/FAIL/EMC

Block Format Keyword Describes failure dependent on effective plastic strain.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/FAIL/EMC/mat_ID/unit_ID
a n b0 c    
Card 2
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
γ ε ˙ 0            
Optional Line
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
fail_ID                  

Definitions

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier.

(Integer, maximum 10 digits)

 
a Hosford exponent.

Default = 1.0 (Real)

 
n Stress state sensitivity exponent.

(Real)

 
b0 Strain to fracture for uni-axial tension. 2

Default = 1.0 (Real)

 
c Friction parameter for triaxiality.

Default = 0.0 (Real)

 
γ Strain rate sensitivity parameter.

(Real)

 
ε ˙ 0 Reference strain rate.

Default = 1030 (Real)

[ 1 s ]
fail_ID (Optional) Failure criteria identifier. 3

(Integer, maximum 10 digits)

 

Example (Metal)

Fracture parameters could be identified with tests like uniaxial tension ( η=1/3,θ=1), pure shear ( η=0,θ=0), and axisymmetric compression ( η=2/3,θ=1).

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                 Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW84/1/1
Swift-voce (metal)
#              RHO_I
                8E-9
#                  E                  NU
             206000.                0.30
#                P12                 P22                 P33               QVOCE               BVOCE
                -0.5                  1.                  3.            524.0000                 25.
#                G11                 G22                 G33                  K0               ALPHA
                -0.5                  1.                  3.                100.                 0.5
#                 AN                EPS0                  NN               CEPSP               DEPS0
               1000.             0.00128               0.200               0.014              0.0011
#                ETA                  CP                TINI                TREF               TMELT
                 0.9              420e+8                 293                293.               1700.
#              MTEMP              DEPSAD
               0.921               1.379
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FAIL/EMC/1/1
#         exponent_a          exponent_n              coef_b              coef_c
                 1.9                 0.2                0.20                 0.0
#               GAMA               DEPS0
                 0.0                 1.0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. The failure criteria is calculated as:(1)
    D f a i l = Δ D > 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGMbGaamyyaiaadMgacaWGSbaabeaakiabg2da9maaqaea baGaeuiLdqKaamiraaWcbeqab0GaeyyeIuoakiabg6da+iaaigdaaa a@41BB@
    Where,(2)
    Δ D = Δ ε ¯ p ε ¯ p , f a i l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiLdiaads eacqGH9aqpdaWcaaqaaiaabs5acuaH1oqzgaqeamaaBaaaleaacaWG WbaabeaaaOqaaiqbew7aLzaaraWaaSbaaSqaaiaadchacaGGSaGaam OzaiaadggacaWGPbGaamiBaaqabaaaaaaa@4433@
    Where,(3)
    ε ¯ p , f a i l = b ( 1 + c ) 1 n { [ 1 2 ( ( f 1 f 2 ) a + ( f 2 f 3 ) a + ( f 1 f 3 ) a ) ] 1 a + c ( 2 η + f 1 + f 3 ) } 1 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbae badaWgaaWcbaGaamiCaiaacYcacaWGMbGaamyyaiaadMgacaWGSbaa beaakiabg2da9iaadkgacqGHflY1daqadaqaaiaaigdacqGHRaWkca WGJbaacaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaa caWGUbaaaaaakiabgwSixpaacmaabaWaamWaaeaadaWcaaqaaiaaig daaeaacaaIYaaaamaabmaabaWaaeWaaeaacaWGMbWaaSbaaSqaaiaa igdaaeqaaOGaeyOeI0IaamOzamaaBaaaleaacaaIYaaabeaaaOGaay jkaiaawMcaamaaCaaaleqabaGaamyyaaaakiabgUcaRmaabmaabaGa amOzamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadAgadaWgaaWcba GaaG4maaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaadggaaaGc cqGHRaWkdaqadaqaaiaadAgadaWgaaWcbaGaaGymaaqabaGccqGHsi slcaWGMbWaaSbaaSqaaiaaiodaaeqaaaGccaGLOaGaayzkaaWaaWba aSqabeaacaWGHbaaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaWaaW baaSqabeaadaWcaaqaaiaaigdaaeaacaWGHbaaaaaakiabgUcaRiaa dogadaqadaqaaiaaikdacqaH3oaAcqGHRaWkcaWGMbWaaSbaaSqaai aaigdaaeqaaOGaey4kaSIaamOzamaaBaaaleaacaaIYaaabeaaaOGa ayjkaiaawMcaaaGaay5Eaiaaw2haamaaCaaaleqabaGaeyOeI0YaaS aaaeaacaaIXaaabaGaamOBaaaaaaaaaa@789A@
    Where, f 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaaIZaaabeaaaaa@37CA@ , f 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaaIZaaabeaaaaa@37CA@ and f 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaaIZaaabeaaaaa@37CA@ are functions of the Lode angle θ :(4)
    f 1 = 2 3 cos [ π 6 ( 1 θ ) ]
    (5)
    f 2 = 2 3 cos [ π 6 ( 3 + θ ) ]
    (6)
    f 3 = 2 3 cos [ π 6 ( 1 + θ ) ]
    With(7)
    θ = 1 2 π arccos [ 3 3 2 J 3 ( J 2 ) 3 / 2 ]

    Where, η is the traixiality η = σ m σ V M = I 1 3 3 J 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdGMaey ypa0ZaaSaaaeaacqaHdpWCdaWgaaWcbaGaamyBaaqabaaakeaacqaH dpWCdaWgaaWcbaGaamOvaiaad2eaaeqaaaaakiabg2da9maalaaaba GaamysamaaBaaaleaacaaIXaaabeaaaOqaaiaaiodadaGcaaqaaiaa iodacaWGkbWaaSbaaSqaaiaaikdaaeqaaaqabaaaaaaa@455F@ .

  2. The coefficient, b is computed as:

    b = b 0 [ 1 + γ ln ( ε ¯ ˙ p ε ¯ ˙ 0 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiabg2 da9iaadkgadaWgaaWcbaGaaGimaaqabaGcdaWadaqaaiaaigdacqGH RaWkcqaHZoWzciGGSbGaaiOBamaabmaabaWaaSaaaeaacuaH1oqzga qegaGaamaaBaaaleaacaWGWbaabeaaaOqaaiqbew7aLzaaryaacaWa aSbaaSqaaiaaicdaaeqaaaaaaOGaayjkaiaawMcaaaGaay5waiaaw2 faaaaa@4816@ if ε ¯ ˙ p > ε ¯ ˙ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbae HbaiaadaWgaaWcbaGaamiCaaqabaGccqGH+aGpcuaH1oqzgaqegaGa amaaBaaaleaacaaIWaaabeaaaaa@3C9D@ else b = b 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiabg2 da9iaadkgadaWgaaWcbaGaaGimaaqabaaaaa@39B0@

  3. The fail_ID is used with /STATE/BRICK/FAIL and /INIBRI/FAIL for brick. There is no default value. If the line is blank, no value will be output for failure model variables in the /INIBRI/FAIL (written in .sta file with /STATE/BRICK/FAIL for brick).