/MAT/LAW92

Block Format Keyword This law describes the Arruda-Boyce material model, which can be used to model hyperelastic behavior.

A stress vs strain curve can be defined as an input function in order to determine the material parameters by fitting this curve. This law is only compatible with solid elements.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW92/mat_ID/unit_ID
mat_title
ρ i                
Parameter input
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
μ D λ m    
Function input
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Itype fct_ID ν Fscale    

Definitions

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier.

(Integer, maximum 10 digits)

 
mat_title Material title.

(Character, maximum 100 characters)

 
ρ i Initial density.

(Real)

[ kg m 3 ]
μ Shear modulus.

(Real)

[ Pa ]
D Material parameter for bulk modulus computation K = 2 D .

Default =1030 (Real)

[ 1 P a ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaaGymaaqaaiaaccfacaGGHbaaaaGaay5waiaaw2faaaaa @3AD5@
λ m The limit of stretch

Default = 7.0 (Real)

 
Itype Test data type (stress strain curve).
= 1 (Default)
Uniaxial data test
= 2
Equibiaxial data test
= 3
Planar data test

(Integer)

 
fct_ID Function identifier defining engineer stress vs engineer strain.

(Integer)

 
ν Poisson's ratio.

Default = 0.495 (Real)

 
Fscale Scale factor for ordinate (stress) in function fct_ID

Default = 1.0 (Real)

[ Pa ]

Example (Rubber with Parameter Input)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                  Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW92/1/1
Generic RUBBER
#              RHO_I
            1.000E-9 
#                 mu                   D                 LAM           
          2.8000E+01           1.4000E-1               1000.                 
#    IType    fct_ID                  NU              Fscale

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Example (Rubber with Function Input)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                  Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW92/1/1
rubber
#              RHO_I
            1.000E-9 
#                 mu                   D                 LAM           
                 
#    IType    fct_ID                  NU              Fscale
         1         2               0.495
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/2
LAW92  e.strain vs  e.stress from uniaxial test(IType=1) 
#                  X                   Y
                   0                   0                                                            
                 .03                 .30                                                           
                 .06                 .55                                                            
                 .10                 .80
                 .20                 1.4
                 .30                 2.0
                 .50                 2.7
                 .70                 3.4
                 1.0                 4.0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. The Arruda-Boyce energy density.(1)
    W = μ i = 1 5 c i ( λ m ) 2 i 2 ( I ¯ 1 i 3 i ) + 1 D ( J 2 1 2 + ln ( J ) )
    With(2)
    c 1 = 1 2 , c 2 = 1 20 , c 3 = 11 1050 , c 4 = 19 7000 , c 5 = 519 673750
    and (3)
    I ¯ 1 = λ ¯ 1 2 + λ ¯ 2 2 + λ ¯ 3 2

    with λ ¯ k = J 1 / 3 λ J = λ 1 λ 2 λ 3

    The Cauchy stress is computed as:(4)
    σ i = λ i J W λ i
  2. If the stress strain curve fct_ID then the material parameters in line 3, μ , D and λ m must be defined and the line 4 input is not used. Poisson’s ratio is then calculated from the input as:(5)
    ν = 3 K 2 μ 6 K + 2 μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBcq GH9aqpdaWcaaqaaiaaiodacaWGlbGaeyOeI0IaaGOmaiabeY7aTbqa aiaaiAdacaWGlbGaey4kaSIaaGOmaiabeY7aTbaaaaa@42FD@
    The bulk modulus is calculated as:(6)
    K = 2 D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbGaey ypa0ZaaSaaaeaacaaIYaaabaGaamiraaaaaaa@39CA@
    Note: For positive values of shear modulus, μ , and Limit of stretch, λ m , this model is always stable.
  3. If the stress strain curve, fct_ID, is defined then the line 3 input parameters μ , D and λ m are ignored and are automatically identified by fitting of the provided stress vs strain curve.
    A nonlinear least squares algorithm is used to fit the Arruda-Boyce parameters. The model is fully incompressible in fitting the Arruda-Boyce constants to the test data, except in the volumetric test.(7)
    E= k=1 ndata ( N k test N k th N k test ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbGaey ypa0ZaaabCaeaadaqadaqaamaalaaabaGaamOtamaaDaaaleaacaWG RbaabaGaamiDaiaadwgacaWGZbGaamiDaaaakiabgkHiTiaad6eada qhaaWcbaGaam4AaaqaaiaadshacaWGObaaaaGcbaGaamOtamaaDaaa leaacaWGRbaabaGaamiDaiaadwgacaWGZbGaamiDaaaaaaaakiaawI cacaGLPaaaaSqaaiaadUgacqGH9aqpcaaIXaaabaGaamOBaiaadsga caWGHbGaamiDaiaadggaa0GaeyyeIuoakmaaCaaaleqabaGaaGOmaa aaaaa@54B8@
    Where E is relative error. The material constants are obtained using a least-squares-fit procedure to minimize the relative error between the theoretical nominal stress and given experimental data.(8)
    λ 1 = λ 2 = λ and λ 3 = λ 2 with λ = 1 + ε
    Where, N k test is a stress value from the test data and N i th is the theoretical nominal stress given by for each engineer strain i.(9)
    N k th = W λ k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGobWaa0 baaSqaaiaadUgaaeaacaWG0bGaamiAaaaakiabg2da9maalaaabaGa eyOaIyRaam4vaaqaaiabgkGi2kabeU7aSnaaBaaaleaacaWGRbaabe aaaaaaaa@41CD@
    The nominal stress is computed for each mode assuming the full incompressibility:(10)
    J = λ 1 λ 2 λ 3 = 1
    • Uniaxial Mode:
      (11)
      λ 1 = λ and λ 2 = λ 3 = λ 1 2 with λ = 1 + ε
      So(12)
      N th = W λ = 2 μ ( λ λ 2 ) i = 1 5 ic i ( λ m ) 2 i 2 I ¯ 1 i 1 with I ¯ 1 = λ 2 + 2 λ
    • Equibiaxial Mode:
      (13)
      λ 1 = λ 2 = λ and λ 3 = λ 2 with λ = 1 + ε
      So(14)
      N th = W λ = 2 μ ( λ λ 5 ) i = 1 5 ic i ( λ m ) 2 i 2 I ¯ 1 i 1 with I ¯ 1 = 2 λ 2 + 1 λ 4
    • Planar (Shear Mode):
      (15)
      λ 1 = λ , λ 3 = 1 and λ 2 = λ 1 with λ = 1 + ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBda WgaaWcbaGaaGymaaqabaGccqGH9aqpcqaH7oaBcaaMe8Uaaiilaiaa ysW7cqaH7oaBdaWgaaWcbaGaaG4maaqabaGccqGH9aqpcaaIXaGaaG zbVlaabggacaqGUbGaaeizaiaaywW7cqaH7oaBdaWgaaWcbaGaaGOm aaqabaGccqGH9aqpcqaH7oaBdaahaaWcbeqaaiabgkHiTiaaigdaaa GccaaMb8UaaGzbVlaabEhacaqGPbGaaeiDaiaabIgacaaMf8Uaeq4U dWMaeyypa0JaaGymaiabgUcaRiabew7aLbaa@5F73@
      So (16)
      N th = W λ = 2 μ ( λ λ 3 ) i = 1 5 ic i ( λ m ) 2 i 2 I ¯ 1 i 1 with I ¯ 1 = λ 2 + 1 + λ 2
  4. /VISC/PRONY must be used with LAW92 to include viscous effects.