/MAT/LAW92

Block Format Keyword This law describes the Arruda-Boyce material model, which can be used to model hyperelastic behavior.

A stress vs strain curve can be defined as an input function in order to determine the material parameters by fitting this curve. This law is only compatible with solid elements.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW92/mat_ID/unit_ID
mat_title
ρi                
Parameter input
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
μ D λm    
Function input
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Itype fct_ID ν Fscale    

Definitions

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier.

(Integer, maximum 10 digits)

 
mat_title Material title.

(Character, maximum 100 characters)

 
ρi Initial density.

(Real)

[kgm3]
μ Shear modulus.

(Real)

[Pa]
D Material parameter for bulk modulus computation K=2D .

Default =1030 (Real)

[1Pa] MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaamaalaaabaGaaGymaaqaaiaaccfacaGGHbaaaaGaay5waiaaw2faaaaa @3AD5@
λm The limit of stretch

Default = 7.0 (Real)

 
Itype Test data type (stress strain curve).
= 1 (Default)
Uniaxial data test
= 2
Equibiaxial data test
= 3
Planar data test

(Integer)

 
fct_ID Function identifier defining engineer stress vs engineer strain.

(Integer)

 
ν Poisson's ratio.

Default = 0.495 (Real)

 
Fscale Scale factor for ordinate (stress) in function fct_ID

Default = 1.0 (Real)

[Pa]

Example (Rubber with Parameter Input)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                  Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW92/1/1
Generic RUBBER
#              RHO_I
            1.000E-9 
#                 mu                   D                 LAM           
          2.8000E+01           1.4000E-1               1000.                 
#    IType    fct_ID                  NU              Fscale

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Example (Rubber with Function Input)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                  Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW92/1/1
rubber
#              RHO_I
            1.000E-9 
#                 mu                   D                 LAM           
                 
#    IType    fct_ID                  NU              Fscale
         1         2               0.495
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/2
LAW92  e.strain vs  e.stress from uniaxial test(IType=1) 
#                  X                   Y
                   0                   0                                                            
                 .03                 .30                                                           
                 .06                 .55                                                            
                 .10                 .80
                 .20                 1.4
                 .30                 2.0
                 .50                 2.7
                 .70                 3.4
                 1.0                 4.0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. The Arruda-Boyce energy density.(1)
    W=μi=15ci(λm)2i2(I¯1i3i)+1D(J212+ln(J))
    With(2)
    c1=12,c2=120,c3=111050,c4=197000,c5=519673750
    and (3)
    I¯1=λ¯12+λ¯22+λ¯32

    with λ¯k=J1/3λJ=λ1λ2λ3

    The Cauchy stress is computed as:(4)
    σi=λiJWλi
  2. If the stress strain curve fct_ID then the material parameters in line 3, μ , D and λm must be defined and the line 4 input is not used. Poisson’s ratio is then calculated from the input as:(5)
    ν=3K2μ6K+2μ MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBcqGH9aqpdaWcaaqaaiaaiodacaWGlbGaeyOeI0IaaGOmaiabeY7aTbqaaiaaiAdacaWGlbGaey4kaSIaaGOmaiabeY7aTbaaaaa@42FD@
    The bulk modulus is calculated as:(6)
    K=2D MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbGaeyypa0ZaaSaaaeaacaaIYaaabaGaamiraaaaaaa@39CA@
    Note: For positive values of shear modulus, μ , and Limit of stretch, λm , this model is always stable.
  3. If the stress strain curve, fct_ID, is defined then the line 3 input parameters μ , D and λm are ignored and are automatically identified by fitting of the provided stress vs strain curve.
    A nonlinear least squares algorithm is used to fit the Arruda-Boyce parameters. The model is fully incompressible in fitting the Arruda-Boyce constants to the test data, except in the volumetric test.(7)
    E=k=1ndata(NktestNkthNktest)2 MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbGaeyypa0ZaaabCaeaadaqadaqaamaalaaabaGaamOtamaaDaaaleaacaWGRbaabaGaamiDaiaadwgacaWGZbGaamiDaaaakiabgkHiTiaad6eadaqhaaWcbaGaam4AaaqaaiaadshacaWGObaaaaGcbaGaamOtamaaDaaaleaacaWGRbaabaGaamiDaiaadwgacaWGZbGaamiDaaaaaaaakiaawIcacaGLPaaaaSqaaiaadUgacqGH9aqpcaaIXaaabaGaamOBaiaadsgacaWGHbGaamiDaiaadggaa0GaeyyeIuoakmaaCaaaleqabaGaaGOmaaaaaaa@54B8@
    Where E is relative error. The material constants are obtained using a least-squares-fit procedure to minimize the relative error between the theoretical nominal stress and given experimental data.(8)
    λ1=λ2=λandλ3=λ2withλ=1+ε
    Where, Nktest is a stress value from the test data and Nith is the theoretical nominal stress given by for each engineer strain i.(9)
    Nkth=Wλk MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGobWaa0baaSqaaiaadUgaaeaacaWG0bGaamiAaaaakiabg2da9maalaaabaGaeyOaIyRaam4vaaqaaiabgkGi2kabeU7aSnaaBaaaleaacaWGRbaabeaaaaaaaa@41CD@
    The nominal stress is computed for each mode assuming the full incompressibility:(10)
    J=λ1λ2λ3=1
    • Uniaxial Mode:
      (11)
      λ1=λandλ2=λ3=λ12withλ=1+ε
      So(12)
      Nth=Wλ=2μ(λλ2)i=15ici(λm)2i2I¯1i1withI¯1=λ2+2λ
    • Equibiaxial Mode:
      (13)
      λ1=λ2=λandλ3=λ2withλ=1+ε
      So(14)
      Nth=Wλ=2μ(λλ5)i=15ici(λm)2i2I¯1i1withI¯1=2λ2+1λ4
    • Planar (Shear Mode):
      (15)
      λ1=λ,λ3=1andλ2=λ1withλ=1+ε MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaaWcbaGaaGymaaqabaGccqGH9aqpcqaH7oaBcaaMe8UaaiilaiaaysW7cqaH7oaBdaWgaaWcbaGaaG4maaqabaGccqGH9aqpcaaIXaGaaGzbVlaabggacaqGUbGaaeizaiaaywW7cqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcqaH7oaBdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaaMb8UaaGzbVlaabEhacaqGPbGaaeiDaiaabIgacaaMf8Uaeq4UdWMaeyypa0JaaGymaiabgUcaRiabew7aLbaa@5F73@
      So (16)
      Nth=Wλ=2μ(λλ3)i=15ici(λm)2i2I¯1i1withI¯1=λ2+1+λ2
  4. /VISC/PRONY must be used with LAW92 to include viscous effects.