RD-E: 2601 Ruptured Plate - Failure Strain

Failure criteria defined in material LAW2 and LAW27.


ex_26_rup_plate
Figure 1.

In Radioss, one simple way to define material failure is by defining a failure strain in the material definition. In this example, a maximum plastic strain ε p m a x is defined in LAW2 and compared to LAW27 which uses a damage model based on strain. A model with one shell element is used to understand the failure definition. In a second model a metallic thick plate is perforated by a rigid sphere.

Options and Keywords Used

Input Files

The input files used in this example include:

<install_directory>/hwsolvers/demos/radioss/examples/26_Ruptured_plate/failure_strain/

Model Description

A one shell element is used to demonstrate the failure model.

The material undergoes an isotropic elasto-plastic behavior which can be reproduced by a Johnson-Cook model.

Material properties are:
Young's modulus
71000 [ MPa ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaai Gac2eacaGGqbGaaiyyaaGaay5waiaaw2faaaaa@3BE6@
Poisson's ratio
0.3
Density
2.8 x 10-3 g/mm3
Yield stress
290 [ MPa ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaai Gac2eacaGGqbGaaiyyaaGaay5waiaaw2faaaaa@3BE6@
Hardening parameter
562.3 [ MPa ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaai Gac2eacaGGqbGaaiyyaaGaay5waiaaw2faaaaa@3BE6@
Hardening exponent
0.63
Maximum stress
425

The maximum stress and the failure plastic strain are considered in the failure modeling section. The strain rate effect is not taken into account in this example. Although LAW2 and LAW27 both use a Johnson-Cook material model for elasto-plastic behavior, the failure definition included in the material law is different.

LAW2: Use Plastic Strain for Failure

In LAW2, the maximum plastic strain ε p m a x used for element failure. This means the shell element is deleted once it reaches the maximum plastic strain defined in the model. Unlike LAW27, there is no damage before failure and the failure can occur in both tension and compression.


Figure 2. Stress/Strain Curve for LAW2 with Maximum Plastic Strain

LAW27: Use a Damage Model

LAW27 is used to simulate material damage using a Johnson-Cook plasticity law. A damage model is incorporated into the material law to take into account the damage evolution where stress decreases up to element rupture. When using the material failure included in LAW27, the failure and damage occur only in tension and not compression.

The damage parameters in the principal direction i = 1 , 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9qqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbGaey ypa0JaaGymaiaacYcacaaIYaaaaa@3B63@ are ε t i , ε f i , ε m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9qqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamiDaiaadMgaaeqaaOGaaiilaiabew7aLnaaBaaaleaa caWGMbGaamyAaaqabaGccaGGSaGaeqyTdu2aaSbaaSqaaiaad2gaca WGPbaabeaaaaa@43D5@ .

ε t i = 0.14 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9qqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamiDaiaadMgaaeqaaOGaeyypa0JaaGimaiaac6cacaaI XaGaaGinaaaa@3EF7@ ; ε m i = 0.15 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9qqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamiDaiaadMgaaeqaaOGaeyypa0JaaGimaiaac6cacaaI XaGaaGinaaaa@3EF7@ ; ε f i = 0.16 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9qqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamiDaiaadMgaaeqaaOGaeyypa0JaaGimaiaac6cacaaI XaGaaGinaaaa@3EF7@

When the principal strain reaches ε t i = 0.14 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9qqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamiDaiaadMgaaeqaaOGaeyypa0JaaGimaiaac6cacaaI XaGaaGinaaaa@3EF7@ , the material damage starts, based on the damage face d i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGPbaabeaaaaa@37F9@ and d max i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9qqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbWaaS baaSqaaiGac2gacaGGHbGaaiiEaiaadMgaaeqaaaaa@3C1F@ , which are given by:(1) d i =min( ε i ε ti ε mi ε ti , d maxi ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9qqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaciyBaiaacMgacaGGUbWaaeWa aeaadaWcaaqaaiabew7aLnaaBaaaleaacaWGPbaabeaakiabgkHiTi abew7aLnaaBaaaleaacaWG0bGaamyAaaqabaaakeaacqaH1oqzdaWg aaWcbaGaamyBaiaadMgaaeqaaOGaeyOeI0IaeqyTdu2aaSbaaSqaai aadshacaWGPbaabeaaaaGccaGGSaGaamizamaaBaaaleaaciGGTbGa aiyyaiaacIhacaWGPbaabeaaaOGaayjkaiaawMcaaaaa@5441@

In directions, i = 1 , 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9qqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbGaey ypa0JaaGymaiaacYcacaaIYaaaaa@3B63@ .

The stress is then reduced using the damage parameter, σ i r e d u c e d = σ i ( 1 d i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHdpWCpaWaa0baaSqaa8qacaWGPbaapaqaa8qacaWGYbGaamyz aiaadsgacaWG1bGaam4yaiaadwgacaWGKbaaaOGaeyypa0Jaeq4Wdm 3damaaBaaaleaapeGaamyAaaWdaeqaaOWdbmaabmaapaqaa8qacaaI XaGaeyOeI0Iaamiza8aadaWgaaWcbaWdbiaadMgaa8aabeaaaOWdbi aawIcacaGLPaaaaaa@4982@ .

The damage factor in the first principal direction is a function of principal strain:(2) d i = min ( ε i 0.14 0.15 0.14 , 0.999 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9qqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaciyBaiaacMgacaGGUbWaaeWa aeaadaWcaaqaaiabew7aLnaaBaaaleaacaWGPbaabeaakiabgkHiTi aaicdacaGGUaGaaGymaiaaisdaaeaacaaIWaGaaiOlaiaaigdacaaI 1aGaeyOeI0IaaGimaiaac6cacaaIXaGaaGinaaaacaGGSaGaaGimai aac6cacaaI5aGaaGyoaiaaiMdaaiaawIcacaGLPaaaaaa@5080@


Figure 3. Stress/Strain Curve for Damage Affected Material

Results

One Element Shell Model

In order to show the difference between LAW2 and LAW27, uniaxial and eqibiaxial loads are applied to a one element shell model.
  • Test 1: Uniaxial test
    With ε f 1 i n L A W 27 = ( ε e + ε p max ) i n L A W 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9qqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamOzaiaaigdaaeqaaOqbaeqabeqaaaqaaaaacaWGPbGa amOBauaabeqabeaaaeaaaaGaamitaiaadgeacaWGxbGaaGOmaiaaiE dacqGH9aqpcaGGOaGaeqyTdu2aaSbaaSqaaiaadwgaaeqaaOGaey4k aSIaeqyTdu2aa0baaSqaaiaadchaaeaaciGGTbGaaiyyaiaacIhaaa GccaGGPaqbaeqabeqaaaqaaaaacaWGPbGaamOBauaabeqabeaaaeaa aaGaamitaiaadgeacaWGxbGaaGOmaaaa@5187@
    • In LAW27, ε t i , ε m i , ε f i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9qqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamiDaiaadMgaaeqaaOGaaiilaiabew7aLnaaBaaaleaa caWGTbGaamyAaaqabaGccaGGSaGaeqyTdu2aaSbaaSqaaiaadAgaca WGPbaabeaaaaa@43D5@ are total strain.
    • In LAW2, ε p m a x is plastic strain.
    In one shell element set:
    • In LAW27, ε f 1 = 0.16 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9qqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamOzaiaaigdaaeqaaOGaeyypa0JaaGimaiaac6cacaaI XaGaaGOnaaaa@3EB8@
    • In LAW2, ε p max = 0.1559 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9qqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda qhaaWcbaGaamiCaaqaaiGac2gacaGGHbGaaiiEaaaakiabg2da9iaa icdacaGGUaGaaGymaiaaiwdacaaI1aGaaGyoaaaa@425D@
    So that element deleted at same strain.(3) ε t o t a l = ε e + ε p = σ y E + 0.1559 = 290 71000 + 0.1559 = 0.16 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9qqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamiDaiaad+gacaWG0bGaamyyaiaadYgaaeqaaOGaeyyp a0JaeqyTdu2aaSbaaSqaaiaadwgaaeqaaOGaey4kaSIaeqyTdu2aaS baaSqaaiaadchaaeqaaOGaeyypa0ZaaSaaaeaacqaHdpWCdaWgaaWc baGaamyEaaqabaaakeaacaWGfbaaaiabgUcaRiaaicdacaGGUaGaaG ymaiaaiwdacaaI1aGaaGyoaiabg2da9maalaaabaGaaGOmaiaaiMda caaIWaaabaGaaG4naiaaigdacaaIWaGaaGimaiaaicdaaaGaey4kaS IaaGimaiaac6cacaaIXaGaaGynaiaaiwdacaaI5aGaeyypa0JaaGim aiaac6cacaaIXaGaaGOnaaaa@5FB4@
    Although the element is deleted at same strain the internal energy at failure is different for LAW2 and LAW27, due to the difference the failure treatment.


    Figure 4. Stress versus Strain Curve . showing the failure strain in LAW2 and LAW27


    Figure 5. Internal Energy Curve of the Element in LAW2 and LAW27
  • Test 2: Equibiaxial test
    The failure strain values from the uniaxial test are used in a equibiaxial test.
    • In LAW27, ε f 1 = 0.16 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9qqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamOzaiaaigdaaeqaaOGaeyypa0JaaGimaiaac6cacaaI XaGaaGOnaaaa@3EB8@
    • In LAW2, ε p max = 0.1559 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9qqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda qhaaWcbaGaamiCaaqaaiGac2gacaGGHbGaaiiEaaaakiabg2da9iaa icdacaGGUaGaaGymaiaaiwdacaaI1aGaaGyoaaaa@425D@
    Figure 6. Stress/Plastic Strain Curve for LAW2 and LAW27


    In biaxial loading, the element deletion is different for LAW2 and LAW27, due to different failure treatment in LAW2 and LAW27. In LAW2, the element is deleted when ε p m a x is reached in the element. The change in plastic strain is:(4) ε ˙ p Δ t = σ V M σ y E = 1 2 [ ( σ 1 σ 2 ) 2 + σ 1 2 + σ 2 2 ] E σ y E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9qqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacuaH1oqzga GaamaaBaaaleaacaWGWbaabeaakiabgwSixlabfs5aejaadshacqGH 9aqpdaWcaaqaaiabeo8aZnaaBaaaleaacaWGwbGaamytaaqabaGccq GHsislcqaHdpWCdaWgaaWcbaGaamyEaaqabaaakeaacaWGfbaaaiab g2da9maalaaabaWaaOaaaeaadaWcaaqaaiaaigdaaeaacaaIYaaaam aadmaabaWaaeWaaeaacqaHdpWCdaWgaaWcbaGaaGymaaqabaGccqGH sislcqaHdpWCdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaada ahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaHdpWCdaWgaaWcbaGaaGym aaqabaGcdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaHdpWCdaWgaa WcbaGaaGOmaaqabaGcdaahaaWcbeqaaiaaikdaaaaakiaawUfacaGL DbaaaSqabaaakeaacaWGfbaaaiabgkHiTmaalaaabaGaeq4Wdm3aaS baaSqaaiaadMhaaeqaaaGcbaGaamyraaaaaaa@6457@

    For Iplas=2 radial return. For additional information, refer to Stress and Strain Calculation in the Theory Manual.

In LAW27, the element is deleted when the strain in each principal direction exceeds ε f i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadAgacaWGPbaabeaaaaa@39A2@ . The first principal strain in LAW27 is:(5) ε 1 = σ 1 ( 1 d 1 )E ν σ 2 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9qqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaaGymaaqabaGccqGH9aqpdaWcaaqaaiabeo8aZnaaBaaa leaacaaIXaaabeaaaOqaamaabmaabaGaaGymaiabgkHiTiaadsgada WgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacaWGfbaaaiabgkHi TmaalaaabaGaeqyVd4Maeq4Wdm3aaSbaaSqaaiaaikdaaeqaaaGcba Gaamyraaaaaaa@49B3@

The second principal strain is calculated in a similar manner.

Plate Impact Model

If the previous failure strains definitions in a plate example is used, the results are also different.

fig_26-7
Figure 7. Failure Behavior in Plate Test. left: LAW2; right: LAW27
The previous one element biaxial tension test showed the differences in LAW2 and LAW27 in tension. Since LAW27 does not fail in compression, but LAW2 does fail in compression, this causes a difference in the plate example shown in Figure 7.
Note: The property option Istrain =1 must be defined, so that the strains are calculated and output for post-processing. This can be defined for all shell elements using /DEF_SHELL.
During the simulation, time of element failure is written to the Engine output file runname_0001.out.
  • For LAW2, the message is: RUPTURE OF SHELL ELEMENT NUMBER #
  • For LAW27, the message is: TOTAL ELEMENT TENSION FAILURE, ELEMENT #

Conclusion

Although LAW2 and LAW27 both use Johnson-Cook to describe elasto-plastic behavior, they use different failure treatment. LAW2 checks with plastic strain and LAW27 checks with principal strain. LAW27 uses damage parameter d to produce linear failure; which makes it difficult to get the same failure behavior between them.