/MAT/LAW64 (UGINE_ALZ)

Block Format Keyword This law describes the Ugine & Alz trip steel material. This material law can be used only with shell elements.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW64/mat_ID/unit_ID or /MAT/UGINE_ALZ/mat_ID/unit_ID
mat_title
ρi                
E ν Cp        
D n Md V0 Vm
fct_ID0 fct_ID1 Fscale0 Fscale1 T0    

Definitions

Field Contents SI Unit Example
mat_ID Material identifier

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier

(Integer, maximum 10 digits)

 
mat_title Material title.

(Character, maximum 100 characters)

 
ρi Initial density.

(Real)

[kgm3]
E Initial Young's modulus.

(Real)

[Pa]
ν Poisson's ratio.

(Real)

 
Cp Specific heat capacity.

Default = 1030 (Real)

[JkgK] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaadaWcaaqaaiaabQeaaeaacaqGRbGaae4zaiabgwSixlaabUeaaaaacaGLBbGaayzxaaaaaa@3DB3@
D Material parameter 1.

(Real)

 
n Material parameter 2.

(Real)

 
Md Limit martensite transformation temperature.

(Real)

[K]
V0 Material parameter.

(Real)

 
Vm Constant martensite fraction for second yield stress function 0 < Vm ≤ 1.

(Real)

 
fct_ID0 Yield stress function identifier for 0 martensite fraction.

(Integer)

 
fct_ID1 Yield stress function identifier for Vm martensite fraction.

(Integer)

 
Fscale0 Scale factor for yield function for fct_ID0.

(Real)

[Pa]
Fscale1 Scale factor for yield function for fct_ID1.

(Real)

[Pa]
T0 Initial temperature.

(Real)

[K]

Example (Steel)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                  Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW64/1/1
Steel
#              RHO_I
              7.8E-9                   
#                  E                  Nu                  Cp
              210000                  .3           460000000
#                  D                   n                  Md                  V0                  Vm
                   4                 3.5                 356                  .2                  .6
# func_ID0  func_ID1             Fscale0             Fscale1                  T0
         1         2                   1                   1                 323
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  3. FUNCTIONS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/1
function_1
#                  X                   Y
                   0                 250                                                            
                .001                 350                                                            
                  .5                1100                                                            
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/2
function_2
#                  X                   Y
                   0                 930                                                            
                .001                1000                                                            
                  .5                1500                                                            
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. Martensite fraction:(1)
    Vm(εp,T)=Vmmax(T)(1e(Dεp)n)
    (2)
    Vmmax(T)=V0Ln(MdT+1)
    if (3)
    T<Md
    (4)
    Vmmax(T)=0
    if (5)
    T>Md
  2. Mechanical behavior:

    The yield plastic stress is computed by linear interpolation between two curves fct_ID1 and fct_ID0.

  3. The temperature is computed assuming the adiabatic condition (by default the condition is isothermal with Cp = 1030):(6)
    T=T0+EintρCp(Volume)

    Where, Eint is the internal energy of the element.