/MAT/LAW44 (COWPER)

Block Format Keyword The Cowper-Symonds law models an elasto-plastic material. The basic principle is the same as the standard Johnson-Cook model; the only difference between the two laws lies in the expression for strain rate effect on flow stress.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW44/mat_ID/unit_ID or /MAT/COWPER/mat_ID/unit_ID
mat_title
ρ i                
E ν            
a b n Chard σ max 0
c p ICC Fsmooth Fcut    
ε p m a x εt1 εt2        

Definitions

Field Contents SI Unit Example
mat_ID Material identifier

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier

(Integer, maximum 10 digits)

 
mat_title Material title

(Character, maximum 100 characters)

 
ρ i Initial density

(Real)

[ kg m 3 ]
E Young's modulus

(Real)

[ Pa ]
ν Poisson's ratio

(Real)

 
a Plasticity yield stress

(Real)

[ Pa ]
b Plasticity hardening parameter

(Real)

[ Pa ]
n Plasticity hardening exponent

Default = 1.0 (Real)

 
Chard Plasticity Iso-kinematic hardening factor.
= 0
Hardening is full isotropic model.
= 1
Hardening uses the kinematic Prager-Ziegler model.
= between 0 and 1
Hardening is interpolated between the two models.

Default = 0.0 (Real)

 
σ max 0 Plasticity maximum stress

Default = 1030 (Real)

[ Pa ]
c Strain rate coefficient.
= 0 (Default)
No strain rate effect.

(Real)

[ 1 s ]
p Strain rate exponent.

Default = 1.0 (Real)

 
ICC Strain rate computation flag. 6
= 0 (Default)
Set to 1
= 1
Strain rate effect on σ max
= 2
No strain rate effect on σ max

(Integer)

 
Fsmooth Smooth strain rate option flag.
= 0 (Default)
No strain rate smoothing.
= 1
Strain rate smoothing active.

(Integer)

 
Fcut Cutoff frequency for strain rate filtering.

Default = 1030 (Real)

[Hz]
ε p m a x Failure plastic strain.

Default = 1030 (Real)

 
ε t 1 Tensile failure strain 1.

Default = 1030 (Real)

 
ε t 2 Tensile failure strain 2.

Default = 2.1030 (Real)

 

Example (Metal)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                  g                  mm                  ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/COWPER/1/1
metal
#              RHO_I
               .0078
#                  E                  NU
               20500                  .3
#                  a                   b                   n              C_hard          SIGMA_max0
                  50                 100                  .5                   1                  90
#                  c                   p       ICC  F_smooth               F_cut
                 100                   5         1         0                   0
#            EPS_max              EPS_t1              EPS_t2
                   0                   0                   0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. The difference between the Cowper-Symonds law and the standard Johnson-Cook model lies only in the strain rate dependent formulation:(1)
    σ = ( a + b ε p n ) ( 1 + ( ε ˙ c ) 1 p )
    Where,
    ε p
    Plastic strain
    ε ˙
    Strain rate
  2. The law is only defined for solids and shells. The global plasticity option for shells is not available in the actual version.
  3. Yield stress should be strictly positive.
  4. The hardening exponent n must be less than 1.

    clip0050
    Figure 1.
  5. The strain rate filtering is used to smooth strain rates.
  6. ICC is a flag of the strain rate effect on material maximum stress σ max :

    law_plaszeril
    σ = σ y ( 1 + ( ε ˙ c ) 1 / p ) σ = σ y ( 1 + ( ε ˙ c ) 1 / p )
    σ max = σ max 0 ( 1 + ( ε ˙ c ) 1 / p ) σ max = σ max 0
    Figure 2.
  7. Strain rate filtering input (Fcut) is only available for shell and solid elements.
  8. When ε p reaches ε p m a x in one integration point, then based on the element type:
    • Shell elements: The corresponding shell element is deleted.
    • Solid elements: The deviatoric stress of the corresponding integral point is permanently set to 0, however, the solid element is not deleted
  9. If ε 1 > ε t 1 ( ε 1 is the largest principal strain), the stress is reduced as:(2)
    σ n + 1 = σ n ( ε t 2 ε 1 ε t 2 ε t 1 )
  10. If ε 1 > ε t 2 , the stress is reduced to 0 (but the element is not deleted).