

User Manual Version 4.2.7

Copyright Notice

Copyright © 2018 by Fraunhofer ITWM. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the written permission of Fraunhofer ITWM, Fraunhofer-Platz 1, D-67663 Kaiserslautern, Germany.

Registered Trademarks

Adams[®] is a registered trademark of the MSC.Software[®] Corporation. OpenCRG[®] is a registered trademark of Daimler AG, Germany.

Preliminary Notice

Fraunhofer ITWM aims to deliver software of high quality which conforms to the specifications agreed with licensees, but cannot guarantee that all features will perform exactly as described. Those who use the program do so on the understanding that the results from analysis software are dependent on the inputs. In any case, the program should be used in accordance with the instructions contained in the documentation and other information provided with the program supplied by Fraunhofer ITWM. Fraunhofer ITWM does not warrant that any specific feature will produce specific results, and does not accept liability for any losses, direct, consequential or otherwise, resulting from the use of the program.

Authoring notes

Axel Gallrein, Fraunhofer ITWM, author and editor

Table of Contents

CDTIRE	I
User Manual	I
Version 4.2.7	I
	-
TABLE OF CONTENTS	
INTRODUCTION	4
Tire Model Background	4
CDTire Model Family	4
Road Surface Models	8
CDTire road surfaces models (RSMs)	8
MBS road surfaces models (RSMs)	8
MODEL IMPLEMENTATION	9
Modeling with CDTire	9
MODEL USAGE	10
Road Surface Model 1000	10
Header (Road Surface Model 1000)	11
Data Part (Road Surface Model 1000)	12
Road Surface Model 1002	15
Header (Road Surface Model 1002)	16
Road Surface Model 1008	19
Road Surface Model 2000	21
CDTire Setup for Road Surface Model 2000	21
Customizing CDTire	28
	20
Tire Parameter Eile CDTire/MELL	······29
Tire Parameter File - CDTire/Mr++	29 22
Tire Parameter File for CDTire/2D	33 11
Road Darameters	4⊥ ⊑1
Example for Equidistant Track Data (Data Type 2)	LC
Example for Non-Equidistant Track Data (Data Type 2)	۲۵ دع
Warnings and Frrors	Э2 БЛ

Introduction

The *Comfort and Durability Tire* is a tire model family to be used with the MBS software systems. It focuses on comfort and durability applications but also allows for handling analysis.

Remark: In the further text *Comfort and Durability Tire* will be referenced as *CDTire*.

Tire Model Background

CDTire is a tire model for passenger car and light truck tires that allows engineers to do full vehicle ride comfort and durability analysis in respective MBS software systems, taking into account tire belt dynamics and interaction with 3D road surfaces.

During the multi-body simulation CDTire computes the spindle forces and moments acting on each wheel in the model as well as the local contact forces while driving on a 3D road surface. CDTire accurately captures the vibrations in the frequency range for durability and comfort studies up to 150 Hz.

CDTire Model Family

CDTire offers 3 basic tire models

- o CDTire/3D
- CDTire/Realtime
- CDTire/MF++

The following models are considered CDTire/Legacy and are not actively developed anymore:

o CDTire 20, CDTire 30, CDTire 40, 2030, 2040

However, existing model 30 parameter files can be used as they are automatically converted to CDTire/Realtime and model 40 files can be used as they are automatically converted to CDTire/3D.

The following paragraphs give some general background information to the sub-models. See the *Appendix* for a detailed description of the corresponding parameter files and their function.

CDTire/3D

Fig. 1: CDTire/3D

Tire Model Structure:

- belt is flexible shell (default: 6x3x50 dof's)
- both sidewalls are flexible shells (default: 8x3x50 dof's)

Contact Formulation:

- brush type contact
- local static stick-slip ability

Performance:

- substantial effort
- *lambda* _{road} can be arbitrary
- full obstacle enveloping

CDTire/Realtime

Fig. 2: CDTire/Realtime

Tire Model Structure:

- belt is flexible ring (default: 3x50 dof's)
- sidewall is local viscoelastic foundation

Contact Formulation:

- brush type contact
- local static stick-slip ability

Performance:

- hard real time capable
- road surface wavelength $lambda_{road}$ can be arbitrary in tire in-plane direction
- restriction: only in-plane obstacle enveloping, as lateral extension of in-plane tireroad intersection is considered constant for each tire

CDTire/MF++

Fig. 3: CDTire/MF++

Tire Model Structure:

- MF 5.2 / PAC2002
- Coupled with CDTire/Thermal

Contact Formulation:

- Estimation of contact patch shape, location and stick/slip zones
- Temperature dependent friction and grip levels

Performance:

• hard real time capable

Road Surface Models

Technically, the Road Surface Model is a software library through which *CDTire* can interrogate road surfaces in order to sense contact. Three mechanisms for road surface definitions are supported with the Road Surface Model:

- CDTire internal road surface models (RSM 1000, 1002, 1008, 2000, 3000)
- User defined road surface model (RSM 1100)
- MBS dependent road surface models may be available, see the corresponding *CDTireMBSManual* for more information.

CDTire road surfaces models (RSMs)

See the chapter *Model Usage* for detailed information on the single models.

CDTire now also supports the OpenCRG[®] road format as Road Surface Model 3000. This part of the software and the respective data is licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. More Information on OpenCRG[®] open file formats and tools can be found at http://www.opencrg.org

MBS road surfaces models (RSMs)

Some MBS systems allow CDTire to utilize their own road surface models. See the respective *CDTire MBS Guide* for detailed information on the these models and how to use them.

Model Implementation

The implementation is done by using a dedicated element to include *CDTire* in your vehicle or testrig model.

Modeling with CDTire

The *CDTire* element is a dedicated element in the modeling process and supports various commercially available MBS software packages :

- Altair MotionSolve
- LMS Samtech Samcef Mecano
- LMS Virtual.Lab Motion
- MATLAB / Simulink
- MSC ADAMS
- SIMPACK
- VI-grade VI-CarRealTime

Please see the *CDTire MBS Guide* documentation of the specific guides on how to model with CDTire.

Model Usage

To include the CDTire in a MBS model also road data is required. This data can, in the simplest form, describe a plain surface without any obstacles or tracks. More complex data give an analytical description of a road surface with obstacles or tracks, digitized measured data, a combination of those or of a drum surface.

Road Surface Model	Surface Type
1000	parametric road surface description
1002	rolling drum with or without a cleat
1008	3D surface
1100	User road model (ADAMS only)
2000	parametric and digitized road data
3000	OpenCRG [®] (1.1.1) road data

CDTire supports several road surface models:

Road Surface Model 1000

The Road Surface Model 1000 is adapted for an analytical description of the road surface. A number of different obstacle types and tracks are available to model the road. It will generate a surface Z(X,Y) with respect to the coordinate system representing the surface origin as defined in the MBS model (P5).

A road definition file for the Road Surface Model 1000 is structured as follows:

- **Header**: This part specifies the additional translation and the used data type (obstacles, equidistant tracks or non-equidistant tracks).
- Data Part: For each obstacle or track the corresponding data is defined

Header (Road Surface Model 1000)

```
# HEADER ROAD MODEL 1000
# X0_ROAD Y0_ROAD Z0_ROAD MU_ROAD
200.0 200.0 100.0 0.9
# DATA TYPE: (2, 3 OR 4)
2
```

The first line is a comment line starting with a hash (#). You may use it for specifying a short description or general comment to the road definition file. This line is required but all contents will be ignored by *CDTire*.

The second and the fourth lines are comment lines starting with a hash (#), too. Here you should enter "placeholders" for the data in the following lines. *CDTire* ignores these lines but the file will be easier to read for all users.

The third line contains the data defining the additional translation. The data type is defined by the entry in the fifth line.

Additional Translation

You may define a translation of the road coordinate system (X0) from the road origin marker (P5) of the MBS model.

Fig. 4: additional translation

The additional translation is defined in the third line:

Line	1:	#	HEADER	ROAD	MODEL	1000			
<mark>Line</mark>	2:	#	X0_ROAI) Y)_ROAD	Z0_	ROAD	MU_	ROAD
Line	3:		200.0	20	0.0	100	0.0	0.9	<mark>)</mark>

with

X0_ROAD	Translation in x-direction
Y0_ROAD	Translation in y-direction
Z0_ROAD	Translation in z-direction
MU_ROAD	friction coefficient road

The parameters **X0_ROAD**, **Y0_ROAD** and **Z0_ROAD** determine the position of the subsequent definitions with respect to the coordinate system representing the surface origin as defined in the MBS model.

The friction coefficient of the road defines the friction of the defined plane except for all explicitly defined parts like tracks or obstacles, as these must specify their own friction coefficient.

Data Type

The data type defines the surface structure in general. It is given in the 5th line of the road definition file:

```
Line 1: # HEADER ROAD MODEL 1000
Line 2: # X0_ROAD
                       Y0_ROAD
                                   Z0_ROAD
                                              MU_ROAD
Line 3:
           200.0
                       200.0
                                   100.0
                                              0.9
Line 4: # DATA TYPE: (2, 3 OR 4)
Line 5: 2
with
   DATA TYPE
                   2 = equidistant track data
                   3 = non-equidistant track data
                   4 = matrix track data
```

The previously available **Data Type 1** road surface description is not supported anymore and will generate an error message.

Data Part (Road Surface Model 1000)

Depending on the data type defined in the header the data part contains one or more definitions of either obstacles or equidistant tracks or non-equidistant tracks. Mixing the data types is not possible.

Equidistant Track Data (DATA TYPE 2)

This is the preferred data type to construct track surfaces Z(X) on equidistant data (DATA TYPE = 2).

Fig. 5: Road Surface Model 1000: equidistant track data

The direction of the track will be the x-direction of the coordinate system representing the surface origin as defined in the MBS model. Interpolation of the track data will be linear.

There can be several tracks defined in one file. Therefore the header of a road definition file for equidistant track data contains two additional lines:

```
Line 6: # NTRACKS
Line 7: 3
```

with

```
NTRACKS
```

```
total number of tracks
```

For each of the **NTRACKS** tracks a body definition follows. If these tracks overlap, *CDTire* will generate a runtime error once it tries to evaluate a multiply defined surface point. The body of a track consists of 2 + **NDATA** lines:

#	NDATA	X0_TRACK	Y0_TRACK	HALF_WIDTH	DX	MU_TRACK		
	4	0.0	0.0	300.0	10.0	1.0		
	0.0							
	10.0							
	10.0							
	0.0							
wi	th							
	NDATA		number of dat	a points of the trac	k			
	X0_TRACK		track origin x-coordinate with respect to the road data origin					
	YO_TRACK		track origin y-coordinate with respect to the road data origin					
	HALF_WIDTH		half width of the track					
	DX		equidistant sp	acing $\Delta \mathrm{x}$ of the tra	ck data			
	MU_TR	АСК	friction coeffic	ient of the track su	rface			
	Line 10 Line 9 +	 NDATA	these lines cor hight)	ntain the z data of t	he single t	racks (local		

The total width of the track is **2*HALF_WIDTH**, i.e. **HALF_WIDTH** is applied in the positive and the negative Y-direction, starting at **Y0_TRACK**.

Line 3 starts with the first data value. This value does not need to be zero, allowing for discontinuous surfaces. All further data must be on consecutive lines, one value each, as specified by NDATA.

See the chapter *Example for Equidistant Track Data (Data Type 2)* in the Appendix for a detailed example.

Non-equidistant Track Data (DATA TYPE 3)

This data type (**DATA TYPE** = 3) is used to construct track surfaces with non-equidistant data (based on pairs of (X,Z) data). For certain types of street profiles the use of this data type would be much more efficient than equidistant data (e.g. a ramp). The direction of the track is the same as for the equidistant data. Again, several tracks can be defined in one file.

As for equidistant track data, the header is extended by the lines

Line 6: # NTRACKS Line 7: 3

with

NTRACKS total number of tracks

For each of the **NTRACKS** tracks a body definition follows. If these tracks overlap, *CDTire* will generate a runtime error once it tries to evaluate a multiply defined surface point. The body of a track consists of 2 + **NDATA** lines:

#	NDATA	X0_TRACK	Y0_TRACK	HALF_WIDTH	MU_TRACK		
	3	0.0	0.0	300.0	1.0		
	0	0					
	30000	1000					
	50000	0					
wi	th						
	NDATA		number of data	a points of the tracl	ĸ		
	X0_TRACK		track origin x-coordinate with respect to the road data origin				
	Y0_TRACK		track origin y-coordinate with respect to the road data origin				
	HALF_W	/IDTH	half width of th	ne track			
	MU_TR/	ACK	friction coeffici	ient of the track sur	face		
	Line 10		these lines con	tain the x and z dat	a of the single tracks		
	Line 9 +	NDATA					

See the chapter *Example for Non-Equidistant Track Data (Data Type 3)* in the Appendix for a detailed example.

Matrix Track Data (DATA TYPE 4)

This data type (**DATA TYPE** = 4) is used to construct track surfaces with matrix data. The direction of the track is the same as for the equidistant data. Again, several tracks can be defined in one file.

```
Line 6: # NTRACKS
Line 7: 3
```

with

NTRACKS total number of tracks

For each of the **NTRACKS** tracks a body definition follows. If these tracks overlap, *CDTire* will generate a runtime error once it tries to evaluate a multiply defined surface point. The body of a track consists of 2 + **NDATA** lines:

# N	х	NY	X 0	Y	0	DX	DY	MU	ZSCALE	Z 0
3		5	-10.	0 -1	0.0	10.0	5.0	0.9	1.0	0.0
6	.0 6	5.0	6.0	6.0	6.0					
б	.0 3	3.0	0.0	3.0	6.0					
б	.0 6	5.0	6.0	6.0	6.0					
with										
	NX			nur	nber of	f matrix ro	ws of the	track mat	rix	
	NY		number of matrix columns of the track matrix							
	X0			trac	k origi	n x-coordi	nate with	respect to	o the road data o	origin
				(up	per left	t point)				
	YO			trac	ck origi	n y-coordi	nate with	respect to	o the road data	
				orig	gin (upp	per left po	int)			
	DX			(sig	ned) sp	oacing x di	rection (b	etween ro	ows)	
	DY			(sig	ned) sp	bacing y di	rection (b	etween co	olumns)	
	MU			fric	tion co	efficient o	f the tracl	k matrix		
	ZSCALI	E		Sca	ling of	matrix val	ues (z valı	ues)		
	ZO			Ado	litive o	ffset of m	atrix value	es (z value	s)	

Road Surface Model 1002

The Road Surface Model 1002 adapts an analytical description of a drum surface. A number of different obstacle types and tracks are available to model the drum. It will generate a surface dR(phi,Y) with respect to the coordinate system representing the surface origin as defined in the MBS model (P5).

A road definition file for the Road Surface Model 1002 is structured as follows:

- **Header**: This part specifies the additional translation and the used data type (obstacles, equidistant tracks or non-equidistant tracks).
- Data Part: For each obstacle or track the corresponding data is defined

Header (Road Surface Model 1002)

DESCRIPTION LIN	1E	
RADIUS_DRUM	MU_DRUM	PERIODIC
1000.0	1.0	1
SURFACE TYPE		
1		
	DESCRIPTION LIN RADIUS_DRUM 1000.0 SURFACE TYPE 1	DESCRIPTION LINE RADIUS_DRUM MU_DRUM 1000.0 1.0 SURFACE TYPE 1

The first line is a comment line starting with a hash (#). You may use it for specifying a short description or general comment to the drum definition file. This line is required but all contents will be ignored by *CDTire*.

The second and fourth lines are comment lines starting with a hash (#), too. Here you should enter "placeholders" for the data in the following lines. *CDTire* ignores these lines but the file will be easier to read for all users.

The third line contains the data defining the drum surface without any obstacles or data. It consists of the radius of the drum (in [mm]) and the friction coefficient (in [1]). A third parameter is the periodic flag, and if set obstacles appear with every revolution of the drum surface. If not set, the obstacle will appear only once (depending on S_0 settings). The fifth line contains the type of obstacle data.

Line	1:	#	DESCRIPT	FION	LINE			
Line	2:	#	RADIUS_I	ORUM	MU_DRUM	PERIODIC		
Line	3:		1000.0		1.0	1		
Line	4:	#	SURFACE	TYPE				
Line	5:		1					
with								
RADIUS_DRUM				drum radius in [mn	n]			
MU_DRUM				friction coefficient drum surface outside obstacle data				
PE	RIO	DIC			repeat cleat (1) or o	only once (0)		
รเ	JRFA	CE .	ТҮРЕ		1 = no data			
					2 = with rectangula	ar cleat		
					3 = with chamfered	d cleat		
					4 = matrix data			

Fig. 6: Road Surface Model 1002: rolling drum

Header (Road Surface Model 1002)

With R4.2.7, there are 4 surface types to construct drum surfaces with.

No data (SURFACE TYPE 1)

The road definition file for a drum surface without any additional data (SURFACE TYPE 1) has the following structure:

#	DESCRIPTION	LINE	
#	RADIUS_DRUM	MU_DRUM	PERIODIC
	1000.0	1.0	1
#	SURFACE TYPE		
	1		

Rectangular cleat (SURFACE TYPE 2)

The road definition file for a drum surface with any rectangular cleat (SURFACE TYPE 2) has the following structure:

#	DESCRI	PTION :	LINE				
#	‡ RADIUS_DRUM		MU_DRI	JM PE	PERIODIC		
	1000.0		1.0	1			
#	SURFAC	E TYPE					
	2						
#	н	W	s_0	PHI	MU_CLEAT		
	10.0	20.0	-2522.2	90.0	0.8		

н	height [mm] of cleat
w	width [mm] of cleat (length of cleat is infinite)
S_0	arc length[mm] from top of drum to cleat origin - for PERIODIC_FLAG = 1, this must be -RADIUS_DRUM*PI < S_0 < RADIUS_DRUM*PI
PHI	direction angle of cleat, measured from wheel plane, transversal cleat is 90°
MU_CLEAT	friction coefficient on cleat

Ramped / trapezoid cleat (SURFACE TYPE 3)

The road definition file for a drum surface with any ramped or trapezoid cleat (SURFACE TYPE 3) has the following structure:

#	DESCRI	PTIC	ΟN	LINE								
#	RADIUS_DRUM MU_DR			DRUM		PERIOD	IC					
	1000.0			-	1.0			1				
#	SURFAC	Е ТУ	YPE									
	<mark>3</mark>											
#	H	W1		W2		W 3		ន_0		PHI	MU_CLEAT	
	10.0	20.	.0	40	.0	20.	. 0	-2522	.2	90.0	<mark>0.8</mark>	
wi	with											
	н				heig	height [mm] of cleat						
	W1					wid	width (arclength) [mm] of leading ramp					
	W2					wid	width (arclength) [mm] of leading ramp					
	W3					wid	width (arclength) [mm] of trailing ramp					
	S_0					arcl PER -RA	arclength [mm] from top of drum to cleat origin - for PERIODIC_FLAG = 1, this must be -RADIUS_DRUM*PI < S_0 < RADIUS_DRUM*PI					
	РНІ					dire	ctio	n angle of cl	leat,	measured fro	om wheel plane	
	MU_CLE	AT				frict	ion	coefficient o	on cl	eat		

Matrix data (SURFACE TYPE 4)

The road definition file for a drum surface with any equidistant grid or matrix data dR(phi,y) (SURFACE TYPE 4) has the following structure:

	4		
#	SURFACE TYPE		
	1000.0	1.0	1
#	RADIUS_DRUM	MU_DRUM	PERIODIC
#	DESCRIPTION	LINE	

<mark>#</mark> N	PHI	NY	PHI0	DPHISEG	Y0	DY	MU	SCALE	RADIUSOFFSET
4	:	2	0.0	3.438	-200.0	400	0.8	1.0	0.0
10.	0	10.0							
20.	0 2	20.0							
20.	0 2	20.0							
10.	0 1	10.0							
with									
	NPHI			nur	mber of circu	mferer	itial data	points	
	NY			nur	nber of latera	al (axia	l) data p	oints	
	PHIO			ang	gular segment	t range	[deg] o	f data, 360 ⁻	for full drum
	DPHI	SEG		ang	gular spacing	[deg] c	of data, 3	860/NPHI fc	or full drum
	Y0			sta	rting lateral c	oordin	ale [mm] of data	
	DY			Lat	eral segment	range	[mm] of	data, range	e is [Y0,Y0+DY]
	MU			fric	tion coefficie	nt on c	lata		
	SCAL	E		sca	ling coefficia	nt for r	adial dat	ta	
	RADI	USOFF	SET	Off	set value [mr	n]			
	DATA	4		NP	HI rows, NY c	olumn	5		

Above example makes up a trapeze,

All lines starting with a hash (#) are comment files used to define placeholders for the data in the following lines. Even if *CDTire* will skip over them, these lines are required. Do not delete them!

If the direction angle of the cleat is not specified, a perpendicular cleat (90°) is assumed.

Road Surface Model 1008

This road surface model is the CDTire implementation of the 3D method of MSC Adams .rdf data files. Some MBS systems can also visualize this road format in their respective Pre-/Postprocessor. This documentation lists only the required data format to work with CDTire - for visualization support of MBS systems, please refer to the respective MBS documentation.

Data structure and format

The data file is based on section / keyword format. A valid section line contains the name of the section is square brackets. A valid keyword line contains the name of the keyword,

followed by the '=' character, followed by the value. A valid CDTire RSM1008 file is shown here:

```
[MODEL]
METHOD = '3D'
[UNITS]
LENGTH = 'MM'
[OFFSET]
X = 100.0
Y = 200.0
Z = -10.0
[NODES]
NUMBER_OF_NODES = 4
{ node x_value y_value z_value }
                 -200.0
  1
        -10.0
                          10.0
  2
         10.0
                 -200.0
                           10.0
  3
         10.0
                  200.0
                          10.0
  4
        -10.0
                  200.0
                           10.0
[ELEMENTS]
NUMBER_OF_ELEMENTS = 2
{ node_1 node_2 node_3
                          u }
  1
          2
                  3
                           0.8
  1
          3
                  4
                           0.8
```

The following format details may only be valid for the CDTire implementation of .rdf files:

- Section names, keyword names and strings are case insensitive. All of "METHOD", "method", "Method" are the same valid keyword.
- Supported units are "MM" (millimeter), "CM" (centimeter), and "M" (meter)
- In node and element section, a comment line containing a left brace (curly) bracket indicates that the next line starts with the respective data matrix (nodes or elements). The following NUMBER_OF_xxx lines must contain valid line data for each line.

Road Surface Model 2000

CDTire Setup for Road Surface Model 2000

CDTire needs to be set up for road surface type "2000" in order to make use of the Road Surface Model.

In order to run CDTire on road data, following set of files is required in the

In order to run *CDTire* on road data, following set of files is required in the directory referred to in the CDTire setup:

- a global definition file that defines the boundaries of the track **MasterRectangle.h**
- a surface type classification file **SurfacType**. **h** that defines the friction coefficient for the different surface types as referred in the road data files
- a set of "macropatch" header files named **MP_0_0.h**, **MP_0_1.h** etc.
- (when applicable) a set of "macropatch" binary data files named MP_0_0.d, MP_0_1.d etc.
- (when applicable) a set of parametric road description files

Note : the mention "when applicable" relates to the fact that a track definition for CDTire may be defined either through digitized data only, parametric description files only, or a mix of both.

IMPORTANT : all the files mentioned above are *strictly required*, and need to adhere to the specified naming and format conventions. The format of the needed header files is explained in the following sections.

The fundamental idea behind the *Road Format* concept is that any track will be described in a rectangular grid ; which has three levels of discretization :

- a "master rectangle" that envelopes the complete track
- a series of "macropatches" (typically size 10 x 10 m) defined inside this master rectangle
- a series of "micropatches" per macropatch (typical size 0.5 x 0.5 m)
- a rectangular mesh in each micropatch (grid size typically 5 x 5 mm), where per grid point in the mesh the track Z-coordinate has been measured and stored

MasterRectangle.h

The structure of the file MasterRectangle.h is:				
version indicator	actual value : v002 (string)			
comment	string(s) of arbitrary length beginning with #			
platform-flag	specifies platform where binary data have been written (integer) 1→Unix, 2→Windows NT, 3→SGI IRIX			
Xoff Yoff Zoff	real altitude and offset of left lower corner of the Master Rectangle (double)			
indicator	to read the Macro-patches column-wise (1 char: c)			
rows <space> columns</space>	number of rows and columns of Macro-patches (long)			
width <space> height</space>	width and height of a Macro patch (double)			
units	string max 17 characters – reserved for future use			

Example for MasterRectangle.h

```
v002
# Master rectangle definition for Track A
2
-100.000 -100.000 15.000
c
7 1
10000.000 10000.000
mm
```

MacroPatch header files

The structure of the macropatch files $\texttt{MP}_0_0 \textbf{.h}, \texttt{MP}_0_1 \textbf{.h}$, …is:

File entry	Meaning
Macropatch column_nr row_n	
{	
version indicator	actual value : v002 (string)
comment	string(s) of arbitrary length beginning with #
platform-flag	specifies platform where binary data have been written (integer)

File entry	Meaning
	1→Unix, 2→Windows NT, 3→SGI IRIX
Zoff	z-Position of left lower corner relative to origin of Master-rectangle (double)
columns <space> rows</space>	number of columns and rows of micro-patches (long)
width <space> height</space>	width and height in mm of a micro-patch (double)
indicator	to read the micro-patches column-wise (1 char: c)
}	
Micropatch 0 0	header of micro patch section 0 0
<header info=""></header>	header info of micro patch section 0 0
Micropatch 0 1	header of micro patch section 0 1
<header info=""></header>	header info of micro patch section 0 1
Micropatch 0 2	header of micro patch section 0 2
<header info=""></header>	header info of micro patch section 0 2

The format of the micro patch sections in the macro patch header files depends on the type of road description:

off-road	
File entry	Meaning
Micropatch micro_column_nr micro_row_n	micro patch header
datatype	0 -> off road (integer)

• digitized

File entry

File entry	Meaning	
Micropatch micro_column_nr m	nicro_row_n	micro patch header
datatype	1 -> digitized (in	teger)
trackclassification	refers to a classi classification file	ification number in surface e (integer)
width <space> height</space>	width and heigh (double)	it in mm of an element
lines_h <space> lines_v</space>	number of grid vertically (intege	lines horizontally and er)
byte number	byte number of identifier index integer)	the first micro-patch in the data file (unsigned
indicator	to read the micr char: c)	o-patches column-wise (1
tiretype_proposed	20 30 40 (int	eger)
flag	reserved for fut	ure use (integer)

• parameterized

File entry	Meaning		
Micropatch micro_column_nr m	icro_row_n	micro patch header	
datatype	2 -> parameteriz	zed	
	(integer)		
trackclassification	refers to a classification number in surface classification file (integer)		
filename	Filename withoz specification (st	zt pathname for data ring)	
tiretype_proposed	20 30 40 (int	eger)	
flag	reserved for fut	ure use (integer)	

Example for a MacroPatch header file

The following example contains the <mark>3 types of micropatches</mark>. This file shows only the first and second column.

```
Macropatch 0 0
{
 v002
# Example
 2
 -10.0000
 20 20
 500.000 500.000
 С
}
Micropatch 0 0
1
1
5.000 5.000
101 101
0
С
20
2030
Micropatch 0 1
1
1
5.000 5.000
101 101
40812
С
20
2030
Micropatch 0 2
1
1
5.000 5.000
101 101
81624
С
20
2030
Micropatch 0 3
1
1
5.000 5.000
101 101
122436
С
```

```
1
5.000 5.000
101 101
652992
С
20
2030
Micropatch 1 8
1
1
5.000 5.000
101 101
693804
С
20
2030
Micropatch 1 9
0
Micropatch 1 10
0
Micropatch 1 11
0
Micropatch 1 12
0
Micropatch 1 13
0
Micropatch 1 14
0
Micropatch 1 15
0
Micropatch 1 16
0
Micropatch 1 17
0
Micropatch 1 18
0
Micropatch 1 19
0
```

Surface type classification file

This file contains an ascii table defining the friction coefficient that corresponds to the surface types as specified in each micro patch header file.

Example for a surface type classification file

17	\rightarrow	Maximum	class	number	defined in	n the file
0 <tab>1.00</tab>	\rightarrow	Surface	class	<tab></tab>	friction	coefficient
5 <tab>1.01</tab>	\rightarrow	Surface	class	<tab></tab>	friction	coefficient
12 <tab>1.05</tab>	\rightarrow					
13 <tab>1.1</tab>	\rightarrow					
17 <tab>1.15</tab>	\rightarrow					
17 <tab>1.15</tab>	\rightarrow	•••				

Customizing CDTire

Even though *CDTire* tries to present a setup in a plug-and-play fashion, there are several considerations for a successful simulation that can not be tuned automatically. These include structural discretization, integrator tuning and inflation pressure.

For more information on

- Structural discretization and inflation pressure refer to the chapters in the Appendix:
 - Tire Parameter Files for CDTire/MF++
 - o Tire Parameter Files for CDTire/Realtime and
 - Tire Parameter Files for CDTire/3D

Appendix

Tire Parameters

The following paragraphs explain the parameter files for the tire models *CDTire/MF++*, *CDTire/Realtime* and *CDTire/3D* in detail. For each tire model a listing of the corresponding parameter file and explanations to the single parameters are given.

Tire Parameter File - CDTire/MF++

The following listing shows the input file for a tire as used in the tire model CDTire/MF++:

[UNITS]

LENGTH = 'meter' FORCE = 'newton'ANGLE = 'radians' MASS = 'kg'TIME = 'second' [MODEL] LONGVL = 16.6\$Measurement speed THERMAL_MODEL_FLAG = 0VELOCITY_TRESHOLD = 0.5\$Lower cut off velocity [DIMENSION] UNLOADED_RADIUS = 0.312\$Free tyre radius WIDTH = 0.195\$Nominal section width of tyre $ASPECT_RATIO = 0.65$ \$Nominal aspect ratio \$Nominal rim radius $RIM_RADIUS = 0.19$ $RIM_WIDTH = 0.1524$ \$Rim width [VERTICAL] \$Tyre vertical stiffness VERTICAL_STIFFNESS = 2e+005 \$Tyre vertical damping VERTICAL_DAMPING = 0BREFF = 6.1\$Low load stiffness e.r.r. DREFF = 0.45\$Peak value of e.r.r. FREFF = 0.01\$High load stiffness e.r.r. FNOMIN = 4000\$Nominal wheel load

[PARAMETER]

VERTICAL_STIFFN	VESS = 2e+005	\$Tyre vertical stiffness				
[LONG_SLIP_RANC KPUMIN = -1.5 KPUMAX = 1.5	¥E]	\$Minimum valid wheel slip \$Maximum valid wheel slip				
[SLIP_ANGLE_RAN ALPMIN = -1.570 ALPMAX = 1.5708	IGE])8 }	\$Minimum valid slip angle \$Maximum valid slip angle				
[INCLINATION_AN CAMMIN = -0.261 CAMMAX = 0.2618	<mark>JGLE_RANGE]</mark> 181 31	\$Minimum valid camber angle \$Maximum valid camber angle				
[VERTICAL_FORCH FZMIN = 200 FZMAX = 9000	[_RANGE]	\$Minimum allowed wheel load \$Maximum allowed wheel load				
$\begin{bmatrix} SCALING_COEFFI\\ LFZO = 1\\ LCX = 1\\ LMUX = 1\\ LEX = 1\\ LKX = 1\\ LHX = 1\\ LVX = 1\\ LQAX = 1\\ LCY = 1\\ LMUY = 1\\ LEY = 1\\ LKY = 1 \end{bmatrix}$	CIENTS] \$Scale factor \$Scale factor	of nominal (rated) load of Fx shape factor of Fx peak friction coefficient of Fx curvature factor of Fx slip stiffness of Fx horizontal shift of Fx vertical shift of camber for Fx of Fy shape factor of Fy peak friction coefficient of Fy curvature factor of Fy cornering stiffness				
LHY = 1 $LVY = 1$ $LGAY = 1$ $LTR = 1$ $LRES = 1$ $LGAZ = 1$	<pre>\$Scale factor \$Scale factor \$Scale factor \$Scale factor \$Scale factor \$Scale factor</pre>	of Fy horizontal shift of Fy vertical shift of camber for Fy of Peak of pneumatic trail for offset of residual torque of camber for Mz				
LXAL = 1 LYKA = 1 LVYKA = 1 LS = 1 LSGKP = 1 LSGAL = 1 LGYR = 1	SScale factor SScale factor SScale factor SScale factor SScale factor SScale factor	ot alpha influence on Fx of alpha influence on Fx of kappa induced Fy of Moment arm of Fx of Relaxation length of Fx of Relaxation length of Fy of gyroscopic torque				
LMX = 1 LVMX = 1 LMY = 1	<pre>\$Scale factor \$Scale factor \$Scale factor</pre>	of overturning couple of Mx vertical shift of rolling resistance torque				

```
[LONGITUDINAL COEFFICIENTS]
                 $Shape factor Cfx for longitudinal force
PCX1 = 1.839
PDX1 = 1.1387
                 $Longitudinal friction Mux at Fznom
PDX2 = -0.11999 $Variation of friction Mux with load
PDX3 = -2.2142e-005 $Variation of friction Mux with camber
PEX1 = 0.62727
                 $Longitudinal curvature Efx at Fznom
PEX2 = -0.12336 $Variation of curvature Efx with load
PEX3 = -0.03448 $Variation of curvature Efx with load squared
PEX4 = -1.5066e-005 $Factor in curvature Efx while driving
                 $Longitudinal slip stiffness Kfx/Fz at Fznom
PKX1 = 18.886
PKX2 = -3.988
                 $Variation of slip stiffness Kfx/Fz with load
PKX3 = 0.21542
                 $Exponent in slip stiffness Kfx/Fz with load
PHX1 = -0.00033912 $Horizontal shift Shx at Fznom
PHX2 = -8.5877e-006 $Variation of shift Shx with load
PVX1 = -4.638e-006 $Vertical shift Svx/Fz at Fznom
PVX2 = 1.9874e - 005
                   $Variation of shift Svx/Fz with load
RBX1 = 5.9945
                 $Slope factor for combined slip Fx reduction
RBX2 = -8.2609
                 $Variation of slope Fx reduction with kappa
RCX1 = 1.07816
                 $Shape factor for combined slip Fx reduction
REX1 = 1.644
                 $Curvature factor of combined Fx
REX2 = -0.0064359 $Curvature factor of combined Fx with load
RHX1 = 0.008847 $Shift factor for combined slip Fx reduction
PTX1 = 1.85
                 $Relaxation length SigKap0/Fz at Fznom
PTX2 = 0.000109 $Variation of SigKap0/Fz with load
                $Variation of SigKap0/Fz with exponent of load
PTX3 = 0.101
```

[OVERTURNING_COEFFICIENTS]

QSX1	=	0	\$Lateral force induced overturning moment
QSX2	=	0	\$Camber induced overturning couple
QSX3	=	0	\$Fy induced overturning couple

[LATERAL_COEFFICIENTS]

PCY1	=	1.3223	\$Shape factor Cfy for lateral forces
PDY1	=	1.0141	\$Lateral friction Muy
PDY2	=	-0.12274	\$Variation of friction Muy with load
PDY3	=	-1.0426 \$	Variation of friction Muy with squared camber
PEY1	=	-0.63772	\$Lateral curvature Efy at Fznom
pey2	=	-0.050782	\$Variation of curvature Efy with load
pey3	=	-0.27333 \$	Zero order camber dependency of curvature Efy
PEY4	=	-8.3143	\$Variation of curvature Efy with camber
PKY1	=	-19.797	\$Maximum value of stiffness Kfy/Fznom
pky2	=	1.7999	\$Load at which Kfy reaches maximum value
pky3	=	0.0095418	\$Variation of Kfy/Fznom with camber
PHY1	=	0.0011453	\$Horizontal shift Shy at Fznom
PHY2	=	-6.6688e-0	05 \$Variation of shift Shy with load
PHY3	=	0.044112	\$Variation of shift Shy with camber
PVY1	=	0.031305	\$Vertical shift in Svy/Fz at Fznom
PVY2	=	-0.0085749	\$Variation of shift Svy/Fz with load

```
PVY3 = -0.092912 $Variation of shift Svy/Fz with camber
PVY4 = -0.27907 $Variation of shift Svy/Fz with camber + load
RBY1 = 6.2238
                 $Slope factor for combined Fy reduction
RBY2 = 3.0734
                 $Variation of slope Fy reduction with alpha
RBY3 = 0.016076 $Shift term for alpha in slope Fy reduction
RCY1 = 1.0051
                 $Shape factor for combined Fy reduction
REY1 = 0.019749 $Curvature factor of combined Fy
REY2 = -0.0020691 $Curvature factor of combined Fy with load
RHY1 = -0.0010319 $Shift factor for combined Fy reduction
RHY2 = 7.4123e-006 $Shift factor for combined Fy red. w. load
RVY1 = 0.02962 $Kappa induced side force Svyk/Muy*Fz at Fznom
RVY2 = -0.011053 $Variation of Svyk/Muy*Fz with load
RVY3 = -0.0009317 $Variation of Svyk/Muy*Fz with camber
RVY4 = 11.842
                 $Variation of Svyk/Muy*Fz with alpha
RVY5 = 1.9
                 $Variation of Svyk/Muy*Fz with kappa
RVY6 = 0
                 $Variation of Svyk/Muy*Fz with atan(kappa)
PTY1 = 1.9
                 $Peak value of relaxation length SigAlp0/R0
PTY2 = 2.25
                 $Value of Fz/Fznom where SigAlp0 is extreme
```

[ROLLING_COEFFICIENTS]

QSY1	=	0.01	\$Rolling	resistance	torque	coefficier	nt	
QSY2	=	0	\$Rolling	resistance	torque	depending	on	Fx
QSY3	=	0	\$Rolling	resistance	torque	depending	on	speed
QSY4	=	0	\$Rolling	resistance	torque	depending	on	speed

[ALIGNING_COEFFICIENTS]

QBZ1	=	7.5088	\$Trail slope factor for trail Bpt at Fznom
QBZ2	=	-1.9428	\$Variation of slope Bpt with load
QBZ3	=	0.61681	\$Variation of slope Bpt with load squared
QBZ4	=	0.12231	\$Variation of slope Bpt with camber
QBZ5	=	0.50016	\$Variation of slope Bpt with absolute camber
QBZ9	=	5.5144	\$Slope factor Br of residual torque Mzr
QBZ10) =	= 0	\$Slope factor Br of residual torque Mzr
QCZ1	=	1.2237	\$Shape factor Cpt for pneumatic trail
QDZ1	=	0.062582	\$Peak trail
QDZ2	=	0.00052585	5 \$Variation of peak Dpt" with load
QDZ3	=	-0.60661	\$Variation of peak Dpt" with camber
QDZ4	=	8.634	\$Variation of peak Dpt" with camber squared
QDZ6	=	-0.0048467	/ \$Peak residual torque
QDZ7	=	0.0034983	\$Variation of peak factor Dmr" with load
QDZ8	=	-0.11032	\$Variation of peak factor Dmr" with camber
QDZ9	=	0.021277	\$Variation of peak factor Dmr" w. camber+load
QEZ1	=	-5.3971	\$Trail curvature Ept at Fznom
QEZ2	=	1.1207	\$Variation of curvature Ept with load
QEZ3	=	0	\$Variation of curvature Ept with load squared
QEZ4	=	0.14942 \$	Variation of curvature Ept w. sign of Alpha-t
QEZ5	=	-1.1429 \$	Variation of Ept with camber and sign Alpha-t
QHZ1	=	-0.0006990	95 \$Trail horizontal shift Sht at Fznom

QHZ2 =	0.0055192	\$Variation	of	shift	Sht	with	load		
QHZ3 =	0.065953	\$Variation	of	shift	Sht	with	camb	er	
QHZ4 =	0.11393	\$Variation	of	shift	Sht	with	camb	er and	load
SSZ1 =	0.022576	\$Nominal va	lue	e of s/	′R0:	effec	ct of	Fx on	Mz
SSZ2 =	0.024754	\$Variation	of	distar	nce s	s/R0 v	vith	Fy/Fzno	om
ssz3 =	0.0014697	\$Variation	of	distar	nce s	s/R0 v	vith	camber	
SSZ4 =	0.0014801	\$Variation	of	distar	nce s	s/R0 v	vith	load+ca	amber
QTZ1 =	0.2	\$Gyration t	org	ue con	nstar	nt			
MBELT =	4.9	\$Belt mass	of	the wh	neel				

Tire Parameter File - CDTire/Realtime

The following listing shows the input file for a tire with the dimension 195/65 R 15 as used in the tire model *CDTire/Realtime*:

[CDT30-HPS MODEL PARAMETERS]

```
###Pressure Discretization parameters
PIN=0.21
PREF=0.21
PIN_FLAG=0
NMP=100
###Tire size and rim size
R_BELT=307
R_RIM=203
W_BELT=190
###BGRT=190
```

```
###Mass parameters
MASS_BELT=0.005
###Sidewall parameters
FTX=75
FTY=38
FRY=60
DTX=0.08
DTY=0.08
DRY=0.08
RAD_NL_MOD=0.3
###KARED=0.3
###Optional parameters for CRY reduction for big deflections
CRY_RED_FLAG=1
CRY_RED_DEF=40
CRY_RED_RES=0.1
###Belt parameters
CIRC_STIFF=1e+006
###EF=1e+006
Y_BENDING_STIFF=3e+006
###EIY=3e+006
CIRC_DAMP=1e-006
###D_TAN=1e-006
Y_BENDING_DAMP=1e-005
###D_ALPHA=1e-005
###Tread parameters
TREAD_NSEN_X=5
###NSEN=5
TREAD HEIGHT=10
###HL=10
TREAD_EG=120
###EG=120
TREAD GG=40
###BL=40
TREAD_RAD_D=5e-004
###D_RAD_TREAD=5e-004
TREAD_KM=0.9
###KM=0.9
TREAD_SCAN_HEIGHT=150
###SCAN_HEIGHT=150
TREAD MAX COMPRESS=0.95
KSRED=-70
PNEUMATIC_TRAIL_SCALE=2.1
```

```
###Friction parameters (velocity dependend)
MU = [1.0, 1.0, 1.0]
###MGLT=[1.0,1.0,1.0]
V_MU=[0,1000,10000]
###VGLT=[0,1000,10000]
###Large Deformation Extension parameters
LDE_FLAG=1
LDE_CNL=50
LDE CLIN=100
LDE_RNL=28
LDE_RLIN=18
###Global linear radial tire stiffness used for static (if not
available set to 250.0)
R_STAT=317
CR1_STAT=235
[CDT30-HPS SOLVER PARAMETERS]
###Solver parameters
TOL = 1.001E-3
DTM = 2.001E-4
DT\_START\_EXPL = 2e-005
NMAX_IMPL_ITER = 4
PRE\_STEP\_TIME = 0.05
TYPE = 2
ALPHA\_EXPLICIT = 0
BETA_EXPLICIT = 0.16666666666666666
GAMMA_EXPLICIT = 0.5
ALPHA_IMPLICIT = 0
BETA_IMPLICIT = 0.25
GAMMA_IMPLICIT = 0.5
UPDATE_FOR_MASTERCORRECTOR = 0
IMPL_STEP_CTRL_ENABLE = 1
IMPL_STEP_CTRL_EPS = 200
IMPL_STEP_CTRL_NSUBSTEPS = 3
IMPL_JAC_EVAL_AT_ITER = 0
```

Remark: You may edit some parameters to suit your requirements. These parameters are colored **blue** in the listing above and an according remark is given in the following table. The parameters colored in orange are optional and (if used) change model behavior or introduce new functionality.

The parameters are keyword based and reside in respective sections. These 2 mandatory sections are:

- [CDT30-HPS MODEL PARAMETERS]

contains all geometric, discretization, material and other physical modelling parameters

- [CDT30-HPS SOLVER PARAMETERS]

contains all numerical parameters of the internal integrator

All parameters of both sections are explained in the following table.

Name	Explanation	Default	Unit
R_RIM	Radius of the rim (Alternative name: RFEL)	203	mm
R_BELT	Radius of the belt (inflated) (Alternative name: RGRT)	307	mm
W_BELT	Effective width of the belt (Alternative name: BGRT)	190	mm
MASS_BELT	Mass of belt and tread (Alternative name: MGRT)	5.0E-3	t
CIRC_STIFF	Tensile stiffness of belt in circumferential direction (Alternative name: EF)	1.0E6	N
CIRC_DAMP	Damping factor of EF (CDT30: hard-coded 1.0E-6) (Alternative name: D_TAN)	1.0E-6	-
Y_BENDING_STIFF	Bending stiffness of the belt (around y-axis) (Alternative name: EIY)	3.0E6	Nmm²
Y_BENDING_DAMP	Damping factor of EIY (CDT30: hard-coded 1.0E-5) (Alternative name: D_ALPHA)	1.0E-5	-
FTX	Natural frequency: Translation in x/z direction (mode $R_{1}^{}$)	75	Hz
FTY	Natural frequency: Translation in y direction (mode $L_0^{}$)	38	Hz
FRY	Natural frequency: rotation around y axis (mode $C_0^{}$)	60	Hz
DTX	Damping coefficient of mode $R_1^{}$	0.08	-
DTY	Damping coefficient of mode $L_0^{}$	0.08	-
DRY	Damping coefficient of mode C_0	0.08	-
RAD_NL_MOD	Stiffness influence factor radial (Alternative name: KARED)	0.3	-
KSRED	Stiffness influence factor lateral	-70	-
PNEUMATIC_ TRAIL_SCALE	Scaling of the pneumatic trail	1.0	-
CRY_RED_	Activates reduction of circumferential	0	-

Name	Explanation	Default	Unit
FLAG	stiffness CRY for big deflections		
CRY_RED_ DEF	Deflection value at which reduction of stiffness CRY starts	100	mm
CRY_RED_ RES	Residual stiffness factor of stiffness CRY at full deflection	1	-
PIN	Actual inflation pressure (may be overruled by interface mechanism)	2.1E-1	MPa
PREF	Reference inflation pressure (optional, only active if PIN_FLAG=1)	2.1E-1	MPa
PIN_FLAG	Activates modification of natural frequencies difference of PIN to PREF (optional, needs PREF also)	0	-
TREAD_EG	Young's modulus of the tread rubber times tread width per circumferential unit length (Alternative name: EG)	120	N/mm^2
TREAD_KM	Shear stiffness reduction coefficient (Alternative name: KM)	0.9	1
TREAD_HEIGHT	Height of tread (Alternative name: HL)	10.0	mm
TREAD_GG	Shear modulus of the tread rubber times tread width per circumferential unit length (Alternative name: BL)	40.0	N/mm^2
TREAD_SCAN _HEIGHT	Height in mm above surface where contact sensors are active	150.0	mm
TREAD_MAX _COMPRESS	Maximum compression of tread before warning is issued	0.95	-
TREAD_RAD_D	Damping factor of EG (CDT30: hard-coded 5.0E-4) (Alternative name: D_RAD_TREAD)	5.0E-4	-
MU	Relative friction coefficient e.g. [1.0, 1.0, 1.0] (Alternative name: MGLT)	table	-
V_MU	Sliding velocity e.g. [0.0, 1000, 10000] (Alternative name: VGLT)	table	mm/s
LDE_FLAG	Activates LDE (Large Deformation Element) calculation for tire ground out (bottoming)	0	-
LDE_CNL	Radial stiffness of non-linear part per	30	N/mm^2

Name	Explanation	Default	Unit
	circumferential unit length		
LDE_CLIN	Radial stiffness of linear part per circumferential unit length	150	N/mm^2
LDE_RNL	Radius from rim at which non-linear part becomes active (must be > LDE_RLIN)	20	mm
LDE_RLIN	Radius from rim at which linear part becomes active	10	mm
R_STAT	Unloaded static radius	317	mm
CR1_STAT	Linear vertical stiffness	200	N/mm

CDT30-HPS SOLVER PARAMETERS

TOL	Error tolerance of internal integrator	1.0E-3	-
DTM	Maximum step size of internal integrator	2.0E-4	S
DT_START _EXPL	Initial step size of internal explicit integrator	2.0E-5	S
NMAX_IMPL _ITER	Maximum number of iteration for the implicit integrator	4	-
PRE_STEP _TIME	Duration of pre-step in beginning of simulation (inflation, deflection)	0.05	S
ТҮРЕ	Explicit 1, Implicit 2	2	-
ALPHA _EXPLICIT	Explicit Newmark alpha integrator value	0	-
BETA _EXPLICIT	Explicit Newmark beta integrator value	0.166667	-
GAMMA _EXPLICIT	Explicit Newmark gamma integrator value	0.5	-
ALPHA _IMPLICIT	Implicit Newmark alpha integrator value	0	-

Name	Explanation	Default	Unit
BETA _IMPLICIT	Implicit Newmark beta integrator value	0.25	-
GAMMA _IMPLICIT	Implicit Newmark gamma integrator value	0.5	-
UPDATE_FOR _MASTERCORRE CTOR	Toggle corrector iterations to be taken into account (0 off, 1 on)	0	-
IMPL_STEP _CTRL _ENABLE	Toggle internal step size control of implicit integrator (0 off, 1 on)	1	-
IMPL_STEP _CTRL_EPS	Percentage of error tolerance TOL used to activate step size control	200	-
IMPL_STEP_CTRL_N SUBSTEPS	Subdivion of steps if step size reduction is activated for implicit integrator	3	-
IMPL_JAC _EVAL_AT _ITER	Toggle update of jacobian calculation during iteration (0 off, 1 on) for implicit integrator	0	-

Tire Parameter File for CDTire/3D

The following listing shows the input file for a tire with the dimension 245/40 R 18 as used in the tire model *CDTire/3D*:

[CDT50-N MODEL PARAMETERS]

```
###Discretization parameters
PIN=0.27
NCS=50
NR=16
NRSW=4
NRSENSTART=4
###Sidewall modeling: = 40 --> CDT40-Sidewall
SW MODE=50
###Cross Section discretization
CONTOUR_SHELL_Y = [-111.2, -112.35, -115, -120.6, -109.2, -78.9,
      -46.3, -13.2, 13.2, 46.3, 78.9, 109.2, 120.6, 115, 112.35, 111.2]
CONTOUR SHELL Z =
[248.1,262.45,278.25,292.2,304.4,306.1,306.2,
      306.8,306.8,306.2,306.1,304.4,292.2,278.25,262.45,248.1]
###Mass parameters
MASS_SIDEWALL=0.003
MASS_BELT=0.006
MASS_BEAD=0.001
MASS_W=[1.5,1,0.5,0.5,0.8,1,1,1,1,1,1,0.8,0.5,0.5,1,1.5]
###Rubber base material parameters
RUBBER_CIRC_EH=40
RUBBER_LAT_EH=40
RUBBER_SHEAR_GH=0
RUBBER_DIAG_EH=25
RUBBER_CIRC_DAMP = 0.0003
RUBBER LAT DAMP = 0.0003
RUBBER_DIAG_DAMP = 0.0007
RUBBER_SHEAR_DAMP = 1e-005
RUBBER CIRC EH W = [3,2,0.8,0.8,1,1,1,1,1,1,1,1,0.8,0.8,2,3]
RUBBER_LAT_EH_W = [2.5,2,0.5,0.8,1,1,1,1,1,1,1,0.8,0.5,2,2.5]
RUBBER_SHEAR_EH_W = [3,2,1,0.5,1,1,1,1,1,1,1,1,1,0.5,1,2,3]
RUBBER_DIAG_EH_W = [3,2,0.8,0.8,1,1,1,1,1,1,1,1,0.8,0.8,2,3]
```

```
###Carcess (radial) parameters
CARCASS_CORDLAYER_STIFF = 900
CARCASS\_CORDLAYER\_DAMP = 1e-005
CARCASS_CORDLAYER_STIFF_W = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
CARCASS_CORDLAYER_L0_REDFACTOR = 0.98
###Bandage (circumferential) parameters
BANDAGE_CORDLAYER_STIFF = 400
BANDAGE CORDLAYER DAMP = 1e-005
BANDAGE_CORDLAYER_STIFF_W = [0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0]
BANDAGE_CORDLAYER_L0_REDFACTOR =
[1,1,1,1,1,1,0.94,0.94,0.94,0.94,1,1,1,1,1,1]
###Steel belt parameters
NUMB_STEEL_CORDLAYERS = 2
STEEL_CORDLAYER_ANGLE = [24, -24]
STEEL_CORDLAYER_STIFF = [2000,2000]
STEEL_CORDLAYER_DAMP = [1e-005,1e-005]
STEEL_CORDLAYER_L0_REDFACTOR = [1,1]
STEEL_CORDLAYER_STIFF_COMPRESSION_FACTOR = 0.0
NUMB_DISCRETE_STRIPES_IN_STEEL_CORDLAYER=2
###Bending parameters
X_BENDING_STIFF=500
X_BENDING_DAMP=0.0001
X_BENDING_STIFF_W=[2,0.5,0.4,0.8,1,1,1,1,1,1,1,1,1,0.8,0.4,0.5,2
]
X_BENDING_ALPHANL=0
X_BENDING_EXPNL=1
Y BENDING STIFF = 5000
Y_BENDING_DAMP = 0.0001
Y_BENDING_STIFF_W =
      [0.5, 0.3, 0.125, 0.2, 0.5, 1, 1, 1, 1, 1, 0.5, 0.2, 0.125, 0.3, 0.5]
Y_BENDING_ALPHANL=0
Y_BENDING_EXPNL=1
XY_DIAG_BENDING_STIFF = 1000
XY_DIAG_BENDING_DAMP = 0.0001
XY_DIAG_BENDING_STIFF_W = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
XY_DIAG_BENDING_ALPHANL=0
XY_DIAG_BENDING_EXPNL=1
```

```
###Tread parameters
TREAD_NSEN_X=5
```

```
TREAD NSEN Y=3
TREAD_HEIGHT=[5,8,10,10,10,10,10,10,8,5]
TREAD_SCAN_HEIGHT=150
TREAD_MAX_COMPRESS=0.95
TREAD_RAD_D=0.0005
TREAD_RAD_D_DEGRESSION_FACTOR=1
TREAD_RAD_D_DEGRESSION_VEL=0
TREAD_CSG=0
TREAD_CSMUE=0
TREAD E/H=0.26
TREAD_Gx/H=0.1
TREAD_Gy/H=0.1
###Friction parameters (velocity dependent)
MU = [1.05, 1.05, 0.9]
##MGLT=[1.05,1.05,0.9]
V_MU=[0,1000,10000]
##VGLT=[0,1000,10000]
###Optional parameters LOSSENERGY_FLAG and THERMAL_MODEL_FLAG
LOSSENERGY_FLAG=0
THERMAL_MODEL_FLAG=0
###Large Deformation Extension parameters
LDE_FLAG=0
LDE_Y_COORD=[-140,-120,-100,-80,80,100,120,140]
LDE_W=[0,1,1,0,0,1,1,0]
LDE_CNL=0.3
LDE_CLIN=3
LDE RNL=12
LDE_RLIN=5
LDE SCAN RADIUS=20
LDE_ACTIVE_RADIUS=5
###Effective rolling radius used for postprocessing
R_EFF=320
R_STAT=320
###Global linear radial tire stiffness used for static (if not
available set to 250.0)
CR1 STAT=250
[CDT40-N MODEL PARAMETERS]
PREF = 0.27
PIN_FLAG = 0
```

```
FTX = 76.0
FTY = 41.0
FRY = 80.0
DTX = 0.08
DTY = 0.08
DRY = 0.08
SWBEND = 40.0
CRY_RED_DEF=20
CRY_RED_RES=0
[CDT50-N SOLVER PARAMETERS]
TOL = 1.001E-3
DTM = 5.001E-5
DT\_START\_EXPL = 2e-005
PRE\_STEP\_TIME = 0.05
TYPE = 1
ALPHA\_EXPLICIT = 0
BETA EXPLICIT = 0.16666666666666666
GAMMA\_EXPLICIT = 0.5
UPDATE_FOR_MASTERCORRECTOR = 0
```

Remark: You may edit some parameters to suit your requirements. These parameters are colored **blue** in the listing above and an according remark is given in the following table. The parameters colored in orange are optional and (if used) change model behavior or introduce new functionality.

The parameters are keyword based and reside in respective sections. These 2 mandatory sections are:

- [CDT50-N MODEL PARAMETERS]

contains all geometric, discretization, material and other physical modelling parameters (except SW_MODE=40 parameters)

- [CDT50-N SOLVER PARAMETERS]

contains all numerical parameters of the internal integrator

and 3 optional section:

- [CDT40-N MODEL PARAMETERS] contains all SW MODE = 40 parameters for analytical sidewall model
- [TIRE_AND_RIM_RESIZING] contains reference and target tire and rim specification for automatic resizing
- [CDT50-N ADVANCED OUTPUT PARAMETERS]

contains advanced output options for post processing via CDTireViewer

The parameters may contain one dimensional arrays. One has to be careful about the lengths of these arrays. There are 3 types of entities utilizing arrays:

- ring entities (table length is NR)
- segment entities (table length is NR-1)
- contact entities (table length NR-2*(NRSENSTART-1)).

If NRSENSTART is not set, it defaults to NRSW+1.

Ring entities are all entities that are associated with mass, geometry or circumferential properties, e.g. MASS_W, CONTOUR_SHELL_Y or RUBBER_CIRC_EH_W. Segment entities are all entities associated with lateral or diagonal properties, e.g. RUBBER_LAT_EH_W or RUBBER_DIAG_EH_W.

Additionally, many entities consist of a material property and an associated weight, e.g. X_BENDING_STIFF and X_BENDING_STIFF_W. The local property then is a multiplication of the material property with its associated weight. In that way, it is possible to easily modify one local property or all properties simultaneously.

Name	Explanation	Default	Unit
	CDT50-N MODEL PARAMETERS		
PIN	Actual inflation pressure (maybe overruled by interface mechanism)	0.27	МРа
NCS	Number of cross sections	50	-
NR	Number of rings	16	-
NRSW	Number of rings in either sidewall (including bead node)	4	-
NRSENSTART	Index of ring from where contact calculation starts	NRSW+1	-
SW_MODE	Materialized sidewall (50) or analytical sidewall (40)	50	-
CONTOUR_ SHELL_Y	Lateral cross section coordinate of non- inflated configuration	Table	mm
CONTOUR_ SHELL_Z	Radial cross section coordinate of non- inflated configuration	Table	mm

Name	Explanation	Default	Unit
MASS	Mass of one sidewall	0.003	t
MASS_BELT	Mass of belt	0.006	t
MASS_BEAD	Mass of one bead	0.001	t
MASS_W	Weighting factors of mass distribution (table of length NR)	table	-
RUBBER _CIRC_EH	Rubber stiffness in circumferential direction (think Young E * thickness H)	40	N/mm
RUBBER _LAT_EH	Rubber stiffness in lateral direction (think Young E * thickness H)	40	N/mm
RUBBER _DIAG_EH	Rubber stiffness in diagonal direction (think Young E * thickness H)	25	N/mm
RUBBER _SHEAR_GH	Remaining rubber shear stiffness (think Shearmodulus G * thickness H)	0	N/mm
RUBBER _XXX_DAMP	Corresponding (CIRC, LAT,DIAG, SHEAR) damping factors	0.0003 0.0007	-
RUBBER _XXX_W	Corresponding (CIRC, LAT,DIAG, SHEAR) weighting factors	table	-
NUMB_STEEL _CORDLAYERS	Number of steel cord layers	2	-
STEEL_CORD LAYER_ANGLE	Angle of steel cord layers against circumferential direction	table	deg
STEEL_CORD LAYER STIFF	Cordlayer stiffness in cord angle direction (think Young E * thickness H)	table	N/mm

Name	Explanation	Default	Unit
STEEL_CORD LAYER_DAMP	Cordlayer damping factor in cord angle direction	table	-
STEEL_CORDLAYER_STIF F_COMPRESSION_FACTO R	Cordlayer stiffness factor under compression condition	0	-
STEEL_CORDLAYER_L0_R EDFACTOR	Cordlayer zero length factor relative to reference configuration	table	-
NUMB_DISCRETE_ STRIPES_IN_STEEL_COR DLAYER	Number of discrete stripes in steel cord layer	2	-
CARCASS_CORD LAYER_STIFF	Carcass stiffness in cord angle direction (think Young E * thickness H)	900	N/mm
CARCASS_CORD LAYER_DAMP	Carcass damping factor in cord angle direction	1.0E-5	-
CARCASS_CORD LAYER_STIFF_W	Carcass stiffness weighting factors	table	-
CARCASS_CORD LAYER_L0 _REDFACTOR	Carcass zero length factor relative to reference configuration	table	-
BANDAGE_CORD LAYER_STIFF	Bandage stiffness in cord angle direction (think Young E * thickness H)	400	N/mm
BANDAGE_CORD LAYER_DAMP	Bandage damping factor in cord angle direction	1.0E-5	-
BANDAGE_CORD LAYER_STIFF_W	Bandage stiffness weighting factors	table	-
BANDAGE_CORD LAYER_LO _REDFACTOR	Bandage zero length factor relative to reference configuration	table	-
Y_BENDING _STIFF	Bending stiffness in circumferential direction (think Young E * thickness H^3)	5000	Nmm
Y_BENDING _DAMP	Bending damping factor in circumferential direction	1.0E-4	-
Y_BENDING _STIFF_W	Bending stiffness weighting factors in circumferential direction	table	-
Y_BENDING_ ALPHANL	Angle where non-linear progression starts (it ends at angle 0)	0	rad
Y_BENDING_ EXPNL	Exponent of non-linear progression (c * (x-x0)^Y_BENDING_EXPNL))	1	-
X_BENDING _STIFF	Bending stiffness in lateral direction (think Young E * thickness H^3)	500	Nmm

Name	Explanation	Default	Unit
X_BENDING _DAMP	Bending damping factor in lateral direction	1.0E-4	-
X_BENDING _STIFF_W	Bending stiffness weighting factors in lateral direction	table	-
X_BENDING_ ALPHANL	Angle where non-linear progression starts (it ends at angle 0)	0	rad
X_BENDING_ EXPNL	Exponent of non-linear progression (c * (x-x0)^Y_BENDING_EXPNL))	1	-
XY_DIAG _BENDING_STIFF	Bending stiffness in diagonal direction (think Young E * thickness H^3)	1000	Nmm
XY_DIAG _BENDING_DAMP	Bending damping factor in diagonal direction	1.0E-4	-
XY_DIAG_BENDING_STIF F_W	Bending stiffness weighting factors in diagonal direction	table	-
XY_BENDING_ ALPHANL	Angle where non-linear progression starts (it ends at angle 0)	0	rad
XY_BENDING_ EXPNL	Exponent of non-linear progression (c * (x-x0)^Y_BENDING_EXPNL))	1	-
TREAD _NSEN_X	Number of sensors per element in circumferential direction	5	-
TREAD _NSEN_Y	Number of sensors per element in lateral direction	3	-
TREAD_HEIGHT	Height of tread	table	mm
TREAD_CSG	Tread shear stiffness reduction coefficient due to compression	0	1
TREAD_CSMUE	Friction reduction coefficient due to compression	0	-
TREAD_KM	Simultanious setting of TREAD_CSG and TREAD_CSMUE (ignored if either is also present in parameter set)		-
TREAD_E/H	Radial tread stiffness (think Young E / thickness H)	0.3	N/mm^3
TREAD_Gx/H	Tread shear stiffness in circumferential direction (think Shear G / thickness H)	0.1	N/mm^3
TREAD_Gy/H	Tread shear stiffness in lateral direction (think Shear G / thickness H)		N/mm^3
TREAD_RAD_D	Radial tread damping factor	5.0E-4	-
TREAD_MAX _COMPRESS	Maximum compression of tread before warning is issued	0.95	-

Name	Explanation	Default	Unit
TREAD_SCAN _HEIGHT	Height in mm above surface where contact sensors are active	150	mm
MU	Relative friction coefficient e.g. [1.0, 1.0, 1.0]	table	-
V_MU	Sliding velocity e.g. [0.0, 1000, 10000]	table	mm/s
LDE_FLAG	Toggle Large Deformation Element	0	-
LDE_CNL	Radial LDE progression stiffness	1.0E-9	N/mm^2
LDE_CLIN	Radial LDE final stiffness	0	N/mm^2
LDE_RNL	Radial LDE progression radius	1.0E-9	mm
LDE_RLIN	Radial LDE final radius	0	mm
LDE_Y_COORD	Lateral coordinate of LDE weighting	table	mm
LDE_W	LDE weighting	table	-
LDE_SCAN_RADIUS	Enable LDE search (from rim point)	20	mm
R_EFF	Unloaded static radius	320 mm	
R_STAT	Unloaded static radius 320		mm
	CDT40-N SOLVER PARAMETERS		
FTX	Natural frequency: Translation in x/z direction (mode $R_1^{}$)	89.5	Hz
FTY	Natural frequency: Translation in y direction (mode $L_0^{}$)	45.7 Hz	
FRY	Natural frequency: rotation around y \qquad 65.4 axis (mode C_0)		Hz
SWBEND	Percent of radial stiffness due to bending	0 %	
DTX	Damping coefficient mode $R_1^{}$	0.05 -	
DTY	Damping coefficient mode $L_0^{}$	0.05 -	
DRY	Damping coefficient mode $C_0^{}$	coefficient mode C_0 0.05 -	
CRY_RED_ DEF	Deflection value at which reduction of stiffness CRY starts	100	mm
CRY_RED_ RES	Residual stiffness factor of stiffness CRY at full deflection	1 -	

Name	Explanation	Default	Unit
	CDT50-N SOLVER PARAMETERS		
TOL	Error tolerance of internal integrator	1.0E-3	-
DTM	Maximum step size of internal integrator	2.0E-4	S
DT_START _EXPL	Initial step size of internal explicit integrator	2.0E-5	S
PRE_STEP _TIME	Duration of pre-step in beginning of simulation	0.05	S
ТҮРЕ	Explicit 1	1	-
ALPHA _EXPLICIT	Explicit Newmark alpha integrator value	0	-
BETA _EXPLICIT	Explicit Newmark beta integrator value	0.166667	-
GAMMA _EXPLICIT	Explicit Newmark gamma integrator value	0.5	-
UPDATE_FOR _MASTERCORRECTOR	Toggle corrector iterations to be taken into account (0 off, 1 on)	0	-
	TIRE_AND_RIM_RESIZING		
TIRE_REF	Reference tire specification	205/50R16	-
RIM_REF	Reference rim specification	16x6	-
TIRE_NEW	Target tire specification	225/45R17	-
RIM_NEW	Target rim specification	17x7	-
	CDT50-N ADVANCED OUTPUT PARAMETERS		
T_START	Start of output simulation time	0	S
T_END	End of output simulation time	100	S
DT_OUT	Output step size	0.01	S
OUTPUT_TIRESTATES	Flag to output the tire states (0 = off, 1 = on)	0	-
OUTPUT_ ROADCONTACTFORCES	Flag to output the road contact forces (0 = off, 1 = on)	0	-
TAKE_LOGFILENAME_AS _PREFIX	Naming convention of resulting output file	-	-

Road Parameters

The following paragraphs show detailed examples for

- equidistant track data and
- non-equidistant track data.

Each example contains a road definition file and a figure displaying the defined road surface.

Example for Equidistant Track Data (Data Type 2)

#	EXAMPLE	EQUIDISTA	ANT TRACK I	DATA		
#	X0_ROAD	Y0_ROAI	D ZO_ROAI	D MU_ROAD		
	200.0	200.0	50.0	1.0		
#	DATA TYPE : EQUIDISTANT TRACK DATA					
	2					
#	NTRACKS					
	2					
#	NDATA X	K0_TRACK	Y0_TRACK	HALF_WIDTH	DX	MU_TRACK
	21 -	-300	-150	150	25	1.0
	0.000	D				
	-9.5492	2				
	-34.5492	2				
	-65.4508	3				
	-90.4508	3				
-	-100.0000	C				
	-90.4508	3				
	-65.4508	3				
	-34.5492					
	-9.5492					
	0.0000					
	-9.5492					
	-34.5492	2				
	-65.4508	3				
	-90.4508	3				
-100.0000						
	-90.4508					
	-65.4508					
	-34.5492					
	-9.5492					
	0.0000)				
#	NDATA X	KU_TRACK	Y0_TRACK	HALF_WIDTH	DX	MU_TRACK
	4 -	-100	350	150	200	1.0
	50.0000					
	T00.000	00				

Fig. 7: Road Surface Model 1000: equidistant track

Example for Non-Equidistant Track Data (Data Type 3)

```
# EXAMPLE NON-EQUIDISTANT TRACK DATA
# X0_ROAD
            Y0_ROAD
                       Z0_ROAD
                                 MU_ROAD
  200.0
            200.0
                       50.0
                                 1.0
# DATA TYPE : NON-EQUIDISTANT TRACK DATA
  3
# NTRACKS
  1
# NDATA
         X0_TRACK Y0_TRACK HALF_WIDTH
                                           MU_TRACK
         -300
  24
                    100
                              400
                                      1.0
               0.0000
     0.0000
    25.0000
              -9.5492
            -34.5492
    50.0000
    75.0000
             -65.4508
   100.0000
            -90.4508
   125.0000 -100.0000
   225.0000 -100.0000
   250.0000
            -90.4508
   275.0000
            -65.4508
   300.0000
            -34.5492
   325.0000
             -9.5492
   350.0000
               0.0000
   450.0000
               0.0000
```

475.0000	9.5492
500.0000	34.5492
525.0000	65.4508
550.0000	90.4508
575.0000	100.0000
675.0000	100.0000
700.0000	90.4508
725.0000	65.4508
750.0000	34.5492
775.0000	9.5492
800.0000	0.0000

END

Fig. 8: Road Surface Model 1000: non-equidistant track

Warnings and Errors

For errors and warnings, please see the CDTire log files and/or the log files of the respective MBS solver run.