CONTPRM

Bulk Data Entry Defines the default properties of all contacts and sets parameters that affect all contacts.

The default values set here can be overridden by values explicitly specified on PCONT, PCONTX, and CONTACT cards.
Note: These defaults do not apply to properties of individual gap elements that are specified on PGAP cards.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
CONTPRM PARAM1 VALUE1 PARAM2 VALUE2 PARAM3 VALUE3 PARAM4 VALUE4  
  PARAM5 VALUE5              

Example

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
CONTPRM GPAD 0.5 STIFF AUTO MU1 0.3      

Definitions

Field Contents SI Unit Example
PARAMi Parameter name.  
VALi Parameter value.  

Parameters for Small Displacement Nonlinear Analysis

Name Values SI Unit Example
GPAD "Padding" of master or slave objects to account for additional layers, such as shell thickness, and so on. This value is subtracted from contact gap opening as calculated from location of nodes. 1
THICK (Default)
NONE

(Real)

 
STIFF Relative stiffness of the contact interface. 2

Positive value (STIFF = Real > 0.0) is directly specified stiffness.

Negative value (STIFF = Real < 0.0) defines a stiffness scaling factor. The stiffness scaling factor is equal to |Real < 0.0|. The scaling is applied to the automatic stiffness value (the stiffness value when STIFF = AUTO).

Default = AUTO (AUTO, SOFT, HARD, Real > 0.0, or Real < 0.0)

 
MU1 Coefficient of static friction ( μ s) 3 4

Default = 0.0 (Real ≥ 0.0 or STICK or FREEZE)

 
MU2 Coefficient of kinetic friction ( μ k).

Default = MU1 (0.0 < Real < MU1)

 
PREPRT Prints initial contact conditions (except for MPC-based TIE) into an ASCII data file. The file name is: <filename>.cpr. For more information, refer to .cpr file.
NO (Default)
YES
 
CONTGAP Creates a Bulk Data file that contains internally created node-to-surface contact elements represented as CGAPG elements. The file name is: filename_root.contgap.fem. 5
NO (Default)
YES
 
CONTGRID Creates a Bulk Data file that contains SET's of grids involved with surface-to-surface contact elements. The file name is: filename.root.contgrid.fem.
NO (Default)
YES
 
CONTOUT Depending on the type of contact discretization, the following file(s) are created.

S2S discretization:

Creates a Bulk Data file that contains internally generated Surface-to-Surface Contact elements represented as PLOTEL and RBE3 elements for visualization. The file name is: <filename>.contout.fem.

N2N discretization:

Creates a Bulk Data file that contains internally generated Node-to-Node Contact elements represented as RBEAM JOINTG elements for visualization. The file name is: <filename>.n2s.fem.
NO (Default)
YES
 
CONTMPC Outputs internally created MPC's used to generate TIE contact. The MPC's are output to: <filename>_contmpc.fem.
NO (Default)
YES
 
NONTIED Controls the output of grids which are not tied in the TIE or CONTACT (TYPE=FREEZE) interfaces.
YES (Default)
The grids which are not tied are output as a grid SET to the <filename>_nontied.fem file.
NO
The non-tied grids are not output.
 
TIE Indicates the type of contact formulation that is used when the TIE Bulk Data Entry is present in the model.
PENALTY (Default for Implicit Analysis)
PENALTY-based formulation of the TIE contact.
MPC (Default for Explicit Analysis)
Activates the MPC-based formulation of TIE contact.
Note: Default switched automatically to PENALTY if over-constraint condition exits.
 
CORIENT Indicates whether the master orientation field MORIENT on the CONTACT card applies to all surfaces or if it excludes solid elements.
ONSHELL (Default)
MORIENT applies only to contact masters that consist of shell elements or patches of grids. Master surfaces defined as faces of solid elements always push outwards, irrespective of initially open or pre-penetrating contact.
ONALL
MORIENT applies to all contact masters including, in particular, solid elements.
 
SFPRPEN Indicates whether initial pre-penetrations are recognized and resolved in self-contact areas. (This only affects self-contact areas, wherein Master and Slave belong to the same set or surface).
YES (Default)
Initial self-penetrations are recognized and resolved in self-contact areas. There is some danger of finding false self-penetrations across solids thinner than SRCHDIS. Refer to Resolution of Pre-penetration (CONTPRM,SFPRPEN) in the User Guide.
NO
There is no pre-penetrations to be resolved in self-contact areas, except maybe minimal intrusions due to meshing, and so on. Any self-penetrations larger than minimum element size will be ignored in those areas.
 
FRICESL Frictional elastic slip - distance of sliding up to which the frictional transverse force increases linearly with slip distance. Specified in physical distance units (similar to U0 and GPAD). Refer to Friction in the User Guide.
Non-zero value or blank
Activates respective friction model based on Elastic Slip Distance.
Zero value
Activates friction model based on fixed transverse stiffness KT.
Default = AUTO (Real > 0.0 or AUTO)
 
ADJGRID Creates a Bulk Data file that contains contact grid SET's. The coordinates of these grids are adjusted (ADJUST), and a bulk data file that contains new coordinates of these contact grids after adjustment is also created. The file names are: filename_root.adjgset.fem and filename_root.adjgcrd.fem.
For N2N contact, the file names are: filename_root.n2n.adjgset.fem and filename_root.n2n.adjgcrd.fem. Additionally, the maximum adjusted distance is available in the .out file.
NO (Default)
YES
 
DISCRET Contact discretization approach for all the CONTACT/TIE entries which do not have an explicit DISCRET specification.
N2S (Default)
S2S
 
LSLDCLR Indicates whether CLEARANCE is allowed for finite/continuous sliding (TRACK=FINITE/CONSLI) contact with large displacement analysis.
YES
NO (Default)
 

Parameters for Explicit Dynamic Analysis (ANALYSIS = EXPDYN)

Name Values SI Unit Example
Interface stiffness scale factor.

Default = 1.0 in implicit analysis

Default = 0.1 in explicit analysis

(Real ≥ 0)

 
FRIC Coulomb friction.

Default = 0.0 (Real ≥ 0)

 
GAP Gap for impact activation. 7 8

(Real ≥ 0)

 
I Node and segment deletion flag.
0 (Default)
No deletion.
1
When all of the elements (shells, solids) associated to one segment are deleted, the segment is removed from the master side of the interface. Additionally, non-connected nodes are removed from the slave side of the interface.
2
When a shell or a solid element is deleted, the corresponding segment is removed from the master side of the interface. Additionally, non-connected nodes are removed from the slave side of the interface.

(Integer)

 
Handling of initial penetrations flag. 10
Default as defined by CONTPRM (Integer = 0, … , 5)
0
No action.
1
Deactivation of stiffness on nodes.
2
Deactivation of stiffness on elements.
3
Change slave node coordinates to avoid small initial penetrations.
4
Change master node coordinates to avoid small initial penetrations.
5
Gap is variable with time but initial gap is slightly de-penetrated as:
g a p 0 = g a p P 0 0.05 ( g a p P 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaadg gacaWGWbWaaSbaaSqaaiaaicdaaeqaaOGaeyypa0Jaam4zaiaadgga caWGWbGaeyOeI0IaamiuamaaDaaaleaacaaIWaaabaaaaOGaeyOeI0 IaaGimaiaac6cacaaIWaGaaGynaiabgwSixpaabmaabaGaam4zaiaa dggacaWGWbGaeyOeI0IaamiuamaaBaaaleaacaaIWaaabeaaaOGaay jkaiaawMcaaaaa@4D4B@

Valid in explicit analysis: 0, 1, 2, 3 and 5.

Valid in implicit analysis: 0, 3 and 4.

Invalid entries are ignored.

 
CORIENT Indicates whether the master orientation field MORIENT on the CONTACT card applies to all surfaces, or if it excludes solid elements.
ONSHELL (Default)
MORIENT applies only to contact masters that consist of shell elements or patches of grids. Master surfaces defined as faces of solid elements always push outwards, irrespective of initially open or pre-penetrating contact.
ONALL
MORIENT applies to all contact masters including, in particular, solid elements.
 
I Friction formulation flag. 12
COUL (Default)
Static Coulomb friction law.
GEN
Generalized viscous friction law.
DARM
Darmstad friction law.
REN
Renard friction law.

In implicit computation, only IFRIC = COUL is implemented.

(Character)

 
I Friction filtering flag. 11
NO (Default)
No filter is used.
SIMP
Simple numerical filter.
PER
Standard -3dB filter with filtering period.
CUTF
Standard -3dB filter with cutting frequency.

(Character)

 
FFAC Filtering coefficient (Only with IFILTNO).

(0.0 < Real < 1.0)

 
I Friction penalty formulation type. 13 14
VISC (Default)
Viscous (total) formulation.
STIFF
Stiffness (incremental) formulation.

(Character)

 
C, C, C, C, C, C Friction law coefficients.

(Real > 0)

 
Flag to ignore slave nodes if no master segment is found for TIE contact. 15
0
No deletion of slave nodes.
1 (Default)
Slave nodes with no master segment found are deleted from the interface.
2
Slave nodes with no master segment found are deleted from the interface; if SRCHDIS is blank, then it would be newly calculated internally.

(Integer)

 
MTET10 Flag for second order CTETRA as contact master surface.
0 (Default)
TETRA 10 is degenerated on the surface (middle nodes are removed from contact).
1
Four triangular segments are used on each tetra face.

(Integer)

 
I Symmetric contact flag.
SYM (Default)
Symmetric contact.
UNSYM
Master-slave contact.

If SSID defines a grid set, the contact is always a master-slave contact.

(Character)

 
I Flag for edge generation from slave and master surfaces.
NO (Default)
No edge generation.
ALL
All segment edges are included.
BORD
External border of slave and master surface is used.
FEAT
External border as well as features defined by FANG are used.

(Character)

FANG Feature angle for edge generation in degrees (Only with I = FEAT).

Default = 91.0 (Real ≥ 0)

 
I Gap definition flag.
CONST (Default)
Gap is constant and equal to GAP. 8 9
VAR
Gap is variable (in space, not in time) according to the characteristics of the impacting surfaces and nodes. 9

(Character)

 
I Stiffness definition flag. 6
0 (Default)
The stiffness is computed according to the master side characteristics.
1
STIF1 is used as interface stiffness.
2, 3, 4 and 5
The interface stiffness is computed from both master and slave characteristics.

(Integer)

 
STIF1 Interface stiffness (Only with I = 1).

Default = 0.0 (Real ≥ 0)

 
STMIN Minimum interface stiffness (Only with I > 1).

(Real ≥ 0)

 
STMAX Maximum interface stiffness (Only with I > 1).

Default = 1030 (Real ≥ 0)

 
IBC Flag for deactivation of boundary conditions at impact.

(Character = X, Y, Z, XY, XZ, YZ, or XYZ)

 
VISS Critical damping coefficient on interface stiffness.

Default = 0.05 (Real ≥ 0)

 
VIS Critical damping coefficient on interface friction.

Default = 1.0 (Real ≥ 0)

 
Sorting factor.

Default = 0.20 (Real ≥ 0)

 

Comments

  1. The initial gap opening is calculated automatically based on the relative location of slave and master nodes (in the original, undeformed mesh). To account for additional material layers covering master or slave objects (such as half of shell thickness), the GPAD entry can be used. GPAD option THICK automatically accounts for shell thickness on both sides of the contact interface (this also includes the effects of shell element offset ZOFFS or composite offset Z0).
  2. Option STIFF=AUTO determines the value of normal stiffness for each contact element using the stiffness of surrounding elements. Additional options SOFT and HARD create respectively softer or harder penalties. SOFT can be used in cases of convergence difficulties and HARD can be used if undesirable penetration is detected in the solution. A negative value for STIFF indicates that a stiffness scaling factor equal to |Real < 0.0| is defined. This scaling is applied on the stiffness value via STIFF = AUTO.
  3. MU1=STICK is interpreted in OptiStruct as an enforced stick condition - such contact interfaces will not enter the sliding phase. Of course, the enforced stick only applies to contacts that are closed.
  4. MU1=FREEZE enforces zero relative displacements on the contact surface - the contact gap opening remains fixed at the original value and the sliding distance is zero. The FREEZE condition applies to all slave nodes, no matter whether their initial gap is open or closed.
  5. The file filename_root.contgap.fem, produced using the CONTGAP parameter, can be imported into HyperMesh in order to visualize internally created node-to-surface contact elements (now converted to GAPG entities).
    Note: During optimization, this file shows node-to-surface contact elements for the latest optimization iteration. In order to correctly visualize this configuration in HyperMesh for shape optimization problems, the FEA mesh shape needs to be updated by applying "Shape change" results.

    Furthermore, if GAPPRM,HMGAPST,YES is activated together with CONTPRM,CONTGAP,YES, then the gap status command file, filename_root.HM.gapstat.cmf, will also include the open/closed status of these additional GAPG's that represent node-to-surface contact elements. For correct visualization of their status in HyperMesh, file filename_root.contgap.fem needs to be imported before running the gap status command file.

  6. If I ≠ 1, the interface stiffness K is computed from the master segment stiffness Km and/or the slave segment stiffness Ks.

    The master stiffness is computed from K m = S T F A C B S S V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaad2 gacqGH9aqpcaWGtbGaamivaiaadAeacaWGbbGaam4qaiabgwSixlaa dkeacqGHflY1caWGtbGaeyyXIC9aaSGaaeaacaWGtbaabaGaamOvaa aaaaa@470A@ for solids, K m = 0.5 S T F A C E t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaad2 gacqGH9aqpcaaIWaGaaiOlaiaaiwdacqGHflY1caWGtbGaamivaiaa dAeacaWGbbGaam4qaiabgwSixlaadweacqGHflY1caWG0baaaa@4794@ for shells as well as when the master segment is shared by a shell and a solid.

    The slave stiffness is an equivalent nodal stiffness computed as for solids: (1)
    K s = S T F A C B V 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaado hacqGH9aqpcaWGtbGaamivaiaadAeacaWGbbGaam4qaiabgwSixlaa dkeacqGHflY1caWGwbWaaWbaaSqabeaacqGHsislcaaIZaaaaaaa@44DB@
    For Shells:(2)
    K s = 0.5 S T F A C E t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaado hacqGH9aqpcaaIWaGaaiOlaiaaiwdacqGHflY1caWGtbGaamivaiaa dAeacaWGbbGaam4qaiabgwSixlaadweacqGHflY1caWG0baaaa@479A@
    Where,
    B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaaaa@36BD@
    Bulk modulus
    S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaaaa@36BD@
    Segment area
    E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaaaa@36BD@
    Modulus of elasticity
    t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaaaa@36BD@
    Shell thickness
    V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaaaa@36BD@
    Volume of a solid

    There is no limitation to the value of stiffness factor (but a value greater than 1.0 can reduce the initial time step).

    I = 0, the interface stiffness K = K m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiabg2 da9iaadUeacaWGTbaaaa@398E@

    I > 1, the interface stiffness is K = max ( S T M I N , min ( S T M A X , K 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiabg2 da9iGac2gacaGGHbGaaiiEamaabmaabaGaam4uaiaadsfacaWGnbGa amysaiaad6eacaGGSaGaciyBaiaacMgacaGGUbWaaeWaaeaacaWGtb Gaamivaiaad2eacaWGbbGaamiwaiaacYcacaWGlbGaaGymaaGaayjk aiaawMcaaaGaayjkaiaawMcaaaaa@4BB9@ with:
    • I = 2, K 1 = 0.5 ( K m + K s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaig dacqGH9aqpcaaIWaGaaiOlaiaaiwdacqGHflY1daqadaqaaiaadUea caWGTbGaey4kaSIaam4saiaadohaaiaawIcacaGLPaaaaaa@42F1@
    • I = 3, K 1 = max ( K m , K s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaig dacqGH9aqpciGGTbGaaiyyaiaacIhadaqadaqaaiaadUeacaWGTbGa aiilaiaadUeacaWGZbaacaGLOaGaayzkaaaaaa@411E@
    • I = 4, K 1 = min ( K m , K s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaig dacqGH9aqpciGGTbGaaiyyaiaacIhadaqadaqaaiaadUeacaWGTbGa aiilaiaadUeacaWGZbaacaGLOaGaayzkaaaaaa@411E@
    • I = 5, K 1 = K m K s / ( K m + K s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaig dacqGH9aqpcaWGlbGaamyBaiabgwSixlaadUeacaWGZbGaai4lamaa bmaabaGaam4saiaad2gacqGHRaWkcaWGlbGaam4CaaGaayjkaiaawM caaaaa@4503@
  7. In an implicit analysis, the contact stiffness plays a very important role in convergence. I = 4 (which takes the minimum of master and slave stiffness's for contact) is recommended. This is because the penalty contact force will be balanced with the internal force of the deformable impacted part, which means the stiffness near the effective stiffness one will converge easier than a higher one.

    For small initial gaps in implicit analysis, the convergence will be more stable if a GAP larger than the initial gap is defined.

    In implicit analysis, sometimes a stiffness with scaling factor reduction (for example: = 0.01) or reduction in impacted thickness (if rigid one) might reduce unbalanced forces and improve convergence, particularly in shell structures under bending where the effective stiffness is much lower than membrane stiffness; but it should be noted that too low of a value could also lead to divergence.

  8. The default for the constant gap (I = CONST) is the minimum of:
    t
    Average thickness of the master shell elements
    l/10, l
    Average side length of the master solid elements
    lmin/2, lmin
    Smallest side length of all master segments (shell or solid)
  9. The variable gap (I = VAR) is computed as gs + gm with:
    • gm - master element gap with
      • gm = t/2, t: thickness of the master element for shell elements.
      • gm = 0 for solid elements.
    • gs - slave node gap:
      • gs = 0 if the slave node is not connected to any element or is only connected to solid or spring elements.
      • gs = t/2, t - largest thickness of the shell elements connected to the slave node.
      • gs = 1/2√S for truss and beam elements, with S being the cross-section of the element.

    If the slave node is connected to multiple shells and/or beams or trusses, the largest computed slave gap is used.

    The variable gap is always at least equal to GAPMIN.

  10. = 3 or 4 are only recommended for small initial penetrations and should be used with caution because:
    • the coordinate change is irreversible
    • it may create other initial penetrations if several surface layers are defined in the interfaces
    • it may create initial energy if the node belongs to a spring element
    = 5 works as:
    Figure 1.
  11. IFILT defines the method for computing the friction filtering coefficient. If IFILTNO, the tangential friction forces are smoothed using a filter:(3)
    F T =αF ' T +( 1α )F ' T1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGubaabeaakiabg2da9iabeg7aHjabgwSixlaadAeacaGG NaWaaSbaaSqaaiaadsfaaeqaaOGaey4kaSYaaeWaaeaacaaIXaGaey OeI0IaeqySdegacaGLOaGaayzkaaGaeyyXICTaamOraiaacEcadaWg aaWcbaGaamivaiabgkHiTiaaigdaaeqaaaaa@4B63@
    Where,
    F T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGubaabeaaaaa@37C6@
    Tangential force
    F ' T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaacE cadaWgaaWcbaGaamivaaqabaaaaa@3871@
    Tangential force at time t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EF@
    F ' T 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaacE cadaWgaaWcbaGaamivaiabgkHiTiaaigdaaeqaaaaa@3A19@
    Tangential force at time t 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgk HiTiaaigdaaaa@3897@
    α
    Filtering coefficient
    IFILT = SIMP
    α = FFAC
    IFILT = PER
    α = 2 π d t / F F A C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGOmaiabec8aWjaadsgacaWG0bGaai4laiaadAeacaWGgbGa amyqaiaadoeaaaa@40CD@ , where dt/T = FFAC, T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EF@ is the filtering period
    IFILT = CUTF
    α = 2 π F F A C d t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGOmaiabec8aWjabgwSixlaadAeacaWGgbGaamyqaiaadoea cqGHflY1caWGKbGaamiDaaaa@44AE@ , where FFAC is the cutting frequency
  12. I defines the friction model.

    I = COUL - Coulomb friction with F T μ F N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGubaabeaakiabgsMiJkabeY7aTjabgwSixlaadAeadaWg aaWcbaGaamOtaaqabaaaaa@3F4F@ with μ = F R I C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0Maey ypa0JaamOraiaadkfacaWGjbGaam4qaaaa@3BEA@

    If I is not COUL, the friction coefficient is set by a function ( μ = μ ( p , V ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aH8oqBcqGH9aqpcqaH8oqBdaqadaqaaiaadchacaGGSaGaamOvaaGa ayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3FFA@ ,

    Where,
    p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaaaa@36EB@
    Pressure of the normal force on the master segment
    V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaaaa@36EB@
    Tangential velocity of the slave node

    The following formulations are available:

    I = GEN - Generalized viscous friction law(4)
    μ = F r i c + C 1 p + C 2 V + C 3 p V + C 4 p 2 + C 5 V 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0Maey ypa0JaamOraiaadkhacaWGPbGaam4yaiabgUcaRiaadoeadaWgaaWc baGaaGymaaqabaGccqGHflY1caWGWbGaey4kaSIaam4qamaaBaaale aacaaIYaaabeaakiabgwSixlaadAfacqGHRaWkcaWGdbWaaSbaaSqa aiaaiodaaeqaaOGaeyyXICTaamiCaiabgwSixlaadAfacqGHRaWkca WGdbWaaSbaaSqaaiaaisdaaeqaaOGaeyyXICTaamiCamaaCaaaleqa baGaaGOmaaaakiabgUcaRiaadoeadaWgaaWcbaGaaGynaaqabaGccq GHflY1caWGwbWaaWbaaSqabeaacaaIYaaaaaaa@5E63@
    I = DARM - Darmstad law(5)
    μ = C 1 e ( C 2 V ) p 2 + C 3 e ( C 4 V ) p + C 5 e ( C 6 V ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0Maey ypa0Jaam4qamaaBaaaleaacaaIXaaabeaakiabgwSixlaadwgadaah aaWcbeqaamaabmaabaGaam4qamaaBaaameaacaaIYaaabeaaliaadA faaiaawIcacaGLPaaaaaGccqGHflY1caWGWbWaaWbaaSqabeaacaaI YaaaaOGaey4kaSIaam4qamaaBaaaleaacaaIZaaabeaakiabgwSixl aadwgadaahaaWcbeqaamaabmaabaGaam4qamaaBaaameaacaaI0aaa beaaliaadAfaaiaawIcacaGLPaaaaaGccqGHflY1caWGWbGaey4kaS Iaam4qamaaBaaaleaacaaI1aaabeaakiabgwSixlaadwgadaahaaWc beqaamaabmaabaGaam4qamaaBaaameaacaaI2aaabeaaliaadAfaai aawIcacaGLPaaaaaaaaa@5DB5@
    I = REN - Renard law(6)
    μ = C 1 + ( C 3 C 1 ) V C 5 ( 2 V C 5 ) if V [ 0 , C 5 ]
    (7)
    μ = C 3 ( ( C 3 C 4 ) ( V C 5 C 6 C 5 ) 2 ( 3 2 V C 5 C 6 C 5 ) ) if V [ C 5 , C 6 ]
    (8)
    μ = C 2 1 1 C 2 C 4 + ( V C 6 ) 2 if V C 6

    where,

    C 1 = C 1 = μ S , C 2 = C 2 = μ d C 3 = C 3 = μ max , C 4 = C 4 = μ min C 5 = C 5 = V c r 1 , C 6 = C 6 = V c r 2

    • The first critical velocity V c r 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGJbGaamOCaiaaigdaaeqaaaaa@3997@ must be different to 0 (C ≠ 0). It also must be lower than the second critical velocity V c r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGJbGaamOCaiaaigdaaeqaaaaa@3997@ (C < C).
    • The static friction coefficient C and the dynamic friction coefficient C must be lower than the maximum friction C (CC) and CC).
    • The minimum friction coefficient C, must be lower than the static friction coefficient C and the dynamic friction coefficient C (CC and CC).
  13. I selects two types of contact friction penalty formulation.
    The viscous (total) formulation (I = VISC) computes an adhesive force as:(9)
    F a d h = V I S F S q r t ( 2 K m ) V T F T = min ( μ F N , F a d h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGHbGaamizaiaadIgaaeqaaOGaeyypa0JaamOvaiaadMea caWGtbGaamOraiabgwSixlaadofacaWGXbGaamOCaiaadshadaqada qaaiaaikdacaWGlbGaamyBaaGaayjkaiaawMcaaiabgwSixlaadAfa daWgaaWcbaGaamivaaqabaGccaWGgbWaaSbaaSqaaiaadsfaaeqaaO Gaeyypa0JaciyBaiaacMgacaGGUbWaaeWaaeaacqaH8oqBcaWGgbWa aSbaaSqaaiaad6eaaeqaaOGaaiilaiaadAeadaWgaaWcbaGaamyyai aadsgacaWGObaabeaaaOGaayjkaiaawMcaaaaa@5B7A@
    The stiffness (incremental) formulation (I = STIFF) computes an adhesive force as:(10)
    F a d h = F T o l d + Δ F T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGHbGaamizaiaadIgaaeqaaOGaeyypa0JaamOramaaBaaa leaacaWGubGaam4BaiaadYgacaWGKbaabeaakiabgUcaRiaabs5aca WGgbWaaSbaaSqaaiaadsfaaeqaaaaa@432D@
    (11)
    Δ F T = K V T d t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiLdiaadA eadaWgaaWcbaGaamivaaqabaGccqGH9aqpcaWGlbGaeyyXICTaamOv amaaBaaaleaacaWGubaabeaakiabgwSixlaadsgacaWG0baaaa@4320@
    (12)
    F T n e w = min ( μ F N , F a d h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGubGaamOBaiaadwgacaWG3baabeaakiabg2da9iGac2ga caGGPbGaaiOBamaabmaabaGaeqiVd0MaamOramaaBaaaleaacaWGob aabeaakiaacYcacaWGgbWaaSbaaSqaaiaadggacaWGKbGaamiAaaqa baaakiaawIcacaGLPaaaaaa@4801@
  14. For nonlinear implicit contact with friction, the stiffness formulation (I = STIFF) is recommended.
  15. If = 1 or 2, the slave nodes without a master segment found during the searching are deleted from the interface.

    If = 1 and SRCHDIS is blank, the default value of the distance for searching closest master segment is the average size of the master segments.

    If = 2 and SRCHDIS is blank, the distance for searching closest master segment for each slave node is computed as:

    d 1 = 0.6 ( T s + T m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaaIXaaabeaakiabg2da9iaaicdacaGGUaGaaGOnaiabgwSi xpaabmaabaGaamivamaaBaaaleaacaWGZbaabeaakiabgUcaRiaads fadaWgaaWcbaGaamyBaaqabaaakiaawIcacaGLPaaaaaa@43BF@

    d 2 = 0.05 T m d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaaIYaaabeaakiabg2da9iaaicdacaGGUaGaaGimaiaaiwda cqGHflY1caWGubWaaSbaaSqaaiaad2gacaWGKbaabeaaaaa@40E6@

    S R C H D I S = max ( d 1 , d 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadk facaWGdbGaamisaiaadseacaWGjbGaam4uaiabg2da9iGac2gacaGG HbGaaiiEamaabmaabaGaamizamaaBaaaleaacaaIXaaabeaakiaacY cacaaMc8UaaGPaVlaadsgadaWgaaWcbaGaaGOmaaqabaaakiaawIca caGLPaaaaaa@4887@

    Where,
    T s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGZbaabeaaaaa@37F3@
    Thickness of the element connected to the slave node, for solids T s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGZbaabeaaaaa@37F3@ = 0.0
    T m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGZbaabeaaaaa@37F3@
    Thickness of master segment, for solids T m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGZbaabeaaaaa@37F3@ = Element volume / Segment area
    T md MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGZbaabeaaaaa@37F3@
    Master segment diagonal
  16. This card is represented as a control card in HyperMesh.