/MAT/LAW80

Block Format Keyword This law allows modeling the ultra-high strength steel behavior at high temperatures and the phase transformation phenomena from austenite to ferrite, pearlite, bainite and martensite during cooling.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW80/mat_ID/unit_ID
mat_title
ρ i                
E ν fct_IDE YscaleE Time_unit  
  Fsmooth Fcut Ceps Peps  
tab_IDY1 tab_IDY2 tab_IDY3 tab_IDY4 tab_IDY5          
Yscale1 Yscale2 Yscale3 Yscale4 Yscale5
Xscale1 Xscale2 Xscale3 Xscale4 Xscale5
Θ2 Θ3 Θ4 Θ5  
Alpha1 Alpha2      
QR2 QR3 QR4 Alpha Tref
        Gsize
KF KP Lat1 Lat2 Tini
B Mo Mn W Al
C Cr Si Cu As
Co Ni V P Ti

Definitions

Field Contents SI Unit Example
mat_ID Material identifier

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier

(Integer, maximum 10 digits)

 
mat_title Material title

(Character, maximum 100 characters)

 
ρ i Initial density

(Real)

[ kg m 3 ]
E Young's modulus

(Real)

[ Pa ]
ν Poisson's ratio

(Real)

 
fct_IDE Function identifier for temperature dependent Young's modulus.

(Integer)

 
YscaleE Scale factor for ordinate (Young) for fct_IDE.

Default = 1.0 (Real)

[ Pa ]
Time_unit Number of time units per hour.

Default corresponds to seconds, equals 3600 time units per hour.

Defaults = 3600 (Real)

 
Fsmooth Smooth strain rate option flag.
= 0 (Default)
No strain rate smoothing.
= 1
Strain rate smoothing active.

(Integer)

 
Fcut Cutoff frequency for strain rate filtering.

Default = 1030 (Real)

 
Ceps Parameter for the effective strain rate dependency (Cowper Symonds relation). 2

(Real)

 
Peps Parameter for the effective strain rate dependency (Cowper Symonds relation). 2

(Real)

 
tab_IDY1 Table identifier for yield stress, first entry effective plastic strain and second temperature, for austenite.

(Integer)

 
tab_IDY2 Table identifier of yield stress for ferrite.

(Integer)

 
tab_IDY3 Table identifier of yield stress for pearlite.

(Integer)

 
tab_IDY4 Table identifier of yield stress for bainite.

(Integer)

 
tab_IDY5 Table identifier of yield stress for martensite.

(Integer)

 
Yscale1 Scale factor for ordinate (stress) for tab_IDY1.

Default = 1.0 (Real)

[ Pa ]
Yscale2 Scale factor for ordinate (stress) for tab_IDY2.

Default = 1.0 (Real)

[ Pa ]
Yscale3 Scale factor for ordinate (stress) for tab_IDY3.

Default = 1.0 (Real)

[ Pa ]
Yscale4 Scale factor for ordinate (stress) for tab_IDY4.

Default = 1.0 (Real)

[ Pa ]
Yscale5 Scale factor for ordinate (stress) for tab_IDY5.

Default = 1.0 (Real)

[ Pa ]
Xscale1 Scale factor for third variable strain rate for tab_IDY1.

Default = 1.0 (Real)

[ 1 s ]
Xscale2 Scale factor for third variable strain rate for tab_IDY2.

Default = 1.0 (Real)

[ 1 s ]
Xscale3 Scale factor for third variable strain rate for tab_IDY3.

Default = 1.0 (Real)

[ 1 s ]
Xscale4 Scale factor for third variable strain rate for tab_IDY4.

Default = 1.0 (Real)

[ 1 s ]
Xscale5 Scale factor for third variable strain rate for tab_IDY5.

Default = 1.0 (Real)

[ 1 s ]
Θ2 Memory coefficient that determines the fraction of previous straining in the austenite that will be remembered in the newly formed ferrite.
= 1
All the plastic strains are transferred.

(Real)

 
Θ3 Memory coefficient that determines the fraction of previous straining in the austenite that will be remembered in the newly formed pearlite.
= 1
All the plastic strains are transferred.

(Real)

 
Θ4 Memory coefficient that determines the fraction of previous straining in the austenite that will be remembered in the newly formed bainite.
= 1
All the plastic strains are transferred.

(Real)

 
Θ5 Memory coefficient that determines the fraction of previous straining in the austenite that will be remembered in the newly formed martensite.
= 1
All the plastic strains are transferred.

(Real)

 
Alpha1 Thermal expansion coefficient for austenite (gamma phase) [ 1 K ]
Alpha2 Thermal expansion coefficient for products (alpha phase). [ 1 K ]
QR2 Activation energy divided by the universal gas constant (R=8.314472) for the diffusion reaction of the austenite ferrite reaction. 1)

Default = 11575 (Real)

[ K ]
QR3 Activation energy divided by the universal gas constant (R=8.314472) for the diffusion reaction of the austenite pearlite reaction. 1

Default = 13840 (Real)

[ K ]
QR4 Activation energy divided by the universal gas constant (R=8.314472) for the diffusion reaction of the austenite bainite reaction. 1

Default = 13588 (Real)

[ K ]
Alpha Material constant for martensite phase. 3

(Real)

 
Tref Reference temperature for thermal expansion.

(Real)

[ K ]
Gsize ASTM grain size number for the austenite.

(Real)

 
KF Coefficient of Boron in the composition of ferrite. 4

(Real)

 
KP Coefficient of Boron in the composition of pearlite. 4

(Real)

 
Lat1 Latent heat for the decomposition of austenite to ferrite, pearlite, and bainite.

(Real)

[ J m 3 ]
Lat2 Latent heat for the decomposition of austenite to martensite.

(Real)

[ J m 3 ]
Tini Initial temperature.

(Real)

 
B Boron percentage weight in material (0.0~1.0).

(Real)

 
Mo Molybdenum percentage weight in material (0.0~1.0).

(Real)

 
Mn Manganese percentage weight in material (0.0~1.0).

(Real)

 
W Tungsten percentage weight in material (0.0~1.0).

(Real)

 
Al Aluminum percentage weight in material (0.0~1.0).

(Real)

 
C Carbon percentage weight in material (0.0~1.0).

(Real)

 
Cr Chromium percentage weight in material (0.0~1.0).

(Real)

 
Si Silicon percentage weight in material (0.0~1.0).

(Real)

 
Cu Copper percentage weight in material (0.0~1.0).

(Real)

 
As Arsenic percentage weight in material (0.0~1.0).

(Real)

 
Co Cobalt percentage weight in material (0.0~1.0).

(Real)

 
V Vanadium percentage weight in material (0.0~1.0).

(Real)

 
P Phosphorous percentage weight in material (0.0~1.0).

(Real)

 
Ti Titanium percentage weight in material (0.0~1.0).

(Real)

 
Ni Nickel percentage weight in material (0.0~1.0).

(Real)

 

Example (Steel)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                  Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW80/1/1
steel
#              RHO_I
              7.8E-9
#                  E                  Nu   Fct_IDE             YscaleE           Time_unit
              210000                  .3         0                   0                3600
#            Fsmooth                Fcut                Ceps                Peps
                   0                   0                   0                   0
# TAB_IDY1  TAB_IDY2  TAB_IDY3  TAB_IDY4  TAB_IDY5
        10        10        10        10        10
#            Yscale1             Yscale2             Yscale3             Yscale4             Yscale5
                   0                   0                   0                   0                   0
#            Xscale1             Xscale2             Xscale3             Xscale4             Xscale5
                   0                   0                   0                   0                   0
#             Theta2              Theta3              Theta4              Theta5
                   0                   0                   0                   0
#             Alpha1              Alpha2
             2.51E-5             1.11E-5
#                QR2                 QR3                 QR4               Alpha                Tref
               13022               15569               15287                .011           298.14999
#                                                                                              Gsize
                                                                                                   8
#                 KF                  KP                Lat1                Lat2                Tini
              190000               31000                 590                 640                1083
#                  B                  Mo                  Mn                   W                  Al
               .0025                   0                1.23                   0                   0
#                  C                  Cr                  Si                  Cu                  As
                .248                 .24                 .29                   0                   0
#                 Co                  Ni                   V                   P                  Ti
                   0                   0                   0                .015                   0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/TABLE/1/10
table
         3
      2011                           0.0                273.                                       
      2013                          0.02                300.                                       
      2013                          0.04                300.                                       
      2012                           0.0                300.                                       
      2012                          0.02                273.                                       
      2012                          0.04                273.                                       
/FUNCT/2011
1st
                 0.0               185.0
                 0.1               339.0
                 1.0               339.0
/FUNCT/2012
2nd
                 0.0               190.0
                 0.1               344.0
                 1.0               344.0
/FUNCT/2013
3rd
                 0.0               195.0
                 0.1               349.0
                 1.0               349.0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. If Q should be in [ J mol ] , then 1 cal =4.1855 J.
  2. The strain rate dependency when Cowper Seymonds is used:(1)
    σ = σ y ( 1 + ( ε ˙ C e p s ) 1 P e p s )
  3. The martensite volume fraction x M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG4bWaaSbaaSqaaiaad2eaaeqaaaaa@3AD2@ equation is:(2)
    x M = x γ ( 1 exp ( α ( M s T ) ) )
    Where,
    M s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGnbGaam4Caaaa@3AA1@
    Temperature of martensite transformation
    x γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacqaHZoWzaeqaaaaa@38C6@
    Fraction of austenite available when the transformation of martensite starts
  4. In order to take into account the Boron added in the composition of the material, the functions of ferrite and pearlite are modified: the coefficients KF and KP, multiplies the weight percentage of Boron (B), respectively in ferrite and pearlite composition functions.
  5. This law can be used with /HEAT/MAT.
  6. This law is compatible with /PROP/TYPE1, /PROP/TYPE9, and /PROP/TYPE10.
  7. List of Animation output (/ANIM/SHELL/USRII/JJ):
    • USR 2= Austenite Phase Fraction
    • USR 3= Ferrite Phase Fraction
    • USR 4= Pearlite Phase Fraction
    • USR 5= Bainite Phase Fraction
    • USR 6= Martensite Phase Fraction
    • USR 7= Hardness
    • USR 8= Temperature
    • USR 9= Yield
    • USR 10= XGAMA in martensite equation
  8. Material phase transformations will occur only during the cooling. There is no material phase transformation due to deformation or heating.