/MAT/LAW92
Block Format Keyword This law describes the Arruda-Boyce material model, which can be used to model hyperelastic behavior.
A stress vs strain curve can be defined as an input function in order to determine the material parameters by fitting this curve. This law is only compatible with solid elements.
Format
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
/MAT/LAW92/mat_ID/unit_ID | |||||||||
mat_title | |||||||||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
D |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
Itype | fct_ID | Fscale |
Definitions
Field | Contents | SI Unit Example |
---|---|---|
mat_ID | Material identifier. (Integer, maximum 10 digits) |
|
unit_ID | Unit Identifier. (Integer, maximum 10 digits) |
|
mat_title | Material title. (Character, maximum 100 characters) |
|
Initial density. (Real) |
||
Shear modulus. (Real) |
||
D | Material parameter for bulk modulus
computation
. Default =1030 (Real) |
|
The limit of stretch Default = 7.0 (Real) |
||
Itype | Test data type (stress strain curve).
(Integer) |
|
fct_ID | Function identifier defining engineer
stress vs engineer strain. (Integer) |
|
Poisson's ratio. Default = 0.495 (Real) |
||
Fscale | Scale factor for ordinate (stress) in
function fct_ID Default = 1.0 (Real) |
Example (Rubber with Parameter Input)
#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
Mg mm s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#- 2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW92/1/1
Generic RUBBER
# RHO_I
1.000E-9
# mu D LAM
2.8000E+01 1.4000E-1 1000.
# IType fct_ID NU Fscale
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
Example (Rubber with Function Input)
#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
Mg mm s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#- 2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW92/1/1
rubber
# RHO_I
1.000E-9
# mu D LAM
# IType fct_ID NU Fscale
1 2 0.495
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/2
LAW92 e.strain vs e.stress from uniaxial test(IType=1)
# X Y
0 0
.03 .30
.06 .55
.10 .80
.20 1.4
.30 2.0
.50 2.7
.70 3.4
1.0 4.0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
Comments
- The
Arruda-Boyce energy density.
(1) With(2) and(3) with
The Cauchy stress is computed as:(4) - If the
stress strain curve fct_ID then the material parameters in line 3,
, D and
must be defined and the line 4 input is not used. Poisson’s
ratio is then calculated from the input as:
(5) The bulk modulus is calculated as:(6) Note: For positive values of shear modulus, , and Limit of stretch, , this model is always stable. - If the stress strain curve,
fct_ID, is defined then the line 3 input parameters
, D and
are ignored and are automatically identified by fitting of the
provided stress vs strain curve.A nonlinear least squares algorithm is used to fit the Arruda-Boyce parameters. The model is fully incompressible in fitting the Arruda-Boyce constants to the test data, except in the volumetric test.
(7) Where E is relative error. The material constants are obtained using a least-squares-fit procedure to minimize the relative error between the theoretical nominal stress and given experimental data.(8) Where, is a stress value from the test data and is the theoretical nominal stress given by for each engineer strain i.(9) The nominal stress is computed for each mode assuming the full incompressibility:(10) - Uniaxial Mode:
(11) So(12) - Equibiaxial Mode:
(13) So(14) - Planar (Shear Mode):
(15) So(16)
- Uniaxial Mode:
- /VISC/PRONY must be used with LAW92 to include viscous effects.