/DFS/LASER

Block Format Keyword Enable to model laser impact taking into account laser-matter interaction. 1

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/DFS/LASER/laser_ID/unit_ID
SLAS fct_IDLAS STAR fct_IDTAR      
Hn VCp K0   Rd   KS  
Np Nc                
IEL1 IEL2 IEL3 IEL4 IEL5 IEL6 IEL7 IEL8 IEL9 IEL10
IEL11 etc IELNp              

Definitions

Field Contents SI Unit Example
laser_ID Laser line identifier.

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier

(Integer, maximum 10 digits)

 
SLAS Laser intensity scale factor.

(Real)

 
fct_IDLAS Laser intensity time function number.

(Real)

 
STAR Target absorption scale factor.

(Real)

 
fct_IDTAR Target absorption temperature function number.

(Integer)

[ K ]
Hn Plasma parameter.

H n = h v k B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaWGUbaabeaakiaad2dadaWcaaqaaiaadIgacqGHflY1caWG 2baabaGaam4AamaaBaaaleaacaWGcbaabeaaaaaaaa@3ED3@

Where,
h
Planck constant.
kB
Boltzmann constant.
v
Laser frequency.

(Real)

[ K ]
VCp Enthalpy of vaporization.

(Real)

[ J kgK ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WcaaqaaiaabQeaaeaacaqGRbGaae4zaiabgwSixlaabUeaaaaacaGL BbGaayzxaaaaaa@3DB3@
K0 Inverse bremsstrahlung coefficient K0. 6

(Real)

[ m 5 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca qGTbWaaWbaaSqabeaacaaI1aaaaaGccaGLBbGaayzxaaaaaa@39CC@
Rd Inverse bremsstrahlung coefficient R d k B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGsbWaaSbaaSqaaiaadsgaaeqaaaGcbaGaam4AamaaBaaaleaacaWG cbaabeaaaaaaaa@39DF@ . 6

(Real)

[ K ]
KS Compliment absorption in vapor. 5

(Real)

[ m 5 mole 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada Wcaaqaaiaab2gadaahaaWcbeqaaiaaiwdaaaaakeaacaqGTbGaae4B aiaabYgacaqGLbWaaWbaaSqabeaacaaIYaaaaaaaaOGaay5waiaaw2 faaaaa@3E88@
Np Number of plasma elements between laser and target.

(Integer)

 
Nc Target element number. 1

(Integer)

 
IELi List of plasma elements (i=1,..., Np). 3

(Integer)

 

Comments

  1. Laser-matter interaction requires material laws enabling different phases: solid, liquid, and gas. It also needs to have a correct behavior with high pressure (several megabars) and high temperatures (more than 10000K). /MAT/LAW26 (SESAM) must also be used.
  2. This option is available only in 2D analysis.
  3. Plasma elements must be entered in the order from laser to target.
  4. It is assumed the laser beam is perpendicular to the target.
  5. K S = 67000 ( ρ w A ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaWGtbaabeaakiabg2da9iaaiAdacaaI3aGaaGimaiaaicda caaIWaWaaeWaaeaadaWcaaqaaiabeg8aYbqaaiaadEhadaWgaaWcba GaamyqaaqabaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaa aaaa@42C3@ is taken from K. Daree's plasma ignition model.
  6. (1)
    I = I 0 n l a s e r n t a r g e t I a b s o r b e d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 da9iaadMeadaWgaaWcbaGaaGimaaqabaGccqGHsisldaaeWaqaaiaa dMeadaWgaaWcbaGaamyyaiaadkgacaWGZbGaam4BaiaadkhacaWGIb Gaamyzaiaadsgaaeqaaaqaaiaad6gadaWgaaadbaGaamiBaiaadgga caWGZbGaamyzaiaadkhaaeqaaaWcbaGaamOBamaaBaaameaacaWG0b GaamyyaiaadkhacaWGNbGaamyzaiaadshaaeqaaaqdcqGHris5aaaa @5170@
    (2)
    I a b s o r b e d = ( 1 e K Δ x ) I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaWGHbGaamOyaiaadohacaWGVbGaamOCaiaadkgacaWGLbGa amizaaqabaGccqGH9aqpdaqadaqaaiaaigdacqGHsislcaWGLbWaaW baaSqabeaacqGHsislcaWGlbGaeuiLdqKaamiEaaaaaOGaayjkaiaa wMcaaiaadMeaaaa@48AA@
    (3)
    K = 4 3 2 π 3 k B T n e n i Z 2 e 6 h c m e 3 2 v 3 ( 1 e h v k B T ) g f f = K 0 ( R d h v ) 3 ( R d k B T ) 1 2 ( n i 2 Z 3 ) ( 1 e h v k B T ) g f f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiabg2 da9maalaaabaGaaGinaaqaaiaaiodaaaWaaOaaaeaadaWcaaqaaiaa ikdacqaHapaCaeaacaaIZaGaam4AamaaBaaaleaacaWGcbaabeaaki aadsfaaaaaleqaaOWaaSaaaeaacaWGUbWaaSbaaSqaaiaadwgaaeqa aOGaamOBamaaBaaaleaacaWGPbaabeaakiaadQfadaahaaWcbeqaai aaikdaaaGccaWGLbWaaSbaaSqaaiaaiAdaaeqaaaGcbaGaamiAaiaa dogacaWGTbWaa0baaSqaaiaadwgaaeaadaWccaqaaiaaiodaaeaaca aIYaaaaaaakiaadAhadaahaaWcbeqaaiaaiodaaaaaaOWaaeWaaeaa caaIXaGaeyOeI0IaamyzamaaCaaaleqabaGaeyOeI0YaaSaaaeaaca WGObGaamODaaqaaiaadUgadaWgaaadbaGaamOqaaqabaWccaWGubaa aaaaaOGaayjkaiaawMcaaiaadEgacaWGMbGaamOzaiabg2da9iaadU eadaWgaaWcbaGaaGimaaqabaGcdaqadaqaamaalaaabaGaamOuamaa BaaaleaacaWGKbaabeaaaOqaaiaadIgacaWG2baaaaGaayjkaiaawM caamaaCaaaleqabaGaaG4maaaakmaabmaabaWaaSaaaeaacaWGsbWa aSbaaSqaaiaadsgaaeqaaaGcbaGaam4AamaaBaaaleaacaWGcbaabe aakiaadsfaaaaacaGLOaGaayzkaaWaaWbaaSqabeaadaWccaqaaiaa igdaaeaacaaIYaaaaaaakmaabmaabaGaamOBamaaDaaaleaacaWGPb aabaGaaGOmaaaakiaadQfadaahaaWcbeqaaiaaiodaaaaakiaawIca caGLPaaadaqadaqaaiaaigdacqGHsislcaWGLbWaaWbaaSqabeaacq GHsisldaWcaaqaaiaadIgacaWG2baabaGaam4AamaaBaaameaacaWG cbaabeaaliaadsfaaaaaaaGccaGLOaGaayzkaaGaam4zaiaadAgaca WGMbaaaa@7FCE@

    Usually, K 0 = 9.468 × 10 4 m 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaIWaaabeaakiabg2da9iaaiMdacaGGUaGaaGinaiaaiAda caaI4aGaey41aqRaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaais daaaGcciGGTbWaaWbaaSqabeaacaGG1aaaaaaa@43B8@ and R d k = 157750 K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGsbWaaSbaaSqaaiaadsgaaeqaaaGcbaGaam4AaaaacqGH9aqpcaaI XaGaaGynaiaaiEdacaaI3aGaaGynaiaaicdaciGGlbaaaa@3F38@ .