yes | DEC-2018 | Deposit dollar1 to DEC period

| yes | DEC-2018 |

| yes | DEC-2018 |

| yes | DEC-2018 |

Example 5-3: Shows individual transactions for the service unit dollar1 for date range:

amgr report project -n p1 -s dollar1 -l -S ‘2018-12-06’ -E ‘2018-12-06’
BG-42 PBS Professional 2020.1.1 Budget Guide

Budget Commands Chapter 5
Command output:

--

transaction_id | transaction_date | transaction_time | entity

--

1544096706.100772 | 2018-12-06 | 17:15:06.098180 | manager

1544096706.291656 | 2018-12-06 | 17:15:06.290064 | manager

2042.centos7 | 2018-12-06 | 17:15:23.760451 | job

2043.centos7 | 2018-12-06 | 17:15:24.695462 | job

2044.centos7 | 2018-12-06 | 17:16:24.058123 | job

| transaction_type | transaction_user | type | serviceunit | amount

| grant | sanketb | credit | dollar1 | 5000000.0

| grant | sanketb | credit | dollar1 | 3000000.0

| acquired | pbsuser | debit | dollar1 | 60.0

| acquired | pbsuser | debit | dollar1 | 60.0

| acquired | pbsuser | debit | dollar1 | 60.0

--

| reconciled | period | comment

--

| yes | 2018 | Deposit dollar1 to parent period

| yes | DEC-2018 | Deposit dollar1 to DEC period

| yes | DEC-2018 |

| yes | DEC-2018 |

| yes | DEC-2018 |

5.2.5.1.vii Report Formats for Dynamic Service Units (SU_DYNAMIC)

• Project report in short format:
amgr report project -n p1 -t SU_DYNAMIC
PBS Professional 2020.1.1 Budget Guide BG-43

Chapter 5 Budget Commands

name | serviceunit | period | limit |

p1 | luster | 2020 | 500.0 |

p1 | scratch | 2020 | 800.0 |

last_reported_time | total_consumed

2020-04-07 12:40:22.470078+05:30 | 80

2020-04-07 12:40:22.470078+05:30 | 100

• Project report in user wise format:
amgr report project -n p1 -t SU_DYNAMIC -U

name | serviceunit | period | limit |

p1 | luster | 2020 | 500.0 |

p1 | scratch | 2020 | 800.0 |

last_reported_time | total_consumed | user_consumed

2020-04-07 12:40 | 80 |{“pbsuser”: 20.0, “pbsuser1”: 10.0}

2020-04-07 12:40 | 100 |{“pbsuser”: 40.0}

• User report in short format:
amgr report user -n pbsuser -t SU_DYNAMIC

--

name | serviceunit | period | limit

--

pbsuser | luster | 2020 | 600.0

pbsuser | scratch | 2020 | 800.0

| last_reported_time | total_consumed

| 2020-04-07 12:40:22.470078+05:30 | 40

| 2020-04-07 12:40:22.470078+05:30 | 60

Note: User reports do not have user wise format.

5.2.5.2 Getting Group Reports

5.2.5.2.i Name

amgr report group
BG-44 PBS Professional 2020.1.1 Budget Guide

Budget Commands Chapter 5
5.2.5.2.ii Description

Provides group report

5.2.5.2.iii Required Privilege

Note: Only an investor, a manager or an administrator can see the full report. This report will contain the deposits to the
group and withdrawals from the group.

5.2.5.2.iv Syntax

amgr report group { -n | --name } TEXT { -h | --investors } TEXT { -A | --allocated-view } TEXT [{ -S | --start-date }]
TEXT [{ -E | --end-date }] TEXT { -l | --long-format } [{ -o | --out-file }] TEXT [{ -r | --raw-output }] [{ -p | --period
}] TEXT

5.2.5.2.v Parameters

-n or --name <TEXT>

Specify the name of the group.

-h or --investors <TEXT>

Specify investors. This will provide list of investors linked to the group and their investments.

-A or --allocated-view <TEXT>

This will provide a break up how much the group has invested in project or user accounts.

-S or --start-date <TEXT>

Start date from which user wants to see the report (cannot be used without -l). Format: %Y-%m-%d

-E or --end-date <TEXT>

End date till which user wants to see the report (cannot be used without -l). Format: %Y-%m-%d.

-l or --long-format

Detailed report of transactions performed by the specified group.

-o or --out-file <TEXT>

• Output file path.

-r or --raw-output

• Show raw (csv) output.

-p or --period-name <TEXT>

• Period name (cannot be used with -S and -E options). Default is current period.

5.2.5.2.vi Group Report Formats

• General group report:
amgr report group -n h1
PBS Professional 2020.1.1 Budget Guide BG-45

Chapter 5 Budget Commands
Command output:

--

name | serviceunit | opening_balance | total_credits | total_debits

--

h1 | cpu_hrs | 0.0 | 100000.0 | 100.0

| total_allocated | total_accounts_released | net_balance

| 600.0 | 70.0 | 99370.0

• Long format group report:
amgr report group -n h1 -l

Command output:

transaction_id | transaction_date | transaction_time | entity | transaction_type

1570782001.2559264 | 2019-10-11 | 13:50:01.253271 | investor | grant

2470123401.5592132 | 2019-10-11 | 13:50:11.967594 | manager | grant

6470127408.2212197 | 2019-10-11 | 13:50:31.161543 | manager | grant

transaction_user | type | serviceunit | amount | balance | period | account

root | credit | cpu_hrs | 500000.0 | 500000.0 | - | group1

mgr1 | credit | cpu_hrs | 1000.0 | 499996.0 | 2019 | Project1

mgr2 | credit | cpu_hrs | 4.0 | 499992.0 | 2019 | User1

• Investor format report:
amgr report group -n h1 -h

Command output:

--

investor | serviceunit | balance

--

root | cpu_hrs | 50000.0

rsv | cpu_hrs | 50000.0

• Report for primary group accounts:
amgr report user -n h1 -h

Command output:

--

group | period | serviceunit | balance

--

h1 | 2019 | cpu_hrs | 1500.0

h2 | 2019 | cpu_hrs | 1500.0

• Investor format report for groups:
BG-46 PBS Professional 2020.1.1 Budget Guide

Budget Commands Chapter 5
This report is meant to show the user where the managers have deposited the group’s currency.

amgr report group -n h1 -A

Command output:

--

account | period | serviceunit | balance

--

root | 2019 | cpu_hrs | 498976.0

rsv | 2019 | cpu_hrs | 498975.0

5.2.5.3 Getting Transaction Reports

5.2.5.3.i Name

amgr report transaction

5.2.5.3.ii Description

5.2.5.3.iii Syntax

amgr report transaction { -i | --transaction-id } TEXT { -l | --list-info } { -N | --nonreconcile} TEXT [{ -o | --out-file }]
TEXT [{ -r | --raw-output }]

5.2.5.3.iv Parameters

-i or --transaction-id <TEXT>

Specify job ID.

-l or --list-info

Detailed transaction report showing all entries of specified transaction ID.

-N or --non-reconcile

Show all non-reconciled transactions having reconcile count >= value. e.g. amgr report transaction -N 3 will
display all non-reconciled transactions with reconcile_count >=3.

Transactions with reconcile_count >= 3 have to be reconciled manually using the amgr reconcile <project>/
<user> command. By default, Budget will attempt to reconcile a job three times and then mark the job as non-
reconciled.

-o or --out-file <TEXT>

Output file path.

-r or --raw-output

Show raw (csv) output.

5.2.5.3.v Output Format

Output for the report will contain the transaction_id, project, user_name, reconciled_service_units in columns.

Note: If a job is not reconciled, it will appear only -l long format report.

Use the -l switch to get the report for the transaction in long format which will contain the transaction_id,
transaction_date, transaction_time, project, transaction_type, credit or debit, service units and amounts.

5.2.5.3.vi Command Example

• Getting job report:
amgr report transaction -i 2044.centos7
PBS Professional 2020.1.1 Budget Guide BG-47

Chapter 5 Budget Commands
Command output:

--

transaction | account | user | reconciled_dollar1

--

2044.centos7 | p1 | pbsuser | 60.0

| reconciled_dollar2

| 21120.0

• Long format for job information showing individual transactions:
amgr report transaction -i 2044.centos7 -l

Command output:

transaction_id | transaction_date | transaction_time | account

2044.centos7 | 2018-12-06 | 17:17:46.655998 | p1

2044.centos7 | 2018-12-06 | 17:16:24.058123 | p1

2044.centos7 | 2018-12-06 | 17:16:24.058123 | p1

--

| transaction_type | type | service_unit

--

| acquired | debit | dollar2

| acquired | debit | dollar2

| acquired | debit | dollar1

| amount | period | comment

| 19920.0 | DEC-2018 | overrun:

| 1200.0 | DEC-2018 |

| 60.0 | DEC-2018 |

5.2.5.4 Getting User Reports

5.2.5.4.i Name

amgr report user

5.2.5.4.ii Description

5.2.5.4.iii Syntax

amgr report user { -n | --name } TEXT { -s | --serviceunit TEXT | { -t | --sunit-type } TEXT } { -h | --groups } TEXT { -p |
--period TEXT } [{ -S | --start-date }] TEXT [{ -E | --end-date }] TEXT { -l | --list-info } [{ -o | --out-file }] TEXT [{
-r | --raw-output }]
BG-48 PBS Professional 2020.1.1 Budget Guide

Budget Commands Chapter 5
5.2.5.4.iv Parameters

-n or --name <TEXT>

Specify the name of the user.

-s or --serviceunit <TEXT>

Serviceunit for which user wants the report.

-t or --sunit-type <TEXT>

Specify service unit type, it can be one of the (‘SU_STANDARD’, ‘SU_DYNAMIC’). Default is
‘SU_STANDARD’.

-h or --groups <TEXT>

groups which are invested in the user account and their invested amounts.

-p or --period <TEXT>

Period name(cannot be used with -S and -E options). Default is current period

-S or --start-date <TEXT>

Start date from which user wants to see the report(cannot be used without -l or -g). It includes updated and cre-
ated transactions from given date. Format: YYYY-MM-DD HH:MM:SS.

-E or --end-date <TEXT>

End date till which user wants to see the report (cannot be used without -l or -g). It includes updated and created
transactions till date. Format: YYYY-MM-DD HH:MM:SS.

-l or --list-info

Detailed user account report showing all transactions that have happened for the specified user.

-o or --out-file <TEXT>

Output file path.

-r or --raw-output

Show raw (CSV) output.

5.2.5.4.v Output Format

Output for the report contains the Name, Service unit, Period, Opening Balance, Total Credits, Total Debits, Total Debits
(Reconciled), Total Debits (Authorized), Net Balance

Opening Balance

Opening balance of user account as on start date provided

Total Credits

Sum of deposits and release of blocker budget between given duration

Total Debits (Reconciled)

Total consumed amount.

Total Debits (Authorized)

Jobs which are holding amount (running jobs) and finished which are not reconciled still.

Current balance

Opening Balance + Total Credits - Total Debits - Total Debits(Reconciled) - Total Debits(Authorized)

5.2.5.4.vi Command Example

Detailed user (account) report (long listing requested):

amgr report user -n <username> -s <serviceunit> -S <startdate> -E <enddate> -l
PBS Professional 2020.1.1 Budget Guide BG-49

Chapter 5 Budget Commands
5.3 Commands for Managing Service Units

The Budget service units commands allow you to deposit, check available, withdraw, precheck, acquire, reconcile,
refund, and transfer service units.

The maximum amount of service units an account can hold is 999999999999.99.

The service units commands have subcommands for user and project entities.

These commands are used internally by the job hook and are available for programmatic usage:

• precheck - Before job is queued.

Precheck validates if the job is ready for queuing. If the precheck fails, the job is not queued.

• acquire - Before job runs

Acquire is run after precheck and fetches the required service units when the job runs.

• reconcile - After job finishes

Reconcile is run after the job has finished running and returns the balance service units to the account.

After the budget allocated to an account is exhausted, the balance is not allowed to become negative; in this case jobs are
no longer dispatched to run.

If the license server is not reachable, the jobs will continue to run for a period of 3 hours till the connection is established.

Note: For Array Jobs, reconciliation fails for the first index subjob in PBS Professional versions older than 19.2.1. To
workaround this issue, the admin can manually reconcile the first index sub job for the submitted job array.

Note: When a job fails and the epilogue hook event times out without making an accounting entry, the admin can manu-
ally reconcile the job with the correct information.

The Budget Service Units commands and their respective subcommands are as follows:

5.3.1 Depositing Service Units

amgr deposit

Operates on entities: user, project and group

Table 5-4: Budget Service Units Commands

Function Command Subcommands

Deposit Service units amgr deposit user, project, group

Check Balance Service Units amgr checkbalance user, project, group

Withdraw Service Units amgr withdraw user, project, group

Transfer Service Units amgr transfer user, project, group

Precheck Service Units Balance amgr precheck user, project

Acquire Service Units amgr acquire user, project

Reconcile Service Units amgr reconcile user, project

Refund Service Units amgr refund user, project
BG-50 PBS Professional 2020.1.1 Budget Guide

Budget Commands Chapter 5
5.3.1.1 Depositing Service Units to Project

5.3.1.1.i Name

amgr deposit project

5.3.1.1.ii Description

Deposit service units to a project.

5.3.1.1.iii Syntax

amgr deposit project { -n | --name } TEXT { -s | --serviceunits } TEXT FLOAT { -p | --period } TEXT { -h | --group }
TEXT [{ -C | --comment }] TEXT

5.3.1.1.iv Parameters

-n or --name <TEXT>

Specify the name of the Project.

-s or --serviceunits <TEXT FLOAT>

Specify the service units associated with the Project account and the quantity for deposit.

-p or --period <TEXT>

Specify the name of the period.

-h or --group <TEXT>

Specify the name of the groups to allocate budget from.

-C or --comment <TEXT>

Provide a comment/reason for the deposit. Default is None.

5.3.1.2 Deposit Service Units to User Account

5.3.1.2.i Name

amgr deposit user

5.3.1.2.ii Description

Deposit service units to a user account.

5.3.1.2.iii Syntax

amgr deposit user | { -n | --name } TEXT | { -s | --serviceunits } TEXT FLOAT | { -p | --period } TEXT | { -h | --group }
TEXT | [{ -C | --comment }] TEXT

5.3.1.2.iv Parameters

-n or --name <TEXT>

Specify the name of the user account.

-s or --serviceunits <TEXT FLOAT>

Specify the service units associated with the user account and the quantity for deposit. e.g. “-s cpu_hrs 100” or
“-s cpu_hrs 100.0”

-p or --period <TEXT>

Specify the name of the period.

-h or --group <TEXT>

Specify the name of the groups to allocate budget from.
PBS Professional 2020.1.1 Budget Guide BG-51

Chapter 5 Budget Commands
-C or --comment <TEXT>

Provide a comment/reason for the deposit. Default is None.

5.3.1.3 Depositing Service Units to Group

5.3.1.3.i Name

amgr deposit group

5.3.1.3.ii Description

Deposit service units to a group.

5.3.1.3.iii Syntax

amgr deposit group { -n | --name } TEXT { -s | --serviceunits } TEXT FLOAT { -C | --comment } TEXT

5.3.1.3.iv Parameters

-n or --name <TEXT>

Specify the name of the group.

-s or --serviceunits <TEXT FLOAT>

Specify the service units associated with the group and the quantity for deposit.e.g. “-s cpu_hrs 100” or “-s
cpu_hrs 100.0”

-C or --comment <TEXT>

Provide a comment/reason for the deposit. Default is none.

5.3.2 Checking Service Unit Balance

amgr checkbalance

Operates on entities: user, project, group

5.3.2.1 Checking Service Unit Balance for Project

5.3.2.1.i Name

amgr checkbalance project

5.3.2.1.ii Description

Get available budget for a project.

5.3.2.1.iii Syntax

amgr checkbalance project { -n | --name } TEXT { -p | --period } TEXT

5.3.2.1.iv Parameters

-n or --name <TEXT>

Specify the name of the Project.

-p or --period <TEXT>

Specify the name of the period.
BG-52 PBS Professional 2020.1.1 Budget Guide

Budget Commands Chapter 5
5.3.2.1.v Output

{‘<STANDARD_UNIT_1>’: <value>,

<STANDARD_UNIT_2>: <value>,

<DYNAMIC_UNIT_1>: {‘used’: <value>, ‘limit’: <value>},

<DYNAMIC_UNIT_2>: {‘used’: <value>, ‘limit’: <value>} }

5.3.2.1.vi Command Example

{‘luster’: {‘used’: 0.0, ‘limit’: 300}, ‘cpu_hrs’:0.0, ‘gpu_hrs’:0.0}

5.3.2.2 Checking Service Unit Balance for User

5.3.2.2.i Name

amgr checkbalance user

5.3.2.2.ii Description

Get available budget for a user account.

5.3.2.2.iii Syntax

amgr checkbalance user { -n | --name } TEXT { -p | --period } TEXT

5.3.2.2.iv Parameters

-n or --name <TEXT>

Specify the name of the user account.

-p or --period <TEXT>

Specify the name of the period.

5.3.2.3 Checking Service Unit Balance for Group

5.3.2.3.i Name

amgr checkbalance group

5.3.2.3.ii Description

Get available budget for a group.

5.3.2.3.iii Syntax

amgr checkbalance group { -n | --name } TEXT

5.3.2.3.iv Parameters

-n or --name <TEXT>

Specify the name of the group.

5.3.3 Withdrawing Service Units

Withdraws service units from entity.

amgr withdraw

Operates on entities: user, project, group
PBS Professional 2020.1.1 Budget Guide BG-53

Chapter 5 Budget Commands
5.3.3.1 Withdrawing Service Units from Project

5.3.3.1.i Name

amgr withdraw project

5.3.3.1.ii Description

Withdraw service units from a project.

5.3.3.1.iii Required Privilege

Only Managers can run this command. Managers can only withdraw according to their shares.

5.3.3.1.iv Syntax

amgr withdraw project { -n | --name } TEXT { -s | --serviceunits } TEXT FLOAT { -p | --period } TEXT { -h | --group }
TEXT [{ -C | --comment }] TEXT

5.3.3.1.v Parameters

-n or --name <TEXT>

Specify the name of the Project.

-S or --serviceunits <TEXT FLOAT>

Specify the service units associated with the Project account and the quantity to withdraw.e.g.”-s cpu_hrs 100”
or “-s cpu_hrs 100.0”

-p or --period <TEXT>

Specify the name of the period.

-h or --group <TEXT>

Specify the group to allocate to.

-C or --comment <TEXT>

Provide a comment/reason for the deposit. Default is None.

5.3.3.2 Withdrawing Service Units from User

5.3.3.2.i Name

amgr withdraw user

5.3.3.2.ii Description

Withdraw service units from a user account.

5.3.3.2.iii Required Privilege

Note: Only a manager can run this command. Managers can withdraw only according to their shares. The budget with-
drawn will go back to the same pool it was deposited from.

5.3.3.2.iv Syntax

amgr withdraw user { -n | --name } TEXT { -s | --serviceunits } TEXT FLOAT { -p | --period } TEXT { -h | --group } TEXT
[{ -C | --comment }] TEXT

5.3.3.2.v Parameters

-n or --name <TEXT>

Specify the name of the user account.
BG-54 PBS Professional 2020.1.1 Budget Guide

Budget Commands Chapter 5
-S or --serviceunits <TEXT FLOAT>

Specify the service units associated with the user account and the quantity to withdraw. e.g. “-s cpu_hrs 100” or
“-s cpu_hrs 100.0”

-p or --period <TEXT>

Specify the name of the period.

-h or --group <TEXT>

Specify the group to allocate to.

-C or --comment <TEXT>

Provide a comment/reason for the deposit. Default is None.

5.3.3.3 Withdrawing Service Units from Group

5.3.3.3.i Name

amgr withdraw group

5.3.3.3.ii Description

Withdraw service units from a group.

5.3.3.3.iii Required Privilege

Note: Only investors can run this command. Investor can only withdraw their own share.

5.3.3.3.iv Syntax

amgr withdraw group { -n | --name } TEXT { -s | --serviceunits } TEXT FLOAT [{ -C | --comment }] TEXT

5.3.3.3.v Parameters

-n or --name <TEXT>

Specify the name of the group.

-S or --serviceunits <TEXT FLOAT>

Specify the service units and the quantity to withdraw.e.g.”-s cpu_hrs 100” or “-s cpu_hrs 100.0”

-C or --comment <TEXT>

Provide a comment/reason for the deposit. Default is None.

5.3.4 Prechecking Service Units Balance

amgr precheck

Find out whether we can run a job at a specified date on a cluster for a duration for a specific amount of service units. If
this command returns False, the job cannot be run; this means the budget is insufficient, the cluster is not available, etc.

Operates on entities: user, project

5.3.4.1 Prechecking a Project

5.3.4.1.i Name

amgr precheck project
PBS Professional 2020.1.1 Budget Guide BG-55

Chapter 5 Budget Commands
5.3.4.1.ii Description

5.3.4.1.iii Syntax

amgr precheck project { -n | --name } TEXT { -c | --cluster } TEXT { -D | --transactiondate } TEXT { -d | --duration }
INTEGER { -s | --serviceunits } TEXT FLOAT

5.3.4.1.iv Parameters

-n or --name <TEXT>

Specify the name of the Project.

-c or --cluster <TEXT>

Specify the cluster.

-D or --transaction-date <TEXT>

Specify the transaction date and time. Format: YYYY-MM-DD

-d or --duration <INTEGER>

Specify the duration (in seconds).

-s or --serviceunits <TEXT, FLOAT>

Specify the service units and required budget.

5.3.5 Acquiring Service Units

amgr acquire

Fetches the service units required to run a job. Run the precheck command first to make sure there are enough service
units available.

Operates on entities: user, project.

5.3.5.0.i Required Privilege

Acquire and Reconcile commands can be run only by admin users.

5.3.5.1 Acquiring Service Units for Project

5.3.5.1.i Name

amgr acquire project

5.3.5.1.ii Description

5.3.5.1.iii Syntax

amgr acquire project { -n | --name } TEXT { -c | --cluster } TEXT { -s | --serviceunits } TEXT FLOAT { -D | --transaction-
date } TEXT { -i | --transaction-id } TEXT { -d | --duration } { -u | --user } INTEGER [{ -C | --comment }] TEXT { -
R | --run-count } INTEGER

5.3.5.1.iv Parameters

-n or --name <TEXT>

Specify the name of the Project.

-c or --cluster <TEXT>

Specify the cluster.
BG-56 PBS Professional 2020.1.1 Budget Guide

Budget Commands Chapter 5
-s or --serviceunits <TEXT FLOAT>

Specify the service units and required budget. Example: “-s cpu_hrs 100” or “-s cpu_hrs 100.0”.

-D or --transaction-date <TEXT>

Specify the transaction date and time. Format: YYYY-MM-DD HH:MM:SS

-i or --transaction-id <TEXT>

Specify the transaction ID.

-d or --duration <INTEGER>

Specify the duration (in seconds).

-u or --user <TEXT>

Specify the user for whom acquire has to be done.

-C or --comment <TEXT>

Provide a comment/reason for the acquire. Default is None.

-R or --run-count <INTEGER>

Specify the run count for the transaction.

5.3.5.2 Acquiring Service Units for User

5.3.5.2.i Name

amgr acquire user

5.3.5.2.ii Description

The teller uses this command to acquire service units for a user.

5.3.5.2.iii Syntax

amgr acquire user { -n | --name } TEXT { -c | --cluster } TEXT { -s | --serviceunits } TEXT FLOAT { -D | --transaction-
date } TEXT { -i | --transaction-id } TEXT { -d | --duration } { -u | --user } INTEGER [{ -C | --comment }] TEXT { -
R | --run-count } INTEGER

5.3.5.2.iv Parameters

-n or --name <TEXT>

Specify the name of the User.

-c or --cluster <TEXT>

Specify the cluster.

-s or --serviceunits <TEXT FLOAT>

Specify the service units and required budget. Example: “-s cpu_hrs 100” or “-s cpu_hrs 100.0”.

-D or --transaction-date <TEXT>

Specify the transaction date and time. Format: YYYY-MM-DD HH:MM:SS

-i or --transaction-id <TEXT>

Specify the transaction ID.

-d or --duration <INTEGER>

Specify the duration (in seconds).

-u or --user <TEXT>

Specify the user for whom acquire has to be done.
PBS Professional 2020.1.1 Budget Guide BG-57

Chapter 5 Budget Commands
-C or --comment <TEXT>

Provide a comment/reason for the acquire. Default is None.

-R or --run-count <INTEGER>

Specify the run count for the transaction.

5.3.6 Reconciling Service Units

Reconciles service units

amgr reconcile

Reconcile is run after the job is completed and returns excess service units back to the account.

The following are the subcommands available: user, project.

5.3.6.1 Reconciling Service Units for Project

5.3.6.1.i Name

amgr reconcile project

5.3.6.1.ii Description

Reconciles service units when job has finished. Removes consumed service units from escrow, and returns unused ser-
vice units.

5.3.6.1.iii Required Privilege

Note: Acquire and Reconcile commands can be run only by admin users.

5.3.6.1.iv Syntax

amgr reconcile project { -n | --name } TEXT { -c | --cluster } TEXT { -s | --serviceunits } TEXT FLOAT { -D | --
transaction-date } TEXT { -i | --transaction-id } TEXT { -d | --duration } INTEGER [{ -C | --comment }] TEXT

5.3.6.1.v Parameters

-n or --name <TEXT>

Specify the name of the Project.

-c or --cluster <TEXT>

Specify the cluster.

-s or --serviceunits <TEXT FLOAT>

Specify the service units and required budget. Example: “-s cpu_hrs 100” or “-s cpu_hrs 100.0”

-D or --transaction-date <TEXT>

Specify the transaction date and time. Format: YYYY-MM-DD HH:MM:SS

-i or --transaction-id <TEXT>

Specify the transaction ID.

-d or --duration <INTEGER>

Specify the duration (in seconds).

-u or --user <INTEGER>

Specify the user for whom reconcile has to be done.
BG-58 PBS Professional 2020.1.1 Budget Guide

Budget Commands Chapter 5
-C or --comment <TEXT>

Provide a comment/reason for the deposit. Default is None.

Note: The service units amount should be the exact service units consumed by the job.

5.3.6.2 Reconciling Service Units for Job

5.3.6.2.i Name

amgr reconcile job

5.3.6.2.ii Description

Reconcile PBS jobs.

Note: This command has to be run on a machine where PBS server is present and it must be run as a root user.

5.3.6.2.iii Syntax

amgr reconcile job { -i | --transaction-ids } TEXT { --all } { -u | --teller-user } TEXT

5.3.6.2.iv Parameters

-i or --transaction-ids <TEXT>

String of comma separated job ids (same as transaction ids). Example:

“<jobid1>,<jobid2>,<jobid3>”

--all

Reconcile all non-reconciled jobs.

-u or --teller-user <TEXT>

Teller username (required)

This command has to be executed as the pbsadmin user. If you get a message asking you to log in and execute the com-
mand, you can do so for example, using the command sudo -u <teller_user> <AM_EXEC>/bin/amgr sshlogin

5.3.7 Refunding Service Units

Refunds service units for a specific transaction to the account of a project or user.

amgr refund

The Budget administrator can refund partial or full amounts (service units) to the account of a project or user. The admin-
istrator can choose to provide a refund for scenarios where a job fails or runs multiple times for reasons which cannot be
attributed to the user.

Only Administrators are authorized to provide refunds.

Refunds can be done for active and inactive projects and users.

Multiple refunds are allowed. The total refund amount cannot exceed the total amount consumed by the job.

The refund amount will be for all service units consumed by the transaction ID.

The refund amount is calculated based on the percentage specified, applied to total consumed amount. Total consumed
amount is the sum of all transaction amounts of all transaction runs for a transaction ID.

5.3.7.0.i Syntax

amgr refund transaction { -i | --transactionID } TEXT { -r | --refund-percentage } Number { -p | --period-name } TEXT [{
-C | --comment }] TEXT
PBS Professional 2020.1.1 Budget Guide BG-59

Chapter 5 Budget Commands
5.3.7.0.ii Parameters

-i or --transactionID <TEXT>

Specify the name of the transaction.

-r or --refund-percentage <TEXT>

Specify the refund percentage, a value between 1 and 100.

-p or --period-name <TEXT>

Specify the period. If not mentioned, current period is taken.

-C or --comment <TEXT>

Specify the remarks or comments providing the reason for refund.

5.3.8 Transferring Service Units

When an investor is unlinked from a group or a group is unlinked from a project, some service units may remain
unclaimed and become unusable. The administrator can take ownership of these unclaimed amounts and transfer it back
into the budget pool to make it usable again.

The Administrator can transfer service units:

• between two groups in a project

• between two projects (same or different group)

• between two investors in a group

• between two groups (same or different investors)

• between two groups in a user

• between two users (same or different groups)

amgr transfer

Operates on entities: project, user, group

5.3.8.1 Transferring Service Units for Project

5.3.8.1.i Name

amgr transfer project

5.3.8.1.ii Description

Transfer service units from one group to another group (within a project or between projects)

5.3.8.1.iii Syntax

amgr transfer project { -n | --name } TEXT { -s | --serviceunits } TEXT FLOAT { -p | --period } TEXT { -F | --from-group
} TEXT { -T | --to-group } TEXT { -P | --dest-project } TEXT { -C | --comment } TEXT

5.3.8.1.iv Parameters

-n or --name <TEXT>

Specify the name of the project.

-s or --serviceunits <TEXT FLOAT>

Specify the service units and the amount. e.g. “-s cpu_hrs 100” or “-s cpu_hrs 100.0”

-p or --period <TEXT>

Specify the period.
BG-60 PBS Professional 2020.1.1 Budget Guide

Budget Commands Chapter 5
-F or --from-group <TEXT>

Specify from group.

-T or --to-group <TEXT>

Specify to group.

-P or --dest-project <TEXT>

Specify the destination project. Do not use in case transfer within same project.

-C or --name <TEXT>

Provide a comment/reason for the transfer.

5.3.8.2 Transferring Service Units for User

5.3.8.2.i Name

amgr transfer user

5.3.8.2.ii Description

Transfer service units from one group to another group (within a user account or between user accounts)

5.3.8.2.iii Syntax

amgr transfer user { -n | --name } TEXT { -s | --serviceunits } TEXT FLOAT { -p | --period } TEXT { -F | --from-group }
TEXT { -T | --to-group } TEXT { -U | --dest-user } TEXT { -C | --comment } TEXT

5.3.8.2.iv Parameters

-n or --name <TEXT>

Specify the name of the user.

-s or --serviceunits <TEXT FLOAT>

Specify the service units and the amount. e.g. “-s cpu_hrs 100” or “-s cpu_hrs 100.0”

-p or --period <TEXT>

Specify the period.

-F or --from-group <TEXT>

Specify from group.

-T or --to-group <TEXT>

Specify to group.

-U or --dest-user <TEXT>

Specify the destination user account. Do not use in case of transfer within same user account.

-C or --name <TEXT>

Provide a comment/reason for the transfer.

5.3.8.3 Transferring Service Units for Group

5.3.8.3.i Name

amgr transfer group

5.3.8.3.ii Description

Transfer service units from one investor to another investor (within a group or between groups)
PBS Professional 2020.1.1 Budget Guide BG-61

Chapter 5 Budget Commands
5.3.8.3.iii Syntax

amgr transfer group { -n | --name } TEXT { -s | --serviceunits } TEXT FLOAT { -F | --from-investor } TEXT { -T | --to-
investor } TEXT { -G | --dest-group } TEXT { -C | --comment } TEXT

5.3.8.3.iv Parameters

-n or --name <TEXT>

Specify the name of the group.

-s or --serviceunits <TEXT FLOAT>

Specify the service units and the amount. e.g. “-s cpu_hrs 100” or “-s cpu_hrs 100.0”

-F or --from-investor <TEXT>

Specify from investor.

-T or --to-investor <TEXT>

Specify to investor.

-G or --dest-group <TEXT>

Specify the destination group. Do not use in case of transfer within group.

-C or --name <TEXT>

Provide a comment/reason for the transfer.
BG-62 PBS Professional 2020.1.1 Budget Guide

6

Tutorial on Using Budget

6.1 Getting Started with Budget Commands

Here is a tutorial to help you get started with the Budget commands.

In this tutorial, we will be using the commands to create entities, submit jobs, check balance and view the service unit
transactions. This can be used as a starting point to further explore the features of the application.

6.2 Getting Started with Budget Commands

Simple tutorial to help you get started with the Budget commands.

In this tutorial, we will be using the commands to create entities, submit jobs, check balance, and view the service unit
transactions. This can be used as a starting point to further explore this feature.

To set up a scenario, follow the steps:

1. Create a period representing the year 2020.
amgr add period -n 2020 -S 2020-01-01 -E 2020-12-31

2. Create a child period that represents the fourth quarter of the year 2020.

amgr add period -n 2020.Q4 -S 2020-10-01 -E 2020-12-31 -p 2020

3. Add a PBS Server as a cluster.

amgr add cluster -n pbsserver

4. Update the cluster by deactivating and activating it.

amgr update cluster -n pbsserver -a False

5. To view the deactivated cluster, type:

amgr ls cluster -a False

6. Let’s update the cluster by activating it.

amgr update cluster -n pbsserver -a True

7. To view the cluster, type

amgr ls cluster

8. Create the service unit.
PBS Professional 2020.1.1 Budget Guide BG-63

Chapter 6 Tutorial on Using Budget
Ensure that the name matches the service unit configured in the formulas section of the am_hook.json configuration
file

amgr add serviceunit -n cpu_hrs -d “CPU Hours”

9. Create a group named test_group with manager pbsadmin and investor test_investor.

amgr add group -n test_group -M pbsadmin -I test_investor

10. Create a project named P1 with accounting policy begin_period, cluster pbsserver, user pbsadmin and group root.

amgr add project -n P1 -A begin_period -c pbsserver -u pbsadmin -h test_group

11. Add a user named “joe” who exists on your local machine

amgr add user -n joe -A begin_period -c pbsserver -r manager -h test_group

12. Deposit a budget of 120 CPU-hours to the P1 project for the period 2020.Q4

amgr deposit project -n P1 -s cpu_hrs 120.00 -p 2020.Q4

13. Check the balance of the P1 Project

amgr checkbalance project -n P1 -p 2020.Q4

14. Withdraw 20 CPU-hours from the P1 project for the period 2020.Q4

amgr withdraw project -n P1 -s cpu_hrs 20.00 -p 2020.Q4

15. Run a sleep job for Project 2020.Q4 for 10 seconds with walltime of 2 minutes

qsub -P P1 -lwalltime=00:02:00 --/bin/sleep 10

-P specifies which project is charged. If omitted, the user account will be charged.

The job must have balance in the project or user account. The job must also specify a walltime; this walltime can be
inherited from the server or queue.

16. You can check PBS Server logs with

vi /var/spool/pbs/server_logs/<yyyy:mm:dd>

17. To see the job running.

qstat -sw

18. Check the balance. It must have decreased by a large amount.

amgr checkbalance project -n P1 -p 2020.Q4

Once the job is finished, check the balance again and the unused amount will be reconciled.

19. Rerun a job.

qrerun jobid

When the job reruns, the amount acquired for running job will be released and the whole amount will be acquired again.
Before next run the previous run usage will be reconciled and full amount will be acquired again.

Once the job completes the amount will be reconciled.

If a job is terminated with qdel, the acquired amount will be reconciled.

Note: If the job is terminated with qdel -Wforce, the amount has to be reconciled manually using helper commands or
scripts since the accounting information is not provided to Budget by PBS Professional.

If a MoM fails, the job will get requeued and the amount will be acquired twice. Before the next run, Budget will recon-
cile the previous run. If unable to rerun, the job will be queued.
BG-64 PBS Professional 2020.1.1 Budget Guide

Tutorial on Using Budget Chapter 6
6.3 Submitting Jobs with Budget

To submit a job as an individual user, you need your own funds.

To submit a job as part of a project, you have to submit the job using the “-P” argument in qsub.

Groups can have multiple projects, and projects can have multiple groups; it’s only user and project credit that counts
when submitting a job.
PBS Professional 2020.1.1 Budget Guide BG-65

Chapter 6 Tutorial on Using Budget
BG-66 PBS Professional 2020.1.1 Budget Guide

Index

A
account BG-2
adding amteller BG-11
admin BG-3
allocating funds BG-4
allocation BG-2
Altair License Manager BG-7
am.conf BG-13
amgr BG-25
amgr acquire BG-56
amgr add BG-27
amgr checkbalance BG-52
amgr deposit BG-50
amgr ls BG-32
amgr precheck BG-55
amgr reconcile BG-58
amgr refund BG-59
amgr report BG-39
amgr rm BG-39
amgr transfer BG-60
amgr update BG-36
amgr withdraw BG-53
AMS BG-8, BG-21

installing BG-10
amteller BG-7

adding BG-11
authentication

Budget BG-21
users BG-21

B
Budget

authenticating BG-21
installing BG-10
logging in BG-23
logging out BG-23
tutorial BG-63

Budget entity BG-2
Budget hook

configuration file BG-17
configuring BG-13

budget pool BG-4
budget resource BG-2
Budget role BG-3
Budget workflow BG-4

C
cluster BG-2
complex BG-2
compute resource BG-2
consuming funds BG-4
credit BG-3
currency BG-1

D
debit BG-3
Docker BG-8
docker

installing BG-10
docker-ce BG-7
dynamic service unit BG-3
dynamic service units BG-5

E
element BG-2
entity BG-2
escrow BG-4
external storage BG-6

F
failover BG-18

G
group BG-2, BG-4

I
installing

AMS BG-10
Budget BG-10
docker BG-10

instance BG-2
investing BG-4
investor BG-3, BG-4

J
job acquire BG-3
job release BG-3

L
limits
PBS Professional 2020.1 Budget Guide BG-67

Index
inheriting BG-5
on dynamic service units BG-5

logging in to Budget BG-23
logging out of Budget BG-23

M
manager BG-3

P
passwordless ssh BG-23
PBS complex BG-2
PBS Professional BG-7
pbsadmin BG-7
pbsdata BG-7
peer scheduling BG-19
period BG-3
pool BG-4
project BG-2
python3 BG-7
python3-pip BG-7

Q
queue weight BG-3
quotas BG-6

R
refund BG-3
role BG-3

S
service units

dynamic BG-5
standard BG-5

ssh
passwordless BG-23

standard service unit BG-3
standard service units BG-5
storage

external BG-6
storage quotas BG-6
SU_DYNAMIC BG-5
SU_STANDARD BG-5
submitting jobs with Budget BG-65

T
teller BG-3
transaction BG-3
transferring funds BG-4
tutorial on Budget BG-63

U
user BG-2, BG-3
users

authenticating BG-21

V
VPN BG-8

W
workflow BG-4
BG-68 PBS Professional 2020.1 Budget Guide

Altair®

PBS Professional®

2020.1.1

Simulate Guide

You are reading the Altair PBS Professional 2020.1.1

Simulate Guide (SG)

Updated 9/30/20

Copyright © 2003-2020 Altair Engineering, Inc. All rights reserved.

ALTAIR ENGINEERING INC. Proprietary and Confidential. Contains Trade Secret Information. Not for use or disclo-
sure outside of Licensee’s organization. The software and information contained herein may only be used internally and
are provided on a non-exclusive, non-transferable basis. Licensee may not sublicense, sell, lend, assign, rent, distribute,
publicly display or publicly perform the software or other information provided herein, nor is Licensee permitted to
decompile, reverse engineer, or disassemble the software. Usage of the software and other information provided by Altair
(or its resellers) is only as explicitly stated in the applicable end user license agreement between Altair and Licensee. In
the absence of such agreement, the Altair standard end user license agreement terms shall govern.

Use of Altair’s trademarks, including but not limited to “PBS™”, “PBS Professional®”, and “PBS Pro™”, “PBS
Works™”, “PBS Control™”, “PBS Access™”, “PBS Analytics™”, “PBScloud.io™”, and Altair’s logos is subject to
Altair's trademark licensing policies. For additional information, please contact Legal@altair.com and use the wording
“PBS Trademarks” in the subject line.

For a copy of the end user license agreement(s), log in to https://secure.altair.com/UserArea/agreement.html or contact
the Altair Legal Department. For information on the terms and conditions governing third party codes included in the
Altair Software, please see the Release Notes.

This document is proprietary information of Altair Engineering, Inc.

Contact Us

For the most recent information, go to the PBS Works website, www.pbsworks.com, select "My PBS", and log in with
your site ID and password.

Altair

Altair Engineering, Inc., 1820 E. Big Beaver Road, Troy, MI 48083-2031 USA www.pbsworks.com

Sales

pbssales@altair.com 248.614.2400

Please send any questions or suggestions for improvements to agu@altair.com.

https://secure.altair.com/UserArea/agreement.html
http://www.pbsworks.com
http://www.pbsworks.com

Technical Support

Need technical support? We are available from 8am to 5pm local times:

Location Telephone e-mail

Australia +1 800 174 396 anz-pbssupport@india.altair.com

China +86 (0)21 6117 1666 pbs@altair.com.cn

France +33 (0)1 4133 0992 pbssupport@europe.altair.com

Germany +49 (0)7031 6208 22 pbssupport@europe.altair.com

India +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

Italy +39 800 905595 pbssupport@europe.altair.com

Japan +81 3 6225 5821 pbs@altairjp.co.jp

Korea +82 70 4050 9200 support@altair.co.kr

Malaysia +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

North America +1 248 614 2425 pbssupport@altair.com

Russia +49 7031 6208 22 pbssupport@europe.altair.com

Scandinavia +46 (0)46 460 2828 pbssupport@europe.altair.com

Singapore +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

South Africa +27 21 831 1500 pbssupport@europe.altair.com

South America +55 11 3884 0414 br_support@altair.com

UK +44 (0)1926 468 600 pbssupport@europe.altair.com

Contents

1 Installing Simulate 1
1.1 Supported Platforms for Simulate . 1

1.2 Prerequisites . 1

1.3 Where to Install Simulate . 1

1.4 Installation . 1

1.5 Configuration . 1

1.6 Setting Up User Environment . 2

2 Using Simulate 3
2.1 Introduction . 3

2.2 Simulate Commands. 3

2.3 Using Simulate on a Snapshot . 4

Index 9
PBS Professional 2020.1 Simulate Guide SG-v

Contents
SG-vi PBS Professional 2020.1 Simulate Guide

1

Installing Simulate

1.1 Supported Platforms for Simulate

• RHEL 7

• SLES 12

1.2 Prerequisites

• Altair License Manager 14.5+

• PBSProNodes or PBSProSockets 20.0 License Feature

1.3 Where to Install Simulate

You can install Simulate on any host that can reach the Altair License Manager. We recommend not installing it on the
PBS server host, to avoid slowing that host.

For information about PBS Professional, see the PBS Professional Administrator’s Guide.

1.4 Installation

1. Untar the Simulate package:
tar xvfz PBSPro-sim_2020.1.0-RHEL7_x86_64.tar.gz

2. Change directory:

cd PBSPro-sim_2020.1.0

1.5 Configuration

1.5.1 Configure Licensing for Simulate

The Simulate configuration file is named sim.conf and is in the installation directory.

In this file, edit the licensing parameter, and set it to <port>@<license server host>:

SIM_LICENSE_LOCATION=6200@<license server>

For example:

SIM_LICENSE_LOCATION=6200@mylicensehost
PBS Professional 2020.1.1 Simulate Guide SG-1

Chapter 1 Installing Simulate
1.5.2 Set Path to Snapshot Directory

Optionally, if you want to, you can set the PBS_SNAPSHOT_PATH parameter in sim.conf to be the path to the snap-
shot directory. If you are working repeatedly on the same snapshot, this can make your command execution easier.

1.6 Setting Up User Environment

Set up your environment to point to the simsh wrapper command for simulator:

export PATH=/<your_install_path>/PBSPro-sim_2020.1.0:$PATH
SG-2 PBS Professional 2020.1.1 Simulate Guide

2

Using Simulate

2.1 Introduction

Simulate is useful for seeing the order in which jobs will run, and whether jobs will run, based on a snapshot taken from
a working PBS complex. You can use this information to tune your PBS Professional configuration and change the
workload behavior in order to meet your site’s objectives.

2.2 Simulate Commands

2.2.1 The simsh Wrapper Script

simsh <path to snapshot> <command to execute> [command options]

simsh <path to snapshot> sim [sim options]

Command to execute for manipulating snapshots: qmgr, qstat, qsub, pbsnodes, qdel, qselect, pbsfs,
pbs_rstat, pbs_rsub

Option for running simulations: sim

Other options: --help, --version

2.2.2 Options to the sim Command

-o <output path>

Path to output snapshot (default: <path to input snapshot>_out)

-t <duration>

Time in seconds to to run simulated universe. Actual time required is much shorter. When used with the -n
<cycles> option, simulation runs for the shorter time. For example, if you specify “-t 600 -n 2” and it only
takes 30 seconds to run two scheduling cycles, the simulation ends after 30 seconds.

-h, --help

Display this help message

-l

Generate simulation log

-L

Generate scheduling logs

-n <cycles>

Number of scheduling cycles to run. When used with the -t <duration> option, simulation runs for the
shorter time. For example, if you specify “-t 600 -n 2” and it only takes 30 seconds to run two scheduling
cycles, the simulation ends after 30 seconds.

--version

Print the version of this command
PBS Professional 2020.1.1 Simulate Guide SG-3

Chapter 2 Using Simulate
--monitor=<duration>

Update the snapshot after every period specified by duration

--O0

Turn optimizations off

2.2.3 Command Examples

To get server information:

simsh <path to snapshot> qstat -Bf

To list all nodes:

simsh <path to snapshot> qmgr -c "list node @default"

To run a simulation for 10 cycles and generate scheduling logs:

simsh <path to snapshot> sim -L -n 10

To list all vnodes:

simsh <path to snapshot> pbsnodes -av

2.2.4 Command Paths

Many Simulate commands have the same names as PBS commands. The wrapper script simsh prevents naming
clashes.

2.3 Using Simulate on a Snapshot

Overview:

• Get a snapshot from a running PBS Professional complex

• Check snapshot contents

• Run Simulate on the snapshot

• Review your results

• Modify your snapshot

• Run a simulation on your modified snapshot

2.3.1 Creating a Snapshot

This should be done on a system with queued workload. Simulate is useful for seeing what order jobs will run in and if
they will run based on a “now” status taken from a working PBS complex:

pbs_snapshot --basic -o <output_path>

Note: A tar archive will be created in this folder.

Unpack the snapshot:

tar xvfz <snapshot_name>.tgz (e.g. tar xvfz snapshot_20200708_15_54_57.tgz)
SG-4 PBS Professional 2020.1.1 Simulate Guide

Using Simulate Chapter 2
2.3.2 Checking Snapshot Contents

To use qstat to inspect the contents of a snapshot:

simsh <snapshot_directory_name> qstat -as1

For example:

simsh snapshot_20200708_15_54_57 qstat -as1

Try the different qstat options; many are available. (-f is not available on a snapshot.)

To use qmgr:

simsh <snapshot_directory_name> qmgr

For example:

simsh snapshot_20200708_15_54_57 qmgr

You can use normal qmgr commands. If you want to target all queues or nodes at a server use @default as the
server name.

You can also use the commands to alter the configuration, though we would recommend running a simulation first to
see how it runs through with the system configuration.

To use pbsnodes:

simsh <snapshot_directory_name> pbsnodes -av

For example:

simsh snapshot_20200708_15_54_57 pbsnodes -av

2.3.3 Running a Simulation

simsh <snapshot_directory_name> sim

For example:

simsh snapshot_20200708_15_54_57 sim

This should give some output showing how the workload ran through, e.g.:

Snapshot: snapshot_20200708_15_54_57

Creating usage database for fairshare.

Number of scheduling cycles run: 32

Number of jobs submitted: 0

Number of jobs run: 22

Number of jobs left over: 0

Time taken to simulate: 0

2.3.3.1 Simulation Errors

If you get a licensing error: “Error: No valid licenses found, quitting”, make sure the licensing prerequisites are met.

2.3.3.2 Simulation Caveats

The simulator ignores job environment variables (it does not use the value of the job’s Variable_List attribute).
PBS Professional 2020.1.1 Simulate Guide SG-5

Chapter 2 Using Simulate
2.3.4 Simulation Output

2.3.4.1 Output Name

By default, running a simulation on snapshot_20200708_15_54_57 produces the result snapshot named
“snapshot_20200708_15_54_57_out”. However, you can specify the name of the output using sim -o <snapshot name>.

If you don’t specify a name, when you run a simulation on a snapshot, the output is a snapshot with “_out” appended to
the name of the original. So <snapshot_directory_name> results in <snapshot_directory_name_out>.

For example, running a simulation on “snapshot_20200708_15_54_57” creates a snapshot named
“snapshot_20200708_15_54_57_out”.

2.3.4.2 Output Contents

When you run the following:

simsh <snapshot> sim

the simulator produces these outputs:

• Number of scheduling cycles run: <number>

• Number of jobs submitted <number>

• Number of jobs run: <number>

• Number of jobs left over: <number>

These are the jobs which couldn’t be run by the simulator for reasons such as the job requests an unavailable queue
or resource, or the job exceeded a limit (which might have been placed on the snapshot).

• Time taken to simulate: <seconds>

2.3.5 Reviewing Simulation Results

Review the snapshot produced by the simulation. You can use the commands listed in "Checking Snapshot Contents” on
page 5.

To use qstat to review the results created when you ran a simulation and produced <snapshot_directory_name_out>:

simsh <snapshot_directory_name_out> qstat -as1

For example, if the result of the simulation is “snapshot_20200708_15_54_57_out”:

simsh snapshot_20200708_15_54_57_out qstat -as1

2.3.6 Using Scheduler Logs

When you run a simulation, you can use the sim -L command to produce scheduler logs, which you can use to see how
jobs were scheduled:

simsh <snapshot> sim -L

2.3.7 Modifying Your Snapshot

You can modify your simulated workload environment, to see how jobs would run in those circumstances. You modify
the parent snapshot, not the output snapshot, then re-run the simulation using the modified parent snapshot. You can
modify many of the characteristics of a PBS complex; we mention a few ways here.
SG-6 PBS Professional 2020.1.1 Simulate Guide

Using Simulate Chapter 2
2.3.7.1 Modifying Available Resources

You can change the available resources in your shapshot, such as memory, CPUs, number of execution hosts, etc. To add
more nodes you edit the node configuration in the parent snapshot. To add CPUs, change the ncpus resource on the par-
ent snapshot. For example, here we use qmgr on the parent snapshot to modify the node to have 32 cores:

simsh <snapshot_directory_name> qmgr -c "s n testing resources_available.ncpus=32"

2.3.7.2 Creating Nodes

You can create new nodes:

simsh <snapshot_directory_name> qmgr -c "c n newnode resources_available.ncpus=8"

2.3.7.3 Submitting Jobs

You can use qsub to submit more jobs:

simsh <snapshot_directory_name> qsub ...

2.3.7.4 Changing Limits

You can change limits, for example:

simsh <snapshot_directory_name> qmgr -c "set server max_run += [u:PBS_GENERIC=10]"

2.3.7.5 Changing Scheduler Configuration File

You can change the scheduler configuration file.

Change directory into the snapshot directory:

cd <path to snapshot>/sched_priv

Edit the configuration file named sched_config.

2.3.8 Rerunning a Simulation

To rerun a simulation:

simsh <snapshot_directory_name> sim

For example:

simsh snapshot_20200708_15_54_57 sim

2.3.9 Output of Rerunning a Simulation

Rerunning a simulation produces an output snapshot with the name of the parent snapshot with “_out” appended, in addi-
tion, the previous output snapshot has been renamed with an additional “_out” appended to it: the previous output is now
at <snapshot_directory_name_out_out> in case you need to reference or review the results.

So if you start with a snapshot named “A”, and run a simulation on it, you get “A_out”. But if you run another simula-
tion on A, you get a new A_out, and the previous output snapshot is now named A_out_out.
PBS Professional 2020.1.1 Simulate Guide SG-7

Chapter 2 Using Simulate
2.3.10 Reviewing Second Results

Review the new output snapshot, using the methods in "Checking Snapshot Contents” on page 5. You can use any of the
commands in "Simulate Commands” on page 3.

In our example, the new output snapshot is snapshot_20200708_15_54_57_out, and to examine it using qstat:

simsh snapshot_20200708_15_54_57_out qstat -as1

You can look for changes in job run order between the accounting logs from the original and modifed snapshots.

Note that qstat -s gives empty results because all the jobs have run through the system.
SG-8 PBS Professional 2020.1.1 Simulate Guide

Index

A
Altair License Manager SG-1

C
checking snapshot contents SG-5
configuration file SG-1
creating a snapshot SG-4

M
modifying snapshot SG-6

O
output of rerunning a simulation SG-7
output of simulation SG-5

P
pbs_rstat SG-3
pbs_rsub SG-3
pbs_sim SG-3
PBS_SNAPSHOT_PATH SG-2
pbsfs SG-3
pbsnodes SG-3

Q
qdel SG-3
qmgr SG-3
qselect SG-3
qstat SG-3
qsub SG-3

R
rerunning a simulation SG-7
results of simulation SG-6
running a simulation SG-5

S
SIM_LICENSE_LOCATION SG-1
simsh SG-3
Simulate configuration file SG-1
simulation

output SG-5
output of rerun SG-7
rerunning SG-7
results SG-6

running SG-5
snapshot

checking contents SG-5
creating SG-4

U
user environment SG-2
using Simulate on a snapshot SG-4

W
wrapper script SG-3
PBS Professional 2020.1 Simulate Guide SG-9

Index
SG-10 PBS Professional 2020.1 Simulate Guide

Main Index

$action RG-240
$alps_client RG-240
$alps_release_jitter AG-470, RG-240
$alps_release_timeout RG-240
$alps_release_wait_time AG-471, RG-241
$checkpoint_path RG-241
$clienthost RG-241
$cputmult RG-241
$dce_refresh_delta RG-241
$enforce RG-241
$job_launch_delay RG-243
$jobdir_root RG-242
$logevent RG-243
$logevent MoM parameter AG-538
$max_check_poll RG-243
$max_load RG-244
$max_poll_downtime RG-244
$min_check_poll RG-244
$pbs_accounting_workload_mgmt RG-244
$prologalarm RG-244
$reject_root_scripts RG-244
$restart_background RG-245
$restart_transmogrify RG-245
$restrict_user AG-385, RG-245
$restrict_user_exceptions AG-385, RG-245
$restrict_user_maxsysid AG-385, RG-245
$restricted RG-245
$sister_join_job_alarm RG-246
$suspendsig RG-246
$tmpdir RG-246
$usecp RG-246
$vnodedef_additive RG-246
$wallmult RG-247
.rhosts AG-377
job.resources_used HG-126

A
accelerator AG-468, RG-265, UG-191
accelerator_memory AG-468, RG-266, UG-191
accelerator_model AG-468, RG-266, UG-191
accept an action HG-5, RG-1

access
by group AG-362, RG-8
by user AG-362, RG-20

effect of flatuid AG-376
control lists AG-362
from host AG-362, RG-8
to a queue AG-362, RG-1
to a reservation AG-362, RG-1
to server AG-362
to the server RG-1

access control list RG-1
account BG-2

installation IG-13
PBS service IG-14

account string RG-1
Account_Name

job attribute RG-328
accounting UG-207

account AG-612, AG-617
account string RG-1
alt_id AG-612, AG-617
authorized_hosts AG-610
authorized_users AG-610
ctime AG-610, AG-611, AG-612, AG-614, AG-617,

AG-618, AG-619, AG-620
duration AG-610
end AG-610, AG-612, AG-618
etime AG-611, AG-613, AG-614, AG-617, AG-618,

AG-619, AG-620
Exit_status AG-613, AG-618
group AG-611, AG-613, AG-614, AG-617, AG-618,

AG-619, AG-621
jobname AG-611, AG-613, AG-617, AG-618, AG-

619, AG-621
name AG-610
owner AG-610
qtime AG-611, AG-613, AG-614, AG-617, AG-618,

AG-619, AG-621
queue AG-610, AG-611, AG-613, AG-614, AG-617,

AG-618, AG-619, AG-621
Resource_List AG-610, AG-611, AG-613, AG-614,

AG-617, AG-618, AG-619, AG-621
session AG-611, AG-614, AG-615, AG-618, AG-

620, AG-621
start AG-610, AG-611, AG-614, AG-615, AG-618,

AG-620, AG-621
user AG-611, AG-614, AG-615, AG-617, AG-618,
PBS Professional 2020.1.1 Big Book Main-1

Main Index
AG-620, AG-621
accounting log entry

format RG-353
accounting_id AG-612, AG-617

job attribute RG-328
accrue_type

job attribute RG-328
ACCT_TMPDIR UG-207
ACL RG-1, RG-379, RG-382, RG-383, RG-385
acl_group_enable

queue attribute AG-370, RG-311
acl_groups

queue attribute AG-370, RG-311
acl_host_enable RG-281

queue attribute AG-370, RG-311
server attribute AG-370

acl_host_moms_enable RG-281
acl_hosts

queue attribute AG-370, RG-311
server attribute AG-370, RG-281

acl_resv_group_enable
server attribute RG-281

acl_resv_groups
server attribute RG-281

acl_resv_host_enable
server attribute RG-281

acl_resv_hosts
server attribute RG-282

acl_resv_user_enable
server attribute RG-282

acl_resv_users
server attribute RG-282

acl_roots AG-388
server attribute RG-282

acl_user_enable
queue attribute AG-370, RG-311
server attribute AG-370, RG-282

acl_users
queue attribute AG-370, RG-311
server attribute AG-370, RG-282

ACLs AG-362
default behavior AG-363
format AG-363
group AG-364
host AG-364
matching entry AG-365
modifying behavior AG-363
overrides AG-376
removing entity AG-367
rules for creating AG-367
user AG-364
who can create AG-368

action HG-5, RG-1
accept RG-1
reject RG-16

activate a power profile AG-319
active (failover) RG-1
Active Directory IG-13, RG-1
activereq PG-100
adding amteller BG-11
addreq PG-100
Admin IG-13, RG-1
admin BG-3
administrator RG-2
Administrators RG-2
administrators IG-13
advance reservation AG-198, AG-610, RG-2, RG-392,

UG-135
creation UG-137

aggressive_provision AG-329, RG-255
alarm

hook attribute RG-349
allocating funds BG-4
allocation BG-2
allreq PG-100
ALM license server RG-2
alt_id

job attribute RG-328
Altair License Manager BG-7, SG-1
Altair License Server CG-2
am.conf BG-13
Amazon Web Services CG-1
Ames Research Center RG-411
amgr BG-25
amgr acquire BG-56
amgr add BG-27
amgr checkbalance BG-52
amgr deposit BG-50
amgr ls BG-32
amgr precheck BG-55
amgr reconcile BG-58
amgr refund BG-59
amgr report BG-39
amgr rm BG-39
amgr transfer BG-60
amgr update BG-36
amgr withdraw BG-53
AMS BG-8, BG-21

installing BG-10
amteller BG-7

adding BG-11
AOE AG-327, RG-2, UG-201

using UG-202
aoe RG-266
aoe resource

defining AG-336
Main-2 PBS Professional 2020.1.1 Big Book

Main Index
API RG-2
api_key CG-16
application checkpoint RG-2
application license

floating AG-276
definition AG-231

floating externally-managed AG-276
application licenses AG-274

floating UG-54
floating license PBS-managed AG-277
license units and features AG-275
node-locked

per-CPU UG-55
overview AG-257
per-host node-locked example AG-279
types AG-274

application operating environment RG-2
arch RG-267
argument_list

job attribute RG-329
array

job attribute RG-329
array job RG-2, RG-9
array_id

job attribute RG-329
array_index

job attribute RG-329
array_indices_remaining

job attribute RG-329
array_indices_submitted

job attribute RG-329
array_state_count

job attribute RG-329
ASAP reservation AG-198, RG-2, RG-10
attribute

definition RG-2
log_events RG-298
rerunnable RG-16

attribute name
format RG-353

authentication
Budget BG-21
users BG-21

authorization IG-12
Authorized_Groups

reservation attribute RG-303
Authorized_Groups reservation attribute AG-371
Authorized_Hosts

reservation attribute RG-303
Authorized_Hosts reservation attribute AG-371
Authorized_Users

reservation attribute RG-304
Authorized_Users reservation attribute AG-371
average CPU usage enforcement AG-307

average_cpufactor AG-307
average_percent_over AG-307
average_trialperiod AG-307
avoid_provision AG-329, RG-255
AWS CG-1
Azure cloud head node CG-6

B
backfill RG-250
backfill_depth

queue attribute RG-311
server attribute RG-282

backfill_prime AG-195, RG-250
backfilling RG-2
backup directory

overlay upgrade IG-72, IG-73, IG-83, IG-85, IG-96
Windows upgrade IG-111, IG-126, IG-127

basic fairshare AG-139
batch job RG-9
batch processing RG-3
batch requests AG-538
block

job attribute RG-330
blocking jobs UG-120
Boolean

format AG-237, RG-259, RG-359, UG-49
borrowing vnode AG-230, AG-271, RG-3
Budget

authenticating BG-21
installing BG-10
logging in BG-23
logging out BG-23
tutorial BG-63

Budget entity BG-2
Budget hook

configuration file BG-17
configuring BG-13

budget pool BG-4
budget resource BG-2
Budget role BG-3
Budget workflow BG-4
built-in hook HG-5, RG-3
built-in resource AG-231, RG-3
burst CG-16
bursting scenario CG-16
busy RG-365
by_queue RG-250

C
capmc IG-139
CentOS IG-23, CG-1
changing order of jobs UG-168
checking snapshot contents SG-5
PBS Professional 2020.1.1 Big Book Main-3

Main Index
Checkpoint
job attribute RG-330

checkpoint AG-610, AG-645, RG-240, RG-390, RG-409
preemption via AG-188
restart RG-17
restart file RG-17
restart script RG-17

checkpoint and abort RG-3
checkpoint and restart RG-3
checkpoint/restart RG-3
checkpoint_abort RG-3, RG-240
checkpoint_min

queue attribute RG-312
child vnode RG-3
chunk AG-231, RG-3, UG-51, UG-53
chunk set RG-3
chunk-level resource RG-3, UG-51
CLE 6 and 7 IG-139
client commands IG-4
clienthost AG-385
closerm PG-100
cloud bursting scenario CG-16
cloud bursting startup script CG-17
cloud head node in Azure CG-6
cloud hook configuration file CG-10
cloud queues CG-24
cloud_instance_type CG-22
cloud_max_instances CG-22
cloud_max_jobs_check_per_queue CG-22, CG-23
cloud_min_instances CG-22
cloud_network CG-22
cloud_node_image CG-22
cloud_node_instance_type CG-23
cloud_provisioned_time CG-23
cloud_queue CG-23
cloud_scenario CG-23
cloud-init

example CG-18
troubleshooting CG-20

cluster RG-3, BG-2
comm RG-4
commands IG-4, RG-4, UG-2, PG-4

and provisioning UG-204
comment UG-178

job attribute RG-330
scheduler attribute RG-298
server attribute RG-283
vnode attribute RG-320

communication daemon RG-4
complex RG-4, BG-2

Linux-Windows RG-11
mixed-mode RG-12
Windows-Linux RG-20

compute resource BG-2

configrm PG-100
configuration

server AG-19
configuration file SG-1

cloud hook CG-10
hook HG-6
version 1 RG-20
version 2 RG-20

configuring PBS for cloud bursting CG-21
consumable resource AG-231, RG-4
consuming funds BG-4
count_spec UG-138
CPU AG-231, RG-4
cpuaverage AG-307
cpus_per_ssinode RG-250
cput AG-141, RG-267
cray_compute AG-477
creating a hook HG-5, RG-4
creating a snapshot SG-4
creating queues AG-22
creation of provisioning hooks AG-338
credential PG-21
credit BG-3
CSA UG-207
csaswitch AG-486, AG-634
ctime

job attribute RG-331
reservation attribute RG-304

currency BG-1
current_aoe AG-336

vnode attribute RG-320
current_eoe AG-322, RG-320
custom resource AG-231, RG-4
custom resources

application licenses AG-274
floating managed by PBS AG-277
overview AG-257
per-host node-locked AG-279
types AG-274

how to use AG-255
scratch space

overview AG-257
static host-level AG-270
static server-level AG-268

custom resources for cloud bursting CG-24
cycle harvesting

ideal_load AG-123
max_load AG-123

cygwin UG-16

D
data service account RG-4
data service management account RG-4
Main-4 PBS Professional 2020.1.1 Big Book

Main Index
date
format RG-353

datetime
format RG-354

deactivate a power profile AG-319
debit BG-3
debug

hook attribute RG-349
debuginfo AG-643
decay AG-142
dedicated time AG-125
dedicated_prefix RG-250
default server RG-5
default_chunk

queue attribute RG-312
server attribute RG-283

default_qdel_arguments
server attribute RG-283

default_qsub_arguments
server attribute RG-283

default_queue
server attribute RG-283

defining aoe resource AG-336
defining provisioning policy AG-339
defining resources

multi-vnode machines AG-272
degraded reservation AG-198, RG-16
delegation IG-13, RG-5
delete_idle_time RG-304
deleting jobs UG-166
department AG-139
depend

job attribute RG-332
destination

definition RG-5
destination identifier RG-5

format RG-354
destination queue RG-5
destination server RG-5
directive RG-6
directory

staging and execution RG-19
DIS IG-59, AG-530, HG-136, RG-369
display

non-running jobs UG-177
DNS IG-38, AG-652
do_not_span_psets AG-469

scheduler attribute RG-298
Docker BG-8
docker CG-2

installing BG-10
docker-ce BG-7
Domain Admin Account IG-13, RG-6
Domain Admins IG-13, RG-6

Domain User Account IG-13, RG-6
Domain Users IG-13, RG-6
domains

mixed IG-17
down RG-365
downrm PG-100
dynamic fit AG-169
dynamic resource scripts/programs AG-265
dynamic service unit BG-3
dynamic service units BG-5

E
egroup AG-139

euser AG-139
job attribute RG-332

element BG-2
eligible wait time AG-126
eligible_time AG-127, AG-129, AG-612, AG-618

job attribute RG-333
eligible_time_enable

server attribute RG-284
empty queue, node configurations

migration under Linux IG-100, IG-115, IG-116, IG-
130

enabled
hook attribute RG-349
queue attribute RG-312

endpoint RG-6
energy AG-322, RG-267
Enterprise Admins IG-13, RG-6
entity RG-6, BG-2
entity share RG-6
environment variables RG-399
eoe AG-315, AG-322, RG-267
error codes RG-389
Error_Path

job attribute RG-333
escrow BG-4
est_start_time_freq

server attribute RG-284
estimated

job attribute RG-334
etime

job attribute RG-334
euser AG-139

job attribute RG-334
event HG-5, RG-6

hook attribute RG-350
PBS Professional 2020.1.1 Big Book Main-5

Main Index
events
exechost_periodic HG-95, HG-106, HG-107
execjob_begin HG-96, HG-98
execjob_end HG-105
execjob_epilogue HG-104
execjob_preterm HG-103
execjob_prologue HG-97
modifyjob HG-92
movejob HG-93
queuejob HG-91
resvsub HG-90
runjob HG-94

exclhost UG-65
exclusive UG-65
exec_host AG-610

job attribute RG-335
exec_vnode RG-267

job attribute RG-335
exechost_periodic HG-89
exechost_periodic events HG-95, HG-106, HG-107
execjob_attach HG-89
execjob_begin HG-88
execjob_begin events HG-96, HG-98
execjob_end HG-89
execjob_end events HG-104, HG-105
execjob_epilogue HG-89
execjob_launch HG-88
execjob_postsuspend HG-89
execjob_preresume HG-89
execjob_preterm HG-89
execjob_preterm events HG-103
execjob_prologue HG-88
execjob_prologue events HG-97
executable

job attribute RG-334
execution event hooks HG-6, RG-6
execution host RG-6
execution queue RG-6
Execution_Time

job attribute RG-335
executor PG-4
exit status

job arrays UG-156
Exit_status

job attribute RG-336
exiting AG-127
express_queue AG-184, RG-300
external storage BG-6
externally-provided resources RG-239

F
fail_action

hook attribute RG-351

failover RG-7, BG-18
idle RG-8
migration IG-73, IG-85, IG-97, IG-112, IG-128
primary scheduler RG-15
primary server RG-15
secondary scheduler RG-17
secondary server RG-17

failover and hooks HG-21
failure action HG-6, RG-7
fair_share RG-250

scheduler parameter AG-138
fairshare AG-138, AG-184, RG-7, RG-300
fairshare entities AG-139
fairshare ID AG-140
fairshare_decay_factor RG-251
fairshare_decay_time RG-251
fairshare_enforce_no_shares RG-251
fairshare_entity RG-251
fairshare_perc AG-151, RG-252
fairshare_usage_res RG-251
file RG-268

.rhosts IG-12

.shosts IG-12
hosts.equiv IG-15, IG-39
pbs.conf IG-43
services IG-59
stage in RG-18
stage out RG-18
staging UG-31
vnodedefs RG-20

file staging RG-7
files

MoM
config RG-381

nodes RG-380
pbs.conf AG-652

finished jobs AG-519, RG-7
Firewalld CG-2
firewalld CG-7
flatuid

server attribute RG-284
flatuid server attribute AG-376
FLicenses

server attribute RG-284
float

format AG-237, RG-259, RG-359, UG-50
floating license RG-7

definition AG-231
example AG-276
example of externally-managed AG-276

floating licenses UG-54
flushreq PG-100
Main-6 PBS Professional 2020.1.1 Big Book

Main Index
format
accounting log entry RG-353
attribute name RG-353
Boolean AG-237, RG-259, RG-359, UG-49
date RG-353
datetime RG-354
destination identifier RG-354
float AG-237, RG-259, RG-359, UG-50
host name RG-354
job array identifier RG-354
job array name RG-355
job array range RG-355
job identifier RG-355, RG-357
job name RG-355
limit specification RG-356
logfile-date-time RG-356
pathname RG-357
PBS NAME RG-357
PBS password RG-357
project name RG-357
queue identifier RG-357
queue name RG-357
reservation name RG-358
size AG-238, RG-260, RG-360, UG-50
string resource value AG-238, AG-243, RG-260,

RG-360, UG-50
string_array AG-238, AG-244, RG-260, RG-360,

UG-51
subjob identifier RG-358
username RG-358

Windows RG-358
vnode name RG-358

forward_x11_cookie
job attribute RG-336

forward_x11_port
job attribute RG-336

free RG-365, UG-65
freq

hook attribute RG-351
freq_spec UG-138
from_route_only

queue attribute RG-312
fullresp PG-100
furnishing queue RG-7

G
GCP CG-1
gethostbyaddr IG-58
gethostname AG-385
getreq PG-100
global resource AG-231, RG-7
Globus AG-19
Google Cloud Platform CG-1

group RG-8, BG-2, BG-4
access AG-362, RG-8
ACLs AG-364
ID (GID) RG-8
limit AG-231, AG-289

generic AG-289
individual AG-289

group limit RG-8
group=resource UG-65
group_list

job attribute RG-336

H
half_life RG-251
hasnodes

queue attribute RG-312
hbm_cache_pct AG-478
hbmem AG-477, RG-268
headnode IG-21
help, getting AG-655
help_starving_jobs RG-251
here document UG-22
high-bandwidth memory AG-478
history jobs AG-520, RG-8
hold RG-8
Hold_Types

job attribute RG-336
hook RG-8

configuration file HG-6
creating HG-5, RG-4
importing HG-6, RG-8, RG-9
provisioning RG-16

hook configuration file HG-6
cloud hook CG-10
PBS Professional 2020.1.1 Big Book Main-7

Main Index
hooks
accept RG-1
action RG-1
and failover HG-21
creating empty hooks HG-30
creation of provisioning AG-338
deleting HG-31
enabling and disabling HG-38
event types HG-15
events

exechost_periodic HG-95, HG-106, HG-107
execjob_begin HG-96, HG-98
execjob_end HG-104, HG-105
execjob_preterm HG-103
execjob_prologue HG-97
modifyjob HG-92
movejob HG-93
queuejob HG-91
resvsub HG-90
runjob HG-94

exechost_periodic events HG-95, HG-106, HG-107
execjob_begin events HG-96, HG-98
execjob_end events HG-104, HG-105
execjob_preterm events HG-103
execjob_prologue events HG-97
execution event HG-6, RG-6
exporting HG-35
importing HG-34
interface objects HG-76
job attributes HG-55
log level objects HG-152
modifyjob events HG-92
MoM HG-6
movejob events HG-93
non-job event HG-6, RG-12
overview of creating HG-30
pbs.exec_vnode HG-129
pbs.job HG-122
pbs.queue() HG-121
pbs.resv HG-131
pbs.server() HG-118
pbs.vchunk HG-131
pbs.vnode HG-133
pre-execution event HG-6, RG-15
provisioning AG-327
queuejob events HG-91
reject action RG-16
reservation attributes HG-59
resources HG-47
resvsub events HG-90
runjob events HG-94
setting order of execution HG-38
setting timeout HG-39
setting trigger events HG-31

simple how-to HG-11
vnode attributes HG-57

host RG-8, RG-268
access AG-362, RG-8
ACLs AG-364

host name
format RG-354

hostname RG-8
hosts.equiv AG-377
Hot_Start

server state RG-364
HTT RG-8
HUAWEI Cloud CG-1
HUP MoMs AG-477
hyperthreading AG-484

I
ideal_load

cycle harvesting AG-123
identifier UG-12
Idle

server state RG-364
idle (failover) RG-8
IETF IG-9, IG-58
image CG-16
importing a hook HG-6, RG-8, RG-9
IMPS IG-139
in_multivnode_host

vnode attribute RG-320
index

subjob RG-19
indirect resource AG-231, AG-271, RG-9
ineligible_time AG-127
InfiniBand AG-460, RG-48, RG-49, UG-98, UG-99
initial_time AG-127
installation

Windows MoMs IG-37
installation account IG-13, RG-9
installation script CG-3
installing

AMS BG-10
Budget BG-10
docker BG-10

instance AG-198, RG-13, UG-135, CG-16, BG-2
instance of a standing reservation AG-198, UG-135
instance type CG-16, CG-21
Intel MPI

examples UG-86
interactive

job attribute RG-337
reservation attribute RG-305

interactive job RG-9
interface objects for hooks HG-76
Main-8 PBS Professional 2020.1.1 Big Book

Main Index
interval_spec UG-138
investing BG-4
investor BG-3, BG-4

J
ja

CSA command UG-207
job

attribute RG-16
attributes in hooks HG-55
batch RG-9
comment UG-178
definition UG-2
dependencies UG-107
executor (MoM) PG-4
identifier RG-10, UG-12
identifier syntax UG-150
interactive RG-9
kill RG-11
owner RG-13
rerunnable RG-16
route RG-17
scheduler PG-4
shrink-to-fit RG-18
state RG-10
states RG-361
submission options UG-24
substates RG-362

job acquire BG-3
job array RG-9

identifier RG-9, UG-149
range RG-10, UG-149
states UG-151
subjob RG-19
subjob index RG-19

job array identifier
format RG-354

job array name RG-10
format RG-355

job array range
format RG-355

job arrays UG-149
exit status UG-156
prologues and epilogues UG-152

job attributes
setting UG-16

job history AG-519
changing settings AG-521
configuring AG-520
enabling AG-520
setting duration AG-521

job ID RG-10

job identifier
format RG-355, RG-357

job name RG-10
format RG-355

job release BG-3
Job Submission Description Language RG-10
job that can never run AG-646
job.array_indices_submitted HG-123
job.Checkpoint HG-124
job.delete() HG-128
job.depend HG-124
job.exec_host HG-124
job.exec_vnode HG-124
job.Execution_Time HG-124
job.group_list HG-124
job.Hold_Types HG-124
job.id HG-123
job.in_ms_mom() HG-128
job.is_checkpointed() HG-127
job.job_state HG-125
job.Mail_Points HG-126
job.Mail_Users HG-126
job.rerun() HG-129
job.stagein HG-126
job.stageout HG-126
job.User_List HG-127
job_history_duration

server attribute RG-284
job_history_enable

server attribute RG-285
Job_Name

job attribute RG-337
Job_Owner

job attribute RG-337
job_priority RG-252
job_requeue_timeout

server attribute RG-285
job_sort_formula

server attribute RG-285
job_sort_formula_threshold

scheduler attribute RG-298
job_sort_key RG-252
job_state

job attribute RG-338
job-busy RG-365
jobdir

job attribute RG-337
job-exclusive RG-365
PBS Professional 2020.1.1 Big Book Main-9

Main Index
jobs
changing order UG-168
deleting UG-166
moved RG-12
moving between queues UG-169
sending messages to UG-167
sending signals to UG-168
vnode attribute RG-320

jobscript_max_size
server attribute RG-285

job-specific ASAP reservation AG-198, RG-2, RG-10,
UG-135

job-specific now reservation AG-198, RG-10, RG-13,
UG-135

job-specific reservation AG-198, RG-10, UG-135
Job-specific start reservation RG-10
job-specific start reservation AG-198, RG-19, UG-135
job-wide resource RG-11, UG-51, UG-52
Join_Path

job attribute RG-339
JSDL RG-10

K
Keep_Files

job attribute RG-339
kill job RG-11
kill_delay

queue attribute RG-313

L
last_state_change_time RG-320

vnode attribute AG-323
last_used_time RG-321

vnode attribute AG-323
leaf RG-11
lic_signature CG-23
license

application
floating AG-276

external RG-384
floating

definition AG-231
vnode attribute RG-321

license server RG-11
ALM RG-2

license server configuration
redundant RG-16

License Server List Configuration RG-11
license_info

vnode attribute RG-321

limit AG-232, AG-288, RG-11
attributes AG-294
cput AG-305
file size AG-305
generic group limit AG-231, AG-289, RG-7
generic project limit AG-289, RG-7
generic user limit AG-231, AG-289, RG-7
group limit AG-231, AG-289, RG-8
individual group limit AG-232, AG-289, RG-9
individual project limit AG-289, RG-9
individual user limit AG-232, AG-289, RG-9
overall AG-232, AG-289, RG-13
pcput AG-305
pmem AG-305
project RG-15
project limit AG-289
pvmem AG-305
user limit AG-232, AG-289, RG-20
walltime AG-305

limit specification
format RG-356

limits
generic and individual AG-292
group AG-287
inheriting BG-5
on dynamic service units BG-5
overall limits AG-292
project AG-287
resource usage AG-287, UG-61
scope AG-290
setting limits AG-296
user AG-287

Linux-Windows complex RG-11
load balance RG-11
load_balancing AG-121, RG-253
load_balancing_rr RG-253
local resource AG-232, RG-12
log events

MoM AG-538
scheduler AG-538
server AG-538

log levels AG-537
log_events

scheduler attribute RG-298
server attribute AG-538, RG-285

log_filter RG-253
logfile-date-time

format RG-356
logging

hooks log level objects HG-152
logging in to Budget BG-23
logging out of Budget BG-23
Main-10 PBS Professional 2020.1.1 Big Book

Main Index
M
mail_from

server attribute RG-286
Mail_Points

job attribute RG-339
reservation attribute RG-305

Mail_Users
job attribute RG-339
reservation attribute RG-305

maintenance RG-365
maintenance reservation AG-198
maintenance_jobs RG-321
Manager RG-12

privilege AG-361
manager BG-3
managers

server attribute RG-286
managers server attribute AG-361
managing vnode AG-232, AG-271, RG-12
master provisioning script AG-327, AG-337, RG-12
master script AG-327, AG-337, RG-12
matching ACL entry AG-365
max_array_size

queue attribute RG-313
server attribute RG-286

max_concurrent_provision AG-339
server attribute RG-286

max_group_res AG-303
queue attribute RG-313

max_group_res_soft
queue attribute RG-313

max_group_run AG-303
queue attribute RG-313

max_group_run_soft AG-303
queue attribute RG-313

max_job_sequence_id RG-287
max_load

cycle harvesting AG-123
max_queuable AG-303

queue attribute RG-314
max_queued AG-295

queue attribute RG-314
max_queued_res AG-295

queue attribute RG-314
max_run AG-294

queue attribute RG-314
max_run_res AG-295

queue attribute RG-314
max_run_res_soft AG-295

queue attribute RG-315
max_run_soft AG-294

queue attribute RG-315
max_running AG-303

queue attribute RG-315

max_starve RG-253
max_user_res AG-303

queue attribute RG-315
max_user_res_soft AG-303

queue attribute RG-315
max_user_run AG-303

queue attribute RG-316
max_user_run_soft AG-303

queue attribute RG-316
max_walltime AG-215, RG-268, UG-113
mem RG-268
mem_per_ssinode RG-253
memory

high-bandwidth AG-478
memory-only vnode AG-232, RG-12
memreserved RG-244
Microsoft Azure CG-1
migration upgrade IG-65

Linux IG-93
Windows IG-109, IG-125

min_walltime AG-215, RG-269, UG-113
minimizing power cycles AG-320
mixed domains IG-17
mixed-mode complex RG-12
modifying snapshot SG-6
modifyjob HG-88
modifyjob events HG-92
MoM IG-4, RG-12, UG-2, PG-3, PG-4

log events AG-538
subordinate RG-19

Mom
vnode attribute RG-321

MoM hooks HG-6
mom_resources RG-253
monitoring RG-12, UG-1
Mother Superior RG-12
moved jobs RG-12
movejob HG-88
movejob events HG-93
moving jobs

migration upgrade under Linux IG-107, IG-123
moving jobs between queues UG-169
MPI

Intel MPI
examples UG-86

MPICH2
examples UG-100

MPICH-MX
MPD

examples UG-93
rsh/ssh

examples UG-94
MVAPICH1 UG-98

examples UG-98
PBS Professional 2020.1.1 Big Book Main-11

Main Index
MPI_USE_IB AG-460
MPICH UG-89
MPICH2

examples UG-100
MPICH-MX

MPD
examples UG-93

rsh/ssh
examples UG-94

mpiexec AG-459
MPI-OpenMP UG-105
mpiprocs RG-269
MRJ Technology Solutions RG-411
mtime

job attribute RG-340
reservation attribute RG-306

multihost placement sets AG-170
multinodebusy RG-240
multi-vnode complex RG-380
MUNGE AG-379
MVAPICH1 UG-98

examples UG-98

N
naccelerators AG-468, RG-269, UG-191
name

vnode attribute RG-321
NASA

and PBS RG-411
natural vnode AG-38
nchunk RG-270
NCPUS RG-399
ncpus RG-270
network

ports IG-58
services IG-58

nice RG-270
NIS

configuring at startup CG-19
no_multinode_jobs

vnode attribute RG-322
no_stdio_sockets

job attribute RG-340
node

definition RG-14
node_group_key

queue attribute RG-316
server attribute RG-290

node_idle_limit
server attribute AG-323

node_location CG-23
node_sort_key RG-253
nodect RG-270

nodes RG-270
NUMA AG-478
Xeon Phi AG-477

non-consumable resource AG-232, RG-12
non-job event hooks HG-6, RG-12
non-primetime RG-15
nonprimetime_prefix AG-195, RG-254
normal_jobs AG-184, RG-300
now reservation RG-10, RG-13
nppcu RG-13
NTFS IG-41
ntype

vnode attribute RG-322
NUMA nodes AG-478
numa_cfg AG-478

O
object RG-13
occurrence of a standing reservation RG-13
offline RG-365
OMP_NUM_THREADS RG-399
ompthreads RG-271
only_explicit_psets

scheduler attribute RG-298
Open Telekom Cloud CG-1
OpenMP UG-103
openrm PG-100
Operator RG-13

privilege AG-360
operators

server attribute RG-291
operators server attribute AG-361
opt_backfill_fuzzy AG-109

scheduler attribute RG-299
Oracle Cloud Platform CG-1
Orange Cloud Flexible Engine CG-1
order

hook attribute RG-351
OTC CG-1
output files IG-12
output of rerunning a simulation SG-7
output of simulation SG-6
output plugin AG-318
Output_Path

job attribute RG-340
overall limit AG-232, AG-289, RG-13
overlay upgrade IG-65

backup directory IG-72, IG-73, IG-83, IG-85, IG-96
Linux IG-70

owner RG-13

P
pack UG-65
Main-12 PBS Professional 2020.1.1 Big Book

Main Index
Parallel Virtual Machine (PVM) UG-102
parameter RG-13
parent vnode RG-13
partition RG-316, RG-322

scheduler attribute RG-299
password

invalid AG-645
passwordless ssh BG-23
pathname

format RG-357
PBS RG-400

configuring for cloud bursting CG-21
pbs RG-28
PBS Administrator RG-14
PBS complex BG-2
PBS entity RG-6, RG-14
PBS environmental variables UG-151
pbs module HG-6, RG-14
PBS NAME

format RG-357
PBS object RG-13, RG-14
PBS password

format RG-357
PBS Professional RG-14, BG-7
PBS service account IG-14
pbs.acl() HG-143
pbs.args() HG-143
pbs.checkpoint() HG-144
pbs.conf AG-319, AG-652
pbs.depend() HG-144
pbs.duration() HG-144
pbs.email_list() HG-144
pbs.event().accept() HG-116
pbs.event().alarm HG-109
pbs.event().hook_name HG-111, HG-112
pbs.event().hook_type HG-111
pbs.event().pid HG-112
pbs.event().reject() HG-116
pbs.event().requestor HG-113
pbs.event().requestor_host HG-113
pbs.event().type HG-113
pbs.exec_host() HG-145
pbs.exec_vnode HG-129
pbs.exec_vnode() HG-145
pbs.get_local_nodename() HG-151
pbs.group_list() HG-145
pbs.hold_types() HG-145
pbs.job HG-122
pbs.job_sort_formula() HG-145
pbs.join_path() HG-146
pbs.keep_files() HG-146
pbs.license_count() HG-146
pbs.logmsg() HG-152
pbs.mail_points() HG-146

pbs.node_group_key() HG-146
pbs.path_list() HG-146
pbs.pbs_env() HG-146
pbs.pid HG-81
pbs.place() HG-147
pbs.queue HG-121
pbs.queue() HG-121
pbs.queue.job() HG-122
pbs.range() HG-148
pbs.reboot() HG-153
pbs.resv HG-131
pbs.route_destinations() HG-148
pbs.select() HG-148
pbs.server() HG-118
pbs.server(). HG-118
pbs.server().job() HG-119
pbs.server().jobs() HG-119
pbs.server().name HG-118
pbs.server().queue() HG-120
pbs.server().queues() HG-120
pbs.server().resv() HG-120
pbs.server().resvs() HG-120
pbs.server().scheduler_restart_cycle() HG-120
pbs.server().vnode() HG-120
pbs.server().vnodes() HG-120
pbs.size() HG-150
pbs.software() HG-150
pbs.staging_list() HG-150
pbs.state_count() HG-151
pbs.user_list() HG-151
pbs.vchunk HG-131
pbs.version() HG-151
pbs.vnode HG-133
pbs_accounting_workload_mgmt AG-485, AG-633
pbs_alterjob PG-24
PBS_ARRAY_ID RG-399, UG-151
PBS_ARRAY_INDEX RG-399, UG-151
pbs_asyrunjob PG-26, PG-57
pbs_attach RG-55
pbs_auth_create_ctx PG-123
pbs_auth_decrypt_data PG-131
pbs_auth_destroy_ctx PG-125
pbs_auth_encrypt_data PG-130
pbs_auth_get_userinfo PG-126
PBS_AUTH_METHOD AG-530, HG-136, RG-369
pbs_auth_process_handshake_data PG-128
pbs_auth_set_config PG-122
PBS_BATCH_SERVICE_PORT IG-59, AG-530, HG-

136, RG-369
PBS_BATCH_SERVICE_PORT_DIS IG-59, AG-530,

HG-136, RG-369
pbs_comm RG-4, RG-57
PBS_COMM_LOG_EVENTS AG-530, HG-136, RG-

369
PBS Professional 2020.1.1 Big Book Main-13

Main Index
PBS_COMM_ROUTERS AG-530, HG-136, RG-369
PBS_COMM_THREADS AG-530, HG-136, RG-369
PBS_CONF_FILE RG-399
PBS_CONF_REMOTE_VIEWER AG-530, HG-136,

RG-370
PBS_CONF_SYSLOG AG-534, AG-543, HG-140, RG-

373
PBS_CONF_SYSLOGSEVR AG-534, AG-543, HG-

140, RG-373
pbs_connect PG-21, PG-30
PBS_CORE_LIMIT AG-530, HG-136, RG-370
PBS_DATA_SERVICE_PORT IG-59, AG-530, HG-

136, RG-370
pbs_dataservice RG-60
pbs_default PG-32
pbs_deljob PG-33
pbs_delresv PG-35
pbs_disconnect PG-36
pbs_ds_password RG-61
PBS_ENCRYPT_METHOD AG-531, HG-136, RG-370
PBS_ENVIRONMENT AG-531, HG-136, RG-370, RG-

399
PBS_EXEC IG-21, IG-43, AG-404, AG-531, HG-137,

RG-14, RG-370
PBS_EXEC/pbs_sched_config

overlay upgrade IG-76, IG-88, IG-101, IG-117, IG-
131

pbs_geterrmsg PG-37
pbs_holdjob PG-38
PBS_HOME IG-21, IG-43, AG-404, AG-531, HG-137,

RG-14, RG-370
pbs_hostn RG-63, UG-4
pbs_idled RG-64
pbs_iff AG-652, PG-21
pbs_interactive RG-67
PBS_JOBCOOKIE RG-399
PBS_JOBID RG-399, UG-151
PBS_JOBNAME RG-399
pbs_lamboot RG-68
PBS_LEAF_NAME IG-62, AG-531, HG-137, RG-370
PBS_LEAF_ROUTERS AG-531, HG-137, RG-370
pbs_license_info

server attribute RG-291
pbs_license_linger_time

server attribute RG-291
pbs_license_max

server attribute RG-291
pbs_license_min

server attribute RG-292
PBS_LOCALLOG AG-531, AG-543, HG-137, RG-370
pbs_locjob PG-39
PBS_LOG_HIGHRES_TIMESTAMP AG-531, HG-137,

RG-371, RG-400
pbs_login UG-3

PBS_LR_SAVE_PATH AG-531, HG-137, RG-371
PBS_MAIL_HOST_NAME IG-62, AG-21, AG-532,

HG-137, RG-371
pbs_manager PG-41
PBS_MANAGER_SERVICE_PORT IG-59, AG-532,

HG-137, RG-371
pbs_mkdirs AG-645, RG-70
pbs_module PG-111
pbs_mom IG-4, RG-71, PG-3, PG-4

starting during overlay IG-78
PBS_MOM_HOME AG-404, AG-532, HG-137, RG-371
PBS_MOM_HOST_NAME IG-62
PBS_MOM_NODE_NAME AG-471, AG-532, HG-138,

RG-371
PBS_MOM_SERVICE_PORT IG-59, AG-532, HG-138,

RG-371
PBS_MOMPORT RG-400
pbs_movejob PG-47
PBS_MPI_DEBUG AG-460
pbs_mpihp RG-76
pbs_mpilam RG-78
pbs_mpirun RG-79
pbs_msgjob PG-49
PBS_NODENUM RG-400
PBS_O_HOME RG-400
PBS_O_HOST RG-400
PBS_O_LANG RG-400
PBS_O_LOGNAME RG-400
PBS_O_MAIL RG-400
PBS_O_PATH RG-400
PBS_O_QUEUE RG-400
PBS_O_SHELL RG-400
PBS_O_SYSTEM RG-400
PBS_O_TZ RG-400
PBS_O_WORKDIR RG-400
pbs_orderjob PG-51
PBS_OUTPUT_HOST_NAME IG-62, AG-532, HG-

138, RG-371
pbs_preempt_jobs PG-52
PBS_PRIMARY IG-62, AG-404, AG-532, HG-138, RG-

372
pbs_probe IG-63, AG-644, RG-81, UG-4
pbs_python RG-83, UG-3
PBS_QUEUE RG-400
PBS_RCP AG-532, HG-138, RG-372
pbs_rdel RG-90, UG-3
pbs_relnodesjob PG-54
pbs_rerunjob PG-55
pbs_rlsjob PG-56
pbs_rstat RG-94, UG-3, SG-3
pbs_rsub AG-371, RG-96, UG-3, SG-3
pbs_runjob PG-26, PG-57
pbs_sched IG-3, IG-4, RG-105, PG-2, PG-3, PG-4
PBS_SCHED_THREADS AG-533, HG-138, RG-372
Main-14 PBS Professional 2020.1.1 Big Book

Main Index
PBS_SCHEDULER_SERVICE_PORT IG-59, AG-532,
HG-138, RG-372

PBS_SCP AG-533, HG-138, RG-372
PBS_SECONDARY IG-62, AG-404, AG-533, HG-139,

RG-372
pbs_selectjob PG-59
pbs_selstat PG-62
PBS_SERVER IG-62, AG-404, AG-533, HG-139, RG-

372, RG-400
pbs_server IG-3, IG-4, RG-108, PG-2, PG-3
PBS_SERVER_HOST_NAME IG-62, AG-533, HG-139,

RG-372
PBS_SID RG-400
pbs_sigjob PG-66
pbs_sim SG-3
PBS_SNAPSHOT_PATH SG-2
PBS_START_COMM IG-159, AG-533, HG-139, RG-

372
PBS_START_MOM IG-159, AG-404, AG-533, HG-

139, RG-372
PBS_START_SCHED IG-159, AG-404, AG-533, HG-

139, RG-372
PBS_START_SERVER IG-159, AG-404, AG-533, HG-

139, RG-372
pbs_statfree PG-68
pbs_stathook(3B) PG-117
pbs_stathost PG-69
pbs_statjob PG-71
pbs_statnode PG-74
pbs_statque PG-76
pbs_statresv PG-78
pbs_statrsc PG-80
pbs_statsched PG-82
pbs_statserver PG-84
pbs_statvnode PG-86
pbs_submit PG-88
pbs_submit_resv PG-90
PBS_SUPPORTED_AUTH_METHODS AG-533, HG-

139, RG-373
PBS_TASKNUM RG-401
pbs_tclapi PG-104
pbs_tclsh RG-119, UG-4, PG-103
pbs_terminate PG-92
PBS_TMPDIR AG-534, HG-140, RG-373, RG-401
pbs_tmrsh RG-120
pbs_version

scheduler attribute RG-299
server attribute RG-292
vnode attribute RG-322

pbs_wish RG-122, RG-124, PG-103
pbsadmin RG-14, BG-7
pbs-alps-inventory-check hook AG-477
PBScrayhost AG-240, AG-468, RG-271, UG-191
PBScraylabel AG-468, UG-191

PBScraylabel_ AG-240, RG-271
PBScraynid AG-240, AG-468, RG-271, UG-191
PBScrayorder AG-240, AG-468, RG-272, UG-191
PBScrayseg RG-272
pbsdata BG-7
pbsdsh RG-29, UG-3
pbsfs AG-142, RG-31, UG-4, SG-3
pbshook HG-6, RG-14
pbsnodes RG-35, UG-4, SG-3
pbs-report UG-4
pbsrun RG-40
pbsrun_unwrap RG-50
pbsrun_wrap RG-51
pcap_accelerator AG-324, AG-613, AG-617, AG-619,

RG-340
pcap_node AG-324, AG-613, AG-617, AG-619, RG-341
pcpus

vnode attribute RG-322
pcput RG-272
peer scheduling RG-14, BG-19
per-CPU node-locked licenses UG-55
period BG-3
pgov AG-324, AG-613, AG-617, AG-619, RG-341
p-governor AG-317, AG-324, RG-341
pkr CG-3, CG-11

sample output CG-11
placement

task AG-169
placement pool AG-169, RG-15
placement set AG-169, RG-14
placement set series RG-14
placement sets

multihost AG-170
pmem RG-272
pnames

vnode attribute RG-322
policy RG-15

defining provisioning AG-339
scheduling RG-17

pool BG-4
Port

vnode attribute RG-322
POSIX RG-15
power cycles

minimizing AG-320
power profile

activate AG-319
deactivate AG-319

power profiles AG-315
power_off_iteration

server attribute AG-324
power_provisioning AG-322

server attribute AG-322, AG-324, RG-292
vnode attribute AG-324, RG-322
PBS Professional 2020.1.1 Big Book Main-15

Main Index
poweroff_eligible AG-324
vnode attribute RG-322

preempt RG-15
preempt_order AG-180, RG-254
preempt_prio AG-181, RG-254
preempt_queue_prio AG-181, RG-254
preempt_sort AG-181, RG-254
preempt_targets RG-273
preemption AG-180

level RG-15
method RG-15
target RG-15

preemption via checkpoint AG-188
preemptive scheduling AG-180
preemptive_sched AG-180, RG-254
pre-execution event hooks HG-6, RG-15
primary execution host RG-15
primary scheduler RG-15
primary server IG-62, AG-532, HG-138, RG-15, RG-372
prime_spill AG-196, RG-255
primetime RG-15
primetime_prefix AG-195, RG-254
printjob RG-125, UG-4
Priority

job attribute RG-341
queue attribute RG-316
vnode attribute RG-323

privilege
Manager AG-361
Operator AG-360
user AG-360

project AG-289, AG-611, AG-613, AG-614, AG-617,
AG-618, AG-619, AG-621, RG-15, BG-2

job attribute RG-341
project limit AG-289, RG-15

generic AG-289
individual AG-289

project limits AG-287
project name

format RG-357
prologue AG-319
prologues and epilogues

job arrays UG-152
provision RG-16, UG-201
provision_enable

vnode attribute RG-323
provision_policy AG-329, RG-255
provisioned vnode RG-16, UG-201

provisioning RG-366, UG-202
allowing time UG-205
and commands UG-204
AOE restrictions UG-203
creation of hooks AG-338
defining policy AG-339
hook RG-16
hooks AG-327
host restrictions UG-202
master script AG-337

writing AG-337
overview AG-328
policy AG-329
rebooting AG-328
requesting UG-204
reservations AG-331
using AOE UG-202
vnode selection AG-329
vnode states AG-332
vnodes UG-201

provisioning tool RG-16
pset

job attribute RG-341
pstate AG-323, RG-341
pulling queue RG-16
PVM (Parallel Virtual Machine) UG-102
pvmem RG-273
python_restart_max_hooks

server attribute RG-292
python_restart_max_objects

server attribute RG-292
python_restart_min_interval

server attribute RG-292
python3 BG-7
python3-pip BG-7

Q
qalter IG-16, RG-127, UG-3
qdel AG-645, RG-140, UG-3, SG-3
qdisable RG-143, UG-4
qenable RG-145, UG-4
qhold RG-147, UG-3, UG-118
qmgr AG-19, AG-652, RG-149, RG-380, UG-4, SG-3
qmove RG-172, UG-3, UG-169
qmsg RG-174, UG-3, UG-167
qorder RG-176, UG-3, UG-168, UG-169
qrerun AG-645, RG-178, UG-4
qrls RG-180, UG-3, UG-118
qrun RG-182, UG-4
qselect RG-186, UG-3, UG-187, SG-3
qsig RG-192, UG-3
qstart RG-195, UG-4
qstat AG-652, RG-197, UG-3, UG-118, UG-166, UG-
Main-16 PBS Professional 2020.1.1 Big Book

Main Index
169, UG-172, UG-174, UG-176, SG-3
qstop RG-211, UG-4
qsub IG-16, AG-645, RG-213, UG-3, SG-3
qterm RG-233, UG-4
qtime

job attribute RG-342
query_other_jobs

server attribute RG-292
queue AG-30

access to a AG-362, RG-1
ACL AG-363
attribute

acl_group_enable AG-370
acl_groups AG-370
acl_host_enable AG-370
acl_hosts AG-370
acl_user_enable AG-370
acl_users AG-370

definition RG-16
execution RG-6
furnishing RG-7
job attribute RG-342
pulling RG-16
reservation attribute RG-306
routing RG-17
vnode attribute RG-323

queue identifier
format RG-357

queue name
format RG-357

queue weight BG-3
queue. HG-121
queue.job() HG-122
queue.jobs() HG-122
queue.name HG-121
queue_rank

job attribute RG-342
queue_softlimits AG-184, RG-300
queue_type

job attribute RG-342
queue attribute RG-317

queued jobs AG-289
queued_jobs_threshold AG-295

queue attribute RG-316
queued_jobs_threshold_res AG-295

queue attribute RG-317
server attribute RG-293

queuejob HG-87
queuejob events HG-91
queues

creating AG-22
queuing RG-16, UG-1
quotas BG-6

R
rcp AG-532, HG-138, RG-372
rebooting

provisioning AG-328
recurrence rule UG-138
Red Hat Enterprise Linux IG-23
redundant license server configuration RG-16
refund BG-3
reject an action HG-6, RG-16
Release Notes

upgrade recommendations IG-65, IG-93
release_nodes_on_stageout RG-342
report UG-207
requesting provisioning UG-204
requeue RG-16
require_cred

queue attribute RG-317
require_cred_enable

queue attribute RG-317
Rerunable

job attribute RG-343
rerunning a simulation SG-7
reservation AG-610

access to a AG-362, RG-1
ACL AG-363
advance AG-198, RG-2, UG-135, UG-137
ASAP AG-198, RG-2, RG-10
attribute

Authorized_Groups AG-371
Authorized_Hosts AG-371
Authorized_Users AG-371

attributes in hooks HG-59
control of creation AG-363
degradation RG-16
degraded AG-198, RG-5, UG-135
deleting UG-142
instance AG-198, RG-13, UG-135
job-specific AG-198, RG-10, UG-135

ASAP AG-198, RG-2, RG-10, UG-135
now AG-198, RG-10, RG-13, UG-135
start AG-198, RG-10, RG-19, UG-135

maintenance AG-198
now AG-198, RG-10, RG-13
occurrence RG-13
reservation ID AG-199
setting start time & duration UG-138
soonest occurrence AG-198, RG-18, UG-136
standing AG-198, RG-19, UG-136

instance AG-198, RG-13, UG-135
soonest occurrence AG-198, RG-18, UG-136

standing reservation UG-138
start RG-10
submitting jobs UG-146

reservation degradation RG-16
PBS Professional 2020.1.1 Big Book Main-17

Main Index
reservation ID RG-16
reservation identifier RG-16
reservation name

format RG-358
reservations AG-197

provisioning AG-331
time for provisioning UG-205

reserve_count
reservation attribute RG-306

reserve_duration
reservation attribute RG-306

reserve_end
reservation attribute RG-306

reserve_ID
reservation attribute RG-306

reserve_index
reservation attribute RG-307

reserve_job RG-307
Reserve_Name

reservation attribute RG-307
Reserve_Owner

reservation attribute RG-307
reserve_retry

reservation attribute RG-307
reserve_retry_cutoff

server attribute RG-293
reserve_retry_init

server attribute RG-293
reserve_retry_time

server attribute RG-293
reserve_rrule

reservation attribute RG-308
reserve_start

reservation attribute RG-308
reserve_state

reservation attribute RG-309
reserve_substate

reservation attribute RG-309
resource AG-232, RG-17

built-in AG-231, RG-3
consumable AG-231, RG-4
custom AG-231, RG-4
indirect AG-231, AG-271, RG-9
job-wide RG-11, UG-51, UG-52
non-consumable AG-232, RG-12
shared AG-232, AG-271, RG-18

resource limits AG-287
resource usage limits AG-287
Resource_List AG-610, AG-611, AG-613, AG-614, AG-

617, AG-618, AG-619, AG-621, UG-24
job attribute RG-343
reservation attribute RG-310

Resource_List.eoe AG-322, RG-267
resource_unset_infinite RG-256

resources RG-256
in hooks HG-47
unset AG-161

resources_assigned AG-619
queue attribute RG-317
server attribute RG-294
vnode attribute RG-323

resources_available
queue attribute RG-318
server attribute RG-294
vnode attribute RG-323

resources_available.eoe AG-322, RG-267
resources_default

queue attribute RG-318
server attribute RG-294

resources_max
queue attribute RG-318
server attribute RG-295

resources_min
queue attribute RG-318

resources_released RG-343
resources_released_list RG-344
resources_used

job attribute RG-344
resources_used.energy AG-319, AG-322
restart RG-17, RG-240
restart file RG-17
restart script RG-17
restrict_res_to_release_on_suspend RG-295
restrict_user AG-385
restrict_user_exceptions AG-385
restrict_user_maxsysid AG-386
restrictions

AOE UG-203
provisioning hosts UG-202

results of simulation SG-6
resv

vnode attribute RG-324
resv. HG-132
resv.resvid HG-132
RESV_BEING_DELETED RG-367
RESV_CONFIRMED RG-367
RESV_DEGRADED RG-367
RESV_DELETED RG-367
RESV_DELETING_JOBS RG-367
resv_enable AG-371

vnode attribute RG-324
resv_enable server attribute AG-363
RESV_FINISHED RG-367
RESV_IN_CONFLICT RG-367
resv_nodes UG-135

reservation attribute RG-310
RESV_NONE RG-367
Main-18 PBS Professional 2020.1.1 Big Book

Main Index
resv_post_processing_time
server attribute RG-295

RESV_RUNNING RG-367
RESV_TIME_TO_RUN RG-367
RESV_UNCONFIRMED RG-367
RESV_WAIT RG-367
resv-exclusive RG-366
resvsub HG-87
resvsub events HG-90
RHEL CG-1
role BG-3
roles AG-359
round_robin RG-256
route RG-17
route queue RG-379, RG-382
route_destinations

queue attribute RG-319
route_held_jobs

queue attribute RG-319
route_lifetime

queue attribute RG-319
route_retry_time

queue attribute RG-319
route_waiting_jobs

queue attribute RG-319
routing queue RG-17
RPM

debuginfo AG-643
rpp_highwater

server attribute RG-295
rpp_max_pkt_check RG-295
rpp_retry

server attribute RG-295
run_count AG-611, AG-614, AG-621, RG-137, RG-228,

UG-25, UG-119
job attribute RG-344

run_time AG-127
run_version

job attribute RG-344
runjob HG-88
runjob events HG-94
running a simulation SG-5
RUR AG-318

S
sandbox RG-228

job attribute RG-344
scatter UG-65
sched_cycle_length

scheduler attribute RG-301
sched_host

scheduler attribute RG-301

sched_log
scheduler attribute RG-301

sched_port
scheduler attribute RG-301

sched_preempt_enforce_resumption AG-182
scheduler attribute RG-301

sched_priv
scheduler attribute RG-301

schedselect
job attribute RG-345

scheduler IG-4, RG-17, UG-2, PG-3, PG-4
log events AG-538

scheduler_iteration
scheduler attribute RG-300
server attribute RG-296

Scheduling
server state RG-364

scheduling UG-1
policy RG-15, RG-17
scheduler attribute RG-300
server attribute RG-296

scheduling jobs RG-17
Schema Admins IG-14, RG-17
scp IG-12, AG-533, HG-138, RG-372
scratch CG-19
scratch space AG-257

dynamic
host-level AG-274
server-level AG-273

static
host-level AG-274
server-level AG-274

script
cloud bursting startup CG-17
master provisioning AG-337
startup CG-17
writing provisioning AG-337

secondary scheduler RG-17
secondary server IG-62, AG-533, HG-139, RG-17, RG-

372
secure copy IG-12
SELinux CG-2, CG-7
sequence number RG-17, UG-149
PBS Professional 2020.1.1 Big Book Main-19

Main Index
server IG-4, RG-18, UG-2, PG-3
access to AG-362
access to the RG-1
ACL AG-363
attribute

acl_host_enable AG-370
acl_hosts AG-370
acl_user_enable AG-370
acl_users AG-370
flatuid AG-376
log_events AG-538
managers AG-361
operators AG-361
resv_enable AG-363

default RG-5
job attribute RG-345
log events AG-538
name RG-18
parameters AG-18
primary IG-62, AG-532, HG-138, RG-372
recording configuration AG-19
reservation attribute RG-310
secondary IG-62, AG-533, HG-139, RG-372

server attributes
node_idle_limit AG-323
power_off_iteration AG-324
power_provisioning AG-322

server hook HG-6
server_dyn_res RG-256
server_dyn_res_alarm RG-301
server_softlimits AG-184, RG-300
server_state

server attribute RG-297
service account

PBS IG-14
service units

dynamic BG-5
standard BG-5

session_id
job attribute RG-345

set_power_cap AG-324, RG-341
setting hook trigger events HG-31
setting job attributes UG-16
setting limits AG-296
share UG-65
shared resource AG-232, AG-271, RG-18
shares AG-139
sharing

vnode attribute RG-324
Shell_Path_List

job attribute RG-345
shrink-to-fit job RG-18
SIGKILL UG-168
SIGNULL UG-168

SIGTERM UG-168
SIM_LICENSE_LOCATION SG-1
simsh SG-3
Simulate configuration file SG-1
simulation

output SG-6
output of rerun SG-7
rerunning SG-7
results SG-6
running SG-5

single_signon_password_enable
server attribute RG-297

sister RG-18
sisterhood RG-18
site RG-273

definition RG-18
size

format AG-238, RG-260, RG-360, UG-50
sleep

vnode state AG-324
SLES CG-1
smp_cluster_dist RG-256
snapshot

checking contents SG-5
creating SG-4

snapshot checkpoint RG-18
soft_walltime RG-274
software RG-273
soonest occurrence AG-198, RG-18, UG-136
sort key AG-145
sort_priority RG-252
sort_queues RG-257
ssh IG-12

passwordless BG-23
sshd AG-595
stage

in RG-18
out RG-18

stagein UG-25
job attribute RG-345

stageout UG-25
job attribute RG-346

Stageout_status
job attribute RG-346

staging and execution directory RG-19
stale RG-366
standard service unit BG-3
standard service units BG-5
standing reservation AG-198, RG-19, UG-136, UG-138
start reservation AG-198, RG-10, RG-19, UG-135
start_time RG-274
started

queue attribute RG-319
Main-20 PBS Professional 2020.1.1 Big Book

Main Index
starting
MoM IG-166

startup script CG-17
example CG-18
troubleshooting CG-20

starving_jobs AG-184, RG-251, RG-300
state RG-19

scheduler attribute RG-301
server

Hot_Start RG-364
Idle RG-364
Scheduling RG-364
Terminating RG-364
Terminating_Delayed RG-364

vnode attribute RG-326
state_count

queue attribute RG-319
server attribute RG-297

states
job array UG-151
vnodes and provisioning AG-332

state-unknown, down RG-366
static fit AG-169
stime

job attribute RG-346
storage

external BG-6
storage quotas BG-6
strict ordering RG-19
strict_fifo RG-257
strict_ordering RG-257
strict_ordering and backfilling AG-224
string AG-243
string resource value

format AG-238, AG-243, RG-260, RG-360, UG-50
string_array AG-244

format AG-238, AG-244, RG-260, RG-360, UG-51
SU_DYNAMIC BG-5
SU_STANDARD BG-5
subject RG-19
subjob RG-19, UG-149
subjob identifier

format RG-358
subjob index RG-19, UG-149
Submit_arguments

job attribute RG-346
submitting a PBS job UG-11
submitting jobs with Budget BG-65
subordinate MoM RG-19
substate

job attribute RG-346
support team AG-655
SuSE IG-23

sw_index
job attribute RG-346

sync_time RG-257
syntax

identifier UG-150
syslog AG-542

T
tar file

overlay upgrade IG-73, IG-85
task RG-19
task placement AG-169, RG-19
TCL PG-103
teller BG-3
terminate RG-240
Terminating

server state RG-364
Terminating_Delayed

server state RG-364
three-server configuration RG-19
throughput_mode

scheduler attribute RG-302
time between reservations UG-147
time-sharing RG-379, RG-380
tm_atnode PG-94
tm_attach PG-94
tm_finalize PG-94
tm_init PG-94
tm_kill PG-94
tm_nodeinfo PG-94
tm_notify PG-94
tm_obit PG-94
tm_poll PG-94
tm_publish PG-94
tm_rescinfo PG-94
tm_spawn PG-94
tm_subscribe PG-94
tm_taskinfo PG-94
TMPDIR RG-401
tolerate_node_failures RG-347
topjob_ineligible

job attribute RG-347
topology_info

vnode attribute RG-326
total_jobs

queue attribute RG-319
server attribute RG-297

TPP RG-20
tracejob RG-235, UG-3
transaction BG-3
transferring funds BG-4
troubleshooting startup script CG-20
tutorial on Budget BG-63
PBS Professional 2020.1.1 Big Book Main-21

Main Index
type
hook attribute RG-351

type codes AG-538

U
UID RG-20
umask

job attribute RG-347
unburst CG-16
unknown node AG-139
unknown_shares AG-138, RG-257
unset resources AG-161
until_spec UG-138
upgrade

migration IG-65
migration under Linux IG-93
migration under Windows IG-109, IG-125
overlay IG-65

upgrading
Linux IG-70
Windows IG-109, IG-125

usage limits AG-287
user BG-2, BG-3

access AG-362, RG-20
ACLs AG-364
definition RG-20
hook attribute RG-351
ID RG-20
privilege AG-360
roles AG-359

user environment SG-2
user job accounting UG-207
user limit AG-232, AG-289, RG-20

generic AG-289
individual AG-289

user limits AG-287
User_List

job attribute RG-348
username

format RG-358
Windows

format RG-358
users

authenticating BG-21
using Simulate on a snapshot SG-4

V
Variable_List

job attribute RG-348
vchunk RG-20
vchunk.chunk_resources.keys() HG-131
vchunk.vnode_name HG-131
version 1 configuration file RG-20

version 2 configuration file RG-20
version information AG-644
virtual nodes AG-37
vmem RG-274
vnode AG-37, RG-20, RG-274

attributes in hooks HG-57
borrowing AG-230, AG-271, RG-3
managing AG-232, AG-271, RG-12
memory-only AG-232, RG-12
natural AG-38
selection for provisioning AG-329
states and provisioning AG-332

vnode attributes
last_state_change_time AG-323
last_used_time AG-323

vnode name
format RG-358

vnode types UG-49
vnode.topology_info HG-134
vnode_pool AG-475, RG-327
vnodedef_additive AG-469
vnodedefs file RG-20
vnodes

provisioning UG-201
vntype RG-274
vp RG-20
VPN CG-2, CG-22, BG-8
vscatter UG-65

W
waiting for job completion UG-120
wait-provisioning RG-366
walltime RG-275
Windows IG-15, IG-17, IG-23

mixed-mode complex RG-12
password AG-645

Windows-Linux complex RG-20
workflow BG-4
wrapper script SG-3
writing provisioning script AG-337

X
X forwarding IG-63, AG-535
xauth IG-63, AG-535
Xeon Phi nodes AG-477
Main-22 PBS Professional 2020.1.1 Big Book

	Main Table of Contents
	About PBS Documentation

	Installation & Upgrade Guide (IG)
	Contents
	PBS Architecture
	1.1 What is PBS?
	1.2 PBS Daemons
	1.2.1 Server
	1.2.2 Schedulers
	1.2.3 MoM
	1.2.4 Communication Daemon
	1.2.5 Typical Daemon Placements
	1.2.5.1 Linux Layouts
	1.2.5.2 Windows Layouts
	1.2.5.2.i Linux-Windows Complex
	1.2.5.2.ii Mixed-mode Complex

	1.2.6 Single Execution System
	1.2.7 Single Execution System with Front End
	1.2.8 Multiple Execution Systems

	1.3 PBS Commands
	1.4 Scheduling Jobs

	Pre-Installation Steps
	2.1 Prerequisites for Running PBS
	2.1.1 Run Same Version Within Complex
	2.1.2 Resources Required by PBS
	2.1.2.1 Memory Required By Server Running Hooks
	2.1.2.2 Memory Required for Job History
	2.1.2.3 Amount of Memory in Complex
	2.1.2.4 Adequate Space for Logfiles
	2.1.2.5 Installation Disk Space
	2.1.2.6 Disk and Memory for Communication Daemon
	2.1.2.7 Memory for Data Store

	2.1.3 Name Resolution and Network Configuration
	2.1.3.1 Firewalls
	2.1.3.2 Network Tuning
	2.1.3.3 Planning for Number of Machines Connected to Complex
	2.1.3.4 Required Name Resolution
	2.1.3.5 Required Network Configuration
	2.1.3.6 Recommendations for Name Resolution and Network Configuration
	2.1.3.6.i Recommendations for Name Resolution and Network Configuration on Windows

	2.1.3.7 Order of Operations for Name Resolution and Network Configuration
	2.1.3.8 Server Hostname
	2.1.3.9 Sockets
	2.1.3.10 Mounting NFS File Systems
	2.1.3.11 Making Ports Available

	2.1.4 HPE Prerequisites
	2.1.4.1 HPE MPI Recommendation
	2.1.4.2 Power File Requirement

	2.1.5 License Server Requirement
	2.1.6 System Clocks in Sync
	2.1.7 User Requirements on Linux
	2.1.7.1 User Accounts
	2.1.7.2 Linux User Authorization

	2.2 Important Considerations
	2.2.1 Avoiding Datastore Corruption from Job Spool Files
	2.2.2 Using noexec on /tmp

	2.3 PBS Configurations for Windows
	2.3.1 Definitions
	2.3.2 Domained Environment Required
	2.3.3 Permission Requirement
	2.3.4 Daemon Layout for Windows
	2.3.5 Windows Configuration in a Domained Environment
	2.3.5.1 Machines
	2.3.5.2 User Accounts
	2.3.5.3 User Jobs

	2.3.6 User Authorization Under Windows
	2.3.6.1 Requirements for Non-admin Users
	2.3.6.2 Requirements for Admin Users

	2.3.7 Windows User HOMEDIR
	2.3.7.1 Configuring User HOMEDIR
	2.3.7.2 Directory Must Exist Already
	2.3.7.3 Default Directory

	2.3.8 Windows Caveats
	2.3.8.1 Installation of Microsoft Redistributable Pack
	2.3.8.2 Make Sure ComSpec Environment Variable Is Set
	2.3.8.3 Unsupported Windows Configurations

	Installation
	3.1 Overview of Installation
	3.1.1 Prerequisite Reading
	3.1.2 Replacing an Older Version of PBS
	3.1.3 Package Naming

	3.2 Licenses
	3.2.1 Licensing Caveats

	3.3 Major Steps for Installing PBS Professional
	3.4 All Installations
	3.4.1 Automatic Installation of Database
	3.4.2 Choosing Installation Sub-package
	3.4.2.1 Pathname Conventions

	3.4.3 Installing Additional Communication Daemons
	3.4.4 Deciding to Run a MoM After Installation
	3.4.5 Installation Method and Instructions by Platform

	3.5 Installing via RPM on Linux Systems
	3.5.1 Prerequisites for Installing on Linux Systems
	3.5.1.1 Prerequisite Reading
	3.5.1.2 Permissions
	3.5.1.3 Create PBS Data Service Management Account
	3.5.1.4 Unset PBS_EXEC Environment Variable

	3.5.2 Generic Installation on Linux
	3.5.2.1 Downloading PBS
	3.5.2.2 Setting Installation Parameters
	3.5.2.2.i Caveats for Installation Parameters

	3.5.2.3 Installing on a Standalone Linux Machine
	3.5.2.4 Installing on a Linux Cluster
	3.5.2.4.i Install PBS on Execution Hosts
	3.5.2.4.ii Install PBS on Server Host
	3.5.2.4.iii Start PBS on Server Host
	3.5.2.4.iv Configure Licensing
	3.5.2.4.v Install PBS on Client Hosts
	3.5.2.4.vi Define Vnodes
	3.5.2.4.vii Check User Paths

	3.5.3 Installing on MC990X or Superdome Flex
	3.5.3.1 Prerequisites for Installing on a MC990X or Superdome Flex
	3.5.3.2 Download and Install the New PBS
	3.5.3.3 Start PBS
	3.5.3.4 Configure Licensing
	3.5.3.5 Test the New PBS
	3.5.3.6 Configure Cgroups to Manage Cpusets
	3.5.3.7 Restart MoMs

	3.5.4 Installing PBS on the HPE 8600
	3.5.4.1 HPE 8600 Components
	3.5.4.2 Requirements for the HPE 8600 with HPE MPI
	3.5.4.3 Choosing Whether PBS Will Manage Cpusets with HPE 8600 Running HPE MPI
	3.5.4.4 Installation of the PBS Server, Scheduler, and Communication Daemons
	3.5.4.5 Installation of the PBS MoM
	3.5.4.6 Start PBS Server
	3.5.4.7 Configure Licensing
	3.5.4.8 Add Compute Nodes
	3.5.4.9 Configuring Placement Sets on the HPE 8600
	3.5.4.10 Configure Cgroups to Manage Cpusets

	3.5.5 Making User Paths Work
	3.5.5.1 Setting User Paths to Location of Commands
	3.5.5.2 Making Existing User Paths Work with New Location
	3.5.5.3 Testing User Paths

	3.5.6 Caveats for Uninstalling on Linux

	3.6 Installing via dpkg on Ubuntu
	3.7 Installing PBS on Windows Hosts
	3.7.1 Daemon Layout
	3.7.2 Prerequisites
	3.7.3 Default Installation Locations
	3.7.4 Where to Run Daemons (Services)
	3.7.5 PBS Requirements on Windows
	3.7.6 Make Sure Hostnames Resolve Correctly
	3.7.7 Create Job Submission Accounts
	3.7.8 Create Installation and Service Accounts
	3.7.8.1 Creating Installation Account in Domained Environment
	3.7.8.2 Creating PBS Service Account in Domained Environment
	3.7.8.2.i Delegating Read Access to PBS Service Account in Domained Environment
	3.7.8.2.ii Service Account Caveats

	3.7.9 Installation Notes for Domained Environment
	3.7.9.1 Installation Path
	3.7.9.2 Notes on Installation

	3.7.10 Steps to Install PBS on Windows
	3.7.11 Post-installation Steps
	3.7.11.1 Configuring MoMs
	3.7.11.2 Configuring Client Hosts
	3.7.11.3 Defining Vnodes
	3.7.11.4 Configuring Remote File Copy

	3.7.12 Post-installation Considerations on Windows
	3.7.12.1 File Creation
	3.7.12.2 File Access on Windows

	3.7.13 Startup on Windows
	3.7.13.1 Setting Up User Accounts and Directories

	3.7.14 Uninstalling PBS Professional on Windows

	Communication
	4.1 Communication Within a PBS Complex
	4.2 Terminology
	4.3 Prerequisites
	4.4 Communication Parameters
	4.4.1 Location of Communication Daemon for Endpoint
	4.4.2 Location of Other Communication Daemons
	4.4.3 Number of Threads for Communication Daemon
	4.4.4 Daemon Log Mask
	4.4.5 Name of Endpoint Host
	4.4.6 Whether Host Runs Communication Daemon
	4.4.7 Scheduler Throughput Mode
	4.4.8 Managing Communication Behavior

	4.5 Inter-daemon Communication Using TPP
	4.5.1 Inter-daemon Connection Behavior Using TPP
	4.5.1.1 Sending and Receiving
	4.5.1.2 Data Compression

	4.5.2 Communication Daemon Syntax
	4.5.2.1 Usage on Linux

	4.5.3 Adding Communication Daemons
	4.5.3.1 Installation Location of Communication Daemons
	4.5.3.2 Configuring Communication Daemons
	4.5.3.2.i Caveats for Configuring Communication Daemons

	4.5.4 Recommendations for Maximizing Communication Performance
	4.5.5 Robust Communication with TPP
	4.5.5.1 Failover and Communication Daemons
	4.5.5.2 Fault Tolerance

	4.5.6 Extending Your Complex
	4.5.7 Changing IP Address of pbs_comm Host
	4.5.8 Configuring Communication for Internal and External Networks
	4.5.9 Troubleshooting Communication with TPP
	4.5.10 Logging and Errors with TPP
	4.5.10.1 Communication Daemon Logfiles
	4.5.10.2 Messages from Endpoints
	4.5.10.3 Messages from Communication Daemons
	4.5.10.4 Important Messages from Communication or Other Daemons
	4.5.10.5 Informational Messages from Communication or Other Daemons

	4.6 Ports Used by PBS
	4.6.1 Ports Used by PBS in TPP Mode
	4.6.2 Port Settings in pbs.conf

	4.7 PBS with Multihomed Systems
	4.7.1 Contacting the Server
	4.7.2 Delivering Output and Error Files
	4.7.3 When Installing and Upgrading
	4.7.4 Hostname Parameters in pbs.conf

	Initial Configuration
	5.1 Validate the Installation
	5.2 Support PBS Features

	Upgrading
	6.1 Types of Upgrades
	6.1.1 Choosing Upgrade Type on Linux
	6.1.2 Upgrading Existing All-Windows Complex
	6.1.3 Upgrading from Windows/Linux Combination to Windows/Linux Combination

	6.2 Differences from Previous Versions
	6.2.1 New Way to Manage Vnode Attributes
	6.2.2 New Scheduler Attributes
	6.2.3 Using RPM Instead of INSTALL (14.2)
	6.2.4 Using systemd Instead of Start/stop Script (14.2)
	6.2.5 Automatic Upgrade of Database (13.0)
	6.2.6 Installing Communication Daemon (13.0)
	6.2.7 Default Location of PBS_EXEC and PBS_HOME
	6.2.8 Use PBS Start Script or systemd During Overlay Upgrade

	6.3 Caveats and Advice
	6.3.1 Licensing
	6.3.2 Making Time to Upgrade
	6.3.3 Upgrading Database
	6.3.4 Data Service Account Must Be Same as When Installed
	6.3.5 Updating Hooks for New Python Version
	6.3.6 New Server Requires New MoMs
	6.3.7 Do Not Unset default_chunk.ncpus
	6.3.8 Unset PBS_EXEC Environment Variable
	6.3.9 Saving and Re-creating Vnode Configuration
	6.3.10 Upgrading with Failover

	6.4 Introduction to Upgrading Under Linux
	6.4.1 Directories
	6.4.2 Upgrading on Multiple Machines
	6.4.3 Upgrading on a Machine Running the Cpuset MoM

	6.5 Overlay Upgrade Under Linux
	6.5.1 Prevent Jobs From Being Started
	6.5.2 Allow Running Jobs to Finish, or Requeue Them
	6.5.3 Disable Cloud Bursting
	6.5.4 Disable STONITH Script
	6.5.5 Unwrap Any Wrapped MPIs
	6.5.6 Save Execution Host Configuration Information
	6.5.7 Save Hooks and Hook Configuration Files
	6.5.8 Update Hooks and Hook Configuration Files for New Python
	6.5.9 Shut Down Your Existing PBS
	6.5.10 Back Up Existing PBS Files
	6.5.11 Install the New Version of PBS
	6.5.11.1 Install New PBS Server(s)
	6.5.11.2 Install New PBS MoMs
	6.5.11.3 Install New PBS Client Commands
	6.5.11.4 Install New PBS Communication Daemons

	6.5.12 Prepare Configuration File for New Scheduler(s)
	6.5.13 Update Holidays File
	6.5.14 Modify the New PBS Configuration File
	6.5.15 Configure Communication Daemons
	6.5.16 Start Then Stop New PBS Servers (If Using Failover)
	6.5.16.1 Start New Servers
	6.5.16.2 Stop the Servers

	6.5.17 Start New PBS MoMs, Schedulers, Servers, and Comms
	6.5.17.1 Start PBS on Execution Hosts
	6.5.17.2 Start PBS on Server Hosts
	6.5.17.3 Restart Multischeds
	6.5.17.4 Start PBS on Communication-only Hosts

	6.5.18 Import and Configure Hooks
	6.5.18.1 Import Old Hooks Except for Cgroups Hook
	6.5.18.2 Modify Cgroups Hook Configuration File
	6.5.18.3 Enable Cgroups Hook
	6.5.18.4 Write and Deploy New Hooks
	6.5.18.5 Restart MoMs

	6.5.19 Set License Location Server Attribute
	6.5.20 Configure Sharing and Placement Sets
	6.5.20.1 Configuration with Cgroups Hook
	6.5.20.2 Configuration without Cgroups Hook

	6.5.21 Set New Scheduler Attributes
	6.5.22 Re-wrap Any MPIs
	6.5.23 Enable STONITH Script
	6.5.24 Enable Cloud Bursting
	6.5.25 Enable Scheduling
	6.5.26 Shut Down and Restart Servers
	6.5.27 Removing Old PBS

	6.6 Overlay Upgrade on One or More Machines Running Cpuset MoM
	6.6.1 Prevent Jobs From Being Started
	6.6.2 Allow Running Jobs to Finish, or Requeue Them
	6.6.3 Disable Cloud Bursting
	6.6.4 Disable STONITH Script
	6.6.5 Unwrap Any Wrapped MPIs
	6.6.6 Save Execution Host Configuration Information
	6.6.7 Save Hooks and Hook Configuration Files
	6.6.8 Update Hooks and Hook Configuration Files for New Python
	6.6.9 Remove Old PBS Configuration and Resource Conflicts
	6.6.10 Shut Down Your Existing PBS
	6.6.11 Back Up Existing PBS Files
	6.6.12 Install the New Version of PBS
	6.6.12.1 Installing MoM on non-HPE 8600
	6.6.12.2 Installing MoM on HPE 8600

	6.6.13 Prepare Configuration File for New Scheduler(s)
	6.6.14 Update Holidays File
	6.6.15 Modify the New PBS Configuration File
	6.6.16 Configure Communication Daemons
	6.6.17 Start Then Stop New PBS Servers (If Using Failover)
	6.6.17.1 Start New Servers
	6.6.17.2 Stop the Servers

	6.6.18 Start New PBS MoMs, Schedulers, Servers, and Comms
	6.6.18.1 Start PBS on Execution Hosts
	6.6.18.2 Start PBS on Server Hosts
	6.6.18.3 Restart Multischeds
	6.6.18.4 Start PBS on Communication-only Hosts

	6.6.19 Import and Configure Hooks
	6.6.19.1 Import Old Hooks Except for Cgroups Hook
	6.6.19.2 Modify Cgroups Hook Configuration File
	6.6.19.3 Enable Cgroups Hook
	6.6.19.4 Write and Deploy New Hooks
	6.6.19.5 Restart MoMs

	6.6.20 Set License Location Server Attribute
	6.6.21 Configure Sharing and Placement Sets
	6.6.22 Re-Wrap Any MPIs
	6.6.23 Shut Down and Restart Servers
	6.6.24 Set New Scheduler Attributes
	6.6.25 Enable STONITH Script
	6.6.26 Enable Cloud Bursting
	6.6.27 Enable Scheduling
	6.6.28 Removing Old PBS

	6.7 Migration Upgrade Under Linux
	6.7.1 Set Paths for Old PBS
	6.7.2 Prevent Jobs From Being Enqueued or Started
	6.7.3 Allow Running Jobs to Finish, or Requeue Them
	6.7.4 Disable Cloud Bursting
	6.7.5 Disable STONITH Script
	6.7.6 Unwrap Any Wrapped MPIs
	6.7.7 Save Server Host Information To Be Used for New PBS
	6.7.8 Save Execution Host Configuration Files
	6.7.9 Save Hooks and Hook Configuration Files
	6.7.10 Update Hooks and Hook Configuration Files for New Python
	6.7.11 Shut Down Your Existing PBS
	6.7.12 Back Everything Up to Transfer Location
	6.7.12.1 Back Up Server/scheduler/communication Host
	6.7.12.2 Back Up Execution Host Information

	6.7.13 Install the New Version of PBS
	6.7.13.1 Install New PBS Server
	6.7.13.2 Install New PBS MoMs
	6.7.13.3 Install New PBS Client Commands
	6.7.13.4 Install New PBS Communication Daemons

	6.7.14 Switch To New PBS_EXEC Path
	6.7.15 Create PBS_HOME
	6.7.16 Start and Stop the New Server (If Using Failover)
	6.7.17 Start the New Server Without Defined Queues or Vnodes
	6.7.18 Re-wrap Any MPIs
	6.7.19 Set License Location Server Attribute
	6.7.20 Clean Up Configuration Information
	6.7.20.1 Clean Up Scheduler Configuration Files
	6.7.20.2 Clean Up Scheduler Attributes
	6.7.20.3 Clean Up Server Configuration
	6.7.20.4 Copy User Credentials to New Server
	6.7.20.5 Clean up Vnode Configuration
	6.7.20.5.i Prepare Configuration Information for Parent Vnodes

	6.7.21 Create and Configure New Multischeds
	6.7.22 Start New Server and New Schedulers
	6.7.23 Replicate Queue, Server, Scheduler, and Vnode Configurations
	6.7.23.1 Replicate Server and Queue Attributes
	6.7.23.2 Replicate Scheduler Attributes
	6.7.23.3 Replicate Vnode Attributes

	6.7.24 Import and Configure Hooks
	6.7.24.1 Import Old Hooks Except for Cgroups Hook
	6.7.24.2 Modify Cgroups Hook Configuration File
	6.7.24.3 Enable Cgroups Hook
	6.7.24.4 Write and Deploy New Hooks

	6.7.25 Start New MoMs
	6.7.26 Configure Sharing and Placement Sets
	6.7.26.1 Configuration with Cgroups Hook
	6.7.26.2 Configuration without Cgroups Hook

	6.7.27 Start New Communication Daemons
	6.7.28 Verify Communication Between Server and MoMs
	6.7.29 Re-create Reservations
	6.7.30 Change Ports and PBS_EXEC Path in pbs.conf for Old PBS
	6.7.31 Start the Old Server
	6.7.32 Verify Old Server is Running on Alternate Ports
	6.7.33 Move Existing Jobs to the New Server
	6.7.34 Shut Down Old Server
	6.7.35 Enable STONITH Script
	6.7.36 Enable Cloud Bursting
	6.7.37 Enable Scheduling
	6.7.38 Removing Old PBS

	6.8 Upgrading a Windows/Linux Complex
	6.8.1 Set Paths for Old PBS
	6.8.2 Prevent Jobs From Being Enqueued or Started
	6.8.3 Allow Running Jobs to Finish, or Requeue Them
	6.8.4 Disable Cloud Bursting
	6.8.5 Disable STONITH Script
	6.8.6 Save Server Host Information To Be Used for New PBS
	6.8.7 Save Execution Host Configuration Files
	6.8.8 Save Hooks and Hook Configuration Files
	6.8.9 Update Hooks and Hook Configuration Files for New Python
	6.8.10 Shut Down Your Existing PBS
	6.8.11 Back Everything Up to Transfer Location
	6.8.11.1 Back Up Server/scheduler/communication Host
	6.8.11.2 Back Up Execution Host Information

	6.8.12 Install the New Version of PBS
	6.8.12.1 Install New PBS Server
	6.8.12.2 Install New PBS Communication Daemons
	6.8.12.3 Switch To New PBS_EXEC Path
	6.8.12.4 Create PBS_HOME
	6.8.12.5 Install New PBS MoMs and Client Commands
	6.8.12.6 Configure New PBS MoMs and Client Hosts

	6.8.13 Start and Stop the New Server (If Using Failover)
	6.8.14 Start the New Server Without Defined Queues or Vnodes
	6.8.15 Set License Location Server Attribute
	6.8.16 Clean Up Configuration Information
	6.8.16.1 Clean Up Scheduler Configuration Files
	6.8.16.2 Clean Up Scheduler Attributes
	6.8.16.3 Clean Up Server Configuration
	6.8.16.4 Copy User Credentials to New Server
	6.8.16.5 Clean up Vnode Configuration
	6.8.16.5.i Prepare Configuration Information for Parent Vnodes

	6.8.17 Create and Configure New Multischeds
	6.8.18 Start New Server and New Schedulers
	6.8.19 Replicate Queue, Server, Scheduler, and Vnode Configurations
	6.8.19.1 Replicate Server and Queue Attributes
	6.8.19.2 Replicate Scheduler Attributes
	6.8.19.3 Replicate Vnode Attributes

	6.8.20 Import and Configure Hooks
	6.8.20.1 Import Old Hooks Except for Cgroups Hook
	6.8.20.2 Modify Cgroups Hook Configuration File
	6.8.20.3 Enable Cgroups Hook
	6.8.20.4 Write and Deploy New Hooks
	6.8.20.5 Start MoMs

	6.8.21 Configure Sharing and Placement Sets
	6.8.21.1 Configuration with Cgroups Hook
	6.8.21.2 Configuration without Cgroups Hook

	6.8.22 Start New Communication Daemons
	6.8.23 Verify Communication Between Server and MoMs
	6.8.24 Re-create Reservations
	6.8.25 Change Ports and PBS_EXEC Path in pbs.conf for Old PBS
	6.8.26 Start the Old Server
	6.8.27 Verify Old Server is Running on Alternate Ports
	6.8.28 Move Existing Jobs to the New Server
	6.8.29 Shut Down Old Server
	6.8.30 Enable STONITH Script
	6.8.31 Enable Cloud Bursting
	6.8.32 Enable Scheduling
	6.8.33 Removing Old PBS

	6.9 Upgrading from an All-Windows Complex
	6.9.1 Prevent Jobs From Being Enqueued or Started
	6.9.2 Allow Running Jobs to Finish, or Kill Them
	6.9.3 Disable Cloud Bursting
	6.9.4 Disable STONITH Script
	6.9.5 Save Server Host Information To Be Used for New PBS
	6.9.6 Save Execution Host Configuration Files
	6.9.7 Save Hooks and Hook Configuration Files
	6.9.8 Update Hooks and Hook Configuration Files for New Python
	6.9.9 Shut Down Your Existing PBS
	6.9.10 Install the New Version of PBS
	6.9.10.1 Install New PBS Server
	6.9.10.2 Install New PBS Communication Daemons
	6.9.10.3 Create PBS_HOME
	6.9.10.4 Install New PBS MoMs and Client Commands
	6.9.10.5 Configure New PBS MoMs and Client Hosts

	6.9.11 Start the New Server Without Defined Queues or Vnodes
	6.9.12 Set License Location Server Attribute
	6.9.13 Clean Up Configuration Information
	6.9.13.1 Clean Up Scheduler Configuration Files
	6.9.13.2 Clean Up Scheduler Attributes
	6.9.13.3 Clean Up Server Configuration
	6.9.13.4 Clean up Vnode Configuration
	6.9.13.4.i Prepare Configuration Information for Parent Vnodes

	6.9.14 Create and Configure New Multischeds
	6.9.15 Start New Server and New Schedulers
	6.9.16 Replicate Queue, Server, Scheduler, and Vnode Configurations
	6.9.16.1 Replicate Server and Queue Attributes
	6.9.16.2 Replicate Scheduler Attributes
	6.9.16.3 Replicate Vnode Attributes

	6.9.17 Import and Configure Hooks
	6.9.17.1 Import Old Hooks Except for Cgroups Hook
	6.9.17.2 Modify Cgroups Hook Configuration File
	6.9.17.3 Enable Cgroups Hook
	6.9.17.4 Write and Deploy New Hooks
	6.9.17.5 Start MoMs

	6.9.18 Configure Sharing and Placement Sets
	6.9.18.1 Configuration with Cgroups Hook
	6.9.18.2 Configuration without Cgroups Hook

	6.9.19 Start New Communication Daemons
	6.9.20 Verify Communication Between Server and MoMs
	6.9.21 Re-create Reservations
	6.9.22 Enable STONITH Script
	6.9.23 Enable Cloud Bursting
	6.9.24 Enable Scheduling

	6.10 After Upgrading
	6.10.1 Making Upgrade Transparent for Users

	Installing and Upgrading on Cray
	7.1 Installing PBS with Shasta
	7.1.1 Prerequisites for PBS on Shasta

	7.2 Prerequisites for Using Power Profiles with Cray XC
	7.3 Support for IMPS and CLE 6 and 7
	7.3.1 Prerequisites for IMPS
	7.3.2 Where to Run PBS Daemons for IMPS

	7.4 Caveats and Advice for Installing and Upgrading on the Cray XC
	7.4.1 Where to Run PBS Server, Scheduler, Comm Daemons
	7.4.2 Licensing PBS
	7.4.3 Hardware and Software Requirements
	7.4.4 Caveats When Upgrading to PBS 2020.1.1

	7.5 Installing PBS on the Cray XC
	7.5.1 Changes for Cray XC Installation
	7.5.2 Installation Notes
	7.5.2.1 Installing PBS on a Cray XC esLogin Node or Repurposed Compute Node

	7.5.3 Installing PBS on CLE 6 and 7
	7.5.3.1 Caveats for Installing PBS on CLE 6 and 7
	7.5.3.2 Installation Notes for CLE 6 and 7
	7.5.3.3 Installation Steps for CLE 6 and 7

	7.5.4 Installing PBS on CLE 5.2 and Older
	7.5.4.1 Installation and Configuration Overview for CLE 5.2
	7.5.4.2 Installation Steps on CLE 5.2
	7.5.4.3 Installing PBS Server, Scheduler, and Communication Daemons on Non-Cray XC Host
	7.5.4.4 Configuring Service Node to Run Server, Scheduler, and Communication
	7.5.4.5 Configuring PBS Server, Scheduler, and Communication Daemons
	7.5.4.6 Configuring MoMs on the Cray XC
	7.5.4.7 Configuring PBS Professional Startup and Shutdown

	7.6 After Installing on the Cray XC
	7.7 Upgrading on the Cray XC
	7.7.1 Upgrading on CLE 6 and 7
	7.7.1.1 Overlay when Existing PBS Version is 13.0.40x or Lower
	7.7.1.2 Overlay When Existing PBS Version is 18.2 or Higher

	7.7.2 Upgrading on CLE 5.2
	7.7.2.1 Overlay when Existing PBS Version is 13.0.40x or Lower
	7.7.2.2 Overlay When Existing PBS Version is 18.2 or Higher

	7.8 After Upgrading on Cray XC
	7.8.1 Check qstat Wrappers and Scripts
	7.8.2 Configure PBS to Support Cray XC
	7.8.3 Enable Inventory Hook

	7.9 Cray XC References

	Starting & Stopping PBS on Linux
	8.1 Automatic Start on Bootup
	8.1.1 Shutting Down Host

	8.2 When to Restart PBS Daemons
	8.3 Methods for Starting, Stopping, or Restarting PBS
	8.3.1 Using systemd
	8.3.1.1 Required Privilege
	8.3.1.2 Effect of systemctl on Jobs
	8.3.1.3 Caveats for Using systemctl

	8.3.2 Using init with PBS Start/Stop Script
	8.3.2.1 Required Privilege
	8.3.2.2 Using Start/Stop Script to Check Status of Daemons
	8.3.2.3 Location of the PBS Start/Stop Script
	8.3.2.4 Effect of Start/Stop Script on Jobs
	8.3.2.5 Start/Stop Script Caveats

	8.3.3 Using the qterm Command to Stop PBS
	8.3.3.0.i qterm Caveats

	8.4 Starting, Stopping, and Restarting PBS Daemons
	8.4.1 Daemon Execution Requirements
	8.4.2 Required Privilege
	8.4.3 Recommendation for Daemon Start Order
	8.4.4 Creation of MoM Home Directory
	8.4.5 Server: Starting, Stopping, Restarting
	8.4.5.1 Starting Server Without Failover
	8.4.5.2 Starting Servers With Failover
	8.4.5.3 Stopping Server Without Failover
	8.4.5.3.i Stopping Server via Signals

	8.4.5.4 Stopping Servers With Failover
	8.4.5.5 Restarting Server Without Failover
	8.4.5.6 Restarting Servers with Failover
	8.4.5.6.i Stopping Servers
	8.4.5.6.ii Starting Servers
	8.4.5.6.iii Network Outage

	8.4.5.7 Restarting Server To Resume Previously-running Jobs

	8.4.6 Scheduler(s): Starting, Stopping, Restarting
	8.4.6.1 Starting Default Scheduler
	8.4.6.2 Starting Multisched
	8.4.6.3 Stopping Scheduler or Multisched
	8.4.6.4 Stopping Scheduler(s) via Signals
	8.4.6.5 Restarting and Reinitializing Scheduler or Multisched
	8.4.6.5.i When to Restart or Reinitialize Scheduler or Multisched
	8.4.6.5.ii Restarting Scheduler or Multisched
	8.4.6.5.iii Reinitializing Scheduler or Multisched

	8.4.7 MoMs: Starting, Stopping, Restarting
	8.4.7.1 Starting MoM
	8.4.7.2 Stopping MoM
	8.4.7.2.i Stopping MoM via Signals
	8.4.7.2.ii Recommendation to Offline Vnodes Before Stopping MoM

	8.4.7.3 Restarting and Reinitializing MoM
	8.4.7.4 Whether to Restart or Reinitialize MoM
	8.4.7.5 Restarting MoM
	8.4.7.5.i Preserving Existing Jobs When Restarting MoM
	8.4.7.5.ii Caveats for Restarting MoM After a Reboot
	8.4.7.5.iii Killing Existing Jobs When Restarting MoM
	8.4.7.5.iv Starting MoM on the HPE MC990X, HPE Superdome Flex, or HPE 8600
	8.4.7.5.v Using Existing CPU and Memory for cpusets
	8.4.7.5.vi Effect of Stopping Sister MoM on Multihost Jobs

	8.4.7.6 Reinitializing MoM

	8.4.8 Comms: Starting, Stopping, Restarting
	8.4.8.1 Starting Communication Daemon
	8.4.8.2 Stopping Communication Daemon via Signals

	8.5 Impact of Stop-Restart on Running Linux Jobs
	8.5.1 Whether to Use Script, Command, or Signal for Shutdown and Restart
	8.5.2 Scenarios for Stopping Then Restarting Daemons

	Starting & Stopping MoM on Windows
	9.1 Automatic Start on Bootup
	9.2 When to Restart PBS MoMs
	9.3 Starting, Stopping, and Restarting PBS
	9.3.1 Required Privilege
	9.3.2 Recommendation for Service Start Order
	9.3.3 Creation of MoM Home Directory
	9.3.4 Windows-specific Service Options
	9.3.5 Configuring Startup Options to MoM
	9.3.5.1 Saving Startup Options

	9.3.6 MoMs: Starting, Stopping, Restarting
	9.3.6.1 Starting MoM as a Service
	9.3.6.2 Starting MoM in Standalone Mode
	9.3.6.3 Stopping MoMs
	9.3.6.3.i Effect of Stopping Sister MoM on Multihost Jobs
	9.3.6.3.ii Recommendation: Offline Vnodes Before Stopping MoM

	9.3.6.4 Restarting MoMs
	9.3.6.4.i Preserving Existing Jobs When Restarting MoM
	9.3.6.4.ii Caveats for Preserving Existing Jobs When Restarting MoM

	9.4 Stopping PBS Using the qterm Command
	9.4.0.0.i qterm Caveats

	9.5 Impact of Stop-Restart on Running Windows Jobs
	9.5.1 Scenarios for Stopping Then Restarting Services

	Index

	Administrator’s Guide (AG)
	Contents
	New Features
	1.1 New Features in PBS 2020.1
	1.2 Changes in Previous Releases
	1.2.1 New Scheduling Features
	1.2.2 New Hooks Features
	1.2.3 Other New Features

	1.3 Commercial-only Features
	1.4 Backward Compatibility
	1.4.1 New and Old Resource Usage Limits Incompatible
	1.4.2 Job Dependencies Affected By Job History
	1.4.3 PBS path information no longer saved in AUTOEXEC.BAT
	1.4.4 OS-level Checkpointing Not Supported
	1.4.5 Scheduler Parameters Changed to Scheduler Attributes (19.4.1)

	Configuring the Server and Queues
	2.1 The Server
	2.1.1 Configuring the Server
	2.1.2 Default Server Configuration
	2.1.3 The PBS Node File
	2.1.4 Server Configuration Attributes
	2.1.5 Recording Server Configuration
	2.1.6 Support for Globus
	2.1.7 Configuring the Server for Licensing

	2.2 How PBS Uses Mail
	2.2.1 Configuring Server Mail Address
	2.2.2 Specifying Mail Delivery Domain
	2.2.2.1 Delivering Mail to Administrator
	2.2.2.2 Delivering Mail to Job Submitter or Reservation Creator

	2.2.3 Attributes, Parameters Etc. Affecting Mail

	2.3 Queues
	2.3.1 Kinds of Queues
	2.3.1.1 Execution and Routing Queues
	2.3.1.2 Available Kinds of Queues

	2.3.2 Basic Queue Use
	2.3.3 Creating Queues
	2.3.4 Enabling, Disabling, Starting, and Stopping Queues
	2.3.5 Execution Queues
	2.3.5.1 Where Execution Queues Get Their Jobs
	2.3.5.2 Execution Queues for Specific Time Periods
	2.3.5.2.i Dedicated Time Queues
	2.3.5.2.ii Primetime and Non-Primetime Queues
	2.3.5.2.iii Anytime Queues
	2.3.5.2.iv Reservation Queues

	2.3.5.3 Prioritizing Execution Queues
	2.3.5.3.i Express Queues

	2.3.6 Routing Queues
	2.3.6.1 How Routing Works
	2.3.6.2 Requirements for Routing Queues
	2.3.6.3 Caveats and Advice for Routing Queues
	2.3.6.4 Using Resources to Route Jobs Between Queues
	2.3.6.4.i How Queue and Server Limits Are Applied, Except Running Time
	2.3.6.4.ii How Queue and Server Running Time Limits are Applied
	2.3.6.4.iii Resources Used for Routing and Admittance
	2.3.6.4.iv Using String, String Array, and Boolean Values for Routing and Admittance
	2.3.6.4.v Examples of Routing Jobs
	2.3.6.4.vi Caveats for Queue Resource Limits

	2.3.6.5 Using Access Control to Route Jobs
	2.3.6.6 Allowing Routing of Held or Waiting Jobs
	2.3.6.7 Setting Routing Retry Time
	2.3.6.8 Specifying Job Lifetime in Routing Queue

	2.3.7 Queue Requirements
	2.3.8 Queue Configuration Attributes
	2.3.9 Viewing Queue Status
	2.3.10 Deleting Queues
	2.3.10.1 Caveats for Deleting Queues

	2.3.11 Defining Queue Resources
	2.3.12 Setting Queue Resource Defaults
	2.3.13 How Default Server and Queue Resources Are Applied When Jobs Move
	2.3.14 Specifying Default Queue
	2.3.15 Associating Queues and Vnodes
	2.3.16 Configuring Access to Queues
	2.3.17 Setting Limits on Usage at Queues
	2.3.18 Queues and Failover
	2.3.19 Additional Queue Information

	Configuring MoMs and Vnodes
	3.1 About MoMs
	3.1.1 Configuring MoMs
	3.1.1.1 MoM Configuration File
	3.1.1.2 Editing Version 1 Files
	3.1.1.3 Caveats and Restrictions for Configuration Files
	3.1.1.4 When MoM Reads Configuration Files

	3.1.2 Configuring MoM Polling Cycle
	3.1.2.1 Cgroups Hook Can Replace Polling
	3.1.2.2 Polling on Linux
	3.1.2.2.i Linux Polling Caveats

	3.1.2.3 Polling on Windows
	3.1.2.4 How Polling is Used
	3.1.2.5 Polling for Multi-host Jobs
	3.1.2.6 Recommendations for Polling Interval

	3.1.3 Files and Directories Used by MoM
	3.1.3.1 Linux Files and Directories Used by MoM
	3.1.3.2 Linux Files and Directories Used by MoM

	3.2 About Vnodes: Virtual Nodes
	3.2.1 Parent Vnodes and Child Vnodes

	3.3 Creating Vnodes
	3.3.1 Overview of Creating Vnodes
	3.3.1.1 Overview of Creating Vnodes on Cray XC

	3.3.2 How to Choose Vnode Names
	3.3.2.1 Names of Child Vnodes
	3.3.2.2 Caveats for Vnode Names
	3.3.2.3 Errors and Logging for Vnode Names

	3.3.3 Creating the Parent Vnode
	3.3.4 Creating Child Vnodes for Multi-vnode Machines
	3.3.4.1 Creating Child Vnodes via Cgroups Hook
	3.3.4.2 Creating Child Vnodes via Version 2 Configuration File

	3.3.5 Caveats for Creating Vnodes

	3.4 Configuring Vnodes
	3.4.1 Methods for Configuring Vnodes
	3.4.2 Rules for Configuring Vnodes
	3.4.2.1 Rules for Configuring Vnodes on Cray XC

	3.4.3 Version 2 Vnode Configuration Files
	3.4.3.1 Creating Version 2 Configuration Files
	3.4.3.1.i Syntax of Version 2 Configuration Files
	3.4.3.1.ii Example of Creating Version 2 Configuration File

	3.4.3.2 Listing and Viewing Version 2 Configuration Files
	3.4.3.3 Moving Version 2 Configuration Files
	3.4.3.4 Removing Version 2 Configuration Files
	3.4.3.5 Caveats for Version 2 Configuration Files
	3.4.3.6 PBS Reserved Configuration Files

	3.4.4 Configuring the Vnode Sharing Attribute
	3.4.4.1 Sharing on a Multi-vnode Machine
	3.4.4.2 Setting the sharing Vnode Attribute
	3.4.4.3 Viewing Sharing Information
	3.4.4.4 Sharing Caveats

	3.4.5 Configuring Vnode Resources
	3.4.5.1 Configuring Global Static Vnode Resources
	3.4.5.2 Configuring Local Dynamic Vnode Resources
	3.4.5.3 Rules for Configuring Vnode Resources

	3.4.6 Configuring Vnodes via the qmgr Command
	3.4.6.1 Caveats for Setting Values via qmgr Command

	3.4.7 Configuring Vnodes via the pbsnodes Command
	3.4.7.1 Caveats for pbsnodes Command

	3.5 Deleting Vnodes
	3.5.1 Deleting the Vnode on a Single-vnode Machine
	3.5.2 Deleting Vnodes on a Multi-vnode Machine
	3.5.2.1 Deleting Vnodes When Not Using Version 2 Configuration File
	3.5.2.2 Deleting Vnodes When Using Version 2 Configuration File
	3.5.2.3 Deleting Vnodes on Cray XC

	Scheduling
	4.1 Chapter Contents
	4.2 Scheduling Each Partition Separately
	4.2.1 Creating and Configuring a Multisched
	4.2.1.1 Prerequisites for Creating a Multisched
	4.2.1.2 Creating a Multisched
	4.2.1.3 Configuring a Multisched
	4.2.1.4 Enabling a Multisched

	4.2.2 Starting a Multisched
	4.2.2.1 Starting a Multisched on Linux

	4.2.3 Configuring Your Partitions for Multischeds
	4.2.4 Using the Default Scheduler with Multischeds
	4.2.4.1 Configuring the Default Scheduler

	4.2.5 Multisched Caveats and Restrictions
	4.2.6 Attributes Used with Multischeds
	4.2.6.1 Behavior of Attributes Shared by Server and Scheduler

	4.2.7 Multisched Errors and Logging
	4.2.7.1 Multisched Error Messages Appearing in Scheduler Comment
	4.2.7.2 Multisched Error Messages Appearing in Scheduler Logs
	4.2.7.3 Multisched Error Messages Appearing in Server Logs
	4.2.7.4 Multisched Errors Returned by qmgr Command

	4.2.8 Multisched Deprecations

	4.3 Scheduling Policy Basics
	4.3.1 How Scheduling Can Be Used
	4.3.2 What Is Scheduling Policy?
	4.3.3 Basic PBS Scheduling Behavior
	4.3.4 Sub-goals
	4.3.5 Job Prioritization and Preemption
	4.3.5.1 Where PBS Uses Job Priority
	4.3.5.2 Overview of Prioritizing Jobs
	4.3.5.3 Using Queue-based Tools to Prioritize Jobs
	4.3.5.3.i Using Queue Order to Affect Order of Consideration
	4.3.5.3.ii Using Express Queues in Job Priority Calculation
	4.3.5.3.iii Routing Jobs into Queues
	4.3.5.3.iv Using Queue Priority when Computing Job Priority

	4.3.5.4 Using Job Sorting Tools to Prioritize Jobs
	4.3.5.5 Prioritizing Jobs by Wait Time
	4.3.5.6 Calculating Preemption Priority
	4.3.5.7 Making Preempted Jobs Top Jobs
	4.3.5.8 Preventing Jobs from Being Preempted
	4.3.5.9 Meta-priority: Running Jobs Exactly in Priority Order
	4.3.5.10 Using Different Calculations for Different Time Periods
	4.3.5.11 When Priority Is Not Enough: Overrides
	4.3.5.12 Elements to Consider when Prioritizing Jobs
	4.3.5.13 List of Job Sorting Tools
	4.3.5.13.i Queue-based Tools for Organizing Jobs
	4.3.5.13.ii Job Sorting Tools
	4.3.5.13.iii Other Job Prioritization Tools

	4.3.6 Resource Allocation to Users, Projects & Groups
	4.3.6.1 Limiting Amount of Resources Used
	4.3.6.1.i Allocation Using Resource Limits
	4.3.6.1.ii Allocation Using Fairshare
	4.3.6.1.iii Allocation Using Routing

	4.3.6.2 Limiting Jobs
	4.3.6.2.i Limiting Number of Jobs per Project, User, or Group
	4.3.6.2.ii Allocation Using Round-robin Queue Selection
	4.3.6.2.iii Limiting Resource Usage per Job

	4.3.6.3 Resource Allocation Tools

	4.3.7 Time Slot Allocation
	4.3.7.1 Why Allocate Time Slots
	4.3.7.2 How to Allocate Time Slots
	4.3.7.2.i Allocation Using Primetime and Holidays
	4.3.7.2.ii Allocation Using Dedicated Time
	4.3.7.2.iii Allocation Using Reservations
	4.3.7.2.iv Allocation Using cron Jobs

	4.3.7.3 Time Slot Allocation Tools

	4.3.8 Job Placement Optimization
	4.3.8.1 Why Optimize Placement
	4.3.8.2 Matching Jobs to Resources
	4.3.8.3 Organizing and Selecting Vnodes
	4.3.8.4 Distributing Jobs
	4.3.8.4.i Filtering Jobs to Specific Vnodes
	4.3.8.4.ii Running Jobs at Least-loaded Partition or Complex
	4.3.8.4.iii Using Idle Workstations
	4.3.8.4.iv Avoiding Highly-loaded Vnodes
	4.3.8.4.v Placing Job Chunks on Desired Hosts

	4.3.8.5 Shared or Exclusive Resources and Vnodes
	4.3.8.6 Tools for Organizing Vnodes
	4.3.8.7 Tools for Distributing Jobs

	4.3.9 Resource Efficiency Optimizations
	4.3.9.1 Why Optimize Use of Resources
	4.3.9.2 How to Optimize Resource Use
	4.3.9.2.i Backfilling Around Top Jobs
	4.3.9.2.ii Using Dependencies
	4.3.9.2.iii Estimating Start Time for Jobs
	4.3.9.2.iv Provisioning Vnodes with Required Environments
	4.3.9.2.v Tracking Dynamic Resources

	4.3.9.3 Optimizing Resource Use by Job Placement
	4.3.9.3.i Sending Jobs to Partition or Complex Having Lightest Workload
	4.3.9.3.ii Using Idle Workstations
	4.3.9.3.iii Avoiding Highly-loaded Vnodes

	4.3.9.4 Resource Efficiency Optimization Tools

	4.3.10 Overrides
	4.3.10.1 Why and How to Override Scheduling

	4.4 Choosing a Policy
	4.4.1 Overview of Kinds of Policies
	4.4.2 FIFO: Submission Order
	4.4.3 Prioritizing Jobs by User, Project or Group
	4.4.4 Allocating Resources by User, Project or Group
	4.4.4.1 Allocating Portions of Partition Or Complex
	4.4.4.1.i Allocating Specific Amounts
	4.4.4.1.ii Allocating Percentages

	4.4.4.2 Allocating Portions of Machines or Clusters
	4.4.4.3 Locking Entities into Specific Hardware

	4.4.5 Scheduling Jobs According to Size Etc.
	4.4.5.1 Special Treatment via Routing
	4.4.5.1.i Routing via Queues
	4.4.5.1.ii Using Hooks to Route Jobs
	4.4.5.1.iii Giving Routed Jobs Special Priority
	4.4.5.1.iv Running Jobs on Special Vnodes
	4.4.5.1.v Running Jobs in Special Time Slots

	4.4.5.2 Special Treatment via Hooks
	4.4.5.2.i Setting Job Priority Via Hook
	4.4.5.2.ii Routing Jobs to Hardware via Hooks

	4.4.6 Scheduling Jobs into Time Slots
	4.4.6.1 Setting Aside Time Slots for Entities
	4.4.6.1.i Reservations
	4.4.6.1.ii Dedicated Time
	4.4.6.1.iii Non-primetime

	4.4.6.2 Locking Entities into Time Slots
	4.4.6.2.i Locking Entities into Reservations
	4.4.6.2.ii Locking Entities into Dedicated Time
	4.4.6.2.iii Locking Entities into Non-primetime

	4.4.7 Default Scheduling Policy
	4.4.8 Examples of Workload and Policy

	4.5 About Schedulers
	4.5.1 Configuring a Scheduler
	4.5.1.1 Where a Scheduler Gets Its Information
	4.5.1.2 Reference Copies of Files

	4.5.2 Making a Scheduler Read its Configuration
	4.5.3 Scheduling on Resources
	4.5.4 Starting, Stopping, and Restarting a Scheduler
	4.5.4.1 When and How to Start a Scheduler
	4.5.4.2 When and How to Stop a Scheduler
	4.5.4.3 When and How to Restart a Scheduler

	4.5.5 The Scheduling Cycle
	4.5.5.1 Triggers for Scheduling Cycle
	4.5.5.1.i Logging Scheduling Triggers

	4.5.5.2 Actions During Scheduling Cycle

	4.5.6 How Available Consumable Resources are Counted
	4.5.7 Improving Scheduler Performance
	4.5.7.1 Improving Throughput of Jobs
	4.5.7.2 Limiting Number of Jobs Queued in Execution Queues
	4.5.7.3 Setting Number of Scheduler Threads

	4.6 Using Queues in Scheduling
	4.7 Scheduling Restrictions and Caveats
	4.7.1 One Policy Per Scheduler
	4.7.2 Jobs that Cannot Run on Current Resources
	4.7.3 Resources Not Controlled by PBS
	4.7.4 No Pinning of Processes to Cores

	4.8 Errors and Logging
	4.8.1 Logfile for scheduler

	4.9 Scheduling Tools
	4.9.1 Anti-Express Queues
	4.9.1.1 Configuring Anti-express Queues via Priority
	4.9.1.2 Configuring Anti-express Queues via Preemption Targets
	4.9.1.3 Anti-express Queue Caveats

	4.9.2 Associating Vnodes with Queues
	4.9.2.1 Associating Vnodes With One Queue
	4.9.2.2 Associating Vnodes With Multiple Queues
	4.9.2.2.i Procedure to Associate Vnodes with Multiple Queues
	4.9.2.2.ii Example of Associating Multiple Vnodes with Multiple Queues

	4.9.3 Using Backfilling
	4.9.3.1 Glossary
	4.9.3.2 Backfilling Separately at the Server and Queues
	4.9.3.3 How Backfilling Works
	4.9.3.4 Backfilling Around N Jobs
	4.9.3.5 Backfilling Around Preempted Jobs
	4.9.3.6 Backfilling Around Starving Jobs
	4.9.3.7 Configuring Backfilling
	4.9.3.8 Backfilling and Strict Ordering
	4.9.3.9 Backfilling and Scheduler Cycle Speed
	4.9.3.10 Attributes and Parameters Affecting Backfilling
	4.9.3.11 Backfilling Recommendations and Caveats
	4.9.3.11.i Ensure Jobs Are Eligible for Backfilling
	4.9.3.11.ii Number of Jobs to Backfill Around
	4.9.3.11.iii Dynamic Resources and Backfilling
	4.9.3.11.iv Avoid Using Strict Ordering, Backfilling, and Fairshare
	4.9.3.11.v Using Preemption, Strict Ordering, and Backfilling
	4.9.3.11.vi Warning About Backfilling and Provisioning
	4.9.3.11.vii Backfilling and Estimating Job Start Time
	4.9.3.11.viii Using Strict Ordering and Backfilling with Only One of Primetime or Non-primetime

	4.9.4 Examining Jobs Queue by Queue
	4.9.4.1 Configuring PBS to Consider Jobs Queue by Queue
	4.9.4.2 Parameters and Attributes Affecting Queue by Queue
	4.9.4.3 Caveats and Advice for Queue by Queue

	4.9.5 Checkpointing
	4.9.5.1 Checkpointing as a Preemption Method
	4.9.5.2 Checkpointing as a Way to Capture Progress and Help Recover Work
	4.9.5.3 Checkpointing When Using the qhold Command

	4.9.6 Organizing Job Chunks
	4.9.6.1 Caveats for Organizing Job Chunks

	4.9.7 cron Jobs
	4.9.7.1 Caveats for cron Jobs

	4.9.8 Using Custom and Default Resources
	4.9.8.1 Techniques for Allocating Custom Resources to Jobs
	4.9.8.2 Using Custom Resources to Route Jobs
	4.9.8.3 Using Custom Resources to Assign Job Execution Priority
	4.9.8.4 Using Custom Resources to Track and Control Resource Allocation
	4.9.8.5 Using Custom Resources to Represent GPUs, FPGAs, Switches, Etc.
	4.9.8.6 Using Custom Resources to Allow Platform-specific Resource Requests
	4.9.8.7 Using Custom Resources to Allow Platform-specific Behavior

	4.9.9 Using Idle Workstation Cycle Harvesting
	4.9.9.1 Platforms Supporting Cycle Harvesting
	4.9.9.2 The $kbd_idle MoM Configuration Parameter
	4.9.9.3 Cycle Harvesting Based on Keyboard/Mouse Activity
	4.9.9.3.i Configuring Cycle Harvesting Using Keyboard/Mouse Activity
	4.9.9.3.ii Example of Cycle Harvesting Using Keyboard/Mouse Activity
	4.9.9.3.iii Caveats for Cycle Harvesting Using Keyboard/Mouse Activity

	4.9.9.4 Cycle Harvesting on Windows
	4.9.9.4.i Configuring Cycle Harvesting on Windows
	4.9.9.4.ii Configuring pbs_idled in Log On Script in Domain Environment
	4.9.9.4.iii Configuring pbs_idled in Log Off Script in Domain Environment
	4.9.9.4.iv The PBS_INTERACTIVE Service
	4.9.9.4.v Errors and Logging
	4.9.9.4.vi Caveats for Cycle Harvesting on Windows

	4.9.9.5 Cycle Harvesting by Monitoring X-Windows
	4.9.9.6 Cycle Harvesting Based on Load Average
	4.9.9.6.i Attributes and Parameters Affecting Cycle Harvesting Based on Load Average
	4.9.9.6.ii How Cycle Harvesting Based on Load Average Works
	4.9.9.6.iii Configuring Cycle Harvesting Based on Load Average
	4.9.9.6.iv Viewing Load Average Information
	4.9.9.6.v Caveats for Cycle Harvesting Based on Load Average

	4.9.9.7 Cycle Harvesting and File Transfers
	4.9.9.8 Parallel Jobs With Cycle Harvesting
	4.9.9.8.i General Advice: Parallel Jobs Not Recommended
	4.9.9.8.ii How to Use Cycle Harvesting with Multi-host Jobs

	4.9.9.9 Cycle Harvesting Caveats and Restrictions
	4.9.9.9.i Cycle Harvesting and Multi-host Jobs
	4.9.9.9.ii Cycle Harvesting and Reservations
	4.9.9.9.iii File Transfers with Cycle Harvesting
	4.9.9.9.iv Cycle Harvesting on Windows

	4.9.10 Dedicated Time
	4.9.10.1 Dedicated Time File
	4.9.10.2 Steps in Defining Dedicated Time
	4.9.10.3 Recommendations for Dedicated Time

	4.9.11 Dependencies
	4.9.12 Dynamic Resources
	4.9.13 Eligible Wait Time for Jobs
	4.9.13.1 Types of Time Accrued
	4.9.13.2 How Eligible Wait Time Works
	4.9.13.3 Configuring Eligible Wait Time
	4.9.13.4 How Eligible Wait Time Is Used
	4.9.13.5 Altering Eligible Time
	4.9.13.6 Attributes Affecting Eligible Time
	4.9.13.7 Logging
	4.9.13.8 Accounting
	4.9.13.9 Caveats for Eligible Time

	4.9.14 Sorting Jobs by Entity Shares (Was Strict Priority)
	4.9.14.1 Configuring Entity Shares
	4.9.14.2 Viewing Entity Shares

	4.9.15 Estimating Job Start Time
	4.9.15.1 Configuring Start Time Estimation
	4.9.15.2 Controlling User Access to Start Times and Vnode List
	4.9.15.2.i Making Start Time or Vnodes Invisible
	4.9.15.2.ii Allowing Users to See Only Their Own Job Start Times

	4.9.15.3 Attributes and Parameters Affecting Job Start Time Estimation
	4.9.15.4 Viewing Estimated Start Times
	4.9.15.5 Selecting Jobs By Estimated Start Time
	4.9.15.6 Logging
	4.9.15.7 Caveats and Advice

	4.9.16 Calculating Job Execution Priority
	4.9.16.1 Dividing Jobs Into Classes
	4.9.16.2 Selecting Job Execution Class
	4.9.16.3 Sorting Jobs Within Classes
	4.9.16.3.i Precedence of Sort Method Used Within Class

	4.9.16.4 Execution Priority Caveats

	4.9.17 Calendaring Jobs
	4.9.17.1 Making Jobs Ineligible to be Top Jobs
	4.9.17.1.i Caveats for Making Jobs Ineligible to be Top Jobs

	4.9.18 Express Queues
	4.9.19 Using Fairshare
	4.9.19.1 One Fairshare System Per Scheduler
	4.9.19.2 Outline of How Fairshare Works
	4.9.19.3 Enabling Basic Fairshare
	4.9.19.4 Configuring the Fairshare Tree
	4.9.19.4.i Allotting Shares in the Tree
	4.9.19.4.ii Shares Among Unknown Entities
	4.9.19.4.iii Format for Describing the Tree
	4.9.19.4.iv Moving Entities within Fairshare Tree
	4.9.19.4.v Removing Entities from Fairshare Tree

	4.9.19.5 Resource Usage for Fairshare
	4.9.19.5.i Tracking Resource Usage
	4.9.19.5.ii Adding Usage
	4.9.19.5.iii Decaying Usage
	4.9.19.5.iv Setting Decay Interval and Factor
	4.9.19.5.v Examples of Setting Fairshare Usage
	4.9.19.5.vi Fairshare Resource Advice
	4.9.19.5.vii Viewing and Managing Fairshare Usage Data

	4.9.19.6 Computing Fairshare Values
	4.9.19.6.i Computing Target Usage for Each Vertex (fairshare_perc)
	4.9.19.6.ii Computing Effective Usage (fairshare_tree_usage)
	4.9.19.6.iii Computing Relative Usage (fairshare_factor)
	4.9.19.6.iv Example of Computing Fairshare Values

	4.9.19.7 Choosing Which Job to Run
	4.9.19.7.i Finding the Most Deserving Entity
	4.9.19.7.ii Sorting and Selecting Jobs to Run

	4.9.19.8 Files and Parameters Used in Fairshare
	4.9.19.9 Ways to Use Fairshare
	4.9.19.9.i Fairshare for Partition Or Complex or Within Queues
	4.9.19.9.ii Altering Fairshare According to Queue
	4.9.19.9.iii Using Fairshare in Job Execution Priority
	4.9.19.9.iv Using Fairshare in Job Preemption Priority

	4.9.19.10 Fairshare Restrictions
	4.9.19.11 Fairshare Caveats and Advice

	4.9.20 FIFO Scheduling
	4.9.20.1 Configuring Basic FIFO Scheduling
	4.9.20.2 FIFO for Entire Partition Or Complex
	4.9.20.3 Queue by Queue FIFO
	4.9.20.4 FIFO with Strict Ordering
	4.9.20.5 FIFO with Strict Ordering and Backfilling

	4.9.21 Using a Formula for Computing Job Execution Priority
	4.9.21.1 When the Formula is Applied
	4.9.21.2 Configuring the Job Sorting Formula
	4.9.21.3 Requirements for Creating Formula
	4.9.21.4 Format of Formula
	4.9.21.5 Units in Formula
	4.9.21.6 Resources in Formula
	4.9.21.7 Using Fairshare in the Formula
	4.9.21.8 Terms in Formula
	4.9.21.9 Modifying Coefficients For a Specific Job
	4.9.21.10 Setting Minimum Job Priority Value for Job Execution
	4.9.21.11 Examples of Using the Job Sorting Formula
	4.9.21.12 Examples of Using Resource Permissions in Job Sorting Formula
	4.9.21.13 Caveats and Error Messages
	4.9.21.14 Logging

	4.9.22 Gating Jobs at Server or Queue
	4.9.22.1 Gating Caveats

	4.9.23 Managing Application Licenses
	4.9.24 Limits on Per-job Resource Usage
	4.9.25 Limits on Project, User, and Group Jobs
	4.9.26 Limits on Project, User, and Group Resource Usage
	4.9.27 Using Load Balancing
	4.9.27.1 How Load Average is Computed
	4.9.27.2 How PBS Uses Load Information
	4.9.27.3 When to Use Load Balancing
	4.9.27.4 Suspending Jobs on Overloaded Vnodes
	4.9.27.5 Configuring Load Balancing
	4.9.27.6 Load Balancing Caveats and Recommendations
	4.9.27.7 Parameters Affecting Load Balancing

	4.9.28 Matching Jobs to Resources
	4.9.28.1 Scheduling on Consumable Resources
	4.9.28.2 Scheduling on Non-Consumable Resources
	4.9.28.3 Scheduling on Dynamic Resources
	4.9.28.4 Scheduling on the walltime Resource
	4.9.28.4.i Caveats for Scheduling on walltime

	4.9.28.5 Unrequestable or Invisible Resources
	4.9.28.6 Enforcing Scheduling on Resources
	4.9.28.7 Matching Unset Resources
	4.9.28.7.i When Dynamic Resource Script Fails
	4.9.28.7.ii Backward Compatibility of Unset Resources

	4.9.28.8 Resource Scheduling Caveats

	4.9.29 Node Grouping
	4.9.29.1 Configuring Old-style Node Grouping

	4.9.30 Overrides
	4.9.30.1 Run a Job Manually
	4.9.30.1.i Using qrun Without -H Option on Shrink-to-fit Jobs
	4.9.30.1.ii Using qrun With -H Option on Shrink-to-fit Jobs
	4.9.30.1.iii qrun Caveats

	4.9.30.2 Hold a Job Manually
	4.9.30.3 Suspend a Job Manually
	4.9.30.4 Set Special Resource Value Used in Formula
	4.9.30.5 Change Formula On the Fly
	4.9.30.6 Using Dedicated Time
	4.9.30.7 Using cron Jobs
	4.9.30.8 Using Hooks
	4.9.30.9 Preventing Jobs from Being Calendared

	4.9.31 Peer Scheduling
	4.9.31.1 How Peer Scheduling Works
	4.9.31.2 Prerequisites for Peer Scheduling
	4.9.31.3 Configuring Peer Scheduling
	4.9.31.3.i Defining a Flat User Namespace
	4.9.31.3.ii Mapping Pulling Queues to Furnishing Queues
	4.9.31.3.iii Specifying Ports
	4.9.31.3.iv Granting Manager Access to Pulling Servers
	4.9.31.3.v Making User-to-group Mappings Consistent Across Complexes
	4.9.31.3.vi Configuring Peer Scheduling with Failover

	4.9.31.4 Peer Scheduling Advice
	4.9.31.4.i Selective Peer Scheduling
	4.9.31.4.ii Setting Priority for Pulled Jobs

	4.9.31.5 How Peer Scheduling Affects Jobs
	4.9.31.5.i How Peer Scheduling Affects Inherited Resources
	4.9.31.5.ii How Peer Scheduling Affects Policy Applied to Job
	4.9.31.5.iii How Peer Scheduling Affects Job Eligible Time
	4.9.31.5.iv Viewing Jobs That Have Been Moved to Another Server
	4.9.31.5.v Peer Scheduling and Hooks

	4.9.31.6 Peer Scheduling Caveats

	4.9.32 Placement Sets
	4.9.32.1 Definitions
	4.9.32.2 Requirements for Placement Sets
	4.9.32.3 Description of Placement Sets
	4.9.32.3.i What Defines a Placement Set, Series, or Pool
	4.9.32.3.ii Vnode Participation in Placement Sets, Series, and Pools
	4.9.32.3.iii Multihost Placement Sets
	4.9.32.3.iv Machines with Multiple Vnodes
	4.9.32.3.v Placement Sets Defined by Unset Resources
	4.9.32.3.vi Placement Sets and Node Grouping

	4.9.32.4 How Placement Sets Are Used
	4.9.32.4.i Order of Placement Pool Selection
	4.9.32.4.ii Order of Placement Set Consideration Within Pool
	4.9.32.4.iii Determining Whether Job Can Run
	4.9.32.4.iv Order of Vnode Selection Within Set

	4.9.32.5 Summary of Placement Set Requirements
	4.9.32.6 How to Configure Placement Sets
	4.9.32.7 Examples of Creating Placement Sets
	4.9.32.7.i Cluster with Four Switches
	4.9.32.7.ii Example of Configuring Placement Sets on a Multi-vnode Machine
	4.9.32.7.iii Example of Placement Sets Using Colors
	4.9.32.7.iv Simple Switch Placement Set Example

	4.9.32.8 Placement Sets and Reservations
	4.9.32.9 Placement Sets and Load Balancing
	4.9.32.10 Viewing Placement Set Information
	4.9.32.11 Placement Set Caveats and Advice
	4.9.32.11.i Non-backward-compatible Change in Node Grouping

	4.9.32.12 Attributes and Parameters Affecting Placement Sets
	4.9.32.13 Errors and Logging

	4.9.33 Using Preemption
	4.9.33.1 Glossary
	4.9.33.2 Preemption Parameters and Attributes
	4.9.33.3 How Preemption Works
	4.9.33.4 Using Preemption Targets
	4.9.33.4.i Setting Job Preemption Targets
	4.9.33.4.ii Setting Queue Preemption Targets
	4.9.33.4.iii Setting Default Server Preemption Targets

	4.9.33.5 Preemption and Job Execution Priority
	4.9.33.6 Triggers for Preemption
	4.9.33.7 Preemption Levels
	4.9.33.7.i The Soft Limits Preemption Level
	4.9.33.7.ii The Express Queues Preemption Level
	4.9.33.7.iii The Fairshare Preemption Level
	4.9.33.7.iv The Starving Job Preemption Level
	4.9.33.7.v The Normal Jobs Preemption Level

	4.9.33.8 Selecting Preemption Level
	4.9.33.9 Sorting Within Preemption Level
	4.9.33.10 Preemption Methods
	4.9.33.10.i Preemption Via Checkpoint
	4.9.33.10.ii Preemption Via Suspension
	4.9.33.10.iii Suspended Jobs and Resources
	4.9.33.10.iv Preemption Via Requeue
	4.9.33.10.v Preemption via Deletion

	4.9.33.11 Enabling Preemption
	4.9.33.12 Preemption Example
	4.9.33.13 Preemption Caveats and Recommendations

	4.9.34 Using Primetime and Holidays
	4.9.34.1 How Primetime and Holidays Work
	4.9.34.2 Configuring Primetime and Non-primetime
	4.9.34.3 Configuring Holidays
	4.9.34.4 Example of holidays File
	4.9.34.5 Reference Copy of holidays File
	4.9.34.6 Defining Primetime and Non-primetime Queues
	4.9.34.7 Controlling Whether Jobs Cross Primetime Boundaries
	4.9.34.8 Logging
	4.9.34.9 Scheduling Parameters Affecting Primetime
	4.9.34.10 Caveats for Primetime and Holidays

	4.9.35 Provisioning
	4.9.36 Queue Priority
	4.9.36.1 Configuring Queue Priority
	4.9.36.2 Using Queue Priority
	4.9.36.3 Queue Priority Caveats

	4.9.37 Reservations
	4.9.37.1 Definitions
	4.9.37.2 Job Reservations
	4.9.37.2.i Creating Advance and Standing Reservations
	4.9.37.2.ii Job-Specific Reservations
	4.9.37.2.iii Creating Job-specific Start Reservations
	4.9.37.2.iv Creating Job-specific ASAP Reservations
	4.9.37.2.v Creating Job-specific Now Reservations
	4.9.37.2.vi Job Reservations and Placement Sets
	4.9.37.2.vii Requesting Resources for Job Reservations
	4.9.37.2.viii Job Reservations and Provisioning
	4.9.37.2.ix Job Reservation Priority
	4.9.37.2.x Querying Reservations
	4.9.37.2.xi Controlling Access to Job Reservations
	4.9.37.2.xii Job Reservation Fault Tolerance
	4.9.37.2.xiii Logging Standing Reservation Information
	4.9.37.2.xiv Accounting

	4.9.37.3 Maintenance Reservations
	4.9.37.4 Modifying Reservations
	4.9.37.5 Attributes Affecting Reservations
	4.9.37.6 Reservation Advice and Caveats

	4.9.38 Round Robin Queue Selection
	4.9.38.1 Round-robin Caveats

	4.9.39 Routing Jobs
	4.9.39.1 Mechanisms for Collecting Jobs
	4.9.39.1.i Default Queue as Mechanism to Collect Jobs
	4.9.39.1.ii Grabbing Jobs Upon Submission
	4.9.39.1.iii Disallowing Direct Submission as Mechanism to Collect Jobs
	4.9.39.1.iv Examining Jobs Upon Submission

	4.9.39.2 Mechanisms for Moving Jobs
	4.9.39.2.i Routing Queues as Mechanism to Move Jobs
	4.9.39.2.ii Hooks as Mechanism to Move Jobs
	4.9.39.2.iii Peer Scheduling as Mechanism to Move Jobs
	4.9.39.2.iv The qmove Command as Mechanism to Move Jobs

	4.9.39.3 Mechanisms for Filtering Jobs
	4.9.39.3.i Resource Limits as Filtering Mechanism
	4.9.39.3.ii Access Controls as Filtering Mechanism
	4.9.39.3.iii Hooks as Filtering Mechanism

	4.9.39.4 Mechanisms for Tagging Jobs
	4.9.39.4.i Using Hooks to Tag Jobs
	4.9.39.4.ii Using the qalter Command to Tag Jobs

	4.9.40 Scheduler Cycle Speedup
	4.9.40.1 Top Job Calculation Speedup
	4.9.40.1.i Configuring Top Job Calculation Speedup
	4.9.40.1.ii What Changing Calculation Speed Affects
	4.9.40.1.iii Caveats and Restrictions for Top Job Calculation Speedup

	4.9.41 Shared vs. Exclusive Use of Resources by Jobs
	4.9.41.1 Sharing on a Multi-vnode Machine
	4.9.41.2 Setting the sharing Vnode Attribute
	4.9.41.3 Viewing Sharing Information
	4.9.41.4 Sharing Caveats

	4.9.42 Using Shrink-to-fit Jobs
	4.9.42.1 Shrink-to-fit Jobs
	4.9.42.1.i Requirements for a Shrink-to-fit Job
	4.9.42.1.ii Comparison Between Shrink-to-fit and Non-shrink-to-fit Jobs

	4.9.42.2 Where to Use Shrink-to-fit Jobs
	4.9.42.3 Running Time of a Shrink-to-fit Job
	4.9.42.3.i Setting Running Time Range for Shrink-to-fit Jobs
	4.9.42.3.ii Inheriting Values for min_walltime and max_walltime
	4.9.42.3.iii Setting walltime for Shrink-to-fit Jobs

	4.9.42.4 How PBS Places Shrink-to-fit Jobs
	4.9.42.5 Shrink-to-fit Jobs and Time Boundaries
	4.9.42.5.i Shrink-to-fit Jobs and Prime Time

	4.9.42.6 Shrink-to-fit Jobs and Resource Limits
	4.9.42.6.i Shrink-to-fit Jobs and Gating at Server or Queue
	4.9.42.6.ii Gating Restrictions

	4.9.42.7 Shrink-to-fit Jobs and Preemption
	4.9.42.8 Using qrun on Shrink-to-fit Jobs
	4.9.42.8.i Using qrun Without -H Option
	4.9.42.8.ii Using qrun With -H Option

	4.9.42.9 Modifying Shrink-to-fit and Non-shrink-to-fit Jobs
	4.9.42.9.i Modifying min_walltime and max_walltime
	4.9.42.9.ii Making Non-shrink-to-fit Jobs into Shrink-to-fit Jobs
	4.9.42.9.iii Making Shrink-to-fit Jobs into Non-shrink-to-fit Jobs
	4.9.42.9.iv Hooks for Running Time Limits

	4.9.42.10 Viewing Running Time for a Shrink-to-fit Job
	4.9.42.10.i Viewing min_walltime and max_walltime
	4.9.42.10.ii Viewing walltime for a Shrink-to-fit Job

	4.9.42.11 Lifecycle of a Shrink-to-fit Job
	4.9.42.11.i Execution of Shrink-to-fit Jobs
	4.9.42.11.ii Termination of Shrink-to-fit Jobs

	4.9.42.12 The min_walltime and max_walltime Resources
	4.9.42.13 Accounting and Logging for Shrink-to-fit Jobs
	4.9.42.13.i Accounting Log Entries for min_walltime and max_walltime
	4.9.42.13.ii Logging

	4.9.42.14 Caveats and Restrictions for Shrink-to-fit Jobs

	4.9.43 SMP Cluster Distribution
	4.9.43.1 How to Use SMP Cluster Distribution
	4.9.43.2 How To Disable SMP Cluster Distribution
	4.9.43.3 SMP Cluster Distribution Caveats and Advice

	4.9.44 Using Soft Walltime
	4.9.44.1 Assigning Soft Walltime to Jobs
	4.9.44.2 How Soft and Hard Walltimes Are Used
	4.9.44.3 Examples of Using Soft Walltime
	4.9.44.4 Allowing Job Submitters to Set Soft Walltime
	4.9.44.5 Caveats and Restrictions for Soft Walltime

	4.9.45 Sorting Jobs on a Key
	4.9.45.1 job_sort_key Syntax
	4.9.45.2 Configuring Sorting Jobs on a Key
	4.9.45.3 Examples of Sorting Jobs on Key
	4.9.45.4 Caveats and Advice for Sorting Jobs on Key

	4.9.46 Sorting Jobs by Requested Priority
	4.9.47 Sorting Queues into Priority Order
	4.9.47.1 Caveats and Advice when Sorting Queues

	4.9.48 Starving Jobs
	4.9.48.1 Enabling Starving
	4.9.48.2 Time Used for Starving
	4.9.48.3 Starving and Job Priority
	4.9.48.4 Parameters and Attributes Affecting Starving
	4.9.48.5 Starving and Queued or Running Jobs
	4.9.48.6 Starving and Subjobs
	4.9.48.7 Starving and Backfilling
	4.9.48.8 Starving Caveats

	4.9.49 Using Strict Ordering
	4.9.49.1 Configuring Strict Ordering
	4.9.49.2 How Strict Ordering Works
	4.9.49.3 Combining Strict Ordering and Backfilling
	4.9.49.4 Strict Ordering and Calendaring
	4.9.49.5 Strict Ordering Caveats

	4.9.50 Sorting Vnodes on a Key
	4.9.50.1 node_sort_key Syntax
	4.9.50.2 Configuring Sorting Vnodes on a Key
	4.9.50.3 Sorting Vnodes According to Load Average
	4.9.50.4 Examples of Sorting Vnodes
	4.9.50.5 Caveats for Sorting Vnodes

	Using PBS Resources
	5.1 Chapter Contents
	5.2 Introduction to PBS Resources
	5.3 Glossary
	5.4 Categories of Resources
	5.4.1 Built-in vs. Custom Resources
	5.4.2 Server vs. Queue vs. Vnode Resources
	5.4.2.1 Server Resources
	5.4.2.2 Queue Resources
	5.4.2.3 Resources Defined at Both Server and Queue
	5.4.2.4 Vnode Resources

	5.4.3 Consumable vs. Non-consumable Resources
	5.4.4 Static vs. Dynamic Resources
	5.4.4.1 Dynamic Resource Caveats

	5.4.5 Global vs. Local Resources
	5.4.5.1 Global Static Resources
	5.4.5.2 Global Dynamic Resources
	5.4.5.3 Local Static Resources
	5.4.5.4 Local Dynamic Resources

	5.4.6 Requested vs. Default Resources
	5.4.7 Shared vs. Non-shared Vnode Resources
	5.4.7.1 Non-shared Vnode Resources
	5.4.7.2 Shared Vnode Resources

	5.4.8 Platform-specific vs. Generally Available Resources
	5.4.9 Job-wide vs. Chunk Resources
	5.4.9.1 Job-wide Resources
	5.4.9.2 Chunk Resources

	5.5 Resource Types
	5.6 Resource Formats
	5.6.1 Resource Names

	5.7 Setting Values for Resources
	5.7.1 How Resource Values are Set
	5.7.1.1 How Vnode Available Resource Values are Set
	5.7.1.1.i Vnode Resources Set by PBS
	5.7.1.1.ii Setting Vnode Resources Manually

	5.7.1.2 Setting Server and Queue Resource Values
	5.7.1.3 Setting Job Resources
	5.7.1.3.i Setting Requested Resource Values
	5.7.1.3.ii Setting Used Resource Values
	5.7.1.3.iii Setting Estimated Values

	5.7.2 Setting Values for Global Static Resources
	5.7.2.1 Restrictions on Setting Values for Global Static Resources

	5.7.3 Setting Values for Local Static Resources
	5.7.4 Setting Values for String Arrays
	5.7.5 When Resource Changes Take Effect
	5.7.6 Caveats for Setting Resource Values
	5.7.6.1 Caveats for Setting Resource Values at Multi-vnode Machines

	5.8 Overview of Ways Resources Are Used
	5.8.1 How the Scheduler Uses Resources
	5.8.2 Advice on Using string and string_array Resources
	5.8.2.1 Using string Resources
	5.8.2.2 Using string_array Resources

	5.9 Resources Allocated to Jobs and Reservations
	5.9.1 Allocating Chunks
	5.9.2 Resources Requested by Job
	5.9.3 Specifying Job Default Resources
	5.9.3.1 Specifying Job-wide Default Resources at Server
	5.9.3.2 Setting Server and Queue Default Job Chunk Resource Values
	5.9.3.2.i Specifying Chunk Default Resources at Server
	5.9.3.2.ii Specifying Chunk Default Resources at Queue

	5.9.3.3 Specifying Job-wide Default Resources at Queue
	5.9.3.4 Specifying Default qsub Arguments
	5.9.3.5 Specifying Default Job Placement
	5.9.3.6 Using Gating Values As Defaults
	5.9.3.7 Default Resource Caveats

	5.9.4 Allocating Default Resources to Jobs
	5.9.4.1 Default Resource Allocation for min_walltime and max_walltime
	5.9.4.2 Default Resource Allocation Caveats
	5.9.4.3 Moving Jobs Between Queues or Servers Changes Defaults

	5.9.5 Dynamic Resource Allocation Caveats
	5.9.6 Period When Resource is Used by Job
	5.9.6.1 Exiting Job Keeps Resource
	5.9.6.2 Job Suspension and Resource Usage
	5.9.6.2.i Resource Usage on Suspension
	5.9.6.2.ii Releasing Resources on Suspension
	5.9.6.2.iii Releasing Resources on Suspension on Cray XC
	5.9.6.2.iv Suspension/resumption Resource Caveats

	5.9.6.3 Shrink-to-fit Jobs Get walltime When Executed

	5.10 Using Resources to Track and Control Allocation
	5.11 Using Resources for Topology and Job Placement
	5.11.1 Restrictions on Using Resources for Job Placement

	5.12 Using Resources to Prioritize Jobs
	5.13 Using Resources to Restrict Server or Queue Access
	5.13.1 Admittance Limits for walltime, min_walltime, and max_walltime
	5.13.2 Restrictions on Resources Used for Admittance

	5.14 Custom Resources
	5.14.1 How to Use Custom Resources
	5.14.1.1 Choosing the Resource Category
	5.14.1.1.i Examples of Configuring a Custom Resource

	5.14.1.2 Dynamic Custom Resources
	5.14.1.2.i Dynamic Server-level Custom Resources
	5.14.1.2.ii Dynamic Host-level Custom Resources

	5.14.1.3 Static Custom Resources
	5.14.1.3.i Global Static Custom Resources
	5.14.1.3.ii Local Static Custom Resources

	5.14.1.4 Shared Vnode Resources
	5.14.1.5 Using Custom Resources for Application Licenses
	5.14.1.6 Using Custom Resources for Scratch Space

	5.14.2 Defining New Custom Resources
	5.14.2.1 Defining and Setting Static and Dynamic Custom Resources
	5.14.2.2 Custom Resource Values
	5.14.2.3 Resource Flags
	5.14.2.3.i Resource Accumulation Flags
	5.14.2.3.ii Allowable Values for Resource Accumulation Flags
	5.14.2.3.iii When to Use Accumulation Flags
	5.14.2.3.iv Example of Resource Accumulation Flags
	5.14.2.3.v Resource Accumulation Flag Restrictions and Caveats
	5.14.2.3.vi Resource Permission Flags
	5.14.2.3.vii Allowable Values for Resource Permission Flags
	5.14.2.3.viii Effect of Resource Permission Flags
	5.14.2.3.ix Resource Permission Flag Restrictions and Caveats
	5.14.2.3.x Allowing Execution Hooks to Read Custom Job Resources Faster
	5.14.2.3.xi Caveats for Caching Custom Job Resources
	5.14.2.3.xii Setting Types and Flags for Custom Resources via qmgr
	5.14.2.3.xiii

	5.14.2.4 Defining Custom Resources via qmgr
	5.14.2.4.i Creating Custom Resources via qmgr
	5.14.2.4.ii Caveats for Defining Host-level Custom Resources via qmgr
	5.14.2.4.iii Deleting Custom Resources

	5.14.2.5 Defining Custom Resources via Hooks
	5.14.2.6 Allowing Jobs to Use a Resource
	5.14.2.7 Editing Configuration Files Under Windows
	5.14.2.8 Dynamic Resource Scripts/Programs
	5.14.2.8.i Requirements for Scripts/Programs

	5.14.2.9 Example of Defining Each Type of Custom Resource

	5.14.3 Creating Server-level Custom Resources
	5.14.3.1 Dynamic Server-level Resources
	5.14.3.1.i Example of Configuring Dynamic Server-level Resource

	5.14.3.2 Static Server-level Resources
	5.14.3.2.i Example of Configuring Static Server-level Resource

	5.14.4 Configuring Host-level Custom Resources
	5.14.4.1 Dynamic Host-level Resources
	5.14.4.1.i Example of Configuring Dynamic Host-level Resource

	5.14.4.2 Static Host-level Resources
	5.14.4.2.i Example of Configuring Static Host-level Resource

	5.14.4.3 Shared Host-level Resources
	5.14.4.3.i Shared Resource Glossary
	5.14.4.3.ii Configuring Shared Host-level Resources
	5.14.4.3.iii Shared Dynamic Host-level Resources
	5.14.4.3.iv Shared Static Host-level Resources
	5.14.4.3.v Configuring Shared Static Resources
	5.14.4.3.vi Restrictions on Shared Host-level Resources
	5.14.4.3.vii Defining Shared and Non-shared Resources for Multi-vnode Machines
	5.14.4.3.viii Shared Resource Restrictions for Multi-vnode Machines

	5.14.5 Using Scratch Space
	5.14.5.1 Dynamic Server-level (Shared) Scratch Space
	5.14.5.2 Dynamic Host-level Scratch Space
	5.14.5.3 Static Server-level Scratch Space
	5.14.5.4 Static Host-level Scratch Space
	5.14.5.5 Caveats for Scratch Space and Jobs

	5.14.6 Supplying Application Licenses
	5.14.6.1 Types of Licenses
	5.14.6.1.i Externally-managed Licenses
	5.14.6.1.ii Preventing Oversubscription of Externally-managed Licenses
	5.14.6.1.iii PBS-managed Licenses

	5.14.6.2 License Units and Features
	5.14.6.3 Server-level (Floating) Licenses
	5.14.6.3.i Example of Floating, Externally-managed License
	5.14.6.3.ii Example of Floating, Externally-managed License with Features
	5.14.6.3.iii Example of Floating License Managed by PBS

	5.14.6.4 Host-level (Node-locked) Licenses
	5.14.6.4.i Per-host Node-locked Licenses
	5.14.6.4.ii Per-CPU Node-locked Licenses
	5.14.6.4.iii Per-use Node-locked License
	5.14.6.4.iv Example of Per-host Node-locked Licensing
	5.14.6.4.v Example of Per-use Node-locked Licensing
	5.14.6.4.vi Example of Per-CPU Node-locked Licensing

	5.14.7 Using GPUs
	5.14.7.1 Basic GPU Scheduling
	5.14.7.1.i Configuring PBS for Basic GPU Scheduling
	5.14.7.1.ii Example of Configuring PBS for Basic GPU Scheduling

	5.14.7.2 Advanced GPU Scheduling
	5.14.7.2.i Configuring PBS for Advanced GPU Scheduling
	5.14.7.2.ii Example of Configuring PBS for Advanced GPU Scheduling

	5.14.7.3 Managing GPUs Via Cgroups Hook

	5.14.8 Using FPGAs
	5.14.9 Defining Host-level Resource for Applications
	5.14.10 Custom Resource Caveats

	5.15 Managing Resource Usage
	5.15.1 Managing Resource Usage By Users, Groups, and Projects, at Server & Queues
	5.15.1.1 Examples of Managing Resource Usage at Server and Queues
	5.15.1.2 Glossary
	5.15.1.3 Difference Between PBS_ALL and PBS_GENERIC
	5.15.1.4 Hard and Soft Limits
	5.15.1.5 Scope of Limits at Server and Queues
	5.15.1.6 Ways To Limit Resource Usage at Server and Queues
	5.15.1.6.i Limits at Queues
	5.15.1.6.ii Generic and Individual Limits
	5.15.1.6.iii Overall Limits

	5.15.1.7 Precedence of Limits at Server and Queues
	5.15.1.7.i Interactions Between Limits Within One Scope
	5.15.1.7.ii Interactions Between Queue and Server Limits

	5.15.1.8 Resource Usage Limit Attributes for Server and Queues
	5.15.1.9 How to Set Limits at Server and Queues
	5.15.1.9.i Syntax
	5.15.1.9.ii Examples of Setting Server and Queue Limits
	5.15.1.9.iii Examples of Adding Server and Queue Limits
	5.15.1.9.iv Examples of Removing Server and Queue Limits

	5.15.1.10 Who Can Set Limits at Server and Queues
	5.15.1.11 Viewing Server and Queue Limit Attributes
	5.15.1.11.i Printing Server and Queue Limit Attributes
	5.15.1.11.ii Listing Server and Queue Limit Attributes
	5.15.1.11.iii Using the qstat Command to View Queue Limit Attributes

	5.15.1.12 How Server and Queue Limits Work
	5.15.1.13 Caveats and Advice for Server and Queue Limits
	5.15.1.13.i Avoiding Overflow
	5.15.1.13.ii Ensuring That Limits Are Effective
	5.15.1.13.iii Array Jobs
	5.15.1.13.iv Avoiding Job Rejection
	5.15.1.13.v Do Not Mix Old And New Limits
	5.15.1.13.vi Do Not Limit Running Time

	5.15.1.14 Errors and Logging for Server and Queue Limits
	5.15.1.14.i Error When Setting Limit Attributes
	5.15.1.14.ii Logging Events
	5.15.1.14.iii Queued Limit Error Messages
	5.15.1.14.iv Run Limit Error Messages

	5.15.1.15 Old Limit Attributes: Server and Queue Resource Usage Limit Attributes Existing Before Version 10.1
	5.15.1.15.i Precedence of Old Limits
	5.15.1.15.ii Old Server Limits
	5.15.1.15.iii Old Queue Limits

	5.15.2 Placing Resource Limits on Jobs
	5.15.2.1 How Limits Are Derived
	5.15.2.2 Configuring Per-job Limits at Server and Queue
	5.15.2.2.i Running Time Limits at Server and Queues

	5.15.2.3 Configuring Per-job Resource Limit Enforcement at Vnodes
	5.15.2.4 Job Memory Limit Enforcement
	5.15.2.4.i Job Memory Limit Enforcement on Linux
	5.15.2.4.ii Memory Enforcement on cpusets

	5.15.2.5 Job ncpus Limit Enforcement
	5.15.2.5.i Average CPU Usage Enforcement
	5.15.2.5.ii CPU Burst Usage Enforcement
	5.15.2.5.iii Job Memory Limit Restrictions

	5.15.2.6 Changing Job Limits

	5.15.3 Limiting the Number of Jobs in Queues

	5.16 Where Resource Information Is Kept
	5.16.1 Files
	5.16.2 MoM Configuration Parameters
	5.16.3 Attributes

	5.17 Viewing Resource Information
	5.17.1 Resource Information in Accounting Logs
	5.17.2 Resource Information in Daemon Logs
	5.17.3 Finding Current Value
	5.17.4 Restrictions on Viewing Resources

	5.18 Resource Recommendations and Caveats

	Managing Power Usage
	6.1 Monitoring and Controlling Job Power Usage
	6.1.1 Power Provisioning: Monitoring and Controlling Job Power Usage
	6.1.1.1 Monitoring Power Use by Jobs

	6.1.2 Platforms Supporting Power Provisioning
	6.1.3 Power Provisioning on Cray XC
	6.1.3.1 Overview of Power Provisioning on Cray
	6.1.3.2 Selecting Power Profiles
	6.1.3.3 Setting Vnode Power Resources and Attributes
	6.1.3.4 Setting Job Power Resource Requests
	6.1.3.4.i Writing Power Profile Hook for Cray

	6.1.3.5 Enabling Power Provisioning on Cray
	6.1.3.6 Reporting Energy Usage on Cray
	6.1.3.7 Caveats for Power Provisioning on Cray

	6.1.4 Power Provisioning on HPE
	6.1.4.1 Overview of Power Provisioning on HPE
	6.1.4.2 Setting Power Profiles on HPE
	6.1.4.3 Enabling Power Provisioning on HPE

	6.1.5 Terminology for Power Provisioning
	6.1.6 Caveats and Restrictions for Using Power Profiles

	6.2 Managing Node Power on Cray XC
	6.2.1 Managing Node Power on Cray XC with PBS
	6.2.1.1 Using the PBS_power hook for Managing Node Power on Cray

	6.2.2 Limiting Ramp Rate for Node Power on Cray XC
	6.2.2.1 Using the PBS_power for Managing Ramp Rate on Cray
	6.2.2.2 Sample Power Management Configuration File

	6.2.3 Power Management Hook Configuration Parameters

	6.3 Power Management Attributes, Resources, Etc.
	6.4 Caveats and Restrictions for Power Management

	Provisioning
	7.1 Introduction
	7.2 Definitions
	7.3 How Provisioning Can Be Used
	7.4 How Provisioning Works
	7.4.1 Overview of Provisioning
	7.4.1.1 Rebooting When Provisioning

	7.4.2 How Vnodes Are Selected for Provisioning
	7.4.2.1 Provisioning Policy
	7.4.2.2 Examples of Vnode Selection
	7.4.2.3 Rules for Vnode Selection for Provisioning
	7.4.2.4 Triggering Provisioning

	7.4.3 Provisioning And Reservations
	7.4.3.1 Creating Reservations that Request AOEs
	7.4.3.2 Submitting Jobs to a Reservation
	7.4.3.3 Running a Job in a Reservation Having a Requested AOE

	7.4.4 How Provisioning Affects Jobs
	7.4.4.1 Preemption and Provisioning
	7.4.4.2 Backfilling and Provisioning
	7.4.4.3 Walltime and Provisioning
	7.4.4.4 Using qrun

	7.4.5 Vnode States and Provisioning
	7.4.5.1 States Associated With Provisioning
	7.4.5.2 Provisioning Process
	7.4.5.3 Vnode State When Provisioning Fails
	7.4.5.4 Using the qmgr Command on Vnodes In Process of Provisioning

	7.4.6 Attributes, Resources, and Parameters Affecting Provisioning
	7.4.6.1 Host-level Resources
	7.4.6.2 Vnode Attributes
	7.4.6.3 Server Attributes
	7.4.6.4 Hook Attributes
	7.4.6.5 Scheduler Configuration Parameters

	7.5 Configuring Provisioning
	7.5.1 Overview of Configuring Provisioning
	7.5.1.1 Steps in Configuring Provisioning

	7.5.2 Provide a Provisioning Tool
	7.5.3 Prepare Images
	7.5.4 Define aoe Resources
	7.5.5 Inform Scheduler of Current AOE
	7.5.6 Write the Provisioning Script
	7.5.6.1 Arguments to Master Script
	7.5.6.2 Return Values
	7.5.6.2.i Success
	7.5.6.2.ii Failure

	7.5.6.3 Master Script Calls Subscript

	7.5.7 Create and Configure the Provisioning Hook
	7.5.7.1 Create the Hook
	7.5.7.2 Import the Hook Script
	7.5.7.3 Configure the Hook Script
	7.5.7.3.i Set Event Type
	7.5.7.3.ii Set Alarm Time

	7.5.8 Configure Provisioning Policy
	7.5.8.1 Set Maximum Number of Concurrently Provisioning Vnodes
	7.5.8.1.i Considerations

	7.5.8.2 Set Scheduling Policy

	7.5.9 Enable Provisioning on Vnodes
	7.5.10 Enable Provisioning Hook

	7.6 Viewing Provisioning Information
	7.6.1 Viewing Provisioning Hook Contents
	7.6.2 Viewing Provisioning Hook Attributes
	7.6.3 Printing Provisioning Hook Creation Commands
	7.6.4 Viewing Attributes and Resources Affecting Provisioning
	7.6.4.1 Server Attributes
	7.6.4.2 Viewing Vnode Attributes and Resources

	7.7 Requirements and Restrictions
	7.7.1 Site Requirements
	7.7.1.1 Single-vnode Hosts Only
	7.7.1.2 Provisioning Tool Required
	7.7.1.3 Single Provisioning Hook Allowed
	7.7.1.4 Provisioning Hook Cannot Have Multiple Event Types
	7.7.1.5 AOE Names Consistent Across Complex

	7.7.2 Usage Requirements
	7.7.2.1 Restriction on Concurrent AOEs on Vnode
	7.7.2.2 Vnode Job Restrictions
	7.7.2.3 Vnode Reservation Restrictions
	7.7.2.4 Hook Script and AOE Must Be Compatible
	7.7.2.5 Provisioning Hook Must Be Ready
	7.7.2.6 Server Host Cannot Be Provisioned
	7.7.2.7 PBS Attributes Not Available to Provisioning Hook
	7.7.2.8 avoid_provision Incompatible with smp_cluster_dist

	7.8 Defaults and Backward Compatibility
	7.9 Example Scripts
	7.9.1 Sample Master Provisioning Hook Script With Explanation
	7.9.1.1 Sample Master Provisioning Hook Script
	7.9.1.2 Explanation of Sample Provisioning Hook Script

	7.9.2 Sample Master Provisioning Hook Script Calling Performance Cluster Manager
	7.9.3 Sample Script Set
	7.9.3.1 Provisioning Hook Script
	7.9.3.2 Master Provisioning Script
	7.9.3.3 Grub Update Shell Script

	7.10 Advice and Caveats
	7.10.1 Using Provisioning Wisely
	7.10.1.1 Preventing Provisioning

	7.10.2 Allow Enough Time in Reservations

	7.11 Errors and Logging
	7.11.1 Errors
	7.11.1.1 Errors Resulting in Marking Vnodes Offline
	7.11.1.2 Errors Resulting in Requeueing Job

	7.11.2 Logging
	7.11.2.1 Accounting Logs
	7.11.2.2 Server Logs
	7.11.2.2.i Messages Printed at Log Level 0x0080
	7.11.2.2.ii Messages Printed at Log Level 0x0100
	7.11.2.2.iii Messages Printed at Log Level 0x0002
	7.11.2.2.iv Messages Printed at Log Level 0x0001

	7.11.2.3 Scheduler Logs
	7.11.2.3.i Messages Printed at Log Level 0x0400
	7.11.2.3.ii Messages Printed at Log Level 0x0100

	7.11.3 Error Messages

	Security
	8.1 Configurable Features
	8.2 User Roles and Required Privilege
	8.2.1 Root Privilege
	8.2.2 User Roles
	8.2.2.1 User
	8.2.2.1.i Definition of User
	8.2.2.1.ii Defining List of Users

	8.2.2.2 Operator
	8.2.2.2.i Definition of Operator
	8.2.2.2.ii Defining List of Operators

	8.2.2.3 Manager
	8.2.2.3.i Definition of Manager
	8.2.2.3.ii Defining List of Managers

	8.2.2.4 PBS Administrator
	8.2.2.4.i Definition of PBS Administrator

	8.3 Using Access Control Lists
	8.3.1 Access Definitions
	8.3.1.1 Access to a PBS Object
	8.3.1.2 Access by a PBS Entity

	8.3.2 Requirement for Access
	8.3.3 Managing Access via Lists
	8.3.4 ACLs
	8.3.4.1 Format of ACLs
	8.3.4.2 Default ACL Behavior
	8.3.4.3 Modifying ACL Behavior
	8.3.4.4 Contents of User ACLs
	8.3.4.5 Contents of Group ACLs
	8.3.4.6 Contents of Host ACLs
	8.3.4.7 Wildcards In ACLs
	8.3.4.8 Restrictions on ACL Contents

	8.3.5 Enabling Access Control
	8.3.5.1 Table of ACLs and Switches

	8.3.6 Creating and Modifying ACLs
	8.3.6.1 Rules for Creating and Modifying Server and Queue ACLs
	8.3.6.2 Examples of Creating and Modifying Server and Queue ACLs
	8.3.6.3 Who Can Create, Modify, Enable, or Disable ACLs
	8.3.6.4 Who Can Operate on Server ACLs
	8.3.6.5 Who Can Operate on Queue ACLs
	8.3.6.6 Who Can Operate on Reservation ACLs
	8.3.6.7 Who Can Operate on Reservation Queue ACLs

	8.3.7 Server and Queue ACLs
	8.3.7.1 Server ACLs
	8.3.7.2 Queue ACLs
	8.3.7.3 Access to Server for MoMs
	8.3.7.4 Examples of Setting Server and Queue Access

	8.3.8 Reservation Access
	8.3.8.1 Meaning of Reservation Access
	8.3.8.2 Reservation Access Attributes
	8.3.8.3 Setting and Changing Reservation Access
	8.3.8.3.i Examples of Setting and Changing Reservation Access

	8.3.8.4 Reservation Queues
	8.3.8.4.i Reservation Queue ACLs

	8.3.9 Scope of Access Control
	8.3.10 Operations Controlled by ACLs
	8.3.10.1 Server Operations Controlled by ACLs
	8.3.10.1.i Server Host ACL
	8.3.10.1.ii Server User ACL

	8.3.10.2 Queue Operations Controlled by ACLs
	8.3.10.2.i Queue Host ACL
	8.3.10.2.ii Queue User and Group ACLs

	8.3.10.3 Reservation Operations Controlled by ACLs
	8.3.10.4 Table of Operations Controlled by ACLs and Overrides

	8.3.11 Avoiding Problems
	8.3.11.1 Using Group Lists

	8.3.12 Flatuid and Access
	8.3.12.1 How flatuid Controls When Users Can Operate On Jobs
	8.3.12.2 How flatuid Affects Users Without Server Accounts
	8.3.12.2.i Linux and flatuid
	8.3.12.2.ii Windows and flatuid

	8.4 Authentication for Daemons & Users
	8.4.1 Specifying Allowed Authentication Methods
	8.4.1.1 Supported Authentication Methods

	8.4.2 Specifying Authentication Method Used by Authentication Client
	8.4.3 Authentication via Reserved Ports
	8.4.4 Authentication via MUNGE
	8.4.4.1 Steps to Integrate MUNGE with PBS

	8.4.5 Configuring SSSD

	8.5 Encrypting PBS Communication
	8.5.1 Supported Encryption Methods
	8.5.2 Using Transport Layer Security (TLS) for Client-Server Communication
	8.5.2.1 Overview of Configuring PBS for TLS Encryption
	8.5.2.2 Example of Configuring PBS for TLS Encryption

	8.6 Restricting Execution Host Access
	8.6.1 MoM Access Configuration Parameters
	8.6.2 Examples of Restricting Access

	8.7 Access to Schedulers
	8.8 Changing the PBS Service Account Password
	8.9 Paths and Environment Variables
	8.9.1 Path Caveats

	8.10 File and Directory Permissions
	8.11 Root-owned Jobs
	8.11.1 Caveats for Root-owned Jobs

	8.12 Passwords
	8.12.1 Windows User Passwords
	8.12.2 Changing the PBS Service Account Password
	8.12.2.1 Caveats for Changing Service Account Password

	8.13 Windows Firewall
	8.14 Logging Security Events
	8.14.1 Events Logged at Event Class 32 (0x0020)
	8.14.1.1 Events Logged at Event Class 128 (0x0080)
	8.14.1.2 Events Logged at Event Class 1
	8.14.1.3 Events Not Logged

	8.15 Securing Containers

	Making Your Site More Robust
	9.1 Robustness
	9.2 Failover
	9.2.1 Glossary
	9.2.2 How Failover Works
	9.2.2.1 Primary and Secondary Schedulers
	9.2.2.2 Primary and Secondary Data Services
	9.2.2.3 Normal Post-configuration Behavior
	9.2.2.4 Behavior During Failover
	9.2.2.5 Delay During Failover Transition
	9.2.2.6 Behavior When Primary Resumes Control
	9.2.2.7 Server Name and Job IDs During Failover
	9.2.2.8 Information Used by Primary and Secondary Servers
	9.2.2.9 Impact on Users
	9.2.2.10 Determining Which Server Is Active
	9.2.2.11 Delay Between Primary Failure and Secondary Becoming Active
	9.2.2.12 Communication
	9.2.2.12.i Communication with MoMs

	9.2.3 Windows Locations
	9.2.4 Prerequisites for Failover
	9.2.4.1 Checklist of Prerequisites for Failover
	9.2.4.2 Server Host Requirements
	9.2.4.3 Requirements for MoMs on Server Hosts
	9.2.4.4 Ensuring Communication Between Hosts
	9.2.4.5 Hostname Resolution
	9.2.4.6 Shared Filesystem
	9.2.4.6.i Using NFS Filesystems
	9.2.4.6.ii Setting Up the Shared Filesystem

	9.2.4.7 Permission Requirements
	9.2.4.8 Same PBS Versions Everywhere
	9.2.4.9 Requirement for Scheduler
	9.2.4.10 Same Data Service Account on Both Server Hosts
	9.2.4.11 Data Service Host Configuration Requirement
	9.2.4.12 Consistent User Names
	9.2.4.13 Monitor Server Mail

	9.2.5 Configuring Failover
	9.2.5.1 Overview of Configuring Failover
	9.2.5.2 Configuring the pbs.conf File for Failover
	9.2.5.2.i Editing Configuration Files Under Windows

	9.2.5.3 Host Configuration for Failover on Linux
	9.2.5.3.i Configuring Failover For the Primary Server on Linux
	9.2.5.3.ii Configuring Failover For the Secondary Server on Linux
	9.2.5.3.iii Configuring STONITH Script for Use by Secondary Server
	9.2.5.3.iv Configuring Failover For Execution and Client Hosts on Linux

	9.2.5.4 Host Configuration for Failover on Windows
	9.2.5.4.i Configuring Failover for Execution and Client Hosts on Windows

	9.2.6 Configuring Failover with Other PBS Features
	9.2.6.1 Configuring Failover to Work with Routing Queues
	9.2.6.2 Configuring Failover to Work With Peer Scheduling
	9.2.6.3 Configuring Failover to Work With Access Controls

	9.2.7 Using PBS with Failover Configured
	9.2.7.1 Stopping Servers
	9.2.7.2 Starting Servers

	9.2.8 Recommendations and Caveats
	9.2.9 Troubleshooting Failover
	9.2.9.1 PBS Does Not Start
	9.2.9.2 Primary and Secondary Servers Both Running
	9.2.9.3 Primary or Secondary Server Fails to Start
	9.2.9.4 Primary Server Periodically Restarting
	9.2.9.5 Cannot Connect to Host

	9.3 Checkpoint and Restart
	9.3.1 Glossary
	9.3.2 How Checkpointing Works
	9.3.2.1 Types of Checkpointing
	9.3.2.1.i Checkpoint and Abort
	9.3.2.1.ii Snapshot Checkpoint
	9.3.2.1.iii Application Checkpoint

	9.3.2.2 Events That Trigger Checkpointing
	9.3.2.3 Effect of Checkpointing on Jobs
	9.3.2.4 Effect of Checkpointing on Job Resources
	9.3.2.5 Restarting a Job

	9.3.3 Prerequisites for Checkpointing Jobs
	9.3.3.1 Restrictions on Checkpointing

	9.3.4 Configuring Checkpointing
	9.3.4.1 Overview of Configuring Checkpointing
	9.3.4.1.i Editing Configuration Files Under Windows

	9.3.4.2 Specifying Checkpoint and Restart Parameters
	9.3.4.2.i Examples of Checkpoint and Restart Parameters

	9.3.4.3 Setting $restart_transmogrify MoM Parameter

	9.3.5 Parameters and Attributes Affecting Checkpointing
	9.3.5.1 MoM Configuration Parameters Affecting Checkpointing
	9.3.5.2 Options to pbs_mom Affecting Checkpointing
	9.3.5.3 Job Attribute Affecting Checkpointing
	9.3.5.4 Queue Attribute Affecting Checkpointing
	9.3.5.5 Environment Variable Affecting Checkpointing
	9.3.5.6 The Epilogue

	9.3.6 Checkpoint and Restart Scripts
	9.3.6.1 Environment Variables for Scripts
	9.3.6.2 The Checkpoint Script
	9.3.6.2.i Requirements for Checkpoint Script

	9.3.6.3 The Restart Script
	9.3.6.3.i Caveats for Restart Script
	9.3.6.3.ii Requirements for Restart Script
	9.3.6.3.iii Return Values for Restart Script

	9.3.6.4 Scripts for Application Checkpointing
	9.3.6.5 Specifying Checkpoint Path
	9.3.6.5.i Checkpoint Path Caveats

	9.3.7 Using Checkpointing
	9.3.7.1 Periodic Job Checkpointing
	9.3.7.2 Checkpointing During Shutdown
	9.3.7.3 Requeueing via Epilogue
	9.3.7.3.i Requirements for Requeueing via Epilogue

	9.3.7.4 Checkpointed Jobs and Server Restart
	9.3.7.5 Preemption Using Checkpoint
	9.3.7.6 Holding a Job
	9.3.7.6.i Restrictions on Holding a Job

	9.3.7.7 Periodic Application Checkpoint
	9.3.7.8 Manual Application Checkpoint

	9.3.8 Advice and Caveats
	9.3.8.1 PBS_NODEFILE Required
	9.3.8.2 Sockets and Checkpointing

	9.3.9 Accounting

	9.4 Reservation Fault Tolerance
	9.4.1 States for Degraded and In-conflict Reservations
	9.4.2 Finding Replacement Vnodes for Degraded and In- conflict Reservations
	9.4.2.1 Attributes Affecting Reservation Reconfirmation

	9.4.3 Allocating New Vnodes
	9.4.4 Restarting the Server
	9.4.5 Logging Degraded or In-conflict Reservation Information

	9.5 Vnode Fault Tolerance for Job Start and Run
	9.5.1 Overview of Padding and Trimming Vnode Requests
	9.5.2 Saving Job Initial Vnode Request
	9.5.3 Configuring Primary MoMs to Wait for Sister MoMs
	9.5.4 Configuring MoMs to Wait for Hooks
	9.5.4.1 Caveats for Configuring MoMs to Wait for Hooks

	9.5.5 Padding Vnode Request
	9.5.5.1 Specifying Whether and When to Pad Vnode Request
	9.5.5.1.i Setting the tolerate_node_failures Job Attribute

	9.5.5.2 Specifying How Chunks Are Padded
	9.5.5.2.i Example of Padding Chunks

	9.5.5.3 Caveats for Padding Vnode Requests

	9.5.6 Trimming Vnode Request
	9.5.6.1 Example of Trimming Job Vnode Request
	9.5.6.2 Offlining Vnodes that Have Gone Bad During Start or Run

	9.5.7 Checking Vnodes and Marking Them as Failed
	9.5.8 Example of Reliable Job Startup and Run
	9.5.8.1 Example Queuejob Hook for Setup and Padding
	9.5.8.2 Example Hook for Trimming
	9.5.8.3 Example Job
	9.5.8.4 Example of Job Vnode Assignment Padding and Trimming

	9.6 Preventing Communication and Timing Problems
	9.6.1 Introduction
	9.6.2 Node Fail Requeue: Jobs on Failed Vnodes
	9.6.2.1 How Node Fail Requeue Works
	9.6.2.2 Effect Of Requeueing On Jobs
	9.6.2.3 The node_fail_requeue Server Attribute
	9.6.2.3.i Allowable Values
	9.6.2.3.ii Default Value

	9.6.2.4 Where node_fail_requeue Applies
	9.6.2.5 Jobs Eligible to be Requeued
	9.6.2.6 Using node_fail_requeue
	9.6.2.7 Advice and Caveats

	9.6.3 Setting Job Requeue Timeout
	9.6.4 Setting MoM Reconnection Timeout
	9.6.5 Managing Load Levels on Vnodes
	9.6.5.1 Techniques for Managing Load
	9.6.5.1.i Types of Workload
	9.6.5.1.ii How Not To Share CPUs
	9.6.5.1.iii How To Share CPUs
	9.6.5.1.iv Suspending Jobs on Overloaded Vnodes

	9.6.5.2 Caveats and Recommendations
	9.6.5.2.i Allowing Non-job Processes on Execution Host

	9.6.5.3 Load Configuration Parameters

	9.6.6 Prologue & Epilogue Running Time
	9.6.6.1 Prologue Timeout Configuration Parameter

	9.6.7 Time Between Routing Retries
	9.6.7.1 Routing Retry Attribute

	9.7 Preventing File System Problems
	9.7.1 Avoid Filling Location of Temp Files for PBS Components
	9.7.2 Avoid Filling Filesystem with Log Files

	9.8 OOM Killer Protection

	Using MPI with PBS
	10.1 Integration with MPI
	10.2 Prerequisites
	10.3 Types of Integration
	10.4 Transparency to the User
	10.5 Integrating Intel MPI 4.0.3 On Linux Using Environment Variables
	10.5.1 Restrictions for Intel MPI 4.0.3

	10.6 Integrating Intel MPI 4.0.3 on Windows Using Wrapper Script
	10.7 Integrating MPICH2 1.4.1p1 on Windows Using Wrapper Script
	10.8 Integration Using the TM Interface
	10.9 Integration on the Fly using the pbs_tmrsh Command
	10.9.1 Caveats for the pbs_tmrsh Command

	10.10 Integration by Wrapping
	10.10.1 Wrap the Correct Instance

	10.11 Wrapping an MPI Using the pbsrun_wrap Script
	10.11.1 Passing Arguments
	10.11.2 Restricting MPI Use to PBS Jobs
	10.11.3 Format of pbsrun_wrap Command
	10.11.4 Actions During Wrapping
	10.11.5 Requirements
	10.11.6 Caveats and Restrictions
	10.11.7 Links to Wrapper Script Information
	10.11.8 Wrapping Multiple MPIs with the Same Name
	10.11.9 See Also

	10.12 Unwrapping MPIs Using the pbsrun_unwrap Script
	10.13 Integration By Hand
	10.13.1 Integrating HP MPI and Platform MPI
	10.13.2 Steps to Integrate HP MPI or Platform MPI
	10.13.2.1 Setting Up rsh and ssh Commands
	10.13.2.2 Restrictions and Caveats for HP MPI and Platform MPI

	10.13.3 Integrating LAM MPI and Open MPI
	10.13.3.1 Compiling LAM MPI 7.x/Open MPI with the TM Module
	10.13.3.2 Wrapping LAM MPI 6.5.9
	10.13.3.3 Setting up rsh and ssh Commands
	10.13.3.4 Setting up Environment Variables
	10.13.3.5 Verifying Use of TM Interface
	10.13.3.6 See Also

	10.13.4 Integrating MPICH-P4
	10.13.4.1 Restrictions
	10.13.4.2 Options for pbs_mpirun
	10.13.4.3 Steps to Integrate MPICH-P4
	10.13.4.4 Setting Up Environment Variables and Paths

	10.13.5 Integrating HPE MPI
	10.13.5.1 Supported Platforms
	10.13.5.2 Steps to Integrate HPE MPI
	10.13.5.3 Invoking HPE MPI
	10.13.5.4 Using HPE MPI Over InfiniBand
	10.13.5.5 Using CSA with HPE MPI
	10.13.5.6 Prerequisites
	10.13.5.7 Environment Variables

	10.14 How Processes are Started Using MPI and PBS
	10.14.1 Starting Processes under Non-integrated MPIs
	10.14.2 Starting Processes under Wrapped MPIs
	10.14.3 Starting Processes Under MPIs Employing the TM Interface

	10.15 Limit Enforcement with MPI
	10.16 Restrictions and Caveats for MPI Integration

	Configuring PBS for Cray
	11.1 Support for Shasta
	11.1.1 Shasta Is Different from XC
	11.1.1.1 Not Supported on Shasta

	11.1.2 Hook for PBS on Shasta
	11.1.2.1 Shasta Hook Configuration File
	11.1.2.1.i Configuration File Parameters

	11.1.3 Responding to Node Health

	11.2 Configuring PBS for Cray XC Series
	11.3 Introduction to PBS on Cray XC
	11.4 Relationship of PBS Vnodes to Cray XC Nodes
	11.4.1 How PBS Handles Changes in Cray XC Inventory
	11.4.1.1 Reporting Changes in Vnode List in Cray XC
	11.4.1.2 When MoMs Report Conflicting Information in Cray XC
	11.4.1.3 Vnode Resources on Stale Vnodes in Cray XC
	11.4.1.4 Periodically Re-reading ALPS Inventory in Cray XC

	11.5 Requirements for Cray XC
	11.6 Restrictions for Cray XC
	11.7 Resources, Parameters, etc. for Cray XC
	11.7.1 Resources for Cray XC
	11.7.2 Scheduler Attributes for Cray XC
	11.7.3 MoM Configuration Options for Cray XC

	11.8 Automatic Configuration for Cray XC
	11.8.1 Vnode List Creation for Cray XC
	11.8.2 Automatic Vnode Attribute and Resource Settings for Cray XC
	11.8.3 Automatic MoM Parameter Settings for Cray XC
	11.8.4 Default Scheduler Attribute Settings for Cray XC

	11.9 Recommended Manual Configuration for Cray XC
	11.9.1 Configuring Vnode Names on Cray XC
	11.9.1.1 Requirements for PBS_MOM_NODE_NAME on Cray XC
	11.9.1.2 When to Use PBS_MOM_NODE_NAME on Cray XC
	11.9.1.3 Avoid Problems with Vnode Naming on Cray XC

	11.9.2 Set Scheduling Parameters for Cray XC
	11.9.2.1 Caveats for Replacing Resources Used for Gating for Cray XC

	11.9.3 Keeping Jobs Within One Host for Cray XC
	11.9.4 Allowing Scheduling on Nearby Vnodes on Cray XC
	11.9.5 Allowing Users to Request Useful Groups of Nodes on Cray XC
	11.9.6 Allowing Users to Request Login Node Groups on Cray XC
	11.9.7 Set ALPS Reservation Release Timeout on Cray XC
	11.9.8 Enable Local Copy on Cray XC
	11.9.9 Prevent Jobs from Being Requeued on Cray XC

	11.10 Improving Server/MoM Inventory Performance for Cray XC
	11.10.1 Setting the vnode_pool Attribute on Cray XC
	11.10.2 Logging for Cray XC
	11.10.2.1 MoM Log Messages Related to vnode_pool on Cray XC
	11.10.2.2 Server Log Messages Related to vnode_pool on Cray XC

	11.11 Synchronizing PBS with ALPS Inventory on Cray XC
	11.11.1 Prerequisites for Cray XC

	11.12 Support for Xeon Phi on Cray XC
	11.12.1 Creating Xeon Phi Vnodes on Cray XC
	11.12.1.1 PBS Vnodes and Segments or NUMA Nodes on Cray XC
	11.12.1.2 Indicating Current AOE on Cray XC
	11.12.1.3 Indicating High-bandwidth Memory on Cray XC
	11.12.1.4 Validating Xeon Phi Model in Request on Cray XC
	11.12.1.4.i Example queuejob Hook for Validating Xeon Phi Models on Cray XC

	11.12.2 Configuring Xeon Phi Vnodes on Cray XC
	11.12.2.1 Configuration Instructions on Cray XC
	11.12.2.2 Using Xeon Phi Configuration Script on Cray XC
	11.12.2.3 Xeon Phi Configuration Script Contents for Cray XC

	11.13 Using Hyperthreading on Cray XC
	11.13.1 References for Hyperthreading on Cray XC

	11.14 Viewing Cray XC Information
	11.14.1 Listing Vnodes on Cray XC
	11.14.2 Contents of Vnode Mom Attribute on Cray XC
	11.14.3 Viewing Vnode Information on Cray XC
	11.14.4 Effect on Jobs of Stopping and Starting Vnodes on Cray XC
	11.14.5 Resource Accounting on Cray XC
	11.14.5.1 Using Comprehensive System Accounting on Cray XC
	11.14.5.2 CSA Configuration Parameter on Cray XC
	11.14.5.3 Requirements for CSA on Cray XC
	11.14.5.4 Configuring MoM for CSA on Cray XC
	11.14.5.5 Enabling Kernel CSA Support on Cray XC

	11.15 Resource Restrictions and Deprecations for Cray XC
	11.16 Caveats and Advice for Cray XC
	11.16.1 Processes Not Suspended on Cray XC
	11.16.2 Creating MoM Directories on Cray XC
	11.16.3 Error Messages in MoM Logs on Cray XC
	11.16.4 Configure Cray XC MoMs According to Rules
	11.16.5 Suspending and Resuming Jobs on Cray XC
	11.16.5.1 Caveats and Restrictions
	11.16.5.2 Default Behavior on Cray XC
	11.16.5.3 Configuring Suspend and Resume on Cray XC
	11.16.5.4 Errors on Cray XC

	11.16.6 Vnode Definition Files Not Recommended on Cray XC
	11.16.7 Use Correct Name When Creating Vnode on Cray XC
	11.16.8 Deleting Vnodes on Cray XC
	11.16.9 Do Not Make Vnode Definitions Additive on Cray XC
	11.16.10 Do Not Use configrm on Cray XC
	11.16.11 Using Gating Values As Defaults on Cray XC
	11.16.12 Marking Cray XC Vnodes Offline
	11.16.13 Do Not Use PBS-reserved Resource Names on Cray XC
	11.16.14 Fewer Chunks for Shorter Scheduling Cycle on Cray XC
	11.16.14.1 Caveats

	11.16.15 No cput or mem for Compute Node Jobs on Cray XC
	11.16.16 Set PATH Correctly on Cray XC

	11.17 Errors and Logging on Cray XC
	11.17.1 Creating Custom Resources on Cray XC
	11.17.2 Job Requests More Than Available on Cray XC
	11.17.3 Invalid Cray XC Requests
	11.17.4 Unequal ompthreads and ncpus on Cray XC

	Support for HPE
	12.1 Briefly, How PBS Manages Cpusets
	12.2 Cpusets and Vnodes
	12.3 Requirements for Managing Cpusets
	12.4 Where to Use Cpusets
	12.5 Settings for sharing Attribute
	12.5.1 Creating Vnodes
	12.5.1.1 Caveats for Creating Vnodes

	12.5.2 Configuring Vnodes

	12.6 Comprehensive System Accounting

	Managing Jobs
	13.1 Routing Jobs
	13.2 Limiting Number of Jobs Considered in Scheduling Cycle
	13.3 Allocating Resources to Jobs
	13.3.1 Viewing Resources Allocated to a Job
	13.3.1.1 The exec_vnode Attribute
	13.3.1.2 The schedselect Attribute
	13.3.1.3 Resources for Requeued Jobs

	13.4 Grouping Jobs By Project
	13.4.1 PBS Projects
	13.4.2 Assigning Projects to Jobs
	13.4.3 Managing Resource Use by Project
	13.4.4 Managing Jobs by Project
	13.4.5 Viewing Project Information
	13.4.6 Selecting Jobs by Project
	13.4.7 Default Project Value
	13.4.8 Error Messages

	13.5 Job Prologue and Epilogue
	13.5.1 Using Shell Scripts for Prologue and Epilogue
	13.5.1.1 When Shell Prologue and Epilogue Run
	13.5.1.2 Where Shell Prologue and Epilogue Run
	13.5.1.3 Shell Prologue and Epilogue Location
	13.5.1.4 Shell Prologue and Epilogue Requirements
	13.5.1.5 Shell Prologue and Epilogue Environment Variables
	13.5.1.6 Shell Prologue and Epilogue Permissions
	13.5.1.7 Shell Prologue and Epilogue Arguments
	13.5.1.8 Shell Epilogue Argument Caveats
	13.5.1.9 Standard Input to Shell Prologue and Epilogue
	13.5.1.10 Standard Output and Error for Shell Prologue and Epilogue
	13.5.1.11 Shell Prologue and Epilogue Timeout
	13.5.1.12 Shell Prologue and Epilogue Exit Codes
	13.5.1.13 Shell Prologue and Epilogue Limitations and Caveats

	13.5.2 Using Hooks for Prologue and Epilogue
	13.5.2.1 Installing Prologue and Epilogue Hooks

	13.6 Linux Shell Invocation
	13.6.1 Advantages
	13.6.2 Disadvantages

	13.7 When Job Attributes are Set
	13.7.1 Job Attributes Set By qsub Command
	13.7.2 Job Attributes Set at Server
	13.7.3 Attributes Changed by Operations on Jobs
	13.7.3.1 Comment Set When Running Job
	13.7.3.2 Attributes Changed When Moving Job
	13.7.3.3 Attributes Changed When Altering Job
	13.7.3.4 Attributes Changed When Requeueing or Rerunning a Job
	13.7.3.5 Attributes Changed by Holding or Releasing a Job
	13.7.3.6 Attributes Changed by Suspending or Resuming a Job

	13.8 Job Termination
	13.8.1 Normal Job Termination
	13.8.2 Using the qdel Command to Terminate a Job
	13.8.3 Killing Job Processes
	13.8.4 Hooks and Job Termination
	13.8.5 Configuring Site-specific Job Termination
	13.8.5.1 Requirements for Termination Script
	13.8.5.2 Examples of Configuring Termination
	13.8.5.3 Caveats and Restrictions on Termination

	13.8.6 Killing Jobs with a Signal

	13.9 Job Exit Status Codes
	13.9.1 Job Exit Status Between 0 and 128 (or 256)
	13.9.2 Job Exit Status >= 128 (or 256)
	13.9.3 Logging Job Exit Status
	13.9.4 Exit Status of Interactive Jobs

	13.10 Rerunning or Requeueing a Job
	13.10.1 Requeueing a Job on a Dead Node
	13.10.2 Output from a Re-run Job
	13.10.3 Caveats for qrerun
	13.10.4 Requeueing Caveats
	13.10.5 Caveats for Jobs Started by PBS

	13.11 Job IDs
	13.11.1 Format of Job IDs
	13.11.2 Range of IDs
	13.11.3 Job IDs and Moving Jobs
	13.11.4 Job IDs and Requeueing and Checkpoint/Restart

	13.12 Where to Find Job Information
	13.12.1 Deleted Jobs
	13.12.2 Failed Jobs
	13.12.3 Job Information When Server is Down
	13.12.4 Job Information on Execution Host

	13.13 Job Directories
	13.13.1 Staging and Execution Directories for Job
	13.13.1.1 The sandbox Job Attribute
	13.13.1.2 Options, Attributes and Environment Variables Affecting Staging
	13.13.1.3 Getting Information About the Job Staging and Execution Directory
	13.13.1.4 Example of Setting Location for Creation of Staging and Execution Directories
	13.13.1.5 Staging and Execution Directory Caveats

	13.14 The Job Lifecycle
	13.14.1 Sequence of Events for Start of Job
	13.14.2 Sequence of Events for End of Job
	13.14.3 Creation of TMPDIR
	13.14.4 Choice of Staging and Execution Directories
	13.14.4.1 Choosing Job-specific Staging and Execution Directories
	13.14.4.1.i Job-specific Staging and Execution Directory Caveats

	13.14.4.2 Choosing User Home Directory as Staging and Execution Directory

	13.14.5 Setting PBS_JOBDIR and jobdir Job Attribute
	13.14.6 Staging Files Into Staging and Execution Directories
	13.14.7 Running the Prologue
	13.14.8 Job Execution
	13.14.9 Standard Out, Standard Error and TMPDIRs
	13.14.9.1 Output and Error with Job-specific Staging and Execution Directories
	13.14.9.2 Output and Error with User Home Directory as Staging and Execution Directory

	13.14.10 Running the Epilogue
	13.14.11 Staging Files Out and Removing Execution Directory
	13.14.11.1 Staging Out with Job-specific Staging and Execution Directories
	13.14.11.2 Staging Out with User Home Directory as Staging and Execution Directory

	13.14.12 Removing TMPDIRs

	13.15 Managing Job History
	13.15.1 Introduction
	13.15.2 Definitions
	13.15.3 Job History Information Preserved by PBS
	13.15.4 Period When PBS Preserves Job History
	13.15.5 Configuring Job History Management
	13.15.5.1 Enabling Job History
	13.15.5.2 Setting Job History Duration

	13.15.6 Changing Job History Settings
	13.15.6.1 Disabling Job History
	13.15.6.2 Enabling Job History
	13.15.6.3 Modifying Job History Duration

	13.15.7 Backward Compatibility
	13.15.8 Logging Moved Jobs
	13.15.9 Deleting Moved Jobs and Job Histories
	13.15.10 Job History Caveats

	13.16 Environment Variables
	13.17 Adjusting Job Running Time
	13.17.1 Shrink-to-fit Jobs

	13.18 Managing Number of Run Attempts
	13.19 Managing Amount of Memory for Job Scripts
	13.20 Allowing Interactive Jobs on Windows
	13.20.1 Configuring PBS for Remote Viewer on Windows
	13.20.2 Specifying Remote Viewer at Submission Hosts
	13.20.3 Configuring MoM to Run in LocalSystem Account on Windows
	13.20.4 Configuring Single Sign-on for Remote Desktop on Windows
	13.20.4.1 Configuring Submission Hosts for Single Sign-on
	13.20.4.2 Configuring Execution Hosts for Single Sign-on

	13.21 Releasing Unneeded Vnodes from Jobs
	13.21.1 Caveats and Restrictions for Releasing Vnodes

	13.22 Tolerating Vnode Faults
	13.23 Managing Job Array Size
	13.24 Recommendations

	Administration
	14.1 The PBS Configuration File
	14.1.1 Location of Configuration File
	14.1.2 Format of Configuration File
	14.1.2.1 Specifying Parameters
	14.1.2.2 Comment Lines in Configuration File

	14.1.3 Example of Configuration File
	14.1.4 Contents of Configuration File
	14.1.5 Configuration File Caveats and Recommendations

	14.2 Environment Variables
	14.2.1 Environment Variables For Daemons, Commands, and Jobs
	14.2.1.1 Contents of Environment File
	14.2.1.2 Location of Environment File
	14.2.1.3 Environment File Requirements
	14.2.1.4 Editing Configuration Files Under Windows

	14.2.2 Job-specific Environment Variables

	14.3 Event Logging
	14.3.1 PBS Events
	14.3.2 Event Logfiles
	14.3.3 Log Levels
	14.3.3.1 Specifying Log Levels
	14.3.3.1.i Specifying Server Log Events
	14.3.3.1.ii Specifying MoM Log Events
	14.3.3.1.iii Specifying Scheduler Log Events
	14.3.3.1.iv Specifying Communication Daemon Log Events

	14.3.4 Event Logfile Format and Contents
	14.3.4.1 Event Logfile Format
	14.3.4.2 Scheduler Commands

	14.3.5 Logging Job Usage
	14.3.6 Managing Log Files
	14.3.6.1 Disk Space for Log Files
	14.3.6.2 Dividing Up Log Files
	14.3.6.2.i Dividing Log Files on Linux
	14.3.6.2.ii Dividing Log Files on Windows

	14.3.6.3 Specifying Log File Path

	14.3.7 Extracting Logged Information
	14.3.8 Using the Linux syslog Facility
	14.3.8.1 Caveats

	14.4 Managing Machines
	14.4.1 Offlining Hosts and Vnodes
	14.4.1.1 Caveats of Offlining

	14.4.2 Performing Maintenance on Powered-up Vnodes
	14.4.2.1 Reserving Vnodes for Maintenance
	14.4.2.2 Putting Vnodes into Maintenance State
	14.4.2.2.i Resource Release on Suspension
	14.4.2.2.ii Caveats for admin-suspend and admin-resume

	14.4.3 Changing Hostnames or IP Addresses
	14.4.4 Discovering Last Reboot Time of Server
	14.4.5 Changing Network Configuration
	14.4.6 Replacing or Reimaging Nodes
	14.4.7 Restricting User Access to Execution Hosts
	14.4.7.1 Windows Restriction

	14.5 Managing the Data Service
	14.5.1 PBS Monitors Data Service
	14.5.2 Data Service Accounts
	14.5.3 Data Service Account Password
	14.5.3.1 Setting Data Service Account Name and Password
	14.5.3.2 Caveats

	14.5.4 Starting and Stopping the Data Service
	14.5.4.1 Caveats for Starting and Stopping Data Service

	14.5.5 Changing Data Service Port
	14.5.5.1 Caveats

	14.5.6 File Ownership

	14.6 Setting File Transfer Mechanism
	14.6.1 File Transfer in PBS
	14.6.1.1 Configuration Parameters Affecting File Transfer
	14.6.1.2 How MoM Chooses File Transfer Method
	14.6.1.2.i When Multiple Attempts Are Required

	14.6.1.3 Options Passed to File Transfer Commands
	14.6.1.3.i Options Passed on Linux
	14.6.1.3.ii Options Passed on Windows

	14.6.2 Configuring MoM for Local Copy
	14.6.2.1 Configuring the $usecp MoM Parameter
	14.6.2.1.i Linux and $usecp
	14.6.2.1.ii Windows and $usecp

	14.6.3 Configuring MoM for Remote Copy
	14.6.3.1 Configuring MoM to use scp or PBS_SCP Entry
	14.6.3.2 Configuring MoM to use rcp, pbs_rcp or PBS_RCP Entry
	14.6.3.3 Configuring MoM to Use Different Flags, a Script, or a Different Command

	14.6.4 Allowing Direct Write of Standard Output and Error to / dev/null
	14.6.5 Troubleshooting File Transfer
	14.6.5.1 Problems with rcp
	14.6.5.2 Problems with Directory Access

	14.6.6 Advice on Improving File Transfer Performance
	14.6.6.1 Avoiding Server Host Overload
	14.6.6.2 Avoiding Remote Transfers in Large Complexes
	14.6.6.3 Improving Performance for ssh
	14.6.6.4 Improving Performance when Staging Similar Files
	14.6.6.5 Avoiding Limits on ssh Connections
	14.6.6.6 Alternatives to Changing ssh Limits
	14.6.6.7 Getting Around Bandwidth Limits

	14.6.7 General Advice on File Transfer
	14.6.7.1 Enabling Passwordless Authentication
	14.6.7.2 Using scp for Security
	14.6.7.3 Avoiding Asynchronous Writes to NFS
	14.6.7.4 Returning Output on Cray
	14.6.7.5 Editing the pbs.conf File Under Windows
	14.6.7.6 The pbs_rcp Command
	14.6.7.6.i Exit Values for pbs_rcp

	14.6.7.7 Caveats

	14.7 Some Performance Tips
	14.7.1 Improving Scheduling Performance
	14.7.2 Improving Communication Performance
	14.7.3 Improving Hook Speed

	14.8 Temporary File Location for PBS Components
	14.8.1 Default Location for Temporary Files
	14.8.2 Configuring Temporary File Location for PBS Components
	14.8.3 Requirements
	14.8.4 Advice and Recommendations for Temporary File Location

	14.9 Administration Caveats
	14.9.1 General Caveats
	14.9.2 Windows Caveats

	14.10 Support for Globus
	14.11 Support for Hyperthreading
	14.11.1 Linux Machines with HTT
	14.11.2 Windows Machines with HTT
	14.11.3 Using Number of Physical CPUs
	14.11.4 Hyperthreading Caveats

	14.12 How To...
	14.12.1 How to Drain Jobs
	14.12.2 How to Find Out Which Daemons Should Be Running

	Configuring and Using PBS with Cgroups
	15.1 Chapter Contents
	15.2 Introduction to Cgroups
	15.3 Why Use Cgroups?
	15.3.1 What PBS Can Do With Cgroups
	15.3.2 Examples of Using Cgroups

	15.4 How PBS Uses Cgroups
	15.4.1 Vnode Creation via Cgroups Hook
	15.4.1.1 Caveats for Vnode Creation

	15.4.2 Job Life Cycle with Cgroups
	15.4.2.1 Running Single-host Jobs with Cgroups
	15.4.2.2 Running Multi-host Jobs with Cgroups

	15.4.3 Cgroup Subsystems
	15.4.3.1 Cgroup Subsystems Managed by the Cgroups Hook
	15.4.3.2 Cgroup Subsystems Not Managed by Cgroups Hook

	15.5 Configuring Cgroups
	15.5.1 Prerequisites for Cgroups Hook
	15.5.1.1 Ensure that Cgroups are Available
	15.5.1.2 Ensure that PBS Is Already Installed and Started

	15.5.2 Enabling and Tuning Hook According to Host and/or Vnode Type
	15.5.2.1 Vnode Types for Cgroups Hook
	15.5.2.1.i Vnode Type File and vntype Resource

	15.5.2.2 Tuning Where Hook, Subsystems, and Parameters are Enabled
	15.5.2.2.i Enabling the Hook and Subsystems
	15.5.2.2.ii exclude_vntypes
	15.5.2.2.iii exclude_hosts
	15.5.2.2.iv include_hosts
	15.5.2.2.v run_only_on_hosts
	15.5.2.2.vi Hook and Subsystem Enablement Tuning Parameters

	15.5.3 Cgroups Hook Configuration Parameters
	15.5.3.1 Global Parameters for Cgroups Hook
	15.5.3.2 Setting vnode_per_numa_node
	15.5.3.3 Configuring Hyperthreading Support
	15.5.3.3.i Mixing Hyperthreading Models in a Complex

	15.5.3.4 Automatic Onlining of Fixed Vnodes
	15.5.3.5 cpuacct Subsystem
	15.5.3.6 cpuset Subsystem
	15.5.3.6.i Using Memory Fences for Job Memory Requests
	15.5.3.6.ii Using Memory Fences for OS File Caching
	15.5.3.6.iii Memory Spreading for OS File Caching
	15.5.3.6.iv Allowing Zero CPU Jobs
	15.5.3.6.v Excluding CPUs
	15.5.3.6.vi cpuset Subsystem Configuration Parameters

	15.5.3.7 cpu Subsystem
	15.5.3.7.i cpu Subsystem Caveats
	15.5.3.7.ii cpu Subsystem Configuration Parameters

	15.5.3.8 devices Subsystem
	15.5.3.8.i Allowing Access to Devices
	15.5.3.8.ii devices Subsystem Configuration Parameters

	15.5.3.9 memory Subsystem
	15.5.3.9.i Reserving Memory
	15.5.3.9.ii Effect of Cgroups Hook on the mem Resource
	15.5.3.9.iii Assigning a Default Amount of Memory to Jobs
	15.5.3.9.iv Managing Use of Swap by Jobs
	15.5.3.9.v Setting Memory Soft Limits
	15.5.3.9.vi Setting Aside Memory for Kernel Drivers
	15.5.3.9.vii memory Subsystem Configuration Parameters

	15.5.3.10 memsw Subsystem
	15.5.3.10.i Reserving Swap
	15.5.3.10.ii memsw Subsystem Configuration Parameters
	15.5.3.10.iii Scheduling on the vmem Resource
	15.5.3.10.iv Effect of memsw Subsystem on the vmem Resource
	15.5.3.10.v Caveat for Enabling memsw Subsystem

	15.5.3.11 hugetlb Subsystem
	15.5.3.11.i Reserving Huge Page Memory
	15.5.3.11.ii Caveat for hugetlb Subsystem
	15.5.3.11.iii hugetlb Subsystem Configuration Parameters

	15.5.3.12 Sample Cgroups Hook Configuration File

	15.5.4 Finish Up
	15.5.4.1 Enable cgroups hook
	15.5.4.2 HUP or Restart MoM
	15.5.4.3 Enable Use of Resources by the Scheduler

	15.5.5 Managing GPUs or Xeon Phi via Cgroups
	15.5.5.1 Managing GPUs via Cgroups
	15.5.5.1.i Configuration Steps
	15.5.5.1.ii Isolating NVIDIA GPUs
	15.5.5.1.iii Using GPUs with MPI Not Integrated with PBS

	15.5.5.2 Environment Variables for CUDA and Xeon Phi

	15.6 Configuring MPI for Cgroups
	15.6.1 Steps to Integrate MPI with PBS via ssh

	15.7 Managing Jobs with Cgroups
	15.7.1 Requesting Memory
	15.7.2 Limit Enforcement
	15.7.3 Examples of Requesting Cores and Hyperthreads
	15.7.4 Spawning Job Processes

	15.8 Caveats and Errors
	15.8.1 Interactions Between Suspend/resume and the cpuset Subsystem
	15.8.2 Caveats for Shrinking a Job on a Host
	15.8.3 Caveats for Using CUDA
	15.8.4 Do Not Change ncpus When cpuset Subsystem is Enabled
	15.8.5 Cgroups Hook Prevents Epilogue from Running
	15.8.6 Errors

	Using PBS with Containers
	16.1 Introduction
	16.1.1 Container Engines Used by PBS
	16.1.1.1 Using nvidia-docker
	16.1.1.2 Caching Singularity Images

	16.1.2 Container Ports

	16.2 The PBS Container Hook
	16.3 Prerequisites
	16.4 Configuring PBS for Containers
	16.4.1 Create Container Resources
	16.4.2 Configure PBS Container Hook
	16.4.2.1 Default Configuration File

	16.4.3 Install and Start Container Engines
	16.4.4 Configure Security Enhancement for Docker

	16.5 Caveats and Restrictions
	16.6 Errors and Logging

	Accounting
	17.1 The Accounting Log File
	17.1.1 Name and Location of Accounting Log File
	17.1.2 Managing the Accounting Log File
	17.1.3 Permissions for Accounting Log

	17.2 Viewing Accounting Information
	17.2.1 Using the tracejob Command
	17.2.1.1 Permissions for the tracejob Command

	17.3 Format of Accounting Log Messages
	17.3.1 Log Entry Format
	17.3.2 Space Characters in String Entries
	17.3.2.1 Replacing Space Characters in String Entries

	17.4 Types of Accounting Log Records
	17.4.1 Accounting Records for Job Arrays

	17.5 Timeline for Accounting Messages
	17.5.1 Timeline for Job Accounting Messages
	17.5.2 Where Job Attributes are Recorded
	17.5.3 Timeline for Reservation Accounting Messages
	17.5.4 Where Reservation Attributes and Info are Recorded
	17.5.4.1 Jobs in Reservations

	17.5.5 How MoM Polling Affects Accounting

	17.6 Resource Accounting
	17.6.1 Accounting Log Resource Entry Formats
	17.6.2 Job Resource Accounting
	17.6.2.0.i Accounting Log Entries for min_walltime and max_walltime
	17.6.2.1 Reporting Resources Assigned to Job
	17.6.2.2 Reporting Resources Used by Job
	17.6.2.3 Freeing Resources
	17.6.2.4 Releasing Vnodes

	17.6.3 Reservation Resource Accounting
	17.6.4 Platform-specific Resource Accounting Tools
	17.6.4.1 Resource Accounting on Cray
	17.6.4.1.i Using Cray Resource Utilization Reporting
	17.6.4.1.ii Using Comprehensive System Accounting
	17.6.4.1.iii CSA Configuration Parameter
	17.6.4.1.iv Requirements for CSA
	17.6.4.1.v Configuring MoM for CSA
	17.6.4.1.vi Enabling Kernel CSA Support

	17.6.5 Changing Resource Values Reported in Accounting Logs

	17.7 Options, Attributes, and Parameters Affecting Accounting
	17.7.1 Options to pbs_server Command
	17.7.2 Options to qsub Command
	17.7.3 Options to qalter Command
	17.7.4 Job Attributes
	17.7.5 MoM Parameters
	17.7.5.1 Cray-only MoM Initialization Values

	17.8 Accounting Caveats and Advice
	17.8.1 Integrate MPIs for Accurate Accounting
	17.8.2 MPI Integration under Windows
	17.8.3 Using Hooks for Accounting
	17.8.3.1 Use Hooks to Record Job Information
	17.8.3.2 Use Hooks to Manage Job Accounting String

	Mixed Linux-Windows Operation
	18.1 Introduction to Mixed Linux-Windows Operation
	18.1.1 Caveats for Mixed Linux-Windows Operation

	18.2 Configuration
	18.2.1 Configure Authentication
	18.2.2 Windows Hosts and Users in Active Directory Domain
	18.2.3 Allow Linux Authentication of Windows Active Domain Users
	18.2.4 Configure User Authorization
	18.2.5 Install PBS on Windows Hosts
	18.2.6 Set Up TLS Encryption

	18.3 Troubleshooting Mixed Linux-Windows Complex

	Problem Solving
	19.1 Debugging Tools
	19.1.1 Debugging Commands
	19.1.2 Setting Corefile Size
	19.1.3 Using the debuginfo RPM Package
	19.1.4 Sending Daemon Execution Recordings to Altair
	19.1.4.1 Caveats and Restrictions

	19.1.5 Finding PBS Version Information
	19.1.6 Troubleshooting and Hooks

	19.2 Security and Permissions Problems
	19.2.1 Directory Permission Problems
	19.2.1.1 Correcting Permissions Problems on Linux
	19.2.1.2 Correcting Permissions Problems on Windows

	19.3 Troubleshooting Jobs
	19.3.1 Job Held Due to Invalid Password
	19.3.2 Requeueing a Job “Stuck” on a Down Vnode
	19.3.3 Job Cannot be Executed
	19.3.4 Running Jobs with No Active Processes
	19.3.5 Jobs that Can Never Run
	19.3.6 Job Comments for Problem Jobs
	19.3.7 Bad UID for Job Execution
	19.3.8 Windows: Bad UID for Job Execution
	19.3.9 New Jobs Not Running
	19.3.10 Job Stuck in Exiting State
	19.3.10.1 qdel -Wforce <job ID>

	19.4 Troubleshooting Daemons
	19.4.1 Server Host Bogs Down After Startup
	19.4.1.1 Symptoms
	19.4.1.2 Problem
	19.4.1.3 Treatment

	19.4.2 Server Does Not Start
	19.4.3 Primary Server Periodically Restarting
	19.4.4 PBS Data Service Does Not Start
	19.4.5 Server Dies Inexplicably
	19.4.6 Data Service Running When PBS Server is Down
	19.4.7 Scheduler Cannot Reliably Contact Server
	19.4.8 PBS Daemon Will Not Start
	19.4.9 Troubleshooting Windows Daemon Problems
	19.4.9.1 Windows: MoMs Do Not Start

	19.5 Troubleshooting Vnodes
	19.5.1 Vnodes Down
	19.5.2 Bad Vnode on Startup

	19.6 Troubleshooting Client Commands
	19.6.1 Windows: Client Commands Slow
	19.6.1.1 Scenario: Wireless Router, DHCP Enabled

	19.6.2 Windows: qstat Errors
	19.6.3 Clients Unable to Contact Server

	19.7 Troubleshooting PBS Licenses
	19.7.1 Wrong License Server: Out of Memory
	19.7.2 Unable to Connect to License Server
	19.7.3 Insufficient Minimum Licenses
	19.7.4 Wrong Type of License

	19.8 Crash Recovery
	19.8.1 Recovery When Host Machine Stops
	19.8.1.1 Execution Host Stops
	19.8.1.2 Server/scheduler/communication Host Stops

	19.8.2 Recovery When Daemon Stops

	19.9 Other Troubleshooting
	19.9.1 Problem With Dynamic Resource
	19.9.2 Cannot Create Formula or Hook
	19.9.3 Windows: PBS Cannot Locate Configuration File
	19.9.4 Filesystem Runs Out of Space
	19.9.5 Unrecognized Timezone Variable

	19.10 Getting Help

	Index

	Hooks Guide (HG)
	Contents
	New Hook Features
	1.1 New Features in PBS 2020.1.1
	1.2 Changes in Previous Releases
	1.3 Deprecations and Removals

	Introduction to Hooks
	2.1 Introduction to Hooks
	2.1.1 Built-in Hooks

	2.2 Glossary
	2.3 Prerequisites and Requirements for Hooks
	2.4 Uses for Hooks
	2.4.1 Routing Jobs
	2.4.2 Managing Resource Requests and Usage
	2.4.3 Ensuring that Jobs Run Properly
	2.4.4 Managing Job Output
	2.4.5 Controlling Interactive Jobs
	2.4.6 Helping Schedule Jobs
	2.4.7 Communicating Information to Users
	2.4.8 Managing User Activity
	2.4.9 Enabling Accounting and Validation
	2.4.10 Allocation Management
	2.4.11 Managing Job Execution
	2.4.12 Configuring Vnodes
	2.4.13 Provisioning Vnodes
	2.4.14 Accepting or Rejecting Job Task Attachment

	Quick Start with Hooks
	3.1 Simple How-to for Writing Hooks
	3.2 Writing Hooks: Basic Hook Structure
	3.3 Example of Simple Hook
	3.4 Importing Hook Configuration File
	3.5 Creating and Importing Your Hook
	3.6 Setting Attributes for Your Hook

	Hook Basics
	4.1 Hook Basics
	4.1.1 Accepting or Rejecting Actions
	4.1.1.1 Examples of Accepting and Rejecting Actions

	4.1.2 When Hooks Run
	4.1.2.1 Job-related Hooks that Run Before Execution
	4.1.2.2 Job-related Hooks that Run at Execution Host
	4.1.2.3 Non-job-related Hooks
	4.1.2.4 Each Triggering Event Runs One Hook Instance
	4.1.2.5 Execution Event Hook Triggers in Lifecycle of Job

	4.1.3 Account Under Which Hooks Run
	4.1.4 Where Hooks Run
	4.1.5 Permissions and Location for Hook Creation and Modification
	4.1.6 Failover
	4.1.7 What Hooks Cannot Access or Do
	4.1.8 What Hooks Should Not Do

	4.2 Viewing Hook Information
	4.2.1 Listing Hooks
	4.2.2 Viewing Hook Contents
	4.2.3 Printing Hook Creation Commands
	4.2.4 Re-creating Hooks

	4.3 Restarting the Python Interpreter
	4.4 Attributes and Parameters Affecting Hooks
	4.5 Python Modules and PBS
	4.5.1 Python Module Caveats
	4.5.2 Modifying Python Modules
	4.5.2.1 Caveats for Modifying Python Modules

	4.5.3 List of Modules in pbs_python

	4.6 See Also

	Creating and Configuring Hooks
	5.1 Creating and Configuring Hooks
	5.1.1 Introduction to Creating and Configuring Hooks
	5.1.1.1 Hook Name Restrictions

	5.1.2 Overview of Creating and Configuring a Hook
	5.1.2.1 Example of Creating and Configuring a Hook

	5.1.3 Creating Empty Hooks
	5.1.3.1 Example of Creating an Empty Hook

	5.1.4 Deleting Hooks
	5.1.4.1 Example of Deleting a Hook

	5.1.5 Setting Hook Trigger Events
	5.1.5.1 Example of Setting Hook Trigger Events

	5.1.6 Using Hook Configuration Files
	5.1.6.1 Format of Configuration File
	5.1.6.2 Importing Configuration File
	5.1.6.2.i Examples of Importing Configuration Files

	5.1.6.3 Exporting Configuration Files
	5.1.6.4 How Hooks Find Configuration Files
	5.1.6.5 Changing a Hook Configuration File
	5.1.6.6 Validation and Errors

	5.1.7 Importing Hooks
	5.1.7.1 Examples of Importing Hooks

	5.1.8 Exporting Hooks
	5.1.8.1 Examples of Exporting Hooks

	5.1.9 Setting and Unsetting Hook Attributes
	5.1.9.1 Caveats for Setting Hook Attributes
	5.1.9.2 Using the fail_action Hook Attribute
	5.1.9.3 List of Hook Attributes

	5.1.10 Enabling and Disabling Hooks
	5.1.10.1 Example of Enabling and Disabling Hooks

	5.1.11 Setting the Relative Order of Hook Execution
	5.1.11.1 Example of Setting Relative Order of Hook Execution
	5.1.11.2 Caveats for Setting Relative Order of Hooks

	5.1.12 Setting Hook Timeout
	5.1.12.1 Example of Setting Hook Timeout

	5.1.13 Setting Hook Interval (Frequency)
	5.1.13.1 Example of Setting Hook Interval (Frequency)

	5.1.14 Setting Hook User Account
	5.1.14.1 Example of Setting Hook User Account

	5.2 Writing Hook Scripts to Operate on PBS Elements
	5.2.1 How We Define and Refer to Objects and Methods
	5.2.1.1 Scope of Object or Method
	5.2.1.2 Referring to Objects
	5.2.1.3 How to Retrieve Objects: Event vs. Server
	5.2.1.3.i Retrieving Jobs
	5.2.1.3.ii Retrieving Vnodes
	5.2.1.3.iii Retrieving Queues
	5.2.1.3.iv Retrieving Reservations

	5.2.2 Recommended Hook Script Structure
	5.2.2.1 Catch Exceptions
	5.2.2.1.i Example of Catching Exceptions
	5.2.2.1.ii Table of Exceptions

	5.2.3 Hook Alarm Calls and Unhandled Exceptions
	5.2.4 Using Attributes and Resources in Hooks
	5.2.4.1 Using Built-in vs. Custom Resources in Hooks
	5.2.4.2 Creating and Setting Custom Resources in Hooks
	5.2.4.3 Determining Whether to Use Creation Method to Set Attribute or Resource
	5.2.4.3.i Caveat for Objects Requiring Creation Method
	5.2.4.3.ii Python Types not Requiring Creation Method

	5.2.4.4 How to Unset an Attribute or Resource
	5.2.4.4.i How to Unset an Attribute or Resource Requiring Creation Method

	5.2.4.5 Using Attributes in Hooks: Reading vs. Setting
	5.2.4.6 Setting Time Attributes
	5.2.4.7 Special Characters in Variable_List Job Attribute
	5.2.4.8 Using string_array Attributes and Resources
	5.2.4.8.i Handling Literal Values and Special Characters in string_array Format

	5.2.4.9 Using Resources in Hooks: Reading vs. Setting
	5.2.4.10 Reading Resources in Hooks
	5.2.4.10.i Converting walltime to Seconds

	5.2.4.11 Setting and Unsetting Vnode Resources and Attributes
	5.2.4.12 Setting Job Resources in Hooks
	5.2.4.12.i Steps for Setting Job Resources in Hooks
	5.2.4.12.ii String Resource Format for Python
	5.2.4.12.iii Setting String Job Resources in Hooks
	5.2.4.12.iv Example of Setting Resources in Hooks
	5.2.4.12.v Setting Built-in Job Resource in Hook Prevents MoM from Updating Resource

	5.2.4.13 Overview of Readable & Settable Resources
	5.2.4.14 Caveats for Setting and Unsetting Attributes and Resources
	5.2.4.14.i When to Change Reservation Attributes
	5.2.4.14.ii Caution About Unsetting Reservation walltime Resource
	5.2.4.14.iii Changing Job Attributes for a Running Job
	5.2.4.14.iv Do Not Unset Array Job Indices
	5.2.4.14.v Do Not Create Job or Reservation Variable List
	5.2.4.14.vi Changing Vnode state Attribute
	5.2.4.14.vii Attribute Change Failure is Silent
	5.2.4.14.viii Lengthened walltime Can Interfere with Reservations
	5.2.4.14.ix Setting Vnode Resources in Hooks Overwrites Previous Value
	5.2.4.14.x Changing Resources in Accounting Logs
	5.2.4.14.xi When Setting Resources Has No Effect

	5.2.4.15 Table: Reading & Setting Job Attributes in Hooks
	5.2.4.16 Table: Reading & Setting Vnode Attributes in Hooks
	5.2.4.17 Table: Reading & Setting Reservation Attributes in resvsub and resv_end Hooks
	5.2.4.18 Table: Reading & Setting Built-in Job Resources in Hooks
	5.2.4.19 Table: Reading & Setting Vnode Resources in Hooks

	5.2.5 Using select and place in Hooks
	5.2.5.1 How to Set select and place in Hooks
	5.2.5.2 Caveats for Using select and place in Hooks

	5.2.6 Restarting Scheduler Cycle After Hook Failure
	5.2.7 Adding Custom Non-consumable Host-level Resources
	5.2.8 Printing And Logging Messages
	5.2.9 Capturing Return Code
	5.2.10 When You Need Persistent Data
	5.2.11 Setting Up Job Environment on Sisters
	5.2.12 Offlining Bad Vnodes
	5.2.12.1 General Method for Offlining Bad Vnodes
	5.2.12.2 Offlining Vnodes Associated with an Event
	5.2.12.3 Using List of Failed Vnodes to Offline Vnodes that Have Gone Bad During Start or Run
	5.2.12.4 Offlining and Clearing Vnodes Using the fail_action Hook Attribute
	5.2.12.4.i Offlining Vnodes Using the fail_action Hook Attribute
	5.2.12.4.ii Clearing Vnodes Using the fail_action Hook Attribute

	5.3 Advice and Caveats for Writing Hooks
	5.3.1 Rules for Hook Access and Behavior
	5.3.2 Check for Parameter Validity
	5.3.2.1 Resource Requests and queuejob Hooks
	5.3.2.2 Example of Checking Validity

	5.3.3 Make Changes Only On Acceptance
	5.3.4 Offline Vnodes when exechost_startup Hook Rejects
	5.3.5 Minimize Unnecessary Steps
	5.3.6 Use Fast Operations
	5.3.7 Avoiding Interference with Normal Operation
	5.3.7.1 Treat SystemExit as a Normal Occurrence
	5.3.7.2 Allow the Server to Modify Jobs
	5.3.7.3 Stay Within the Scheduler Alarm Time

	5.3.8 Avoiding Problems
	5.3.8.1 Avoid Hook File I/O
	5.3.8.2 Avoid Contacting Bad Host
	5.3.8.3 Avoid os._exit() Python Function
	5.3.8.4 Avoid Attempting to Log Message Using Bad Job ID
	5.3.8.5 Avoid Taking Up Lots of Memory
	5.3.8.6 Testing Vnode State

	5.3.9 Restrictions
	5.3.9.1 Local Server Only
	5.3.9.2 Dictionary Data Type Restriction

	5.3.10 Scheduling Impact of Hooks
	5.3.10.1 Effect of runjob Hooks on Preemption
	5.3.10.2 Effect of runjob Hooks with Strict Ordering
	5.3.10.3 Effect of runjob Hooks with round_robin and by_queue
	5.3.10.4 Peer Scheduling and Hooks
	5.3.10.5 Performance Considerations
	5.3.10.5.i Cost of Accessing Data
	5.3.10.5.ii Cost of Different Hooks

	5.3.10.6 Effect of Hooks on Job Eligible Time

	5.3.11 Windows Caveats
	5.3.11.1 Special Characters in Pathnames
	5.3.11.2 Importing and Exporting Hooks
	5.3.11.3 Modifying Events
	5.3.11.4 Using Sleep in a Hook Script

	Hook Objects and Methods
	6.1 The pbs Module
	6.2 PBS Interface Objects
	6.2.1 Table of PBS Interface Objects
	6.2.2 Maps of Object Members and Methods

	6.3 Event Objects
	6.3.1 Event Types
	6.3.1.1 resvsub: Event when Reservation is Created
	6.3.1.1.i Modifying Reservation Creation (pbs_rsub)
	6.3.1.1.ii The resvsub Hook Interface

	6.3.1.2 resv_end: Event when Reservation Ends
	6.3.1.2.i The resv_end Hook Interface

	6.3.1.3 queuejob: Event when Job is Queued
	6.3.1.3.i Modifying Job Submission (qsub)
	6.3.1.3.ii The queuejob Hook Interface
	6.3.1.3.iii Caveats for queuejob Hook

	6.3.1.4 modifyjob: Event when Job is Altered
	6.3.1.4.i Modifying Job Change (qalter)
	6.3.1.4.ii The modifyjob Hook Interface

	6.3.1.5 movejob: Event when Job is Moved
	6.3.1.5.i Modifying Job Move (qmove)
	6.3.1.5.ii The movejob Hook Interface

	6.3.1.6 runjob: Event Before Job is Received by MoM
	6.3.1.6.i Changes Before Job is Sent to MoM (qrun)
	6.3.1.6.ii The runjob Hook Interface

	6.3.1.7 periodic: Periodic Event at Server Host
	6.3.1.7.i Periodic Events at Server Host
	6.3.1.7.ii The periodic Hook Interface
	6.3.1.7.iii Caveats for periodic Event Hooks

	6.3.1.8 execjob_begin: Event when Execution Host Receives Job
	6.3.1.8.i Changes When Job is Received by MoM
	6.3.1.8.ii The execjob_begin Hook Interface

	6.3.1.9 execjob_prologue: Event Just Before Execution of Top-level Job Process
	6.3.1.9.i Changes Before Job Shell is Executed
	6.3.1.9.ii The execjob_prologue Hook Interface

	6.3.1.10 execjob_launch: Event when Execution Host Receives Job
	6.3.1.10.i Changes Before User Program is Executed
	6.3.1.10.ii The execjob_launch Hook Interface

	6.3.1.11 execjob_attach: Event when pbs_attach() runs
	6.3.1.11.i Event when pbs_attach() Runs
	6.3.1.11.ii The execjob_attach Hook Interface
	6.3.1.11.iii Caveats for execjob_attach Hooks

	6.3.1.12 execjob_postsuspend: Event Just After Suspending Job
	6.3.1.12.i The execjob_postsuspend Hook Interface

	6.3.1.13 execjob_preresume: Event Just Before Resuming Job
	6.3.1.13.i The execjob_preresume Hook Interface

	6.3.1.14 execjob_preterm: Event Just Before Killing Job Tasks
	6.3.1.14.i Changes Before Job is Killed
	6.3.1.14.ii The execjob_preterm Hook Interface

	6.3.1.15 execjob_epilogue: Event Just After Killing Job Tasks
	6.3.1.15.i Changes After Job is Executed
	6.3.1.15.ii The execjob_epilogue Hook Interface

	6.3.1.16 execjob_end: Event After Job Cleanup
	6.3.1.16.i Changes After Job Finishes or is Killed
	6.3.1.16.ii The execjob_end Hook Interface

	6.3.1.17 exechost_startup: Event When Execution Host Starts Up
	6.3.1.17.i Event when Execution Host Starts or Receives HUP
	6.3.1.17.ii The exechost_startup Hook Interface
	6.3.1.17.iii Advice on Using exechost_startup Hooks

	6.3.1.18 exechost_periodic: Periodic Events on All Execution Hosts
	6.3.1.18.i Periodic Events at Execution Hosts
	6.3.1.18.ii The exechost_periodic Hook Interface
	6.3.1.18.iii Caveats for exechost_periodic Event Hooks

	6.3.2 Event Object Members
	6.3.2.1 Hook Alarm Event Member
	6.3.2.2 Job Program Arguments Event Member
	6.3.2.3 Hook Debug Behavior Indicator Event Member
	6.3.2.4 Hook Enable or Disable Event Member
	6.3.2.5 Job Environment Event Member
	6.3.2.6 Failure Action Event Member
	6.3.2.7 Frequency Event Member
	6.3.2.8 Hook Name Event Member
	6.3.2.9 Hook Type Event Member
	6.3.2.10 Job Event Member
	6.3.2.11 Job List Event Member
	6.3.2.12 Original Job Event Member
	6.3.2.13 Order Event Member
	6.3.2.14 Process ID Event Member
	6.3.2.15 Job Executable Event Member
	6.3.2.16 Requestor Event Member
	6.3.2.17 Requestor Host Event Member
	6.3.2.18 Reservation Event Member
	6.3.2.19 Source Queue Event Member
	6.3.2.20 Event Type Event Member
	6.3.2.21 Event User Event Member
	6.3.2.22 The Vnode List Event Member
	6.3.2.23 The Failed Vnode List Event Member

	6.3.3 Event Object Member Caveats
	6.3.3.1 Modifying progname or argv[] Under Windows

	6.3.4 Event-only Methods
	6.3.4.1 Event Method for Accepting Event
	6.3.4.2 Event Method for Rejecting Event

	6.3.5 Event Object Method Caveats
	6.3.6 Examples of Using Event Objects

	6.4 Server Objects
	6.4.1 Server Object Members
	6.4.1.1 Server Name Member
	6.4.1.2 Server Attribute Members
	6.4.1.3 Server State Member

	6.4.2 Setting Server Object Members
	6.4.3 Examples of Using Server Object Members
	6.4.4 Server Object Methods
	6.4.4.1 Method to Return Job
	6.4.4.2 Method to Return Job Iterator
	6.4.4.3 Method to Return Queue
	6.4.4.4 Method to Return Queue Iterator
	6.4.4.5 Method to Return Reservation
	6.4.4.6 Method to Return Reservation Iterator
	6.4.4.7 Method to Restart Scheduler Cycle
	6.4.4.8 Method to Return Named Vnode
	6.4.4.9 Method to Return Vnode List

	6.5 Queue Objects
	6.5.1 Queue Object Members
	6.5.1.1 Queue Object Name Member
	6.5.1.2 Queue Object Attribute Members
	6.5.1.3 Setting Queue Object Attributes

	6.5.2 Queue Object Methods
	6.5.2.1 Method to Return Job
	6.5.2.2 Method to Return Job Iterator

	6.5.3 Queue Type Constant Objects

	6.6 Job Objects
	6.6.1 Job Object Members
	6.6.1.1 Job ID Member
	6.6.1.2 Job array_indices_submitted Attribute Member
	6.6.1.3 Job Checkpoint Attribute Member
	6.6.1.4 Job depend Attribute Member
	6.6.1.5 Job Execution_Time Attribute Member
	6.6.1.6 Job exec_host Attribute Member
	6.6.1.7 Job exec_vnode Attribute Member
	6.6.1.8 Job group_list Attribute Member
	6.6.1.9 Job Hold_Types Attribute Member
	6.6.1.10 Job job_state Attribute Member
	6.6.1.11 Job Join_Path Attribute Member
	6.6.1.12 Job Keep_Files Attribute Member
	6.6.1.13 Job Mail_Points Attribute Member
	6.6.1.14 Job Mail_Users Attribute Member
	6.6.1.15 Job Queue Attribute Member
	6.6.1.16 Job Resource_List Attribute Member
	6.6.1.17 Job resources_used Attribute Member
	6.6.1.18 Job run_count Attribute Member
	6.6.1.19 Job stagein and stageout Attribute Members
	6.6.1.20 Job User_List Attribute Member
	6.6.1.21 Job Variable_List Attribute Member

	6.6.2 Setting Job Attributes
	6.6.3 Examples of Using Job Object Members
	6.6.4 Job Object Methods for Execution Hooks
	6.6.4.1 Job Object Method to Report Checkpoint
	6.6.4.2 Job Object Method to Report Execution Host Role
	6.6.4.3 Job Object Method to Delete Job
	6.6.4.4 Job Object Method to Release Vnodes
	6.6.4.4.i Advice and Recommendations for Using release_nodes Method
	6.6.4.4.ii Side Effects of Using release_nodes() Method

	6.6.4.5 Job Object Method to Re-run Job

	6.7 The exec_vnode Object
	6.7.1 The exec_vnode Object Members
	6.7.1.1 The exec_vnode Chunks Member

	6.7.2 Using pbs.vchunk Objects in exec_vnode
	6.7.3 Restrictions on exec_vnode Objects

	6.8 Chunk Objects
	6.8.1 Chunk Object Members and Methods
	6.8.1.1 Chunk Object Vnode Name Member
	6.8.1.2 Chunk Object Chunk Resources Member
	6.8.1.3 Chunk Object Method to Return chunk_resources Keys

	6.9 Reservation Objects
	6.9.1 Reservation Object Members
	6.9.1.1 Reservation ID Member
	6.9.1.2 Reservation Attribute Members
	6.9.1.3 Setting Reservation Object Attribute Values
	6.9.1.4 Examples of Using Reservation Object Attributes

	6.9.2 Reservation State Constant Objects

	6.10 Vnode Objects
	6.10.1 Vnode Object Members
	6.10.1.1 The topology_info Attribute Member
	6.10.1.2 Vnode Attribute Restrictions

	6.10.2 Vnode Type Constant Objects
	6.10.3 Vnode Sharing Constant Objects
	6.10.4 Vnode State Constant Objects

	6.11 Configuration File Objects
	6.11.1 Variable Containing Hook Configuration File Path
	6.11.2 Dictionary of PBS Configuration File Entries

	6.12 Constant Objects
	6.13 Object Members and Methods
	6.13.1 PBS Objects and Object Members
	6.13.2 Methods Available in Events
	6.13.3 PBS Types and Their Methods
	6.13.3.1 Method to Create or Set ACL
	6.13.3.2 Method to Create or Set Command Argument List
	6.13.3.3 Method to Create or Set Checkpoint String
	6.13.3.4 Method to Create or Set Dependency Object
	6.13.3.5 Method to Create or Set Duration from Time String or Integer
	6.13.3.6 Method to Create or Set Email List
	6.13.3.7 Method to Create or Set exec_host Object
	6.13.3.8 Method to Create or Set exec_vnode Object
	6.13.3.9 Method to Create or Set group_list Object
	6.13.3.10 Method to Create or Set hold_types Object
	6.13.3.11 Method to Create or Set job_sort_formula Object
	6.13.3.12 Method to Create or Set join_path Object
	6.13.3.13 Method to Create or Set keep_files Object
	6.13.3.14 Method to Create or Set license_count Object
	6.13.3.15 Method to Create or Set mail_points Object
	6.13.3.16 Method to Create or Set node_group_key Object
	6.13.3.17 Method to Create or Set path_list Object
	6.13.3.18 Method to Create or Set Job Environment Object
	6.13.3.19 Method to Create or Set Resource List
	6.13.3.20 Method to Create or Set place Object
	6.13.3.21 Method to Create or Set range Object
	6.13.3.22 Method to Create or Set route_destinations Object
	6.13.3.23 Method to Create or Set select Object
	6.13.3.24 Method to Increment select Object Chunks
	6.13.3.24.i Example of Padding Chunks

	6.13.3.25 Method to Create or Set size Object
	6.13.3.26 Method to Create or Set Software Resource Object
	6.13.3.27 Method to Create or Set staging_list Object
	6.13.3.28 Method to Create or Set state_count Object
	6.13.3.29 Method to Create or Set user_list Object
	6.13.3.30 Method to Create or Set PBS Version Object

	6.13.4 Global Methods
	6.13.4.1 Method to Get Local Vnode Name
	6.13.4.2 Method to Log Job-related String
	6.13.4.3 Method to Log String
	6.13.4.4 Message Log Level Objects
	6.13.4.5 Method to Reboot Host

	Built-in Hooks
	7.1 Managing Built-in Hooks
	7.2 Prerequisites
	7.3 Allowed Operations
	7.4 Viewing Built-in Hooks
	7.5 Setting Attributes of Built-in Hooks
	7.6 Editing and Importing Configuration Files for Built-in Hooks
	7.7 Restrictions
	7.8 Replacing a Built-in Hook with Your Own Hook
	7.9 Errors and Logging when Operating on Built-in Hooks

	Debugging Hooks
	8.1 The pbs_python Hook Debugging Tool
	8.2 Files for Debugging
	8.2.1 Producing Files for Debugging
	8.2.2 Locations for Debugging Files
	8.2.3 Format for Debugging Files
	8.2.4 Time Limit for Debugging Files
	8.2.5 Event File
	8.2.5.1 Caveats

	8.2.6 Site Data File
	8.2.7 Hook Execution Record File

	8.3 Steps to Debug a Hook Using pbs_python
	8.4 Caveats and Restrictions for pbs_python
	8.5 Examples of Using pbs_python to Debug Hooks
	8.6 Using Log Messages to Debug Hook Scripts
	8.7 Checking Hook Syntax using Python
	8.8 Examples of Debugging Files
	8.9 Interactive Debugging using pbs_python
	8.10 Error Reporting and Logging
	8.10.1 Errors During Creation and Deployment
	8.10.1.1 Hook Name Matches Existing Hook
	8.10.1.2 Using a Hook Name that Starts with “PBS”
	8.10.1.3 Deleting a Non-Existent Hook
	8.10.1.4 Specifying a Non-Existent Event Type
	8.10.1.5 Using a Bad Hook Value
	8.10.1.6 Unauthorized User
	8.10.1.7 Setting a Bad Hook Type
	8.10.1.8 Setting a Bad Alarm Value
	8.10.1.9 Exporting To Non-Writable File
	8.10.1.10 Setting Bad Hook user Attribute
	8.10.1.11 Importing From Non-Readable File
	8.10.1.12 Importing or Exporting with Wrong Content Type
	8.10.1.13 Setting Vnode State to Invalid Value
	8.10.1.14 Creating a Hook with Same Name as Existing Hook

	8.10.2 Errors And Messages During Hook Execution
	8.10.2.1 Successful Operation of runjob Hook
	8.10.2.2 Unsuccessful Operation for runjob Hook
	8.10.2.3 Rejecting an Action
	8.10.2.4 Triggering an Alarm
	8.10.2.5 Encountering an Unhandled Exception
	8.10.2.6 Starting and Finishing Hook Execution
	8.10.2.7 Hook Timeout
	8.10.2.8 Hooks Attempting I/O
	8.10.2.9 Bad Value for debug Attribute
	8.10.2.10 Commands Fail Inside Hooks
	8.10.2.11 runjob Hook Errors
	8.10.2.11.i Modifying Hold, Execution Time, Dependency, or Project of Accepted Job
	8.10.2.11.ii Modifying Disallowed Attributes of Rejected Job
	8.10.2.11.iii Modifying Vnode
	8.10.2.11.iv runjob Hook Referencing Wrong Parameter
	8.10.2.11.v Attempting to Set Restricted Resource

	8.10.2.12 Special Errors Requiring Support

	8.10.3 Errors During Startup
	8.10.4 Errors in Hook Updates
	8.10.5 Hook-related Error Codes
	8.10.6 Troubleshooting
	8.10.6.1 Bad Interpreter Path
	8.10.6.2 Viewing Hook Propagation

	Hook Examples
	9.1 resvsub Hook Examples
	9.2 queuejob Hook Examples
	9.3 modifyjob Hook Examples
	9.4 periodic Hook Examples
	9.5 execjob_launch Hook Examples
	9.6 execjob_prologue and execjob_epilogue Hook Examples
	9.7 exechost_startup Hook Examples
	9.8 exechost_periodic Hook Examples
	9.9 Multi-event Hooks

	Index

	Reference Guide (RG)
	Contents
	Glossary of Terms
	PBS Commands
	2.1 Our Command Notation
	2.2 Requirements for Commands
	2.2.1 Windows Requirements

	2.3 mpiexec
	2.3.1 Synopsis
	2.3.2 Description
	2.3.3 Usage
	2.3.4 Options
	2.3.5 Requirements
	2.3.6 Environment Variables
	2.3.7 Path
	2.3.8 See Also

	2.4 pbs
	2.4.1 Synopsis
	2.4.2 Description
	2.4.2.1 Caveats
	2.4.2.2 Required Privilege

	2.4.3 Arguments
	2.4.4 See Also

	2.5 pbsdsh
	2.5.1 Synopsis
	2.5.2 Description of pbsdsh Command
	2.5.2.1 Example

	2.5.3 Options to pbsdsh Command
	2.5.4 Operands
	2.5.5 Standard Error
	2.5.6 See Also

	2.6 pbsfs
	2.6.1 Synopsis
	2.6.2 Description
	2.6.2.1 Prerequisites
	2.6.2.2 Permissions

	2.6.3 Options to pbsfs
	2.6.3.1 Output Formats for pbsfs
	2.6.3.2 Data Output by pbsfs

	2.6.4 See Also

	2.7 pbsnodes
	2.7.1 Synopsis
	2.7.2 Description
	2.7.2.1 Using pbsnodes
	2.7.2.2 Output
	2.7.2.3 Permissions

	2.7.3 Options to pbsnodes
	2.7.4 Operands
	2.7.5 Exit Status
	2.7.6 See Also

	2.8 pbsrun
	2.8.1 Synopsis
	2.8.2 Description
	2.8.3 Options
	2.8.4 Initialization Script
	2.8.4.1 Initialization Script Options
	2.8.4.2 Modifying *.init Scripts

	2.8.5 Versions/Flavors of mpirun
	2.8.5.1 MPICH-GM mpirun (mpirun.ch_gm) with rsh/ssh: pbsrun.ch_gm
	2.8.5.1.i Syntax
	2.8.5.1.ii Options Handling
	2.8.5.1.iii Wrap/Unwrap

	2.8.5.2 MPICH-MX mpirun (mpirun.ch_mx) with rsh/ssh: pbsrun.ch_mx
	2.8.5.2.i Syntax
	2.8.5.2.ii Options Handling
	2.8.5.2.iii Wrap/Unwrap

	2.8.5.3 MPICH-GM mpirun (mpirun.mpd) with MPD: pbsrun.gm_mpd
	2.8.5.3.i Syntax
	2.8.5.3.ii Options Handling
	2.8.5.3.iii Startup/Shutdown
	2.8.5.3.iv Wrap/Unwrap

	2.8.5.4 MPICH-MX mpirun (mpirun.mpd) with MPD: pbsrun.mx_mpd
	2.8.5.4.i Syntax
	2.8.5.4.ii Options Handling
	2.8.5.4.iii Startup/Shutdown
	2.8.5.4.iv Wrap/Unwrap

	2.8.5.5 MPICH2 mpirun: pbsrun.mpich2
	2.8.5.5.i Syntax
	2.8.5.5.ii Options Handling
	2.8.5.5.iii Startup/Shutdown
	2.8.5.5.iv Wrap/Unwrap

	2.8.5.6 Intel MPI mpirun: pbsrun.intelmpi
	2.8.5.6.i Syntax
	2.8.5.6.ii Options Handling
	2.8.5.6.iii Startup/Shutdown
	2.8.5.6.iv Wrap/Unwrap

	2.8.5.7 MVAPICH1 mpirun: pbsrun.mvapich1
	2.8.5.7.i Syntax
	2.8.5.7.ii Options Handling
	2.8.5.7.iii Wrap/Unwrap

	2.8.5.8 MVAPICH2 mpiexec: pbsrun.mvapich2
	2.8.5.8.i Syntax
	2.8.5.8.ii Options Handling
	2.8.5.8.iii Wrap/Unwrap

	2.8.6 Requirements
	2.8.7 Errors
	2.8.8 See Also

	2.9 pbsrun_unwrap
	2.9.1 Synopsis
	2.9.2 Description
	2.9.2.1 Syntax

	2.9.3 Options
	2.9.4 See Also

	2.10 pbsrun_wrap
	2.10.1 Synopsis
	2.10.2 Description
	2.10.2.1 Syntax

	2.10.3 Options
	2.10.4 Requirements
	2.10.5 See Also

	2.11 pbs_account
	2.11.1 Synopsis
	2.11.2 Description
	2.11.2.1 Permissions
	2.11.2.2 Platforms
	2.11.2.3 Caveats

	2.11.3 Options
	2.11.4 Examples
	2.11.5 Exit Value

	2.12 pbs_attach
	2.12.1 Synopsis
	2.12.2 Description
	2.12.3 Options to pbs_attach
	2.12.4 Operands
	2.12.5 Exit Status
	2.12.6 See Also

	2.13 pbs_comm
	2.13.1 Synopsis
	2.13.2 Description
	2.13.3 Options to pbs_comm
	2.13.4 Configuration Parameters
	2.13.5 Communication Daemon Logfiles
	2.13.6 Signal Handling by Communication Daemon

	2.14 pbs_dataservice
	2.14.1 Synopsis
	2.14.2 Description
	2.14.2.1 Permission

	2.14.3 Arguments
	2.14.4 Exit Status

	2.15 pbs_ds_password
	2.15.1 Synopsis
	2.15.2 Description
	2.15.2.1 Passwords
	2.15.2.2 Permissions
	2.15.2.3 Restrictions

	2.15.3 Options to pbs_ds_password
	2.15.4 Exit Status

	2.16 pbs_hostn
	2.16.1 Synopsis
	2.16.2 Description
	2.16.3 Options
	2.16.4 Operands
	2.16.5 Standard Error
	2.16.6 Exit Status

	2.17 pbs_idled
	2.17.1 Linux Synopsis
	2.17.2 Windows Synopsis
	2.17.3 Linux Description
	2.17.4 Windows Description
	2.17.5 Linux Options to pbs_idled
	2.17.6 Windows Options to pbs_idled
	2.17.7 See Also

	2.18 pbs_iff
	2.18.1 Usage
	2.18.2 Description
	2.18.2.1 Required Privilege

	2.18.3 Options to pbs_iff
	2.18.4 Arguments to pbs_iff
	2.18.5 Exit Status

	2.19 pbs_interactive
	2.19.1 Synopsis
	2.19.2 Description
	2.19.2.1 Required Privilege

	2.19.3 Arguments

	2.20 pbs_lamboot
	2.20.1 Synopsis
	2.20.2 Description
	2.20.3 Options
	2.20.4 Operands
	2.20.5 Environment Variables and Path
	2.20.6 See Also

	2.21 pbs_login
	2.21.1 Usage
	2.21.2 Description
	2.21.3 Required Privilege
	2.21.4 Options to pbs_login

	2.22 pbs_mkdirs
	2.22.1 Synopsis
	2.22.2 Description
	2.22.2.1 Required Privilege

	2.22.3 Options
	2.22.4 See Also

	2.23 pbs_mom
	2.23.1 Synopsis
	2.23.2 Description
	2.23.2.1 Logging
	2.23.2.2 Required Permission
	2.23.2.2.i HPE Systems Running Supported Versions of HPE MPI

	2.23.2.3 Effect on Jobs of Starting MoM

	2.23.3 Options to pbs_mom
	2.23.4 Files and Directories
	2.23.5 Signal Handling
	2.23.6 Exit Status
	2.23.7 See Also

	2.24 pbs_mpihp
	2.24.1 Synopsis
	2.24.2 Description
	2.24.2.1 Configuration
	2.24.2.2 Usage

	2.24.3 Options to pbs_mpihp
	2.24.4 Exit Values
	2.24.5 See Also

	2.25 pbs_mpilam
	2.25.1 Synopsis
	2.25.2 Description
	2.25.2.1 Prerequisites
	2.25.2.2 Usage

	2.25.3 Options to pbs_mpilam
	2.25.4 See Also

	2.26 pbs_mpirun
	2.26.1 Synopsis
	2.26.2 Description
	2.26.2.1 Prerequisite
	2.26.2.2 Usage

	2.26.3 Options to pbs_mpirun
	2.26.4 Environment Variables
	2.26.5 See Also

	2.27 pbs_probe
	2.27.1 Synopsis
	2.27.2 Description
	2.27.2.1 Information Sources
	2.27.2.2 Required Privilege

	2.27.3 Options to pbs_probe
	2.27.4 Standard Error
	2.27.5 Exit Status
	2.27.6 See Also

	2.28 pbs_python
	2.28.1 Synopsis
	2.28.2 Description
	2.28.2.1 Debugging Hooks

	2.28.3 Options to pbs_python
	2.28.4 Arguments

	2.29 pbs_ralter
	2.29.1 Summary
	2.29.2 Synopsis
	2.29.3 Description
	2.29.3.1 Caveats and Restrictions
	2.29.3.2 Required Privilege

	2.29.4 Options to pbs_ralter
	2.29.5 Operands

	2.30 pbs_rdel
	2.30.1 Synopsis
	2.30.2 Description
	2.30.2.1 Required Privilege

	2.30.3 Options
	2.30.4 Operands
	2.30.5 Exit Status
	2.30.6 See Also

	2.31 pbs_release_nodes
	2.31.1 Synopsis
	2.31.2 Description
	2.31.2.1 Caveats and Restrictions
	2.31.2.2 Required Privilege

	2.31.3 Options to pbs_release_nodes
	2.31.4 Operands for pbs_release_nodes
	2.31.5 Usage

	2.32 pbs_rstat
	2.32.1 Synopsis
	2.32.2 Description
	2.32.2.1 Required Privilege

	2.32.3 Output
	2.32.4 Options to pbs_rstat
	2.32.5 Operands
	2.32.6 See Also

	2.33 pbs_rsub
	2.33.1 Synopsis
	2.33.2 Description
	2.33.2.1 Job Reservations
	2.33.2.2 Maintenance Reservations
	2.33.2.3 Requirements

	2.33.3 Options to pbs_rsub
	2.33.4 Output
	2.33.5 See Also

	2.34 pbs_sched
	2.34.1 Synopsis
	2.34.2 Description
	2.34.2.1 Required Permission

	2.34.3 Options to pbs_sched
	2.34.4 Signal Handling
	2.34.5 Exit Status
	2.34.6 See Also

	2.35 pbs_server
	2.35.1 Synopsis
	2.35.2 Description
	2.35.2.1 Required Permission

	2.35.3 Options to pbs_server
	2.35.4 Files
	2.35.5 Signal Handling for pbs_server
	2.35.6 Diagnostic Messages
	2.35.7 Stopping the PBS Server
	2.35.7.1 Stopping the Server on Linux

	2.35.8 Exit Status
	2.35.9 See Also

	2.36 pbs_snapshot
	2.36.1 Synopsis
	2.36.2 Description
	2.36.2.1 Required Privilege
	2.36.2.2 Restrictions

	2.36.3 Options to pbs_snapshot
	2.36.4 Arguments to pbs_snapshot
	2.36.5 Output
	2.36.5.1 Output Location
	2.36.5.2 Output Contents

	2.36.6 Examples

	2.37 pbs_tclsh
	2.37.1 Synopsis
	2.37.2 Description
	2.37.2.1 Required Permission

	2.37.3 Options
	2.37.4 Standard Error
	2.37.5 See Also

	2.38 pbs_tmrsh
	2.38.1 Synopsis
	2.38.2 Description
	2.38.2.1 Requirements for Environment Variables

	2.38.3 Options
	2.38.4 Operands
	2.38.5 Output and Error
	2.38.6 Exit Status
	2.38.7 See Also

	2.39 pbs_topologyinfo
	2.39.1 Synopsis
	2.39.2 Description
	2.39.2.1 Usage
	2.39.2.2 Prerequisites
	2.39.2.3 Required Privilege for pbs_topologyinfo

	2.39.3 Options for pbs_topologyinfo
	2.39.4 Errors
	2.39.5 Operands
	2.39.6 Exit Status
	2.39.7 Standard Error
	2.39.8 See Also

	2.40 pbs_wish
	2.40.1 Synopsis
	2.40.2 Description
	2.40.3 Options
	2.40.4 Standard Error
	2.40.5 See Also

	2.41 printjob
	2.41.1 Synopsis
	2.41.2 Description
	2.41.2.1 Usage
	2.41.2.2 Permissions

	2.41.3 Options to printjob
	2.41.4 Operands for printjob
	2.41.5 Standard Error
	2.41.6 Exit Status
	2.41.7 See Also

	2.42 qalter
	2.42.1 Synopsis
	2.42.2 Description
	2.42.2.1 Required Privilege
	2.42.2.2 Modifying Resources and Job Placement
	2.42.2.2.i Syntax for Modifying Resources and Job Placement
	2.42.2.2.ii The Place Statement

	2.42.2.3 Modifying Attributes
	2.42.2.4 Caveats and Restrictions for Altering Jobs

	2.42.3 Options to qalter
	2.42.4 Operands
	2.42.5 Standard Error
	2.42.6 Exit Status
	2.42.6.1 Warning About Exit Status with csh

	2.42.7 See Also

	2.43 qdel
	2.43.1 Synopsis
	2.43.2 Description
	2.43.2.1 Usage
	2.43.2.2 How Behavior of qdel Command Can Be Affected
	2.43.2.3 Sequence of Events
	2.43.2.4 Required Privilege

	2.43.3 Options to qdel
	2.43.4 Operands
	2.43.5 Standard Error
	2.43.6 Exit Status
	2.43.7 See Also

	2.44 qdisable
	2.44.1 Synopsis
	2.44.2 Description
	2.44.2.1 Required Permission

	2.44.3 Options
	2.44.4 Operands
	2.44.5 Standard Error
	2.44.6 Exit Status
	2.44.7 See Also

	2.45 qenable
	2.45.1 Synopsis
	2.45.2 Description
	2.45.2.1 Required Privilege

	2.45.3 Options
	2.45.4 Operands
	2.45.5 Standard Error
	2.45.6 Exit Status
	2.45.7 See Also

	2.46 qhold
	2.46.1 Synopsis
	2.46.2 Description
	2.46.2.1 Effect of Privilege on Behavior

	2.46.3 Options to qhold
	2.46.4 Operands
	2.46.5 Standard Error
	2.46.6 Exit Status
	2.46.7 See Also

	2.47 qmgr
	2.47.1 Synopsis
	2.47.2 Description
	2.47.2.1 Modes of Operation
	2.47.2.2 Required Privilege
	2.47.2.3 When To Run qmgr At Server Host
	2.47.2.4 Reusing and Editing the qmgr Command Line
	2.47.2.4.i The qmgr History File

	2.47.3 Options to qmgr
	2.47.4 Directives
	2.47.4.1 Directive Syntax
	2.47.4.1.i Server, Scheduler, Queue, Vnode Directives
	2.47.4.1.ii Resource Directives
	2.47.4.1.iii Hook-only Directives

	2.47.4.2 Using Directives
	2.47.4.3 Commands Used in Directives

	2.47.5 Arguments to Directive Commands
	2.47.5.1 Object Arguments to Directive Commands
	2.47.5.1.i Specifying Active Server
	2.47.5.1.ii Using Lists of Object Names
	2.47.5.1.iii Specifying Object Type and Name

	2.47.5.2 Operators in Directive Commands
	2.47.5.3 Windows Requirements For Directive Arguments

	2.47.6 Operating on Objects (Server, Scheduler, Vnode, Queue, Hook)
	2.47.6.1 Making Objects Active
	2.47.6.1.i Using the active Command

	2.47.6.2 Creating Objects (Server, Scheduler, Vnode, Queue, Hook)
	2.47.6.2.i Examples of Creating Objects

	2.47.6.3 Deleting Objects

	2.47.7 Operating on Attributes and Resources
	2.47.7.1 Setting Attribute and Resource Values
	2.47.7.1.i Examples of Setting Attribute Values

	2.47.7.2 Unsetting Attribute and Resource Values
	2.47.7.2.i Example of Unsetting Attribute Value

	2.47.7.3 Caveats and Restrictions for Setting Attribute and Resource Values
	2.47.7.4 Setting Custom Resource Type and Flag(s)
	2.47.7.4.i Resource Accumulation Flags
	2.47.7.4.ii Allowable Values for Resource Accumulation Flags
	2.47.7.4.iii When to Use Accumulation Flags
	2.47.7.4.iv Example of Resource Accumulation Flags
	2.47.7.4.v Resource Accumulation Flag Restrictions and Caveats
	2.47.7.4.vi Resource Permission Flags
	2.47.7.4.vii Allowable Values for Resource Permission Flags
	2.47.7.4.viii Effect of Resource Permission Flags
	2.47.7.4.ix Resource Permission Flag Restrictions and Caveats
	2.47.7.4.x Allowing Execution Hooks to Read Custom Job Resources Faster
	2.47.7.4.xi Caveats for Caching Custom Job Resources
	2.47.7.4.xii Setting Types and Flags for Custom Resources via qmgr
	2.47.7.4.xiii

	2.47.8 Viewing Object, Attribute, and Resource Information
	2.47.8.1 Listing Objects and Their Attributes
	2.47.8.1.i Examples of Listing Objects and Their Attributes

	2.47.8.2 Listing Resource Definitions
	2.47.8.3 Printing Creation and Configuration Commands
	2.47.8.4 Caveats for Viewing Information

	2.47.9 Saving and Re-creating Server and Queue Information
	2.47.10 Operating on Hooks
	2.47.10.1 Creating Hooks
	2.47.10.2 Deleting Hooks
	2.47.10.3 Setting and Unsetting Hook Attributes
	2.47.10.4 Importing Hooks
	2.47.10.4.i Examples of Importing Hooks

	2.47.10.5 Importing and Exporting Hook Configuration Files
	2.47.10.5.i Importing Configuration Files
	2.47.10.5.ii Exporting Configuration Files
	2.47.10.5.iii Hook Configuration File Format

	2.47.10.6 Exporting Hooks
	2.47.10.6.i Examples of Exporting Hooks

	2.47.10.7 Printing Hook Information
	2.47.10.8 Saving and Re-creating Hook Information
	2.47.10.9 Restrictions on Built-in Hooks

	2.47.11 Printing Usage Information
	2.47.12 Standard Input
	2.47.13 Standard Output
	2.47.14 Standard Error
	2.47.15 Exit Status
	2.47.16 See Also

	2.48 qmove
	2.48.1 Synopsis
	2.48.2 Description
	2.48.2.1 Restrictions
	2.48.2.2 Effect of Privilege on Behavior

	2.48.3 Options
	2.48.4 Operands
	2.48.5 Standard Error
	2.48.6 Exit Status
	2.48.7 See Also

	2.49 qmsg
	2.49.1 Synopsis
	2.49.2 Description
	2.49.3 Options
	2.49.4 Operands
	2.49.5 Standard Error
	2.49.6 Exit Status
	2.49.7 See Also

	2.50 qorder
	2.50.1 Synopsis
	2.50.2 Description
	2.50.2.1 Restrictions
	2.50.2.2 Effect of Privilege on Behavior

	2.50.3 Options
	2.50.4 Operands
	2.50.5 Standard Error
	2.50.6 Exit Status
	2.50.7 See Also

	2.51 qrerun
	2.51.1 Synopsis
	2.51.2 Description
	2.51.2.1 Restrictions
	2.51.2.2 Required Privilege

	2.51.3 Options
	2.51.4 Operands
	2.51.5 Standard Error
	2.51.6 Exit Status
	2.51.7 See Also

	2.52 qrls
	2.52.1 Synopsis
	2.52.2 Description
	2.52.2.1 Effect of Privilege on Behavior

	2.52.3 Options
	2.52.4 Operands
	2.52.5 Standard Error
	2.52.6 Exit Status
	2.52.7 See Also

	2.53 qrun
	2.53.1 Synopsis
	2.53.2 Description
	2.53.2.1 Required Privilege
	2.53.2.2 Caveats for qrun

	2.53.3 Options to qrun
	2.53.4 Operands
	2.53.5 Standard Error
	2.53.6 Exit Status
	2.53.7 See Also

	2.54 qselect
	2.54.1 Synopsis
	2.54.2 Description
	2.54.2.1 Comparison Operations
	2.54.2.2 Required Permissions

	2.54.3 Options to qselect
	2.54.4 Standard Output
	2.54.5 Standard Error
	2.54.6 Exit Status
	2.54.7 See Also

	2.55 qsig
	2.55.1 Synopsis
	2.55.2 Description
	2.55.2.1 Using admin-suspend and admin-resume
	2.55.2.2 Restrictions
	2.55.2.3 Required Privilege

	2.55.3 Options to qsig
	2.55.3.1 Signals
	2.55.3.1.i Special Signals

	2.55.4 Operands
	2.55.5 Standard Error
	2.55.6 Exit Status
	2.55.7 See Also

	2.56 qstart
	2.56.1 Synopsis
	2.56.2 Description
	2.56.2.1 Required Privilege

	2.56.3 Options
	2.56.4 Operands
	2.56.5 Standard Error
	2.56.6 Exit Status
	2.56.7 See Also

	2.57 qstat
	2.57.1 Synopsis
	2.57.1.1 Displaying Job Status
	2.57.1.2 Displaying Queue Status
	2.57.1.3 Displaying Server Status
	2.57.1.4 Displaying Version Information

	2.57.2 Description
	2.57.2.1 Display Formats
	2.57.2.2 Displaying Information for Finished and Moved Jobs
	2.57.2.3 Displaying Truncated Data
	2.57.2.4 Required Privilege

	2.57.3 Displaying Job Status
	2.57.3.1 Job Status in Default Format
	2.57.3.2 Job Status in Long Format
	2.57.3.3 Job Status in Alternate Format
	2.57.3.3.i Job Status Alternate Format Output Columns

	2.57.3.4 Grouping Jobs and Sorting by ID

	2.57.4 Displaying Queue Status
	2.57.4.1 Queue Status in Default Format
	2.57.4.2 Queue Status in Long Format
	2.57.4.2.i Queue Status: Alternate Format

	2.57.5 Displaying Server Status
	2.57.5.1 Server Status in Default Format:
	2.57.5.2 Server Status in Long Format

	2.57.6 Options to qstat
	2.57.6.1 Generic Job Status Options
	2.57.6.2 Default Job Status Options
	2.57.6.3 Alternate Job Status Options
	2.57.6.4 Queue Status Options
	2.57.6.5 Server Status Options
	2.57.6.6 Job, Queue, and Server Status Options
	2.57.6.7 Version Information

	2.57.7 Operands
	2.57.7.1 Job Identifier Operands
	2.57.7.2 Destination Operands

	2.57.8 Standard Error
	2.57.9 Exit Status
	2.57.10 See Also

	2.58 qstop
	2.58.1 Synopsis
	2.58.2 Description
	2.58.2.1 Required Privilege

	2.58.3 Options
	2.58.4 Operands
	2.58.5 Standard Error
	2.58.6 Exit Status
	2.58.7 See Also

	2.59 qsub
	2.59.1 Synopsis
	2.59.2 Description
	2.59.2.1 Background Process
	2.59.2.2 Where PBS Puts Job Files
	2.59.2.3 Submitting Jobs By Using Job Scripts
	2.59.2.3.i Using Shells and Interpreters
	2.59.2.3.ii Python Job Scripts
	2.59.2.3.iii Linux Shell Job Scripts
	2.59.2.3.iv Windows Command Job Scripts

	2.59.2.4 Submitting Jobs From Standard Input
	2.59.2.5 Submitting Job Directly by Specifying Executable on Command Line
	2.59.2.6 Requesting Resources and Placing Jobs
	2.59.2.6.i Caveats for Requesting Resources

	2.59.2.7 Setting Attributes
	2.59.2.8 Running Your Job on First Available Resources (2020.1 Beta)
	2.59.2.9 Changing qsub Behavior

	2.59.3 Options to qsub
	2.59.4 Operands
	2.59.5 Standard Output
	2.59.6 Standard Error
	2.59.7 Environment Variables
	2.59.8 Exit Status
	2.59.8.1 Warning About Exit Status with csh

	2.59.9 See Also

	2.60 qterm
	2.60.1 Synopsis
	2.60.2 Description
	2.60.2.1 Required Privilege

	2.60.3 Options to qterm
	2.60.4 Operands
	2.60.4.1 Standard Error
	2.60.4.2 Exit Status
	2.60.4.3 See Also

	2.61 tracejob
	2.61.1 Synopsis
	2.61.2 Description
	2.61.3 Using tracejob on Job Arrays
	2.61.4 Required Privilege
	2.61.5 Options to tracejob
	2.61.6 Operands
	2.61.7 Exit Status
	2.61.8 See Also

	2.62 win_postinstall.py
	2.62.1 Synopsis
	2.62.2 Description
	2.62.2.1 Required Privilege

	2.62.3 Options to win_postinstall.py

	MoM Parameters
	3.1 Syntax of MoM Configuration File
	3.1.1 Externally-provided Resources
	3.1.2 Windows Notes

	3.2 Contents of MoM Configuration File
	3.2.1 Replacing Actions
	3.2.2 MoM Parameters
	3.2.3 Static MoM Resources

	Scheduler Parameters
	4.1 Format of Scheduler Configuration File
	4.1.1 Parameters with Separate Primetime and Non- primetime Specification
	4.1.2 Parameters without Separate Primetime and Non- primetime Specification
	4.1.3 Format Details

	4.2 Configuration Parameters

	List of Built-in Resources
	5.1 Resource Data Types
	5.2 Viewing Resource Information
	5.3 Resource Flags
	5.4 Attributes where Resources Are Tracked
	5.5 Resource Table Format
	5.6 Resources Built Into PBS

	Attributes
	6.1 Attribute Behavior
	6.2 How To Set Attributes
	6.3 Viewing Attribute Values
	6.4 Attribute Table Format
	6.5 Caveats
	6.6 Server Attributes
	6.7 Scheduler Attributes
	6.8 Reservation Attributes
	6.9 Queue Attributes
	6.10 Vnode Attributes
	6.11 Job Attributes
	6.12 Hook Attributes

	Formats
	7.1 Non-resource Formats
	7.2 Resource Formats

	States
	8.1 Job States
	8.1.1 Job Substates

	8.2 Job Array States
	8.3 Subjob States
	8.4 Server States
	8.5 Vnode States
	8.6 Reservation States
	8.6.1 Degraded Reservation Substates

	The PBS Configuration File
	9.1 Format of Configuration File
	9.1.1 Specifying Parameters
	9.1.2 Comment Lines in Configuration File

	9.2 Contents of Configuration File

	Log Levels
	10.1 Log Levels

	Job Exit Status
	11.1 Job Exit Status

	Example Configurations
	12.1 Single Vnode System
	12.2 Separate Server and Execution Host
	12.3 Multiple Execution Hosts
	12.4 Complex Multi-level Route Queues
	12.5 External Software License Management
	12.6 Multiple User ACL Example

	Run Limit Error Messages
	13.1 Run Limit Error Messages

	Error Codes
	Request Codes
	PBS Environment Variables
	File Listing
	Introduction to PBS
	18.1 Acknowledgements

	Index

	User’s Guide (UG)
	Contents
	Getting Started with PBS
	1.1 Why Use PBS?
	1.2 PBS Tasks and Components
	1.2.1 PBS Tasks
	1.2.2 PBS Components

	1.3 Interfaces to PBS
	1.3.1 PBS Commands

	1.4 Setting Up Your Environment
	1.4.1 Prerequisites for Account
	1.4.2 Setting Up Your Linux Environment
	1.4.2.1 Set Paths to PBS Commands
	1.4.2.2 Set Paths to PBS Man Pages
	1.4.2.3 Make Login and Logout Files Behave Properly for Jobs
	1.4.2.4 Capture Correct Job Exit Status
	1.4.2.5 Avoid Background Processes Inside Jobs
	1.4.2.6 Provide bash Functions to Jobs
	1.4.2.7 User Authorization Under Linux
	1.4.2.8 Submitting Linux Jobs from Linux Clients

	1.4.3 Setting Up Your Windows Environment
	1.4.3.1 HOMEDIR for Windows Users
	1.4.3.2 Requirements for Windows Username
	1.4.3.3 Requirements for Windows User Account
	1.4.3.4 User Authorization under Windows
	1.4.3.5 Set up Paths
	1.4.3.6 Password for Job Submission Authentication
	1.4.3.6.i Setting Password at Windows Clients
	1.4.3.6.ii Setting Password at Linux Clients

	1.4.3.7 Authentication for Client Commands

	1.4.4 Setting Time Zone for Submission Host

	Submitting a PBS Job
	2.1 Introduction to the PBS Job
	2.1.1 Lifecycle of a PBS Job, Briefly
	2.1.2 Where and How Your PBS Job Runs
	2.1.3 The Job Identifier
	2.1.4 Shell Script(s) for Your Job
	2.1.5 Scratch Space for Jobs
	2.1.6 Types of Jobs
	2.1.7 Job Input and Output Files

	2.2 The PBS Job Script
	2.2.1 Overview of a Job Script
	2.2.2 Types of Job Scripts
	2.2.2.1 Linux Shell Scripts
	2.2.2.2 Python Job Scripts
	2.2.2.2.i Debugging Python Job Scripts
	2.2.2.2.ii Python Windows Caveat

	2.2.2.3 Windows Job Scripts
	2.2.2.3.i Requirements for Windows Command Scripts
	2.2.2.3.ii Windows Advice and Caveats

	2.2.3 Setting Job Characteristics
	2.2.3.1 Job Attributes
	2.2.3.2 Job Resources
	2.2.3.3 Setting Job Attributes
	2.2.3.4 Using PBS Directives
	2.2.3.4.i Changing the Directive Prefix
	2.2.3.4.ii Caveats and Restrictions for PBS Directives

	2.2.4 Job Tasks
	2.2.5 Job Script Names
	2.2.5.1 How PBS Parses a Job Script
	2.2.5.1.i Comparison Between Equivalent Linux and Windows Job Scripts

	2.3 Submitting a PBS Job
	2.3.1 Prerequisites for Submitting Jobs
	2.3.2 Ways to Submit a PBS Job
	2.3.3 Submitting a Job Using a Script
	2.3.3.1 Specifying the Top Shell for Your Job
	2.3.3.1.i Specifying Job Top Shell Under Linux
	2.3.3.1.ii Specifying Job Top Shell Under Windows
	2.3.3.1.iii Caveats for Specifying Job Top Shell

	2.3.3.2 Specifying Job Script Shell or Interpreter
	2.3.3.2.i Specifying Job Script Shell or Interpreter Under Linux
	2.3.3.2.ii Specifying Job Script Shell or Interpreter Under Windows

	2.3.3.3 Examples of Submitting Jobs Using Scripts
	2.3.3.4 Passing Arguments to Jobs

	2.3.4 Submitting Jobs by Specifying Executable on Command Line
	2.3.5 Submitting Jobs Using Keyboard Input
	2.3.6 Submitting Windows Jobs
	2.3.6.1 Submitting Windows Jobs from Windows Clients
	2.3.6.2 Submitting Windows Jobs from Linux Clients

	2.4 Job Submission Recommendations and Advice
	2.4.1 Trapping Signals in Script

	2.5 Job Submission Options
	2.5.1 Specifying Email Notification
	2.5.1.1 Specifying Job Lifecycle Email Points
	2.5.1.2 Setting Email Recipient List
	2.5.1.3 Restricting Number of Job Deletion Emails

	2.5.2 Specifying Job Name
	2.5.3 Specifying a Project for a Job
	2.5.4 Specifying Job Username
	2.5.4.1 Caveats for Changing Job Username

	2.5.5 Specifying Job Group ID
	2.5.5.1 Group Names Under Windows

	2.5.6 Specifying Accounting String
	2.5.7 Specifying Server and/or Queue
	2.5.7.1 Using or Avoiding Dedicated Time

	2.5.8 Suppressing Printing Job Identifier to stdout
	2.5.9 Running qsub in the Foreground

	2.6 Job Submission Caveats
	2.6.1 Caveats for Mixed Linux-Windows Operation

	Job Input & Output Files
	3.1 Introduction to Job File I/O in PBS
	3.2 Input/Output File Staging
	3.2.1 Staging and Execution Directory: User Home vs. Job- specific
	3.2.2 Using Job-specific Staging and Execution Directories
	3.2.2.1 Setting the Job Staging and Execution Directory
	3.2.2.2 The jobdir Job Attribute and the PBS_JOBDIR Environment Variable

	3.2.3 Attributes and Environment Variables Affecting Staging
	3.2.4 Specifying Files To Be Staged In or Staged Out
	3.2.5 Caveats and Requirements for Staging
	3.2.5.1 Linux: Staging and Special Characters
	3.2.5.2 Windows: Staging and Special Characters or Paths
	3.2.5.2.i Special Characters
	3.2.5.2.ii Using UNC Paths

	3.2.5.3 Path Names for Staging
	3.2.5.4 Required Permissions
	3.2.5.5 Warning About Ampersand
	3.2.5.6 Interactive Jobs and File I/O
	3.2.5.7 Copying Directories Into and Out Of the Staging and Execution Directory
	3.2.5.8 Wildcards In File Staging

	3.2.6 Examples of File Staging
	3.2.6.1 Example of Using Job-specific Staging and Execution Directories

	3.2.7 Summary of the Job Lifecycle
	3.2.8 Detailed Description of Job Lifecycle
	3.2.8.1 Creation of TMPDIR
	3.2.8.2 Choice of Staging and Execution Directories
	3.2.8.2.i Job-specific Staging and Execution Directories
	3.2.8.2.ii User Home Directory as Staging and Execution Directory

	3.2.8.3 Setting Environment Variables and Attributes
	3.2.8.4 Staging Files Into Staging and Execution Directories
	3.2.8.5 Running the Prologue
	3.2.8.6 Job Execution
	3.2.8.7 Standard Out and Standard Error
	3.2.8.7.i Job-specific Staging and Execution Directories
	3.2.8.7.ii User Home Directory as Staging and Execution Directory

	3.2.8.8 Running the Epilogue
	3.2.8.9 Staging Files Out and Removing Execution Directory
	3.2.8.9.i Job-specific Staging and Execution Directories

	3.2.8.10 Removing TMPDIRs and Files

	3.2.9 Staging with Job Arrays
	3.2.10 Stagein and Stageout Failure
	3.2.10.1 File Stagein Failure
	3.2.10.2 File Stageout Failure

	3.3 Managing Output and Error Files
	3.3.1 Default Behavior For Output and Error Files
	3.3.2 Paths for Output and Error Files
	3.3.2.1 Default Paths for Output and Error Files
	3.3.2.2 Specifying Paths
	3.3.2.3 Specifying Paths from Windows Hosts
	3.3.2.3.i Using Special Characters in Paths
	3.3.2.3.ii Using UNC Paths

	3.3.2.4 Caveats for Paths

	3.3.3 Avoiding Creation of stdout and/or stderr
	3.3.4 Merging Output and Error Files
	3.3.5 Keeping Output and Error Files on Execution Host
	3.3.5.1 Caveats for Keeping Files on Execution Host

	3.3.6 Writing Files Directly to Final Destination
	3.3.7 Changing Linux Job umask
	3.3.7.1 Caveats

	3.3.8 Troubleshooting File Delivery
	3.3.8.1 Non-delivery of Output

	3.3.9 Caveats for Output and Error Files
	3.3.9.1 Retaining Files on Execution Host
	3.3.9.2 Standard Output and Error Appended When Job is Rerun
	3.3.9.3 Windows Mapped Drives and PBS
	3.3.9.4 Harmless csh Error Message
	3.3.9.5 Interactive Jobs and File I/O
	3.3.9.6 Write Permissions Required

	Allocating Resources & Placing Jobs
	4.1 What is a Vnode?
	4.1.1 Deprecated Vnode Types

	4.2 PBS Resources
	4.2.1 Introduction to PBS Resources
	4.2.2 Glossary

	4.3 Requesting Resources
	4.3.1 Quick Summary of Requesting Resources
	4.3.2 Requesting Job-wide Resources
	4.3.3 Requesting Resources in Chunks
	4.3.4 Requesting Boolean Resources
	4.3.5 Requesting Application Licenses
	4.3.5.1 Requesting Floating Application Licenses
	4.3.5.2 Requesting Node-locked Application Licenses
	4.3.5.2.i Requesting Per-host Node-locked Application Licenses
	4.3.5.2.ii Requesting Per-use Node-locked Application Licenses
	4.3.5.2.iii Requesting Per-CPU Node-locked Application Licenses

	4.3.6 Requesting Scratch Space
	4.3.7 Requesting GPUs
	4.3.7.1 Requesting GPUs Managed via Cgroups
	4.3.7.2 Requesting GPUs Not Managed via Cgroups
	4.3.7.2.i Binding to GPUs
	4.3.7.2.ii Requesting Non-specific GPUs and Exclusive Use of Node
	4.3.7.2.iii Requesting Non-specific GPUs and Shared Use of Node
	4.3.7.2.iv Requesting Specific GPUs

	4.3.7.3 Viewing GPU Information for Nodes

	4.3.8 Caveats and Restrictions on Requesting Resources
	4.3.8.1 Caveats and Restrictions for Specifying Resource Values
	4.3.8.2 Warning About NOT Requesting walltime
	4.3.8.3 Caveats for Jobs Requesting Undefined Resources
	4.3.8.4 Matching Resource Requests with Unset Resources
	4.3.8.5 Caveat for Invisible or Unrequestable Resources
	4.3.8.6 Warning About Requesting Tiny Amounts of Memory
	4.3.8.7 Maximum Length of Job Submission Command Line
	4.3.8.8 Only One select Statement Per Job
	4.3.8.9 The software Resource is Job-wide
	4.3.8.10 Do Not Mix Old and New Syntax

	4.4 How Resources are Allocated to Jobs
	4.4.1 Applying Default Resources
	4.4.1.1 Applying Job-wide Default Resources
	4.4.1.2 Applying Per-chunk Default Resources
	4.4.1.3 Caveat for Moving Jobs From One Queue to Another

	4.5 Limits on Resource Usage
	4.5.1 Enforceable Resource Limits
	4.5.2 Origins of Resource Limits
	4.5.3 Job-wide Resource Limits
	4.5.4 Per-chunk Resource Limits
	4.5.4.1 Effects of Limits

	4.5.5 Examples of Memory Limits

	4.6 Viewing Resources
	4.6.1 Viewing Server, Queue, and Vnode Resources
	4.6.2 Viewing Job Resources
	4.6.2.1 Resources Shown in Resource_List Job Attribute

	4.7 Specifying Job Placement
	4.7.1 Using the place Statement
	4.7.1.1 Specifying Arrangement of Chunks
	4.7.1.1.i Caveats and Restrictions for Arrangement

	4.7.1.2 Specifying Shared or Exclusive Use of Vnodes
	4.7.1.3 Grouping on a Resource
	4.7.1.3.i Grouping vs. Placement Sets

	4.7.2 How the Job Gets its Place Statement
	4.7.3 Caveats and Restrictions for Specifying Placement
	4.7.4 Examples of Specifying Placement

	4.8 Backward Compatibility
	4.8.1 Old-style Resource Specifications
	4.8.2 Old-style Node Specifications
	4.8.3 Conversion of Old Style to New
	4.8.3.1 Conversion of Resource Specifications
	4.8.3.2 Conversion of Node Specifications
	4.8.3.3 Examples of Converting Old Syntax to New

	4.8.4 Caveats for Using Old Syntax
	4.8.4.1 Changes in Behavior
	4.8.4.2 Do Not Mix Old and New Styles
	4.8.4.3 Resource Request Conversion Dependent on Where Resources are Defined
	4.8.4.4 Properties are Deprecated
	4.8.4.5 Replace cpp with ncpus
	4.8.4.6 Environment Variables Set During Conversion

	Multiprocessor Jobs
	5.1 Submitting Multiprocessor Jobs
	5.1.1 Assigning the Chunks You Want
	5.1.1.1 Specifying Primary Execution Host
	5.1.1.2 Request Most Specific Chunks First

	5.1.2 The Job Node File
	5.1.2.1 Node File Format and Contents
	5.1.2.2 Name and Location of Node File
	5.1.2.3 Node File for Old-style Requests
	5.1.2.4 Using and Modifying the Node File
	5.1.2.5 Node File Caveats
	5.1.2.6 Viewing Execution Hosts

	5.1.3 Specifying Number of MPI Processes Per Chunk
	5.1.3.1 Chunks With No MPI Processes

	5.1.4 Caveats and Advice for Multiprocessor Jobs
	5.1.4.1 Requesting Uniform Processors
	5.1.4.2 Requesting Storage on NFS Server

	5.1.5 File Staging for Multiprocessor Jobs
	5.1.6 Prologue and Epilogue
	5.1.7 MPI Environment Variables
	5.1.8 Examples of Multiprocessor Jobs
	5.1.9 Submitting SMP Jobs

	5.2 Using MPI with PBS
	5.2.1 Using an Integrated MPI
	5.2.1.1 Integration Caveats
	5.2.1.2 Integrating an MPI on the Fly
	5.2.1.2.i Integrating an MPI on the Fly using the pbs_tmrsh Command
	5.2.1.2.ii Caveats for the pbs_tmrsh Command

	5.2.2 Prerequisites to Using MPI with PBS
	5.2.3 Caveats for Using MPIs
	5.2.4 HP MPI with PBS
	5.2.4.1 Setting up Your Environment for HP MPI
	5.2.4.2 Using HP MPI with PBS
	5.2.4.3 Options
	5.2.4.4 Caveats for HP MPI with PBS

	5.2.5 Intel MPI 4.0.3 On Linux with PBS
	5.2.6 Intel MPI 4.0.3 On Windows with PBS
	5.2.6.1 Integrating Intel MPI 4.0.3 on the Fly

	5.2.7 Intel MPI 2.0.022, 3, and 4 with PBS
	5.2.7.1 Using Intel MPI 2.0.022, 3, or 4 Integrated with PBS
	5.2.7.2 Options to Integrated Intel MPI 2.0.022, 3, or 4
	5.2.7.3 MPD Startup and Shutdown
	5.2.7.4 Examples
	5.2.7.5 Restrictions

	5.2.8 LAM MPI with PBS
	5.2.8.1 Using LAM 7.x with PBS
	5.2.8.2 Using LAM 6.5.9 with PBS
	5.2.8.2.i Caveats for LAM 6.5.9 with PBS

	5.2.8.3 Example Job Submission Script

	5.2.9 MPICH-P4 with PBS
	5.2.9.1 Options for MPICH-P4 with PBS
	5.2.9.2 Example of Using MPICH-P4 with PBS
	5.2.9.3 MPICH Under Windows
	5.2.9.3.i Caveats for MPICH Under Windows

	5.2.10 MPICH-GM with PBS
	5.2.10.1 Using MPICH-GM and MPD with PBS
	5.2.10.1.i Options
	5.2.10.1.ii MPD Startup and Shutdown
	5.2.10.1.iii Examples

	5.2.10.2 Using MPICH-GM and rsh/ssh with PBS
	5.2.10.2.i Options
	5.2.10.2.ii Examples

	5.2.10.3 Restrictions

	5.2.11 MPICH-MX with PBS
	5.2.11.1 Using MPICH-MX and MPD with PBS
	5.2.11.1.i Options
	5.2.11.1.ii MPD Startup and Shutdown
	5.2.11.1.iii Examples

	5.2.11.2 Using MPICH-MX and rsh/ssh with PBS
	5.2.11.2.i Options
	5.2.11.2.ii Examples

	5.2.11.3 Restrictions

	5.2.12 MPICH2 with PBS on Linux
	5.2.12.1 Options
	5.2.12.2 MPD Startup and Shutdown
	5.2.12.3 Examples
	5.2.12.4 Restrictions

	5.2.13 MPICH2 1.4.1p1 On Windows with PBS
	5.2.14 MVAPICH with PBS
	5.2.14.1 Interface to MVAPICH mpirun Command
	5.2.14.2 Examples
	5.2.14.3 Restrictions

	5.2.15 MVAPICH2 with PBS
	5.2.15.1 Interface to MVAPICH2 mpiexec Command
	5.2.15.2 MPD Startup and Shutdown
	5.2.15.3 Examples
	5.2.15.4 Restrictions

	5.2.16 Open MPI with PBS
	5.2.16.1 Using Open MPI with PBS

	5.2.17 Platform MPI with PBS
	5.2.17.1 Using Platform MPI with PBS
	5.2.17.2 Setting up Your Environment

	5.2.18 HPE MPI with PBS
	5.2.18.1 Using HPE MPI with PBS
	5.2.18.2 Prerequisites
	5.2.18.3 Fitting Jobs onto Nodeboards
	5.2.18.4 Checkpointing and Suspending Jobs
	5.2.18.5 Using CSA

	5.3 Using PVM with PBS
	5.3.1 Arguments to pvmexec Command
	5.3.2 Using PVM Daemons
	5.3.3 Submitting a PVM Job
	5.3.4 Examples

	5.4 Using OpenMP with PBS
	5.4.1 Running Fewer Threads than CPUs
	5.4.2 Running More Threads than CPUs
	5.4.3 Caveats for Using OpenMP with PBS

	5.5 Hybrid MPI-OpenMP Jobs
	5.5.1 Examples

	Controlling How Your Job Runs
	6.1 Using Job Exit Status
	6.1.1 Caveats for Exit Status

	6.2 Using Job Dependencies
	6.2.1 Syntax for Job Dependencies
	6.2.1.1 Running Your Job on First Available Resources (2020.1 Beta)

	6.2.2 Job Dependency Examples
	6.2.3 Job Array Dependencies
	6.2.4 Caveats and Advice for Job Dependencies
	6.2.4.1 Correct Exit Status Required
	6.2.4.2 Permission Required for Dependencies
	6.2.4.3 Warning About Job History
	6.2.4.4 Error Reporting

	6.3 Adjusting Job Running Time
	6.3.1 Shrink-to-fit Jobs
	6.3.1.1 Requirements for a Shrink-to-fit Job
	6.3.1.2 Comparison Between Shrink-to-fit and Non-shrink-to-fit Jobs

	6.3.2 Using Shrink-to-fit Jobs
	6.3.3 Running Time of a Shrink-to-fit Job
	6.3.3.1 Setting Running Time Range for Shrink-to-fit Jobs
	6.3.3.2 Setting walltime for Shrink-to-fit Jobs

	6.3.4 Modifying Shrink-to-fit and Non-shrink-to-fit Jobs
	6.3.4.1 Modifying min_walltime and max_walltime
	6.3.4.1.i Making Non-shrink-to-fit Jobs into Shrink-to-fit Jobs
	6.3.4.1.ii Making Shrink-to-fit Jobs into Non-shrink-to-fit Jobs

	6.3.5 Viewing Running Time for a Job
	6.3.5.1 Viewing min_walltime and max_walltime
	6.3.5.2 Viewing walltime for a Shrink-to-fit Job

	6.3.6 Lifecycle of a Shrink-to-fit Job
	6.3.6.1 Execution of Shrink-to-fit Jobs
	6.3.6.2 Termination of Shrink-to-fit Jobs

	6.3.7 The min_walltime and max_walltime Resources
	6.3.8 Caveats and Restrictions for Shrink-to-fit Jobs

	6.4 Using Checkpointing
	6.4.1 Prerequisites for Checkpointing
	6.4.2 Minimum Checkpoint Interval
	6.4.3 Syntax for Specifying Checkpoint Interval
	6.4.4 Using Checkpointing for Preempting or Holding Jobs
	6.4.5 Caveats and Restrictions for Checkpointing

	6.5 Holding and Releasing Jobs
	6.5.1 Types of Holds
	6.5.2 Requirements for Holding or Releasing a Job
	6.5.3 Holding a Job Before Execution
	6.5.4 Holding a Job During Execution
	6.5.4.1 Checkpointing and Requeueing the Job
	6.5.4.2 Setting Hold Type for a Running Job

	6.5.5 Releasing a Job
	6.5.6 Caveats and Restrictions for Holding and Releasing Jobs
	6.5.7 Why is Your Job Held?
	6.5.8 Examples of Holding and Releasing Jobs

	6.6 Allowing Your Job to be Re-run
	6.6.1 Caveats and Restrictions for Marking Jobs as Rerunnable

	6.7 Controlling Number of Times Job is Re-run
	6.7.1 Caveats for Raising Value of run_count Attribute

	6.8 Deferring Execution
	6.8.1 Syntax for Deferring Execution

	6.9 Setting Priority for Your Job
	6.10 Making qsub Wait Until Job Ends
	6.10.1 Signal Handling and Error Processing for Blocking Jobs
	6.10.2 Caveats for Blocking Jobs

	6.11 Running Your Job Interactively
	6.11.1 Input and Output for Interactive Jobs
	6.11.2 Running Your Interactive Job
	6.11.3 Lifecycle of an Interactive Job
	6.11.3.1 Terminating Interactive Jobs

	6.11.4 Interactive Jobs and Exit Codes
	6.11.5 Tracking Progress for Interactive Jobs
	6.11.6 Special Sequences for Interactive Jobs
	6.11.7 Caveats and Restrictions for Interactive Jobs
	6.11.8 Errors and Logging
	6.11.9 Receiving X Output from Interactive Linux Jobs
	6.11.9.1 How to Receive X Output Under Linux
	6.11.9.1.i Receiving X Output on Non-submission Host

	6.11.9.2 Requirements for Receiving X Output
	6.11.9.3 Viewing X Output Job Attributes
	6.11.9.4 Caveats and Advice for Receiving X Output
	6.11.9.5 X Forwarding Errors

	6.11.10 Submitting Interactive GUI Jobs on Windows

	6.12 Using Environment Variables
	6.12.1 Exporting All Environment Variables
	6.12.2 Exporting Specific Environment Variables
	6.12.3 Caveat for Environment Variables and Shell Functions
	6.12.4 Forwarding Exported Shell Functions

	6.13 Specifying Which Jobs to Preempt
	6.14 Releasing Unneeded Vnodes from Your Job
	6.14.1 Caveats and Restrictions for Releasing Vnodes
	6.14.2 What Happens When You Release Vnodes
	6.14.3 Examples of Releasing Unneeded Vnodes From Job

	6.15 Running Your Job in a Container
	6.15.1 Specifying Ports with Docker Containers
	6.15.2 Specifying Additional Arguments to Container Engine
	6.15.3 Passing Environment Variables Into Containers
	6.15.4 Adding Job Owner to Secondary Groups in Docker Containers
	6.15.5 Running Single-vnode Single-Host Jobs in Singularity Containers
	6.15.6 Specifying Shell in Container
	6.15.7 Caveats and Restrictions

	6.16 Running Your Job in the Cloud
	6.16.1 Restrictions and Caveats for Cloud Bursting with PBS

	6.17 Allowing Your Job to Tolerate Vnode Failures

	Reserving Resources
	7.1 Glossary
	7.2 Quick Explanation of Reservations for Jobs
	7.3 Prerequisites for Reserving Resources
	7.4 Advance and Standing Reservations
	7.4.1 Introduction to Creating and Using Advance and Standing Reservations
	7.4.2 Creating Advance Reservations
	7.4.2.1 Setting Time Zone for Advance Reservations
	7.4.2.2 Examples of Creating Advance Reservations

	7.4.3 Creating Standing Reservations
	7.4.3.1 Setting Reservation Start Time and Duration
	7.4.3.2 Requirements for Creating Standing Reservations
	7.4.3.3 Examples of Creating Standing Reservations

	7.5 Job-specific Reservations
	7.5.1 Job-specific Start Reservations
	7.5.2 Job-specific ASAP Reservations
	7.5.3 Job-specific Now Reservations

	7.6 Getting Confirmation of a Reservation
	7.7 Modifying Reservations
	7.8 Deleting Reservations
	7.9 Viewing the Status of a Reservation
	7.9.1 Examples of Viewing Reservation Status Using pbs_rstat

	7.10 Submitting a Job to a Reservation
	7.10.1 Who Can Use Your Reservation
	7.10.2 Viewing Status of a Job Submitted to a Reservation
	7.10.3 How Reservations Treat Jobs
	7.10.3.1 Caveats for How Reservations Treat Jobs

	7.11 Reservation Caveats and Errors
	7.11.1 Time Zone Must be Correct
	7.11.2 Time Required Between Reservations
	7.11.3 Reservation Information in the Accounting Log
	7.11.4 Reservation Fault Tolerance
	7.11.5 Job and Reservation Exclusivity Must Match

	Job Arrays
	8.1 Advantages of Job Arrays
	8.2 Glossary
	8.3 Description of Job Arrays
	8.3.1 Job Script for Job Arrays
	8.3.2 Attributes and Resources for Job Arrays
	8.3.3 Scheduling Job Arrays and Subjobs
	8.3.3.1 Starving

	8.3.4 Identifier Syntax
	8.3.4.1 Examples of Using Identifier Syntax
	8.3.4.2 Shells and Array Identifiers

	8.3.5 Special Attributes for Job Arrays
	8.3.6 Job Array States
	8.3.7 PBS Environmental Variables for Job Arrays
	8.3.8 Accounting
	8.3.9 Prologues and Epilogues
	8.3.10 The “Rerunnable” Flag and Job Arrays

	8.4 Submitting a Job Array
	8.4.1 Job Array Submission Syntax
	8.4.2 Examples of Submitting Job Arrays
	8.4.3 File Staging for Job Arrays
	8.4.3.1 File Staging Syntax for Job Arrays
	8.4.3.2 Job Array Staging Syntax on Windows
	8.4.3.3 Job Array File Staging Caveats
	8.4.3.4 Examples of Staging for Job Arrays

	8.4.4 Filenames for Standard Output and Standard Error
	8.4.5 Job Array Dependencies
	8.4.5.1 Caveats for Job Array Dependencies

	8.4.6 Job Array Exit Status
	8.4.6.1 Making qsub Wait Until Job Array Finishes
	8.4.6.2 Caveats for Job Array Exit Status

	8.4.7 Caveats for Submitting Job Arrays
	8.4.7.1 No Interactive Job Submission of Job Arrays

	8.5 Viewing Status of a Job Array
	8.5.1 Example of Viewing Job Array Status

	8.6 Using PBS Commands with Job Arrays
	8.6.1 Deleting a Job Array
	8.6.2 Altering a Job Array
	8.6.3 Moving a Job Array
	8.6.4 Holding a Job Array
	8.6.5 Releasing a Job Array
	8.6.6 Selecting Job Arrays
	8.6.7 Ordering Job Arrays in the Queue
	8.6.8 Requeueing a Job Array
	8.6.9 Signaling a Job Array
	8.6.10 Sending Messages to Job Arrays
	8.6.11 Getting Log Data on Job Arrays
	8.6.12 Caveats for Using PBS Commands with Job Arrays
	8.6.12.1 Shells and PBS Commands with Job Arrays

	8.7 Job Array Caveats
	8.7.1 Job Arrays Required to be Rerunnable
	8.7.2 Resources Same for All Subjobs
	8.7.3 Checkpointing Not Supported for Job Arrays
	8.7.4 Caveats for Job Array Exit Status

	Working with PBS Jobs
	9.1 Using Job History
	9.1.1 Definitions
	9.1.2 Job History Information
	9.1.2.1 Working With Moved Jobs
	9.1.2.2 PBS Commands and Finished Jobs

	9.2 Modifying Job Attributes
	9.2.1 Changing the Selection Directive
	9.2.2 Changing the Job-wide Limit
	9.2.2.1 Caveats

	9.3 Deleting Jobs
	9.3.1 Deleting Jobs with Force
	9.3.2 Deleting Finished Jobs
	9.3.3 Deleting Moved Jobs
	9.3.4 Restricting Number of Emails

	9.4 Sending Messages to Jobs
	9.5 Sending Signals to Jobs
	9.6 Changing Order of Jobs
	9.6.1 Restrictions

	9.7 Moving Jobs Between Queues

	Checking Job & System Status
	10.1 Checking Job Status
	10.1.1 Specifying Jobs to View
	10.1.2 Viewing Default Job Status
	10.1.3 Viewing Job Status in Alternate Format
	10.1.3.1 Display Size in Gigabytes
	10.1.3.2 Display Size in Megawords

	10.1.4 Viewing Job Status in Long Format
	10.1.4.1 Path Display under Windows

	10.1.5 Listing Jobs by User
	10.1.6 Listing Running Jobs
	10.1.7 Listing Non-Running Jobs
	10.1.8 Listing Hosts Assigned to Jobs
	10.1.9 Displaying Job Comments
	10.1.10 Showing State of Job, Job Array or Subjob
	10.1.11 Printing Job Array Percentage Completed
	10.1.12 Viewing Job Start Time
	10.1.13 Viewing Estimated Start Times For Jobs
	10.1.13.1 Why Does Estimated Start Time Change?

	10.1.14 Viewing Job Status in Wide Format
	10.1.15 Viewing Information for Finished and Moved Jobs
	10.1.15.1 Getting Information on Jobs Moved to Another Server
	10.1.15.2 Job History In Standard Format
	10.1.15.3 Job History In Alternate Format

	10.1.16 Grouping Jobs and Sorting by ID
	10.1.17 Caveats for Job Information

	10.2 Checking Server Status
	10.2.1 Viewing Server Information in Default Format
	10.2.2 Viewing Server Information in Long Format

	10.3 Checking Queue Status
	10.3.1 Viewing Queue Information in Default Format
	10.3.2 Viewing Queue Information in Long Format
	10.3.3 Displaying Queue Limits in Alternate Format

	10.4 Full Display Options for Job, Queue, and Server Status
	10.4.1 Caveats for the qstat Command

	10.5 Selecting a List of Jobs
	10.5.1 Listing Job Identifiers of Finished and Moved Jobs
	10.5.2 Listing Jobs by Time Attributes

	10.6 Checking License Availability

	Submitting Cray Jobs
	11.1 PBS Jobs on Cray Shasta
	11.2 PBS Jobs on the Cray XC
	11.3 Resources for Cray XC
	11.3.1 Resource Accounting for Cray XC

	11.4 Rules for Submitting Jobs on the Cray XC
	11.4.1 Always Specify Node Type on Cray XC
	11.4.2 Always Reserve Required Vnodes on Cray XC
	11.4.3 Requesting Cray XC Login Node Where Job Script Runs
	11.4.4 Cray XC Login Nodes in PBS Reservations
	11.4.5 Specifying Number of Chunks on Cray XC
	11.4.6 Specify Host for Interactive Jobs on Cray XC

	11.5 Techniques for Submitting Cray XC Jobs
	11.5.1 Requesting Groups of Cray XC Login Nodes
	11.5.2 Using Internal Cray XC Login Nodes Only
	11.5.3 Using Cray XC Compute Nodes
	11.5.4 Requesting Specific Groups of Cray XC Nodes
	11.5.5 Requesting Cray XC Nodes in Specific Order
	11.5.6 Requesting Specific Hardware on Cray XC
	11.5.7 Requesting Accelerators on Cray XC
	11.5.7.1 Advice on Requesting Accelerators on Cray XC
	11.5.7.2 Examples of Requesting Accelerators on Cray XC

	11.6 Using Xeon Phi Vnodes on Cray XC
	11.7 Using Hyperthreads on Cray XC
	11.8 Viewing Cray XC Job Information
	11.8.1 Finding Out Where Job Was Launched on Cray XC
	11.8.2 Listing Jobs Running on Vnode on Cray XC
	11.8.3 How ALPS Request Is Constructed on Cray XC
	11.8.4 Viewing Accelerator Information on Cray XC

	11.9 Caveats and Advice for Cray XC
	11.9.1 Using Combination or Number Resources on Cray XC
	11.9.2 Avoid Invalid Cray XC Requests
	11.9.3 Resource Restrictions and Deprecations on Cray XC
	11.9.3.1 mpp* Resources Removed

	11.9.4 Do Not Request PBScrayorder on Cray XC
	11.9.5 Request Fewer Chunks on Cray XC
	11.9.6 Improving Performance on Cray XC

	11.10 Errors and Logging on Cray XC
	11.10.1 Invalid Cray XC Requests
	11.10.2 Job Requests More Than Available on Cray XC

	Using Provisioning
	12.1 Definitions
	12.2 How Provisioning Works
	12.2.1 Causing Vnodes To Be Provisioned
	12.2.2 Using an AOE
	12.2.3 Job Substates and Provisioning

	12.3 Requirements and Restrictions
	12.3.1 Host Restrictions
	12.3.1.1 Single-vnode Hosts Only
	12.3.1.2 Server Host Cannot Be Provisioned

	12.3.2 AOE Restrictions
	12.3.2.1 Vnode Job Restrictions
	12.3.2.2 Provisioning Job Restrictions
	12.3.2.3 Vnode Reservation Restrictions

	12.3.3 Requirements for Jobs
	12.3.3.1 If AOE is Requested, All Chunks Must Use Same AOE

	12.4 Using Provisioning
	12.4.1 Requesting Provisioning
	12.4.2 Commands and Provisioning
	12.4.3 How Provisioning Affects Jobs

	12.5 Caveats and Errors
	12.5.1 Requested Job AOE and Reservation AOE Should Match
	12.5.2 Allow Enough Time in Reservations
	12.5.3 Requesting Multiple AOEs For a Job or Reservation
	12.5.4 Held and Requeued Jobs
	12.5.5 Conflicting Resource Requests
	12.5.6 Job Submission and Alteration Have Same Requirements

	Using Accounting
	13.1 Using Accounting
	13.1.1 Specifying Accounting String
	13.1.2 Using Comprehensive System Accounting
	13.1.3 Using Dependencies with Accounting
	13.1.4 Advice and Caveats for Using Accounting
	13.1.4.1 Use an Integrated MPI

	Index

	Programmer’s Guide (PG)
	Contents
	List of APIs
	PBS Architecture
	2.1 PBS Components
	2.1.1 Single Execution System
	2.1.2 Single Execution System with Front End
	2.1.3 Multiple Execution Systems
	2.1.4 Server
	2.1.5 Job Executor (MoM)
	2.1.6 Scheduler
	2.1.7 Communication Daemon
	2.1.8 Privilege
	2.1.9 Commands

	Server Functions
	3.1 Roles and Required Privilege
	3.2 Batch Server Functions
	3.3 Server Management
	3.3.1 Manage Request
	3.3.2 Server Status Request
	3.3.3 Starting the PBS Server
	3.3.4 Stopping the PBS Server

	3.4 Queue Management
	3.4.1 Queue Status Request

	3.5 Job Management
	3.5.1 Queue Job Request
	3.5.2 Job Credential Request
	3.5.3 Job Script Request
	3.5.4 Commit Request
	3.5.5 Message Job Request
	3.5.6 Locate Job Request
	3.5.7 Delete Job Request
	3.5.8 Modify Job Request
	3.5.9 Run Job Request
	3.5.10 Rerun Job Request
	3.5.11 Hold Job Request
	3.5.12 Release Job Request
	3.5.13 Move Job Request
	3.5.14 Select Jobs Request
	3.5.15 Signal Job Request
	3.5.16 Status Job Request

	3.6 Server to Server Requests
	3.6.1 Track Job Request
	3.6.2 Job Dependency

	3.7 Deferred Services
	3.7.1 Job Scheduling
	3.7.1.1 Triggers for Scheduling Cycle

	3.7.2 File Staging
	3.7.3 Job Start
	3.7.4 Job Routing
	3.7.5 Job Exit
	3.7.6 Aborting Job
	3.7.7 Timed Events
	3.7.8 Event Logging
	3.7.9 Accounting

	3.8 Resource Management
	3.8.1 Resource Limits
	3.8.2 Resource Names

	3.9 Network Protocol
	3.9.1 General DIS Data Encoding

	Developer Headers and Libraries
	4.1 Location of API Libraries
	4.2 Location of Header Files
	4.3 Developer Package
	4.4 Batch Interface Library
	4.4.1 Error Codes
	4.4.2 Windows Requirement

	4.5 Example Compilation Line

	Batch Interface Library (IFL)
	5.1 Interface Library Overview
	5.1.1 Connection to Server
	5.1.2 Authentication
	5.1.3 Windows Requirement

	5.2 Batch Library Routines
	5.3 pbs_alterjob
	5.3.1 Synopsis
	5.3.2 Description
	5.3.3 Arguments
	5.3.3.1 Members of attropl Structure

	5.3.4 Return Value
	5.3.5 See Also

	5.4 pbs_asyrunjob
	5.4.1 Synopsis
	5.4.2 Description
	5.4.3 Required Privilege
	5.4.4 Arguments
	5.4.5 Return Value
	5.4.6 See Also

	5.5 pbs_confirmresv
	5.5.1 Synopsis
	5.5.2 Description
	5.5.3 Arguments
	5.5.4 Return Value
	5.5.5 See Also

	5.6 pbs_connect
	5.6.1 Synopsis
	5.6.2 Description
	5.6.3 Arguments
	5.6.4 Usage
	5.6.5 Cleanup
	5.6.6 Side Effects
	5.6.7 Windows Requirement
	5.6.8 Return Value
	5.6.9 See Also

	5.7 pbs_default
	5.7.1 Synopsis
	5.7.2 Description
	5.7.3 Return Value

	5.8 pbs_deljob
	5.8.1 Synopsis
	5.8.2 Description
	5.8.3 Arguments
	5.8.4 Return Value
	5.8.5 See Also

	5.9 pbs_delresv
	5.9.1 Synopsis
	5.9.2 Description
	5.9.3 Arguments
	5.9.4 Return Value
	5.9.5 See Also

	5.10 pbs_disconnect
	5.10.1 Synopsis
	5.10.2 Description
	5.10.3 Arguments
	5.10.4 Return Value
	5.10.5 See Also

	5.11 pbs_geterrmsg
	5.11.1 Synopsis
	5.11.2 Description
	5.11.3 Arguments
	5.11.4 Return Value
	5.11.5 See Also

	5.12 pbs_holdjob
	5.12.1 Synopsis
	5.12.2 Description
	5.12.3 Arguments
	5.12.4 Return Value
	5.12.5 See Also

	5.13 pbs_locjob
	5.13.1 Synopsis
	5.13.2 Description
	5.13.3 Arguments
	5.13.4 Cleanup
	5.13.5 Return Value
	5.13.6 See Also

	5.14 pbs_manager
	5.14.1 Synopsis
	5.14.2 Description
	5.14.3 Required Privilege
	5.14.4 Arguments
	5.14.4.1 Members of attropl Structure

	5.14.5 Usage for Hooks
	5.14.6 Return Value
	5.14.7 See Also

	5.15 pbs_modify_resv
	5.15.1 Synopsis
	5.15.2 Description
	5.15.3 Arguments
	5.15.3.1 Members of attropl Structure

	5.15.4 Return Value
	5.15.5 Cleanup
	5.15.6 See Also

	5.16 pbs_movejob
	5.16.1 Synopsis
	5.16.2 Description
	5.16.3 Arguments
	5.16.4 Return Value
	5.16.5 See Also

	5.17 pbs_msgjob
	5.17.1 Synopsis
	5.17.2 Description
	5.17.3 Arguments
	5.17.4 Return Value
	5.17.5 See Also

	5.18 pbs_orderjob
	5.18.1 Synopsis
	5.18.2 Description
	5.18.3 Arguments
	5.18.4 Return Value
	5.18.5 See Also

	5.19 pbs_preempt_jobs
	5.19.1 Synopsis
	5.19.2 Description
	5.19.3 Arguments
	5.19.4 Return Value
	5.19.5 Cleanup

	5.20 pbs_relnodesjob
	5.20.1 Synopsis
	5.20.2 Description
	5.20.3 Arguments
	5.20.4 Return Value
	5.20.5 See Also

	5.21 pbs_rerunjob
	5.21.1 Synopsis
	5.21.2 Description
	5.21.3 Arguments
	5.21.4 Return Value
	5.21.5 See Also

	5.22 pbs_rlsjob
	5.22.1 Synopsis
	5.22.2 Description
	5.22.3 Arguments
	5.22.4 Return Value
	5.22.5 See Also

	5.23 pbs_runjob
	5.23.1 Synopsis
	5.23.2 Description
	5.23.3 Required Privilege
	5.23.4 Arguments
	5.23.5 Return Value
	5.23.6 See Also

	5.24 pbs_selectjob
	5.24.1 Synopsis
	5.24.2 Description
	5.24.3 Arguments
	5.24.3.1 Members of attropl Structure

	5.24.4 Querying States
	5.24.5 Extending Your Query
	5.24.5.1 Querying Finished and Moved Jobs
	5.24.5.2 Querying Job Arrays and Subjobs

	5.24.6 Return Value
	5.24.7 Cleanup Required
	5.24.8 See Also

	5.25 pbs_selstat
	5.25.1 Synopsis
	5.25.2 Description
	5.25.3 Arguments
	5.25.3.1 Members of attropl Structure
	5.25.3.2 Members of attrl Structure

	5.25.4 Querying States
	5.25.5 Extending Your Query
	5.25.5.1 Querying Finished and Moved Jobs
	5.25.5.2 Querying Job Arrays and Subjobs

	5.25.6 Return Value
	5.25.6.1 The batch_status Structure

	5.25.7 Cleanup
	5.25.8 See Also

	5.26 pbs_sigjob
	5.26.1 Synopsis
	5.26.2 Description
	5.26.3 Arguments
	5.26.4 Return Value
	5.26.5 See Also

	5.27 pbs_statfree
	5.27.1 Synopsis
	5.27.2 Description
	5.27.3 Arguments
	5.27.3.1 The batch_status Structure

	5.27.4 Return Value

	5.28 pbs_stathost
	5.28.1 Synopsis
	5.28.2 Description
	5.28.3 Arguments
	5.28.3.1 Members of attrl Structure

	5.28.4 Return Value
	5.28.4.1 The batch_status Structure

	5.28.5 Cleanup
	5.28.6 See Also

	5.29 pbs_statjob
	5.29.1 Synopsis
	5.29.2 Description
	5.29.3 Arguments
	5.29.3.1 Members of attrl Structure

	5.29.4 Querying Job Arrays and Subjobs
	5.29.5 Querying the Jobs at a Queue or Server
	5.29.6 Extending Your Query
	5.29.6.1 Querying Finished and Moved Jobs

	5.29.7 Return Values
	5.29.7.1 The batch_status Structure

	5.29.8 Cleanup
	5.29.9 See Also

	5.30 pbs_statnode
	5.30.1 Synopsis
	5.30.2 Description
	5.30.3 Arguments
	5.30.3.1 Members of attrl Structure

	5.30.4 Return Value
	5.30.4.1 The batch_status Structure

	5.30.5 Cleanup
	5.30.6 See Also

	5.31 pbs_statque
	5.31.1 Synopsis
	5.31.2 Description
	5.31.3 Arguments
	5.31.3.1 Members of attrl Structure

	5.31.4 Return Value
	5.31.4.1 The batch_status Structure

	5.31.5 Cleanup
	5.31.6 See Also

	5.32 pbs_statresv
	5.32.1 Synopsis
	5.32.2 Description
	5.32.3 Arguments
	5.32.3.1 Members of attrl Structure

	5.32.4 Return Value
	5.32.4.1 The batch_status Structure

	5.32.5 Cleanup
	5.32.6 See Also

	5.33 pbs_statrsc
	5.33.1 Synopsis
	5.33.2 Description
	5.33.3 Arguments
	5.33.3.1 Members of attrl Structure

	5.33.4 Querying Resources at Server
	5.33.5 Return Value
	5.33.5.1 The batch_status Structure

	5.33.6 Cleanup
	5.33.7 See Also

	5.34 pbs_statsched
	5.34.1 Synopsis
	5.34.2 Description
	5.34.3 Arguments
	5.34.3.1 Members of attrl Structure

	5.34.4 Return Value
	5.34.4.1 The batch_status Structure

	5.34.5 Cleanup
	5.34.6 See Also

	5.35 pbs_statserver
	5.35.1 Synopsis
	5.35.2 Description
	5.35.3 Arguments
	5.35.3.1 Members of attrl Structure

	5.35.4 Return Value
	5.35.4.1 The batch_status Structure

	5.35.5 Cleanup
	5.35.6 See Also

	5.36 pbs_statvnode
	5.36.1 Synopsis
	5.36.2 Description
	5.36.3 Arguments
	5.36.3.1 Members of attrl Structure

	5.36.4 Return Value
	5.36.4.1 The batch_status Structure

	5.36.5 Cleanup
	5.36.6 See Also

	5.37 pbs_submit
	5.37.1 Synopsis
	5.37.2 Description
	5.37.3 Arguments
	5.37.3.1 Members of attropl Structure

	5.37.4 Return Value
	5.37.5 Cleanup
	5.37.6 See Also

	5.38 pbs_submit_resv
	5.38.1 Synopsis
	5.38.2 Description
	5.38.3 Arguments
	5.38.3.1 Members of attropl Structure

	5.38.4 Return Value
	5.38.5 Cleanup
	5.38.6 See Also

	5.39 pbs_terminate
	5.39.1 Synopsis
	5.39.2 Description
	5.39.3 Required Privilege
	5.39.4 Arguments
	5.39.5 Return Value
	5.39.6 See Also

	TM Library
	6.1 TM Library Routines
	6.2 tm_init, tm_nodeinfo, tm_poll, tm_notify, tm_spawn, tm_kill, tm_obit, tm_taskinfo, tm_atnode, tm_rescinfo, tm_publish, tm_subscribe, tm_finalize, tm_attach
	6.2.1 Synopsis
	6.2.2 Description
	6.2.3 See Also

	RM Library
	7.1 RM Library Routines
	7.2 openrm, closerm, downrm, configrm, addreq, allreq, getreq, flushreq, activereq, fullresp
	7.2.1 Synopsis
	7.2.2 Description
	7.2.3 See Also

	TCL/tk Interface
	8.1 TCL/tk API Functions
	8.2 pbs_tclapi
	8.2.1 Description
	8.2.2 Usage
	8.2.3 See Also

	Hooks
	9.1 Introduction
	9.2 How Hooks Work
	9.2.1 Hook Contents and Permissions
	9.2.2 Accepting and Rejecting Actions
	9.2.3 Exceptions
	9.2.4 Unsupported Interfaces and Uses

	9.3 Interface to Hooks
	9.3.1 The pbs Module
	9.3.1.1 Description of pbs Module

	9.4 pbs_module
	9.4.0.1 pbs Module Objects
	9.4.0.2 pbs Module Global Attribute Creation Methods
	9.4.0.3 Attributes and Resources
	9.4.0.4 Exceptions
	9.4.0.5 See Also
	9.4.1 The pbs_manager() API
	9.4.1.1 Troubleshooting
	9.4.1.2 Privilege for Hooks
	9.4.1.3 Examples of Using pbs_manager()

	9.4.2 The pbs_stathook() API
	9.4.2.1 Example of Using pbs_stathook()

	9.5 pbs_stathook(3B)
	9.5.1 Synopsis
	9.5.2 Description
	9.5.2.1 Required Privilege

	9.5.3 Arguments
	9.5.3.1 Members of attrl Structure

	9.5.4 Return Value
	9.5.4.1 The batch_status Structure

	9.5.5 Cleanup
	9.5.6 Error Messages
	9.5.7 See Also

	Custom Authentication and Encryption Library APIs
	10.1 pbs_auth_set_config
	10.1.1 Synopsis
	10.1.2 Description
	10.1.3 Arguments
	10.1.4 Configuration Structure
	10.1.5 Return Value

	10.2 pbs_auth_create_ctx
	10.2.1 Synopsis
	10.2.2 Description
	10.2.3 Arguments
	10.2.4 Return Value
	10.2.5 Cleanup

	10.3 pbs_auth_destroy_ctx
	10.3.1 Synopsis
	10.3.2 Description
	10.3.3 Arguments
	10.3.4 Return Value

	10.4 pbs_auth_get_userinfo
	10.4.1 Synopsis
	10.4.2 Description
	10.4.3 Arguments
	10.4.4 Return Value
	10.4.5 Cleanup
	10.4.6 Example

	10.5 pbs_auth_process_handshake_data
	10.5.1 Synopsis
	10.5.2 Description
	10.5.3 Arguments
	10.5.4 Return Value
	10.5.5 Cleanup

	10.6 pbs_auth_encrypt_data
	10.6.1 Synopsis
	10.6.2 Description
	10.6.3 Arguments
	10.6.4 Return Value
	10.6.5 Cleanup

	10.7 pbs_auth_decrypt_data
	10.7.1 Synopsis
	10.7.2 Description
	10.7.3 Arguments
	10.7.4 Return Value
	10.7.5 Cleanup

	Index

	Cloud Guide (CG)
	Contents
	Installing Cloud Bursting Module
	1.1 Supported Platforms for Cloud
	1.2 Supported Cloud Providers
	1.3 Prerequisites
	1.4 Recommended Configurations
	1.4.1 Recommended Configuration for Larger Installations
	1.4.2 Recommended Configuraton for Smaller Installations

	1.5 Installation Steps
	1.6 Configuring a Cloud Head Node in Azure
	1.7 Sample Cloud Hook Configuration File
	1.7.1 Contents of Sample Cloud Hook Configuration File

	1.8 Command Reference and Sample Output for pkr
	1.8.1 Sample pkr Output on Startup
	1.8.2 Sample pkr Output on Stop
	1.8.3 Sample pkr Output while Running
	1.8.4 Sample pkr Output while Stopped

	1.9 Logging into Cloud

	Configuring Cloud Bursting
	2.1 Introduction to Cloud Bursting
	2.1.1 Overview of Configuring Cloud Bursting
	2.1.2 Cloud Bursting Terminology

	2.2 Cloud Bursting Startup Script
	2.2.1 Introduction
	2.2.2 Startup Script on Windows Platforms
	2.2.3 Startup Script on Linux Platforms
	2.2.4 Example of a cloud-init Script for a Linux Virtual Machine
	2.2.5 Adjust PBS_HOME and PBS_EXEC if Necessary
	2.2.6 Additional Configuration
	2.2.6.1 Creating Local Scratch Space
	2.2.6.2 Mounting a Directory for PBS Data Transfer
	2.2.6.3 Configuring the MoM for Local Copy

	2.2.7 Troubleshooting the Cloud-Init Script
	2.2.7.1 Example of Troubleshooting the cloud-init Script

	2.3 Configure PBS Professional for Cloud Bursting
	2.3.1 Cloud Provider Instance Types
	2.3.2 Configure Your Network
	2.3.3 Configure Cloud Bursting Custom Resources
	2.3.3.1 PBS Professional Custom Resources for Cloud Bursting
	2.3.3.2 Further Explanation for cloud_max_jobs_check_per_queue
	2.3.3.3 Create Cloud Bursting Custom Resources

	2.3.4 Set Cloud Limits at Server
	2.3.5 Configure the Cloud Queues
	2.3.6 CLI Cloud Bursting Scenario Commands
	2.3.6.1 Display a List of Bursting Scenarios
	2.3.6.2 Enable a Bursting Scenario
	2.3.6.3 Disable a Bursting Scenario
	2.3.6.4 Display Bursting Scenario Details
	2.3.6.5 Update the Minimum Time Before an Idle Node is Unburst

	2.3.7 CLI Cloud Bursting Commands
	2.3.7.1 Command Options
	2.3.7.2 Command for Bursting Cloud Nodes
	2.3.7.3 Command to Display the Status of the Cloud Bursting Activity
	2.3.7.4 Cloud Node States
	2.3.7.5 Command for Unbursting Cloud Nodes
	2.3.7.6 Sizing the Network Disk for the Cloud Node Root System
	2.3.7.7 Preemptible or Spot Instances
	2.3.7.8 Defining the Image to Use when Bursting
	2.3.7.9 Requesting Infiniband Nodes
	2.3.7.10 Bursting Asynchronously

	2.3.8 Test Cloud Bursting
	2.3.8.1 Test Cloud Bursting with the CLI
	2.3.8.1.i Burst an Execution Node in the Cloud
	2.3.8.1.ii Unburst an Execution Node in the Cloud

	2.3.8.2 Test Automated Cloud Bursting by Submitting a Job

	2.3.9 Configure the Cloud Bursting Hook
	2.3.9.1 Cloud Bursting Periodic Hook
	2.3.9.2 Default Cloud Bursting Hook Configuration File
	2.3.9.3 Cloud Hook Considerations
	2.3.9.4 Configure the Cloud Bursting Hook

	2.4 Manage Cloud Bursting
	2.4.1 View Cloud Account Details
	2.4.2 View the Cloud Burst Nodes
	2.4.3 Enable Cloud Bursting
	2.4.4 Disable Cloud Bursting
	2.4.5 Edit a Bursting Scenario
	2.4.5.1 Add Quotas and Alerts
	2.4.5.2 Add a Token

	2.4.6 Enable Instance Types
	2.4.7 Edit General Bursting Scenario Details
	2.4.7.1 Edit SSH Keys
	2.4.7.2 Edit the Cloud Node Startup Script

	2.4.8 Manage Manually Burst Cloud Nodes
	2.4.8.1 Burst a Cloud Node Manually
	2.4.8.2 View Information About a Manually Burst Cloud Node
	2.4.8.3 Unburst a Manually Burst Cloud Node

	2.5 Troubleshoot Cloud Bursting
	2.5.1 PBS MoM’s Stopped or Down
	2.5.1.1 See Also

	2.6 Manage Cloud and On-Premise Jobs
	2.6.1 Associate Nodes with Queues
	2.6.2 Use Hooks or Routing Queues to Send Jobs to the Appropriate Queue
	2.6.3 Job Distribution Examples and Solutions
	2.6.3.1 Burst when On-premise Nodes are Not Available
	2.6.3.2 Send Small Jobs to the Cloud
	2.6.3.3 Send Specific Jobs Only to the Cloud
	2.6.3.4 Charge Departments for Resources Used

	2.7 Run Cloud Jobs On-Premise Before Bursting
	2.7.1 Override Instance Type or Image at Job Submission
	2.7.2 Request InfiniBand Nodes

	2.8 Modify the Bursting Hook
	2.8.1 Change a Scenario in the Cloud Bursting Hook
	2.8.2 Add a New Scenario to the Cloud Bursting Hook
	2.8.3 Delete a Scenario from the Cloud Bursting Hook
	2.8.4 Change the Cloud Server

	2.9 Start and Stop Cloud After a Manual Installation
	2.9.1 Start Cloud
	2.9.2 Stop Cloud
	2.9.3 Restart Cloud
	2.9.4 Determine the Status of the Cloud Service

	Using Cloud Provider Services
	3.1 Windows Bursting on AWS and Azure
	3.1.1 OS Image Name
	3.1.2 Inbound Security Rule for RDP
	3.1.3 Startup Script
	3.1.4 See Also

	3.2 Configuring Amazon Web Service Cloud Bursting
	3.2.1 Creating an Amazon Web Service User Account
	3.2.2 Add an Amazon Web Service Cloud Account
	3.2.3 Multi-Availability Zone Management on AWS
	3.2.4 Create a Virtual Private Cloud Network
	3.2.5 Create an Internet Gateway
	3.2.6 Update the VPC Route Table
	3.2.7 Add Inbound Rules to the VPC Security Group
	3.2.8 Create a Virtual Machine
	3.2.9 Install the PBS MoM on the VM
	3.2.9.1 Install the PBS MoM on the Linux VM
	3.2.9.2 Installing the PBS MoM on the Windows VM

	3.2.10 Create an OS Image
	3.2.11 Create an AWS Cloud Bursting Scenario

	3.3 Configuring Microsoft Azure Cloud Bursting
	3.3.1 Register the Cloud Application with Azure
	3.3.2 Add a Microsoft Azure Cloud Account
	3.3.3 Create a Resource Group
	3.3.4 Create a Virtual Network
	3.3.5 Create a Virtual Machine
	3.3.6 Install the PBS MoM on the VM
	3.3.6.1 Install the PBS MoM on the Linux VM
	3.3.6.2 Install the PBS MoM on the Windows VM

	3.3.7 Create an OS Image
	3.3.7.1 Create a Linux OS Image
	3.3.7.2 Create a Windows OS Image

	3.3.8 Create an Azure Cloud Bursting Scenario

	3.4 Configure Google Cloud Platform Cloud Bursting
	3.4.1 Create a Project
	3.4.2 Create a Service Account
	3.4.3 Add a GCP Cloud Account
	3.4.4 Create a Virtual Private Cloud Network
	3.4.5 Create a Virtual Machine
	3.4.6 Install and Configure the PBS MoM on the VM
	3.4.7 Create an OS Image
	3.4.8 Create a GCP Cloud Bursting Scenario

	3.5 Configure Oracle Cloud Platform Cloud Bursting
	3.5.1 Create an Oracle Cloud User Account
	3.5.2 Generating an SSH Public for the Oracle Cloud User
	3.5.3 Obtain the Root Compartment Identifier
	3.5.4 Obtain the Tenancy Identifier
	3.5.5 Add an Oracle Cloud Account
	3.5.6 Create a Virtual Cloud Network
	3.5.7 Creating a Virtual Machine
	3.5.8 Check Tenancy Service Limits
	3.5.9 Installing and Configuring the PBS MoM on the VM
	3.5.10 Create an OS Image
	3.5.11 Create an Oracle Cloud Bursting Scenario

	3.6 Configure Orange Cloud Flexible Engine for Cloud Bursting
	3.6.1 Create an Orange Cloud Flexible Engine User Account
	3.6.2 Select a Region
	3.6.3 Add an Orange Cloud Flexible Engine Account
	3.6.4 Check Orange Cloud Flexible Engine Account Service Quota
	3.6.5 Create a Virtual Private Cloud
	3.6.6 Creating a Virtual Machine
	3.6.7 Installing and Configuring the PBS MoM on the VM
	3.6.8 Create an OS Image
	3.6.9 Create Orange Cloud Cloud Bursting Scenario

	3.7 Configure HUAWEI Cloud for Cloud Bursting
	3.7.1 Obtain the HUAWEI Cloud Administrator Credentials
	3.7.2 Add an HUAWEI Cloud Account
	3.7.3 Check HUAWEI Cloud Account Service Quotas
	3.7.4 Create a Virtual Private Cloud
	3.7.5 Creating a Virtual Machine
	3.7.6 Installing and Configuring the PBS MoM on the VM
	3.7.7 Create an OS Image
	3.7.8 Create a HUAWEI Cloud Bursting Scenario

	3.8 Configure Open Telekom Cloud for Cloud Bursting
	3.8.1 Obtain the OTC Administrator Credentials
	3.8.2 Add an OTC Account
	3.8.3 Check OTC Account Service Quotas
	3.8.4 Create a Virtual Private Cloud
	3.8.5 Creating a Virtual Machine
	3.8.6 Installing and Configuring the PBS MoM on the VM
	3.8.7 Create an OS Image
	3.8.8 Create an OTC Cloud Bursting Scenario

	3.9 AWS Spot Pricing
	3.9.1 AWS Spot Pricing Overview
	3.9.2 What is Spot Pricing
	3.9.3 Implementing AWS Spot Pricing
	3.9.3.1 Cloud Bursting Hook Scenario Example

	3.9.4 Choose Spot Instances
	3.9.5 Add Scenarios to the Cloud Bursting Hook

	Running Cloud Jobs
	4.1 Introduction
	4.2 Sample Job Script: Cloud Job
	4.2.1 Contents of Sample Cloud Job Script
	4.2.2 Viewing Job Output

	4.3 Logging into Cloud

	Index

	Budget Guide (BG)
	Contents
	Introduction to Budget
	1.1 Introduction
	1.1.1 Managing Resource Usage
	1.1.2 Currency

	1.2 Budget Terminology
	1.3 Relationships in Budget
	1.3.1 Groups, Investors, Managers
	1.3.2 Investing and Consuming Funds

	1.4 Job and Credit Workflow
	1.5 Service Units
	1.5.1 Standard Service Units
	1.5.2 Dynamic Service Units
	1.5.3 Rules for Using Service Units
	1.5.3.1 Storage Quotas via Dynamic Service Units

	Installing Budget
	2.1 Supported Platforms for Budget
	2.2 Prerequisites
	2.2.1 Altair Prerequisites
	2.2.2 Third-party Prerequisites
	2.2.3 Required Accounts
	2.2.3.1 Configuring Accounts for Budget

	2.3 Recommended Configurations
	2.3.1 Recommended Configuration for Larger Installations
	2.3.2 Recommended Configuraton for Smaller Installations
	2.3.3 Software Components

	2.4 Installation Steps

	Configuring Budget
	3.1 The Budget Configuration File
	3.2 Configuring the Budget Hook
	3.2.1 Rules for Configuring Hooks
	3.2.2 Hook Examples
	3.2.2.1 Default Configuration
	3.2.2.2 Multiple Constants and Operators
	3.2.2.3 Multiple Service Units

	3.3 Configuring Failover for Budget
	3.3.1 Switching to Secondary Budget Server

	3.4 Configuring Budget for Peer Scheduling

	Authentication for Budget
	4.1 Authenticating Users
	4.1.1 Authenticating Budget

	4.2 Budget and PBS Authentication
	4.2.1 Prerequisites
	4.2.2 Hook Workflow
	4.2.2.1 Hook Config File
	4.2.2.2 Budget Call Function

	4.2.3 Set Up Passwordless SSH from PBS to Budget Server

	4.3 Logging in to Budget
	4.3.1 Logging In
	4.3.2 Logging Out

	Budget Commands
	5.1 Budget Commands
	5.1.1 Using Budget Commands
	5.1.1.1 Finding Command Information

	5.1.2 List of Budget Commands

	5.2 Commands for Managing Budget Elements
	5.2.1 Adding Entities
	5.2.1.1 Adding a Period
	5.2.1.1.i Name
	5.2.1.1.ii Description
	5.2.1.1.iii Syntax
	5.2.1.1.iv Parameters

	5.2.1.2 Adding a Cluster
	5.2.1.2.i Name
	5.2.1.2.ii Description
	5.2.1.2.iii Syntax
	5.2.1.2.iv Parameters

	5.2.1.3 Adding a Service Unit
	5.2.1.3.i Name
	5.2.1.3.ii Description
	5.2.1.3.iii Syntax
	5.2.1.3.iv Parameters
	5.2.1.3.v Command Example

	5.2.1.4 Apply Limits to Dynamic Service Unit
	5.2.1.4.i Name
	5.2.1.4.ii Description
	5.2.1.4.iii Effect of Limits on the Period Heirarchy
	5.2.1.4.iv Required Privilege
	5.2.1.4.v Syntax
	5.2.1.4.vi Parameters

	5.2.1.5 Updating Dynamic Values
	5.2.1.5.i Name
	5.2.1.5.ii Description
	5.2.1.5.iii Syntax
	5.2.1.5.iv Parameters

	5.2.1.6 Adding a User
	5.2.1.6.i Name
	5.2.1.6.ii Description
	5.2.1.6.iii Syntax
	5.2.1.6.iv Parameters
	5.2.1.6.v Command Examples

	5.2.1.7 Adding a Project
	5.2.1.7.i Name
	5.2.1.7.ii Description
	5.2.1.7.iii Syntax
	5.2.1.7.iv Parameters
	5.2.1.7.v Accounting Policies
	5.2.1.7.vi Multiple Associations to the Project
	5.2.1.7.vii Command Example

	5.2.1.8 Adding a Group
	5.2.1.8.i Name
	5.2.1.8.ii Description
	5.2.1.8.iii Syntax
	5.2.1.8.iv Parameters

	5.2.2 Listing Elements
	5.2.2.1 Listing Users
	5.2.2.1.i Name
	5.2.2.1.ii Description
	5.2.2.1.iii Syntax
	5.2.2.1.iv Parameters

	5.2.2.2 Listing Groups
	5.2.2.2.i Name
	5.2.2.2.ii Description
	5.2.2.2.iii Syntax
	5.2.2.2.iv Parameters

	5.2.2.3 Listing Roles
	5.2.2.3.i Name
	5.2.2.3.ii Description
	5.2.2.3.iii Syntax
	5.2.2.3.iv Command Example

	5.2.2.4 Listing Periods
	5.2.2.4.i Name
	5.2.2.4.ii Description
	5.2.2.4.iii Syntax

	5.2.2.5 Listing Clusters
	5.2.2.5.i Name
	5.2.2.5.ii Description
	5.2.2.5.iii Syntax
	5.2.2.5.iv Parameters

	5.2.2.6 Listing Configurations
	5.2.2.6.i Name
	5.2.2.6.ii Description
	5.2.2.6.iii Syntax
	5.2.2.6.iv Parameters
	5.2.2.6.v Sample Output

	5.2.3 Updating Elements
	5.2.3.1 Updating Projects
	5.2.3.1.i Name
	5.2.3.1.ii Description
	5.2.3.1.iii Syntax
	5.2.3.1.iv Parameters
	5.2.3.1.v Command Example

	5.2.3.2 Updating Users
	5.2.3.2.i Name
	5.2.3.2.ii Description
	5.2.3.2.iii Syntax
	5.2.3.2.iv Parameters

	5.2.3.3 Updating Groups
	5.2.3.3.i Name
	5.2.3.3.ii Description
	5.2.3.3.iii Required Privilege
	5.2.3.3.iv Syntax
	5.2.3.3.v Parameters

	5.2.3.4 Updating Clusters
	5.2.3.4.i Name
	5.2.3.4.ii Description
	5.2.3.4.iii Syntax
	5.2.3.4.iv Parameters

	5.2.3.5 Updating Configurations
	5.2.3.5.i Name
	5.2.3.5.ii Description
	5.2.3.5.iii Syntax
	5.2.3.5.iv Parameters

	5.2.4 Removing Elements
	5.2.5 Getting Reports on Elements
	5.2.5.1 Getting Project Reports
	5.2.5.1.i Name
	5.2.5.1.ii Description
	5.2.5.1.iii Syntax
	5.2.5.1.iv Parameters
	5.2.5.1.v Output Format
	5.2.5.1.vi Command Example
	5.2.5.1.vii Report Formats for Dynamic Service Units (SU_DYNAMIC)

	5.2.5.2 Getting Group Reports
	5.2.5.2.i Name
	5.2.5.2.ii Description
	5.2.5.2.iii Required Privilege
	5.2.5.2.iv Syntax
	5.2.5.2.v Parameters
	5.2.5.2.vi Group Report Formats

	5.2.5.3 Getting Transaction Reports
	5.2.5.3.i Name
	5.2.5.3.ii Description
	5.2.5.3.iii Syntax
	5.2.5.3.iv Parameters
	5.2.5.3.v Output Format
	5.2.5.3.vi Command Example

	5.2.5.4 Getting User Reports
	5.2.5.4.i Name
	5.2.5.4.ii Description
	5.2.5.4.iii Syntax
	5.2.5.4.iv Parameters
	5.2.5.4.v Output Format
	5.2.5.4.vi Command Example

	5.3 Commands for Managing Service Units
	5.3.1 Depositing Service Units
	5.3.1.1 Depositing Service Units to Project
	5.3.1.1.i Name
	5.3.1.1.ii Description
	5.3.1.1.iii Syntax
	5.3.1.1.iv Parameters

	5.3.1.2 Deposit Service Units to User Account
	5.3.1.2.i Name
	5.3.1.2.ii Description
	5.3.1.2.iii Syntax
	5.3.1.2.iv Parameters

	5.3.1.3 Depositing Service Units to Group
	5.3.1.3.i Name
	5.3.1.3.ii Description
	5.3.1.3.iii Syntax
	5.3.1.3.iv Parameters

	5.3.2 Checking Service Unit Balance
	5.3.2.1 Checking Service Unit Balance for Project
	5.3.2.1.i Name
	5.3.2.1.ii Description
	5.3.2.1.iii Syntax
	5.3.2.1.iv Parameters
	5.3.2.1.v Output
	5.3.2.1.vi Command Example

	5.3.2.2 Checking Service Unit Balance for User
	5.3.2.2.i Name
	5.3.2.2.ii Description
	5.3.2.2.iii Syntax
	5.3.2.2.iv Parameters

	5.3.2.3 Checking Service Unit Balance for Group
	5.3.2.3.i Name
	5.3.2.3.ii Description
	5.3.2.3.iii Syntax
	5.3.2.3.iv Parameters

	5.3.3 Withdrawing Service Units
	5.3.3.1 Withdrawing Service Units from Project
	5.3.3.1.i Name
	5.3.3.1.ii Description
	5.3.3.1.iii Required Privilege
	5.3.3.1.iv Syntax
	5.3.3.1.v Parameters

	5.3.3.2 Withdrawing Service Units from User
	5.3.3.2.i Name
	5.3.3.2.ii Description
	5.3.3.2.iii Required Privilege
	5.3.3.2.iv Syntax
	5.3.3.2.v Parameters

	5.3.3.3 Withdrawing Service Units from Group
	5.3.3.3.i Name
	5.3.3.3.ii Description
	5.3.3.3.iii Required Privilege
	5.3.3.3.iv Syntax
	5.3.3.3.v Parameters

	5.3.4 Prechecking Service Units Balance
	5.3.4.1 Prechecking a Project
	5.3.4.1.i Name
	5.3.4.1.ii Description
	5.3.4.1.iii Syntax
	5.3.4.1.iv Parameters

	5.3.5 Acquiring Service Units
	5.3.5.0.i Required Privilege
	5.3.5.1 Acquiring Service Units for Project
	5.3.5.1.i Name
	5.3.5.1.ii Description
	5.3.5.1.iii Syntax
	5.3.5.1.iv Parameters

	5.3.5.2 Acquiring Service Units for User
	5.3.5.2.i Name
	5.3.5.2.ii Description
	5.3.5.2.iii Syntax
	5.3.5.2.iv Parameters

	5.3.6 Reconciling Service Units
	5.3.6.1 Reconciling Service Units for Project
	5.3.6.1.i Name
	5.3.6.1.ii Description
	5.3.6.1.iii Required Privilege
	5.3.6.1.iv Syntax
	5.3.6.1.v Parameters

	5.3.6.2 Reconciling Service Units for Job
	5.3.6.2.i Name
	5.3.6.2.ii Description
	5.3.6.2.iii Syntax
	5.3.6.2.iv Parameters

	5.3.7 Refunding Service Units
	5.3.7.0.i Syntax
	5.3.7.0.ii Parameters

	5.3.8 Transferring Service Units
	5.3.8.1 Transferring Service Units for Project
	5.3.8.1.i Name
	5.3.8.1.ii Description
	5.3.8.1.iii Syntax
	5.3.8.1.iv Parameters

	5.3.8.2 Transferring Service Units for User
	5.3.8.2.i Name
	5.3.8.2.ii Description
	5.3.8.2.iii Syntax
	5.3.8.2.iv Parameters

	5.3.8.3 Transferring Service Units for Group
	5.3.8.3.i Name
	5.3.8.3.ii Description
	5.3.8.3.iii Syntax
	5.3.8.3.iv Parameters

	Tutorial on Using Budget
	6.1 Getting Started with Budget Commands
	6.2 Getting Started with Budget Commands
	6.3 Submitting Jobs with Budget

	Index

	Simulate Guide (SG)
	Contents
	Installing Simulate
	1.1 Supported Platforms for Simulate
	1.2 Prerequisites
	1.3 Where to Install Simulate
	1.4 Installation
	1.5 Configuration
	1.5.1 Configure Licensing for Simulate
	1.5.2 Set Path to Snapshot Directory

	1.6 Setting Up User Environment

	Using Simulate
	2.1 Introduction
	2.2 Simulate Commands
	2.2.1 The simsh Wrapper Script
	2.2.2 Options to the sim Command
	2.2.3 Command Examples
	2.2.4 Command Paths

	2.3 Using Simulate on a Snapshot
	2.3.1 Creating a Snapshot
	2.3.2 Checking Snapshot Contents
	2.3.3 Running a Simulation
	2.3.3.1 Simulation Errors
	2.3.3.2 Simulation Caveats

	2.3.4 Simulation Output
	2.3.4.1 Output Name
	2.3.4.2 Output Contents

	2.3.5 Reviewing Simulation Results
	2.3.6 Using Scheduler Logs
	2.3.7 Modifying Your Snapshot
	2.3.7.1 Modifying Available Resources
	2.3.7.2 Creating Nodes
	2.3.7.3 Submitting Jobs
	2.3.7.4 Changing Limits
	2.3.7.5 Changing Scheduler Configuration File

	2.3.8 Rerunning a Simulation
	2.3.9 Output of Rerunning a Simulation
	2.3.10 Reviewing Second Results

	Index
	Main Index

