Explicit Dynamic Analysis

This newly developed OptiStruct Explicit solution type (ANALSIS=NLEXPL) has been developed solely in OptiStruct, in the same way as the OptiStruct implicit solution. The input data (elements, material, property, loading, etc…) for explicit solution is the same as implicit solution and the output data structure is also the same as implicit solution.

Attention: This functionality is different from the existing explicit dynamic analysis through an integration with Altair Radioss (ANALYSIS=EXPDYN).

This solution sequence performs Nonlinear Explicit Finite Element Analysis. The predominant difference between Nonlinear Explicit Finite Element Analysis and Nonlinear Implicit Transient Analysis is the time integration scheme. In Nonlinear Explicit Finite Element Analysis, time step is usually smaller, and no matrix assembly and inversion is required in explicit analysis as compared to implicit approaches. The OptiStruct Nonlinear Explicit solution sequence generally supports all major nonlinear features, for instance, NLSTAT (LGDISP), including Geometric Large Displacement Nonlinearity, Material Nonlinearity, and Contact. Subcase continuation, General contact is currently not supported. Optimization is also currently not supported.

SMP and MPI (DDM) parallelization are supported for OptiStruct Nonlinear Explicit Analysis.

Nonlinearity Sources

Geometric Nonlinearity

In analyses involving geometric nonlinearity, changes in geometry as the structure deforms are considered in formulating the constitutive and equilibrium equations. Many engineering applications require the use of large deformation analysis based on geometric nonlinearity. Applications such as metal forming, tire analysis, and medical device analysis.

Material Nonlinearity

Material nonlinearity involves the nonlinear behavior of a material based on current deformation, deformation history, rate of deformation, temperature, pressure, and so on.

Constraint and Contact Nonlinearity

Constraint nonlinearity in a system can occur if kinematic constraints are present in the model. The kinematic degrees-of-freedom of a model can be constrained by imposing restrictions on its movement. In OptiStruct explicit and MPCs are not supported. For RBE2 and TIE contact, constraints are enforced in a kinematic way.

In the case of contact, the constraint condition is enforced by penalty method.

Follower Load

Applied loads can depend upon the deformation of the structure when large deformations are involved. Geometrically, the applied loads (Forces or Pressure) can deviate from their initial direction based on how the model deforms at the location of application of load. In OptiStruct, if the applied load is treated as follower load, the orientation and/or the integrated magnitude of the load will be updated with changing geometry throughout the analysis.

Applied loads can be indicated as follower loads using the FLLWER Bulk and Subcase Entries, and/or with the PARAM,FLLWER entry.
Note: Follower loading is currently supported for loads specified via DLOAD/TLOAD#, for all pressure loads, FORCE1, FORCE2, MOMENT1 and MOMENT2.

Explicit Finite Element Analysis Method

In explicit finite element method, the time-discretized equation is solved using explicit time integration method. The explicit time integration method is based on the central difference scheme.

Central Difference Method

In the Central Difference method, the equilibrium equation takes the following form:(1) M a n = f e ( u n , t n )+ f d ( v n , t n )+ f c ( u n , t n )+ f h ( u n , t n ) f i ( u n , t n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCytaiaahg gadaahaaWcbeqaaiaad6gaaaGccqGH9aqpcaWHMbWaaSbaaSqaaiaa dwgaaeqaaOWaaeWaaeaacaWH1bWaaWbaaSqabeaacaWGUbaaaOGaai ilaiaadshadaahaaWcbeqaaiaad6gaaaaakiaawIcacaGLPaaacqGH RaWkcaWHMbWaaSbaaSqaaiaadsgaaeqaaOWaaeWaaeaacaWH2bWaaW baaSqabeaacaWGUbaaaOGaaiilaiaadshadaahaaWcbeqaaiaad6ga aaaakiaawIcacaGLPaaacqGHRaWkcaWHMbWaaSbaaSqaaiaadogaae qaaOWaaeWaaeaacaWH1bWaaWbaaSqabeaacaWGUbaaaOGaaiilaiaa dshadaahaaWcbeqaaiaad6gaaaaakiaawIcacaGLPaaacqGHRaWkca WHMbWaaSbaaSqaaiaadIgaaeqaaOWaaeWaaeaacaWH1bWaaWbaaSqa beaacaWGUbaaaOGaaiilaiaadshadaahaaWcbeqaaiaad6gaaaaaki aawIcacaGLPaaacqGHsislcaWHMbWaaSbaaSqaaiaadMgaaeqaaOWa aeWaaeaacaWH1bWaaWbaaSqabeaacaWGUbaaaOGaaiilaiaadshada ahaaWcbeqaaiaad6gaaaaakiaawIcacaGLPaaaaaa@685E@
Where,
M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCytaaaa@36CD@
Lumped mass matrix
f e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOzamaaBa aaleaacaWGLbaabeaaaaa@37FC@ , f d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOzamaaBa aaleaacaWGLbaabeaaaaa@37FC@ , f c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOzamaaBa aaleaacaWGLbaabeaaaaa@37FC@ , f h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOzamaaBa aaleaacaWGLbaabeaaaaa@37FC@ and f i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOzamaaBa aaleaacaWGLbaabeaaaaa@37FC@
Are the external force, damping force, contact force, hourglass force and element internal force vectors, respectively.
a n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyyamaaCa aaleqabaGaamOBaaaaaaa@3801@
Computed directly from the equilibrium equation.
From a n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyyamaaCa aaleqabaGaamOBaaaaaaa@3801@ velocity and displacement vectors can be updated as:(2) v n + 1 2 = v n 1 2 + 1 2 ( t n + 1 2 t n 1 2 ) a n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCODamaaCa aaleqabaGaamOBaiabgUcaRmaaleaameaacaaIXaaabaGaaGOmaaaa aaGccqGH9aqpcaWH2bWaaWbaaSqabeaacaWGUbGaeyOeI0YaaSqaaW qaaiaaigdaaeaacaaIYaaaaaaakiabgUcaRmaalaaabaGaaGymaaqa aiaaikdaaaWaaeWaaeaacaWG0bWaaWbaaSqabeaacaWGUbGaey4kaS YaaSqaaWqaaiaaigdaaeaacaaIYaaaaaaakiabgkHiTiaadshadaah aaWcbeqaaiaad6gacqGHsisldaWcbaadbaGaaGymaaqaaiaaikdaaa aaaaGccaGLOaGaayzkaaGaaCyyamaaCaaaleqabaGaamOBaaaaaaa@506C@ (3) d n+1 = d n +( t n+1 t n ) v n+ 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCizamaaCa aaleqabaGaamOBaiabgUcaRiaaigdaaaGccqGH9aqpcaWHKbWaaWba aSqabeaacaWGUbaaaOGaey4kaSYaaeWaaeaacaWG0bWaaWbaaSqabe aacaWGUbGaey4kaSIaaGymaaaakiabgkHiTiaadshadaahaaWcbeqa aiaad6gaaaaakiaawIcacaGLPaaacaWH2bWaaWbaaSqabeaacaWGUb Gaey4kaSYaaSqaaWqaaiaaigdaaeaacaaIYaaaaaaaaaa@4A98@
Where,
t n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaCa aaleqabaGaamOBaaaaaaa@3810@
Current time
t n + 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaCa aaleqabaGaamOBaiabgUcaRiaaigdaaaaaaa@39AD@
Next time
The following time increments are defined:(4) Δ t n = t n + 1 t n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiLdqKaam iDamaaCaaaleqabaGaamOBaaaakiabg2da9iaadshadaahaaWcbeqa aiaad6gacqGHRaWkcaaIXaaaaOGaeyOeI0IaamiDamaaCaaaleqaba GaamOBaaaaaaa@414D@ (5) Δ t n 1 = t n t n 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiLdqKaam iDamaaCaaaleqabaGaamOBaiabgkHiTiaaigdaaaGccqGH9aqpcaWG 0bWaaWbaaSqabeaacaWGUbaaaOGaeyOeI0IaamiDamaaCaaaleqaba GaamOBaiabgkHiTiaaigdaaaaaaa@4300@
Then,(6) v n + 1 2 = v n 1 2 + 1 2 ( Δ t n 1 + Δ t n ) a n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCODamaaCa aaleqabaGaamOBaiabgUcaRmaaleaameaacaaIXaaabaGaaGOmaaaa aaGccqGH9aqpcaWH2bWaaWbaaSqabeaacaWGUbGaeyOeI0YaaSqaaW qaaiaaigdaaeaacaaIYaaaaaaakiabgUcaRmaalaaabaGaaGymaaqa aiaaikdaaaWaaeWaaeaacqGHuoarcaWG0bWaaWbaaSqabeaacaWGUb GaeyOeI0IaaGymaaaakiabgUcaRiabgs5aejaadshadaahaaWcbeqa aiaad6gaaaaakiaawIcacaGLPaaacaWHHbWaaWbaaSqabeaacaWGUb aaaaaa@4FE0@ (7) d n+1 = d n +Δ t n v n+ 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCizamaaCa aaleqabaGaamOBaiabgUcaRiaaigdaaaGccqGH9aqpcaWHKbWaaWba aSqabeaacaWGUbaaaOGaey4kaSIaeyiLdqKaamiDamaaCaaaleqaba GaamOBaaaakiaahAhadaahaaWcbeqaaiaad6gacqGHRaWkdaWcbaad baGaaGymaaqaaiaaikdaaaaaaaaa@45C9@

Critical Time Step

Unlike implicit nonlinear transient analysis, explicit time integration scheme is conditionally stable.

The explicit solution marches forward in time. The time-step at each time increment is calculated automatically by default (elemental time step is the default), and can be switched between elemental and nodal time step using the TYPE field of the TSTEPE Bulk Data Entry. The DTMIN field on TSTEPE Bulk Data Entry can be used to specify a minimum allowed nodal time increment. The top ten smallest critical timesteps (elemental/nodal) are printed in the .out file by default for Explicit Dynamic Analysis. This can be controlled using PARAM, CRTELEM.

Elemental Time Step

This is the default time step control type for Nonlinear Explicit Analysis. The TYPE field on TSTEPE entry is set to ELEM by default.
  • Solid Elements
    The time step size should satisfy:(8) Δ t 2 ω max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiLdqKaam iDaiabgsMiJoaalaaabaGaaGOmaaqaaiabeM8a3naaBaaaleaaciGG TbGaaiyyaiaacIhaaeqaaaaaaaa@3FA5@

    Where, ω max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiGac2gacaGGHbGaaiiEaaqabaaaaa@3AC4@ denotes the maximum natural frequency of the system.

    For solid elements, a critical time step size is computed from:(9) Δ t e = l e Q + ( Q 2 + c 2 ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiLdqKaam iDamaaBaaaleaacaWGLbaabeaakiabg2da9maalaaabaGaamiBamaa BaaaleaacaWGLbaabeaaaOqaaiaadgfacqGHRaWkdaqadaqaaiaadg fadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGJbWaaWbaaSqabeaa caaIYaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaadaWccaqaaiaaig daaeaacaaIYaaaaaaaaaaaaa@461B@
    Where,
    c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaaaa@36DF@
    Adiabatic sound speed
    Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaaaa@36DF@
    Afunction of the bulk viscosity coefficients C 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIWaaabeaaaaa@37A5@ and C 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIWaaabeaaaaa@37A5@
    (10) Q = C 1 c + C 0 l e max ( 0 , ε ˙ k k ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiabg2 da9iaadoeadaWgaaWcbaGaaGymaaqabaGccaWGJbGaey4kaSIaam4q amaaBaaaleaacaaIWaaabeaakiaadYgadaWgaaWcbaGaamyzaaqaba GcciGGTbGaaiyyaiaacIhadaqadaqaaiaaicdacaGGSaGaeyOeI0Ia fqyTduMbaiaadaWgaaWcbaGaam4AaiaadUgaaeqaaaGccaGLOaGaay zkaaaaaa@4999@
    Where,
    C 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIWaaabeaaaaa@37A5@ and C 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIWaaabeaaaaa@37A5@
    Bulk viscosity coefficients, are dimensionless constants with default values of 1.5 and 0.06, respectively.
    l e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBamaaBa aaleaacaWGLbaabeaaaaa@37FE@
    Element characteristic length.
    8 node hexahedron
    (11) l e = V e A e max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBamaaBa aaleaacaWGLbaabeaakiabg2da9maalaaabaGaamOvamaaBaaaleaa caWGLbaabeaaaOqaaiaadgeadaWgaaWcbaGaamyzamaaBaaameaaci GGTbGaaiyyaiaacIhaaeqaaaWcbeaaaaaaaa@4001@
    10 node tetrahedron
    (12) l e = 1 ( B i j B i j ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBamaaBa aaleaacaWGLbaabeaakiabg2da9maalaaabaGaaGymaaqaamaabmaa baGaamOqamaaBaaaleaacaWGPbGaamOAaaqabaGccaWGcbWaaSbaaS qaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaWa aSqaaWqaaiaaigdaaeaacaaIYaaaaaaaaaaaaa@42D7@
    6 node pentahedron
    (13) l e = 1 ( B i j B i j ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBamaaBa aaleaacaWGLbaabeaakiabg2da9maalaaabaGaaGymaaqaamaabmaa baGaamOqamaaBaaaleaacaWGPbGaamOAaaqabaGccaWGcbWaaSbaaS qaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaWa aSqaaWqaaiaaigdaaeaacaaIYaaaaaaaaaaaaa@42D7@
    4 node tetrahedron
    (14) l e = 3 V e A e max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBamaaBa aaleaacaWGLbaabeaakiabg2da9maalaaabaGaaG4maiaadAfadaWg aaWcbaGaamyzaaqabaaakeaacaWGbbWaaSbaaSqaaiaadwgadaWgaa adbaGaciyBaiaacggacaGG4baabeaaaSqabaaaaaaa@40BE@
    Where,
    B i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@38C7@
    Symmetric gradient of shape function
    V e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGLbaabeaaaaa@37E8@
    Volume of the hexahedron element
    A e max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGLbWaaSbaaWqaaiGac2gacaGGHbGaaiiEaaqabaaaleqa aaaa@3ADF@
    Maximum area among all the six faces of the hexahedron element
  • Shell Elements
    For shell elements, the time step size is determined by:(15) Δ t = L c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqqHuoarcaWG0bGaeyypa0ZaaSaaaeaacaWGmbaabaGaam4qaaaa aaa@3DE5@
    Where, c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGJbaaaa@39BF@ is the speed of sounds, which is calculated as:(16) c = E ρ ( 1 ν 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGJbGaeyypa0ZaaOaaaeaadaWcaaqaaiaadweaaeaacqaHbpGC daqadaqaaiaaigdacqGHsislcqaH9oGBdaahaaWcbeqaaiaaikdaaa aakiaawIcacaGLPaaaaaaaleqaaaaa@4356@
    Where,
    E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGfbaaaa@39A1@
    Young's modulus
    ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaHbpGCaaa@3A97@
    Density
    ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaH9oGBaaa@3A8F@
    Poisson's ratio
    L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGfbaaaa@39A1@
    Characteristic length, which is calculated as for quadrilateral elements:
    L = A max ( L 1 , L 2 , L 3 , L 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGmbGaeyypa0ZaaSaaaeaacaWGbbaabaGaciyBaiaacggacaGG 4bWaaeWaaeaacaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadY eadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaamitamaaBaaaleaacaaI ZaaabeaakiaacYcacaWGmbWaaSbaaSqaaiaaisdaaeqaaaGccaGLOa Gaayzkaaaaaaaa@48FF@
    Where,
    A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGbbaaaa@399D@
    Area
    L 1 , L 2 , L 3 , L 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadYeadaWgaaWc baGaaGOmaaqabaGccaGGSaGaamitamaaBaaaleaacaaIZaaabeaaki aacYcacaWGmbWaaSbaaSqaaiaaisdaaeqaaaaa@41EB@
    Lengths of the sides of the trianagle elements:
    L = 2 A max ( L 1 , L 2 , L 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGmbGaeyypa0ZaaSaaaeaacaaIYaGaey4fIOIaamyqaaqaaiGa c2gacaGGHbGaaiiEamaabmaabaGaamitamaaBaaaleaacaaIXaaabe aakiaacYcacaWGmbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadYea daWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPaaaaaaaaa@4835@
    Where,
    A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGbbaaaa@399D@
    Area
    L 1 , L 2 , L 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadYeadaWgaaWc baGaaGOmaaqabaGccaGGSaGaamitamaaBaaaleaacaaIZaaabeaaaa a@3F76@
    Lengths of the sides of the element
  • Elemental Mass Scaling

    The elemental mass can be scaled to increase Δ t e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiLdqKaam iDamaaBaaaleaacaWGLbaabeaaaaa@396D@ , if the scaled elemental critical time step (scaled by DTFAC), falls below DTMIN. This is possible since the elemental time step equation contains the speed of sound term ( c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGJbaaaa@39BF@ ), which is dependent on material density ( ρ ).

Nodal Time Step

The time step control can be switched from the default elemental time step to nodal time step by setting the TYPE field on TSTEPE Bulk Entry to NODA.

The nodal time step is calculated as:(17) Δ t n = 2 m n k n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqqHuoarcaWG0bWaaSbaaSqaaiaad6gaaeqaaOGaeyypa0ZaaOaa aeaadaWcaaqaaiaaikdacaWGTbWaaSbaaSqaaiaad6gaaeqaaaGcba Gaam4AamaaBaaaleaacaWGUbaabeaaaaaabeaaaaa@426B@
Where,
m n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGTbWaaSbaaSqaaiaad6gaaeqaaaaa@3AE8@
Nodal mass
k n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGTbWaaSbaaSqaaiaad6gaaeqaaaaa@3AE8@
Nodal stiffness (which is calculated from the elemental stiffness)

Nodal stiffness is calculated as:

For each element, the critical time step, Δ t e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqqHuoarcaWG0bWaaSbaaSqaaiaadwgaaeqaaaaa@3C4C@ is calculated first, and each node is assumed to have the same time step, Δ t e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqqHuoarcaWG0bWaaSbaaSqaaiaadwgaaeqaaaaa@3C4C@ , then for each node, you can estimate the nodal stiffness from this equation.(18) Δ t e = 2 m e i k e i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqqHuoarcaWG0bWaaSbaaSqaaiaadwgaaeqaaOGaeyypa0ZaaOaa aeaadaWcaaqaaiaaikdacaWGTbWaaSbaaSqaaiaadwgadaWgaaadba GaamyAaaqabaaaleqaaaGcbaGaam4AamaaBaaaleaacaWGLbWaaSba aWqaaiaadMgaaeqaaaWcbeaaaaaabeaaaaa@449C@
Where,
i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaale aacaWGPbaaaa@39C6@
The i-th node of the element
m e i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGTbWaaSbaaSqaaiaadwgadaWgaaadbaGaamyAaaqabaaaleqa aaaa@3C05@
Nodal mass of the i-th node
k e i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGTbWaaSbaaSqaaiaadwgadaWgaaadbaGaamyAaaqabaaaleqa aaaa@3C05@
Nodal stiffness of the i-th node of this element
Therefore, the nodal stiffness of the i-th node is:(19) k e i = 2 m e i Δ t e 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGRbWaaSbaaSqaaiaadwgadaWgaaadbaGaamyAaaqabaaaleqa aOGaeyypa0ZaaSaaaeaacaaIYaGaamyBamaaBaaaleaacaWGLbWaaS baaWqaaiaadMgaaeqaaaWcbeaaaOqaaiabfs5aejaadshadaqhaaWc baGaamyzaaqaaiaaikdaaaaaaaaa@4549@
The final nodal stiffness is:(20) k n = e k e i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGRbWaaSbaaSqaaiaad6gaaeqaaOGaeyypa0ZaaabuaeaacaWG RbWaaSbaaSqaaiaadwgadaWgaaadbaGaamyAaaqabaaaleqaaaqaai aadwgaaeqaniabggHiLdaaaa@4224@

Using k n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGRbWaaSbaaSqaaiaad6gaaeqaaaaa@3AE6@ , the nodal critical time step Δ t n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqqHuoarcaWG0bWaaSbaaSqaaiaad6gaaeqaaaaa@3C55@ can be calculated.

Nodal Mass Scaling

The nodal mass m n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGTbWaaSbaaSqaaiaad6gaaeqaaaaa@3AE8@ can be scaled to increase Δ t n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqqHuoarcaWG0bWaaSbaaSqaaiaad6gaaeqaaaaa@3C55@ , if the scaled nodal critical time step (scaled by DTFAC), falls below DTMIN.

Hourglass Control

Hourglass control can be activated using PARAM,HOURGLS or HOURGLS entries. These entries also provide access to adjust hourglass control parameters (HGTYP and HGFAC).

If the HOURGLS entry is input, then it should be chosen via HGID field on the corresponding Property entry to be activated. HOURGLS entry via HGID field overwrites the settings defined via PARAM,HOURGLS.

For Solid Elements

For solid elements with MAT1/MATS1 material, two types of hourglass control are provided:
  • Type 1 (Flanagan and Belytschko, 1981) resists undesirable hourglass modes with viscous damping.
  • Type 2 (Puso, 2000), uses an enhanced assumed strain physical stabilization to provide coarse mesh accuracy with computational efficiency. Type 2 is chosen as the default hourglass type for MAT1/MATS1 material for 1st order CHEXA elements.
The implementations of Type 1 and Type 2 hourglass controls are very similar, except that the hourglass forces are calculated in a different manner.
Note: Type 2 is more computationally intensive; however, performs better in eliminating Hourglass modes, when compared to Type 1. The only limitation of Type 2 is that it may lead to an overly stiff response in bending problems with large plastic deformation.

For MATHE entry, the default hourglass control is Type 4 (Reese, 2005). Type 2 is also available for MATHE entries.

In case of reduced integration for solid elements (ISOPE=URI/AURI), hourglass control is turned on by default.
  Hourglass Control (Solid Element-based)
Elements Regular Elements (ISOPE=URI) Regular Elements (ISOPE=AURI) Regular Elements (ISOPE=SRI)
CHEXA

(1st order)

Hourglass Control is turned ON by default. 1
For MAT1/MATS1
Hourglass Type 2
For MATHE
Hourglass Type 4
Hourglass Control is turned ON by default. 1 The defaults are:
For MAT1/MATS1
Hourglass Type 2
For MATHE
Hourglass Type 4
Hourglass Control is not turned on by default. 2
CTETRA

(2nd order)

Hourglass control not required Hourglass control not required Hourglass control not required
CPENTA

(1st order)

NA NA Hourglass Control is not turned on by default. 2
CTETRA (1st order) Hourglass control not required Hourglass control not required Hourglass control not required

For Shell Elements

For shell elements, only two types of hourglass control are provided:
  • Type 1 (Flanagan and Belytschko – viscous form)
  • Type 2 (Flanagan and Belytschko – stiffness form). Type 2 is chosen as the default hourglass type for MAT1/MATS1 material for CQUAD4.
  Hourglass Control (Shell Element-based)
Elements Belytschko-Tsay (ISOPE=BT) Belytschko-Wong-Chiang with full projection (ISOPE=BWC)
CQUAD4 Hourglass Control is turned ON by default. 1
For MAT1/MATS1
Hourglass Type 2
Hourglass Control is turned ON by default. 1
For MAT1/MATS1
Hourglass Type 2

Materials

The following table shows the various Hourglass control types and defaults for supported materials.
  Hourglass Control (Material-based)
Materials Type 1

Solids and Shells: Flanagan-Belytschko Viscous Form

Type 2

Solids: Puso Enhanced Assumed Strain Stiffness Form

Shells: Flanagan-Belytschko Stiffness Form

Type 4

Solids: Reese Hourglass Control

Shells: Type 4 is not supported for shells

MAT1/MATS1 Available 2 Default 6 NA
MATHE NA Available 2 Default 6
MATVE NA Available 2 Default 6

Problem Setup

Input

  • Activation:

    A Nonlinear Explicit Subcase can be identified via ANALYSIS=NLEXPL. The TTERM Subcase Entry is mandatory to define the termination time. Additionally, a TSTEPE Subcase entry which points to the corresponding TSTEPE Bulk Data Entry is also available for Nonlinear Explicit Analysis. If TSTEPE Subcase Entry is not defined, then ANALYSIS=NLEXPL is mandatory in conjunction with TTERM. Otherwise, TTERM and TSTEPE together is sufficient to identify the Explicit Nonlinear subcase. Nonlinear Explicit Analysis is always large displacement analysis.

  • Initial Conditions:

    The initial conditions can be defined using IC Subcase Entry and in conjunction with the TIC Bulk Data Entry.

  • Loading:

    Loads can be defined using LOAD, DLOAD, and TLOAD# Bulk Data Entries which should be referenced in the subcase using DLOAD Subcase Entry. For reference via LOAD Subcase Entry or TLOAD# Bulk Entry, only the FORCE, FORCE1, FORCE2, MOMENT, MOMENT1, MOMENT2, PLOAD2, PLOAD4, GRAV, ACCEL2, and SPCD entries are supported for loading.

  • Boundary Conditions:

    Boundary Conditions can be applied via SPC Bulk Data which are referenced by a corresponding SPC subcase entry. MPCs are not supported currently.

  • Supported Elements:
    Solid Elements
    4-noded CTETRA, 10-noded CTETRA, 8-noded CHEXA, and 6-noded CPENTA elements are supported.
    Shell Elements
    CTRIA3 and CQUAD4 are supported.
    One-dimensional Elements
    CBUSH, CBEAM, and CBAR elements are supported.
    Currently, only Belytschko-Schwer Beam formulation is supported for CBAR/CBEAM 1D elements in Explicit Analysis.
    Mass Elements
    CONM2 is supported.
    Note:
    • Offset, on elements or property for Shell elements is supported for Explicit Analysis.
    • In case of CBUSH elements, the mass (obtained from max. (M1, M2, M3)) and/or the inertia (obtained from max. (M4, M5, M6)) must be defined, to estimate the timestep. Otherwise, an error message will be produced.
    • For CBEAM, CBAR elements, the continuation lines on PBEAM/PBAR are not supported for Explicit Analysis.
  • Supported Materials:

    MAT1, MATS1, MATHE, MATVE materials supported. FOAM material in MATHE is supported for Explicit analysis; however, it is not supported for nonlinear implicit analysis. The MATVE entry should be defined under MATHE entry.

  • Integration Schemes:

    For explicit analysis, the element integration scheme can be changed using the ISOPE field on the PSOLID, PLSOLID, or PSHELL entries, or via PARAM,EXPISOP. The settings on the ISOPE field will overwrite the settings on PARAM,EXPISOP.

Example:
SUBCASE 10
   ANALYSIS=NLEXPL
   SPC = 1
   DLOAD = 2
   TSTEPE = 2
   NLOUT = 23
   IC = 12
   TTERM = 2.0
.
.
BEGIN BULK
TSTEPE,2,ELEM,0.8
NLOUT,23,NINT,12
IC,12,33,3,0.2
SPC,1,45,123,0.0
TLOAD1,2,3,,0,8
TABLED1,8
+,0.0,0.0,2.0,8.0,ENDT,ENDT

Output

The typical output entries (DISPLACEMENT, VELOCITY, and ACCELERATION) can be used to request corresponding output for Nonlinear Explicit Analysis. The NLOUT Subcase and Bulk Data Entries can be used to request intermediate results, only with NINT parameter support.

The NLOUT Bulk Data Entry and NLOUT Subcase Information Entry can be used to control incremental output. For Nonlinear Explicit Analysis, only the NINT field is supported for NLOUT. The NLADAPT entry is not supported for Nonlinear Explicit Analysis, and no other TSTEP# entries are supported, except TSTEPE entry.

Currently, only Hyper3D (_expl.h3d) and HyperGraph presentation format (_expl.mvw) files are supported. Nonlinear Explicit Analysis results are not output to the regular .h3d and .mvw files, but instead are output to _expl.h3d and _expl.mvw files, respectively.
_expl.h3d
Contours for Displacement, Velocity, Acceleration, Strain, Stress, and Plastic Strain are output.
_expl.mvw
Curves for Strain Energy, Elastic Contact Energy, Plastic Contact Energy, Kinetic Energy, Hourglass Energy, and Plastic Dissipation Energy are output.
.out
For explicit, the .out file contains Time Cycle information (based on PARAM,NOUTCYC), Current time, Current Time Step, Maximum Strain Energy, Element ID for which the information is printed, Kinetic Energy, Contact Work, Total Energy, Maximum Penetration, Node ID associated with this maximum penetration, Maximum Normal Work, Node ID associated with this Maximum Normal Work, Mass Change Ratio. which is the information regarding the scaled mass change after mass scaling – this is calculated as: (current mass-original mass)/(original mass).
_expl.cntf
An ASCII file that contains the contact force output results on the master surface and is activated when the OPTI format is specified in the CONTF I/O Options Entry. The output includes Normal/Tangential Force, Magnitude and Area of contact. This output is available for each explicit time-step.
The frequency of output in this file can be controlled using the NINT field in the NLOUT entry.
Table 1. Nonlinear Explicit Analysis Quick Summary
Nonlinear Explicit Analysis Subcase or I/O Bulk Data Comments
Activation:
Subcase Type ANALYSIS=NLEXPL (optional) NA If TSTEPE is not specified, then ANALYSIS=NLEXPL is mandatory.
Nonlinear Explicit Activation TTERM (mandatory)

TSTEPE (optional)

TSTEPE (optional) If TSTEPE is not specified, then ANALYSIS=NLEXPL is mandatory.
Loads:
Nodal Loads LOAD, DLOAD If LOAD in subcase is used:

FORCE, FORCE1, FORCE2, MOMENT, MOMENT1, and MOMENT2.

If DLOAD in subcase is used:

TLOAD1 or TLOAD2.

DLOAD can be used to combine multiple TLOADi data.

For nodal loads, EXCITEID on TLOADi data can be FORCE, FORCE1, FORCE2, MOMENT, MOMENT1, and MOMENT2.

TYPE field on TLOADi data can be set to 0 or LOAD for this case.
Surface Loads LOAD, DLOAD If LOAD in subcase is used:

PLOAD2 and PLOAD4.

If DLOAD in subcase is used:

TLOAD1 or TLOAD2.

DLOAD can be used to combine multiple TLOADi data.

For Surface loads, EXCITEID on TLOADi data can be PLOAD1 and PLOAD4.

TYPE field on TLOADi data can be set to 0 or LOAD for this case.
Body Loads LOAD, DLOAD If LOAD in subcase is used:

GRAV and ACCEL2.

If DLOAD in subcase is used:

TLOAD1 or TLOAD2.

DLOAD can be used to combine multiple TLOADi data.

For Body loads, EXCITEID on TLOADi data can be GRAV and ACCEL2.

TYPE field on TLOADi data can be set to 0 or LOAD for this case.
Enforced Displacement, Velocity, Acceleration LOAD, DLOAD If LOAD in subcase is used:

Enforced displacement, velocity, or acceleration using SPCD or SPCD.

If DLOAD in subcase is used:

TLOAD1 or TLOAD2.

DLOAD can be used to combine multiple TLOADi data.

For Enforced loading, EXCITEID on TLOADi data can be SPC or SPCD.

TYPE field on TLOADi data can be set to:
1 or DISP
For enforced displacement,
2 or VELO
For enforced velocity,
3 or ACCE
For enforced acceleration.
Follower Loading FLLWER FLLWER

PARAM,FLLWER

Loads can be chosen as follower loads, similar to implicit nonlinear analysis.

Follower loading is currently supported for loads specified via DLOAD/TLOAD#, for all pressure loads, FORCE1, FORCE2, MOMENT1 and MOMENT2.

Boundary Conditions:
Single Point Constraints SPC SPC
Initial Conditions:
Initial Displacement TIC IC
Initial Velocity TIC IC
Time Step Control:
Basic time controls TSTEPE TSTEPE TYPE field on TSTEPE entry to choose between elemental and nodal time step controls.

DTMIN field can define minimum time step below which nodal/elemental mass scaling is activated.

DTFAC field can define scale factor for stable time increments.

Mass Elements:
Mass Elements Support CONM2 is supported
Structural Elements:
Supported Structural Elements NA One-dimensional elements: CBUSH, CBEAM, and CBAR are supported;
Shells
CTRIA3 and CQUAD4 elements.
Solids
4-noded CTETRA, 10-noded CTETRA, 8-noded CHEXA, and 6-noded CPENTA elements.
Integration Schemes NA ISOPE field on PSOLID, PLSOLID, or PSHELL.

PARAM,EXPISOP (parameter is only supported for solid elements).

ISOPE field will overwrite settings defined on PARAM,EXPISOP.

Refer to Elements in the User Guide for more details regarding Integration Schemes.

Rigids:
Support for Rigids NA RBE2, RBE3 and RBODY are supported.
Materials:
Supported Materials NA Shells: MAT1 and MATS1.

Solids: MAT1, MATS1, MATVE, and MATHE.

For MATS1: In addition to materials on MATS1 supported for implicit, we also support Johnson-Cook and Crushable Foam materials.

For MATHE: All material models supported for implicit are also supported for Explicit, and in addition, Foam material is supported on MATHE for Explicit.

Properties:
Supported Properties NA PSHELL, PSOLID, and PLSOLID
Contact:
Supported Contact Types NA CONTACT and TIE N2S and S2S contact discretization are supported.

SMALL, FINITE, and CONSLI contacts are supported.

General Contact is not currently supported.

For TIE in explicit:
1
Only kinematic TIE is supported. That is, the kinematic condition is precisely constrained instead of using the penalty-based method.
2
Hierarchy in kinematic TIE is not supported (that is, slave node of a TIE cannot be the master node in another TIE).
3
Overconstrained TIEs are ignored (only the first constraint for such cases, based on the order of input in the .fem file, is retained).
4
All such hierarchy and over constrained TIE nodes are printed into grid SET in the *_badtied.fem file.
Coordinate Systems:
Supported User-defined Coordinate Systems NA CORD2R, CORD1C, CORD2C, CORD1S, and CORD2S
Output:
ASCII Output NA PARAM,NOUTCYC Only explicit time cycle summary and corresponding information like Time steps, Energy, Maximum Penetration, Mass Change Ratio, and so on are printed to the .out file.PARAM,NOUTCYC can be used to choose the frequency of summary output in the .out file.
Binary File Output DISP, VELOCITY, ACCELERATION, STRESS, STRAIN (includes Plastic Strain) NA Results are output only to the _expl.h3d and _expl.mvw files.
_expl.h3d
The displacement, velocity, acceleration, stress, strain, and plastic strain results are output.
_expl.mvw
The curves for Strain energy, Elastic Contact energy, Plastic Contact energy, Kinetic energy, Hourglass energy, and Plastic Dissipation energy are output.
Output Control NLOUT NLOUT Only the NINT field is supported for Explicit Analysis.

The NLADAPT entry is not supported for Nonlinear Explicit Analysis.

Miscellaneous:
Large Displacement NA NA Explicit Nonlinear Analysis is large displacement nonlinear analysis by default.
Hourglass Control HOURGLS (HGID field references this card on PSOLID/PLSOLID/PSHELL)

PARAM,HOURGLS

The default hourglassing values are overwritten by HOURGLS entry referenced on PSOLID/PLSOLID/PSHELL entry or PARAM,HOURGLS.

HGID via HOURGLS entry overwrites PARAM,HOURGLS.

For more information, refer to Hourglass Control.

Optimization:
Optimization Support Not Supported Not Supported Not Supported
1 The defaults can be overwritten by user-defined PARAM,HOURGLS or HOURGLS entry (referenced by HGID on property entry)
2 Users can turn on hourglass control using ,PARAMHOURGLS or HOURGLS entry (referenced by HGID on property entry)
3 For solid elements, ISOPE field on PSOLID/PLSOLID entries can be used to switch between integration schemes
4 CTRIA3 elements do not require hourglass control
5 For shell elements, ISOPE field on PSHELL entry can be used to switch between integration schemes
6 The defaults can be overwritten by user-defined PARAM,HOURGLS or HOURGLS entry (referenced by HGID on property entry). Note that for MAT1/MATS1/MATHE, the defaults only apply in the case of 1st order CHEXA elements. For CPENTA elements, the user should turn ON hourglass control, if required.
7 Some materials listed here are not supported for shells (for instance, MATHE and MATVE)