Eurocode 3 Classification Parameters (Non-Welded)

The parameters for non-welded calculations are listed in both the Assign Material tab and the My Material tab of the Assign Material dialog.

The defaults are with respect to material = steel.

The following are the parameters listed in Assign Material tab.

Parameter Description
Size Effect (Ks) default = 1.0
Temperature Factor (Kt) default = 1.0
Surface Treatment (Ksur) default = 1.0
Safety Factor for Strength (Mf) default = 1.0
Loading Factor (Ff) default = 1.0

The following are the parameters listed in My Material tab.

Parameter Description
Detail Category for nominal (Δ σc, Basic) Listed in SN tab (default = 160 N/mm2)
Detail Category for shear (Δ τc, Basic) Listed in SN tab (default = 100 N/mm2)
Number of cycles at Constant Amplitude Fatigue Limit – nominal (NDσ) Listed in SN tab (default = 5e6 cycles)
Number of cycles at Cut-Off Limit – nominal (NLσ) Listed in SN tab (default = 1e8 cycles)
Slope before Constant Amplitude Fatigue Limit – nominal (m1σ) Listed in SN tab (default = 3.0)
Slope before Cut-Off Limit – nominal (m2σ) Listed in SN tab (default = 5.0)
Number of cycles at which the reference value of the fatigue strength is defined. (greyed out) – nominal (Ncσ) Listed in SN tab (default = 2e6 cycles)
Number of cycles at Cut-Off Limit – shear (NLτ) Listed in SN tab (default = 1e8 cycles)
Slope before Constant Amplitude Fatigue Limit – shear (m1τ) Listed in SN tab (default = 5.0 )
Number of cycles at which the reference value of the fatigue strength is defined – shear (Ncτ) Listed in SN tab (default = 2e6 cycles)
Desired number of cycles (N) Listed in SN tab (default = 2e6 cycles)

Formulation

Query Stress σxx, σyy, τxy (max and min across all loadcases)
Find the stress ranges (max – min) = ( Δσxx, Δσyy, and Δτxy)
Multiply Stress Range from Loading Factor Δσ
=Δσ· γ Ff MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Jaeu iLdqKaeq4WdmNaeS4JPFMaeq4SdC2aaSbaaSqaaiaadAeacaWGMbaa beaaaaa@401E@
Calculate Corrected Fatigue Strength ΔσC and ΔτC
Δ σ C = [ Δ σ C , B a s i c γ M f ] · k s · k t · k s u r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaeq 4Wdm3aaSbaaSqaaiaadoeaaeqaaOGaeyypa0ZaamWaaeaadaWcaaqa aiabfs5aejabeo8aZnaaBaaaleaacaWGdbGaaiilaiaaysW7caWGcb GaamyyaiaadohacaWGPbGaam4yaaqabaaakeaacqaHZoWzdaWgaaWc baGaamytaiaadAgaaeqaaaaaaOGaay5waiaaw2faaiabl+y6NjaadU gacaWGZbGaeS4JPFMaam4AaiaadshacqWIpM+zcaWGRbGaam4Caiaa dwhacaWGYbaaaa@5A98@

Δ τ C =[ Δ τ C,Basic γ Mf ]·ks·kt·ksur MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaeq iXdq3aaSbaaSqaaiaadoeaaeqaaOGaeyypa0ZaamWaaeaadaWcaaqa aiabfs5aejabes8a0naaBaaaleaacaWGdbGaaiilaiaaysW7caWGcb GaamyyaiaadohacaWGPbGaam4yaaqabaaakeaacqaHZoWzdaWgaaWc baGaamytaiaadAgaaeqaaaaaaOGaay5waiaaw2faaiabl+y6NjaadU gacaWGZbGaeS4JPFMaam4AaiaadshacqWIpM+zcaWGRbGaam4Caiaa dwhacaWGYbaaaa@5A9C@

Calculate Constant Amplitude Fatigue Limit ΔσD and ΔτD
Δ σ D =Δ σ C ( N cσ N Dσ ) 1 m 1σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaeq 4Wdm3aaSbaaSqaaiaadseaaeqaaOGaeyypa0JaeuiLdqKaeq4Wdm3a aSbaaSqaaiaadoeaaeqaaOWaaeWaaeaadaWcaaqaaiaad6eadaWgaa WcbaGaam4yaiabeo8aZbqabaaakeaacaWGobWaaSbaaSqaaiaadsea cqaHdpWCaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaWaaSaaae aacaaIXaaabaGaamyBamaaBaaameaacaaIXaGaeq4Wdmhabeaaaaaa aaaa@4CC2@

Δ τ D = Inf MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaeq iXdq3aaSbaaSqaaiaadseaaeqaaOGaeyypa0Jaaeysaiaab6gacaqG Mbaaaa@3DCC@

Calculate Stress at Cut-off Limit ΔσL and ΔτL
Δ σ L = Δ σ D ( N D σ N L σ ) 1 m 2 σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaeq 4Wdm3aaSbaaSqaaiaadYeaaeqaaOGaeyypa0JaeuiLdqKaeq4Wdm3a aSbaaSqaaiaadseaaeqaaOWaaeWaaeaadaWcaaqaaiaad6eadaWgaa WcbaGaamiraiabeo8aZbqabaaakeaacaWGobWaaSbaaSqaaiaadYea cqaHdpWCaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaWaaSaaae aacaaIXaaabaGaamyBamaaBaaameaacaaIYaGaeq4Wdmhabeaaaaaa aaaa@4CB5@

Δ τ L =Δ τ C ( N cτ N Lτ ) 1 m 1τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaeq iXdq3aaSbaaSqaaiaadYeaaeqaaOGaeyypa0JaeuiLdqKaeqiXdq3a aSbaaSqaaiaadoeaaeqaaOWaaeWaaeaadaWcaaqaaiaad6eadaWgaa WcbaGaam4yaiabes8a0bqabaaakeaacaWGobWaaSbaaSqaaiaadYea cqaHepaDaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaWaaSaaae aacaaIXaaabaGaamyBamaaBaaameaacaaIXaGaeqiXdqhabeaaaaaa aaaa@4CDC@

Calculate Permissible Number of Cycles Nperm
For Δσ If Δ σ (stress range) >Δ σ D, N perm = N Dσ ( Δσ Δ σ D ) m 1σ If Δ σ D >ΔσΔ σ L, N perm = N Dσ ( Δσ Δ σ D ) m 2σ If Δσ<Δ σ L, N perm =Inf ForΔτ If Δ τ (stress range) Δ τ C, N perm = N Cτ ( Δτ Δ τ C ) m 1τ If Δ τ (stress range) <Δ τ L, N perm =Inf MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaqGgb Gaae4BaiaabkhacaqGGaGaeuiLdqKaeq4WdmhabaGaaGjbVlaaysW7 caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caqGjbGaaeOzai aabccacqqHuoarcqaHdpWCdaWgaaWcbaGaaeikaiaabohacaqG0bGa aeOCaiaabwgacaqGZbGaae4CaiaabccacaqGYbGaaeyyaiaab6gaca qGNbGaaeyzaiaabMcaaeqaaOGaeyOpa4JaeuiLdqKaeq4Wdm3aaSba aSqaaiaadseacaGGSaaabeaaaOqaaiaaysW7caaMe8UaaGjbVlaays W7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjb VlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8 UaamOtamaaBaaaleaacaWGWbGaamyzaiaadkhacaWGTbaabeaakiab g2da9iaad6eadaWgaaWcbaGaamiraiaaygW7cqaHdpWCaeqaaOWaae WaaeaadaWcaaqaaiabfs5aejabeo8aZbqaaiabfs5aejabeo8aZnaa BaaaleaacaWGebaabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaai abgkHiTiaad2gadaWgaaadbaGaaGymaiabeo8aZbqabaaaaaGcbaGa aGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7ca qGjbGaaeOzaiaabccacqqHuoarcqaHdpWCdaWgaaWcbaGaamiraaqa baGccqGH+aGpcqqHuoarcqaHdpWCcqGHLjYScqqHuoarcqaHdpWCda WgaaWcbaGaamitaiaacYcaaeqaaaGcbaGaaGjbVlaaysW7caaMe8Ua aGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7ca aMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaa ysW7caWGobWaaSbaaSqaaiaadchacaWGLbGaamOCaiaad2gaaeqaaO Gaeyypa0JaamOtamaaBaaaleaacaWGebGaaGzaVlabeo8aZbqabaGc daqadaqaamaalaaabaGaeuiLdqKaeq4WdmhabaGaeuiLdqKaeq4Wdm 3aaSbaaSqaaiaadseaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqa baGaeyOeI0IaamyBamaaBaaameaacaaIYaGaeq4Wdmhabeaaaaaake aacaaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjb VlaaysW7caqGjbGaaeOzaiaabccacqqHuoarcqaHdpWCcqGH8aapcq qHuoarcqaHdpWCdaWgaaWcbaGaamitaiaacYcaaeqaaaGcbaGaaGjb VlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8 UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7 caaMe8UaaGjbVlaaysW7caWGobWaaSbaaSqaaiaadchacaWGLbGaam OCaiaad2gaaeqaaOGaeyypa0Jaaeysaiaab6gacaqGMbaabaGaaeOr aiaab+gacaqGYbGaaGjbVlabfs5aejabes8a0bqaaiaaysW7caaMe8 UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaabMea caqGMbGaaeiiaiabfs5aejabes8a0naaBaaaleaacaqGOaGaae4Cai aabshacaqGYbGaaeyzaiaabohacaqGZbGaaeiiaiaabkhacaqGHbGa aeOBaiaabEgacaqGLbGaaeykaaqabaGccqGHLjYScqqHuoarcqaHep aDdaWgaaWcbaGaam4qaiaacYcaaeqaaaGcbaGaaGjbVlaaysW7caaM e8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaays W7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjb VlaaysW7caWGobWaaSbaaSqaaiaadchacaWGLbGaamOCaiaad2gaae qaaOGaeyypa0JaamOtamaaBaaaleaacaWGdbGaeqiXdqhabeaakmaa bmaabaWaaSaaaeaacqqHuoarcqaHepaDaeaacqqHuoarcqaHepaDda WgaaWcbaGaam4qaaqabaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaa cqGHsislcaWGTbWaaSbaaWqaaiaaigdacqaHepaDaeqaaaaaaOqaai aaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8Ua aeysaiaabAgacaqGGaGaeuiLdqKaeqiXdq3aaSbaaSqaaiaabIcaca qGZbGaaeiDaiaabkhacaqGLbGaae4CaiaabohacaqGGaGaaeOCaiaa bggacaqGUbGaae4zaiaabwgacaqGPaaabeaakiabgYda8iabfs5aej abes8a0naaBaaaleaacaWGmbGaaiilaaqabaaakeaacaaMe8UaaGjb VlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8 UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7 caaMe8UaaGjbVlaad6eadaWgaaWcbaGaamiCaiaadwgacaWGYbGaam yBaaqabaGccqGH9aqpcaqGjbGaaeOBaiaabAgaaaaa@DEA9@
Component Damage
D x = N N p e r m x < 1.0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWG4baabeaakiabg2da9maalaaabaGaamOtaaqaaiaad6ea daWgaaWcbaGaamiCaiaadwgacaWGYbGaamyBaiaaygW7caaMe8Uaam iEaaqabaaaaOGaeyipaWJaaGymaiaac6cacaaIWaaaaa@45EB@

D y = N N p e r m y < 1.0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWG5baabeaakiabg2da9maalaaabaGaamOtaaqaaiaad6ea daWgaaWcbaGaamiCaiaadwgacaWGYbGaamyBaiaaygW7caaMe8Uaam yEaaqabaaaaOGaeyipaWJaaGymaiaac6cacaaIWaaaaa@45ED@

D x y = N N p e r m x y < 1.0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWG4bGaamyEaaqabaGccqGH9aqpdaWcaaqaaiaad6eaaeaa caWGobWaaSbaaSqaaiaadchacaWGLbGaamOCaiaad2gacaaMb8UaaG jbVlaadIhacaWG5baabeaaaaGccqGH8aapcaaIXaGaaiOlaiaaicda aaa@47E7@

Equivalent Damage
D= D x 3 D y 3 D xy 5 <1.0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9iaadseadaWgaaWcbaGaamiEaaqabaGcdaahaaWcbeqaaiaaioda aaGccaWGebWaaSbaaSqaaiaadMhaaeqaaOWaaWbaaSqabeaacaaIZa aaaOGaamiramaaBaaaleaacaWG4bGaamyEaaqabaGcdaahaaWcbeqa aiaaiwdaaaGccqGH8aapcaaIXaGaaiOlaiaaicdaaaa@44C1@
Note: DIN is the copyright owner for EN 1999-1-3:2011-11 (November 2011). Permission to use and reproduce information contained in the Eurocode 3 standards was granted by DIN.