MATHE

Bulk Data Entry Defines material properties for nonlinear hyperelastic materials. The Polynomial form is available and various material types 3 can be defined by specifying the corresponding coefficients.

Format A

Generalized Mooney-Rivlin Polynomial (MOONEY), Reduced Polynomial (RPOLY), Physical Mooney-Rivlin (MOOR), Neo-Hookean (NEOH), and Yeoh Model (YEOH):
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATHE MID Model   NU RHO TEXP TREF    
  C10 C01 D TAB1 TAB2   TAB4 TABD  
  C20 C11 C02 D NA ND      
  C30 C21 C12 C03 D        
  C40 C31 C22 C13 C04 D      
  C50 C41 C32 C23 C14 C05 D    

Format B

Arruda-Boyce Model (Model=ABOYCE):
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATHE MID Model   NU RHO TEXP TREF    
  C λmλm   TAB1 TAB2   TAB4    
  D                

Format C

Ogden Material Model (Model=OGDEN):
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATHE MID Model NA NU RHO TEXP TREF    
  MU1 ALPHA1 D TAB1 TAB2   TAB4    
  MU2 ALPHA2   MU3 ALPHA3        
  MU4 ALPHA4   MU5 ALPHA5        

Format D

Hill Foam Material Model (Model=FOAM):
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATHE MID Model NA NU RHO TEXP TREF    
  MU1 ALPHA1 BETA1 TAB1 TAB2   TAB4    
  MU2 ALPHA2 BETA2 MU3 ALPHA3 BETA3      
  MU4 ALPHA4 BETA4 MU5 ALPHA5 BETA5      

Example

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATHE 2 MOONEY              
  80 20 0.001            

Definitions

Field Contents SI Unit Example
MID Unique material identification number.

No default (Integer > 0)

 
Model Hyperelastic material model type.
MOONEY (Default)
Selects the generalized Mooney-Rivlin hyperelastic model
MOOR
Physical Mooney-Rivlin model
RPOLY
Reduced Polynomial model
NEOH
Neo-Hookean model
YEOH
Yeoh model
ABOYCE
Selects the Arruda-Boyce material model
OGDEN
Ogden material model
FOAM
Hill foam model
blank

(Character)

 
NU Poisson's ratio.

Default = 0.495 (Real)

 
RHO Material density.

No default (Real)

 
TEXP Coefficient of thermal expansion.

No default (Real)

 
TREF Reference temperature.

No default (Real)

 
NA Order of the distortional strain energy polynomial function if the type of the model is generalized polynomial (MOONEY) or Reduced Polynomial (RPOLY).

It is also the Order of the Deviatoric Part of the Strain Energy Function of the OGDEN material (Format C).

Default = 2 (0 < Integer ≤ 5)

 
ND Order of the volumetric strain energy polynomial function. 3

Default = 1 (Integer > 0)

 
Cpq Material constants related to distortional deformation.

No default (Real)

 
Dp Material constant related to volumetric deformation (MODEL=BOYCE).

No defaults (Real ≥ 0.0)

 
TAB1 Table identification number of a TABLES1 entry that contains simple tension-compression data to be used in the estimation of the material constants, Cpq, related to distortional deformation. The x-values in the TABLES1 entry should be the stretch ratios and y-values should be values of the engineering stress.

(Integer > 0 or blank)

 
TAB2 Table identification number of a TABLES1 entry that contains equi-biaxial tension data to be used in the estimation of the material constants, Cpq, related to distortional deformation. The x-values in the TABLES1 entry should be the stretch ratios and y-values should be values of the engineering stress.

(Integer > 0 or blank)

 
TAB4 Table identification number of a TABLES1 entry that contains pure shear data to be used in the estimation of the material constants, Cpq, related to distortional deformation. The x-values in the TABLES1 entry should be the stretch ratios and y-values should be values of the nominal stress.

(Integer > 0 or blank)

 
TABD Table identification number of a TABLES1 entry that contains Volumetric part (Dp) of the data to be used in the estimation of the material constants. The x-values in the TABLES1 entry should be the pressure and y-values should be values of the volumetric change. TABD can only be used to fit Volumetric data for Format A, additionally, only first-order fitting is currently supported (only D1 value is sourced from the TABD data).

(Integer > 0 or blank)

 
C Initial shear modulus (Model = ABOYCE). 5

No default (Real)

 
λmλm Maximum locking stretch.

Used to calculate the value of ββ (Model = ABOYCE). 5

No default (Real)

 
MUi, ALPHAi Material Constants for the Ogden Material Model (Model = OGDEN) 6; or

Hill Foam Material Model (Model = FOAM. 7

 
BETAi Material Constants for Hill Foam Material Model (Model=FOAM). 7  

Comments

  1. If the Cpq and TAB# fields are input, the Cpq (≠ 0.0) values are overwritten with the curve fit values based on the corresponding TAB# tables. However, any Cpq values set to 0.0 are not overwritten.
  2. The Generalized polynomial form (MOONEY) of the Hyperelastic material model is written as a combination of the deviatoric and volumetric strain energy of the material. The potential or strain energy density ( WW ) is written in polynomial form, as:
    Generalized polynomial form (MOONEY): (1)
    W=N1p+q=1Cpq(ˉI13)p(ˉI23)q+N2p=11Dp(Jelas1)2pW=N1p+q=1Cpq(¯I13)p(¯I23)q+N2p=11Dp(Jelas1)2p
    Where,
    N1N1
    Order of the distortional strain energy polynomial function (NA).
    N2N2
    Order of the volumetric strain energy polynomial function (ND). Currently only first order volumetric strain energy functions are supported (ND=1).
    CpqCpq
    The material constants related to distortional deformation ( CpqCpq ).
    ˉI1¯I1 , ˉI2¯I2
    Strain invariants, calculated internally by OptiStruct.
    DpDp
    Material constants related to volumetric deformation ( DpDp ). These values define the compressibility of the material.
    JelasJelas
    Elastic volume strain, calculated internally by OptiStruct.
  3. The polynomial form can be used to model the following material types by specifying the corresponding coefficients ( CpqCpq , DpDp ) on the MATHE entry.

    Physical Mooney-Rivlin Material (MOOR):

    N1 = N2 =1 (2)
    W=C10(ˉI13)+C01(ˉI23)+1D1(Jelas1)2W=C10(¯I13)+C01(¯I23)+1D1(Jelas1)2

    Reduced Polynomial (RPOLY):

    q=0, N2 =1(3)
    W=N1p=1Cp0(ˉI13)p+1D1(Jelas1)2W=N1p=1Cp0(¯I13)p+1D1(Jelas1)2

    Neo-Hooken Material (NEOH):

    N1= N2 =1, q=0(4)
    W=C10(ˉI13)+1D1(Jelas1)2W=C10(¯I13)+1D1(Jelas1)2

    Yeoh Material (YEOH):

    N1 =3 N2 =1, q=0(5)
    W=C10(ˉI13)+1D1(Jelas1)2+C20(ˉI13)2+C30(ˉI13)3W=C10(¯I13)+1D1(Jelas1)2+C20(¯I13)2+C30(¯I13)3

    Some other material models from the Generalized Mooney Rivlin model are:

    Three term Mooney-Rivlin Material: (6)
    W=C10(ˉI13)+C01(ˉI23)+C11(ˉI13)(ˉI23)+1D1(Jelas1)2W=C10(¯I13)+C01(¯I23)+C11(¯I13)(¯I23)+1D1(Jelas1)2
    Signiorini Material: (7)
    W=C10(ˉI13)+C01(ˉI23)+C20(ˉI13)2+1D1(Jelas1)2W=C10(¯I13)+C01(¯I23)+C20(¯I13)2+1D1(Jelas1)2
    Third Order Invariant Material: (8)
    W=C10(ˉI13)+C01(ˉI23)+C11(ˉI13)(ˉI23)+C20(ˉI13)2+1D1(Jelas1)2W=C10(¯I13)+C01(¯I23)+C11(¯I13)(¯I23)+C20(¯I13)2+1D1(Jelas1)2
    Third Order Deformation Material (James-Green-Simpson): (9)
    W=C10(ˉI13)+C01(ˉI23)+C11(ˉI13)(ˉI23)+C20(ˉI13)2+C30(ˉI13)3+1D1(Jelas1)2
  4. The MATHE hyperelastic material supports CTETRA (4, 10), CPENTA (6, 15), and CHEXA (8, 20) element types.
  5. The Arruda-Boyce model (ABOYCE) is defined as: (10)
    W=C15i=1αiβi1(ˉIi13i)+1D1(Jelas1)2

    Where,

    β=1N=1λ2m
    N
    Measure of the limiting locking stretch.
    λm
    Maximum locking stretch.
    D1
    Related to volumetric deformation. It defines the compressibility of the material.
    ˉI1
    First strain invariant, internally calculated by OptiStruct.
    Wherein, ˉI1=I1J23 .
    Jelas
    Elastic volume strain, internally calculated by OptiStruct.
    C1
    Initial shear modulus.

    α1=12;α2=120;α3=111050;α4=197000;α5=519673750

  6. The Ogden Material model (OGDEN) is defined as: (11)
    W=N1i=12μiα2i(ˉλαi1+ˉλαi2+ˉλαi33)+1D1(Jelas1)2
    Where,
    ˉλ1,ˉλ2,ˉλ3
    The three deviatoric stretches (deviatoric stretches are related to principal stretches by ˉλi=J13λi )
    μi
    Defined by the MUi fields
    αi
    Defined by the ALPHAi fields
    N1
    Order of the deviatoric part of the strain energy function defined on the NA field
  7. The Hill Foam Material model (FOAM) is defined as:(12)
    W=N1i=12μiα2i(λαi1+λαi2+λαi33+1βi(Jαiβi1))
    Where,
    λ1,λ2,λ3
    Principle stretches
    μi
    Defined by the MUi fields
    αi
    Defined by the ALPHAi fields
    βi
    Defined by the BETAi fields
    N1
    Order of the strain energy function defined on the NA field.

    Currently, the Hill material model is only supported for explicit analysis.

  8. This card is represented as a material in HyperMesh.